WO2006032347A2 - Verfahren und einrichtung zum herstellen von flüssigem stahl - Google Patents

Verfahren und einrichtung zum herstellen von flüssigem stahl Download PDF

Info

Publication number
WO2006032347A2
WO2006032347A2 PCT/EP2005/009353 EP2005009353W WO2006032347A2 WO 2006032347 A2 WO2006032347 A2 WO 2006032347A2 EP 2005009353 W EP2005009353 W EP 2005009353W WO 2006032347 A2 WO2006032347 A2 WO 2006032347A2
Authority
WO
WIPO (PCT)
Prior art keywords
vessel
melting
overheating
superheating
furnace
Prior art date
Application number
PCT/EP2005/009353
Other languages
English (en)
French (fr)
Other versions
WO2006032347A3 (de
Inventor
Walter Weischedel
Norbert Uebber
Udo Falkenreck
Original Assignee
Sms Demag Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sms Demag Ag filed Critical Sms Demag Ag
Priority to EP05783034A priority Critical patent/EP1792133B1/de
Priority to AT05783034T priority patent/ATE441075T1/de
Priority to DE502005008001T priority patent/DE502005008001D1/de
Priority to JP2007532791A priority patent/JP2008514811A/ja
Publication of WO2006032347A2 publication Critical patent/WO2006032347A2/de
Publication of WO2006032347A3 publication Critical patent/WO2006032347A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/562Manufacture of steel by other methods starting from scrap
    • C21C5/565Preheating of scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5252Manufacture of steel in electric furnaces in an electrically heated multi-chamber furnace, a combination of electric furnaces or an electric furnace arranged for associated working with a non electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/04Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier
    • F27D2003/185Conveying particles in a conduct using a fluid

Definitions

  • the invention relates to a method and a device for producing scrap-based liquid steel in a shaft furnace as a melting vessel, which is upstream of a superheat vessel, wherein the feeds are preheated in an upper part of the meltdown vessel, then melted in a lower part with fossil fuels and the Melt is discharged into the superheating vessel in which the steel analysis and an overheating temperature are set.
  • Such a method is known from WO 03/068995 A1 / DE 102 05 660 be ⁇ known.
  • feedstock scrap sponge iron or der ⁇ same preheated in the upper part of the meltdown vessel and subsequently melted in a lower part of the melting vessel with the fossil fuels.
  • the melt is continuously passed off into a treatment vessel in which the desired steel quality is set, whereby gases are introduced into the melting furnace from the outside for afterburning of the process gases.
  • gases are introduced into the melting furnace from the outside for afterburning of the process gases.
  • Such steel melting processes serve to provide melt batches, such as, for example, in continuous steel casting into slabs of different thickness up to thin strands in the range of 40-150 mm thickness.
  • melt batches such as, for example, in continuous steel casting into slabs of different thickness up to thin strands in the range of 40-150 mm thickness.
  • B ⁇ ST ⁇ TIGUNGSKOPIE arc furnace and a ladle furnace are spatially significantly separated from each other, so that th when transporting correspondingly high energy losses auftre ⁇ .
  • a separate electrical power supply must be provided for the electric arc furnace and the ladle furnace .
  • the invention has the object of significantly reducing the indicated losses of electrical energy in the electric arc furnace and in the ladle furnace by overheating in the electric arc furnace and by losses in the dependent energy supply in the ladle furnace.
  • One embodiment consists in that the superheating vessel is placed on weighing cells and the supplied melt stream from the melting vessel is determined by taking the other mass flows into account by forming the difference between the measured values and used to control the electrical energy supply.
  • the melting process in the melting vessel can be regulated or controlled in accordance with the operating situation in the superheating vessel.
  • the electrical data supplied by the load cells via a measuring line of the mass flows and the electrical data of a metering device via a measuring line to a computer and the computer via an on-load tap changer the electrical power supplied by a transformer via the electrodes controls.
  • a device for producing scrap-based liquid steel in a shaft furnace as a melting vessel which is arranged upstream of an overheating vessel, with fossil energy source burner means arranged in the lower part of the meltdown vessel and an overheat vessel connected to the lower part of the meltdown vessel via a taphole the task thereby,
  • the energy distribution is even further reduced by placing the superheating vessel on load cells and determining the supplied melt stream from the meltdown vessel taking into account the other mass flows by subtracting the measured values and using it to control the burner device in the meltdown vessel.
