WO2018046212A1 - Verfahren und vorrichtung zur steuerung der nach einem gaswechselvorgang im zylinder einer brennkraftmaschine verbleibenden restgasmasse und/oder der während eines gaswechselvorgangs in den abgaskrümmer der brennkraftmaschine gespülten spülluftmasse - Google Patents

Verfahren und vorrichtung zur steuerung der nach einem gaswechselvorgang im zylinder einer brennkraftmaschine verbleibenden restgasmasse und/oder der während eines gaswechselvorgangs in den abgaskrümmer der brennkraftmaschine gespülten spülluftmasse Download PDF

Info

Publication number
WO2018046212A1
WO2018046212A1 PCT/EP2017/070050 EP2017070050W WO2018046212A1 WO 2018046212 A1 WO2018046212 A1 WO 2018046212A1 EP 2017070050 W EP2017070050 W EP 2017070050W WO 2018046212 A1 WO2018046212 A1 WO 2018046212A1
Authority
WO
WIPO (PCT)
Prior art keywords
residual gas
mass
internal combustion
combustion engine
cylinder
Prior art date
Application number
PCT/EP2017/070050
Other languages
English (en)
French (fr)
Inventor
Thomas Burkhardt
Jürgen DINGL
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to KR1020197009973A priority Critical patent/KR20190041535A/ko
Priority to CN201780055357.1A priority patent/CN109819665B/zh
Priority to US16/331,653 priority patent/US10982600B2/en
Publication of WO2018046212A1 publication Critical patent/WO2018046212A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0228Manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1434Inverse model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0411Volumetric efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method and a device for controlling the remaining after a gas exchange operation in the cylinder of an internal combustion engine residual gas mass and / or purged during a gas exchange operation in the exhaust manifold of the internal combustion engine scavenging air.
  • the residual gas mass ie the mass of remaining in the cylinder when closing the exhaust ⁇ valve residual gas, especially by the dead volume of the cylinder at top dead center of the piston and by the phase position of the exhaust camshaft and by the Ab ⁇ gas manifold pressure and the exhaust gas temperature certainly.
  • the residual gas quantity is additionally influenced by the gas pressures and gas temperatures in the intake manifold and in the exhaust manifold during the valve overlap.
  • the exhaust manifold pressure is higher than the intake manifold pressure.
  • you can by adjusting or increasing a Valve overlap by means of a Nockenwellenphasenver- position increase the residual gas mass relative to operating points without or with low valve overlap.
  • the intake manifold pressure may be higher than the exhaust manifold pressure.
  • by setting or increasing a valve overlap by means of a camshaft phase adjustment it is possible to reduce the residual gas mass relative to operating points without or with little valve overlap.
  • combustion gas is selectively flushed into the exhaust manifold by adjusting or increasing valve overlap, thereby reducing residual gas mass and thereby cylinder air mass and engine power elevated. This measure is called rinsing or scavenging.
  • rinsing or scavenging As the valve overlap increases or the positive purge slope increases, the combustion gas is completely purged and some of the fresh air is immediately flushed into the exhaust manifold. This part of the fresh air is called scavenging air.
  • the mass of fresh air flowing into the exhaust manifold during a gas exchange is referred to as purge air mass.
  • a mathematical model for the calculation of the residual gas mass and the purge air mass is referred to as residual gas model.
  • the residual gas mass should be selectively reduced and lowered to zero. This requires a control of the residual gas mass.
  • the object of the invention is to provide a method for controlling the residual gas mass in the cylinder and / or the purge air mass in the exhaust gas of an internal combustion engine, in its application, the exhaust emissions in all ambient and operating conditions of the internal combustion engine are sufficiently low to meet the statutory emission requirements and the cylinder air mass and as a result the power of the internal combustion engine are maximally large.
  • the claim 9 has a device for controlling the residual gas mass and / or the scavenging air in the exhaust gas of a
  • a method for controlling the residual gas mass and / or the purge air mass comprises the following steps:
  • An inverse residual gas model is understood to mean an inversion of a residual gas model designed in such a way that the required position of an actuator influencing the residual gas mass and / or the purge air mass can be determined from a specification of either a required residual gas mass or a required purge air mass.
  • the said method offers the possibility to control the residual gas mass and / or the scavenging air in the exhaust manifold and it allows for example to maintain a desired rate from ⁇ gas composition in the scavenging operation and exhaust emissions in all environmental and operating conditions of the internal combustion engine to the legally prescribed limit values restrict.
  • An arranged in the exhaust gas catalyst always remains in its effective operating range.
  • Figure 1 shows an internal combustion engine with an associated
  • FIG. 2 is a flow chart for explaining a method for
  • FIG. 3 shows a more detailed illustration of the control device shown in FIG.
  • FIG. 1 shows an internal combustion engine which comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract 4. This internal combustion engine is associated with a control device 25.
  • the intake system 1 comprises a throttle valve 5, a collector 6 and a suction pipe 7, which is guided toward a cylinder ZI via an inlet channel into a combustion chamber 9 of the engine block 2.
  • the engine block 2 comprises a crankshaft 8, which is coupled via a connecting rod 10 with a piston 11 of a cylinder ZI.
  • the internal combustion engine preferably comprises, in addition to the cylinder ZI, further cylinders Z2, Z3, Z4.
  • the internal combustion engine can also comprise any other number of cylinders.
  • the internal combustion engine is arranged in a motor vehicle.
  • an injection valve 18 and a spark plug 19 are arranged in the cylinder head 3.
  • the injection valve 18 may also be arranged in the intake manifold 7.
  • an exhaust gas catalyst 21 is arranged, which is preferably designed as a three-way catalyst.
  • an intake cam phaser is provided, which is coupled to the crankshaft 8 and an intake camshaft.
  • the intake camshaft is coupled to a gas inlet valve of the respective cylinder.
  • the intake cam phaser is configured to enable a phase of the intake camshaft to be adjusted to the crankshaft 8.
  • an exhaust cam phaser is provided, which is adapted to adjust a phase of an exhaust camshaft to the crankshaft 8, wherein the exhaust camshaft is coupled to a gas outlet valve 13.
  • a switching flap or other switching ⁇ mechanism is provided for changing an effective intake pipe length in the intake manifold 1.
  • one or more swirl flaps may be provided.
  • a supercharger can also be provided, which can be designed, for example, as an exhaust-gas turbocharger and comprises a turbine and a compressor.
  • the control device 25 are associated with sensors that detect different measured variables and each determine the measured value of the measured variable.
