WO2006032684A1 - Procédé d'enrobage d'un rail pour véhicule ferroviaire. - Google Patents

Procédé d'enrobage d'un rail pour véhicule ferroviaire. Download PDF

Info

Publication number
WO2006032684A1
WO2006032684A1 PCT/EP2005/054737 EP2005054737W WO2006032684A1 WO 2006032684 A1 WO2006032684 A1 WO 2006032684A1 EP 2005054737 W EP2005054737 W EP 2005054737W WO 2006032684 A1 WO2006032684 A1 WO 2006032684A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
jacket
fraction
granules
rails
Prior art date
Application number
PCT/EP2005/054737
Other languages
English (en)
Inventor
Joseph Rode
Original Assignee
Feronia S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35695147&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006032684(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Feronia S.A. filed Critical Feronia S.A.
Priority to EP05791921A priority Critical patent/EP1807569B1/fr
Priority to PL05791921T priority patent/PL1807569T3/pl
Priority to BRPI0515548-7A priority patent/BRPI0515548A/pt
Priority to DE602005008631T priority patent/DE602005008631D1/de
Priority to US11/575,609 priority patent/US8602318B2/en
Priority to CA002581089A priority patent/CA2581089A1/fr
Priority to DK05791921T priority patent/DK1807569T3/da
Publication of WO2006032684A1 publication Critical patent/WO2006032684A1/fr
Priority to TNP2007000101A priority patent/TNSN07101A1/fr
Priority to NO20071681A priority patent/NO20071681L/no

