RU2128407C1 - Способ управления электрическим режимом дуговой сталеплавильной печи - Google Patents

Способ управления электрическим режимом дуговой сталеплавильной печи Download PDF

Info

Publication number
RU2128407C1
RU2128407C1 RU97110526/09A RU97110526A RU2128407C1 RU 2128407 C1 RU2128407 C1 RU 2128407C1 RU 97110526/09 A RU97110526/09 A RU 97110526/09A RU 97110526 A RU97110526 A RU 97110526A RU 2128407 C1 RU2128407 C1 RU 2128407C1
Authority
RU
Russia
Prior art keywords
furnace
melting
arc
charge
stage
Prior art date
Application number
RU97110526/09A
Other languages
English (en)
Inventor
Н.В. Евсеева
С.Ю. Чернуха
нник А.Г. М
А.Г. Мянник
В.В. Павлов
Г.М. Чекунов
В.Н. Кочкин
З.К. Шафигин
Н.В. Павлушин
Т.Н. Иванова
О.К. Токовой
А.Н. Волкодаев
В.Ю. Зиновьев
Original Assignee
Открытое акционерное общество "НОСТА"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "НОСТА" filed Critical Открытое акционерное общество "НОСТА"
Priority to RU97110526/09A priority Critical patent/RU2128407C1/ru
Application granted granted Critical
Publication of RU2128407C1 publication Critical patent/RU2128407C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Изобретение относится к электротермии, а именно к электродуговым печам. Может быть использовано для оптимизации плавки и автоматизации дуговых печей. Техническим результатом является повышение производительности печи за счет соответствующего выбора электрического режима печи. Технический результат достигается за счет того, что в период плавления контролируют электрические параметры дуги, коэффициент облучения футеровки, насыпную плотность шихты и расход электроэнергии, задают значение удельного расхода электроэнергии на 1 т завалки для каждой технологической стадии плавления и по достижении этого значения расхода электроэнергии переключают задание регулятору электрического режима печи. Причем заданное значение расхода электроэнергии определяют на каждой технологической стадии плавления в соответствии с коэффициентом tgYд, пропорционально массе шихты, расплавляемой на данной технологической стадии, а задание регулятору электрического режима печи по току устанавливают не выше допустимого тока электродов. 3 ил., 1 табл.

Description

Изобретение относится к электротермии, а именно к электродуговым печам, и может быть использовано для оптимизации плавки и автоматизации дуговых печей. Известен способ управления электрическим режимом дуговой электропечи [1] , при котором в период плавления контролируют электрические параметры дуги, коэффициент облучения футеровки и удельный расход электроэнергии и при достижении последним параметром заданного значения переключают задание регулятору электрического режима печи на режим поддержания максимальной мощности дуги и до момента переключения задания поддерживают режим максимума коэффициента облучения футеровки, дополнительно контролируют насыпную плотность шихты, загружаемой в печь, а заданное значение удельного расхода электроэнергии определяют по формуле:
W = 2,368ρ(ρ-17,96)+188,48,
где W - удельный расход электроэнергии, кВт•ч/т;
ρ - насыпная плотность шихты, т/м3.
Недостаток этого способа управления электрическим режимом состоит в том, что корректное определение момента переключения можно выполнить только для первой технологической стадии плавления, когда точно известна масса шихты, загружаемой в печь, и ее насыпная плотность. А так как плавление шихты состоит из нескольких технологических стадий (проплавление колодцев, повороты ванны, подвалка и т.д), то использовать этот способ управления электрическим режимом на протяжении всего периода плавления не представляется возможным. Для второй и последующих технологических стадий расплавления шихты используются, как правило, другие методы.
Известен способ выбора электрического режима плавки [2], принятый в качестве прототипа, когда на основе опыта эксплуатации дуговых печей задают удельные расходы электроэнергии для каждой технологической стадии плавления. Так, для предварительной стадии удельный расход берут равным 30 кВт•ч/т (на одну тонну завалки); для первой стадии плавления - 100 кВт•ч/т (на одну тонну завалки); до подвалки в целом - 300 кВт•ч/т (на одну тонну завалки). После подвалки шихты в печь снова - предварительная стадия, с удельным расходом - 30 квт•ч/т (на одну тонну подвалки); затем первая, на которой удельный расход принят равным 80 кВт•ч/т (на одну тонну подвалки). Общий удельный расход электроэнергии на плавление принят равным 420 кВт•ч/т (на одну тонну лома, загруженного в печь при завалке и подвалке).
Для расчета тока используют фактор реактивности Kx=Xэ/Xкз, где Хэ - эксплуатационное индуктивное сопротивление, Хкз - индуктивное сопротивление короткого замыкания. Считают [2, стр.19], что Хэ всегда больше Хкз, а фактор реактивности Кх в процессе плавления лома непрерывно уменьшается с 1.6 до 1.2 и стабилизируется на уровне 1.2- 1.1 при горении дуг на поверхности жидкой ванны.
Токи находят по величине Кх и коэффициенту мощности λ. взятых приблизительно и вне их взаимной зависимости. Выбирают фазное напряжение ступени Uотф, но текущее значение напряжения сети не учитывают. Ток дуги Iд находят по формуле
Figure 00000002

