WO2006030919A1 - 逆特性測定装置および歪み補償装置、方法、プログラム、記録媒体 - Google Patents

逆特性測定装置および歪み補償装置、方法、プログラム、記録媒体 Download PDF

Info

Publication number
WO2006030919A1
WO2006030919A1 PCT/JP2005/017200 JP2005017200W WO2006030919A1 WO 2006030919 A1 WO2006030919 A1 WO 2006030919A1 JP 2005017200 W JP2005017200 W JP 2005017200W WO 2006030919 A1 WO2006030919 A1 WO 2006030919A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ideal
input signal
output
inverse characteristic
Prior art date
Application number
PCT/JP2005/017200
Other languages
English (en)
French (fr)
Inventor
Makoto Kurosawa
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to DE112005002231T priority Critical patent/DE112005002231T5/de
Priority to US11/571,692 priority patent/US7683631B2/en
Publication of WO2006030919A1 publication Critical patent/WO2006030919A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/393A measuring circuit being coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to nonlinear distortion compensation.
  • an object of the present invention is to compensate for nonlinear distortion based on characteristics related to the characteristics of the object to be measured.
  • An inverse characteristic measuring apparatus is based on a signal measuring means for measuring an output signal output from a device under test as a result of applying an input signal to the device under test, and the input signal.
  • An ideal signal acquisition means for acquiring an ideal signal output from the measurement object, and an inverse characteristic acquisition means for acquiring an inverse characteristic that is a relationship between the ideal signal and the output signal when the object to be measured is an ideal one; It is comprised so that it may comprise.
  • the signal measuring means measures the output signal output from the device under test as a result of applying the input signal to the device under test.
  • the ideal signal acquisition means acquires an ideal signal output from the device under test when the device under test is ideal based on the input signal.
  • the inverse characteristic acquisition means acquires an inverse characteristic that is a relationship of the ideal signal to the output signal.
  • the inverse characteristic measuring apparatus according to the present invention may include an input signal measuring unit that measures an input signal, and the ideal signal acquiring unit may acquire the ideal signal based on the measured input signal.
  • the input signal is generated based on the recorded contents of the waveform recording means that records the waveform of the input signal, and the ideal signal acquisition means is applied to the waveform recorded in the waveform recording means. Based on this, an ideal signal may be obtained.
  • An inverse characteristic measuring apparatus provides a waveform recording waveform The relationship between the input signal measuring means for measuring the input signal generated based on the recorded content of the recording means, the ideal signal acquiring means for using the recorded content of the waveform recording means as an ideal signal, and the ideal signal with respect to the measured input signal. Inverse characteristic acquisition means for acquiring the reverse characteristic is provided.
  • the input signal measuring means measures the input signal generated based on the recorded content of the waveform recording means that records the waveform.
  • the ideal signal acquisition means uses the recorded content of the waveform recording means as an ideal signal.
  • the inverse characteristic acquisition means acquires an inverse characteristic that is a relationship of the ideal signal to the measured input signal.
  • the distortion compensator according to the present invention is configured to obtain an inverse characteristic from an inverse characteristic measuring apparatus and to provide a device under test with an input signal converted by the inverse characteristic.
  • a distortion compensation apparatus is a distortion compensation apparatus that acquires an inverse characteristic from an inverse characteristic measurement apparatus and converts a waveform recorded in a waveform recording unit by the inverse characteristic, and is based on a conversion result of the distortion compensation apparatus.
  • the input signal is configured to be generated.
  • the inverse characteristic measuring method includes a signal measuring step of measuring an output signal output from a device under test as a result of applying an input signal to the device under test, and a device under test based on the input signal. Is ideal, the ideal signal acquisition process for acquiring the ideal signal output from the DUT and the reverse characteristic acquisition process for acquiring the reverse characteristic that is the relationship of the ideal signal to the output signal. Configured to provide.
  • An inverse characteristic measuring method includes an input signal measuring step for measuring an input signal generated based on a recording content of a waveform recording unit that records a waveform, and an recorded signal of the waveform recording unit as an ideal signal.
  • the program according to another aspect of the present invention is based on a signal measurement process for measuring an output signal output from a measurement object as a result of applying the input signal to the measurement object, and the measurement object is ideal based on the input signal.
  • the program according to another aspect of the present invention includes an input signal measurement process for measuring an input signal generated based on a recording content of a waveform recording unit that records a waveform, and an ideal signal that uses the recording content of the waveform recording unit as an ideal signal.
  • This is a program for causing a computer to execute an acquisition process and an inverse characteristic acquisition process for acquiring an inverse characteristic that is a relationship between an ideal signal and a measured input signal.
  • the recording medium according to another aspect of the present invention is based on a signal measurement process for measuring an output signal output from a measured object as a result of applying the input signal to the measured object, and the measured object is ideal based on the input signal.
  • the ideal signal acquisition process that acquires the ideal signal output from the DUT and the reverse characteristic acquisition process that acquires the reverse characteristic that is the relationship of the ideal signal to the output signal.
  • It is a recording medium that can be read by a computer that records a program to be executed in the evening.
  • the recording medium according to another aspect of the present invention includes an input signal measurement process for measuring an input signal generated based on the recording content of a waveform recording unit that records a waveform, and the recording content of the waveform recording unit as an ideal signal.
  • a recording medium that can be read by a computer program that records a program for causing a computer to execute an ideal signal acquisition process and a reverse characteristic acquisition process that acquires an inverse characteristic that is the relationship of an ideal signal to a measured input signal. is there.