  • connection of the controlled system between the meltdown vessel and the overheating vessel can be created by the fact that the electrical data, which are guided by the load cells via a measuring line of the mass flow sensor and the electrical data of the bunker and metering device via a measuring line to the computer the computer controls the melting capacity of the burner device used in the melting vessel via a controlled system of a natural gas and oxidation media supply and thereby controls the steel mass flow of the melt stream flowing from the meltdown vessel into the superheating vessel.
  • An independent alternative of the device for producing liquid steel, with a self-contained melting vessel for metallic mate Rials and fossil fuels, a liquid steel producing and / or treating overheating vessel or electric arc furnace, a transport ladle and a ladle furnace leads to an alternative solution of the problem, to the effect that the electric arc furnace is subdivided in the lower furnace by a partition in two areas, wherein Flow direction of the liquid steel is an overheating zone and ge by a slide closure separates or connectable the analysis zone is set up.
  • the vessel can hold a large amount of the tapping weight. In the first region, overheating may take place in the direction of flow of the steel and in the second region a metallurgical treatment, such as that in the ladle furnace otherwise takes place.
  • the capacity of the kiln plant may be such that the two areas receive about twice the normal tapping weight of a comparable electric arc furnace.
  • the two areas of the overheating vessel will then each be provided with its own electrode unit.
  • the operation may take place such that the filling level of the second region in the flow direction, in which the metallurgical treatment takes place the same as in a ladle furnace, is at a full tapping weight equal to or lower than the filling level in the tapping furnace first range at a lower level of melt in this first area.
  • 1 shows a block-type illustration of the method sequence in a melt-down vessel, an overheating vessel, a transport ladle and a ladle furnace
  • 2 is a vertical section through an electric arc furnace on load cells with a block diagram of the measuring operations
  • FIG. 3A shows a vertical section through an electric arc furnace formed with two regions
  • FIG. 3B belonging to Fig. 3A plan view.
  • the method (FIG. 1) operates on a scrap basis with a predominant use of fossil energy.
  • the preheating and melting of metallic feedstocks 2 takes place in the melting vessel 3 with a share of fossil primary energy, by fossil fuels 4, from 90 to 100% and a share of electrical energy of 10 to 0%.
  • a third step the superheated melt 5 in a ladle 7a on a carriage 12 via a railroad track 11 to a ladle furnace 7b driven ren.
  • a 4th step the setting is carried out of the analysis of the liquid steel 1 during further overheating 1580 0 C - 1 650 0 C, then the casting apparatus 34 is supplied to a Strang ⁇ .
  • the method is carried out according to rules found, according to which (a) the melting power L provided for the self-contained melting vessel 3 and the area A of the cross-section satisfy the condition:
  • the viewing direction is selected perpendicular to the lower furnace 6a, so that the meltdown vessel 3 appears to be lying behind the furnace lid.
  • the lower furnace 6a of the superheating vessel 6 is supported on load cells 20 via a tilting device 25.
  • a measuring device is shown in the essential elements with the assemblies for measuring the mass flow 31, a measuring line 26 for the mass flow detection, a steel mass flow detection computer 21, an on-load tap changer 22, a bunker and Dosie ⁇ tion device for surcharges 23, a natural gas Oxidizer control line 30, the tilting device 25 for parting off the overheat vessel 6, a measuring tion 27 of the dosing system and a line for a feedback signal 28th
  • FIGS. 3A and 3B A further alternative for the design of the superheating vessel 6 or of the electric arc furnace and the melting vessel 3 is shown in FIGS. 3A and 3B.
  • the superheating vessel 6 in the lower furnace 6a is divided into two regions by a partition wall 13 (FIG. right) region 14 and ei ⁇ nem second (left) portion 15 divided, wherein in the flow direction 16 of the liquid steel 1, an overheating zone 17 and by a slide closure 18, the two regions 14, 15 are separated or interconnected.
  • the left, second region 15 forms the analysis zone 19, which corresponds to the pan 7a in the ladle furnace 7b.
  • independent electrode units 10 are provided with electrodes 10a, which can alternatively also be raised and lowered and pivoted.
  • the level 9 of the second (left) region 15 in the flow direction 16, in which the metallurgical treatment takes place the same as in a ladle furnace 7b, is at a full tapping weight equal to or lower than the level 9 in FIG
  • the first region 14 can furthermore be used to melt the respective charge parallel to the feed of the melt 5 through a channel 33 from the meltdown vessel 3-FIG. 3B.
  • Another advantage is the storage capacity of the second region 15, from which liquid steel 1 can be removed at any time with appropriate overheating. The removed portion can, for example, in the event of faults in the course of the continuous casting device 34 from a hitherto unknown supply of steel 1, also be regarded as liquid steel storage. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