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B21/00Track superstructure adapted for tramways in paved streets
    • E01B21/02Special supporting means; Draining of rails
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B29/00Laying, rebuilding, or taking-up tracks; Tools or machines therefor
    • E01B29/005Making of concrete parts of the track in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B19/00Protection of permanent way against development of dust or against the effect of wind, sun, frost, or corrosion; Means to reduce development of noise
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B19/00Protection of permanent way against development of dust or against the effect of wind, sun, frost, or corrosion; Means to reduce development of noise
    • E01B19/003Means for reducing the development or propagation of noise
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B21/00Track superstructure adapted for tramways in paved streets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a method for coating portions of a rail for railway vehicles which are not in contact with the wheels of the vehicle, which method comprises applying a rubber jacket to said parts and attaching this jacket to the rail, said jacket having outer side flanks extending along the rail.
  • the jacket is formed of rubber blocks which are applied both against the lateral flanks of the rail and under the runner of the rail.
  • a disadvantage of the known method is that all jackets have the same configuration and have only a vibration absorption function.
  • known jackets do not allow their geometry, which generally matches that of the rail, to play on the distribution of loads applied by the vehicle when traveling on the coated rail of his jacket.
  • the object of the invention is to provide a method of coating portions of a rail for a railway vehicle which are not in contact with the wheels of the vehicle, where it is possible to adapt the distribution of the loads applied to the rail by the vehicle.
  • a method according to the invention is characterized in that for a predetermined load exerted by said vehicle on the rail, a distribution of this load between a first fraction exerted on the head of the rail and a second fraction of this load exerted on the runner of the rail is determined, the geometry of each lateral flank being configured to form a non-rectilinear profile allowing said distribution between said first and second fractions.
  • the distribution of loads between those exerted on the head of the rail and those exerted on the runner of the rail makes it possible to better manage the load exerted on the rail and thus to contribute not only to a reduction of the vibrations induced by the vehicle in the ground, but also the comfort of the passengers using the vehicle and the life of the jacket.
  • the fact of configuring the geometry of each lateral flank according to the determined distribution of the loads makes it possible to give the jacket the necessary flexibility and rigidity to allow this distribution.
  • a first preferred form of a method according to the invention is characterized in that said geometry is configured in the form of a recess.
  • the recess shape makes it possible to direct the load towards the rail according to the determined distribution.
  • Preferably said recess is formed substantially circular. The circular shape of the recess allows to distribute most of the load on the head of the rail.
  • a second preferred form of a method according to the invention is characterized in that said recess is formed substantially flared U. This shape makes it possible to achieve a stiffness of about 80 MN / m per meter of rail.
  • a third preferred form of a method according to the invention is characterized in that said recess is formed so as to have a trapezoidal geometry. This shape considerably reduces the vibrations induced in the ground by the vehicles passing on the rail.
  • a fourth preferred form of a method according to the invention is characterized in that under the pad dud ⁇ t rail is placed a band formed of a rubber softer than that of the jacket, said strip being housed between the underside of the pad and the jacket.
  • This softer rubber band allows a transfer of the order of 70% on the rail pad to achieve a stiffness of the jacket of the order of 15 MN / m per meter of rail.
  • a fifth preferred form of a process according to the invention is characterized in that the jacket is formed of rubber granules bonded together by an elastomeric resin, in particular polyurethane, the granules having a particle size of between 0.5 - 6. mm, in particular between 1 and 3 mm.
  • an elastomeric resin in particular polyurethane
  • the concentration of the ferrous, textile and plastic material in the rubber granules is in each case less than 1%. This low concentration of ferrous material makes it possible to produce a jacket having poor electrical conductivity, which is favorable for reducing current losses.
  • the low concentration of textile and plastic contributes to the uniformity of the jacket.
  • the density of the material forming the jacket is greater than 950 kg / m3, in particular equal to 1150 kg / m3.
  • a density makes it possible to manufacture a jacket that is resistant in particular to road traffic.
  • a sixth preferred form of a process according to the invention is characterized in that the rail is placed in a mold and in that the granules and the resin are mixed together and injected under high pressure into the mold. This high-pressure injection makes it possible to produce a jacket with a high density of material.
  • the invention also relates to a method of laying two rails to form a railway in which rails coated by using the aforesaid method are used.
  • Such a method is characterized in that the rails are mounted in a laying gantry in order to place them at a spacing distance, said rails then being arranged with the help of said gantry on a previously prepared base, and in that at least in the space between the two rails is then poured an aggregation of bound granules by means of a binder. This allows quick and efficient installation of the rails.
  • FIG. 1 shows a first embodiment of a coated rail by application of the method according to the invention
  • Figure 2 shows an alternative form of that illustrated in Figure 1
  • FIG. 3 shows a second embodiment of a coated rail by application of the method according to the invention
  • FIG 4 shows a third embodiment of a coated rail by application of the method according to the invention
  • Figure 5 shows a rail coated with a jacket for renewing the rail without disassembly of the coating
  • Figure 6 shows an embodiment for a three piece rail
  • Figure 7 shows the method of laying two coated rails
  • FIG. 8 shows a jacket with a metal plate for butting the coating
  • FIG. 9 shows the relationship between the deflection (in mm) of the rail-jacket complex and the load (in kN) imposed on the complex
  • Figure 10 illustrates the dynamic stiffness of the complex
  • Figure 11 shows the bogie deflection of the vehicle.
  • the same reference has been assigned to the same element or to a similar element.
  • the rail 1 illustrated in Figure 1 is a rail comprising a groove 2, while the rail shown in Figure 2 does not include such a groove.
  • the invention is not limited to a particular type of rail and applies to both grooved rails and rails without grooves as well as to other types of rails, such as the three-rail 6 each rail comprises a rail head 3 and a shoe 4 interconnected by a post 5.
  • the jacket 6 may either consist of a single piece or three pieces 7, 8 and 9.
  • the jacket covers the rail vehicle rail parts that are not in contact with the wheels of the vehicle. The part in contact with the wheels of the vehicle must indeed remain free so as not to hinder the passage of the wheel.
  • the jacket is preferably glued to the rail.
  • the jacket is obtained by injection into a mold as will be described below. In order to give the jacket the required properties, the latter is made of rubber, preferably recycled rubber obtained by grinding and screening used tires.
  • the jacket is formed from rubber granules having a particle size between 0.5 - 6 mm, in particular between 1 and 3 mm.
  • the rubber granules are bonded together by an elastomeric resin, in particular polyurethane.
  • an elastomeric resin in particular polyurethane.
  • the concentration of ferrous materials is less than 1% of the total mass. This reduces electrical current leakage to earth and thus electrically isolate the rail.
  • the concentration of textile and / or plastic material of the rubber is also preferably less than 1% of the total mass. Indeed, these materials form a pollutant in the rubber of the jacket and could reduce the consistency between the granules.
  • the density of the material forming the jacket is greater than 950 kg / m3, in particular equal to 1 150 kg / m3. Since these jackets are, with the rail that they coat posed in the road where road vehicles also circulate, it is important that these jackets resist road traffic. A density higher than 950 kg / m3 allows good resistance to this type of traffic.
  • the jacket has a static Young's modulus greater than 5 MPa and a dynamic Young's modulus less than 20 MPa.
  • the material of which the jacket is formed preferably also includes additives such as anti-UV substances, as well as fire-retardant substances. Indeed, the jackets being exposed to the light of day, it is better to add anti-UV substances in order to prevent that the light destroys in the long run the structure of the jacket. The presence of fire-retardant substances will preserve the jacket in case a burning vehicle should be on the rail.
  • the jacket has several functions. It seals the rail in its support and isolates it electrically and acoustically. When the jacket is manufactured in one piece by injection into a mold in the form of the jacket, the rail is first placed in the mold. Then the rubber mixed with the binder and provided with the necessary additives is injected at high pressure into the mold. The high-society This pressure prevents the formation of bubbles between the different granules and thus makes it possible to obtain a compacted material with a high density.
  • Jackets can have multiple shapes, depending on the specific needs of different applications.
  • Figure 2 shows a jacket 6 for symmetrical rail with rim 10.
  • the lower part 9 of the jacket holds the rail at the desired inclination.
  • the upper surface of the jacket is dimensioned to allow the passage of the vehicle wheels without touching the coatings and this taking into account a multitude of accumulated wear of the rail and wheels.
  • the inner profile of the jacket matches that of the rail against which it is applied.
  • the external profile of the lateral flanks of the jacket which extend along the rail is itself determined by the desired distribution of the load exerted by the vehicle when it travels on the rail. Indeed, the composition of the floor on which the rail coated with its jacket is placed, the proximity of buildings, the fact that the rail is in clean site or not, etc.
  • the jacket has in its outer side flanks recesses 11 and 12 of substantially circular shape. These recesses extend to the height of the rail 5.
  • This geometry allows a distribution of the bearings for the first fraction, that is to say that exerted on the head of the rail, located between 60 and 80%, in particular 70%.
  • this geometry resumes between 40 and 20%, in particular 30% of the load. This then makes it possible to arrive at an overall stiffness of the rail-jacket complex of the order of 35 MN / m per meter of rail. As illustrated in FIG.
  • FIG. 9 which shows the relation between the deflection (in mm) of the rail-jacket complex and the load (in kN) imposed on the complex
  • the static stiffness of the rail-jacket complex follows a continuous curve, thus limiting the shaking induced in the ground by the vehicle traveling on the rail.
  • Figure 10 illustrates the dynamic stiffness of the complex. This dynamic stiffness follows a substantially linear path.
  • the portion of the jacket located near the pad 4 is wider than that located at the height of the head 3 of the rail. This makes it possible to form a better base of support on the ground.
  • the thickness of the jacket is higher at the height of the upright 5 than that at the height of the head thus favorably contribute to distribute most of the load on the head of the rail.
  • the jacket is also asymmetrical in thickness at the height of the head.
  • the portion along the lug is thinner than the one on the opposite side to further allow flexibility towards the volume between the rails.
  • the jacket may also have asymmetrical recesses. This same figure 2 also illustrates that it is possible by giving an inclination to the portion 9 of the jacket located under the pad 4 to adjust the inclination of the rail. It is also possible to further reduce the sound insulation by placing a support plate 13 under the jacket.
  • Figure 3 shows an embodiment of the jacket where the recesses 15 and 16 have a substantially U-shaped flared shape. This form allows a substantially equal distribution of charges between the head 3 and the pad 4 of the rail. This then makes it possible to arrive at an overall stiffness of the rail-jacket complex of the order of 80 MN / m per meter of rail. This solution is generally used in low density buildings.
  • the configuration illustrated in Figure 3 also shows an asymmetrical shape on both side flanks of the jacket.
  • Figure 4 shows an embodiment of the jacket where the recess is formed to have a trapezoidal geometry. This geometry allows a distribution of the bearings for the first fraction located between 20 and 40%, in particular 30%. For the second fraction, this geometry resumes between 60 and 80%, in particular 70% of the load. This then makes it possible to arrive at an overall stiffness of the rail-jacket complex of the order of 25 MN / m per meter of rail.
  • this embodiment makes it possible to manufacture a jacket that has only two parts 7 and 8.
  • a seal 19 can be cast along the head of the rail.
  • FIG. 5 shows an embodiment of the jacket where the geometry is formed by protuberances 20 and 21. This geometry allows an equal distribution of the load on the entire jacket.
  • FIG. 6a shows a form of realization for a rail with three components 22, 23 and 24. As illustrated in FIG. 6b, it is the jacket that holds the rail components.
  • Figure 8 shows a rail provided with its jacket as well as metal plates 32 and 33 of coating against coating. These plates make it possible to form an intermediate piece between the coating and the jacket and thus protect the jacket.
  • the protuberances or recesses not only serve to allow a distribution of the charges, but also to form a plug for a concrete, bitumen or other aggregation of granules bound by means of a binder.
  • the rail when the rail is embedded in its jacket, it can be placed at a distance of distance without using iron sleepers screwed to the rail.
  • the placement of the rail-jacket complex is carried out using a laying gantry.
  • the gantry 25 comprises a transverse arm 26 on which jaws 27 and 28 are mounted so as to establish a gap between the rails.
  • the jaws are provided with engaging members 29 configured to match the profile applied in the outer flanks of the jacket. Thus these elements 29 can take hold on the jacket.
  • the portal gantry comprises two side screws 30 and 31.
  • the gantry installation maintains the rail-jacket assembly by jaws and fits into the side spaces left in the sides of the jacket.
  • a suitable spacing device maintains the two rails to be laid at the proper spacing.
  • the two side screws 30 and 31 bring the whole level to the right level.
  • Another gantry system supports the rail by a steel plate passing under the iso-seal and connected to the gantry with two bolts.
  • the assembly is mounted on a slider to allow the training of the track.
  • the rail-jacket complex is inserted in a prefabricated beam and delivered to the site after drying.
  • the beams are armed to support the passage of rolling stock (tram, ...) on supports every 3 meters.
  • the beams having two lateral surfaces can receive prefabricated elements of coating.
  • the visible part of the beam is designed to receive a modular type of cladding element (brick, concrete block, small material) or to be disbursed from the height necessary to put asphalt pavement or other.
  • the reinforcement constituting the beam may be exceeded from the material constituting the beam, in order to be taken up in the concrete blocking.
  • prefabricated elements are inserted between the beams and outside them to fully materialize the entire track. These panels are blocked by injection of concrete under all the prefabricated elements once they are set. The space between the modules is closed by a suitable seal.
  • Prefabricated coatings can contain any type of coating usually used in pavements.
  • the two rails of the same track are included in a concrete slab in which are also included the end of site border and the platform heads.
  • a sub foundation can be performed at the bottom of the chest. Once this is done, calibration slabs are laid and adjusted approximately.
  • the crossroad slabs are then deposited on them and adjusted by interposition of shims of varying thickness.
  • the intersection can be treated in two or three slabs in its width.
  • the intersections can be treated in several slabs according to their lengths. Spaces between slabs are then left in order to perform the rail welds between the different modules. At this location, smaller slabs are added to the track slabs to ensure continuity of the pavement. Once the slabs are well positioned, the welds made, the interposed slabs placed, a liquid concrete is injected under all the components of the tracks and finally blocks them. If, on either side of these prefabricated track modules, the laying of track is different, transition zones are added to ensure a transition in stiffness and also allow the tamping of adjacent sleepers in the case of ballasted tracks.
  • the rail-jacket complex also makes it easy to remove the rail. Indeed, just cut the jacket on the height of the side flanks. The rail and the remaining parts glued to the rail are then removed, for example using a crane. A new rail provided with a jacket portion can then be placed in the opening obtained after removal of the cut parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Railway Tracks (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Road Paving Structures (AREA)

