WO2006035940A1 - 空気入りラジアルタイヤ - Google Patents

空気入りラジアルタイヤ Download PDF

Info

Publication number
WO2006035940A1
WO2006035940A1 PCT/JP2005/018153 JP2005018153W WO2006035940A1 WO 2006035940 A1 WO2006035940 A1 WO 2006035940A1 JP 2005018153 W JP2005018153 W JP 2005018153W WO 2006035940 A1 WO2006035940 A1 WO 2006035940A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
organic fiber
belt
main belt
cord
Prior art date
Application number
PCT/JP2005/018153
Other languages
English (en)
French (fr)
Inventor
Takeshi Yano
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US11/664,124 priority Critical patent/US20080277037A1/en
Priority to JP2006537838A priority patent/JP4635010B2/ja
Priority to EP05788069A priority patent/EP1800902B1/en
Publication of WO2006035940A1 publication Critical patent/WO2006035940A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/005Reinforcements made of different materials, e.g. hybrid or composite cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C9/2204Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre obtained by circumferentially narrow strip winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/26Folded plies
    • B60C9/263Folded plies further characterised by an endless zigzag configuration in at least one belt ply, i.e. no cut edge being present
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/28Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/02Tyres specially adapted for particular applications for aircrafts
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides

Definitions

  • the radial tire proposed in Patent Document 1 is designed to suppress the circumferential growth of the tread rubber, in other words, the growth of the tire in the diametrical direction during internal pressure filling.
  • the radial tire proposed in Patent Document 1 is designed to suppress the circumferential growth of the tread rubber, in other words, the growth of the tire in the diametrical direction during internal pressure filling.
  • by arranging more belt layers in the belt center part than in the shoulder part it is possible to dramatically improve the performance against the ingress of foreign matter.
  • the conventional structure belt has substantially uniform circumferential rigidity over the entire region of the tire crown region, whereas the radial belt proposed in Patent Document 1 is The tire has a different circumferential stiffness distribution of the belt with respect to the tread width direction.
  • the tire ground contact shape was different from that of the conventional structure when a load was applied perpendicular to the road surface after filling the tire with internal pressure.
  • the ideal grounding shape is equivalent to the circumferential length of the crown center portion and the shoulder portion. It can be seen that the two performances can be achieved at the same time.
  • an object of the present invention is to provide an aircraft pneumatic tire capable of obtaining good high-speed durability and wear characteristics without impairing excellent durability against foreign matters.
  • MO The circumferential rigidity at the crown center PO of the main belt layer is MO.
  • M2 Circumferential rigidity at 2Z3 position P2 of the width of the main belt layer.
  • DO The tire diameter at the tire equatorial plane when the internal pressure is reduced from the atmospheric pressure to within 5% of the specified internal pressure after filling the specified internal pressure.
  • A l. 3- 5. 0 X 2d / D0-0. 33 X M2 / MO
  • the circumferential rigidity of the belt here refers to the elastic modulus in the circumferential direction of the belt layer.
  • the growth rate of one diameter is R (%)
  • the cord elongation per unit width (10mm in this case) is added to the cord elongation rate (see Fig. 12) defined by the elongation rate 0 to R (%) This is calculated by multiplying the code).
  • the belt circumferential rigidity when the cord is inclined at an angle ⁇ with respect to the circumferential direction is calculated by multiplying the rigidity per unit by cos ⁇ .
  • the elastic modulus is calculated when the wave-shaped one is stretched in the circumferential direction.
  • the invention described in claim 1 has been made in view of the above-described facts, and includes a pair of bead cores, one bead core force, and at least one carcass ply extending in a toroid shape toward the other bead core. And a main belt layer including a plurality of organic fiber cords arranged on the outer side in the tire radial direction of the carcass layer and extending in the tire circumferential direction.
  • TW the width of the ground print
  • BW when a specified load is applied after filling the specified internal pressure specified in TRA, 0.8 TW ⁇ BW ⁇ 1.
  • the number of sheets of the main belt layer which is the main strength member.
  • the circumferential rigidity of the main belt layer at the crown center part P0 of the main belt layer P2 and the width 2Z3 position P2 of the width of the main belt layer M0, M2 As a result, the ratio M2ZM0 of both was larger than 0.2 and smaller than 0.8, and as a result, the amount of material used for the main belt layer was minimized while the specified internal pressure was filled, and It is possible to efficiently suppress the amount of stretch in the tread rubber circumferential direction in the center area of the tread during high-speed rotation, and to suppress tire diameter growth.
  • M2ZM0 is larger than 0.8
  • a large number of belts are arranged in the tire shoulder portion that is not so dominant in suppressing the tire diameter growth, and thus the effect of reducing the weight of the tire is small.
  • M2ZM0 is smaller than 0.2, it is not preferable because sufficient belt rigidity cannot be secured in the shoulder portion, and a standing wave is likely to occur during high-speed traveling.
  • the invention according to claim 2 is the pneumatic radial tire according to claim 1, wherein the tire is in contact with the ground when the specified load specified in TRA is applied after being assembled to the rim and filled with the specified internal pressure specified in TRA.
  • the ground contact length of the part corresponding to the crown center PO is L 0
  • the ground contact length of the part corresponding to the 84% position of the ground width is L2, 0.85 ⁇ L2 / L0 ⁇ 1. It is characterized by satisfying 1.
  • the term "substantially 0 °" includes 2.0 ° or less.
  • the invention of claim 4 is the pneumatic radial tire of claim 1 or claim 2, wherein the main belt layer is inclined at an angle of 2 to 25 ° with respect to the tire equatorial plane. It is characterized in that it includes two or more belt plies including organic fiber cords that are bent in the same plane so as to incline in opposite directions at the end of each ply and extend zigzag in the tire circumferential direction. .
  • the invention according to claim 5 is the pneumatic radial tire according to any one of claims 1 to 4, wherein in the main belt layer, the laminated thickness of the organic fiber cord is set to the crown center.
  • the thickness of the organic fiber cord at the crown center PO is GO
  • the thickness of the organic fiber cord at the width position P2 of 2Z3 of the maximum width of the main belt layer is G2.
  • G2ZG0 exceeds 0.85, many belts are arranged in the tire shoulder portion that is not so dominant in the tire diameter growth, and the effect on the tire light weight is low.
  • G2ZG0 is less than 0.35, sufficient belt rigidity cannot be secured in the shoulder portion, so that standing waves are likely to occur during high-speed traveling, which is not preferable in terms of durability.
  • the invention according to claim 6 is the pneumatic radial tire according to any one of claims 1 to 5, wherein the main belt layer has a tensile breaking strength of 6.3 cNZdtex or more and an extension.
  • Elongation in the direction of 0.3cNZdtex is 0.2 to 2.0% in the direction of extension, 2.
  • elongation in the direction of lcN / dt ex is 1.5 to 7.0%
  • extension 3.2cNZdtex It is characterized in that it is composed of at least two belt plies including organic fiber cords whose elongation rate under load is 2.2 to 9.3%.
  • the number of belts is set so as to be substantially reduced from the crown center portion PO to a portion of the shoulder. Therefore, the tire diameter growth at the crown center portion PO is increased. Force that can be suppressed According to claim 6, tire diameter growth can be more effectively suppressed by using a higher elastic organic fiber cord for the belt.
  • the main belt layer has a tensile breaking strength of 6.
  • the elongation rate at the time of 0.3 cNZdtex load in the stretching direction of the organic fiber cord is 0.2 to 2.
  • the specified internal pressure is 16 20 kPa and the specified load is 24860 kg.
  • the organic fiber cord has an elongation ratio of 0.2 to 1. in the extension direction when 0.3 cNZdtex is applied.
  • the invention according to claim 7 is the pneumatic radial tire according to any one of claims 1 to 6, wherein the main belt layer includes an aromatic polyamide fiber and an aliphatic polyamide. And a belt ply including an organic fiber cord in which the weight ratio of the aromatic polyamide fiber to the aliphatic polyamide fiber is 100: 10 to 170. .
  • the organic fiber cord of the main belt layer includes an aromatic polyamide fiber having a high elastic modulus and an aliphatic polyamide fiber having a large cord elongation at break, thereby suppressing tire diameter growth and causing a large cord elongation. It is possible to achieve both safety and safety at the time of abnormal input to the tire.
  • the weight ratio of the aromatic polyamide fiber to the aliphatic polyamide fiber is 10
  • the aliphatic polyamide fibers include, for example, 6-nylon, 6, 6-nylon, 4, 6
  • the organic fiber cord includes an aromatic polyamide-based fiber, an aliphatic polyamide-based fiber, and an aromatic polyamide-based organic fiber cord and an aliphatic polyamide-based organic fiber cord as long as the force is also configured.
  • aromatic polyamide organic fiber cord is A and the aliphatic polyamide organic fiber cord is B
  • a or B is twisted (Z twist), and then aligned, in the opposite direction to the twist.
  • An organic fiber cord constituting the main belt layer can be obtained by applying an upper twist (S twist).
  • a or B may be twisted individually, or A and B may be twisted together.
  • the number of A, B or AB (synthetic yarn) at the time of lower twist or upper twist may be one or more.
  • the thickness of the A or B raw yarn may be the same or different!
  • the form of the mixed twisted yarn may be a loop made around the core yarn!
  • the pneumatic radial tire of the present invention has an excellent effect that good high-speed durability and wear characteristics can be obtained without impairing excellent durability against foreign matters.
  • FIG. 1 is a cross-sectional view of a pneumatic radial tire according to a first embodiment.
  • FIG. 2A is an exploded perspective view of the pneumatic radial tire shown in FIG.
  • FIG. 2B is a plan view of a protective layer cord.
  • FIG. 3 is an enlarged cross-sectional view of the tread of the pneumatic radial tire shown in FIG.
  • FIG. 4 is a plan view of a spiral belt.
  • FIG. 5 is a plan view of an endless zigzag belt.
  • FIG. 6 is a footprint of the pneumatic radial tire of Conventional Example 1.
  • FIG. 7 is a footprint of the pneumatic radial tire of Comparative Example 1.
  • FIG. 8 is a footprint of the pneumatic radial tire of Comparative Example 2.
  • FIG. 9 is a footprint of the pneumatic radial tire of the example.
  • FIG. 10 A graph showing a comparison between the actual contact shape rectangular ratio (symbol diamond) of the prototype tire and the expected line of the rectangular ratio derived from the belt rigidity ratio Z tire drop high strength.
  • FIG. 11 A is a cross-sectional view of a pneumatic radial tire according to Conventional Example 1 and Comparative Example 1.
  • FIG. 1 IB is an exploded perspective view of the pneumatic radial tire shown in FIG. 11A.
  • FIG. 12 is a graph illustrating a method for calculating an elastic modulus.
  • FIG. 13 is a footprint of the pneumatic radial tire of Example 1.
  • FIG. 14 is a footprint of the pneumatic radial tire of Example 3.
  • the pneumatic radial tire 10 for an aircraft of this embodiment has a bead portion 12 having a round cross section.
  • a carcass layer 16 composed of six carcass plies (not shown) in which rubber-coated organic fiber cords are arranged in the radial direction is anchored to the bead core 14.
  • a belt layer 20 is provided on the outer circumferential surface of the crown region of the carcass layer 16 in the tire radial direction, and a tread rubber layer 24 constituting the tread portion 23 is provided on the outer side in the tire radial direction of the belt layer 20.
  • a side rubber layer 27 constituting the side wall portion 25 is provided outside the carcass layer in the tire width direction.
  • the belt layer 20 is composed of a main belt layer 26 on the inner side in the tire radial direction and a protective belt layer 22 provided on the outer side in the tire radial direction of the main belt layer 26. .
  • the organic fiber cord used for the carcass ply constituting the carcass layer 16 has a tensile breaking strength of 6.3 cNZdtex or more, an elongation rate of 0.2 cNZdtex, an elongation rate of 0.2 to 1.8%, and an elongation direction of 1 It is preferable that the elongation when loaded with 9cNZdtex is 1.4 to 6.4%, and the elongation when loaded with 2.9 cNZdtex is 2.1 to 8.6% (see Fig. 14). [0095] For the carcass layer 16, an organic fiber cord having an aromatic polyamide fiber strength is used.
  • an organic fiber cord having a lower twist coefficient of 0.12-0.85, more preferably 0.17-0.51, and an upper twist coefficient of 0.4 to 0.85 is preferable.
  • the carcass layer 16 may be made of an organic fiber cord (so-called hybrid cord) containing an aromatic polyamide fiber and an aliphatic polyamide fiber.
  • the weight ratio of the aromatic polyamide fiber to the aliphatic polyamide fiber is 10
  • the carcass layer 16 is formed by twisting an aromatic polyamide-based organic fiber cord and an aliphatic polyamide-based organic fiber cord, and the polyamide organic fiber cord has a lower twist coefficient N1 of 0.12. It is also possible to use organic fiber cords (so-called hybrid cords) of ⁇ 0.85, more preferably 0.17 to 0.51.
  • a nylon cord is used for the carcass layer 16 of the present embodiment.
  • the main belt layer 26 includes a plurality of belt plies.
  • the fourth belt ply 26D, the fifth belt ply 26E, the sixth belt ply 26F, the seventh belt ply 26G, the eighth belt ply 26H, and the ninth belt ply 261 are composed of a total of nine belt plies.
  • the first belt ply 26A and the second belt ply 26B are set to the same width
  • the third belt ply 26C and the fourth belt ply 26D are set to the same width
  • the fifth belt ply 26E and The sixth belt ply 26F is set to the same width
  • the seventh belt ply 26G and the eighth belt ply 26H are set to the same width.
  • the third belt ply 26C and the fourth belt ply 26D are wider than the first belt ply 26A and the second belt ply 26B, and the fifth belt ply 26C and the fourth belt ply 26D are fifth.
  • the belt widths of the belt ply 26E and the sixth belt ply 26F are wider than the fifth belt ply 26E and the sixth belt ply 26F.
  • the belt widths of the seventh belt ply 26G and the eighth belt ply 26H are set wider! . Therefore, at the end in the tire width direction of the main belt layer 26, two belt plies of the seventh belt ply 26G and the eighth belt ply 26H are laminated.
  • the first belt ply 26A to the eighth belt ply 26H constituting the main belt layer 26 are formed by rubber coating a plurality of organic fiber cords.
  • the organic fiber cords of the first belt ply 26A to the eighth belt ply 26H have a tensile breaking strength of preferably 6.3 cNZdtex or more, and the elongation at the time of 3 cNZdtex load is 0. 2 ⁇ 2.0%, in extension direction 2.Elongation rate under load of lcNZdtex 1.5 ⁇ 7.
  • the elongation is 0% and the elongation in the direction of elongation is 3.2 cNZdtex is 2.2 to 9.3%.