Мощность P, потребляемая из сети,
Po= 3Uст.ф•Iд•λ.
Недостатки такого способа выбора электрического режима состоят в следующем.
1. Значения удельного расхода электроэнергии зависят от насыпной плотности шихты и рекомендованы они для насыпной плотности, равной 0.9- 1.1 т/м3. Для другого значения насыпной плотности удельный расход электроэнергии должен быть снова найден по экспериментальным данным, т.е. рекомендации по удельному расходу электроэнергии не являются универсальными, причем удельный расход электроэнергии зависит не только от насыпной плотности, но и от марки стали, что также не учитывается.
2. Между величиной тока Iд, коэффициентом мощности λ и фактором реактивности Kx существует жесткая математическая связь и задавать λ и Kx независимо друг от друга, причем приблизительно, - некорректно, это ведет к естественному снижению точности расчета.
3. При расчете мощности, потребляемой из сети, не учтено колебание напряжения сети.
4. Фактор реактивности Kф = Xэ/Xкз для каждой ступени напряжения, для каждой стадии плавления и для разных групп стали имеет свое конкретное значение и, кроме того, он может быть, вопреки утверждениям автора [2] и меньше единицы, т. е. Xэ < Xкз, что было обнаружено при работе печей на больших токах, порядка 60 - 80 кА.
5. Найденные по опытным данным значения расхода электроэнергии в расчете на одну тонну завалки или подвалки не имеют физического смысла и никак не связаны с теплосодержанием (энтальпией) стали, а потому носит крайне условный, отвлеченный характер.
6. При расчете затрат электроэнергии не учтены потери тепла в окружающую среду.
7. Затраты на расплав шлакообразующих не учтены.
8. Не учтена эксплуатационная стойкость электродов, определяемая их допустимым током. Поэтому точность такого способа не может считаться удовлетворительной.
9. Общий удельный расход электроэнергии на плавление - 420 кВт•ч/т - при работе без дополнительных источников тепла (газокислородные горелки, предварительный нагрев шихты, экзотермические реакции и т.д.) значительно занижен (как и время расплавления) и не отражает истинной величины затрат электроэнергии для печи типа ДСП-100И6.
Задачей предлагаемого изобретения является повышение производительности печи за счет соответствующего выбора электрического режима с учетом марок стали и допустимого тока электродов, определяющего их эксплуатационную стойкость.