  • Operating variables of the internal combustion engine include the measured variables and derived from the measured variables
  • the control device 25 is designed to determine, depending on at least one measured variable manipulated variables, which are then converted into one or more actuating signals for controlling the actuators by means of corresponding actuators.
  • the sensors are, for example, a pedal position sensor 26 which detects an accelerator pedal position of an accelerator pedal 27
  • Air mass sensor 28 which detects an air mass flow upstream of the throttle valve 5, a throttle position sensor 30 which detects an opening degree of the throttle valve 5, a Um ⁇ dicastiksensor 32 which detects an ambient pressure of an environment of the internal combustion engine, a Saugrohrchristsensor 34 which detects an intake manifold pressure in the collector , A crankshaft angle sensor 36 which detects a crankshaft angle, which is then assigned a speed of the internal combustion engine.
  • an exhaust gas sensor 42 is provided, which is arranged upstream of the catalytic converter 21 and detects a residual Auer ⁇ content of exhaust gas of the internal combustion engine and whose measurement signal is representative of a
  • Air / fuel ratio upstream of the exhaust gas probe 42 before combustion For detecting the position of the intake camshaft and the exhaust camshaft, an intake cam ⁇ wave sensor and an exhaust camshaft are provided.
  • a temperature sensor is provided, which detects an ambient temperature of the internal combustion engine, and a further temperature sensor whose measurement signal is representative of an intake air temperature in the intake tract 1.
  • an exhaust gas pressure sensor may be provided, the measurement signal is representative of an exhaust manifold pressure, that is, a pressure in the exhaust tract 4th
  • the actuators are, for example, one or more of the following: the throttle 5, the gas inlet and outlet valves 12, 13, the injector 18, the intake cam phaser, the exhaust cam phaser, the spark plug 19, a wastegate actuator, a swirl flap, an exhaust flap, and Exhaust gas recirculation valve.
  • FIG. 2 shows a flowchart for illustrating a method for controlling the residual gas mass and / or the air mass flow output into the exhaust manifold of an internal combustion engine.
  • a specification of a desired residual gas mass or a desired purge air mass of a cylinder of the internal combustion engine takes place. For example, if the internal combustion engine is currently in a full load operation, then the desired residual gas mass is 0% of the total gas mass of the cylinder. However, the internal combustion engine is in a ⁇ part-load operation, then there is the predetermined residual gas mass in the range between 0% and 30% of the total mass of gas of the cylinder.
  • the residual gas mass and the scavenging air influencing actuators are in particular to the Einlassnockenphasenversteller, the training lassnockenphasenversteller, an actuator for influencing the intake manifold pressure, such as a throttle valve, and an actuator for influencing the Abgaskrümmer horres in ⁇ play as a Wastegatepositionsversteller.
  • Residual gas mass and the scavenging air mass influencing actuators are determined or it can be the target positions of two or more of these the residual gas mass and the purge air mass be ⁇ influencing actuators are determined.
  • a subsequent third step S3 an adjustment of the determined desired position of the residual gas mass and / or the scavenging air influencing actuator or an adjustment of the determined target positions of the residual gas mass and / or the scavenging air mass influencing actuators.
  • a combustion process is carried out in the cylinder.
  • a fifth step S5 after the completion of the combustion process, the combustion gas is expelled from the cylinder into the exhaust manifold of the cylinder
  • the residual gas mass is predetermined in such a way that rinsing of the cylinder takes place without scavenging occurring.
  • the residual gas mass is set to zero.
  • FIG. 3 shows a more detailed illustration of the control device 25 shown in FIG. 1.
  • This control device is supplied with input signals s1 through sx, which are the above-mentioned sensor signals, signals derived therefrom, further sensor signals and / or from the further sensor signals derived signals is. These signals are used by the control device for detecting the current operating state of the internal combustion engine and for providing control signals stl to sty for the actuators of the internal combustion engine.
  • the control device is used, inter alia, a residual gas and an inverse model RGM residual gas IRGM model for recognition of the instantaneous operating state of the internal combustion ⁇ machine and for providing said control signals.
  • the input signal s2 is, for example, signals derived from the intake cam phase sensor which describe the phase angle of the intake camshaft.
  • input signal s3 is at ⁇ play, be derived from Auslassnockenphasensensor signals describing the phasing of the exhaust camshaft.
  • the input signal s4 is, for example, signals derived from the intake manifold pressure sensor, which describe the intake manifold pressure.
  • input signal s5 is in ⁇ play, be derived from the wastegate position sensor signals which describe the position of the wastegate valve.
  • the inverse residual gas model IRGM is supplied with input signals m RG , REQ, s3, s4 and s5.
  • the input signal m RG , REQ is a predetermined desired residual gas mass.
  • the input signal s3 is, for example, signals derived from the exhaust cam phase sensor which describe the phase angle of the exhaust camshaft.
  • the input signal s4 is, for example, signals derived from the intake manifold pressure sensor, which describe the intake manifold pressure.
  • the inverse model IRGM residual gas obtained by using these input signals including in particular a predetermined, ge ⁇ desired residual gas mass part, control signals for setting a target position of one or more of the residual gas mass influencing actuators.
  • these actuators include an intake cam phaser, an exhaust cam phaser, an actuator for influencing the engine
  • Intake manifold pressure e.g. a throttle
  • an actuator for influencing the exhaust manifold pressure e.g. a wastegate positioner.
  • the inverse residual gas model IRGM is consequently provided to determine control signals for setting one or more actuators influencing the residual gas mass and / or the purge air mass using a predetermined, desired residual gas mass and / or purge air mass, further input signals and stored software, thus adding the residual gas mass influence that a desired cylinder air mass and a desired purge air mass is set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung der nach einem Gaswechselvorgang im Zylinder einer Brennkraftmaschine verbleibenden Restgasmasse und/oder der während eines Gaswechselvorgangs in den Abgaskrümmer gespülten Spülluftmasse. Das Verfahren weist die folgenden Schritte auf: -Vorgabe einer gewünschten Restgasmasse und/oder Spülluftmasse eines Zylinders der Brennkraftmaschine, -Ermittlung einer Sollposition eines die Restgasmasse und/oder die Spülluftmasse beeinflussenden Aktuators der Brennkraftmaschine unter Verwendung der vorgegebenen Restgasmasse und/oder Spülluftmasse und eines inversen Restgasmodells, -Einstellung der ermittelten Sollposition des die Restgasmasse und/oder die Spülluftmasse beeinflussenden Aktuators.