Ein Verfahren und eine Einrichtung zum Herstellen von flüssigem Stahl (1), wobei metallische Einsatzmaterialien (2) in einem selbständigen Einschmelzgefäss (3) mit fossilen Energieträgern (4) erschmolzen werden und die Schmelze (5) in einem Überhitzungsgefäss (6) behandelt, abgestochen und in weiteren Behandlungsgefässen (7) transportiert und die Analyse der Stahlgüte eingestellt wird, kann bei ausgeglichenem Energieaufwand in den Schritten Vorwärmen/Schmelzen, Überhitzen, Transportieren und Behandeln in der Sekundärmetallurgie/Überhitzen asugeführt werden.

Description

Verfahren und Einrichtung zum Herstellen von flüssigem Stahl
Die Erfindung betrifft ein Verfahren und eine Einrichtung zum Herstellen von flüssigem Stahl auf Schrottbasis in einem Schachtofen als Einschmelzgefäß, der einem Überhitzungsgefäß vorgeordnet ist, wobei die Einsatzmaterialien in einem oberen Teil des Einschmelzgefäßes vorgewärmt, anschließend in einem unteren Teil mit fossilen Energieträgern geschmolzen werden und die Schmelze in das Überhitzungsgefäß abgeführt wird, in dem die Stahlanalyse und eine Ü- berhitzungstemperatur eingestellt werden.
Ein derartiges Verfahren ist aus der WO 03 / 068995 A1 / DE 102 05 660 be¬ kannt. Dabei werden als Einsatzmaterialien Schrott, Eisenschwamm oder der¬ gleichen in dem oberen Teil des Einschmelzgefäßes vorgewärmt und anschlie- ßend in einem unteren Teil des Schmelzgefäßes mit den fossilen Brennstoffen erschmolzen. Die Schmelze wird kontinuierlich in ein Behandlungsgefäß abge¬ leitet, in dem die gewünschte Stahlqualität eingestellt wird, wobei in das Ein¬ schmelzgefäß von außen Gase zur Nachverbrennung der Prozessgase einge¬ führt werden. Die Weiterentwicklung besteht bekannterweise darin, dass für die Prozessgase verschiedene Nachverbrennungsebenen und ein in die Material¬ säule hineinragender Innenschacht vorgeschlagen werden.
Derartige Stahl-Erschmelzungsverfahren dienen der Bereitstellung von Schmelzenchargen, wie bspw. beim Stahl-Stranggießen zu Brammen unter- schiedlicher Dicke bis zu Dünnsträngen im Bereich von 40 - 150 mm Dicke. Nach Abstich der Schmelze aus einem Elektrolichtbogenofen als Überhitzungs¬ gefäß ist aufgrund der geringen, im Gefäß verbleibenden Restschmelze eine erheblich reduzierte Energiezufuhr oder ein Abschalten der Energiezufuhr not¬ wendig, um ein zu hohes Überhitzen der Restschmelze und einen übermäßigen Verschleiß des Herdbodens zu vermeiden. Damit ist eine schwankende Nut¬ zung der elektrischen Energie verbunden. Nachteilig ist auch, dass der Elektro-
BΈSTÄTIGUNGSKOPIE lichtbogenofen und ein Pfannenofen räumlich erheblich voneinander entfernt sind, so dass beim Transportieren entsprechend hohe Energieverluste auftre¬ ten. Für den Elektrolichtbogenofen und den Pfannenofen muss eine separate elektrische Energiezufuhr vorgesehen werden.
Der Erfindung liegt die Aufgabe zugrunde, die aufgezeigten Verluste an elektri¬ scher Energie im Elektrolichtbogenofen und im Pfannenofen durch übermäßi¬ ges Überhitzen im Elektrolichtbogenofen und durch Verluste bei der abhängi¬ gen Energiezufuhr im Pfannenofen erheblich zu reduzieren.
Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst,
(a) dass die für das selbständige Einschmelzgefäß vorgesehene Schmelzleis¬ tung (L) und die Fläche (A) des Querschnitts folgende Bedingung erfüllen:
L [ MW ] > 2,3 MW / m2 A [ m2 ]
(b) dass das Verhältnis der im Elektrolichtbogenofen angebotenen elektri¬ schen Leistung L eι zu der Leistung aus fossiler Energie im Einschmelzge¬ fäß die folgende Bedingung erfüllt: L ei > 0,18
L fossil
(c) und dass das Verhältnis λ der Oxidationsstoffe im Elektrolichtbogenofen zu den fossilen Energieträgem im Einschmelzgefäß zwischen 0,6 und 1 ,2 eingestellt wird.
Dadurch wird schon im anschließenden Überhitzungsgefäß und in den nachfol¬ genden Verfahrensschritten weniger Energie verbraucht. Das Stahlherstel- lungsverfahren bis zum Abgießen des Stahls in einer Stranggießvorrichtung ist demzufolge ökonomischer als bisher und bildet eine geschlossene Verfahrens¬ kette vom Einschmelzgefäß bis zum Pfannenofen vor dem Abgießen der Schmelze in der Stranggießvorrichtung.
Eine Ausgestaltung besteht darin, dass das Überhitzungsgefäß auf Wägezellen gestellt ist und der zugeführte Schmelzenstrom aus dem Einschmelzgefäß un¬ ter Berücksichtigung der anderen Massenströme durch Differenzbildung der Messwerte ermittelt und zur Steuerung der elektrischen Energiezufuhr einge¬ setzt wird. Dadurch kann der Einschmelzvorgang im Einschmelzgefäß entspre¬ chend der Betriebssituation im Überhitzungsgefäß geregelt oder gesteuert wer- den.
Weiter ist vorgesehen, dass die elektrischen Daten, die von den Wägezellen über eine Messleitung der Massenströme und die elektrischen Daten einer Do¬ sierungseinrichtung über eine Messleitung an einen Rechner zugeführt werden und der Rechner über einen Laststufenschalter die von einem Transformator über die Elektroden zugeführte elektrische Leistung steuert.