  • FIG. 1 is a functional block diagram showing the configuration of the transmission system 1 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the relationship between the input signal X and the output signal Y when the DUT 30 is an amplifier.
  • Figure 3 shows the relationship between functions f, g, and h.
  • FIG. 4 is a functional block diagram showing the configuration of the inverse characteristic measuring instrument 40 according to the first embodiment.
  • FIG. 5 is a diagram showing a connection mode of the switches 2 2, 2 4, 2 6, and 2 8 when the output signal Y is measured.
  • FIG. 6 is a diagram showing a connection mode of the switches 2 2, 2 4, 2 6, and 2 8 when the input signal X is measured.
  • FIG. 7 is a diagram showing a connection mode of the switches 2 2, 2 4, 2 6, and 28 when performing distortion compensation by the distortion compensator 50.
  • FIG. 8 is a conceptual diagram for explaining the signal Y ′.
  • FIG. 9 is a functional protocol diagram showing the configuration of the transmission system 1 according to the second embodiment of the present invention.
  • FIG. 10 is a functional block diagram showing the configuration of the inverse characteristic measuring instrument 40 according to the second embodiment.
  • FIG. 11 is a diagram showing a connection mode of the switches 7 2, 7 4, and 7 6 when the output signal Y is measured.
  • FIG. 12 is a diagram showing a connection mode of the switches 7 2, 7 4, and 7 6 when distortion compensation is performed by the distortion compensator 50.
  • FIG. 1 is a functional protocol diagram showing the configuration of the transmission system 1 according to the first embodiment of the present invention.
  • Transmission system 1 consists of signal source 1 0, switches 2 2, 2 4, 2 6, 2 8, device under test (DUT) 3 0, inverse characteristic measuring device 4 0, distortion compensator 5 0, An antenna 60 is provided.
  • the signal source 10 generates an input signal to be given to the device under test 30.
  • the switch 2 2 guides the input signal generated by the signal source 10 to the distortion compensator 50 or the switch 24.
  • the switch 2 2 has an input terminal 2 2 a, an output terminal 2 2 p, and 2 2 q.
  • Input terminal 2 2 a is connected to signal source 10.
  • Output terminal 2 2 p is connected to switch 2 4.
  • the output terminal 2 2 q is connected to the distortion compensator 50.
  • Switch 2 2 connects input terminal 2 2 a to output terminal 2 2 p or output terminal 2 2 q.
  • the switch 24 guides the input signal generated by the signal source 10 to the device under test 30 or switch 28. Alternatively, switch 24 directs the output of distortion compensator 5.0 to device under test 30.
  • the switch 24 has input terminals 2 4 a and 2 4 b and output terminals 2 4 p and 2 4 q.
  • Input terminal 2 4 a is connected to output terminal 2 2 p of switch 2 2.
  • the input terminal 2 4 b is connected to the distortion compensator 50.
  • Output terminal 2 4 p is connected to switch 2 8.
  • the output terminal 2 4 q is connected to the device under test 30.
  • Switch 2 4 connects input terminal 2 4 a to output terminal 2 4 p or output terminal 2 4 q or disconnects it. Or switch 2 4 connects input terminal 2 4 b to output terminal 2 4 q or disconnects it.
  • the switch 26 guides the output signal output from the DUT 30 to the antenna 60 or the switch 28.
  • the switch 26 has an input terminal 2 6 a and output terminals 2 6 p and 2 6 q.
  • the input terminal 2 6 a is connected to the DUT 30.
  • Output terminal 26 p is connected to switch 28.
  • the output terminal 2 6 q is connected to the antenna 60.
  • Switch 2 6 connects input terminal 2 6 a to output terminal 2 6 p or output terminal 2 6 q o
  • Switch 2 8 is the output signal or signal source 1 0 output from device under test 30
  • the input signal to be generated is guided to the inverse characteristic measuring device 40.
  • Switch 2 8 has input terminals 2 8 a and 2 8 b and an output terminal 2 8 p.
  • the input terminal 2 8 a is connected to the output terminal 2 4 p of the switch 2 4.
  • the input terminal 2 8 b is connected to the output terminal 2 6 p of the switch 2 6.
  • Output terminal 28 p is connected to inverse characteristic measuring instrument 40.
  • Switch 2 8 connects input terminal 2 8 a or input terminal 2 8 b to output terminal 2 8 p.
  • Device under test (DUT) 30 receives an input signal generated by the signal source 10 from the output terminal 2 4 q of the switch 24 or an input signal compensated for distortion by the distortion compensator 50.
  • the output signal is output to the input terminal 2 6 a of the switch 2 6.
  • the device under test 30 is, for example, an amplifier.
  • FIG. 2 is a diagram for explaining the relationship between the input signal X and the output signal Y when the DUT 30 is an amplifier.
  • the function f represents an AM / AM characteristic or an AM / PM characteristic, for example.
  • AM / AM characteristics can be approximated.
  • AM / PM characteristics can be approximated by assuming that function f is a polynomial up to the 9th order (a 0 + aiX + a 2 X 2 + "'+ a 9 X 9 ). Note that function f can be approximated by other polynomials and exponential functions.
  • FIG. 4 is a functional block diagram showing the configuration of the inverse characteristic measuring instrument 40 according to the first embodiment.
  • Inverse characteristic measuring instrument 40 includes signal measurement unit 41, input signal recording unit 4 2 a, distortion signal recording unit 4 2 b, ideal signal acquisition unit 4 4, ideal signal recording unit 4 6, reverse characteristic acquisition unit 4 Eight.