Abstract

Procédé d'enrobage des parties d'un rail (1) pour des véhicules ferroviaires qui ne sont pas en contact avec les roues du véhicule, lequel procédé comprend l'application d'une jaquette (6) en caoutchouc sur lesdites parties et la fixation de cette jaquette au rail, ladite jaquette ayant des flancs latéraux extérieurs qui s'étendent le long du rail, et ou pour une charge prédéterminée exercée par ledit véhicule sur le rail, une répartition de cette charge entre une première fraction exercée sur la tête (3) du rail et une deuxième fraction de cette charge exercée sur le patin (4) du rail est déterminée, la géométrie de chaque flanc latéral étant configurée de telle façon à former un profil non-rectiligne permettant ladite répartition entre ladite première et deuxième fraction.

Description

PROCEDE D'ENROBAGE D'UN RAIL POUR VEHICULE
FERROVIAIRE
La présente invention concerne un procédé d'enrobage des parties d'un rail pour des véhicules ferroviaires qui ne sont pas en contact avec les roues du véhicule, lequel procédé comprend l'application d'une jaquette en caoutchouc sur lesdites parties et la fixation de cette jaquette au rail, ladite jaquette ayant des flancs latéraux extérieurs qui s'étendent le long du rail.
Un tel procédé est connu de la demande de brevet EP 0854234. La jaquette est formée de blocs en caoutchouc qui sont appliqués tant contre les flancs latéraux du rail que sous le patin du rail.
L'utilisation de ces jaquettes permet de réduire considérablement les vibrations induites dans le sol par le véhicule lors de son passage sur les rails. La réduction des vibrations permet à son tour de réduire la nuisance et les dégâts pour les riverains.
Un désavantage du procédé connu est que toutes les jaquettes ont la même configuration et n'exercent qu'une fonction d'absorption des vibrations. De plus, les jaquettes connues ne permettent pas par leur géométrie, qui en général épouse celle du rail, de jouer sur la répartition des charges appliquées par le véhicule lorsqu'il circule sur le rail enrobé de sa jaquette.
L'invention a pour but de réaliser un procédé d'enrobage des parties d'un rail pour véhicule ferroviaire qui ne sont pas en contact avec les roues du véhicule, où il est possible d'adapter la répartition des charges appliquées au rail par le véhicule.
A cette fin, un procédé suivant l'invention est caractérisé en ce que pour une charge prédéterminée exercée par ledit véhicule sur le rail, une répartition de cette charge entre une première fraction exercée sur la tête du rail et une deuxième fraction de cette charge exercée sur le patin du rail est déterminée, la géométrie de chaque flanc latéral étant configurée de telle façon à former un profil non-rectiligne permettant ladite répartition entre ladite première et deuxième fraction. La répartition des charges entre celles exercées sur la tête du rail et celles exercées sur le patin du rail permet de mieux gérer la charge exercée sur le rail et de contribuer ainsi non seulement à une réduction des vibrations induites par le véhicule dans le sol, mais également au confort des passagers utilisant le véhicule et à la durée de vie de la jaquette. Le fait de configurer la géométrie de chaque flanc latéral en fonction de la répartition déterminée des charges permet de donner à la jaquette la flexibilité et la rigidité nécessaires pour permettre cette répartition.
Une première forme préférentielle d'un procédé suivant l'invention est caractérisée en ce que ladite géométrie est configurée en forme d'évidement. La forme d'évidement permet de diriger la charge vers le rail suivant la répartition déterminée. De préférence ledit évidement est formé sensiblement circulaire. La forme circulaire de l'évidement permet de repartir la majeure partie de la charge sur la tête du rail.
Une deuxième forme préférentielle d'un procédé suivant l'invention est caractérisée en ce que ledit évidement est formé sensiblement en U évasé. Cette forme permet d'arriver à une raideur d'environ 80 MN/m par mètre de rail.
Une troisième forme préférentielle d'un procédé suivant l'invention est caractérisée en ce que ledit évidement est formé de façon à posséder une géométrie trapézoïdale. Cette forme permet de réduire considérablement les vibrations induites dans le sol par les véhicules passant sur le rail.
Une quatrième forme préférentielle d'un procédé suivant l'invention est caractérisée en ce que sous le patin dudït rail est placée une bande formée d'un caoutchouc plus souple que celui de la jaquette, ladite bande étant logée entre la face inférieure du patin et la jaquette. Cette bande en caoutchouc plus souple permet un transfert de l'ordre de 70 % sur le patin du rail pour arriver à une raideur de la jaquette de l'ordre de 15MN/m par mètre de rail.
Une cinquième forme préférentielle d'un procédé suivant l'invention est caractérisée en ce que la jaquette est formée de granules de caoutchouc liés entre eux par une résine élastomère, en particulier du polyuréthane, les granules ayant une granulométrie située entre 0,5 - 6 mm, en particulier entre 1 et 3 mm. Ceci permet de produire une jaquette homogène. De préférence la concentration du matériau ferreux, textile et plastique dans les granules de caoutchouc est chaque fois inférieure à 1 %. Cette faible concentration en matériau ferreux permet de produire une jaquette ayant une mauvaise conductivité électrique, ce qui est favorable pour réduire les pertes de courant. La faible concentration en textile et plastique contribue à l'homogénéité de la jaquette.
De préférence, la densité de la matière formant la jaquette est supérieure à 950 kg/m3, en particulier égale à 1150 kg/m3. Une telle densité permet la fabrication d'une jaquette résistante en particulier à la circulation routière. Une sixième forme préférentielle d'un procédé suivant l'invention est caractérisée en ce que le rail est posé dans un moule et en ce que les granules et la résine sont mélangés entre eux et injectés sous haute pression dans le moule. Cette injection à haute pression permet de produire une jaquette à haute densité de matière. L'invention concerne également un procédé de pose de deux rails afin de former une voie ferrée dans laquelle des rails enrobés par utilisation du procédé susdit sont utilisés. Un tel procédé est caractérisé en ce que les rails sont montés dans un portique de pose afin de les mettre à distance d'écartement, lesdits rails étant ensuite disposés à l'aide dudit portique sur une base préparée au préalable, et en ce qu'on coule ensuite au moins dans l'espace entre les deux rails une agrégation de granules liés au moyen d'un liant. Ceci permet une pose rapide et efficace des rails.
Enfin l'invention concerne un procédé d'enlèvement d'un rail posé par application du procédé susdit. Un tel procédé est caractérisé en ce que la jaquette est découpée sur la hauteur des flancs latéraux avant enlèvement du rail et la partie restante appliquée au rail de la jaquette. Il suffit ainsi de découper la jaquette, d'enlever l'ensemble découpé et de reposer un nouveau rail enrobé de sa jaquette. L'invention sera maintenant décrite plus en détail à l'aide des dessins illustrant des exemples du procédé suivant l'invention. Dans les dessins : la figure 1 montre une première forme de réalisation d'un rail enrobé par application du procédé suivant l'invention; la figure 2 montre une forme alternative de celle illustrée à la figure 1 ; la figure 3 montre une deuxième forme de réalisation d'un rail enrobé par application du procédé suivant l'invention; la figure 4 montre une troisième forme de réalisation d'un rail enrobé par application du procédé suivant l'invention; la figure 5 montre un rail enrobé d'une jaquette permettant le renouvellement du rail sans démontage du revêtement; la figure 6 montre une forme de réalisation pour un rail à trois pièces; la figure 7 montre le procédé de pose de deux rails enrobés; la figure 8 montre une jaquette avec plat métallique de contre buttage du revêtement; la figure 9 montre la relation entre la déflection (en mm) du complexe rail-jaquette et la charge (en kN) imposée au complexe; Ia figure 10 illustre la raideur dynamique du complexe; et la figure 11 montre la déflection du bogie du véhicule. Dans les dessins, une même référence a été attribuée à un même élément ou à un élément analogue. Le rail 1 illustré à la figure 1 est un rail comprenant une gorge 2, alors que le rail illustré à la figure 2 ne comporte pas une telle gorge. Bien entendu, l'invention n'est pas limitée à un type particulier de rail et s'applique tant à des rails avec gorge qu'à des rails sans gorge ainsi qu'à d'autres types de rails, comme le rail à trois pièces illustré à la figure 6. Chaque rail comporte une tête de rail 3 ainsi qu'un patin 4 reliés entre eux par un montant 5.