  • the organic fiber cord of the present embodiment is composed of an aromatic polyamide fiber cable.
  • ⁇ 0.85, preferably 0.17-0.51, and upper twisting coefficient should be set to 0.40-0.80.
  • the first belt ply 26A to the eighth belt ply 26G are provided with aromatic polyamide fibers, specifically, DuPont polyamide fibers (product type name: KEVLAR (R) 29, Organic fiber cords with a nominal fineness of 3000 denier (hereinafter referred to as Kepler as appropriate) are used.
  • DuPont polyamide fibers product type name: KEVLAR (R) 29, Organic fiber cords with a nominal fineness of 3000 denier (hereinafter referred to as Kepler as appropriate) are used.
  • the lower twist processing was performed to be 4.
  • the twisted cord was produced by dipping with a cord processing machine manufactured by Sakin Kogyo Co., Ltd.
  • the strength of the organic fiber cord (Kevlar) used for the first belt ply 26A to the eighth belt ply 26G is 1400N.
  • the first belt ply 26A to the eighth belt ply 26H constituting the main belt layer 26 are strip-shaped elongated members formed by covering a plurality of organic fiber cords with rubber as shown in FIG. This is a so-called spiral belt formed by preparing a body 32 and winding the elongated body 32 in a spiral shape so as not to generate a gap.
  • the inclination angle of the organic fiber cord is substantially the tire equator plane CL.
  • the number of organic fiber cords to be driven is preferably in the range of 4 to 10 ZlOmm.
  • the number of organic fiber cords to be driven is 6.3 ZlOmm.
  • the ninth belt ply 261 of the present embodiment prepares a strip-like elongated body 34 configured by rubber coating one or more organic fiber cords.
  • Each round of the lap is reciprocated between the ends of both plies by 1 degree, and the tire equatorial plane CL is inclined at an angle of 2 to 25 ° and wound in the circumferential direction. It is formed by winding around the width of the elongated body 34 in the circumferential direction so that there is no gap between them (hereinafter referred to as an endless zigzag winding belt as appropriate).
  • the organic fiber cord force that extends in the circumferential direction while zigzag by changing the folding direction at both ply ends is substantially uniform in the entire region of the ninth belt ply 261. Will be buried.
  • the ninth belt ply 26IA formed in this way has a form in which the organic fiber cord portion that rises to the right and the cord portion that rises to the left overlap each other when viewed in cross section.
  • a belt ply consisting only of a rising cord and a belt ply consisting only of a cord that rises to the left are overlapped, so that it corresponds to a so-called cross belt.In practice, this is a single ply. The number is counted as two.
  • the ninth belt ply 261 includes a first belt ply 26A to an eighth belt ply 26H.
  • lcN / dt e x elongation at a load of the organic fiber cord in the first belt ply 26A ⁇ eighth belt ply 26H is an organic fiber cord) is substantially equal to or higher.
  • the organic fiber cord used for the ninth belt ply 261 includes an aliphatic polyamide fiber such as nylon, an aromatic polyamide fiber such as aramid, and an aliphatic polyamide fiber such as nylon.
  • nylon cords (twisting number: 1260DZZ2Z3, number of driving 6.9 ZlOmm) are used.
  • the inclination angle of the organic fiber cord is preferably in the range of 2 to 25 ° with respect to the tire equatorial plane CL.
  • the form is set to 8 °.
  • a belt protective layer 22 is provided on the outer side in the tire radial direction of the main belt layer 26 via a rubber layer 30.
  • the thickness of the rubber layer 30 is set to 2.5 mm in the present embodiment, which is preferably in the range of 1.5 to 4.5 mm.
  • the belt protective layer 22 is a single sheet in which a plurality of organic fiber cords 36 extending in a wavy shape in the tire circumferential direction are arranged in parallel with each other and rubber-coated (rubber not shown).
  • the wavy cord ply 38 is composed of
  • the organic fiber cord 36 of the belt protective layer 22 preferably has an amplitude A of 5 to 25 mm and a wavelength B of 200 to 700% of the amplitude A.
  • the organic fiber cord 36 is arranged in a tightly packed manner with high strength, high !, cut resistance, and adhesion.
  • Kepler (000 DZ3, number of driving: 3.6 Z 10 mm) is used for the organic fiber cord 36 of the belt protective layer 22.
  • the pneumatic radial tire 10 is assembled with a rim, filled with the specified internal pressure specified in the TRA, and then loaded with the specified load specified in the TRA, the width of the ground print is TW, the main belt layer 2
  • the pneumatic radial tire 10 has a main belt layer 26 in the crown center PO.
  • the circumferential stiffness of the main belt layer 26 per unit width at the width P2 of the Z3 maximum width BW 2 of Z3 centered on the tire equatorial plane CL is M2 Satisfying this, 0.2 ⁇ M2 / M0 ⁇ 0.8!
  • the method of calculating the elongation that gives strength is, in this case, the one when the Kepler cord is broken.
  • Elongation of 10% is defined as the elongation given to the cord (note that when it is composed of multiple types of cords, the elongation at break of the cord with the smallest elongation at break is the standard).
  • the strength of each cord when stretched 10% is 1400N for Kevlar cord and 205N for nylon cord.
  • the number of cords driven per unit width of 10mm is 6.2
  • the number of cords driven per unit width of 10mm is 6.
  • the number of cords driven per unit width of 10mm is 3.6.
  • the main belt layer 26 of the present embodiment has eight Kevlar cords laminated (1st belt ply 26A to 8th belt ply 26H) and 2 nylon cords (9th belt) at the crown center PO. Ply 261) Being done! /
  • Kevlar cord force is laminated and two nylon cords are laminated.
  • the cord circumferential strength is calculated by multiplying the code strength by cos ⁇ .
  • the angle ⁇ with respect to the tire circumferential direction of the nylon cord of the ninth belt ply 261 is 1
  • the tire diameter at the tire equatorial plane CL when the internal pressure is reduced within the range of atmospheric pressure to 5% of the specified internal pressure after filling the specified internal pressure specified in TRA is DO, and the ground contact print on the tread 84% TW at a position corresponding to 84% of the width TW, tread force at the tire equatorial plane CL
  • the tire diameter drop height measured in the tire radial direction to the tread at the position 84% TW is d, 5.0 X
  • the contact control index F is 2d / D0 + 0.33 X M2ZMO
  • the pneumatic radial tire 10 of the present embodiment satisfies 0.2 ⁇ F ⁇ 0.45.
  • the lamination thickness of the organic fiber cords at the crown center PO is GO
  • the lamination thickness of the organic fiber cords at the width position P2 of 2Z3 of the maximum width BW of the main belt layer 26 is G2.
  • G2ZG0 0.63 is set.
  • the pneumatic radial tire 10 is a part corresponding to the crown center PO in the tire ground contact print (see Fig. 6) when it is assembled to the rim, filled with the specified internal pressure specified in the TRA, and then loaded with the specified load specified in the TRA.
  • the ratio L2ZL0 between LO and L2 is called the rectangular ratio, where LO is the ground contact length and L2 is the ground contact length corresponding to the 84% position of the ground width.
  • the rectangular ratio L2ZL0 of the pneumatic radial tire 10 satisfies 0.85 ⁇ L2 / L0 ⁇ 1.1.
  • the rectangular ratio L2ZL0 is set to 0.9.
  • the ratio of the circumferential belt stiffness of the main belt layer 26 at the 2Z3 position P2 of the width of the layer 26 to the M2 M2ZM0 is set to be larger than 0.2 and smaller than 0.8. While minimizing the amount of material used, it was possible to efficiently suppress the amount of stretch in the tread rubber circumferential direction in the center area of the tread when filling with the specified internal pressure and during high-speed rotation, thereby suppressing the tire diameter growth.
  • M2ZM0 is larger than 0.8
  • a large number of belts are arranged in the tire shoulder portion that is not so dominant in suppressing the tire diameter growth, and thus the effect of reducing the weight of the tire is small.
  • M2ZM0 is smaller than 0.2, it is not preferable because sufficient belt rigidity cannot be secured in the shoulder portion, and standing waves are likely to occur during high-speed driving.
  • the rectangular ratio L2ZL0 of the ground print is 0.85 or less, drag wear occurs at the shoulder portion between the rotation and the road surface, which is not economical. Accordingly, it is preferable that the rectangular ratio L2ZL0 of the ground print satisfies 0.85 ⁇ L2 / L0 ⁇ 1.1.
  • an aromatic polyamide organic fiber cord is spirally wound so that the cord direction is 0 with respect to the circumferential direction. Because it is close to °, the strength of the organic fiber cord used to secure the circumferential rigidity of the main belt layer 26 can be maximized, and the radial tire's tagging effect can be maximized.
  • the target safety factor can be achieved with a small amount of components while achieving light weight.
  • an angle within the range of 2 to 25 ° (8 ° in the present embodiment) is given to the organic fiber cord with respect to the tire equatorial plane CL. This makes it possible to obtain rigidity in the tire width direction without significantly impairing the belt's tagging effect, and is effective in reducing the drag wear of the shoulder during rolling.
  • the 9th belt ply 261 which is the outermost bell and ply of the main belt layer 26, is inclined with respect to the 9th belt ply 261 by inclining the organic fiber cord of the 9th belt ply 261 with respect to the tire equatorial plane CL. Even if a crack develops in the event of a cut, the crack reaches the end of the belt along the cord, preventing further progress in the circumferential direction.
  • the ninth belt ply 261 is configured so that the organic fiber cord is bent in the same plane so as to be inclined in the opposite direction at each ply end and extends in a zigzag shape in the tire circumferential direction. Since the structure does not have a cut end of the organic fiber cord at the end, the separation of the ninth belt ply 261 (cord cut) can be applied even when a large distortion occurs in the ply end portion such as when a load in the width direction acts on the tire.
  • the belt protective layer 22 including the organic fiber cord 36 extending in a wavy shape in the tire circumferential direction is provided on the outer side in the tire radial direction of the ninth belt ply 261, and the 2.5 mm rubber layer 30. Therefore, when the foreign matter is pierced into the tread rubber layer 24, the tension of the organic fiber cord 36 is deformed in the direction of disappearing the waveform, and the foreign matter is wrapped by enveloping the foreign matter. It was possible to prevent the entry to the main belt layer 26.
  • the thickness of the rubber layer 30 is less than 1.5 mm, it is difficult to remove the rubber layer 30 without damaging the main belt layer 26 existing radially inward during tire retreading. .
  • the belt protective layer 22 including the organic fiber cord 36 is provided in the outermost layer, even if the tread rubber layer 24 is worn and the belt protective layer 22 appears on the tread, Unlike metal cords, there are no sparks.
  • Lamination thickness GO of organic fiber cord of main belt layer 26 at crown center P0 and lamination thickness G of organic fiber cord of main belt layer 26 at the maximum width 2Z3 width position P2 of main belt layer 26 G2 By satisfying G2 / G0 force 0.35 ⁇ G2 / G0 ⁇ 0.85, it is most effective in suppressing tire diameter growth, and it is possible to secure high belt rigidity at the tire center. Improved FOD (foreign material damage) resistance.
  • G2ZG0 exceeds 0.85, many belts are arranged in the tire shoulder portion that is not so dominant in the tire diameter growth, and the effect on the tire light weight is low.
  • the tensile strength of the organic fiber cords constituting the first belt ply 26A to the eighth belt ply 26H of the main belt layer 26 is set to 6.3 cN / dtex or more. We were satisfied and we achieved weight reduction.
  • the elongation rate when 0.3 cNZdtex is loaded is 0.2 to 2.0%, the direction of elongation. 2.Elongation of lcNZdtex with 1.5 to 7.0% elongation and 3.2cNZdtex with 2.2 to 9.3% in the direction of elongation. It was easy to achieve. As a result, it was possible to secure the performance against foreign object penetration and to optimize the tagging effect of the main belt layer 26.
  • the elongation rate of the organic fiber cords constituting the first belt ply 26A to the eighth belt ply 26H of the main belt layer 26 when 0.3 cNZdtex is loaded is 0.2 to 2.0%.
  • the pneumatic radial tire 10 can be evenly stretched by the pressure applied from the inside of the raw tire during vulcanization, thereby aligning the direction of the organic fiber cord and correcting variations in cord driving. I was able to.
  • the seventh belt ply 26 is provided at the end of the main belt layer 26 in the tire width direction.
  • the organic fiber cords of the first belt ply 26A to the eighth belt ply 26H constituting the main belt layer 26 are also composed of an aromatic polyamide fiber force, and the lower twist coefficient is in the range of 0.12 to 0.85.
  • the tensile strength at break of the organic fiber cord is 6.3 cNZdtex or more, and the elongation at the time of 0.3 cNZdtex load is 0.2 to 2.0%. It was possible to set the elongation at the time of 2. lcNZdtex loading in the extension direction to 1.5 to 7.0% and the elongation at the time of 3.2 cNZdtex loading to 2.2 to 9.3%.
  • the material of the organic fiber cords of the first belt ply 26A to the eighth belt ply 26H of the main belt layer 26 is the same as that of the pneumatic radial tire 10 of the first embodiment.
  • the organic fiber cords used in the first belt ply 26A to the eighth belt ply 26H of the present embodiment include aromatic polyamide-based fibers and aliphatic polyamide-based fibers. It is.
  • the weight ratio of the aromatic polyamide fiber to the aliphatic polyamide fiber is 100: 1.
  • a power of 0-170 is preferred, and a power of 100: 17-86 is preferred! / ⁇ .
  • the tensile strength at break is 6.3 cNZdtex or higher
  • the elongation at the time of 0.3 cNZdtex load is 0.2 to 2.0%
  • the elongation at the time of lCNZdtex load is 1.5% or more.
  • 3.2 Elongation with 2cNZdtex load can be set to 2.2% or more and 9.3% or less.
  • the lower twist was processed so that the lower twist coefficient of 0.34 and nylon 66 was 0.18.
  • Kepler twist yarns and one 66 nylon twist yarn were aligned and twisted in the opposite direction to the twist (S twist) to process the twisted cord.
  • the twisted cord was produced by dipping with a cord processing machine manufactured by Sakin Kogyo Co., Ltd.
  • the material of the organic fiber cord of the main belt layer 26 is changed from the pneumatic radial tire 10 of the first embodiment, but the pneumatic radial of the first embodiment is changed.
  • the same effect as Al tire 10 can be obtained.
  • the tire sizes are all 1270 X455R22 32PR.
  • Ny / EB Nylon Z endless zigzag belt ⁇ (6.9 pcs Zl0mm, cord angle 10 °, see Fig. 5)
  • Nylon detach belt (driving 8 three 10 mm, cord angle 16
  • Hy / SB Kepler and nylon blended yarn Z spiral belt ⁇ (6.2 pieces ZlOm m, cord angle 0 °) * 2 Belt rigidity ratio
  • the circumferential elastic modulus is calculated by the following method.
  • Elastic modulus (elastic modulus of 0 to R% elongation of each cord) X (number of cords driven per 10 mm) X cos (angle with respect to circumferential direction).
  • the index was calculated using the conventional product as 100. The smaller the value, the better the performance (lightweight).
  • a sharp blade with a tip of 3mm in thickness and 500mm in width is applied to the tread so that the longitudinal direction overlaps the tire width direction, and a vertical load of 3% of the specified load is loaded after filling the specified internal pressure of TRA