  • the inverse characteristic measuring device 40 is for obtaining the function 1 ⁇ ⁇ ⁇ , that is, the relationship of the ideal signal Yt with respect to the output signal Y.
  • the function 1 ⁇ ⁇ ⁇ is called inverse property.
  • the signal measuring unit 41 measures the signal received from the output terminal 28 ⁇ of the switch 28. For example, measure the power and phase of the signal.
  • the signal received from the output terminal 28 ⁇ is an output signal output from the device under test 30 or an input signal generated by the signal source 10. Therefore, the signal measuring unit 41 measures the output signal or the input signal.
  • the input signal recording unit 4 2 a receives and records the measurement result of the input signal from the signal measuring unit 4 1.
  • the distortion signal recording unit 4 2 b receives the output signal measurement result from the signal measurement unit 41 and records it.
  • the output signal is distorted under the influence of the device under test 30.
  • the ideal signal recording unit 46 receives and records the ideal signal Yt output from the ideal signal acquisition unit 44.
  • the inverse characteristic acquisition unit 48 obtains the function 1 ⁇ ⁇ ⁇ , that is, the relationship of the ideal signal Yt with respect to the output signal ⁇ .
  • the function hi is given to the distortion compensator 50.
  • the output signal Y is obtained from the distortion signal recording unit 42 and the ideal signal Yt is obtained from the ideal signal recording unit 46.
  • the distortion compensator 5 0 receives the input signal X generated by the signal source 1 0 from the output terminal 2 2 q of the switch 2 2, converts it by the function 1 ⁇ ⁇ ⁇ , and receives the distortion-compensated input signal 1 ⁇ ⁇ ⁇ ( ⁇ ) is output to the input terminal 2 4 b of switch 24.
  • FIG. 5 is a diagram showing a connection mode of the switches 2 2, 2 4 and 2 6 s 28 when measuring the output signal Y.
  • FIG. 6 is a diagram showing a connection mode of the switches 2 2, 2 4, 2 6, and 28 when measuring the input signal X.
  • FIG. 7 is a diagram showing a connection mode of the switches 2 2, 2 4, 2 6, 28 when performing distortion compensation by the distortion compensator 50.
  • the input signal X generated by the signal source 10 is given to the inverse characteristic measuring device 40 through the switches 2 2, 2 4 and 2 8.
  • the signal measuring unit 4 1 of the inverse characteristic measuring instrument 40 measures the input signal: X, and the measurement result is recorded in the input signal recording unit 4 2 a.
  • the inverse characteristic acquisition unit 48 acquires the output signal Y from the distortion signal recording unit 4 2 b and the ideal signal Yt from the ideal signal recording unit 46.
  • the inverse characteristic acquisition unit 48 obtains the function 1 ⁇ ⁇ ⁇ , that is, the relationship of the ideal signal Yt to the output signal Y.
  • the function 1 ⁇ ⁇ ⁇ is given to the distortion compensator 50.
  • the input terminal 2 2 a of switch 2 2 is connected to output terminal 2 2 q
  • the input terminal 2 4 b of switch 2 4 is connected to output terminal 2 4 q
  • the input signal X generated by the signal source 10 is supplied to the distortion compensator 50 through the switch 22.
  • the distortion compensator 50 receives the input signal X, converts it by function 1, and outputs the distortion-compensated input signal 1 ⁇ ⁇ ⁇ ).
  • the distortion-compensated input signal 1 ⁇ ⁇ ⁇ ( ⁇ ) is given to the device under test 30 via the switch 24.
  • the device under test 30 amplifies the distortion-compensated input signal hf i (X) and outputs a signal Y ′.
  • Signal Y ' is transmitted by antenna 60.
  • FIG. 8 is a conceptual diagram for explaining the signal Y ′.
  • the distortion compensator 5 0 outputs the distortion-compensated input signal 1 ⁇ ⁇ ⁇ ( ⁇ ).
  • the signal ⁇ , f (lri (X)) output from the device under test 30.
  • the non-linear distortion caused by the device under test 30 can be compensated based on the inverse characteristic I related to the characteristics of the device under test 30.
  • the distortion compensator 5 0 reverses the input signal X generated by the signal source 10. Convert based on h- i and output 1 ⁇ ⁇ ⁇ ( ⁇ ). When 1 ⁇ ⁇ ⁇ ( ⁇ ) is applied to the object to be measured 30, the ideal signal Yt is output.
  • Second embodiment
  • FIG. 9 is a functional block diagram showing the configuration of the transmission system 1 according to the second embodiment of the present invention.
  • Transmission system 1 includes 1 signal source 1 0, device under test 3 0, inverse characteristic measuring device 4 0, distortion compensator 5 0, antenna 6 0, switch 7 2, 7 4, 7 6, waveform recording unit 8 0 is provided.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the device under test 30 and the antenna 60 are the same as in the first embodiment, and a description thereof will be omitted.
  • the signal source 10 generates an input signal to be given to the device under test 30.
  • the waveform of the input signal is based on the recorded contents of the waveform recording unit 80. More specifically, the waveform of the input signal generated by the signal source 10 is the waveform of the input signal which is the recording content of the waveform recording unit 80 or the waveform of the distortion-compensated input signal output by the distortion compensator 50. It is.
  • the waveform recording unit 80 records the waveform of the input signal.
  • the recorded content of the waveform recording unit 80 is an AWG (Arbitrary Waveform Generator) digital data.
  • the switch 7 2 guides the recorded contents of the waveform recording unit 80 to the distortion compensator 50 or the switch 74.