La jaquette 6 peut, soit être constituée d'une seule pièce ou de trois pièces 7, 8 et 9. La jaquette enrobe les parties du rail pour véhicule ferroviaire qui ne sont pas en contact avec les roues du véhicule. La partie en contact avec les roues du véhicule doit en effet rester libre afin de ne pas gêner le passage de la roue. Lorsque la jaquette est en plusieurs parties, elle est de préférence collée au rail. Par contre, lorsque la jaquette est en une seule partie elle est obtenue par injection dans un moule comme il sera décrit ci-dessous. Afin de donner les propriétés requises à la jaquette, cette dernière est fabriquée en caoutchouc, de préférence en caoutchouc recyclé obtenu par broyage et criblage de pneus usagés. La jaquette est formée à partir de granules de caoutchouc ayant une granulométrie située entre 0,5 - 6 mm en particulier entre 1 et 3 mm. Cette finesse de granules permet de compacter la matière dont est formée la jaquette et de réduire ainsi la formation de poches d'air au sein de la jaquette. Les granules de caoutchouc sont liés entre eux par une résine élastomère, en particulier du polyuréthane. Afin de permettre une bonne liaison des granules à l'aide de la résine, il est important que les granules soient propres et dépouillés de poussière ou d'autres matières grasses. Afin de réduire la conductivité électrique de la jaquette, la concentration en matériaux ferreux est inférieure à 1 % de la masse totale. Ceci permet de réduire des fuites de courant électrique vers la terre et d'ainsi isoler électriquement le rail. La concentration en matériau textile et/ou plastique du caoutchouc est également de préférence inférieure à 1 % de la masse totale. En effet, ces matières forment un polluant dans le caoutchouc de la jaquette et pourraient réduire la cohérence entre les granules.
La densité de la matière formant la jaquette est supérieure à 950 kg/m3, en particulier égale à 1 150 kg/m3. Puisque ces jaquettes sont, avec le rail qu'elles enrobent posées dans la route où circulent également des véhicules routiers, il est important que ces jaquettes résistent au trafic routier. Une densité supérieure à 950 kg/m3 permet une bonne résistance à ce type de trafic. La jaquette possède un module de Young statique supérieur à 5MPa et un module de Young dynamique inférieur à 20MPa.
La matière dont est formée la jaquette comporte de préférence également des additifs tels que des substances anti-UV, ainsi que des substances retardatrices de feu. En effet, les jaquettes étant exposées à la lumière du jour, il est préférable d'ajouter des substances anti-UV afin d'empêcher que la lumière détruise à la longue la structure de la jaquette. La présence des substances retardatrices de feu permettra de préserver la jaquette au cas où un véhicule en feu devrait se trouver sur le rail. La jaquette possède plusieurs fonctions. Elle scelle le rail dans son support et l'isole électriquement et acoustiquement. Lorsque la jaquette est fabriquée en une seule pièce par injection dans un moule reprenant la forme de la jaquette, le rail est d'abord posé dans le moule. Ensuite le caoutchouc mélangé au liant et pourvu des additifs nécessaires est injecté à haute pression dans le moule. La haute pression empêche la formation de bulles entre les différents granules et permet ainsi d'obtenir une matière compactée à haute densité.
Les jaquettes peuvent avoir de multiples formes, suivant les besoins spécifiques des différentes applications. La figure 2 montre une jaquette 6 pour rail symétrique avec ornière de mentonnet 10. La partie basse 9 de la jaquette maintient le rail à l'inclinaison voulue. La surface supérieure de la jaquette est dimensionnée pour permettre Ie passage des roues du véhicule sans toucher les revêtements et ceci en prenant en compte une multitude d'usures cumulées du rail et des roues. Le profil intérieur de la jaquette épouse celui du rail contre lequel elle est appliquée. Le profil extérieur des flancs latéraux de la jaquette qui s'étendent le long du rail est quant à lui déterminé par la répartition voulue de la charge exercée par le véhicule lorsqu'il circule sur le rail. En effet, la composition du sol sur lequel le rail enrobé de sa jaquette est posé, la proximité d'immeubles, le fait que le rail se trouve en site propre ou non, etc. ..., imposent une répartition particulière de la charge exercée par le véhicule sur le rail. Le transfert de l'ensemble des charges exercées sur le rail doit se faire le long du périmètre de la jaquette afin de réduire au maximum les vibrations induites dans le sol. La géométrie des flancs latéraux externes de la jaquette permet par le choix de formes particulières de repartir différemment les charges.
Pour arriver à cette répartition on détermine en fonction du sol et des autres paramètres susdits une répartition de la charge entre une première fraction exercée sur la tête 3 du rail et une deuxième fraction exercée sur le patin 4 du rail. Cette répartition entre la tête et le patin du rail permet de guider les vibrations soit dans un sens vertical ou dans un sens horizontal en fonction de l'environnement où le rail et sa jaquette seront posés. Après que la répartition de la charge a été déterminée, Ia géométrie de chaque flanc latéral est configurée de telle façon à former un profil non-rectiligne qui permet Ia répartition déterminée.
Dans l'exemple de réalisation illustré à la figure 1 , la jaquette possède dans ses flancs latéraux extérieurs des évidements 11 et 12 de forme sensiblement circulaire. Ces évidements s'étendent à hauteur du montant 5 du rail. Cette géométrie permet une répartition des portances pour la première fraction, c'est-à-dire celle exercée sur la tête du rail, située entre 60 et 80 %, en particulier 70 %. Pour la deuxième fraction, cette géométrie reprend entre 40 et 20 %, en particulier 30 % de la charge. Ceci permet alors d'arriver à une raideur globale du complexe rail-jaquette de l'ordre de 35MN/m par mètre de rail. Comme illustré à la figure 9, qui montre la relation entre la déflection (en mm) du complexe rail-jaquette et la charge (en kN) imposée au complexe, la raideur statique du complexe rail-jaquette suit une courbe continue, limitant ainsi la formation de secousses induites dans le sol par le véhicule circulant sur le rail. La figure 10 illustre la raideur dynamique du complexe. Cette raideur dynamique suit un parcours sensiblement linéaire. Ces propriétés du complexe rail-jaquette contribuent également au confort des passagers. En effet comme illustré à la figure 11 , qui montre la déflection du bogie, ce dernier subit une ondulation sensiblement sinusoïdale.