Eine Einrichtung zum Herstellen von flüssigem Stahl auf Schrottbasis in einem Schachtofen als Einschmelzgefäß, der einem Überhitzungsgefäß vorgeordnet ist, mit im unteren Teil des Einschmelzgefäßes angeordneter Brennereinrich¬ tung für fossile Energieträger sowie ein mit dem unteren Teil des Einschmelzge¬ fäßes über eine Abstichöffnung verbundenes Überhitzungsgefäß löst die Auf¬ gabe dadurch,
(a) dass die für das selbständige Einschmelzgefäß vorgesehene Schmelzleis¬ tung (L) und die Fläche (A) des Querschnitts folgende Bedingung erfüllen: L [ MW ] > 2,3 MW / m2
A [ m2 ] (b) dass das Verhältnis der im Überhitzungsgefäß angebotenen elektrischen Leistung L eι zu der Leistung aus fossilen Energieträgem im Einschmelz¬ gefäß die folgende Bedingung erfüllt:
L ei > 0,18 L f0SSi|
(c) und dass das Verhältnis λ der Oxidationsstoffe im Überhitzungsgefäß zu den fossilen Energieträgern im Einschmelzgefäß zwischen 0,6 und 1 ,2 eingestellt ist. Dadurch wird die Energieverteilung unter den einzelnen Verfahrensschrit¬ ten erheblich gleichmäßiger.
Die Energieverteilung wird nach weiteren Merkmalen dadurch noch vergleich¬ mäßigt, dass das Überhitzungsgefäß auf Wägezellen gestellt ist und der zuge- führte Schmelzenstrom aus dem Einschmelzgefäß unter Berücksichtigung der anderen Massenströme durch Differenzbildung der Messwerte ermittelt und zur Steuerung der Brennereinrichtung im Einschmelzgefäß eingesetzt wird.
Die Verbindung der Regelstrecke zwischen dem Einschmelzgefäß und dem Überhitzungsgefäß kann dadurch geschaffen werden, dass die elektrischen Daten, die von den Wägezellen über eine Messleitung der Massenstromerfas- sung und die elektrischen Daten der Bunker- und Dosierungseinrichtung über eine Messleitung an den Rechner geführt sind und dass der Rechner über eine Regelstrecke einer Erdgas- und Oxidationsmedienzufuhr die Schmelzleistung der im Einschmelzgefäß eingesetzten Brennereinrichtung steuert und dadurch den Stahlmassenstrom des aus dem Einschmelzgefäß in das Überhitzungsge¬ fäß fließenden Schmelzenstroms steuert.
Eine selbständige Alternative der Einrichtung zum Herstellen von flüssigem Stahl, mit einem selbständigen Einschmelzgefäß für metallische Einsatzmate- rialien und fossilen Energieträgern, einem den flüssigen Stahl erzeugenden und / oder behandelnden Überhitzungsgefäß bzw. Elektrolichtbogenofen, einer Transportpfanne und einem Pfannenofen führt zu einer alternativen Lösung der Aufgabe, dahingehend, dass der Elektrolichtbogenofen im Unterofen durch eine Zwischenwand in zwei Bereiche aufgeteilt ist, wobei in Fließrichtung des flüssi- gen Stahls eine Überhitzungszone und durch einen Schieberverschluss ge¬ trennt oder verbindbar die Analysenzone eingerichtet ist. Das Gefäß kann eine große Menge des Abstichgewichtes aufnehmen. In dem ersten Bereich kann in der Fließrichtung des Stahls das Überhitzen stattfinden und in dem zweiten Be¬ reich eine metallurgische Behandlung, wie eine solche in dem Pfannenofen sonst stattfindet.
Die Kapazität der Ofenanlage kann derart sein, dass die beiden Bereiche etwa die doppelte Menge des normalen Abstichgewichtes eines vergleichbaren E- lektrolichtbogenofens aufnehmen.
Zu dieser Bauweise werden sodann die beiden Bereiche des Überhitzungsge- fäßes jeweils für sich mit einer eigenen Elektrodeneinheit versehen sein.
Der Betrieb kann nach weiteren Merkmalen derart stattfinden, dass der Füll- stand des in Fließrichtung zweiten Bereichs, in dem die metallurgische Behand¬ lung gleich wie in einem Pfannenofen stattfindet, bei einem vollen Abstichge¬ wicht gleich hoch oder tiefer liegt als der Füllstand in dem ersten Bereich bei einem niedrigeren Stand der Schmelze in diesem ersten Bereich.
In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt, die nach¬ stehend näher erläutert werden.
Es zeigen:
Fig. 1 eine blockbildartige Darstellung des Verfahrensablaufs in einem Ein- schmelzgefäß, einem Überhitzungsgefäß, einer Transportpfanne und einem Pfannenofen, Fig. 2 einen senkrechten Schnitt durch einen Elektrolichtbogenofen auf Wägezellen mit Blockschaltbild der Messvorgänge,
Fig. 3A einen senkrechten Schnitt durch einen mit zwei Bereichen ausgebil¬ deten Elektrolichtbogenofen und
Fig. 3B die zu Fig. 3A gehörende Draufsicht.
Das Verfahren ( Fig. 1 ) arbeitet auf Schrottbasis mit einem überwiegenden Ein¬ satz fossiler Energie.
In einem 1. Verfahrensschritt erfolgt das Vorwärmen und Schmelzen von metal- lischen Einsatzmaterialien 2 im Einschmelzgefäß 3 bei einem Anteil fossiler Primärenergie, durch fossile Energieträger 4, von 90 - 100% und einem Anteil von elektrischer Energie von 10 - 0 %.
In einem 2. Schritt wird ein Überhitzen der Schmelze 5 in einem Überhitzungs- gefäß 6 (Elektrolichtbogenofen) auf 1580 0C bis 16100C des flüssigen Stahls 1 durchgeführt.