Description

Beschreibung
Verfahren und Vorrichtung zur Steuerung der nach einem Gaswechselvorgang im Zylinder einer Brennkraftmaschine verblei- benden Restgasmasse und/oder der während eines Gaswechsel¬ vorgangs in den Abgaskrümmer der Brennkraftmaschine gespülten Spülluftmasse
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung der nach einem Gaswechselvorgang im Zylinder einer Brennkraftmaschine verbleibenden Restgasmasse und/oder der während eines Gaswechselvorgangs in den Abgaskrümmer der Brennkraftmaschine gespülten Spülluftmasse. Beim Betrieb einer 4-Takt-Brennkraftmaschine ist ein Austausch der Gase im Zylinder während des Ausschiebe- und Ansaugtaktes im Allgemeinen nicht vollständig. Meist verbleibt ein Teil des durch die Verbrennung des Kraftstoffs entstandenen Verbrennungsgases nach dem Schließen des Auslassventils im Zylinder und nimmt als sogenanntes Restgas am darauf folgenden Verbrennungszyklus teil . Für Brennkraftmaschinen ohne Ventilüberschneidung wird die Restgasmasse, d.h. die Masse des beim Schließen des Auslass¬ ventils im Zylinder verbleibenden Restgases, vor allem durch das Totvolumen des Zylinders im oberen Totpunkt des Kolbens und durch die Phasenlage der Auslassnockenwelle sowie durch den Ab¬ gaskrümmerdruck und die Abgastemperatur bestimmt. Bei Brennkraftmaschinen mit Ventilüberschneidung wird die Restgasmenge zusätzlich von den Gasdrücken und Gastemperaturen im Saugrohr und im Abgaskrümmer während der Ventilüberschneidung beeinflusst.
In einem Vollastbetrieb einer Brennkraftmaschine ist Restgas unerwünscht, da es ein entsprechendes Volumen an Frischluft im Zylinder verdrängt, mit dem eine zusätzliche Kraftstoffmenge verbrannt und damit die Motorleistung gesteigert werden könnte.
In den meisten Betriebspunkten der Brennkraftmaschine ist der Abgaskrümmerdruck höher als der Saugrohrdruck. In solchen Betriebspunkten kann man durch Einstellen oder Vergrößern einer Ventilüberschneidung mittels einer Nockenwellenphasenver- stellung die Restgasmasse relativ zu Betriebspunkten ohne bzw. mit geringer Ventilüberschneidung erhöhen. In einigen anderen Betriebspunkten der Brennkraftmaschine kann aber der Saugrohrdruck höher sein als der Abgaskrümmerdruck. In diesen Betriebspunkten kann man durch ein Einstellen oder Vergrößern einer Ventilüberschneidung mittels einer Nocken- wellenphasenverstellung die Restgasmasse relativ zu Be- triebspunkten ohne bzw. mit geringer Ventilüberschneidung vermindern .
In Vollastbetriebspunkten mit positivem Spülgefälle, d.h. in Betriebspunkten, in denen während der Ventilüberschneidung der Saugrohrdruck größer ist als der Abgaskrümmerdruck, wird gezielt durch Einstellen oder Vergrößern einer Ventilüberschneidung Verbrennungsgas in den Abgaskrümmer ausgespült, dadurch die Restgasmasse vermindert und dadurch die Zylinderluftmasse und die Leistung der Brennkraftmaschine erhöht. Diese Maßnahme wird als Ausspülen oder Scavenging bezeichnet. Bei Vergrößerung der Ventilüberschneidung oder Vergrößerung des positiven Spülgefälles wird das Verbrennungsgas ganz ausgespült und ein Teil der Frischluft sofort in den Abgaskrümmer gespült. Dieser Teil der Frischluft wird als Spülluft bezeichnet. Die Masse der während eines Gaswechsels in den Abgaskrümmer fließenden Frischluft wird als Spülluftmasse bezeichnet. Ein mathematisches Modell zur Berechnung der Restgasmasse und der Spülluftmasse wird als Restgasmodell bezeichnet. Zur Maximierung der Zylinderluftmasse und damit der Leistung der Brennkraftmaschine soll die Restgasmasse gezielt vermindert und bis auf null abgesenkt werden können. Dafür ist eine Steuerung der Restgasmasse nötig. Wenn infolge des Ausspülens so viel Luft in den Abgaskrümmer gelangt, dass vorübergehend die Funktion des Katalysators eingeschränkt wird, dann steigen die Schadstof¬ femissionen der Brennkraftmaschine stark an. Um den Einfluss des Scavenging auf die Emissionen beherrschen zu können, ist eine Steuerung der Luftmasse im Abgas nötig. ^
Es ist bekannt, die das Scavenging steuernden Aktuatoren einer Brennkraftmaschine, zu denen insbesondere die Nockenwellen- phasenversteller gehören, über globale Betriebsparameter der Brennkraftmaschine wie beispielsweise die Drehzahl, der Mo¬ mentenwunsch, usw., vorzusteuern .
Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Steuerung der Restgasmasse im Zylinder und/oder der Spül- luftmasse im Abgas einer Brennkraftmaschine anzugeben, bei dessen Anwendung die Abgasemissionen in allen Umgebungs- und Betriebsbedingungen der Brennkraftmaschine ausreichend gering zur Erfüllung der gesetzlichen Emissionsvorgaben sind und die Zylinderluftmasse und in deren Folge die Leistung der Brenn- kraftmaschine maximal groß sind.
Diese Aufgabe wird durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. Der Anspruch 9 hat eine Vorrichtung zur Steuerung der Restgasmasse und/oder der Spülluftmasse im Abgas einer
Brennkraftmaschine zum Gegenstand.
Gemäß der vorliegenden Erfindung weist ein Verfahren zur Steuerung der Restgasmasse und/oder der Spülluftmasse folgende Schritte auf:
- Vorgabe entweder einer gewünschten Restgasmasse eines Zylinders der Brennkraftmaschine und/oder einer gewünschten Spülluftmasse,