Comme illustré à la figure 1 , la partie de la jaquette située près du patin 4 est plus large que celle située à hauteur de la tête 3 du rail. Ceci permet de former une meilleure base de support sur Ie sol. De plus, l'épaisseur de la jaquette est plus élevée à hauteur du montant 5 que celle à hauteur de la tête permettant ainsi de favorablement contribuer à repartir la plus grande partie de la charge sur la tête du rail. La jaquette est également asymétrique en épaisseur à hauteur de la tête. La partie longeant le mentonnet est plus mince que celle située du côté opposé pour permettre davantage Ia flexibilité vers le volume situé entre les rails. Comme illustré à la figure 2, la jaquette peut également avoir des évidements asymétriques. Cette même figure 2 illustre également qu'il est possible en donnant une inclinaison à la partie 9 de la jaquette se trouvant sous le patin 4 de régler l'inclinaison du rail. Il est également possible de réduire davantage l'isolation acoustique en plaçant sous la jaquette une plaque d'appui 13.
La figure 3 montre une forme de réalisation de la jaquette où les évidements 15 et 16 ont une forme sensiblement en U évasé. Cette forme permet une répartition des charges sensiblement égale entre la tête 3 et le patin 4 du rail. Ceci permet alors d'arriver à une raideur globale du complexe rail-jaquette de l'ordre de 80 MN/m par mètre de rail. Cette solution est en général utilisée dans des environnements à faible densité d'immeubles. La configuration illustrée à la figure 3 montre également une forme asymétrique sur les deux flancs latéraux de la jaquette.
La figure 4 montre une forme de réalisation de la jaquette où l'évidement est formé de façon à posséder une géométrie trapézoïdale. Cette géométrie permet une répartition des portances pour la première fraction située entre 20 et 40 %, en particulier 30 %. Pour la deuxième fraction cette géométrie reprend entre 60 et 80 %, en particulier 70% de la charge. Ceci permet alors d'arriver à une raideur globale du complexe rail-jaquette de l'ordre de 25MN/m par mètre de rail.
Comme illustré à la figure 4, cette forme de réalisation permet de fabriquer une jaquette qui ne comporte que deux parties 7 et 8. De plus, un joint d'étanchéité 19 peut être coulé le long de la tête du rail.
La figure 5 montre une forme de réalisation de la jaquette où la géométrie est formée par des protubérances 20 et 21. Cette géométrie permet une répartition égale de la charge sur l'ensemble de la jaquette. La figure 6a montre une forme de réaiisation pour un rail 1 à trois composants 22, 23 et 24. Comme illustré à la figure 6b, c'est la jaquette qui maintient les composants du rail.
La figure 8 montre un rail pourvu de sa jaquette ainsi que de plaques métalliques 32 et 33 de contre buttage de revêtement. Ces plaques permettent de former une pièce intermédiaire entre le revêtement et la jaquette et d'ainsi protéger la jaquette.
Il est également possible de placer sous le patin du rail une bande formée d'un caoutchouc plus souple que celui dont est fabriquée la jaquette. La bande est logée entre la face inférieure du patin et la jaquette et permet de réduire davantage les vibrations.
Les protubérances ou évidements non seulement servent à permettre une répartition des charges, mais également à former une prise pour un béton, bitume ou autre agrégation de granules liés au moyen d'un liant. En effet, lorsque le rail est enrobé dans sa jaquette, il peut être mis à distance d'écartement sans faire appel à des traverses en fer vissées au rail. Le placement du complexe rail-jaquette est réalisé à l'aide d'un portique de pose. Comme illustré à la figure 7, le portique de pose 25 comporte un bras transversal 26 sur lequel sont montées des mâchoires 27 et 28 de telle façon à établir d'écart entre les rails. Les mâchoires sont pourvues d'éléments de prise 29 configurés de façon à correspondre au profil appliqué dans les flancs extérieurs de la jaquette. Ainsi ces éléments 29 peuvent prendre prise sur la jaquette. Enfin, le portique de pose comporte deux vis latérales 30 et 31. Le portique de pose maintient l'ensemble rail-jaquette par des mâchoires et s'insert dans les espaces latéraux laissés dans les flancs de la jaquette. Un dispositif d'écartement adapté maintient les deux rails à poser au bon écartement. Les deux vis latérales 30 et 31 amènent au bon niveau l'ensemble. Un autre système de portique soutient le rail par un plat d'acier passant sous l'iso scelle et relié au portique de pose par deux boulons. L'ensemble est monté sur coulisseau pour permettre le dressage de la voie. Afin de rendre l'exécution du chantier plus rapide, le complexe rail-jaquette est inséré dans une poutre préfabriquée et livrée au chantier après séchage. Ces éléments ont des longueurs variables suivant les besoins du chantier et peuvent aller jusqu'à 25 mètre de long. Ces éléments poutres sont armés de façon à pouvoir supporter le passage du matériel roulant (tram, ...) sur appuis tous les 3 mètres. Les poutres possédant deux portées latérales peuvent recevoir des éléments préfabriqués de revêtement. La partie visible de la poutre est conçue pour recevoir un élément de revêtement de type modulaire (brique, pavé béton, petit matériel) ou pour être décaissé de la hauteur nécessaire pour mettre un revêtement en asphalte ou autre.
L'armature constituant la poutre peut être dépassée de la matière constituant la poutre, afin d'être reprise dans les bétons de calage. Afin de réduire le temps de réalisation des chantiers, des éléments préfabriqués de revêtement sont insérés entre les poutres et à l'extérieur de celles-ci afin de matérialiser complètement l'ensemble de la voie. Ces panneaux sont bloqués par injection de béton sous l'ensemble des éléments préfabriqués une fois ceux-ci réglés. L'espace entre les modules est fermé par un joint adapté. Les revêtements préfabriqués peuvent contenir tout type de revêtement habituellement employé dans les chaussées.
Afin de réaliser encore plus vite les chantiers, spécialement aux carrefours, ou pour donner accès à des riverains prioritaires, les deux rails d'une même voie sont inclus dans une dalle de béton dans laquelle sont aussi inclues la bordure de fin de site et les têtes de plate- forme. Lorsque le terrassement du coffre de la voie est réalisé, une sous fondation peut être exécutée au fond du coffre. Une fois celle-ci réalisée, des hourdis de calage sont posés et réglés approximativement.
Les dalles de carrefour sont alors déposées sur ceux-ci et réglés par interposition de cales d'épaisseur variable. Le carrefour peut être traité en deux ou trois dalles dans sa largeur. Les carrefours peuvent être traités en plusieurs dalles suivant leurs longueurs. Des espaces entre dalles sont alors laissés afin de réaliser les soudures de rails entre les différents modules. A cet endroit, des dalles plus petites sont rapportées aux dalles de voie afin d'assurer la continuité du revêtement. Une fois les dalles bien positionnées, les soudures réalisées, les dalles intercalaires posées, un béton liquide est injecté sous l'ensemble des éléments constituants les voies et bloque définitivement ceux-ci. Si, de part et d'autre de ces modules de voie préfabriqués la pose de voie est différente, des zones de transition sont ajoutées pour assurer une transition dans les raideurs et aussi permettre le bourrage des traverses adjacentes dans le cas des voies ballastées.
Le complexe rail-jaquette permet également d'enlever facilement le rail. En effet, il suffit de découper la jaquette sur la hauteur des flancs latéraux. Le rail et les parties restantes collées au rail sont ensuite enlevés, par exemple à l'aide d'une grue. Un nouveau rail pourvue d'une partie de jaquette peut alors être posé dans l'ouverture obtenue après enlèvement des parties découpées.