Указанная задача достигается тем, что в известном способе управления электрическим режимом дуговой электропечи, при котором в период плавления контролируют электрические параметры дуги, коэффициент облучения футеровки, насыпную плотность шихты и расход электроэнергии, задают значение удельного расхода электроэнергии на одну тонну завалки (или подвалки) для каждой технологической стадии плавления, определяют заданное значение расхода электроэнергии на каждой технологической стадии плавления и при достижении этого значения расхода электроэнергии переключают задание регулятору электрического режима печи, согласно изобретению заданное значение расхода электроэнергии определяют на каждой технологической стадии плавления в соответствии с величиной коэффициента tgYд, характеризующего свойства дуги в зависимости от тока дуги и фазного напряжения ступени печного трансформатора, пропорционально массе шихты, расплавляемой на данной технологической стадии плавления и задаваемой по заранее составленному графику расплавления шихты, который учитывает изменения насыпной плотности шихты и коэффициента облучения футеровки по мере осаждения шихты в жидкую ванну, а задание регулятору электрического режима печи по току устанавливают не выше допустимого тока электродов.
Повышение производительности печи в заявляемом способе достигается за счет высокой точности определения мощности дуги Pд в зависимости от тока Iд для каждой ступени печного трансформатора с учетом колебания напряжения сети и ограничением тока дуги величиной Iдоп.эл. допустимого тока электродов (Iдmax ≤ Iдоп.эл.). Для примера на фиг. 1 даны графики зависимости мощности дуги Pд от тока Iд, определенные для стали Ст3, начальной стадии плавления (расплавлено 5 - 15 т шихты), для ступеней печного трансформатора 3, 4, 5, 6, 8. Линейные напряжения ступеней: Uст3 = 686 В, Uст4 = 654 В, Uст5 = 625 В, Uст6 = 598 В, Uст8 = 536 В. Характеристики Pд (Iд) построены в соответствии с характеристиками дуги tgYд = f(Iд, Uстф) для выбранных ступеней печного трансформатора (фиг .2), напряжение сети 37 кВ (номинальное напряжение 35 кВ), Uстф - фазное напряжение ступени печного трансформатора.
Заявляемый способ управления электрическим режимом дуговой электропечи осуществляется следующим образом. Предварительно для каждой марки стали определяют характеристики дуги tgYд (Iд, Uстф для нескольких рабочих ступеней печного трансформатора ПТ [3].
Коэффициент tgYд характеризует степень потребления дугой реактивной энергии и равен отношению реактивного сопротивления дуги xд к ее активному сопротивлению rд, tgYд = хд/rд. tgYд зависит от тока и фазного напряжения ступени печного трансформатора и определяется на основе опытных данных:
- приращения активной ΔA и реактивной ΔR энергии за интервал времени Δt = 1 мин (при использовании управляющего вычислительного комплекса УВК на печи ДСП-100И7 ЧМК, этот интервал сокращен до 0.25 с);
- фактического напряжения сети Uс, кВ;
- параметров короткой сети : rкс - активное сопротивление,
Xкс - реактивное сопротивление.
Обработка опытных данных ведется по следующей схеме.
Находим коэффициент tgY и коэффициент мощности cosY(λ) электропечной установки
tgφ = ΔR/ΔA,
Figure 00000003