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Tires In General (AREA)

Description

空気入りラジアルタイヤ
技術分野
[0001] 本発明は空気入りラジアルタイヤに係り、特に、航空機に適し、優れた耐摩耗性を 有することで経済性を有し、同時に軽量化も達成することのできる空気入りラジアルタ ィャに関する。 背景技術
[0002] 従来のラジアルタイヤ、特に航空機用空気入りタイヤにおいては、高い使用内圧、 高速回転中の遠心力の作用によってトレッド面の径方向の迫り出しが大きぐ使用時 にトレッドが周に大きく弓 Iき伸ばされた状態となる。
[0003] このような状態下では、タイヤが異物を踏みつけた場合のトレッドゴムの抵抗力が弱 ぐ異物がトレッドゴム内に進入し易いという問題があった。
[0004] 従来の航空機用ラジアルタイヤの構造は、ベルト構造体にナイロン等の比較的低 弾性率の有機繊維を使用しており、かつベルト層を構成する各々のベルト幅がトレツ ド幅と略同等であるため、タイヤの径成長に対して支配的なクラウンセンター部のベ ルト強度力 あまり支配的でな 、クラウンショルダー部のベルト強度に対して相対的 に小さいため、タイヤの径成長抑制には効果が少な力つた。
[0005] 上記従来タイヤに対して、特許文献 1にお ヽて提案されて ヽるラジアルタイヤは、ト レッドゴムの周方向伸び、言い換えれば内圧充填時タイヤの直径方向への成長を抑 制するために、ベルトセンター部にショルダー部対比より多くのベルト層を配置するこ とで、異物の進入に対し飛躍的な性能向上が可能となっている。
特許文献 l :WO 03/061991
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、従来構造のベルトがタイヤクラウン領域の全域に渡ってほぼ均一な 周方向剛性を有して 、るのに対し、特許文献 1にお 、て提案されて 、るラジアルタイ ャは、トレッド幅方向に対して異なるベルトの周方向剛性分布を有しているため、従 来構造品と類似形状のタイヤモールドにて製造した場合、タイヤに内圧充填後、路 面に対して垂直に荷重を負荷した場合のタイヤ接地形状が従来構造のタイヤと異な ることが分かった。
[0007] 具体的には、クラウンセンター部における接地長に対し、ショルダー位置での接地 長の大きな形状が得られた (図 8参照。)が、このような場合、タイヤと路面の間の接触 圧力が、クラウンセンター部に比してクラウンショルダー部にて非常に大きくなり、この ことが即ち、荷重下におけると歪みの増大に直結する結果となった。
[0008] 実際にこのようなタイヤにて官庁の定める離陸試験 (FAA TSO— C62d試験)を 実施し、高速走行時の耐久評価を行なった場合、従来構造のタイヤは 50サイクルを 問題なく完走するのに対し、同様のタイヤをモールドにて製造した特許文献 1のタイ ャ試作品は、 32サイクル目においてトレッドゴム発熱大のため、故障に至っている。
[0009] 一般に、従来のラジアルタイヤの開発より得られている知見として、タイヤの荷重時 の接地形状は、高速耐久性、及び摩耗特性と密接な関係があることが知られている。
[0010] はじめに、高速耐久性に関しては、接地面の中で局所的に路面との接地圧が高い 部分があると、その部分のトレッドゴムの荷重時の歪み量が増し、繰り返し回転時のゴ ムの発熱量が大きくなる。
[0011] 特に、航空機用空気入りタイヤにおいては、高内圧、高荷重の条件下で使用される ため、接地面内でこのような高接触圧の領域が存在すると、トレッドゴムの発熱大の 領域がクラウン幅方向に偏在する原因となり、タイヤの高速耐久性を著しく損なうこと が分かっている。
[0012] 以上のような理由により、高速耐久性を考慮すると、接地形状はクラウンセンター部 力 ショルダー部にかけて周方向接地長さが同等、あるいはショルダー部にかけて緩 やかに減少する形状が望ま 、ことが分かる。
[0013] 一方、摩耗特性に関しては、タイヤ転動時に接地面内にてタイヤ表面との路面との 間に生じる相対的な滑りの有無がタイヤ摩耗率を左右する。
[0014] 即ち、タイヤと路面とが接触する領域において、タイヤと路面とが終始相対的な滑り を起こさない場合には、トレッドゴムの摩耗率は無視し得る範囲であるのに対し、両者 の間に相対的な滑りがある場合は、その箇所の接触圧に応じてゴムの摩耗が進む。 [0015] 接地形状との関係としては、クラウンセンター部とショルダー部の接地長が同等であ る場合には、転動中のタイヤの特に蹴り出し部分において、ゴムの摩耗が促進される という結果が得られている。
[0016] 特に、航空機用ラジアルタイヤのように、高内圧、高荷重下の条件下では、タイヤと 路面の接触圧が非常に高くなるため、両者の間のわず力な相対運動がタイヤの摩耗 を促進し、経済的に大きな影響を与える。
[0017] 以上、高速耐久性と耐摩耗性の 2つの性能と接地形状との関係を考慮した時、理 想的な接地形状とは、クラウンセンター部とショルダー部の周方向長さが同等となるタ ィャにお 、て、前記 2つの性能を両立することが出来ることが分かる。
[0018] 本発明は上記事実を考慮し、異物に対する優れた耐久性を損なわずに、良好な高 速耐久性、及び摩耗特性が得られる航空機用空気入りタイヤを提供することが目的 である。
課題を解決するための手段
[0019] 発明者が、(1)クラウン幅方向のベルト周方向剛性分布(ベルト剛性比 M2ZM0) と、 (2)内圧を充填しない状態でのクラウンセンター部〜ショルダー間の径減少率 (径 落ち高比 2dZD0)、及び(3)接地プリント上における接地長さ比 (A=L2ZL0、以 後「矩形率」と表現)、の間の関係を詳細に検討した結果、 3者の間に密接な相関関 係が存在することを見出した。
MO:主ベルト層のクラウンセンター部 POにおける周方向剛性を MO。
M2:主ベルト層の幅の 2Z3位置 P2における周方向剛性。
DO:規定内圧を充填後に内圧を大気圧以上規定内圧の 5%以下の範囲内に低下さ せたときのタイヤ赤道面でのタイヤ径。
d:タイヤ赤道面における踏面から 84%TW (TRAに定める規定内圧を充填した後に 規定荷重を負荷した際の接地プリントの幅 TWの 84%に相当する位置。)における踏 面までのタイヤ径方向に測定したタイヤ径落ち高。
[0020] 即ち、従来の空気入りラジアルタイヤに見られるように、ベルトの周方向剛性の分布 がタイヤクラウンの軸方向センター部からショノレダ一部に至るまで略同等である(M2 ZMOが 1に近い。)タイヤについては、タイヤクラウンの形状が平滑 (直線)に近い(2 dZDOが 0に近い。)ほど、接地形状矩形率 (L2ZL0)が 1に近づくため、良好なタイ ャ性能が得られる。
[0021] 一方、特許文献 1にて提案されている、異物の進入に対する耐久性に優れたタイヤ 構造については、前記関係が成り立たな力つた。このため、発明者が前記(1)〜(3) の各要素の関係を、タイヤ試作により数多くのケースについて検討した結果、ベルト 剛性比が様々に変化した場合にも、タイヤ矩形率に関して下記の近似式が成立する ことが分力つた。
[0022] A= l. 3- 5. 0 X 2d/D0-0. 33 X M2/MO
ここで、
A:接地形状矩形率 (L2ZL0)
2dZD0 :タイヤ径落ち高比
M2ZM0 :ベルト剛性比
(ベルト周方向剛性の定義)
ここでいうベルト周方向剛性とは、ベルト層の周方向の弾性率を指しており、タイヤ をリムに組まない状態でのセンタ一径から、リム組みして規定内圧を充填した際のセ ンタ一径の成長率を R(%)とした時に、伸び率 0〜R (%)にて定められるコードの弹 性率(図 12参照。)に単位幅 (ここでは 10mm)当たりのコード本数 (コード打ち込み) を掛けて算出したものである。
[0023] なお、コードが周方向に対して角度 Θで傾斜している場合のベルト周方向剛性は、 上記単位当たりの剛性に cos Θを掛けて算出するものとする。
[0024] また、タイヤ内のコードがタイヤ周方向に波状 (ジグザグ状)に延びている場合は、 真っ直ぐに伸ばして剛性を計算するのではなぐタイヤに埋設されている状態、即ち
、波状に型付けされたものを周方向に伸ばした時の弾性率を算出する。
[0025] 図 10は、試作タイヤの実際の接地形状矩形率 (シンボル菱形)と、ベルト剛性比 Z タイヤ落ち高から上式によって導出した矩形率の予想ライン (M2ZM0 = 0. 28、 0.
52、 0. 88の 3水準)とをプロットしたものである。
[0026] 両者は良く符合しており、設計要因であるベルト剛性比 Zタイヤ落ち高からタイヤ における矩形率を精度良く予測することが可能であることが分かる。 [0027] ここで、新たに、接地制御指数を F= 5. 0 X 2d/D0 + 0. 33 X M2ZM0と定めた 場合、 0. 2< F< 0. 45と設定することにより、予想される矩形率が 0. 85<A ( = 1. 3 -F) < l . 1となる、高速耐久性、耐摩耗性に優れたタイヤを得ることが可能となる。
[0028] 請求項 1に記載の発明は上記事実に鑑みてなされたものであって、一対のビードコ ァと、一方のビードコア力 他方のビードコアに向けてトロイド状に延びる少なくとも 1 枚以上のカーカスプライからなるカーカス層と、前記カーカス層のタイヤ半径方向外 側に配置されタイヤ周方向に延びる複数本の有機繊維コードを含む主ベルト層と、 を備えた空気入りラジアルタイヤであって、タイヤをリム糸且みし、 TRAに定める規定内 圧を充填した後に規定荷重を負荷した際の接地プリントの幅を TW、前記主ベルト層 の幅を BWとしたときに、 0. 8TW< BW< 1. 2TWを満足し、前記主ベルト層の枚数 力 Sクラウンセンター部 POからショルダー部にかけて漸減し、かつ前記主ベルト層のク ラウンセンター部 POにおける周方向剛性を MO、前記主ベルト層の幅の 2Z3位置 P 2における周方向剛性を M2、ベルト剛性比を M2ZM0としたときに、 0. 2< M2/ MO< 0. 8を満足し、前記規定内圧を充填後に内圧を大気圧以上前記規定内圧の 5%以下の範囲内に低下させたときのタイヤ赤道面でのタイヤ径を DO、踏面におけ る前記接地プリントの幅 TWの 84%に相当する位置を 84%TW、タイヤ赤道面にお ける踏面力 前記位置 84%TWにおける踏面までのタイヤ径方向に測定したタイヤ 径落ち高を d、 5. 0 X 2d/D0 + 0. 33 X M2ZMOを接地制御指数 Fとしたときに、 0 . 2< F< 0. 45を満足する、ことを特徴としている。
[0029] 次に、請求項 1に記載の空気入りラジアルタイヤの作用を説明する。
[0030] 請求項 1に記載の空気入りラジアルタイヤでは、接地プリントの幅 TWと主ベルト層 の幅 BWとが 0. 8TW< BW< 1. 2TWを満足しているので、高速耐久性を確保しつ つ必要な部材を低減することが可能である。
[0031] なお、 0. 8TW≥BWになると、高速走行時にスタンディングウェーブが発生し易く なるため、タイヤの耐久性を著しく損ねる。
[0032] 一方、 BW≥1. 2TWになると、必要以上の部材を配置することにより、重量増が避 けられない。
[0033] また、主要強度メンバーである主ベルト層の枚数力 クラウンセンター部 POからショ ルダ一部にかけて実質的に連続的に減少し、かつ前記主ベルト層のクラウンセンタ 一部 P0、及び前記主ベルト層の幅の 2Z3位置 P2での主ベルト層の周方向剛性を それぞれ M0、 M2としたときに、両者の比 M2ZM0が 0. 2より大、かつ 0. 8より小と したので、結果として、主ベルト層の材料使用量を最小限に抑えつつ、規定内圧充 填時、及び高速回転時にトレッド中央域でのトレッドゴム周方向伸張量を効率的に抑 制し、タイヤの径成長を抑制することができる。