- Ermittlung einer Sollposition eines die Restgasmasse und/oder die Spülluftmasse beeinflussenden Aktuators unter Verwendung der vorgegebenen Restgasmasse und/oder Spülluftmasse und eines inversen Restgasmodells,
- Einstellung der ermittelten Sollposition des die Restgasmasse und/oder die Spülluftmasse beeinflussenden Aktuators. Unter einem inversen Restgasmodell ist eine derart gestaltete Invertierung eines Restgasmodells zu verstehen, dass aus einer Vorgabe entweder einer geforderten Restgasmasse oder einer geforderten Spülluftmasse die dazu nötige Position eines die Restgasmasse und/oder die Spülluftmasse beeinflussenden Ak- tuators ermittelt werden kann.
Das genannte Verfahren bietet die Möglichkeit, die Restgasmasse und/oder die Spülluftmasse im Abgaskrümmer zu steuern und erlaubt es beispielsweise, im Scavenging-Betrieb eine gewünschte Ab¬ gaszusammensetzung einzuhalten und die Abgasemissionen in allen Umgebungs- und Betriebsbedingungen der Brennkraftmaschine auf die gesetzlich vorgegebenen Grenzwerte zu beschränken. Ein im Abgastrakt angeordneter Katalysator bleibt stets in seinem wirksamen Betriebsbereich.
Weitere vorteilhafte Eigenschaften der Erfindung ergeben sich aus deren nachfolgender beispielhafter Erläuterung anhand der Figuren. Es zeigt:
Figur 1 eine Brennkraftmaschine mit einer zugeordneten
Steuervorrichtung,
Figur 2 ein Flussdiagramm zur Erläuterung eines Verfahrens zur
Steuerung der Restgasmasse im Zylinder und/oder der in einen Abgaskrümmer ausgegebenen Luftmasse und
Figur 3 eine detailliertere Darstellung der in der Figur 1 gezeigten Steuervorrichtung.
Die Figur 1 zeigt eine Brennkraftmaschine, die einen Ansaugtrakt 1, einen Motorblock 2, einen Zylinderkopf 3 und einen Abgastrakt 4 umfasst. Dieser Brennkraftmaschine ist eine Steuervorrichtung 25 zugeordnet.
Der Ansaugtrakt 1 umfasst eine Drosselklappe 5, einen Sammler 6 und ein Saugrohr 7, das hin zu einem Zylinder ZI über einen Einlasskanal in einen Brennraum 9 des Motorblocks 2 geführt ist. Der Motorblock 2 umfasst eine Kurbelwelle 8, welche über eine Pleuelstange 10 mit einem Kolben 11 eines Zylinders ZI gekoppelt ist. Die Brennkraftmaschine umfasst neben dem Zylinder ZI vorzugsweise weitere Zylinder Z2, Z3, Z4. Die Brennkraftmaschine kann aber auch jede beliebige andere Anzahl an Zylindern umfassen. Die Brennkraftmaschine ist in einem Kraftfahrzeug angeordnet .
In dem Zylinderkopf 3 sind ein Einspritzventil 18 und eine Zündkerze 19 angeordnet. Alternativ kann das Einspritzventil 18 auch in dem Saugrohr 7 angeordnet sein.
In dem Abgastrakt 4 ist ein Abgaskatalysator 21 angeordnet, der bevorzugt als Dreiwegekatalysator ausgebildet ist.
Ferner ist ein Einlassnockenphasenversteller vorgesehen, der mit der Kurbelwelle 8 und einer Einlassnockenwelle gekoppelt ist. Die Einlassnockenwelle ist mit einem Gaseinlassventil des jeweiligen Zylinders gekoppelt. Der Einlassnockenphasenversteller ist dazu ausgebildet, ein Verstellen einer Phase der Einlassnockenwelle zu der Kurbelwelle 8 zu ermöglichen. Ferner ist ein Auslass- nockenphasenversteller vorgesehen, der dazu ausgebildet ist, eine Phase einer Auslassnockenwelle zu der Kurbelwelle 8 zu verstellen, wobei die Auslassnockenwelle mit einem Gasaus- lassventil 13 gekoppelt ist.
Ferner ist auch eine Schaltklappe oder ein sonstiger Schalt¬ mechanismus zum Verändern einer effektiven Saugrohrlänge in dem Ansaugtrakt 1 vorgesehen. Darüber hinaus können auch eine oder mehrere Drallklappen vorgesehen sein.
Ferner kann auch ein Lader vorgesehen sein, der beispielsweise als Abgasturbolader ausgebildet sein kann und eine Turbine und einen Kompressor umfasst. Der Steuervorrichtung 25 sind Sensoren zugeordnet, die verschiedene Messgrößen erfassen und jeweils den Messwert der Messgröße ermitteln. Betriebsgrößen der Brennkraftmaschine umfassen die Messgrößen und aus den Messgrößen abgeleitete
Größen. Die Steuervorrichtung 25 ist dazu ausgebildet, abhängig von mindestens einer Messgröße Stellgrößen zu ermitteln, die dann in ein oder mehrere Stellsignale zum Steuern der Stellglieder mittels entsprechender Stellantriebe umgesetzt werden.
Die Sensoren sind beispielsweise ein Pedalstellungsgeber 26, der eine Fahrpedalstellung eines Fahrpedals 27 erfasst, ein
Luftmassensensor 28, der einen Luftmassenstrom stromaufwärts der Drosselklappe 5 erfasst, ein Drosselklappenstellungssensor 30, der einen Öffnungsgrad der Drosselklappe 5 erfasst, ein Um¬ gebungsdrucksensor 32, der einen Umgebungsdruck einer Umgebung der Brennkraftmaschine erfasst, ein Saugrohrdrucksensor 34, der einen Saugrohrdruck in dem Sammler erfasst, ein Kurbelwel- lenwinkelsensor 36, der einen Kurbelwellenwinkel erfasst, dem dann eine Drehzahl der Brennkraftmaschine zugeordnet wird.
Ferner ist eine Abgassonde 42 vorgesehen, die stromaufwärts des Abgaskatalysators 21 angeordnet ist und einen Restsauer¬ stoffgehalt des Abgases der Brennkraftmaschine erfasst und deren Messsignal repräsentativ ist für ein