  • the switch 7 2 has an input terminal 7 2 a, an output terminal 7 2 p, and 7 2 q.
  • the input terminal 7 2 a is connected to the waveform recording unit 80.
  • Output terminal 7 2 p is connected to switch 7 4.
  • the output terminal 7 2 q is connected to the distortion compensator 50.
  • Switch 7 2 connects input terminal 7 2 a to output terminal 7 2 p or output terminal 7 2 q.
  • the switch 74 guides to the signal source 10 the waveform of the input signal which is the recording content of the waveform recording unit 80 or the waveform of the distortion-compensated input signal output from the distortion compensator 50.
  • the switch 7 4 has input terminals 7 4 a and 7 4 b and an output terminal 7 4 p.
  • Input terminal 7 4 a is connected to output terminal 7 2 p of switch 7 2.
  • the input terminal 7 4 b is connected to the distortion compensator 50.
  • Output terminal 7 4 p is connected to signal source 10.
  • the switch 7 4 has an input terminal 7 4 a or an input terminal 7 4 b and an output terminal 7 4 p 3 ⁇ 4 ⁇ G-9.
  • the switch 7 6 guides the output signal output from the device under test 30 to the antenna 60 or the inverse characteristic measuring device 40.
  • the switch 7 6 has an input terminal 7 6 a, and output terminals 7 6 p and 7 6 q.
  • Input terminal 7 6 a is connected to device under test 30.
  • Output terminal 7 6 p is connected to inverse characteristic measuring instrument 40.
  • the output terminal 7 6 q is connected to the antenna 60.
  • Switch 7 6 connects input terminal 7 6 a to output terminal 7 6 p or output terminal 7 6 q.
  • the inverse characteristic measuring instrument 40 includes a signal measuring unit 41, a distortion signal recording unit 4 2 b, an ideal signal acquisition unit 44, an ideal signal recording unit 4, and an inverse characteristic acquisition unit 48.
  • the inverse characteristic measuring device 40 is for obtaining the relationship of the ideal signal Yt with respect to the function 1, that is, the output signal Y.
  • the signal measuring unit 4 1 measures the signal received from the output terminal 7 6 p of the switch 7 6. For example, measure the power and phase of the signal.
  • the signal received from 7 6 p is the output signal output from the device under test 30. Therefore, the signal measuring unit 41 measures the output signal.
  • the ideal signal acquisition unit 44 reads the waveform recorded in the waveform recording unit 80.
  • the ideal signal acquisition unit 4 4 gives an ideal measurement object 30 when an input signal having a waveform recorded in the waveform recording unit 80 is given to the ideal measurement object 30.
  • the distortion signal recording unit 4 2 b, the ideal signal recording unit 46, and the inverse characteristic acquisition unit 48 are the same as those in the first embodiment, and the description thereof is omitted.
  • the distortion compensator 50 is connected to the waveform recording section from the output terminal 7 2 q of switch 7 2.
  • FIG. 8 Receives the waveform recorded in 0 and converts it with the function 1 ⁇ ⁇ ⁇ . Then, the waveform converted by the function 1 ⁇ ⁇ ⁇ is output to the input terminal 7 4 b of the switch 7 4.
  • FIG. 11 is a diagram showing a connection mode of the switches 7 2, 7 4, and 7 6 when the output signal Y is measured.
  • FIG. 12 is a diagram showing a connection mode of the switches 72, 74, and 76 when performing distortion compensation by the distortion compensator 50.
  • the waveform recorded in the waveform recording unit 80 is given to the signal source 10 through the switches 7 2 and 7 4.
  • the signal source 10 generates an input signal having a waveform recorded in the waveform recording unit 80.
  • An input signal generated by the signal source 10 is given to the device under test 30.
  • the DUT 30 outputs the output signal Y.
  • the output signal Y is given to the inverse characteristic measuring device 40 through the switch 76.
  • the signal measuring unit 41 of the inverse characteristic measuring device 40 measures the output signal Y, and the measurement result is recorded in the distortion signal recording unit 4 2 b.
  • the ideal signal acquisition unit 44 reads the waveform recorded in the waveform recording unit 80.
  • the ideal signal acquisition unit 44 outputs a waveform recording unit 80 (when the input signal having this recorded waveform is applied to the ideal measurement target 30, it is output from the ideal measurement target 30.
  • the ideal signal Yt is recorded in the ideal signal recording unit 4 6.
  • the inverse characteristic acquisition unit 4 8 receives the output signal Y from the distortion signal recording unit 4 2 b and the ideal signal recording unit 4 The ideal signal Yt is acquired from 6.
  • the inverse characteristic acquisition unit 4 8 The function hfi, ie, the relationship of the ideal signal Yt to the output signal Y is obtained.
  • the function hi is given to the distortion compensator 50.
  • input terminal 7 2 a of switch 7 2 and output terminal 7 2 q are connected, and input terminal 7 4 b of switch 7 4 and output terminal 7 4 p are connected.
  • the waveform recorded in the waveform recording unit 80 is given to the distortion compensator 50 through the switch 72.
  • the distortion compensator 50 receives the waveform and converts it with the function 1 ⁇ ⁇ ⁇ .
  • the waveform converted by the function 1 ⁇ ⁇ ⁇ is applied to the signal source 10 through the switch 7 4.
  • the signal source 10 generates an input signal having a waveform converted by the function 1 ⁇ ⁇ ⁇ .
  • the input signal generated by the signal source 10 is 1 ⁇ ⁇ ⁇ ( ⁇ ) and is given to the device under test 30.
  • the device under test 30 outputs an output signal Y ′.