In einem 3. Schritt wird die derart überhitzte Schmelze 5 in einer Pfanne 7a auf einem Wagen 12 über eine Schienenbahn 11 zu einem Pfannenofen 7b gefah- ren.
In einem 4. Schritt erfolgt das Einstellen der Analyse des flüssigen Stahls 1 bei weiterer Überhitzung auf 1580 0C - 1650 0C, der anschließend einer Strang¬ gießvorrichtung 34 zugeführt wird.
Bei einem solchen Verfahren zum Herstellen von flüssigem Stahl 1 , wobei me¬ tallische Einsatzmaterialien 2 ( Schrott, Eisenschwamm o.dgl.) in das selbstän¬ dige Einschmelzgefäß 3 mit den fossilen Energieträgern 4 ( Öl, Gas, Kohle u. dgl.) erschmolzen werden und die Schmelze 5 in dem Überhitzungsgefäß 6 behandelt, abgestochen und in einem weiteren Behandlungsgefäß 7 transpor¬ tiert und vor dem Abgießen in der Stranggießvorrichtung 34 in der Analyse eingestellt wird, ist ein ökologisches und ökonomisches Vorgehen gewährleis¬ tet.
Das Verfahren wird hierbei nach gefundenen Regeln durchgeführt, wonach (a) die für das selbständige Einschmelzgefäß 3 vorgesehene Schmelzleistung L und die Fläche A des Querschnitts die Bedingung erfüllen:
L [ MW ] > 2,3 MW / m2
A [ m2 ]
(b) ferner, dass das Verhältnis der im Überhitzungsgefäß 6 angebotenen e- lektrischen Leistung L θ! zu der Leistung aus fossiler Energie 4 im Ein¬ schmelzgefäß 3 die folgende Bedingung erfüllt:
L ei > 0,18 L f0SSI|
(c) und dass das Verhältnis λ der Oxidationsstoffe im Überhitzungsgefäß 6 zu den fossilen Energieträgern 4 im Einschmelzgefäß 3 zwischen 0,6 und 1 ,2 eingestellt wird.
In der Fig. 2 ist die Blickrichtung senkrecht zum Unterofen 6a gewählt, so dass das Einschmelzgefäß 3 hinter dem Ofendeckel liegend erscheint. Der Unter¬ ofen 6a des Überhitzungsgefäßes 6 ist auf Wägezellen 20 über eine Kippein¬ richtung 25 gestützt. Außerdem ist eine Messeinrichtung in den wesentlichen Elementen gezeigt mit den Baugruppen für die Messung des Massenstroms 31 , eine Messleitung 26 für die Massenstromerfassung, ein Stahlmassenstrom- Erfassungsrechner 21 , ein Laststufenschalter 22, eine Bunker- und Dosie¬ rungseinrichtung für Zuschläge 23, eine Erdgas-Oxidatorregelstrecke 30, die Kippeinrichtung 25 zum Abstechen für das Überhitzungsgefäß 6, eine Messlei- tung 27 des Dosierungssystems und eine Leitung für ein Rückkopplungssignal 28.
In den Fig. 3A und 3B ist eine weitere Alternative für die Gestaltung des Über- hitzungsgefäßes 6 bzw. des Elektrolichtbogenofens und des Einschmelzgefä- ßes 3 aufgezeigt: Dazu ist das Überhitzungsgefäß 6 im Unterofen 6a durch eine Zwischenwand 13 in zwei Bereiche, einem ersten (rechten) Bereich 14 und ei¬ nem zweiten (linken) Bereich 15 geteilt, wobei in Fließrichtung 16 des flüssigen Stahls 1 eine Überhitzungszone 17 und durch einen Schieberverschluss 18 die beiden Bereiche 14, 15 getrennt oder miteinander verbunden werden. Der linke, zweite Bereich 15 bildet die Analysenzone 19, die der Pfanne 7a im Pfannen¬ ofen 7b entspricht. In den beiden Bereichen 14 und 15 des Überhitzungsgefä- ßes 6 sind unabhängige Elektrodeneinheiten 10 mit Elektroden 10a vorgese¬ hen, die alternativ auch heb- und senkbar und schwenkbar sein können.
Wie in Fig. 3A gezeigt ist, liegt der Füllstand 9 des in Fließrichtung 16 zweiten (linken) Bereichs 15, in dem die metallurgische Behandlung gleich wie in einem Pfannenofen 7b stattfindet, bei einem vollen Abstichgewicht gleich hoch oder tiefer als der Füllstand 9 in dem ersten Bereich 14. Hierzu kann der erste Be¬ reich 14 weiterhin zum Einschmelzen der jeweiligen Charge parallel zur Ein- speisung der Schmelze 5 durch eine Rinne 33 aus dem Einschmelzgefäß 3 - Fig. 3B - genutzt werden. Ein anderer Vorteil besteht in der Speicherfähigkeit des zweiten Bereichs 15, aus dem jederzeit mit entsprechender Überhitzung flüssiger Stahl 1 entnommen werden kann. Der entnommene Anteil kann bspw. bei Störungen im Ablauf der Stranggießvorrichtung 34 aus einem bisher unbe- kannten Vorrat an Stahl 1 auch als Flüssigstahlspeicher angesehen werden. Bezugszeichenliste
1 flüssiger Stahl
2 metallische Einsatzmaterialien
3 Einschmelzgefäß
3a oberer Teil
3b unterer Teil
4 fossile Energieträger
5 Schmelze
6 Überhitzungsgefäß (Elektrolichtbogenofen)
6a Unterofen
7 Behandlungsgefäße 7a Pfanne
7b Pfannenofen
8 gemeinsame elektrische Energiequelle
9 Füllstand
10 Elektrodeneinheit 10a Elektrode
11 Schienenbahn
12 Wagen
13 Zwischenwand
14 erster Bereich 15 zweiter Bereich
16 Fließrichtung
17 Überhitzungszone
18 Schieberverschluss
19 Analysenzone 20 Wägezellen
21 Stahlmassenstrom-Erfassungsrechner 22 Laststufenschalter
23 Bunker- und Dosierungseinrichtung für Zuschläge
24 Transformator
25 Kippeinrichtung
26 Messleitung der Massenstromerfassung 27 Messleitung der Dosierungseinrichtung
28 Rückkopplungssignal
29 Stellsignal
30 Erdgas-Oxidatorregelstrecke
31 Massenstrom 32 Brennereinrichtung im Schmelzengefäß
33 Rinne
34 Stranggießvorrichtung