Claims

REVENDICATIONS
1. Procédé d'enrobage des parties d'un rail pour des véhicules ferroviaires qui ne sont pas en contact avec les roues du véhicule, lequel procédé comprend l'application d'une jaquette en caoutchouc sur lesdites parties et la fixation de cette jaquette au rail, ladite jaquette ayant des flancs latéraux extérieurs qui s'étendent le long du rail, caractérise en ce que pour une charge prédéterminée exercée par ledit véhicule sur le rail, une répartition de cette charge entre une première fraction exercée sur la tête du rail et une deuxième fraction de cette charge exercée sur le patin du rail est déterminée, la géométrie de chaque flanc latéral étant configurée de telle façon à former un profil non-rectiligne permettant ladite répartition entre ladite première et deuxième fraction.
2. Procédé suivant la revendication 1 , caractérisé en ce que ladite géométrie est configurée en forme d'évidement.
3. Procédé suivant la revendication 2, caractérisé en ce que ledit évidement est formé sensiblement circulaire.
4. Procédé suivant la revendication 2, caractérisé en ce que ledit évidement est formé sensiblement en U évasé.
5. Procédé suivant la revendication 2, caractérisé en ce que ledit évidement est formé de façon à posséder une géométrie trapézoïdale.
6. Procédé suivant la revendication 1 , caractérisé en ce que ladite géométrie est configurée en forme de protubérance comprenant au moins une arête.
7. Procédé suivant la revendication 1 , 2 ou 3, caractérisé en ce que ladite première fraction est située entre 60 et 80 %, en particulier 70 %, de la charge et la deuxième fraction est située entre 40 et 20 %, en particulier 30 % de la charge.
8. Procédé suivant la revendication 1 , 2 ou 5, caractérisé en ce que ladite première fraction est située entre 20 et 40 %, en particulier 30 %, et ladite deuxième fraction est située entre 60 et 80 %; en particulier 70 % de la charge.
9. Procédé suivant l'une des revendications 1 à 8, caractérisé en ce que sous Ie patin dudit rail est placée une bande formée d'un caoutchouc plus souple que celui de la jaquette, ladite bande étant logée entre la face inférieure du patin et la jaquette.
10. Procédé suivant l'une des revendications 1 à 9, caractérisé en ce que la jaquette est formée de granules de caoutchouc liés entre eux par une résine élastomère, en particulier du polyuréthane, les granules ayant une granulométrie située entre 0,5 - 6 mm, en particulier entre 1 et 3 mm.
11. Procédé suivant la revendication 10, caractérisé en ce que la concentration du matériau ferreux, textile et plastique dans les granules de caoutchouc est chaque fois inférieure à 1 %.
12. Procédé suivant la revendication 10 ou 11 , caractérisé en ce que la densité de la matière formant la jaquette est supérieure à 950 kg/m3, en particulier égale à 1150 kg/m3.
13. Procédé suivant l'une des revendications 10 à 12, caractérisé en ce que la jaquette possède un module de Young statique supérieur à 5 MPa et un module de Young dynamique inférieur à 20 MPa.
14. Procédé suivant l'une des revendications 10 à 13, caractérisé en ce que pour former la jaquette des substances anti-UV, des substances retardatrices de feu sont ajoutées avant de lier les granules entre eux..
15. Procédé suivant l'une des revendications 10 à 14, caractérisé en ce que le rail est posé dans un moule et en ce que les granules et la résine sont mélangés entre eux et injectés sous haute pression dans le moule.
16. Procédé de pose de deux rails afin de former une voie ferrée dans laquelle des rails enrobés par utilisation du procédé suivant l'une des revendications 1 à 15 sont utilisés, caractérisé en ce que les rails sont montés dans un portique de pose afin de les mettre à distance d'écartement, lesdits rails étant ensuite disposés à l'aide dudit portique sur une base préparée au préalable, et en ce qu'on coule au moins dans l'espace entre les deux rails une agrégation de granules liés au moyen d'un liant.
17. Procédé suivant la revendication 16, caractérisé en ce qu'un revêtement routier est posé sur ladite agrégation après séchage de cette dernière.
18. Procédé d'enlèvement d'un rail posé par application du procédé suivant la revendication 16, caractérisé en ce que la jaquette est découpée sur la hauteur des flancs latéraux avant enlèvement du rail et la partie restante appliquée au rail de la jaquette.
PCT/EP2005/054737 2004-09-21 2005-09-21 Procédé d'enrobage d'un rail pour véhicule ferroviaire. WO2006032684A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP05791921A EP1807569B1 (fr) 2004-09-21 2005-09-21 Procédé d'enrobage d'un rail pour véhicule ferroviaire.
PL05791921T PL1807569T3 (pl) 2004-09-21 2005-09-21 Sposób powlekania szyn dla pojazdów szynowych
BRPI0515548-7A BRPI0515548A (pt) 2004-09-21 2005-09-21 processo para o revestimento de um trilho para um veìculo ferroviário
DE602005008631T DE602005008631D1 (de) 2004-09-21 2005-09-21 Verfahren zum einbetten einer schiene für ein schienenfahrzeug
US11/575,609 US8602318B2 (en) 2004-09-21 2005-09-21 Method of covering a rail for a railway vehicle
CA002581089A CA2581089A1 (fr) 2004-09-21 2005-09-21 Procede d'enrobage d'un rail pour vehicule ferroviaire
DK05791921T DK1807569T3 (da) 2004-09-21 2005-09-21 Fremgangsmåde til beklædning af en skinne til et jernbaneköretöj
TNP2007000101A TNSN07101A1 (fr) 2004-09-21 2007-03-22 Procede d'enrobage d'un rail pour vehicule ferroviaire
NO20071681A NO20071681L (no) 2004-09-21 2007-03-30 Fremgangsmate for a dekke en skinne for skinnegaende vogn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE200400461 2004-09-21
BE2004/0461 2004-09-21