  • the output signal is transmitted from the antenna 60 through the switch 76.
  • the signal is the ideal signal Yt as in the first embodiment.
  • the non-linear distortion caused by the object to be measured 30 can be compensated based on the inverse characteristic 1 ⁇ ⁇ ⁇ related to the characteristic of the object to be measured 30.
  • the distortion compensator 50 converts the waveform recorded in the waveform recording unit 80 based on the inverse characteristic 1 ⁇ ⁇ ⁇ and provides it to the signal source 10. Then, the input signal generated by the signal source 10 becomes 1 ⁇ ⁇ ⁇ ( ⁇ ).
  • the ideal signal Yt is output.
  • the device under test 30 is removed and the signal source 10 and the input terminal 76a of the switch 76 may be directly connected.
  • the signal measuring unit 41 measures the input signal generated by the signal source 10.
  • the inverse characteristic acquisition unit 48 obtains the relationship of the ideal signal Yt with respect to the function 1, that is, the measured input signal.
  • the waveform recorded in the waveform recording unit 80 is converted by the distortion compensator 50 based on the inverse characteristic 1 ⁇ ⁇ ⁇ and applied to the signal source 10, so that the signal from the signal source 10 to the antenna 60 is transmitted. Distortion can be compensated.
  • said embodiment is realizable as follows. CPU, hard disk, media (CD-ROM, etc.)
  • the media reader that is equipped with a reader that reads the media that records the program that realizes each of the above parts is read and installed on the hard disk.
  • the above embodiment can also be realized by such a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

 非線型歪みを、被測定物の特性に関連した特性に基づき補償する。逆特性測定器40は、信号源10が生成した入力信号を被測定物30に与えた結果、被測定物30から出力される出力信号を測定する。さらに、入力信号に基づき、被測定物30が理想的なものである場合に、被測定物30から出力される理想信号を取得する。しかも、出力信号に対する理想信号の関係である逆特性を取得する。この逆特性を歪み補償器50に与える。歪み補償器50は、入力信号を逆特性によって変換したものを、被測定物30に与える。これにより、被測定物30から出力された信号は、被測定物30による歪みが補償された理想信号となる。

Description

逆特性測定装置および歪み補償装置、 方法、 プログラム、 記録媒体
技術分野
本発明は、 非線型歪みの補償に関する。
明 田 背景技術
増幅器に入力信号を与えると、 増幅されて出力される。 出力信号を y、 入力信号を Xとすると、 y = a l · Xとなる。 しかし、 増幅器によ り増幅が行なわれる際に、 歪みが発生し、 出力信号 yに付加されてし まう。 この歪みは、 非線型なものであり、 a2 · x2 + a3 · x3 + a4 · x4 + …というように表すことができる。 この非線型な歪みを測定すること が、 従来より行なわれている (例えば、 特許文献 1 (特開平 1 1— 1 1 8 8 7 3号公報) を参照)。 なお、 このような非線型歪みは、 増幅器 に限らず、 一般的な電子デバイスに見られるものである。
しかしながら、 非線型な歪みを測定できたとしても、 非線型な歪み をどのように補償するかを決定することは容易ではない。