Claims

Patentansprüche
1. Verfahren zum Herstellen von flüssigem Stahl (1 ) auf Schrottbasis in ei- nem Schachtofen als Einschmelzgefäß (3) , der einem Überhitzungsgefäß
(6) vorgeordnet ist, wobei die Einsatzmaterialien (2) in einem oberen Teil (3a) des Einschmelzgefäßes (3) vorgewärmt, anschließend in einem unte¬ ren Teil (3b) mit fossilen Energieträgern (4) geschmolzen werden und die Schmelze (5) in das Überhitzungsgefäß (6) abgeführt wird, in dem die Stahlanalyse und eine Überhitzungstemperatur eingestellt werden, dadurch gekennzeichnet,
(a) dass die für das selbständige Einschmelzgefäß (3) vorgesehene Schmelzleistung (L) und die Fläche (A) des Querschnitts folgende Bedingung erfüllen: L [ MW ] > 2,3 MW / m2
A [ m2 ]
(b) dass das Verhältnis der im Überhitzungsgefäß (6) angebotenen e- lektrischen Leistung L eι zu der Leistung aus fossiler Energie im Ein¬ schmelzgefäß (3) die folgende Bedingung erfüllt:
L ei > 0,18
L fossil
(c) und dass das Verhältnis λ der Oxidationsstoffe im Überhitzungsge¬ fäß (6) zu den fossilen Energieträgern (4) im Einschmelzgefäß (3) zwischen 0,6 und 1 ,2 eingestellt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Überhitzungsgefäß (6) auf Wägezellen (20) gestellt ist und der zugeführte Schmelzenstrom aus dem Einschmelzgefäß (3) unter Berück¬ sichtigung der andern Massenströme (31 ) durch Differenzbildung der Messwerte ermittelt und zur Steuerung der elektrischen Energiezufuhr ein- gesetzt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die elektrischen Daten, die von den Wägezellen (20) über eine Mess- leitung (26) der Massenströme (31 ) und die elektrischen Daten einer Do¬ sierungseinrichtung (23) über eine Messleitung (27) an einen Rechner
(21 ) zugeführt werden und der Rechner (21 ) über einen Laststufenschalter
(22) die von einem Transformator (24) über die Elektroden (10a) zugeführ¬ te elektrische Leistung steuert.
4. Einrichtung zur Herstellung von flüssigem Stahl (1 ) auf Schrottbasis in ei¬ nem Schachtofen als Einschmelzgefäß (3), der einem Überhitzungsgefäß (6) vorgeordnet ist, mit im unteren Teil (3b) des Einschmelzgefäßes (3) angeordneter Brennereinrichtung (32) für fossile Energieträger (4), sowie ein mit dem unteren Teil (3b) des Einschmelzgefäßes (3) über eine Ab¬ stichöffnung verbundenes Überhitzungsgefäß (6), dadurch gekennzeichnet, (a) dass die für das selbständige Einschmelzgefäß (3) vorgesehene
Schmelzleistung (L) und die Fläche (A) des Querschnitts folgende Bedingung erfüllen:
L [ MW ] > 2,3 MW / m2
A [ m2 ] (b) dass das Verhältnis der im Überhitzungsgefäß (6) angebotenen e- lektrischen Leistung L eι zu der Leistung aus fossilen Energieträgern (4) im Einschmelzgefäß (3) die folgende Bedingung erfüllt:
L ei > 0,18 L fossil
(c) und dass das Verhältnis λ der Oxidationsstoffe im Überhitzungsge¬ fäß (6) zu den fossilen Energieträgern (4) im Einschmelzgefäß (3) zwischen 0,6 und 1 ,2 eingestellt ist.
5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Überhitzungsgefäß (6) auf Wägezellen (20) gestellt ist und der zugeführte Schmelzenstrom aus dem Einschmelzgefäß (3) unter Berück- sichtigung der anderen Massenströme (31 ) durch Differenzbildung der
Messwerte ermittelt und zur Steuerung der Brennereinrichtung (32) im Einschmelzgefäß (3) eingesetzt wird.
6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die elektrischen Daten, die von den Wägezellen (20) über eine Mess¬ leitung (26) der Massenstromerfassung und die elektrischen Daten der Bunker- und Dosierungseinrichtung (23) über eine Messleitung (27) an den Rechner (21 ) geführt sind und dass der Rechner (21 ) über eine Re- gelstrecke einer Erdgas- und Oxidationsmedienzufuhr (30) die Schmelz¬ leistung der im Einschmelzgefäß (3) eingesetzten Brennereinrichtung (32) steuert und dadurch den Stahlmassenstrom des aus dem Einschmelzge¬ fäß (3) in das Überhitzungsgefäß (6) fließenden Schmelzenstroms steu¬ ert.
7. Einrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Elektrolichtbogenofen (6) im Unterofen (6a) durch eine Zwi¬ schenwand (13) in zwei Bereiche (14; 15) aufgeteilt ist, wobei in Fließrich¬ tung (16) des flüssigen Stahls (1 ) eine Überhitzungszone (17) und durch einen Schieberverschluss (18) getrennt oder verbindbar die Analysenzone
(19) eingerichtet ist.
8. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die beiden Bereiche (14; 15) etwa die doppelte Menge des normalen
Abstichgewichtes eines vergleichbaren Überhitzungsgefäßes (6) aufneh¬ men.
9. Einrichtung nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die beiden Bereiche (14; 15) des Überhitzungsgefäßes (6) jeweils für sich mit einer eigenen Elektrodeneinheit (10) versehen sind.
10. Einrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass der Füllstand (9) des in Fließrichtung (16) zweiten Bereichs (15), in dem die metallurgische Behandlung gleich wie in einem Pfannenofen (7b) stattfindet, bei einem vollen Abstichgewicht gleich hoch oder tiefer liegt als der Füllstand (9) in dem ersten Bereich (14) bei dem niedrigeren Stand der Schmelze (5) in diesem ersten Bereich (14).
PCT/EP2005/009353 2004-09-25 2005-08-30 Verfahren und einrichtung zum herstellen von flüssigem stahl WO2006032347A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05783034A EP1792133B1 (de) 2004-09-25 2005-08-30 Einrichtung zum herstellen von flüssigem stahl
AT05783034T ATE441075T1 (de) 2004-09-25 2005-08-30 Einrichtung zum herstellen von flüssigem stahl
DE502005008001T DE502005008001D1 (de) 2004-09-25 2005-08-30 Einrichtung zum herstellen von flüssigem stahl
JP2007532791A JP2008514811A (ja) 2004-09-25 2005-08-30 溶融鋼を生成する方法と装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004046728A DE102004046728A1 (de) 2004-09-25 2004-09-25 Verfahren und Einrichtung zum Herstellen von flüssigem Stahl
DE102004046728.5 2004-09-25