Luft-/Kraftstoff-Verhältnis stromaufwärts der Abgassonde 42 vor der Verbrennung. Zum Erfassen der Position der Einlassnockenwelle und der Auslassnockenwelle sind ein Einlassnocken¬ wellensensor und ein Auslassnockenwellensensor vorgesehen. Darüber hinaus ist ein Temperatursensor vorgesehen, der eine Umgebungstemperatur der Brennkraftmaschine erfasst, sowie ein weiterer Temperatursensor, dessen Messsignal repräsentativ ist für eine Ansauglufttemperatur in dem Ansaugtrakt 1. Ferner kann auch ein Abgasdrucksensor vorgesehen sein, dessen Messsignal repräsentativ ist für einen Abgaskrümmerdruck, also einem Druck in dem Abgastrakt 4.
Die Stellglieder sind beispielsweise eines oder mehrere der folgenden Bauteile: die Drosselklappe 5, die Gaseinlass- und Gasauslassventile 12, 13, das Einspritzventil 18, der Ein- lassnockenphasenversteller, der Auslassnockenphasenversteller, die Zündkerze 19, ein Wastegateversteller, eine Drallklappe, eine Abgasklappe und ein Abgasrückführventil .
Nach dem Viertaktprinzip arbeitende Brennkraftmaschinen saugen die zur Verbrennung des Kraftstoffs bestimmte Luft während des Ansaugtakts durch zu diesem Zweck öffnende Gaseinlassventile 12 in den jeweiligen Zylinder ZI bis Z4. Die durch die Verbrennung des Kraftstoffs in den Zylindern ZI bis Z4 entstandenen Abgase werden mit dem Ausschiebetakt durch zu diesem Zweck öffnende Gasauslassventile 13 in den Abgastrakt 4 ausgeschoben. Als theoretisch maximal mögliche eingeschlossene Zylinderluftmasse wird dabei diejenige Luftmasse bezeichnet, die genau das gesamte Hubvolumen des Zylinders ZI bis Z4, d. h. die Differenz zwischen den Zylindervolumina am unteren und oberen Totpunkt, mit dem um die Brennkraftmaschine herum herrschenden Umgebungsdruck und der um die Brennkraftmaschine herum herrschenden Umgebungstempe¬ ratur füllen würde, während das im oberen Totpunkt verbleibende Zylindertotvolumen mit Abgas gefüllt ist.
Im realen Motorbetrieb weicht die an der Verbrennung des Kraftstoffs beteiligte Frischluftfüllung aus verschiedenen Gründen von der theoretisch maximal möglichen eingeschlossenen Frischluftfüllung ab, vor allem aufgrund von Abweichungen des aktuellen Saugrohrdruckes vom Umgebungsdruck und der aktuellen Saugrohrtemperatur von der Umgebungstemperatur. Ein weiterer Grund dafür ist, dass in einem vorangegangenen Arbeitsspiel erzeugtes Abgas nicht vollständig aus dem je¬ weiligen Zylinder ZI bis Z4 ausgeschoben wurde. Das nach dem Schließen der Gasauslassventile 13 in dem Zylinder ZI bis Z4 oder in dem Ansaugtrakt 1 der Brennkraftmaschine verbleibende Verbrennungsgas wird als Restgas bezeichnet.
Ein weiterer Grund ist, dass in Betriebspunkten mit Ventil- Überschneidung bei einem Auftreten eines Druckgefälles von dem Saugrohr zu dem Abgaskrümmer das Verbrennungsgas aus dem Totvolumen teilweise oder ganz in den Abgaskrümmer ausgespült wird. Die Zylinderluftmasse wird dadurch erhöht, es kann mehr Kraftstoff verbrannt werden, die Motorleistung steigt.
Ein weiterer Grund ist, dass in Betriebspunkten mit Ventilüberschneidung bei einem Auftreten eines Druckgefälles von dem Saugrohr zu dem Abgaskrümmer von der während der Gaseinlass- ventilöffnungsphase von der Brennkraftmaschine über das Ga- seinlassventil angesaugte Einlassluftmasse ein Teil durch den Zylinder ZI in den Abgaskrümmer durchgespült werden kann. Dies wird als Scavenging bezeichnet.
Wenn infolge dieses Scavenging so viel Luft in den Abgaskrümmer gelangt, dass vorübergehend die Funktion des im Abgastrakt angeordneten Katalysators eingeschränkt wird, dann steigen die Schadstoffemissionen der Brennkraftmaschine stark an.
Dieser unerwünschte starke Anstieg der Schadstoffemissionen wird bei dem erfindungsgemäßen Verfahren dadurch verhindert, dass eine Steuerung des in den Abgaskrümmer der Brennkraftmaschine ausgegebenen Luftmassenstromes vorgenommen wird.
Dies wird anhand der weiteren Figuren erläutert. Die Figur 2 zeigt ein Flussdiagramm zur Veranschaulichung eines Verfahrens zur Steuerung der Restgasmasse und/oder des in den Abgaskrümmer einer Brennkraftmaschine ausgegebenen Luftmas- senstromes.
Gemäß diesem Verfahren erfolgt in einem ersten Schritt Sl eine Vorgabe einer gewünschten Restgasmasse oder einer gewünschten Spülluftmasse eines Zylinders der Brennkraftmaschine. Befindet sich die Brennkraftmaschine beispielsweise momentan in einem Vollastbetrieb, dann beträgt die gewünschte Restgasmasse 0 % der Gesamtgasmasse des Zylinders. Befindet sich die Brennkraft¬ maschine hingegen in einem Teillastbetrieb, dann liegt die vorgegebene Restgasmasse im Bereich zwischen 0 % und 30 % der Gesamtgasmasse des Zylinders.
In einem nachfolgenden zweiten Schritt S2 erfolgt eine Ermittlung einer Sollposition eines die Restgasmasse und/oder die Spül¬ luftmasse beeinflussenden Aktuators unter Verwendung der vorgegebenen Restgasmasse oder der vorgegebenen Spülluftmasse und eines inversen Restgasmodells. Bei die Restgasmasse und die Spülluftmasse beeinflussenden Aktuatoren handelt es sich insbesondere um den Einlassnockenphasenversteller, den Aus- lassnockenphasenversteller, einen Steller zur Beeinflussung des Saugrohrdruckes, beispielsweise eine Drosselklappe, und einen Steller zur Beeinflussung des Abgaskrümmerdruckes, bei¬ spielsweise einen Wastegatepositionsversteller . In diesem zweiten Schritt kann eine Sollposition eines dieser die