Publications (1)

Publication Number Publication Date
WO2006032684A1 true WO2006032684A1 (fr) 2006-03-30

Family

ID=35695147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/054737 WO2006032684A1 (fr) 2004-09-21 2005-09-21 Procédé d'enrobage d'un rail pour véhicule ferroviaire.

Country Status (17)

Country Link
US (1) US8602318B2 (fr)
EP (1) EP1807569B1 (fr)
KR (1) KR20070053814A (fr)
CN (1) CN101052766A (fr)
AT (1) ATE403034T1 (fr)
BR (1) BRPI0515548A (fr)
CA (1) CA2581089A1 (fr)
DE (1) DE602005008631D1 (fr)
DK (1) DK1807569T3 (fr)
ES (1) ES2314714T3 (fr)
MA (1) MA29710B1 (fr)
NO (1) NO20071681L (fr)
PL (1) PL1807569T3 (fr)
PT (1) PT1807569E (fr)
TN (1) TNSN07101A1 (fr)
WO (1) WO2006032684A1 (fr)
ZA (1) ZA200703165B (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025854A2 (fr) 2006-08-31 2008-03-06 Feronia S.A. Dispositif antibruit d'un rail pour des véhicules ferroviaires
EP1988213A1 (fr) * 2007-05-02 2008-11-05 edilon)(sedra B.V. Élément support de rail préfabriqué
ES2358495A1 (es) * 2008-06-04 2011-05-11 Acciona Infraestructuras, S.A Material amortiguador de carril ferroviario, taco prefabricado de soporte de carril ferroviario que incorpora dicho material, carril encamisado en dicho material, y procedimiento de elaboración de dicho taco y dicho carril.
WO2011094826A1 (fr) * 2010-02-03 2011-08-11 Cdm N.V. Procede de production de ballast de voie ferree avec rail integre supporte en continu
EP2420620A1 (fr) * 2010-08-16 2012-02-22 Acciona Infraestructuras, S.A. Matériau isolant pour rails de chemin de fer
BE1019353A3 (nl) * 2010-05-28 2012-06-05 Cdm N V Trillingsdemper voor continu ondersteunde spoorstaven met een elastische mantel met een voorgevormd deel voorzien van een geintegreerde strip.
EP2845951A1 (fr) 2013-09-04 2015-03-11 Prefarails Holding Jaquette pour rail destiné aux véhicules ferroviaires
EP3489413A1 (fr) * 2017-11-22 2019-05-29 HET Elastomertechnik GmbH Élément de remplissage de chambre de rail ignifuge et pièce moulée d'élastomère