Publications (2)

Publication Number Publication Date
WO2006032347A2 true WO2006032347A2 (de) 2006-03-30
WO2006032347A3 WO2006032347A3 (de) 2007-06-21

Family

ID=35744595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/009353 WO2006032347A2 (de) 2004-09-25 2005-08-30 Verfahren und einrichtung zum herstellen von flüssigem stahl

Country Status (12)

Country Link
EP (1) EP1792133B1 (de)
JP (1) JP2008514811A (de)
KR (1) KR20070060048A (de)
CN (1) CN100564545C (de)
AT (1) ATE441075T1 (de)
DE (2) DE102004046728A1 (de)
ES (1) ES2328603T3 (de)
RU (1) RU2353664C2 (de)
TW (1) TW200617178A (de)
UA (1) UA83137C2 (de)
WO (1) WO2006032347A2 (de)
ZA (1) ZA200608705B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133679A3 (de) * 2005-06-13 2007-05-31 Karl Konzelmann Metallschmelzw Verfahren zum einstellen vorgegebener schmelzeeigenschaften in einem flüssigmetall, insbesondere flüssigaluminium, behandlungssystem, transportbehälter und transportfahrzeug für flüssigmetall
DE202008015431U1 (de) 2008-11-20 2009-02-12 Sug Schmelz- Und Giessanlagen Gmbh & Co. Kg Behandlungsanlage für Flüssigmetall
WO2020211689A1 (zh) * 2019-04-17 2020-10-22 中国恩菲工程技术有限公司 短流程处理铁基多金属矿料的熔炼方法及熔炼装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103838199B (zh) * 2012-11-28 2016-12-21 沈阳铝镁设计研究院有限公司 一种针对电解铝厂能源管理的控制系统
DE102018216539A1 (de) * 2018-09-27 2020-04-02 Sms Group Gmbh Verfahren zum Betreiben eines Elektrolichtbogenofens

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2504911A1 (de) * 1975-02-06 1976-09-09 Kloeckner Werke Ag Vorrichtung zum einschmelzen von schrott, eisenschwamm oder dgl.
DE3322485A1 (de) * 1982-06-24 1983-12-29 British Steel Corp., London Vorrichtung und verfahren zur metallverarbeitung bzw. -veredelung
EP0240485A1 (de) * 1986-03-17 1987-10-07 VOEST-ALPINE Industrieanlagenbau GmbH Anlage zur Herstellung von Stahl aus Schrott
US5238484A (en) * 1990-11-19 1993-08-24 Voest-Alpine Industrianlagenbau Gmbh Plant for the production of molten metals and method
AT398487B (de) * 1991-12-16 1994-12-27 Voest Alpine Ind Anlagen Elektro-lichtbogenofen zur herstellung von stahl
US5739505A (en) * 1995-11-21 1998-04-14 Toyota Jidosha Kabushiki Kaisha Temperature control method and apparatus for an electric furnace
RU2128407C1 (ru) * 1997-06-20 1999-03-27 Открытое акционерное общество "НОСТА" Способ управления электрическим режимом дуговой сталеплавильной печи
WO2001020046A1 (en) * 1999-09-14 2001-03-22 Danieli Technology, Inc. High temperature premelting apparatus
DE10205660A1 (de) * 2002-02-12 2003-08-14 Sms Demag Ag Verfarhen und Vorrichtung zur kontinuierlichen Stahlherstellung unter Einsatz von metallischem Einsatzmaterial

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2504911A1 (de) * 1975-02-06 1976-09-09 Kloeckner Werke Ag Vorrichtung zum einschmelzen von schrott, eisenschwamm oder dgl.
DE3322485A1 (de) * 1982-06-24 1983-12-29 British Steel Corp., London Vorrichtung und verfahren zur metallverarbeitung bzw. -veredelung
EP0240485A1 (de) * 1986-03-17 1987-10-07 VOEST-ALPINE Industrieanlagenbau GmbH Anlage zur Herstellung von Stahl aus Schrott
US5238484A (en) * 1990-11-19 1993-08-24 Voest-Alpine Industrianlagenbau Gmbh Plant for the production of molten metals and method
AT398487B (de) * 1991-12-16 1994-12-27 Voest Alpine Ind Anlagen Elektro-lichtbogenofen zur herstellung von stahl
US5739505A (en) * 1995-11-21 1998-04-14 Toyota Jidosha Kabushiki Kaisha Temperature control method and apparatus for an electric furnace
RU2128407C1 (ru) * 1997-06-20 1999-03-27 Открытое акционерное общество "НОСТА" Способ управления электрическим режимом дуговой сталеплавильной печи
WO2001020046A1 (en) * 1999-09-14 2001-03-22 Danieli Technology, Inc. High temperature premelting apparatus
DE10205660A1 (de) * 2002-02-12 2003-08-14 Sms Demag Ag Verfarhen und Vorrichtung zur kontinuierlichen Stahlherstellung unter Einsatz von metallischem Einsatzmaterial