Restgasmasse und die Spülluftmasse beeinflussender Aktuatoren ermittelt werden oder es können die Sollpositionen zweier oder mehrerer dieser die Restgasmasse und die Spülluftmasse be¬ einflussenden Aktuatoren ermittelt werden. In einem nachfolgenden dritten Schritt S3 erfolgt eine Einstellung der ermittelten Sollposition des die Restgasmasse und/oder die Spülluftmasse beeinflussenden Aktuators bzw. eine Einstellung der ermittelten Sollpositionen der die Restgasmasse und/oder die Spülluftmasse beeinflussenden Aktuatoren.
Danach erfolgt in einem vierten Schritt S4 eine Durchführung eines Verbrennungsvorganges im Zylinder. Anschließend erfolgt in einem fünften Schritt S5 nach der Beendigung des Verbrennungsvorganges ein Ausschieben des Verbrennungsgases vom Zylinder in den Abgaskrümmer der
Brennkraftmaschine . Beispielsweise wird beim Vorliegen eines Teillastbetriebes der Brennkraftmaschine die Restgasmasse derart vorgegeben, dass ein Ausspülen des Zylinders erfolgt, ohne dass Scavenging auftritt.
Des Weiteren wird beim Vorliegen eines Vollastbetriebes die Restgasmasse zu Null vorgegeben.
Grundsätzlich kann durch eine Erhöhung der vorgegebenen
Restgasmasse im Zylinder erreicht werden, dass durch die dann entstehende Verdrängungswirkung eine Verminderung der Luftmasse im Zylinder auftritt. Dies bewirkt bei einem Ottomotor eine Verminderung des Drehmoments und erhöht den Wirkungsgrad des Motors durch eine Vermeidung einer gegebenenfalls notwendigen Drosselung der Frischluftzufuhr. Die Figur 3 zeigt eine detailliertere Darstellung der in der Figur 1 gezeigten Steuervorrichtung 25. Dieser Steuervorrichtung werden Eingangssignale sl bis sx zugeführt, bei denen es sich um die oben genannten Sensorsignale, daraus abgeleitete Signale, weitere Sensorsignale und/oder aus den weiteren Sensorsignalen abgeleitete Signale handelt. Diese Signale werden von der Steuervorrichtung zur Erkennung des momentanen Betriebszustands der Brennkraftmaschine und zur Bereitstellung von Steuersignalen stl bis sty für die Aktoren der Brennkraftmaschine verwendet. Zur Erkennung des momentanen Betriebszustands der Brennkraftma¬ schine und zur Bereitstellung der genannten Steuersignale verwendet die Steuervorrichtung unter anderem ein Restgasmodell RGM und ein inverses Restgasmodell IRGM.
Mittels des Restgasmodells wird unter Verwendung der Ein¬ gangssignale s2, s3, s4 und s5 und einer abgespeicherten Software die Restgasmasse mRG ermittelt. Beim Eingangssignal s2 handelt es sich beispielsweise um vom Einlassnockenphasensensor abgeleitete Signale, die die Phasenlage der Einlassnockenwelle beschreiben. Beim Eingangssignal s3 handelt es sich bei¬ spielsweise um vom Auslassnockenphasensensor abgeleitete Signale, die die Phasenlage der Auslassnockenwelle beschreiben. Beim Eingangssignal s4 handelt es sich beispielsweise um vom Saugrohrdrucksensor abgeleitete Signale, die den Saugrohrdruck beschreiben. Beim Eingangssignal s5 handelt es sich bei¬ spielsweise um vom Wastegatepositionssensor abgeleitete Signale, die die Position des Wastegateventils beschreiben.
Dem inversen Restgasmodell IRGM werden beim gezeigten Aus- führungsbeispiel Eingangssignale mRG,REQ, s3, s4 und s5 zugeführt. Beim Eingangssignal mRG,REQ handelt es sich um eine vorgegebene, gewünschte Restgasmasse. Beim Eingangssignal s3 handelt es sich beispielsweise um vom Auslassnockenphasensensor abgeleitete Signale, die die Phasenlage der Auslassnockenwelle beschreiben. Beim Eingangssignal s4 handelt es sich beispielsweise um vom Saugrohrdrucksensor abgeleitete Signale, die den Saugrohrdruck beschreiben. Beim Eingangssignal s5 handelt es sich bei¬ spielsweise um vom Wastegatepositionssensor abgeleitete Signale, die die Position des Wastegateventils beschreiben. Das inverse Restgasmodell IRGM ermittelt unter Verwendung dieser Eingangssignale, zu denen insbesondere eine vorgegebene, ge¬ wünschte Restgasmasse gehört, Steuersignale zur Einstellung einer Sollposition eines oder mehrerer die Restgasmasse beeinflussender Aktuatoren. Zu diesen Aktuatoren gehören insbesondere ein Einlassnockenphasenversteller, ein Auslassno- ckenphasenversteller, ein Steller zur Beeinflussung des
Saugrohrdrucks, z.B. eine Drosselklappe, und ein Steller zur Beeinflussung des Abgaskrümmerdruckes, z.B. ein Wastegatepo- sitions ersteller.
Das inverse Restgasmodell IRGM ist folglich dazu vorgesehen, unter Verwendung einer vorgegebenen, gewünschten Restgasmasse und/oder Spülluftmasse, weiterer Eingangssignale und einer abgespeicherten Software Steuersignale zur Einstellung eines oder mehrerer die Restgasmasse und/oder die Spülluftmasse beeinflussender Aktoren zu ermitteln, um die Restgasmasse so zu beeinflussen, dass eine gewünschte Zylinderluftmasse und eine gewünschte Spülluftmasse eingestellt wird.
1
Bezugs zeichenliste
1 Ansaugtrakt
2 Motorblock
3 Zylinderkopf
4 Abgastrakt
5 Drosselklappe
6 Sammler
7 Saugrohr
8 Kurbelwelle
9 Brennraum
10 Pleuelstange
11 Kolben
12 Gaseinlassventil
13 Gasauslassventil
18 Einspritzventil
19 Zündkerze
21 Abgaskatalysator
25 Steuervorrichtung
26 Pedalstellungsgeber
27 Fahrpedal
28 Luftmassensensor
30 Drosselklappenstellungssensor
32 Umgebungsdrucksensor
34 Saugrohrdrucksensor
36 Kurbelwellenwinkelsensor
IRGM Invertiertes Restgasmodell
RGM Restgasmodell
mRG vorgegebene Restgasmenge sl-sx Sensorsignale
stl-sty Steuersignale
S1-S5 Verfahrensschritte
Z1-Z4 Zylinder