[0034] トレッドゴムの周方向伸張量が抑制されることでトレッドゴムの緊張度合いが低下す るので、異物の進入に対する抵抗力が増大し、また、万一異物が刺さりこんだ場合で あっても亀裂の成長を抑えることができる。
[0035] ここで、 M2ZM0が 0. 8より大きい場合には、タイヤ径成長抑制にそれほど支配的 でないタイヤショルダー部に多くのベルトが配置されることにより、タイヤの軽量化に 効果が薄い。
[0036] 一方、 M2ZM0が 0. 2より小さい場合には、ショルダー部に十分なベルト剛性が確 保できなくなるため、高速走行時にスタンディングウェーブが発生し易くなるため好ま しくない。
[0037] また、タイヤベルト剛性比、タイヤクラウン形状、接地形状との相関関係の詳細な検 討により、タイヤ接地形状を代表する、接地制御指数を F = 5. 0 X 2d/D0 + 0. 33 X M2ZM0と定め、 0. 2<F< 0. 45となるように設定することで、高速耐久性、耐摩 耗性に優れたタイヤを容易に設計することができるようになった。
[0038] ここで、 Fが 0. 2以下の場合は、ショルダー部において接地長さが極端に長くなる ため、高速走行時に該部分の発熱が大となり、タイヤ耐久性が著しく損なわれる。
[0039] 一方、 Fが 0. 45以上の場合には、ショルダー部において、回転時に路面との引き ずり摩耗が発生するため、経済性に劣る。
[0040] 請求項 2に記載の発明は、請求項 1に記載の空気入りラジアルタイヤにおいて、リム に組付け、 TRAに定める規定内圧を充填後、 TRAに定める規定荷重を負荷した際 のタイヤ接地プリントにおいて、クラウンセンター部 POに対応する部分の接地長さを L 0、接地幅の 84%位置に対応する部分の接地長さを L2としたときに、 0. 85<L2/ L0< 1. 1を満足する、ことを特徴としている。 [0041] 次に、請求項 2に記載の空気入りラジアルタイヤの作用を説明する。
[0042] L2ZL0が 1. 1以上の場合は、ショルダー部において接地長さが極端に長くなるた め、高速走行時に該部分の発熱が大となり、タイヤ耐久性が著しく損なわれる。
[0043] 一方、 L2ZL0が 0. 85以下の場合は、ショルダー部において回転時と路面との間 で引きずり摩耗が発生するため経済性に劣る。
[0044] したがって、 0. 85<L2/L0< 1. 1を満足することが好ましい。
[0045] 請求項 3に記載の発明は、請求項 1または請求項 2に記載の空気入りラジアルタイ ャにおいて、前記主ベルト層は、タイヤ赤道面に対して略 0° の角度で螺旋状に卷 回した有機繊維コードを含むベルトプライを 2枚以上含む、ことを特徴として 、る。
[0046] 次に、請求項 3に記載の空気入りラジアルタイヤの作用を説明する。
[0047] 螺旋状に有機繊維コードを卷回することで、コード方向を周方向に対して 0° に近 づけ、ラジアルタイヤのタガ効果を最大限に発揮することが可能となり、少ない部材 の量にて目標の安全率を達成することが可能となる。
[0048] なお、ここでいう略 0° とは、 2. 0° 以下を含むものとする。
[0049] 請求項 4に記載の発明は、請求項 1または請求項 2に記載の空気入りラジアルタイ ャにおいて、前記主ベルト層は、タイヤ赤道面に対して 2〜25° の角度で傾斜し、そ れぞれのプライ端で反対方向に傾斜するように同一面内で屈曲されてタイヤ周方向 にジグザグ状に延びる有機繊維コードを含むベルトプライを 2枚以上含む、ことを特 徴としている。
[0050] 次に、請求項 4に記載の空気入りラジアルタイヤの作用を説明する。
[0051] タイヤ赤道面に対して 2〜25° の角度を付与することにより、ベルトのタガ効果を大 きく損なうことなぐタイヤ幅方向にも剛性を得ることが可能となり、転動時のショルダ 一部の引きずり摩耗の低減に効果がある。
[0052] 請求項 5に記載の発明は、請求項 1乃至請求項 4の何れか 1項に記載の空気入りラ ジアルタイヤにおいて、前記主ベルト層において、前記有機繊維コードの積層厚み を前記クラウンセンター部 POで最も厚くし、前記クラウンセンター部 POでの前記有機 繊維コードの積層厚みを GO、前記主ベルト層の最大幅の 2Z3の幅位置 P2におけ る前記有機繊維コードの積層厚みを G2としたときに、 0. 35≤G2/GO≤0. 85を満 足する、ことを特徴としている。
[0053] 次に、請求項 5に記載の空気入りラジアルタイヤの作用を説明する。
[0054] ベルト積層厚みを上記の範囲に設定することで、タイヤ径成長抑制に最も効果の 大き 、タイヤセンター部に高 、ベルト剛性を確保することが出来、耐 FOD (異物損傷
)性向上が得られる。
[0055] ここで、 G2ZG0が 0. 85を越える場合には、タイヤ径成長にそれほど支配的では ないタイヤショルダー部に多くのベルトが配置されることになり、タイヤ軽量ィ匕に効果 が薄い。
[0056] 一方、 G2ZG0が 0. 35を下回る場合には、ショルダー部に十分なベルト剛性が確 保できなくなるため、高速走行時にスタンディングウェーブが発生し易くなり、耐久上 好ましくない。
[0057] 請求項 6に記載の発明は、請求項 1乃至請求項 5の何れか 1項に記載の空気入りラ ジアルタイヤにおいて、前記主ベルト層は、引張破断強度が 6. 3cNZdtex以上、伸 張方向に 0. 3cNZdtex荷重時の伸び率が 0. 2〜2. 0%、伸張方向に 2. lcN/dt ex荷重時の伸び率が 1. 5〜7. 0%、伸張方向に 3. 2cNZdtex荷重時の伸び率が 2. 2〜9. 3%とされた有機繊維コードを含むベルトプライの少なくとも 2枚以上で構 成されている、ことを特徴としている。
[0058] 次に、請求項 6に記載の空気入りラジアルタイヤの作用を説明する。
[0059] 本発明の空気入りラジアルタイヤは、ベルトの枚数をクラウンセンター部 POからショ ルダ一部にかけて実質的に減少するように設定して 、るので、クラウンセンター部 PO でのタイヤ径成長を抑制することが可能となった力 請求項 6では、ベルトに、より高 弾性の有機繊維コードを使用することによって、タイヤ径成長をより効果的に抑制す ることが出来る。
[0060] これにより、タイヤ内圧充填時のトレッドゴムの周方向伸びがより小さくなるため、異 物に対して非常に良好な耐久性が得られる。
[0061] 本発明のように、ベルト層の強度分布を規定することで、径成長抑制と重量減の両 立を達成できる。なお、ナイロンのような低弾性の有機繊維コードを用いると、径成長 を抑えるために多層にする必要があり、タイヤの重量増につながる。 [0062] 請求項 6に記載の空気入りラジアルタイヤでは、主ベルト層を、引張破断強度が 6.
3cNZdtex以上とされた高弾性の有機繊維コードを含む少なくとも 2枚以上のベルト プライで構成することにより、必要な耐圧性能を満足することができる。
[0063] ここで、有機繊維コードの伸張方向に 2. lcNZdtex荷重時の伸び率を 1. 5〜7.
0%、伸張方向に 3. 2cNZdtex荷重時の伸び率を 2. 2〜9. 3%とすることにより、 目標の径成長の抑制を容易に達成することができた。
[0064] その理由は、航空機用の空気入りラジアルタイヤでは、標準状態の内圧負荷時に およそ 2. lcNZdtexのコード張力が加わり、高速走行時におよそ 3. 2cNZdtexの コード張力が加わるが、有機繊維コードの伸び率が上記範囲を上回る場合、タイヤ 内圧充填時においてタイヤ径方向の膨出を効果的に抑えられず、異物の刺さり込み に対する性能を期待できなくなる力 である。
[0065] 一方、有機繊維コードの伸び率が上記範囲を下回る場合、ベルトプライのタガ効果 が大き過ぎるため、カーカスプライが必要以上にタイヤ幅方向に膨出する結果となり 好ましくない。
[0066] さらに、有機繊維コードの伸張方向に 0. 3cNZdtex荷重時の伸び率を 0. 2〜2.
0%とした理由は、以下に述べる通りである。
[0067] 先ず、空気入りラジアルタイヤを加硫するに当り、航空機用空気入りラジアルタイヤ の場合、通常タイヤモールド内にて生タイヤが 0. 2〜2. 0%ほど伸張する様にタイヤ 外径が設定される。
[0068] これは、加硫時に生タイヤ内部より負荷される圧力によってタイヤを均等に伸張せ しめることによって有機繊維コードの方向を揃え、コード打込みのばらつきを是正す るためのものである。
[0069] 然る該工程においては、 0. 3cNZdtex程度の比較的小さい張力が有機繊維コー ドに作用する力 このときの有機繊維コードの伸び率が 2. 0%より大きいと、コード性 状是正の効果が薄ぐまた、伸び率が 0. 2%より小さい場合には、加硫時の膨張時 にコード張力が大となり、有機繊維コードがタイヤ径方向内側のゴムに食い込むなど の不都合が生じるからである。
[0070] (標準状態の内圧負荷時の定義) なお、ここでの内圧、及び荷重は、 TRA YEAR BOOKの 2004年度版に規定さ れている内圧、及び荷重を採用している。
[0071] 例えば、航空機用ラジアルタイヤ 1270 X 455R22 32PRの場合、規定内圧は 16 20kPa、規定荷重は 24860kgである。
[0072] なお、有機繊維コードは、伸張方向に 0. 3cNZdtex荷重時の伸び率が 0. 2〜1.
5%、伸張方向に 2. lcNZdtex荷重時の伸び率が 1. 5〜6. 5%、伸張方向に 3. 2 cNZdtex荷重時の伸び率が 2. 2〜8. 3%のものがより好ましい。
[0073] 請求項 7に記載の発明は、請求項 1乃至請求項 6の何れか 1項に記載の空気入りラ ジアルタイヤにおいて、前記主ベルト層は、芳香族ポリアミド系の繊維と脂肪族ポリア ミド系の繊維とを含み、芳香族ポリアミド系の繊維と脂肪族ポリアミド系の繊維との重 量比が 100 : 10〜170とされた有機繊維コードを含むベルトプライを有する、ことを特 徴としている。
[0074] 次に、請求項 7に記載の空気入りラジアルタイヤの作用を説明する。
[0075] 主ベルト層の有機繊維コードが、高弾性率の芳香族ポリアミド繊維と、大きな破断 時コード伸びを有する脂肪族ポリアミド繊維とを含むことにより、タイヤ径成長抑制と、 大きなコード伸びを生じるタイヤへの異常入力時の安全'性確保との両立を図ることが できる。
[0076] ここで、両者の重量比が 100 : 10を下回ると、脂肪族ポリアミド繊維による破断時コ ード伸び改善の効果が薄くなる。
[0077] 一方、両者の重量比が 100 : 170を越えると、芳香族ポリアミドの高弾性率が発揮さ れな ヽため好ましくな!/ヽ。
[0078] したがって、芳香族ポリアミド系の繊維と脂肪族ポリアミド系の繊維との重量比が 10
0 : 10〜170とすることが好ましい。
[0079] ここで、脂肪族ポリアミド系の繊維とは、例えば、 6—ナイロン、 6, 6—ナイロン、 4, 6
—ナイロン繊維等である。
[0080] ここで、有機繊維コードは、芳香族ポリアミド系の繊維と脂肪族ポリアミド系の繊維と 力も構成されていれば良ぐ芳香族ポリアミド系有機繊維コードと脂肪族ポリアミド系 有機繊維コードとを撚り合わせても良ぐ芳香族ポリアミド系の繊維と脂肪族ポリアミド 系の繊維とを合わせてから撚りをかけても良い。
[0081] また、芳香族ポリアミド系有機繊維コードを A、脂肪族ポリアミド系有機繊維コードを Bとした場合、 Aまたは Bを下撚り (Z撚り)後、引き揃えて、下撚りと逆方向に上撚り(S 撚り)をかけることで主ベルト層を構成する有機繊維コードを得ることができる。
[0082] なお、下撚り時は、 Aまたは Bをそれぞれ単独で撚つても良 ヽし、 Aと Bを併せた後 撚つても良い。