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1019173A5 (nl) 2010-02-03 2012-04-03 Cdm N V Trillingsdemper met een elastische mantel voor continu ondersteunde spoorstaven en werkwijze voor het bevestigen van deze trillingdemper.
BE1019172A5 (nl) 2010-02-03 2012-04-03 Cdm N V Elektrische isolatie voor een trillingsdemper met een elastische m antel voor continu ondersteunde spoorstaven.
CN102071604B (zh) * 2011-01-21 2012-11-28 朱颖 一种铁路钢轨用的减振降噪护套
KR101128448B1 (ko) * 2011-02-09 2012-03-27 김용택 프리캐스트 레일 장치의 시공방법
CN102229488B (zh) * 2011-05-16 2012-10-03 云南省建筑科学研究院 一种建筑模板支撑龙骨仿木填充浆料配方及加工方法
ES2570809B1 (es) * 2014-11-19 2017-02-28 Gestión Medioambiental De Neumáticos S.L. Soporte amortiguador de vibraciones para vías férreas
CN105040535A (zh) * 2015-08-28 2015-11-11 江阴海达橡塑股份有限公司 一种槽型轨轮缘槽防护胶条
CN109280235A (zh) * 2018-08-16 2019-01-29 四川川鼎轨道技术有限公司 一种钢轨轨腰柔性橡胶包覆件及其制备方法
CN210886775U (zh) * 2019-05-24 2020-06-30 青岛科而泰环境控制技术有限公司 组合式钢轨降噪吸声装置
DE102020121136A1 (de) * 2020-08-11 2022-02-17 Sealable Solutions Gmbh Elastomerprofil als Aufheizschutz für Schienen
CN115491934A (zh) * 2022-09-26 2022-12-20 中铁二院工程集团有限责任公司 一种车辆通过小半径曲线地段的减震降噪护轨方法及装置
KR102700464B1 (ko) 2023-11-23 2024-08-29 한국석유공업 주식회사 철도 건널목용 레일홈채움재 및 그 설치방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0854234A1 (fr) * 1997-01-16 1998-07-22 Stephane Dirven Dispositif anti-bruit
EP0863256A2 (fr) * 1997-03-06 1998-09-09 sedra Asphalt-Technik Biebrich GmbH Elément pour remplir l'évidement à cÔté de l'âme d'un rail d'être installé mécaniquement au rail ainsi que méthode et appareil pour le montage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1771078A (en) * 1926-01-06 1930-07-22 Carey Philip Mfg Co Rail-expansion sound deadener
US5134863A (en) * 1991-05-10 1992-08-04 Mayer Industries, Inc. Circular sliver knitting machine having increased carding capacity
GB9622924D0 (en) * 1996-11-04 1997-01-08 Alh Syst Ltd Polymer embedment of rails
BE1014315A3 (fr) * 2001-07-25 2003-08-05 Keyeux Jean Claude Materiau enrobe a base de particules de caoutchouc vulcanise usage et son procede de fabrication.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0854234A1 (fr) * 1997-01-16 1998-07-22 Stephane Dirven Dispositif anti-bruit
EP0863256A2 (fr) * 1997-03-06 1998-09-09 sedra Asphalt-Technik Biebrich GmbH Elément pour remplir l'évidement à cÔté de l'âme d'un rail d'être installé mécaniquement au rail ainsi que méthode et appareil pour le montage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025854A2 (fr) 2006-08-31 2008-03-06 Feronia S.A. Dispositif antibruit d'un rail pour des véhicules ferroviaires
EP1988213A1 (fr) * 2007-05-02 2008-11-05 edilon)(sedra B.V. Élément support de rail préfabriqué
ES2358495A1 (es) * 2008-06-04 2011-05-11 Acciona Infraestructuras, S.A Material amortiguador de carril ferroviario, taco prefabricado de soporte de carril ferroviario que incorpora dicho material, carril encamisado en dicho material, y procedimiento de elaboración de dicho taco y dicho carril.
WO2011094826A1 (fr) * 2010-02-03 2011-08-11 Cdm N.V. Procede de production de ballast de voie ferree avec rail integre supporte en continu
BE1019171A3 (nl) * 2010-02-03 2012-04-03 Cdm N V Werkwijze voor het vervaardigen van een spoorwegbedding met een ingebedde continu ondersteunde spoortaaf.
BE1019353A3 (nl) * 2010-05-28 2012-06-05 Cdm N V Trillingsdemper voor continu ondersteunde spoorstaven met een elastische mantel met een voorgevormd deel voorzien van een geintegreerde strip.
EP2420620A1 (fr) * 2010-08-16 2012-02-22 Acciona Infraestructuras, S.A. Matériau isolant pour rails de chemin de fer
EP2845951A1 (fr) 2013-09-04 2015-03-11 Prefarails Holding Jaquette pour rail destiné aux véhicules ferroviaires
WO2015032879A1 (fr) 2013-09-04 2015-03-12 Prefarails Holding Jaquette pour rail destine aux vehicules ferroviaires
EP3489413A1 (fr) * 2017-11-22 2019-05-29 HET Elastomertechnik GmbH Élément de remplissage de chambre de rail ignifuge et pièce moulée d'élastomère

Also Published As

Publication number Publication date
US20090184439A1 (en) 2009-07-23
MA29710B1 (fr) 2008-09-01
EP1807569A1 (fr) 2007-07-18
KR20070053814A (ko) 2007-05-25
ATE403034T1 (de) 2008-08-15
DK1807569T3 (da) 2008-12-01
TNSN07101A1 (fr) 2008-06-02
ES2314714T3 (es) 2009-03-16
PT1807569E (pt) 2008-11-10
US8602318B2 (en) 2013-12-10
BRPI0515548A (pt) 2008-07-29
ZA200703165B (en) 2008-09-25
EP1807569B1 (fr) 2008-07-30
NO20071681L (no) 2007-06-20
PL1807569T3 (pl) 2009-06-30
CN101052766A (zh) 2007-10-10
DE602005008631D1 (de) 2008-09-11
CA2581089A1 (fr) 2006-03-30

Similar Documents

Publication Publication Date Title
EP1807569B1 (fr) Procédé d'enrobage d'un rail pour véhicule ferroviaire.
EP2191070B1 (fr) Module prefabrique de voie pour vehicule de transport urbain autoguide sur pneumatiques
EP1685297A2 (fr) Troncon modulaire de voie pour vehicule de transport urbain notamment autoguide sur pneumatiques
EP2666907B1 (fr) Voie de chemin de fer avec traverses sur dalle en béton continu et procédé de fabrication
FR2775303A1 (fr) Procede de construction d'une voie de chemin de fer
EP0585959B1 (fr) Conduit enterré
EP2118384A1 (fr) Ouvrage en sol renforce et elements de renfort pour sa construction
EP3263766B1 (fr) Dalle pour un véhicule ferroviaire et/ou un véhicule sur pneus guidés
EP3067464B1 (fr) Voie ferrée sur longrines longitudinales, procédé de réalisation
CA2779340C (fr) Plate-forme modulaire demontable pour dechetterie
FR2881150A1 (fr) Structure de chaussee pour tramway sur pneus, et son procede de construction
EP1251204B1 (fr) Système d'isolation vibratoire pour voies ferrées
FR3019565A1 (fr) Procede de realisation d'un carrefour de tramway
FR2955124A1 (fr) Module support de voie ferree prefabrique, voie ferree, section et procede de montage des voies ferrees
EP1066424A1 (fr) Procede de construction de voie ferree, panneau unitaire de voie, machine de depose de tels panneaux, machine de betonnage, et voie ferree
FR3025813A1 (fr) Selle de support de rail de voie ferree
FR2576335A1 (fr) Aire de pesee prefabriquee en beton arme et son procede de construction
FR2869628A1 (fr) Procede de fabrication et de mise en place d'un joint pour rail, et notamment pour rail de tramway
EP0910702A1 (fr) Procede d'assemblage de dalles pour constituer un revetement de sol et dalles pour la mise en oeuvre du procede
FR2982622A1 (fr) Dalle en beton de support d'au moins deux files de rails d'une voie ferree et voie ferree equipee d'au moins une telle dalle
KR101240284B1 (ko) 도로 및 교면포장용 숏크리트 타설장치
BE1025482B1 (fr) Assemblage d'elements de construction pour un passage a niveau
EP3495584A1 (fr) Squelette pour élément de construction, élément de construction comprenant un tel squelette et procédé de réalisation associé
FR3039173A1 (fr) Pont pour le passage de troupeaux et procede de montage d’un tel pont
FR2872829A1 (fr) Procede de pose de voie ferree encastree, moyens pour sa mise en oeuvre et voie ferree obtenue

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11575609

Country of ref document: US

Ref document number: 2581089

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580031724.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005791921

Country of ref document: EP

Ref document number: 1638/CHENP/2007

Country of ref document: IN

Ref document number: 1020077009020

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1200700879

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 2005791921

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0515548

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2005791921

Country of ref document: EP