Claims

Patentansprüche
1. Verfahren zur Steuerung der nach einem Gaswechselvorgang in einem Zylinder einer Brennkraftmaschine verbleibenden Rest- gasmasse und/oder der während eines Gaswechselvorgangs in einen Abgaskrümmer der Brennkraftmaschine gespülten Spülluftmasse mit folgenden Schritten:
- Vorgabe einer gewünschten Restgasmasse des Zylinders der Brennkraftmaschine und/oder einer gewünschten Spülluftmasse, - Ermittlung einer Sollposition eines die Restgasmasse und/oder die Spülluftmasse beeinflussenden Aktuators unter Verwendung der vorgegebenen Restgasmasse und/oder Spülluftmasse und eines inversen Restgasmodells,
- Einstellung der ermittelten Sollposition des die Restgasmasse und/oder die Spülluftmasse beeinflussenden Aktuators.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Sollpositionen mehrerer die Restgasmasse und/oder die Spülluftmasse beeinflussender Aktuatoren ermittelt werden und eine Einstellung der ermittelten Sollpositionen der die Restgasmasse und/oder die Spülluftmasse beeinflussenden Aktuatoren vorgenommen wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein die Restgasmasse und/oder die Spülluftmasse beeinflussender
Aktuator ein Einlassnockenphasenversteller ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein die Restgasmasse und/oder die Spül- luftmasse beeinflussender Aktuator ein Auslassnockenphasen- versteller ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein die Restgasmasse und/oder die Spül- luftmasse beeinflussender Aktuator ein Steller zur Beeinflussung des Saugrohrdrucks ist.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein die Restgasmasse und/oder die Spül- luftmasse beeinflussender Aktuator ein Steller zur Beeinflussung des Abgaskrümmerdrucks ist.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vorgegebene Restgasmasse im Voll¬ lastbetrieb der Brennkraftmaschine im Bereich von 0% der Ge¬ samtgasmasse des Zylinders liegt.
8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die vorgegebene Restgasmasse im Teillast¬ betrieb der Brennkraftmaschine im Bereich zwischen 0% und 30% der Gesamtgasmasse des Zylinders liegt.
9. Vorrichtung zur Steuerung der nach einem Gaswechselvorgang im Zylinder einer Brennkraftmaschine verbleibenden Restgasmasse und/oder der während eines Gaswechselvorgangs in den Abgas¬ krümmer der Brennkraftmaschine gespülten Spülluftmasse, dadurch gekennzeichnet, dass sie eine Steuervorrichtung aufweist, die zur Durchführung eines Verfahrens mit den in einem der Ansprüche 1 - 8 angegebenen Merkmalen ausgebildet ist.
PCT/EP2017/070050 2016-09-09 2017-08-08 Verfahren und vorrichtung zur steuerung der nach einem gaswechselvorgang im zylinder einer brennkraftmaschine verbleibenden restgasmasse und/oder der während eines gaswechselvorgangs in den abgaskrümmer der brennkraftmaschine gespülten spülluftmasse WO2018046212A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197009973A KR20190041535A (ko) 2016-09-09 2017-08-08 가스 교환 공정 후에 내연 엔진의 실린더 내에 잔류하는 잔류 가스 질량 및/또는 가스 교환 공정 동안 내연 엔진의 배기 매니폴드 내로 도입되는 퍼지 공기 질량을 제어하기 위한 방법 및 장치
CN201780055357.1A CN109819665B (zh) 2016-09-09 2017-08-08 用于控制内燃机的气缸中的残余气体质量和/或排气歧管中的冲刷空气质量的方法和装置
US16/331,653 US10982600B2 (en) 2016-09-09 2017-08-08 Method and device for controlling the residual gas mass remaining in the cylinder of an internal combustion engine after a gas exchange process and/or the purge air mass introduced during a gas exchange process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016217222.0 2016-09-09
DE102016217222.0A DE102016217222B4 (de) 2016-09-09 2016-09-09 Verfahren und Vorrichtung zur Steuerung der nach einem Gaswechselvorgang im Zylinder einer Brennkraftmaschine verbleibenden Restgasmasse und/oder der während eines Gaswechselvorgangs in den Abgaskrümmer der Brennkraftmaschine gespülten Spülluftmasse

Publications (1)

Publication Number Publication Date
WO2018046212A1 true WO2018046212A1 (de) 2018-03-15

Family

ID=59713981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/070050 WO2018046212A1 (de) 2016-09-09 2017-08-08 Verfahren und vorrichtung zur steuerung der nach einem gaswechselvorgang im zylinder einer brennkraftmaschine verbleibenden restgasmasse und/oder der während eines gaswechselvorgangs in den abgaskrümmer der brennkraftmaschine gespülten spülluftmasse

Country Status (5)

Country Link
US (1) US10982600B2 (de)
KR (1) KR20190041535A (de)
CN (1) CN109819665B (de)
DE (1) DE102016217222B4 (de)
WO (1) WO2018046212A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10982600B2 (en) 2016-09-09 2021-04-20 Vitesco Technologies GmbH Method and device for controlling the residual gas mass remaining in the cylinder of an internal combustion engine after a gas exchange process and/or the purge air mass introduced during a gas exchange process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019212275A1 (de) 2019-08-15 2021-02-18 Volkswagen Aktiengesellschaft Verfahren zur Adaption einer erfassten Nockenwellenstellung, Steuergerät zur Durchführung des Verfahrens, Verbrennungsmotor und Fahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300337A1 (de) * 1993-01-11 1994-07-14 Meta Motoren Energietech Restgassteuerung bei Brennkraftmaschinen
DE102006061695A1 (de) * 2006-02-20 2007-08-23 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102008022644A1 (de) * 2008-05-08 2009-11-12 Daimler Ag Verfahren zum Betrieb einer Verbrennungskraftmaschine
DE102011013481A1 (de) * 2011-03-10 2012-09-13 Volkswagen Ag Verfahren zur Steuerung eines Verbrennungsmotors