[0083] 下撚りまたは上撚り時の A、 Bまたは AB (合糸)の本数は 1本ずつでも複数本ずつ でも良い。
[0084] Aまたは B原糸の太さは同じでも良!、し異なって!/ヽても良!、。
[0085] 混撚糸の形態は、芯となる糸の回りにループを作ったものなどでも良!、。
発明の効果
[0086] 以上説明したように本発明の空気入りラジアルタイヤによれば、異物に対する優れ た耐久性を損なわずに、良好な高速耐久性、及び摩耗特性が得られる、という優れ た効果を有する。
図面の簡単な説明
[0087] [図 1]第 1の実施形態に係る空気入りラジアルタイヤの断面図である。
[図 2A]図 1に示す空気入りラジアルタイヤの分解斜視図である。
[図 2B]保護層のコードの平面図である。
[図 3]図 1に示す空気入りラジアルタイヤのトレッドの拡大断面図である。
[図 4]スパイラルベルトの平面図である。
[図 5]無端ジグザグ巻きベルトの平面図である。
[図 6]従来例 1の空気入りラジアルタイヤのフットプリントである。
[図 7]比較例 1の空気入りラジアルタイヤのフットプリントである。
[図 8]比較例 2の空気入りラジアルタイヤのフットプリントである。
[図 9]実施例の空気入りラジアルタイヤのフットプリントである。
[図 10]試作タイヤの実際の接地形状矩形率 (シンボル菱形)と、ベルト剛性比 Zタイ ャ落ち高力 導出した矩形率の予想ラインとの比較を示すグラフである。
[図 11 A]従来例 1、及び比較例 1に係る空気入りラジアルタイヤの断面図である。 [図 1 IB]図 11Aに示す空気入りラジアルタイヤの分解斜視図である。
[図 12]弾性率の計算方法を説明するグラフである。
[図 13]実施例 1の空気入りラジアルタイヤのフットプリントである。
[図 14]実施例 3の空気入りラジアルタイヤのフットプリントである。
発明を実施するための最良の形態
[0088] [第 1の実施形態]
以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。
[0089] 本発明の空気入りラジアルタイヤの第 1の実施形態を図 1乃至図 5にしたがって説 明する。
[0090] 図 1、及び図 2 (A)に示すように、本実施形態の航空機用の空気入りラジアルタイヤ 10 (タイヤサイズ: 1270 X 455R22 32PR)は、ビード部 12に丸型断面を有するビ ードコア 14備えて ヽて、ゴム被覆された有機繊維コードがラジアル方向に配列された 6枚のカーカスプライ(図示せず)よりなるカーカス層 16がこのビードコア 14に係留さ れている。
[0091] なお、フリッパーやチェ一ファーなどの他の構造部材は従来通りであり、図示を省 略してある。
[0092] カーカス層 16のタイヤ半径方向外側のクラウン域外周面には、ベルト層 20、ベルト 層 20のタイヤ径方向外側にはトレッド部 23を構成するトレッドゴム層 24が設けられて いる。
[0093] また、カーカス層のタイヤ幅方向外側には、サイドウォール部 25を構成するサイドゴ ム層 27が設けられている。
[0094] なお、本実施形態では、ベルト層 20は、タイヤ径方向内側の主ベルト層 26と、主べ ルト層 26のタイヤ径方向外側に設けられる保護ベルト層 22とから構成されて ヽる。
(カーカス層)
カーカス層 16を構成するカーカスプライに用いる有機繊維コードは、引張破断強 度が 6. 3cNZdtex以上、伸張方向に 0. 2cNZdtex荷重時の伸び率が 0. 2〜1. 8%、伸張方向に 1. 9cNZdtex荷重時の伸び率が 1. 4〜6. 4%、伸張方向に 2. 9 cNZdtex荷重時の伸び率が 2. 1〜8. 6%であることが好ましい(図 14参照)。 [0095] カーカス層 16には、芳香族ポリアミド系の繊維力も構成された有機繊維コードを用 いることがでさる。
[0096] この場合、下撚り係数が 0. 12-0. 85、より好ましくは 0. 17-0. 51、上撚り係数 が 0. 4〜0. 85とされた有機繊維コードが好ましい。
[0097] また、カーカス層 16には、芳香族ポリアミド系の繊維と脂肪族ポリアミド系の繊維と を含む有機繊維コード (所謂ハイブリッドコード)を用いることもできる。
[0098] この場合、芳香族ポリアミド系の繊維と脂肪族ポリアミド系の繊維との重量比が、 10
0: 27〜255とされた有機繊維コードが好ま 、。
[0099] さらに、カーカス層 16には、芳香族ポリアミド系の有機繊維コードと脂肪族ポリアミド 系の有機繊維コードとを撚り合わせ、かつポリアミド系の有機繊維コードの下撚り係 数 N1が 0. 12〜0. 85、より好ましくは 0. 17〜0. 51とされた有機繊維コード(所謂 ハイブリッドコード)を用いることもできる。
[0100] 本実施形態のカーカス層 16には、ナイロンコードが用いられている。
(主ベルト層)
図 3に示すように、主ベルト層 26は、複数枚のベルトプライ、本実施形態では、タイ ャ径方向内側力ゝら第 1ベルトプライ 26A、第 2ベルトプライ 26B、第 3ベルトプライ 26 C、第 4ベルトプライ 26D、第 5ベルトプライ 26E、第 6ベルトプライ 26F、第 7ベルトプ ライ 26G、第 8ベルトプライ 26H、及び第 9ベルトプライ 261の合計 9枚のベルトプライ から構成されている。
[0101] 本実施形態では、第 1ベルトプライ 26Aと第 2ベルトプライ 26Bは同じ幅に設定され 、第 3ベルトプライ 26Cと第 4ベルトプライ 26Dは同じ幅に設定され、第 5ベルトプライ 26Eと第 6ベルトプライ 26Fは同じ幅に設定され、また、第 7ベルトプライ 26Gと第 8ベ ルトプライ 26Hは同じ幅に設定されている。
[0102] さらに、第 1ベルトプライ 26A及び第 2ベルトプライ 26Bよりも第 3ベルトプライ 26C 及び第 4ベルトプライ 26Dのベルト幅が広く、第 3ベルトプライ 26C及び第 4ベルトプ ライ 26Dよりも第 5ベルトプライ 26E及び第 6ベルトプライ 26Fのベルト幅が広ぐ第 5 ベルトプライ 26E及び第 6ベルトプライ 26Fよりも第 7ベルトプライ 26G及び第 8ベルト プライ 26Hのベルト幅が広く設定されて!、る。 [0103] したがって、主ベルト層 26のタイヤ幅方向端部では、第 7ベルトプライ 26Gと第 8ベ ルトプライ 26Hとの 2枚のベルトプライが積層されている。
[0104] 主ベルト層 26を構成するこれら第 1ベルトプライ 26A〜第 8ベルトプライ 26Hは、複 数本の有機繊維コードをゴム被覆することにより形成されている。
[0105] これら第 1ベルトプライ 26A〜第 8ベルトプライ 26Hの有機繊維コードは、引張破断 強度を 6. 3cNZdtex以上とすることが好ましぐ伸張方向に 0. 3cNZdtex荷重時 の伸び率が 0. 2〜2. 0%、伸張方向に 2. lcNZdtex荷重時の伸び率が 1. 5〜7.
0%、伸張方向に 3. 2cNZdtex荷重時の伸び率が 2. 2〜9. 3%であることが好まし い。
[0106] 本実施形態の有機繊維コードは、芳香族ポリアミド系の繊維カゝら構成されている。
[0107] 有機繊維コードを芳香族ポリアミド系の繊維力も構成した場合、下撚り係数は 0. 12
〜0. 85、好ましくは 0. 17-0. 51、上撚り係数は 0. 40-0. 80に設定すること力 子 ましい。
[0108] 本実施形態では、第 1ベルトプライ 26A〜第 8ベルトプライ 26Gに、芳香族ポリアミ ド系の繊維、具体的にはデュポン社製ポリアミド繊維(商品タイプ名: KEVLAR (R) 2 9、公称繊度 3000デニール。以後、適宜ケプラーと呼ぶ。)からなる有機繊維コード を用いている。
[0109] 芳香族ポリアミド系の有機繊維コードの製造方法を以下に説明する。
[0110] ケブラー(3000デニール = 3340dtex) 3本を、撚り機を用いて、下撚り係数が 0. 3
4になるように下撚り加工を行った。
[0111] その後、下撚り糸 3本を引き揃え、下撚りとは反対方向に上撚り係数が 0. 48になる ように上撚り(S撚り)し、撚りコード加工した。
[0112] 撚りコードを株式会社巿金工業社製コード処理機でディップ処理し製造した。
[0113] 25± 2° Cの室温中、株式会社島津製作所製オートグラフを用いてディップコード の弓 I張破断強度を測定したところ、 14cNZdtexの値を得た。
[0114] この時、ディップコードの引張り方向への応力力 0. 3cNZdtex、 2. lcN/dtex
、及び 3. 2cNZdtexを示した時のディップコードの伸び率を測定したところ、それぞ れ 0. 3%、 2. 2%。、及び 3. 2%の値を得た。 [0115] ちなみに、第 1ベルトプライ 26A〜第 8ベルトプライ 26Gに用いた有機繊維コード( ケブラー)の強力は、 1400Nである。
[0116] 主ベルト層 26を構成する第 1ベルトプライ 26A〜第 8ベルトプライ 26Hは、本実施 形態では、図 4に示すように複数本の有機繊維コードをゴム被覆して構成した帯状の 細長体 32を準備し、この細長体 32を隙間が生じないよう螺旋状に卷回することで形 成した、いわゆるスパイラルベルトである。
[0117] なお、本実施形態では、有機繊維コードの傾斜角度はタイヤ赤道面 CLに対して略
0° である。
[0118] なお、第 1ベルトプライ 26A〜第 8ベルトプライ 26Hにおいて、有機繊維コードの打 込み数は、 4〜10本 ZlOmmの範囲内が好ましい。
[0119] 本実施形態では、第 1ベルトプライ 26A〜第 8ベルトプライ 26Hにおいて、有機繊 維コードの打込み数が 6. 3本 ZlOmmである。
[0120] 図 5に示すように、本実施形態の第 9ベルトプライ 261は、 1または複数本の有機繊 維コードをゴム被覆して構成した帯状の細長体 34を準備し、この細長体 34をほぼ 1 周する毎に両プライ端間を 1度だけ往復させながらタイヤ赤道面 CLに対して 2〜25 ° の角度で傾斜させて周方向に巻き付けると共に、このような卷付けを細長体 34間 に隙間が生じないよう周方向にほぼ細長体 34の幅だけずらして多数回卷回すること で形成している(以後、適宜無端ジグザグ巻きベルトと呼ぶ。 ) o
[0121] この結果、第 9ベルトプライ 261内には両プライ端において折り曲げ方向を変えるこ とによりジグザグしながらほぼ周方向に延びる有機繊維コード力 該第 9ベルトプライ 261の全領域においてほぼ均一に埋設されることになる。
[0122] なお、このようにして形成された第 9ベルトプライ 26IAは、断面で見ると、右上がりの 有機繊維コード部分と、左上がりのコード部分とが互いに重なりあった形態となるので 、右上がりのコードのみからなるベルトプライと左上がりのコードのみ力 なるベルトプ ライとを重ねた、いわゆる交差ベルトに相当する構成となり、実際には 1枚のプライで はあるが、本実施形態では、プライ数としては 2枚としてカウントすることとする。
[0123] この第 9ベルトプライ 261には、第 1ベルトプライ 26A〜第 8ベルトプライ 26H
に含まれる有機繊維コードに対して弾性率が同等、あるいは小さい有機繊維コード( 第 1ベルトプライ 26A〜第 8ベルトプライ 26Hの有機繊維コードに対して 2. lcN/dt ex荷重時の伸び率が略同等以上である有機繊維コード)を用いることが好ましい。
[0124] 第 9ベルトプライ 261に用いる有機繊維コードとしては、ナイロン等の脂肪族ポリアミ ド系の繊維力もなるコード、ァラミド等の芳香族ポリアミド系の繊維とナイロン等の脂肪 族ポリアミド系の繊維とを含むコード等が好ましぐ本実施形態では、ナイロンコード( 撚り数: 1260DZZ2Z3。打込み数 6. 9本 ZlOmm)を用いている。