Figure 00000004

активную мощность, потребляемую из сети,
Figure 00000005

где Kсч - коэффициент счетчика;
приведенное линейное напряжение ступени печного трансформатора
Figure 00000006

где Uст - линейное напряжение ступени печного трансформатора при номинальном Uн напряжении сети;
ток дуги
Figure 00000007

полное фазное сопротивление электрической цепи, включающей короткую сеть и дугу,
Figure 00000008

активное сопротивление фазы (эксплуатационное)
rф= Zф•cosφ;
реактивное сопротивление фазы (эксплуатационное)
Xф= Zф•sinφ;
активное сопротивление дуги
rд = rф - rкс,
реактивное сопротивление дуги
xд = xф - xкс,
коэффициент
Figure 00000009

Для нахождения tgYд в вычислительный блок ВБ управляющего вычислительного комплекса УВК (см. фиг. 3) вводят измеренные с высокой стороны печного трансформатора ТП трехфазные значения активной A и реактивной R мощности (или энергии), линейные напряжения Uав, Uвс, Uса. В ВБ по специальной программе ведут расчет зависимости tgYд от тока дуги Iд для каждой ступени ПТ с учетом колебания напряжения сети. Характеристики дуги tgYд (Iд, Uстф), поступают в банк данных БД. В блок приема информации БПИ подают задание, которое оформляется в виде графика расплавления шихты (см. таблицу 1). Задание включает:
- количество технологических стадий nсд;
- номер ступени ПТ Nст;
- напряжение ступени ПТ (линейное) Uст;
- величину тока Iд, причем Iд ≤ Iдоп.эл;
- массу расплавляемой на каждой стадии шихты mi, т;
- массу шлакообразующих mшл, т;
- насыпную плотность шихты ρ, т/м3;
- марку стали;
- параметры короткой сети (активное rкс и индуктивное xкс сопротивления).
В соответствии с графиком расплавления шихты и характеристиками дуги tgYд (Iд, Uстф для каждой технологической стадии плавления в блоке Aзад по своей программе проводят определение заданного значения электроэнергии с выдачей результата на блок сравнения БС, где он сравнивается с текущим значением активной энергии A. При A = Aзад сигнал поступает на блок исполнения команд БИК, откуда поступает команда или на переключение ступени печного трансформатора через ПСН (переключатель ступеней напряжения) или на изменение задания по току в регулятор электрического режима РР, который управляет перемещением электродов через гидроусилитель ГЦ.
В таблице 1 приведены графики расплавления шихты по технологическим стадиям и электрические режимы для печи ДСП-100И6 при расплаве стали Ст3.
Режим N 1, рабочий режим печи ДСП-100И6, подобран для насыпной плотности шихты 1.9 т/м3. Режимы N 2 (насыпная плотность шихты 1.9 т/м3) и N 3 (насыпная плотность шихты 1.45 т/м3) составлены в соответствии с изобретением.
Сравнение режимов N 1, 2, 3 показало, что составление графика расплава в соответствии с начальной насыпной плотностью шихты и ее изменением по мере расплавления, а также ограничение тока величиной допустимого тока электродов позволяет сократить время расплава с 74 минут до 68-66 минут, снизить затраты электроэнергии на всю плавку на 2-2.5 МВт•ч. Режимы N 2 и 3 опробованы на той же печи. Подтверждены затраты электроэнергии на расплавление шихты и время расплавления. Удельный расход электродов снижен на 1.1 кг/т.
Таким образом, точность управления электрическим режимом по предлагаемому изобретению доказана.
Литература.
1. Дрогин В.И., Гордиенко В.А., Нестеров А.М. и др. Авторское свидетельство N 1302444. Открытия, изобретения, промышленные образцы, товарные знаки. N 13, 1987, с.248.
2. Морозов А. Н. Расчеты по электрическим режимам работы дуговых сталеплавильных печей. Учебное пособие. Челябинск, 1989, с. 35.
3. Евсеева Н.В. Электрические характеристики дуги в дуговой сталеплавильной печи. Известия ВУЗов. Электромеханика. 1994. N 3 с. 64-70.

Claims (1)

  1. Способ управления электрическим режимом дуговой электросварки, при котором в период плавления контролируют электрические параметры дуги, коэффициент облучения футеровки, насыпную плотность шихты и расход электроэнергии, задают значение удельного расхода электроэнергии на 1 т завалки (или подвалки) для каждой технологической стадии плавления, определяют заданное значение расхода электроэнергии на каждой технологической стадии плавления и по достижении этого значения расхода электроэнергии переключают задание регулятору электрического режима печи, отличающийся тем, что заданное значение расхода электроэнергии определяют на каждой технологической стадии плавления в соответствии с величиной коэффициента tg Yд, характеризующего свойства дуги в зависимости от тока дуги и фазного напряжения ступени печного трансформатора, пропорционально массе шихты, расплавляемой на данной технологической стадии плавления и задаваемой по заранее составленному графику расплавления шихты, который учитывает изменения насыпной плотности шихты и коэффициента облучения футеровки по мере осаждения шихты в жидкую ванну, а задание регулятору электрического режима печи по току устанавливают не выше допустимого тока электродов.
RU97110526/09A 1997-06-20 1997-06-20 Способ управления электрическим режимом дуговой сталеплавильной печи RU2128407C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97110526/09A RU2128407C1 (ru) 1997-06-20 1997-06-20 Способ управления электрическим режимом дуговой сталеплавильной печи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97110526/09A RU2128407C1 (ru) 1997-06-20 1997-06-20 Способ управления электрическим режимом дуговой сталеплавильной печи