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE515067C2 (sv) * 1999-10-25 2001-06-05 Volvo Personvagnar Ab Metod för att minska ämnen i avgaser från en förbränningsmotor
JP3885456B2 (ja) 2000-03-22 2007-02-21 日産自動車株式会社 可変動弁の制御装置
DE10224213C1 (de) 2002-05-31 2003-10-09 Siemens Ag Verfahren zur Füllungsregelung einer Brennkraftmaschine
DE10317685A1 (de) * 2003-04-17 2004-11-18 Fev Motorentechnik Gmbh Verfahren zur inneren Abgasrückführung, Brennkraftmaschine und Verwendung der Brennkraftmaschine zur Motorbremsung
US6918384B2 (en) * 2003-12-08 2005-07-19 General Motors Corporation Diesel engine with cam phasers for in-cylinder temperature control
DE102004041708B4 (de) 2004-08-28 2006-07-20 Bayerische Motoren Werke Ag Verfahren zur modellbasierten Bestimmung der während einer Ansaugphase in die Zylinderbrennkammer einer Brennkraftmaschine einströmenden Frischluftmasse
JP2007155200A (ja) * 2005-12-05 2007-06-21 Matsushita Electric Ind Co Ltd 冷却器およびこの冷却器を備えた冷蔵庫
CN100363597C (zh) * 2006-01-19 2008-01-23 清华大学 一种实现汽油机配气相位快速切换的装置及其方法
JP4645456B2 (ja) * 2006-01-23 2011-03-09 株式会社豊田自動織機 予混合圧縮自着火燃焼機関の制御装置
JP4765703B2 (ja) 2006-03-20 2011-09-07 日産自動車株式会社 可変動弁機構の制御装置
JP4253339B2 (ja) 2006-09-21 2009-04-08 株式会社日立製作所 内燃機関の制御装置
US8448440B2 (en) * 2007-03-07 2013-05-28 Thermal Power Recovery Llc Method and apparatus for achieving higher thermal efficiency in a steam engine or steam expander
DE102008048679B4 (de) 2008-09-24 2017-07-06 Audi Ag Verfahren zur Steuerung und/oder Regelung eines Ladedruckes eines Abgasturboladers sowie eine Brennkraftmaschine
FR2941266B1 (fr) 2009-01-21 2011-02-11 Inst Francais Du Petrole Procede pour controler les masses de gaz enfermees dans un cylindre d'un moteur essence a distribution variable
CN102213134B (zh) * 2011-06-10 2016-05-25 天津大学 基于发动机可控排气背压阀cai燃烧的实现方法
CN102312732B (zh) * 2011-09-05 2013-09-11 天津大学 一种实现汽油机怠速和小负荷可控自燃燃烧的方法
FR2982908B1 (fr) 2011-11-17 2014-11-14 IFP Energies Nouvelles Procede de controle de la fraction de gaz brules dans un cylindre moteur avec egr rt igr
JP2013249748A (ja) 2012-05-30 2013-12-12 Isuzu Motors Ltd 内燃機関の制御装置
DE102013102549B4 (de) * 2013-03-13 2022-07-14 Pierburg Gmbh Abgasventilvorrichtung für eine Verbrennungskraftmaschine
CN103195595B (zh) * 2013-04-01 2015-09-09 天津大学 外部进气加热与内部egr策略协同控制方法
CN103291472B (zh) * 2013-06-19 2016-01-20 吉林大学 缸内燃烧温度定量控制的压燃式内燃机均质燃烧控制方法
DE102014000396A1 (de) 2014-01-17 2015-07-23 Fev Gmbh Modellbasierte Bestimmung einer Gemischmasse während einer Ladungswechselphase in einer Brennkammer einer Brennkraftmaschine
DE102014017631A1 (de) * 2014-11-28 2016-06-02 Man Truck & Bus Ag Verfahren und Vorrichtung zum Betrieb eines elektromotorisch unterstützten Abgasturboladers eines Kraftfahrzeugs
DE102016217222B4 (de) 2016-09-09 2022-08-11 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Steuerung der nach einem Gaswechselvorgang im Zylinder einer Brennkraftmaschine verbleibenden Restgasmasse und/oder der während eines Gaswechselvorgangs in den Abgaskrümmer der Brennkraftmaschine gespülten Spülluftmasse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300337A1 (de) * 1993-01-11 1994-07-14 Meta Motoren Energietech Restgassteuerung bei Brennkraftmaschinen
DE102006061695A1 (de) * 2006-02-20 2007-08-23 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102008022644A1 (de) * 2008-05-08 2009-11-12 Daimler Ag Verfahren zum Betrieb einer Verbrennungskraftmaschine
DE102011013481A1 (de) * 2011-03-10 2012-09-13 Volkswagen Ag Verfahren zur Steuerung eines Verbrennungsmotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAINER GOLLOCH: "Downsizing bei Verbrennungsmotoren: Ein wirkungsvolles Konzept zur Kraftstoffverbrauchssenkung", 1 January 2005 (2005-01-01), pages 96, XP055425643, ISBN: 978-3-540-23883-6, Retrieved from the Internet <URL:https://books.google.nl/books?id=GvciBAAAQBAJ&pg=PA96&lpg=PA96&dq=restgasanteil+wastegate&source=bl&ots=Ue_lwbCFT1&sig=WMUKMlx4dnXQ-aRiQZjzwWnHeCI&hl=en&sa=X&ved=0ahUKEwjS6qaL4sLXAhVKWxoKHbPKAfcQ6AEIMDAC#v=onepage&q=restgasanteil%20wastegate&f=false> [retrieved on 20171116] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10982600B2 (en) 2016-09-09 2021-04-20 Vitesco Technologies GmbH Method and device for controlling the residual gas mass remaining in the cylinder of an internal combustion engine after a gas exchange process and/or the purge air mass introduced during a gas exchange process

Also Published As

Publication number Publication date
DE102016217222A1 (de) 2018-03-15
US20190242305A1 (en) 2019-08-08
CN109819665A (zh) 2019-05-28
CN109819665B (zh) 2022-05-17
US10982600B2 (en) 2021-04-20
DE102016217222B4 (de) 2022-08-11
KR20190041535A (ko) 2019-04-22

Similar Documents

Publication Publication Date Title
DE102005015609B4 (de) Vorrichtung zum Steuern einer Brennkraftmaschine
EP1725757B1 (de) Verfahren und vorrichtung zum steuern des luftmengenstromes von verbrennungskraftmaschinen
DE102005009104B3 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102007045817B4 (de) Verfahren und Vorrichtung zum Steuern des Motorbetriebs während der Regeneration eines Abgasnachbehandlungssystems
DE102005014735A1 (de) Multivariable Aktorsteuerung für eine Brennkraftmaschine
DE112008001170T5 (de) Verfahren und Vorrichtung zum Steuern eines Wechsels zwischen HCCI- und SI-Verbrennung in einem Benzinmotor mit Direkteinspritzung
DE102011108714A1 (de) System und Verfahren zum Steuern eines Motorkloppfens unter Verwendung einer elektrohydraulischen Ventilbetätigung
DE102014013675A1 (de) Abgasrezirkulations-Regel- bzw. Steuervorrichtung, Motor, Verfahren zum Regeln bzw. Steuern einer EGR Vorrichtung und Computerprogrammprodukt
EP2923073B1 (de) Verfahren zum betrieb einer fremdgezündeten brennkraftmaschine mit einem abgasturbolader
WO2018046212A1 (de) Verfahren und vorrichtung zur steuerung der nach einem gaswechselvorgang im zylinder einer brennkraftmaschine verbleibenden restgasmasse und/oder der während eines gaswechselvorgangs in den abgaskrümmer der brennkraftmaschine gespülten spülluftmasse
DE10356713B4 (de) Verfahren zur Regelung bzw. Steuerung einer in einem Kreisprozess arbeitenden Brennkraftmaschine
DE10303705B4 (de) Verfahren zum Betreiben einer mit Kraftstoffdirekteinspritzung arbeitenden Brennkraftmaschine
DE19730973C2 (de) Verfahren zum Steuern einer Brennkraftmaschine
DE102004038338B3 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102014214438B3 (de) Verfahren zur Steuerung der Kraftstoffzufuhr zur Einstellung eines gewünschten Luft-Kraftstoff-Verhältnisses in einem Zylinder eines Verbrennungsmotors
EP1697624A1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE102012203876B3 (de) Verfahren zur Bestimmung einer Zylinderfüllung einer Verbrennungskraftmaschine
WO2013143687A1 (de) Verfahren zum betreiben einer verbrennungskraftmaschine
EP2236798B1 (de) Verfahren und Vorrichtung zur Diagnose eines variablen Ventiltriebs einer Brennkraftmaschine
DE102015216501A1 (de) Steuervorrichtung für einen Verbrennungsmotor
WO2011117123A1 (de) Verfahren und vorrichtung zur regelung der abgasrückführungsrate für verbrennungsmotoren im magerbetrieb
DE102010001738A1 (de) Verfahren zum Regeln von Luftsystemzuständen in einem Saugrohr einer Brennkraftmaschine
DE102009018735A1 (de) Abgasrückführung
EP3601772B1 (de) Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine
DE102004013660B3 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17758072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009973

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17758072

Country of ref document: EP

Kind code of ref document: A1