そこで、 本発明は、 非線型歪みを、 被測定物の特性に関連した特性 に基づき補償することを課題とする。 発明の開示 本発明の一態様にかかる逆特性測定装置は、 入力信号を被測定物に 与えた結果、 被測定物から出力される出力信号を測定する信号測定手 段と、 入力信号に基づき、 被測定物が理想的なものである場合に、 被 測定物から出力される理想信号を取得する理想信号取得手段と、 出力 信号に対する理想信号の関係である逆特性を取得する逆特性取得手段 とを備えるように構成される。 上記のように構成された逆特性測定装置によれば、信号測定手段は、 入力信号を被測定物に与えた結果、 被測定物から出力される出力信号 を測定する。 理想信号取得手段は、 入力信号に基づき、 被測定物が理 想的なものである場合に、 被測定物から出力される理想信号を取得す る。 逆特性取得手段は、 出力信号に対する理想信号の関係である逆特 性を取得する。 また、 本発明にかかる逆特性測定装置は、 入力信号を測定する入力 信号測定手段を備え、 理想信号取得手段は、 測定された入力信号に基 づき、 理想信号を取得するようにしてもよい。 また、 本発明にかかる逆特性測定装置は、 入力信号の波形を記録し た波形記録手段の記録内容に基づき、 入力信号が生成され、 理想信号 取得手段は、 波形記録手段に記録された波形に基づき、 理想信号を取 得するようにしてもよい。 本発明の他の態様にかかる逆特性測定装置は、 波形を記録した波形 記録手段の記録内容に基づき生成された入力信号を測定する入力信号 測定手段と、 波形記録手段の記録内容を理想信号とする理想信号取得 手段と、 測定された入力信号に対する理想信号の関係である逆特性を 取得する逆特性取得手段とを備えるように構成される。 上記のように構成された逆特性測定装置によれば、 入力信号測定手 段は、 波形を記録した波形記録手段の記録内容に基づき生成された入 力信号を測定する。 理想信号取得手段は、 波形記録手段の記録内容を 理想信号とする。 逆特性取得手段は、 測定された入力信号に対する理 想信号の関係である逆特性を取得する。 本発明にかかる歪み補償装置は、 逆特性測定装置から逆特性を取得 し、 入力信号を逆特性によって変換したものを、 被測定物に与えるよ うに構成される。 本発明にかかる歪み補償装置は、 逆特性測定装置から逆特性を取得 し、 波形記録手段に記録された波形を逆特性によって変換する歪み補 償装置であって、 歪み補償装置の変換結果に基づき、 入力信号が生成 されるように構成される。 本発明の他の態様にかかる逆特性測定方法は、 入力信号を被測定物 に与えた結果、 被測定物から出力される出力信号を測定する信号測定 工程と、 入力信号に基づき、 被測定物が理想的なものである場合に、 被測定物から出力される理想信号を取得する理想信号取得工程と、 出 力信号に対する理想信号の関係である逆特性を取得する逆特性取得ェ 程とを備えるように構成される。 本発明の他の態様にかかる逆特性測定方法は、 波形を記録した波形 記録手段の記録内容に基づき生成された入力信号を測定する入力信号 測定工程と、 波形記録手段の記録内容を理想信号とする理想信号取得 工程と、 測定された入力信号に対する理想信号の関係である逆特性を 取得する逆特性取得工程とを備えるように構成される。 本発明の他の態様にかかるプログラムは、 入力信号を被測定物に与 えた結果、 被測定物から出力される出力信号を測定する信号測定処理 と、 入力信号に基づき、 被測定物が理想的なものである場合に、 被測 定物から出力される理想信号を取得する理想信号取得処理と、 出力信 号に対する理想信号の関係である逆特性を取得する逆特性取得処理と をコンビュ一夕に実行させるためのプログラムである。 本発明の他の態様にかかるプログラムは、 波形を記録した波形記録 手段の記録内容に基づき生成された入力信号を測定する入力信号測定 処理と、 波形記録手段の記録内容を理想信号とする理想信号取得処理 と、 測定された入力信号に対する理想信号の関係である逆特性を取得 する逆特性取得処理とをコンピュータに実行させるためのプログラム である。 本発明の他の態様にかかる記録媒体は、 入力信号を被測定物に与え た結果、被測定物から出力される出力信号を測定する信号測定処理と、 入力信号に基づき、 被測定物が理想的なものである場合に、 被測定物 から出力される理想信号を取得する理想信号取得処理と、 出力信号に 対する理想信号の関係である逆特性を取得する逆特性取得処理とをコ ンビュー夕に実行させるためのプログラムを記録したコンピュータに よって読み取り可能な記録媒体である。 本発明の他の態様にかかる記録媒体は、 波形を記録した波形記録手 段の記録内容に基づき生成された入力信号を測定する入力信号測定処 理と、波形記録手段の記録内容を理想信号とする理想信号取得処理と、 測定された入力信号に対する理想信号の関係である逆特性を取得する 逆特性取得処理とをコンピュータに実行させるためのプログラムを記 録したコンビユー夕によって読み取り可能な記録媒体である。
図面の簡単な説明
第 1図は、 本発明の第一の実施形態にかかる送信システム 1の構成 を示す機能プロック図である。
第 2図は、被測定物 3 0がアンプである場合の入力信号 Xと出力信 号 Yとの関係を説明するための図である。
第 3図は、 関数 f,g,hの関係を示す図である。
第 4図は、 第一の実施形態にかかる逆特性測定器 4 0の構成を示す 機能プロヅク図である。
第 5図は、 出力信号 Yの測定の際のスイッチ 2 2、 2 4、 2 6、 2 8の接続態様を示す図である。
第 6図は、 入力信号 Xの測定の際のスィッチ 2 2、 2 4、 2 6、 2 8の接続態様を示す図である。
第 7図は、 歪み補償器 5 0による歪み補償を行なう際のスィツチ 2 2、 2 4、 2 6、 2 8の接続態様を示す図である。
第 8図は、 信号 Y'を説明するための概念図である。 第 9図は、 本発明の第二の実施形態にかかる送信システム 1の構成 を示す機能プロヅク図である。
第 1 0図は、 第二の実施形態にかかる逆特性測定器 4 0の構成を示 す機能プロック図である。
第 1 1図は、 出力信号 Yの測定の際のスィッチ 7 2、 7 4、 7 6の 接続態様を示す図である。