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MANFRED BENDER: "THE COMELT MELTSHOP: EFFICIENT, SIMPLE AND ... CONTINUOUS" GORHAM/INTERTECH CONSULTING CONFERENCE, 20. November 1996 (1996-11-20), Seiten 1-12, XP002370565 USA *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133679A3 (de) * 2005-06-13 2007-05-31 Karl Konzelmann Metallschmelzw Verfahren zum einstellen vorgegebener schmelzeeigenschaften in einem flüssigmetall, insbesondere flüssigaluminium, behandlungssystem, transportbehälter und transportfahrzeug für flüssigmetall
DE202008015431U1 (de) 2008-11-20 2009-02-12 Sug Schmelz- Und Giessanlagen Gmbh & Co. Kg Behandlungsanlage für Flüssigmetall
WO2020211689A1 (zh) * 2019-04-17 2020-10-22 中国恩菲工程技术有限公司 短流程处理铁基多金属矿料的熔炼方法及熔炼装置

Also Published As

Publication number Publication date
TW200617178A (en) 2006-06-01
JP2008514811A (ja) 2008-05-08
CN101072975A (zh) 2007-11-14
RU2353664C2 (ru) 2009-04-27
ES2328603T3 (es) 2009-11-16
ATE441075T1 (de) 2009-09-15
EP1792133B1 (de) 2009-08-26
UA83137C2 (ru) 2008-06-10
KR20070060048A (ko) 2007-06-12
RU2006143649A (ru) 2008-06-20
WO2006032347A3 (de) 2007-06-21
DE502005008001D1 (de) 2009-10-08
EP1792133A2 (de) 2007-06-06
ZA200608705B (en) 2008-04-30
CN100564545C (zh) 2009-12-02
DE102004046728A1 (de) 2006-04-06

Similar Documents

Publication Publication Date Title
DE102005023133B4 (de) Anlage zur Messung und zur Kontrolle der Beschickung eines Ofens mit Schmelzgut und Schrott und entsprechendes Verfahren
EP0946761A1 (de) Anlage und verfahren zum herstellen von metallschmelzen
WO2006032347A2 (de) Verfahren und einrichtung zum herstellen von flüssigem stahl
DE1433431A1 (de) Schmelzofen zur Herstellung von Stahl und Verfahren zum Betrieb des Ofens
EP0820528B1 (de) Anlage und verfahren zum herstellen von eisenschmelzen nach dem mehrzonenschmelzverfahren
EP0008468B1 (de) Raffinationsofen für NE-Metalle
DE2608279A1 (de) Verfahren zum einschmelzen von stahl aus schrott im elektroofen
EP3572532B1 (de) Einbindung eines schrottschmelzofens in ein konverterstahlwerk
DE2049278A1 (de) Verfahren und Anlage zur kontinuierh chen Herstellung von Stahl
DE102017105551A1 (de) Verfahren zur Behandlung metallurgischer Schlacken
EP0313959B1 (de) Anlage zur Herstellung von Stahl, insbesondere Ministahlwerksanlage
DE2407676A1 (de) Lichtbogenofen zum schmelzen und frischen von metallischen feststoffen
EP0757109B1 (de) Einschmelzaggregat und seine Verwendung zur Herstellung von Stahl in einem Arbeitsgang, insbesondere Gleichstrom-Lichtbogenofen oder Sauerstoffblaskonverter
DE2325593C2 (de) Kontinuierliche Stahlerzeugung
EP0166868B1 (de) Vorrichtung und Verfahren zur metallurgischen Nachbehandlung von vorgeschmolzenem Stahl
EP1640462B1 (de) Verfahren und Einrichtung zum Herstellen von flüssigem Stahl
DE3732939C2 (de)
DE4404313C2 (de) Verfahren zum Aufschmelzen und Behandeln von Metallen und Anlage zur Durchführung des Verfahrens
DE2821537A1 (de) Verfahren zum schmelzen von metallspaenen und vorrichtung zur durchfuehrung des verfahrens
EP0981034B1 (de) Verfahren zum Bestimmen der Höhe des Badspiegels eines Elektrolichtbogenofens
CH653201A5 (en) Hollow electrode for feeding arc furnaces
DE564490C (de) Aus einem Kupolofen und mehreren ortsveraenderlichen Veredelungsoefen bestehende Schmelzvorrichtung fuer Eisen und Metalle
DE102010045951A1 (de) Vorrichtung und Verfahren zur kontinuierlichen Stahlerzeugung und metallurgischen Bearbeitung
DE2415925C3 (de) Elektroschlackenofen zur Raffination von Roheisenschmelzen
DE2529391B2 (de) Verfahren zum Einschmelzen von eisenhaltigem Material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006/08705

Country of ref document: ZA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067022918

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580016264.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007532791

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006143649

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2005783034

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005783034

Country of ref document: EP