Publications (1)

Publication Number Publication Date
RU2128407C1 true RU2128407C1 (ru) 1999-03-27

Family

ID=20194464

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97110526/09A RU2128407C1 (ru) 1997-06-20 1997-06-20 Способ управления электрическим режимом дуговой сталеплавильной печи

Country Status (1)

Country Link
RU (1) RU2128407C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052196A3 (en) * 2003-11-27 2006-03-16 Danieli Off Mecc Method for pre-heating, transforming and melting a metal charge and relative plant
WO2006032347A2 (de) * 2004-09-25 2006-03-30 Sms Demag Ag Verfahren und einrichtung zum herstellen von flüssigem stahl

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Евсеева Н.В. Электрические характеристики дугив дуговой сталеплавильной печи // Известия ВУЗов: Электромеханика. = 1994, N 3, с.64-70. *
Морозов А.Н. Расчеты по электрическим режимам работы дуговых сталеплавильных печей: Учебное пособие. - Челябинск, 1989, с.35. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052196A3 (en) * 2003-11-27 2006-03-16 Danieli Off Mecc Method for pre-heating, transforming and melting a metal charge and relative plant
US7648551B2 (en) 2003-11-27 2010-01-19 Danieli & C. Officine Meccaniche Spa Method for pre-heating, transforming and melting a metal charge and relative plant
WO2006032347A2 (de) * 2004-09-25 2006-03-30 Sms Demag Ag Verfahren und einrichtung zum herstellen von flüssigem stahl
WO2006032347A3 (de) * 2004-09-25 2007-06-21 Sms Demag Ag Verfahren und einrichtung zum herstellen von flüssigem stahl

Similar Documents

Publication Publication Date Title
CN101167032B (zh) 使用可变电抗器控制多个炉上的电功率的系统和方法
EP1436876B1 (en) Control system and method for voltage stabilization
RU2128407C1 (ru) Способ управления электрическим режимом дуговой сталеплавильной печи
JPS60138384A (ja) ア−ク炉の制御方法
RU2104450C1 (ru) Способ электроплавки и дуговая печь для его осуществления
Bowman Computer modelling of arc furnace electrical operation
US3857697A (en) Method of continuously smelting a solid material rich in iron metal in an electric arc furnace
JPH07118382B2 (ja) ア−ク炉の運転方法
US4580272A (en) Method for controlling and balancing the power in an electric furnace
RU2150643C1 (ru) Способ определения стадий плавления шихты в дуговой сталеплавильной печи
RU2048662C1 (ru) Способ электроплавки и дуговая печь для его осуществления
Veijola et al. Modifying the EAF voltage tap profile for lower electrode tip consumption and increased energy efficiency
US1626431A (en) Electric furnace
SU859463A1 (ru) Способ выплавки стали
RU2082763C1 (ru) Способ управления процессом плавки металлизированных окатышей в дуговой печи
RU2165668C2 (ru) Способ регулирования параметров электроэнергии в трехфазных сетях электроснабжения печей индукционного нагрева и устройство для его осуществления
Klocok et al. Features of Regulation of the Electric Regime of Electro Arc Furnaces in the Production of Ferroalloys with High Silicon Content
JP3629988B2 (ja) 電気抵抗式灰溶融炉の電力制御方法
Nikolaev et al. Development of Improved Methodology for Setting Up Electro-Technological Modes of Electric Arc Steel-Making Furnaces of Modular Type
JP2665296B2 (ja) 直流アーク炉の電圧制御装置
JPS58141314A (ja) ア−ク炉の制御方法
Arad et al. Aspects of the electric arc furnace control
Persson et al. Electrometallurgical Relationships in Electric Smelting Furnaces
RU2075840C1 (ru) Способ реализации оптимального режима управления электропечью
Peens et al. Modelling and control of a three-phase electric arc furnace

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060621