第 1 2図は、 歪み補償器 5 0による歪み補償を行なう際のスィツチ 7 2、 7 4、 7 6の接続態様を示す図である。
発明を実施するための最良の形態 以下、 本発明の実施形態を図面を参照しながら説明する。 第一の実施形態
第 1図は、 本発明の第一の実施形態にかかる送信システム 1の構成 を示す機能プロヅク図である。 送信システム 1は、 信号源 1 0、 スィ ヅチ 2 2、 2 4、 2 6、 2 8、 被測定物(DUT : Device Under Test) 3 0、 逆特性測定器 4 0、 歪み補償器 5 0、 アンテナ 6 0を備える。 信号源 1 0は、 被測定物 3 0に与える入力信号を生成する。 スィツチ 2 2は、 信号源 1 0の生成する入力信号を、 歪み補償器 5 0またはスイッチ 2 4に導く。 スイッチ 2 2は、 入力端子 2 2 a、 出 力端子 2 2 p、 2 2 qを有する。 入力端子 2 2 aは、 信号源 1 0に接 続されている。 出力端子 2 2 pは、 スィッチ 2 4に接続されている。 出力端子 2 2 qは、 歪み補償器 5 0に接続されている。 スイッチ 2 2 は、 入力端子 2 2 aを、 出力端子 2 2 pまたは出力端子 2 2 qに接続 する。 スィッチ 2 4は、 信号源 1 0の生成する入力信号を、 被測定物 3 0 またはスィツチ 2 8に導く。 もしくは、 スィツチ 2 4は、 歪み補償器 5. 0の出力を被測定物 3 0に導く。スィツチ 2 4は、入力端子 2 4 a、 2 4 b , 出力端子 2 4 p、 2 4 qを有する。 入力端子 2 4 aは、 スィ ツチ 2 2の出力端子 2 2 pに接続されている。 入力端子 2 4 bは、 歪 み補償器 5 0に接続されている。 出力端子 2 4 pは、 スイッチ 2 8に 接続されている。出力端子 2 4 qは、被測定物 3 0に接続されている。 スィッチ 2 4は、 入力端子 2 4 aを、 出力端子 2 4 pまたは出力端子 2 4 qに接続するか、 あるいは非接続状態にする。 もしくは、 スイツ チ 2 4は、 入力端子 2 4 bを出力端子 2 4 qに接続するか、 あるいは 非接続状態にする。 スィッチ 2 6は、 被測定物 3 0から出力される出力信号を、 アンテ ナ 6 0またはスィッチ 2 8に導く。スイッチ 2 6は、入力端子 2 6 a、 出力端子 2 6 p、 2 6 qを有する。 入力端子 2 6 aは、 被測定物 3 0 に接続されている。 出力端子 2 6 pは、 スィッチ 2 8に接続されてい る。 出力端子 2 6 qは、 アンテナ 6 0に接続されている。 スイッチ 2 6は、 入力端子 2 6 aを、 出力端子 2 6 pまたは出力端子 2 6 qに接 続する o スィッチ 2 8は、 被測定物 3 0から出力される出力信号または信号 源 1 0の生成する入力信号を、 逆特性測定器 4 0に導く。 スィッチ 2 8は、 入力端子 2 8 a、 2 8 b , 出力端子 2 8 pを有する。 入力端子 2 8 aは、 スイッチ 2 4の出力端子 2 4 pに接続されている。 入力端 子 2 8 bは、 スィッチ 2 6の出力端子 2 6 pに接続されている。 出力 端子 2 8 pは、逆特性測定器 4 0に接続されている。スィツチ 2 8は、 入力端子 2 8 aまたは入力端子 2 8 bを、出力端子 2 8 pに接続する。 被測定物 (DUT: Device Under Test) 3 0は、スィッチ 2 4の出力端 子 2 4 qから信号源 1 0の生成する入力信号または歪み補償器 5 0に より歪み補償された入力信号を受け、 スィツチ 2 6の入力端子 2 6 a に出力信号を出力する。 被測定物 3 0は、 例えばアンプである。 第 2図は、被測定物 3 0がアンプである場合の入力信号 Xと出力信 号 Yとの関係を説明するための図である。 Y = f(X)とすると、 被測定 物 3 0による歪みが出力信号 Y に付加される。 関数 f は、 例えば、 AM/AM特性または AM/PM特性を表すものである。 関数 f を 8次ま での偶関数(a0+a2X2+a4X4+a6X6+a8X8)とすれば AM/AM特性を近似で きる。 関数 f を 9次までの多項式(a0+aiX+a2X2+ "' +a9X9)とすれば AM/PM特性を近似できる。 なお、 関数 f をその他の多項式や指数関 数といった式にして、 AM/AM特性または AM/PM特性を表すように することもできる。 ここで、 被測定物 3 0が理想的なものである場合 (すなわち歪みが出力信号 Yに付加されない場合) に、 被測定物 3 0 から出力される信号を理想信号 Ytという。 Yt = g(X)とする。ここで、 Y = h(Yt)とする。 第 3図は、関数 f,g,hの関係を示す図である。第 3図から、 Yt =h i(Y) = g(X) = gtf— Y))であることがわかる。 第 4図は、 第一の実施形態にかかる逆特性測定器 4 0の構成を示す 機能プロック図である。 逆特性測定器 4 0は、 信号測定部 4 1、 入力 信号記録部 4 2 a、 歪み信号記録部 4 2 b、 理想信号取得部 4 4、 理 想信号記録部 4 6、逆特性取得部 4 8を備える。逆特性測定器 4 0は、 関数 1ι·ιすなわち、出力信号 Yに対する理想信号 Ytの関係を求めるた めのものである。 関数 1ι·ιを逆特性という。 信号測定部 4 1は、 スィッチ 2 8の出力端子 2 8 ρから受けた信号 を測定する。 例えば、 信号のパワーおよび位相を測定する。 出力端子 2 8 ρから受けた信号は、 被測定物 3 0から出力される出力信号また は信号源 1 0の生成する入力信号である。よって、信号測定部 4 1は、 出力信号または入力信号を測定する。 入力信号記録部 4 2 aは、 信号測定部 4 1から入力信号の測定結果 を受けて記録する。 