[0125] また、無端ジグザグ巻きベルトである本実施形態の第 9ベルトプライ 261において、 その有機繊維コードの傾斜角度はタイヤ赤道面 CLに対して 2〜25° の範囲内が好 ましぐ本実施形態では 8° に設定されている。
(ベルト保護層)
図 2 (A)に示すように、主ベルト層 26のタイヤ半径方向外側には、ゴム層 30を介し てベルト保護層 22が設けられている。
[0126] ゴム層 30の厚さは、 1. 5〜4. 5mmの範囲内が好ましぐ本実施形態では 2. 5mm に設定している。
[0127] ベルト保護層 22は、図 2 (A)に示すように、タイヤ周方向に波状に延びる複数本の 有機繊維コード 36を互いに平行に並べてゴムコーティング (ゴムは図示せず)した 1 枚の波状コードプライ 38から構成されて 、る。
[0128] 図 2 (B)に示すように、ベルト保護層 22の有機繊維コード 36は、振幅 Aを 5〜25m m、波長 Bを振幅 Aの 200〜700%に設定することが好ましい。
[0129] 有機繊維コード 36は、高強力で高!、耐切創性を有し、接着を確保した上でなるベ く密に配置することが好ま 、。
[0130] 本実施形態では、ベルト保護層 22の有機繊維コード 36にケプラー(3000DZ3、 打込み数: 3. 6本 Z 10mm)を用いている。
(主ベルト層の周方向剛性)
次に、空気入りラジアルタイヤ 10は、リム組みし、 TRAに定める規定内圧を充填し た後に TRAに定める規定荷重を負荷した際の接地プリントの幅を TW、主ベルト層 2
6のの幅を BWとしたときに、 0. 8TW< BW< 1. 2TWを満足している。
[0131] また、空気入りラジアルタイヤ 10は、クラウンセンター部 POにおける主ベルト層 26 の周方向剛性を M0、タイヤ赤道面 CLを中心として主ベルト層 26の最大幅 BWの 2 Z3の幅位置 P2での単位幅当りにおける主ベルト層 26の周方向剛性を M2としたと き【こ、 0. 2< M2/M0< 0. 8を満足して!/ヽる。
[0132] 以下に主ベルト層 26の周方向剛性の算出方法を説明する。
[0133] 本実施形態のように、主ベルト層 26がケプラーコードとナイロンコードとから構成さ れている場合、強力を与える伸びの算出方法は、この場合、ケプラーコード 1本の破 断時の伸び 10%をコードに与える伸びとする(なお、複数種のコードより構成される 場合、それらのうちで最も破断時伸びの小さいコードの破断時伸びを基準として算出 する。)。
[0134] 10%伸ばしたときの各コードの強力は、ケブラーコードが 1400N、ナイロンコード が 205Nである。
[0135] 第 1ベルトプライ 26A〜第 8ベルトプライ 26Hでは、単位幅 10mm当りのコード打込 み本数は 6. 2本、第 9ベルトプライ 261では、単位幅 10mm当りのコード打込み本数 は 6. 9本、ベルト保護層 22では、単位幅 10mm当りのコード打込み本数は 3. 6本で ある。
[0136] 本実施形態の主ベルト層 26は、クラウンセンター部 POでは、ケブラーコードが 8本 積層(第 1ベルトプライ 26A〜第 8ベルトプライ 26H)され、ナイロンコードは 2本積層 ( 第 9ベルトプライ 261)されて!/、る。
[0137] 主ベルト層 26の最大幅 BWの 2Z3の幅位置 P2では、ケブラーコード力 本積層さ れ、ナイロンコードは 2本積層されている。
[0138] なお、本実施形態のように、有機繊維コードが波状である場合、有機繊維コードを 真っ直ぐに伸ばして強力を算出するのでは無ぐタイヤに埋設されている形状、即ち
、波状に型付けされたものを 10%伸ばしたときの強力を算出する。
[0139] また、有機繊維コードがタイヤ周方向に対して角度 Θで傾斜している場合は、コー ド強力に cos Θを掛けてコード周方向の強力を算出する。
[0140] ここでは、第 9ベルトプライ 261のナイロンコードのタイヤ周方向に対する角度 Θが 1
0° なので、ナイロンのコード強力に coslO° =0. 98を掛けてコード周方向の強力 を算出する。 [0141] また、 TRAに定める規定内圧を充填後に内圧を大気圧以上前記規定内圧の 5% 以下の範囲内に低下させたときのタイヤ赤道面 CLでのタイヤ径を DO、踏面における 前記接地プリントの幅 TWの 84%に相当する位置を 84%TW、タイヤ赤道面 CLにお ける踏面力 前記位置 84%TWにおける踏面までのタイヤ径方向に測定したタイヤ 径落ち高を d、 5. 0 X 2d/D0 + 0. 33 X M2ZMOを接地制御指数 Fとしたときに、 本実施形態の空気入りラジアルタイヤ 10は 0. 2<F< 0. 45を満足している。
[0142] さらに、主ベルト層 26において、クラウンセンター部 POでの有機繊維コードの積層 厚みを GO、主ベルト層 26の最大幅 BWの 2Z3の幅位置 P2での有機繊維コードの 積層厚みを G2としたとき〖こ、 0. 35≤G2ZGO≤0. 85を満足することが好ましい。
[0143] ちなみに、本実施形態では、 G2ZG0 = 0. 63に設定されている。
[0144] なお、トレッド部 23には、周方向溝 29が複数本形成されている。
(矩形率)
空気入りラジアルタイヤ 10は、リムに組み付け、 TRAに定める規定内圧を充填後、 TRAに定める規定荷重を負荷した際のタイヤ接地プリント(図 6参照。)において、ク ラウンセンター部 POに対応する部分の接地長さを LO、接地幅の 84%位置に対応す る部分の接地長さを L2としたときに、本実施形態では LOと L2との比 L2ZL0を矩形 率と呼ぶ。
[0145] ここで、空気入りラジアルタイヤ 10の矩形率 L2ZL0は、 0. 85<L2/L0< 1. 1を 満足することが好ましぐ本実施形態では、矩形率 L2ZL0が 0. 9に設定されている
(作用)
本実施形態の空気入りラジアルタイヤ 10では、接地プリントの幅 TWと主ベルト層 2
6の幅 BWとが 0. 8TW< BW< 1. 2TWを満足しているので、高速耐久性を確保し つつ必要な部材を低減することが可能である。
[0146] なお、 0. 8TW≥BWになると、高速走行時にスタンディングウェーブが発生し易く なるため、タイヤの耐久性を著しく損ねる。
[0147] 一方、 BW≥1. 2TWになると、必要以上の部材を配置することにより、重量増が避 けられない。 [0148] また、主要強度メンバーである主ベルト層 26の枚数力 クラウンセンター部 POから ショルダー部にかけて連続的に減少し、かつ主ベルト層 26のクラウンセンター部 PO での周方向剛性 MOと主ベルト層 26の幅の 2Z3位置 P2での主ベルト層 26の周方 向剛性 M2との比 M2ZM0を 0. 2より大、かつ 0. 8より小に設定しているので、主べ ルト層 26の材料使用量を最小限に抑えつつ、規定内圧充填時、及び高速回転時に トレッド中央域でのトレッドゴム周方向伸張量を効率的に抑制し、タイヤの径成長を抑 制することができた。
[0149] トレッドゴム層 24の周方向伸張量が抑制されることでトレッドゴム層 24の緊張度合 いが低下するので、異物の進入に対する抵抗力が増大し、また、万一異物が刺さりこ んだ場合であっても亀裂の成長を抑えることができる。
[0150] ここで、 M2ZM0が 0. 8より大きい場合には、タイヤ径成長抑制にそれほど支配的 でないタイヤショルダー部に多くのベルトが配置されることにより、タイヤの軽量化に 効果が薄い。
[0151] 一方、 M2ZM0が 0. 2より小さい場合には、ショルダー部に十分なベルト剛性が確 保できなくなるため、高速走行時にスタンディングウェーブが発生し易くなるため好ま しくない。
[0152] また、タイヤ接地形状を代表する、接地制御指数 Fを 0. 2<F<0. 45となるように 設定することで、高速耐久性、耐摩耗性に優れたタイヤを容易に設計することができ るよつになった。
[0153] ここで、 Fが 0. 2以下の場合は、ショルダー部において接地長さが極端に長くなる ため、高速走行時に該部分の発熱が大となり、タイヤ耐久性が著しく損なわれる。
[0154] 一方、 Fが 0. 45以上の場合には、ショルダー部において、回転時に路面との引き ずり摩耗が発生するため、経済性に劣る。
[0155] また、接地プリントの矩形率 L2ZL0が 1. 1以上の場合は、ショルダー部において 接地長さが極端に長くなるため、高速走行時に該部分の発熱が大となり、タイヤ耐久 性が著しく損なわれる。
[0156] 一方、接地プリントの矩形率 L2ZL0が 0. 85以下の場合は、ショルダー部におい て回転時と路面との間で引きずり摩耗が発生するため経済性に劣る。 [0157] したがって、接地プリントの矩形率 L2ZL0が 0. 85<L2/L0< 1. 1を満足するこ とが好ましい。
[0158] また、主ベルト層 26を構成する第 1ベルトプライ 26A〜第 8ベルトプライ 26Hにおい て、螺旋状に芳香族ポリアミド系の有機繊維コードを卷回してコード方向を周方向に 対して 0° に近づけているので、主ベルト層 26の周方向剛性を確保するために使用 する有機繊維コードの強力を最大限に活用でき、ラジアルタイヤのタガ効果を最大 限に発揮することが可能となり、軽量ィヒを図りつつ少ない部材の量にて目標の安全 率を達成することができる。
[0159] また、ショルダー部に最も近い第 9ベルトプライ 261においては、有機繊維コードに タイヤ赤道面 CLに対して 2〜25° の範囲内の角度 (本実施形態では 8° )を付与す ることにより、ベルトのタガ効果を大きく損なうことなぐタイヤ幅方向にも剛性を得るこ とが可能となり、転動時のショルダー部の引きずり摩耗の低減に効果がある。
[0160] 主ベルト層 26の最外のベルとプライである第 9ベルトプライ 261の有機繊維コードを タイヤ赤道面 CLに対して 2〜25° で傾斜させることで、第 9ベルトプライ 261に対す るカットを受け、万一亀裂が進展する場合にも、亀裂はコードに沿う形でベルト端部 に達し、それ以上の周方向への進展を防ぐことができる。
[0161] なお、第 9ベルトプライ 261の有機繊維コードのタイヤ赤道面 CLに対する傾斜角度 が 2° を下回ると、タイヤがカットによる損傷を受け、万一亀裂が進展するような場合 において、亀裂の周方向への進展を防止する効果が薄くなる。また、タイヤ幅方向剛 性が確保でな 、ため、引きずり摩耗が発生し易くなる。
[0162] 一方、第 9ベルトプライ 261の有機繊維コードのタイヤ赤道面 CLに対する傾斜角度 力 S25° を上回ると、ベルトプライの周方向剛性が低下し、径成長の抑制のためには ベルトプライの層数の増加が必要になるため、タイヤ重量増につながる。
[0163] 有機繊維コードをそれぞれのプライ端で反対方向に傾斜するように同一面内で屈 曲されてタイヤ周方向にジグザグ状に延ばす構成とした第 9ベルトプライ 261は、幅方 向のプライ端において有機繊維コードの切断端を有しない構成となるため、タイヤに 幅方向の負荷が作用した場合などプライ端部分に大きな歪みが発生する時にも、第 9ベルトプライ 261のセパレーシヨン(コード切断端とカバーゴムとの間)を起こしにくい [0164] また、本実施形態では、第 9ベルトプライ 261のタイヤ半径方向外側に、タイヤ周方 向に波状に延びる有機繊維コード 36を含むベルト保護層 22を、 2. 5mmのゴム層 3 0を介して配置したので、異物等のトレッドゴム層 24への刺し込みに対し、有機繊維 コード 36の波形を消失する方向へ変形をもって緊張を緩和し、その異物等を包み込 むことで、異物等の主ベルト層 26への進入を阻止することができた。
[0165] なお、ゴム層 30の厚さが 1. 5mmを下回ると、タイヤ更生時に、径方向内側に存在 する主ベルト層 26を損傷することなく該ゴム層 30を除去することが困難となる。
[0166] 一方、ゴム層 30の厚さが 4. 5mmを上回ると、タイヤ重量が増加するばかりかトレツ ド発熱が増大し、耐久性に不利となる。
[0167] ベルト保護層 22の有機繊維コード 36の振幅 Aが 5mm未満の場合、及び波長 Bが 振幅 Aの 700%を越える場合は、空気入りラジアルタイヤ 10への内圧充填、及びそ こへの荷重の作用によって、有機繊維コード 36が周方向に殆ど伸張した状態となる ため、異物の進入時の包み込み効果が小さくなる。
[0168] 一方、有機繊維コード 36の振幅 Aが 25mmを越える場合、及び波長 Bが振幅 Aの 200%未満の場合は、隣接する有機繊維コード 36との間に十分な間隔を確保するこ とが困難になって、コード間に十分なゴム層(有機繊維コード 36を被覆するコーティ ングゴム)を確保することができなくなるめ、ベルト保護層 22のゴム層とトレッドゴム層 24との接触部分が少なくなつて、有機繊維コード 36とトレッドゴム層 24との間の接着 強度が低下してセパレーシヨンを生じ易くなる。
[0169] なお、本実施形態では、最外層に有機繊維コード 36を含むベルト保護層 22を設け ているので、万一トレッドゴム層 24が摩耗してベルト保護層 22が踏面に現れても、金 属コードの場合と違って火花を散らすことは無い。
[0170] クラウンセンター部 P0での主ベルト層 26の有機繊維コードの積層厚み GOと、主べ ルト層 26の最大幅の 2Z3の幅位置 P2における主ベルト層 26の有機繊維コードの 積層厚み G2との比 G2/G0力 0. 35≤G2/G0≤0. 85を満足することにより、タ ィャ径成長抑制に最も効果の大き 、タイヤセンター部に高 、ベルト剛性を確保する ことが出来、耐 FOD (異物損傷)性向上が得られる。 [0171] ここで、 G2ZG0が 0. 85を越える場合には、タイヤ径成長にそれほど支配的では ないタイヤショルダー部に多くのベルトが配置されることになり、タイヤ軽量ィ匕に効果 が薄い。
[0172] 一方、 G2ZG0が 0. 35を下回る場合には、ショルダー部に十分なベルト剛性が確 保できなくなるため、高速走行時にスタンディングウェーブが発生し易くなり、耐久上 好ましくない。
[0173] 本実施形態では、主ベルト層 26の第 1ベルトプライ 26A〜第 8ベルトプライ 26Hを 構成する有機繊維コードの引張破断強度を 6. 3cN/dtex以上としたので、必要な 耐圧性能を満足することができ、軽量化も達成できた。
[0174] また、主ベルト層 26の第 1ベルトプライ 26A〜第 8ベルトプライ 26Hを構成する有 機繊維コードにおいて、 0. 3cNZdtex荷重時の伸び率を 0. 2〜2. 0%、伸張方向 に 2. lcNZdtex荷重時の伸び率を 1. 5〜7. 0%、伸張方向に 3. 2cNZdtex荷重 時の伸び率を 2. 2〜9. 3%にしたので、 目標の径成長の抑制を容易に達成すること ができた。これにより、異物の刺さり込みに対する性能を確保し、かつ主ベルト層 26 によるタガ効果を最適にできた。
[0175] なお、主ベルト層 26の第 1ベルトプライ 26A〜第 8ベルトプライ 26Hを構成する有 機繊維コードの伸び率が上記範囲を上回る場合、タイヤ内圧充填時においてタイヤ 径方向の膨出を効果的に抑えられず、異物の刺さり込みに対する性能を期待できな なくる。
[0176] 一方、主ベルト層 26の第 1ベルトプライ 26A〜第 8ベルトプライ 26Hを構成する有 機繊維コードの伸び率が上記範囲を下回る場合、各ベルトプライのタガ効果が大き 過ぎるため、カーカス層 16が必要以上にタイヤ幅方向に膨出する結果となり好ましく ない。
[0177] さらに、本実施形態では、主ベルト層 26の第 1ベルトプライ 26A〜第 8ベルトプライ 26Hを構成する有機繊維コードの 0. 3cNZdtex荷重時の伸び率を 0. 2〜2. 0% にしたので、加硫時に生タイヤ内部より負荷される圧力によって空気入りラジアルタイ ャ 10を均等に伸張せしめることができ、これによつて有機繊維コードの方向を揃え、 コード打込みのばらつきを是正することができた。 [0178] なお、主ベルト層 26の第 1ベルトプライ 26A〜第 8ベルトプライ 26Hを構成する有 機繊維コードの 0. 3cNZdtex荷重時の伸び率が 2. 0%より大きいと、加硫時のコー ド性状是正の効果が薄くなり好ましくな 、。
[0179] 一方、主ベルト層 26の第 1ベルトプライ 26A〜第 8ベルトプライ 26Hを構成する有 機繊維コードの伸び率が 0. 2%より小さい場合には、加硫時のタイヤ膨張の際にコ ード張力が大となり、該有機繊維コードがタイヤ径方向内側のゴムに食い込むなどの 不都合が生じるため好ましくない。
[0180] 本実施形態では、主ベルト層 26のタイヤ幅方向端部において、第 7ベルトプライ 26
Gと第 8ベルトプライ 26Hとの 2枚のベルトプライが積層されているので、タイヤ走行時
、特に、タイヤ幅方向に外力が作用する場合のように、タイヤ接地面幅方向両端付近 の有機繊維コードに激しい張力変動を伴うような条件下においても、その弾力性を持 つて衝撃を効果的に分散することが可能となり、苛酷な使用条件下における空気入り ラジアルタイヤ 10の信頼性が向上した。
[0181] 主ベルト層 26を構成する第 1ベルトプライ 26A〜第 8ベルトプライ 26Hの有機繊維 コードを芳香族ポリアミド系の繊維力も構成し、下撚り係数を 0. 12〜0. 85の範囲内
、上撚り係数を 0. 40-0. 80の範囲内としたので、有機繊維コードの引張破断強度 を 6. 3cNZdtex以上、 0. 3cNZdtex荷重時の伸び率を 0. 2〜2. 0%、伸張方向 に 2. lcNZdtex荷重時の伸び率を 1. 5〜7. 0%、伸張方向に 3. 2cNZdtex荷重 時の伸び率を 2. 2〜9. 3%に設定することができた。
[第 2の実施形態]
次に、本発明の第 2の実施形態に係る空気入りラジアルタイヤ 10を説明する。なお 、第 1の実施形態と同一構成には同一符号を付し、その説明は省略する。
[0182] 本実施形態の空気入りラジアルタイヤ 10では、主ベルト層 26の第 1ベルトプライ 26 A〜第 8ベルトプライ 26Hの有機繊維コードの材質が第 1の実施形態の空気入りラジ アルタイヤ 10と異なっており、本実施形態の第 1ベルトプライ 26A〜第 8ベルトプライ 26Hに用いた有機繊維コードは、芳香族ポリアミド系の繊維と脂肪族ポリアミド系の 繊維とを含む、 V、わゆるハイブリッドコードである。
[0183] ここで、芳香族ポリアミド系の繊維と脂肪族ポリアミド系の繊維との重量比は 100 : 1 0〜 170とすること力好ましく、 100 : 17〜86とすること力より好まし!/ヽ。
[0184] これにより、引張破断強度を 6. 3cNZdtex以上、伸張方向に 0. 3cNZdtex荷重 時の伸び率が 0. 2〜2. 0%、 2. lCNZdtex荷重時の伸び率を 1. 5%以上 7. 0% 以下、 3. 2cNZdtex荷重時の伸び率を 2. 2%以上 9. 3%以下に設定することがで きる。
[0185] なお、芳香族ポリアミド系の有機繊維コードと脂肪族ポリアミド系の有機繊維コード とを撚り合わせる場合、芳香族ポリアミド系の有機繊維コードの下撚り係数を 0. 12〜 0. 85とすること力好まし!/ヽ。
[0186] 次に、このような有機繊維コードの製造方法を説明する。
[0187] 先ず、ケブラー(3000デニール = 3340dtex) 2本と、 66ナイロン(1260デニール
= 1400dtex) 2本を併せた糸 1本を作り、撚り機を用いて、ケブラーの下撚り係数が
0. 34、ナイロン 66の下撚り係数が 0. 18になるように下撚り加工を行った。
[0188] その後、ケプラーの下撚り糸 2本と、 66ナイロンの下撚り糸 1本を引き揃え、下撚りと は反対方向に上撚り(S撚り)し、撚りコードを加工した。
[0189] 撚りコードを株式会社巿金工業社製コード処理機でディップ処理し製造した。
[0190] 25 ± 2° Cの室温中、株式会社島津製作所製オートグラフを用いてディップコード の引張破断強度を測定したところ、 1 lcNZdtexの値を得た。
[0191] この時、ディップコードの引張り方向への応力力 0. 3cNZdtex、 2. lcN/dtex
、及び 3. 2cNZdtexを示した時のディップコードの伸び率を測定したところ、それぞ れ 1. 1%、 5. 6%。、及び 6. 6%の値を得た。
[0192] ちなみに、この有機繊維コードの破断強力は、 1100Nである。
[0193] 本実施形態では、上述したように、主ベルト層 26の有機繊維コードの材質を第 1の 実施形態の空気入りラジアルタイヤ 10とは変えたが、第 1の実施形態の空気入りラジ アルタイヤ 10と同様の作用効果が得られる。
[0194] また、タイヤ幅方向の剛性が得られるため、ショルダー部の引きずり摩耗に効果が ある。
(試験例)
本発明の効果を確かめるために、従来例のタイヤ 1種、比較例のタイヤ 2種、及び P T/JP2005/018153
25
本発明の適用された実施例のタイヤ 3種を用意し、摩耗特性、高速耐久性、タイヤ重 量、及び耐 FOD性能の比較を行なった。
[0195] タイヤサイズは、何れも 1270 X455R22 32PRである。
[0196] [表 1]
Figure imgf000027_0001
[0197] [表 2]
Figure imgf000028_0001
i ベルト材質 Z構造
Ny/EB :ナイロン Z無端ジグザグベルト卷(打ち込み 6. 9本 Zl0mm、コード角 度 10° 、図 5参照。)
Ny/KB :ナイロン 切り離しベルト(打ち込み 8. 3本 10mm、コード角度 16
° )
Ny/SB:ケプラー (デュポン社商標名) Z螺旋ベルト卷 (打ち込み 6. 2本/ 10m m、コード角度 0° 。図 4参照。)
Hy/SB :ケプラーとナイロンの混撚り糸 Z螺旋ベルト卷 (打ち込み 6. 2本 ZlOm m、コード角度 0° 。) *2 ベルト剛性比
周方向弾性率は以下の方法にて算出
弾性率 = (各コードの 0〜R%伸びの弾性率) X (10mm当たりコード打ち込み数 ) X cos (周方向に対する角度)。
*3 耐摩耗性
摩耗特性試験機において、タイヤ Z路面の接触面にて両社間の接触圧力、及び 相対滑 りを測定。摩耗仕事量(=接触圧 X滑り量)を踏面全体に渡って積分した 値を元に、
耐摩耗性の指数を算出したもの (従来品 1を 100とする。数値大ほど性能良。 ) *4 高速耐久'性
TRAの規定内圧、規定荷重条件にて公的規格に定める離陸試験を実施。タイヤ 故障
発生するまでの試験回数を指数化したもの(従来品 1を 100とする。数値大ほど性 能良。)
*5 タイヤ重量
従来品を 100として指数ィ匕した。数値小ほど性能良 (軽量)。
*6 FOD耐久性
厚さ 3mm、幅 500mmの先端鋭利な刃を、長手方向がタイヤ幅方向に重なるよう にトレッドにあてカ^、、 TRAの規定内圧充填後に規定荷重の 3%の垂直荷重を負 荷
した後、除荷したときのタイヤのカット深さを指数ィ匕したもの(従来品を 100とす る。数値大ほど性能良。 )
産業上の利用可能性
[0198] 優れた耐摩耗性を有すると同時に軽量化も達成することができ、経済性、及び軽量 化を必要とする航空機に適用できる。
符号の説明
[0199] 10 空気入りラジアルタイヤ
14 ビードコア カーカス層 主べノレト層

Claims

請求の範囲
[1] 一対のビードコアと、一方のビードコア力 他方のビードコアに向けてトロイド状に延 びる少なくとも 1枚以上のカーカスプライからなるカーカス層と、
前記カーカス層のタイヤ半径方向外側に配置されタイヤ周方向に延びる複数本の 有機繊維コードを含む主ベルト層と、を備えた空気入りラジアルタイヤであって、 タイヤをリム組みし、 TRAに定める規定内圧を充填した後に規定荷重を負荷した際 の接地プリントの幅を TW、前記主ベルト層の幅を BWとしたときに、 0. 8TW< BW < 1. 2TWを満足し、
前記主ベルト層の枚数力 sクラウンセンター部 P0からショルダー部にかけて漸減し、 かつ前記主ベルト層のクラウンセンター部 P0における周方向剛性を M0、前記主べ ルト層の幅の 2Z3位置 P2における周方向剛性を M2、ベルト剛性比を M2ZM0とし たときに、 0. 2< M2/M0< 0. 8を満足し、
前記規定内圧を充填後に内圧を大気圧以上前記規定内圧の 5%以下の範囲内に 低下させたときのタイヤ赤道面でのタイヤ径を DO、踏面における前記接地プリントの 幅 TWの 84%に相当する位置を 84%TW、タイヤ赤道面における踏面から前記位置 84%TWにおける踏面までのタイヤ径方向に測定したタイヤ径落ち高を d、 5. 0 X 2 d/DO + 0. 33 X M2ZM0を接地制御指数 Fとしたときに、 0. 2<F< 0. 45を満足 する、
ことを特徴とする空気入りラジアルタイヤ。
[2] リムに組付け、 TRAに定める規定内圧を充填後、 TRAに定める規定荷重を負荷し た際のタイヤ接地プリントにお 、て、クラウンセンター部 P0に対応する部分の接地長 さを L0、接地幅の 84%位置に対応する部分の接地長さを L2としたときに、 0. 85く L2/L0< 1. 1を満足する、ことを特徴とする請求項 1に記載の空気入りラジアルタイ ャ。
[3] 前記主ベルト層は、タイヤ赤道面に対して略 0° の角度で螺旋状に卷回した有機 繊維コードを含むベルトプライを 2枚以上含む、ことを特徴とする請求項 1または請求 項 2に記載の空気入りラジアルタイヤ。
[4] 前記主ベルト層は、タイヤ赤道面に対して 2〜25° の角度で傾斜し、それぞれのプ ライ端で反対方向に傾斜するように同一面内で屈曲されてタイヤ周方向にジグザグ 状に延びる有機繊維コードを含むベルトプライを 2枚以上含む、ことを特徴とする請 求項 1または請求項 2に記載の空気入りラジアルタイヤ。
[5] 前記主ベルト層において、前記有機繊維コードの積層厚みを前記クラウンセンター 部 POで最も厚くし、前記クラウンセンター部 POでの前記有機繊維コードの積層厚み を GO、前記主ベルト層の最大幅の 2Z3の幅位置 P2における前記有機繊維コード の積層厚みを G2としたときに、 0. 35≤G2/GO≤0. 85を満足する、ことを特徴とす る請求項 1乃至請求項 4の何れか 1項に記載の空気入りラジアルタイヤ。
[6] 前記主ベルト層は、引張破断強度が 6. 3cNZdtex以上、伸張方向に 0. 3cN/d tex荷重時の伸び率が 0. 2〜2. 0%、伸張方向に 2. lcNZdtex荷重時の伸び率 が 1. 5〜7. 0%、伸張方向に 3. 2cNZdtex荷重時の伸び率が 2. 2〜9. 3%とされ た有機繊維コードを含むベルトプライの少なくとも 2枚以上で構成されている、ことを 特徴とする請求項 1乃至請求項 5の何れか 1項に記載の空気入りラジアルタイヤ
[7] 前記主ベルト層は、芳香族ポリアミド系の繊維と脂肪族ポリアミド系の繊維とを含み 、芳香族ポリアミド系の繊維と脂肪族ポリアミド系の繊維との重量比が 100: 10〜170 とされた有機繊維コードを含むベルトプライを有する、ことを特徴とする請求項 1乃至 請求項 6の何れか 1項に記載の空気入りラジアルタイヤ。
PCT/JP2005/018153 2004-09-30 2005-09-30 空気入りラジアルタイヤ WO2006035940A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/664,124 US20080277037A1 (en) 2004-09-30 2005-09-30 Pneumatic Radial Tire
JP2006537838A JP4635010B2 (ja) 2004-09-30 2005-09-30 空気入りラジアルタイヤ
EP05788069A EP1800902B1 (en) 2004-09-30 2005-09-30 Pneumatic radial tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-288488 2004-09-30
JP2004288488 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006035940A1 true WO2006035940A1 (ja) 2006-04-06

Family

ID=36119082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018153 WO2006035940A1 (ja) 2004-09-30 2005-09-30 空気入りラジアルタイヤ

Country Status (4)

Country Link
US (1) US20080277037A1 (ja)
EP (1) EP1800902B1 (ja)
JP (1) JP4635010B2 (ja)
WO (1) WO2006035940A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007168783A (ja) * 2005-12-20 2007-07-05 Goodyear Tire & Rubber Co:The 強化ラジアル航空機用タイヤ
JP2007283827A (ja) * 2006-04-13 2007-11-01 Bridgestone Corp 航空機用タイヤおよびそれの製造方法
JP2011235832A (ja) * 2010-05-13 2011-11-24 Yokohama Rubber Co Ltd:The 新都市交通車両用空気入りラジアルタイヤ
WO2012026123A1 (ja) * 2010-08-27 2012-03-01 株式会社ブリヂストン 航空機用空気入りラジアルタイヤ
JP2017047891A (ja) * 2015-08-31 2017-03-09 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニーThe Goodyear Tire & Rubber Company 軽量化された航空機タイヤ
JP2017536284A (ja) * 2014-10-28 2017-12-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 航空機用タイヤ
WO2021182544A1 (ja) * 2020-03-11 2021-09-16 株式会社ブリヂストン 空気入りタイヤ
WO2022107357A1 (ja) * 2020-11-19 2022-05-27 株式会社ブリヂストン 航空機用空気入りタイヤ

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070137744A1 (en) * 2005-12-20 2007-06-21 Kiyoshi Ueyoko Radial aircraft tire and method of manufacture
US20100018628A1 (en) * 2005-12-20 2010-01-28 The Goodyear Tire & Rubber Co. Method of manufacturing a radial aircraft tire
JP4810384B2 (ja) * 2006-09-29 2011-11-09 株式会社ブリヂストン 空気入りタイヤ
WO2010100856A1 (ja) * 2009-03-03 2010-09-10 株式会社ブリヂストン 航空機用ラジアルタイヤ
USD608724S1 (en) 2009-03-16 2010-01-26 Trek Bicycle Corporation Bicycle tire tread
JP5739681B2 (ja) * 2011-01-28 2015-06-24 株式会社ブリヂストン 空気入りタイヤ
US20120312440A1 (en) * 2011-06-13 2012-12-13 Kiyoshi Ueyoko Reduced weight aircraft tire
US20120312442A1 (en) * 2011-06-13 2012-12-13 Kiyoshi Ueyoko Reduced weight aircraft tire
WO2013024516A1 (ja) 2011-08-12 2013-02-21 横浜ゴム株式会社 空気入りタイヤ
WO2015080935A1 (en) 2013-11-27 2015-06-04 Bridgestone Americas Tire Operations, Llc Tire construction having a continuous body ply turn up structure
WO2016068879A1 (en) * 2014-10-28 2016-05-06 Compagnie Generale Des Etablissements Michelin Aircraft tire
DE102015207931A1 (de) * 2015-04-29 2016-11-03 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen mit einem Laufstreifen
US11827064B2 (en) 2015-08-31 2023-11-28 The Goodyear Tire & Rubber Company Reduced weight aircraft tire
JP6635762B2 (ja) * 2015-11-16 2020-01-29 Toyo Tire株式会社 空気入りタイヤ
CN108839517B (zh) * 2018-07-13 2023-10-13 中策橡胶集团股份有限公司 一种跨座式单轨车辆走行轮胎
JP7129900B2 (ja) * 2018-12-21 2022-09-02 株式会社ブリヂストン 航空機用空気入りタイヤ
US20220185019A1 (en) * 2020-12-16 2022-06-16 The Goodyear Tire & Rubber Company Tire with protective belt structure
CN113928059A (zh) * 2021-11-22 2022-01-14 三角轮胎股份有限公司 子午线轮胎及其胎体层的接头方法
US20240157734A1 (en) * 2022-11-15 2024-05-16 The Goodyear Tire & Rubber Company Aircraft radial tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171312A (ja) * 1999-12-17 2001-06-26 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
WO2003061991A1 (fr) * 2002-01-24 2003-07-31 Bridgestone Corporation Pneu radial et procede de production
JP2004256611A (ja) * 2003-02-25 2004-09-16 Bridgestone Corp 高速重荷重用空気入りラジアルタイヤ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2201925B (en) * 1987-03-12 1991-02-27 Dunlop Ltd Radial ply tyre
US4893665A (en) * 1988-02-17 1990-01-16 The Goodyear Tire & Rubber Company Cables for reinforcing deformable articles and articles reinforced by said cables
CA2007131C (en) * 1989-02-06 1999-02-16 Yoshihide Kohno Undulating filamentary reinforcement in pneumatic tires
JPH05139112A (ja) * 1991-11-15 1993-06-08 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP3574155B2 (ja) * 1993-01-20 2004-10-06 株式会社ブリヂストン 航空機用ラジアルタイヤ
JP3198077B2 (ja) * 1997-06-27 2001-08-13 住友ゴム工業株式会社 空気入りタイヤ
FR2791000B1 (fr) * 1999-03-17 2001-05-04 Michelin Soc Tech Armature de sommet de pneumatique radial

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171312A (ja) * 1999-12-17 2001-06-26 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
WO2003061991A1 (fr) * 2002-01-24 2003-07-31 Bridgestone Corporation Pneu radial et procede de production
JP2004256611A (ja) * 2003-02-25 2004-09-16 Bridgestone Corp 高速重荷重用空気入りラジアルタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1800902A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007168783A (ja) * 2005-12-20 2007-07-05 Goodyear Tire & Rubber Co:The 強化ラジアル航空機用タイヤ
JP2007283827A (ja) * 2006-04-13 2007-11-01 Bridgestone Corp 航空機用タイヤおよびそれの製造方法
JP2011235832A (ja) * 2010-05-13 2011-11-24 Yokohama Rubber Co Ltd:The 新都市交通車両用空気入りラジアルタイヤ
US9643455B2 (en) 2010-08-27 2017-05-09 Bridgestone Corporation Pneumatic radial tire for aircraft
WO2012026123A1 (ja) * 2010-08-27 2012-03-01 株式会社ブリヂストン 航空機用空気入りラジアルタイヤ
JPWO2012026123A1 (ja) * 2010-08-27 2013-10-28 株式会社ブリヂストン 航空機用空気入りラジアルタイヤ
JP5788882B2 (ja) * 2010-08-27 2015-10-07 株式会社ブリヂストン 航空機用空気入りラジアルタイヤ
JP2017536284A (ja) * 2014-10-28 2017-12-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 航空機用タイヤ
JP2017047891A (ja) * 2015-08-31 2017-03-09 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニーThe Goodyear Tire & Rubber Company 軽量化された航空機タイヤ
JP7475108B2 (ja) 2015-08-31 2024-04-26 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー 軽量化された航空機タイヤ
WO2021182544A1 (ja) * 2020-03-11 2021-09-16 株式会社ブリヂストン 空気入りタイヤ
JP2021142851A (ja) * 2020-03-11 2021-09-24 株式会社ブリヂストン 空気入りタイヤ
JP7372857B2 (ja) 2020-03-11 2023-11-01 株式会社ブリヂストン 空気入りタイヤ
WO2022107357A1 (ja) * 2020-11-19 2022-05-27 株式会社ブリヂストン 航空機用空気入りタイヤ
JP2022081053A (ja) * 2020-11-19 2022-05-31 株式会社ブリヂストン 航空機用空気入りタイヤ
JP7386779B2 (ja) 2020-11-19 2023-11-27 株式会社ブリヂストン 航空機用空気入りタイヤ

Also Published As

Publication number Publication date
EP1800902A1 (en) 2007-06-27
EP1800902A4 (en) 2008-11-05
EP1800902B1 (en) 2009-09-02
JPWO2006035940A1 (ja) 2008-05-15
JP4635010B2 (ja) 2011-02-16
US20080277037A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
WO2006035940A1 (ja) 空気入りラジアルタイヤ
JP4627664B2 (ja) 空気入りラジアルタイヤ
JP4424989B2 (ja) 空気入りタイヤ、及びその製造方法
EP2236318B1 (en) Pneumatic tire
US20130206302A1 (en) Pneumatic tire
WO2020179921A1 (ja) 空気入りタイヤ
JP5566932B2 (ja) 空気入りタイヤ
WO2008035771A1 (en) Pneumatic radial tire
BRPI0720650A2 (pt) Pneumático
EP1270270A1 (en) Pneumatic tire
WO2013176082A1 (ja) 乗用車用空気入りラジアルタイヤ
JPH06234304A (ja) 高速重荷重用ラジアルタイヤ
JP6998705B2 (ja) 軽量化された航空機用タイヤ
EP2423001A2 (en) Pneumatic tire
WO2020054798A1 (ja) ラジアルタイヤ
WO2022123948A1 (ja) 空気入りタイヤ
JP2012066798A (ja) 空気入りタイヤ
JP2002154307A (ja) 複合強化ゴム材および空気入りタイヤ
JPH11139111A (ja) 空気入りラジアルタイヤ
JP2001206010A (ja) 空気入りラジアルタイヤ
JP4556644B2 (ja) 小型トラック用空気入りラジアルタイヤ
JP2006069399A (ja) 航空機用ラジアルタイヤ
JP7572605B2 (ja) 空気入りタイヤ
JP2013001320A (ja) 空気入りラジアルタイヤ
EP3736141B1 (en) Radial tire

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537838

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11664124

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005788069

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005788069

Country of ref document: EP