歪み信号記録部 4 2 bは、 信号測定部 4 1から出力信号の測定結果 を受けて記録する。 出力信号は被測定物 3 0の影響を受けて歪んでい る。 理想信号取得部 4 4は、 入力信号記録部 4 2 aに記録された入力信 号を、 理想的な被測定物 3 0に与えた場合に、 理想的な被測定物 3 0 から出力される理想信号を求める。例えば、理想信号 Yt = g(X)である 場合、入力信号記録部 4 2 aに記録された入力信号を Xに代入すれば 理想信号 Ytを求められる。 理想信号記録部 4 6は、理想信号取得部 4 4が出力する理想信号 Yt を受けて記録する。 逆特性取得部 4 8は、 関数 1ι·ιすなわち、 出力信号 Υに対する理想 信号 Ytの関係を求める。 関数 h-iは、 歪み補償器 5 0に与えられる。 なお、 出力信号 Yは歪み信号記録部 4 2わから、 理想信号 Ytは理想 信号記録部 4 6から取得する。 歪み補償器 5 0は、 スィッチ 2 2の出力端子 2 2 qから信号源 1 0 の生成する入力信号 Xを受けて、 関数 1ι·ιにより変換し、 歪み補償さ れた入力信号 1ι·ι(Χ)を、 スィツチ 2 4の入力端子 2 4 bに出力する。 アンテナ 6 0は、 スィツチ 2 6の出力端子 2 6 qから、 被測定物 3 0の出力信号を受けて、 発信する。 次に、 第 5図〜第 8図を参照して、 第一の実施形態の動作を説明す る。ただし、第 5図は、出力信号 Yの測定の際のスィツチ 2 2、 2 4、 2 6 s 2 8の接続態様を示す図である。 第 6図は、 入力信号 Xの測定 の際のスィッチ 2 2、 2 4、 2 6、 2 8の接続態様を示す図である。 第 7図は、歪み補償器 5 0による歪み補償を行なう際のスィツチ 2 2、 2 4、 2 6、 2 8の接続態様を示す図である。 まず、 第 5図を参照して、 スィツチ 2 2の入力端子 2 2 aと出力端 子 2 2 pとを接続し、 スイッチ 2 4の入力端子 2 4 aと出力端子 2 4 qとを接続し、 スイッチ 2 6の入力端子 2 6 aと出力端子 2 6 pとを 接続し、 スイッチ 2 8の入力端子 2 8 bと出力端子 2 8 pとを接続す る。 信号源 1 0の生成する入力信号 Xは、スィツチ 2 2 s 2 4を介して、 被測定物 3 0に与えられる。被測定物 3 0は、出力信号 Yを出力する。 出力信号 Yは、 スィッチ 2 6、 2 8を介して、 逆特性測定器 4 0に与 えられる。 逆特性測定器 4 0の信号測定部 4 1は、 出力信号 Yを測定 し、 測定結果が歪み信号記録部 4 2 bに記録される。 次に、 第 6図を参照して、 スィツチ 2 2の入力端子 2 2 aと出力端 子 2 2 pとを接続し、 スィッチ 2 4の入力端子 2 4 aと出力端子 2 4 Pとを接続し、 スイッチ 2 8の入力端子 2 8 aと出力端子 2 8 pとを 接続する。 信号源 1 0の生成する入力信号 Xは、 スィッチ 2 2、 2 4、 2 8を 介して、 逆特性測定器 4 0に与えられる。 逆特性測定器 4 0の信号測 定部 4 1は、 入力信号: Xを測定し、 測定結果が入力信号記録部 4 2 a に記録される。 入力信号記録部 4 2 aに記録された入力信号 Xに基づき、 理想信号 取得部 4 4が、理想信号 Ytを取得する(Yt = g(X))0理想信号 Ytは、 理想信号記録部 4 6に記録される。 逆特性取得部 4 8は、 歪み信号記録部 4 2 bから出力信号 Yを、 理 想信号記録部 4 6から理想信号 Ytを取得する。逆特性取得部 4 8は、 関数 1ι·ιすなわち、 出力信号 Yに対する理想信号 Ytの関係を求める。 関数 1ι·ιは、 歪み補償器 5 0に与えられる。 さらに、 第 7図を参照して、 スィッチ 2 2の入力端子 2 2 aと出力 端子 2 2 qとを接続し、 スィッチ 2 4の入力端子 2 4 bと出力端子 2 4 qとを接続し、 スィッチ 2 6の入力端子 2 6 aと出力端子 2 6 qと を接続する。 信号源 1 0の生成する入力信号 Xは、 スィツチ 2 2を介して、 歪み 補償器 5 0に与えられる。 歪み補償器 5 0は、 入力信号 X を受けて、 関数 1により変換し、 歪み補償された入力信号 1ι· Χ)を出力する。 歪み補償された入力信号 1ι·ι(Χ)は、 スィッチ 2 4を介して、 被測定物 3 0に与えられる。 被測定物 3 0は、 歪み補償された入力信号 hf i(X) を増幅して、信号 Y'を出力する。信号 Y'はアンテナ 6 0により発信さ れる。 第 8図は、 信号 Y'を説明するための概念図である。 歪み補償器 5 0 は、 歪み補償された入力信号 1ι·ι(Χ)を出力する。 被測定物 3 0の出力 する信号 Ύ, = f(lri(X))である。 ここで、 1ι·ι(Υ) = g(f i(Y))であることか ら、信号 Y' = f(g(f i(X)))である。関数 f と関数 f-iが打ち消し合うので、 信号 Y' = g(X)となる。 理想信号 Yt 二 g(X)であるので、 被測定物 3 0 の出力する信号 Y'は、 理想信号 Yt となる。 すなわち、 歪み補償器 5 0によって、 被測定物 3 0の出力する信号が理想信号 Ytとなる。 第一の実施形態によれば、 被測定物 3 0による非線型な歪みを、 被 測定物 3 0の特性に関連した逆特性 Iに基づき補償できる。 すなわ ち、 信号源 1 0の生成する入力信号 X を、 歪み補償器 5 0が逆特性 h- iに基づき変換して 1ι·ι(Χ)を出力する。 1ι·ι(Χ)を被測定物 3 0に与え ると、 理想信号 Ytが出力される。 第二の実施形態
第二の実施形態は、 信号源 1 0の生成する入力信号の波形が波形記 録部 8 0に記録されていることなどが第一の実施形態と異なる。 第 9図は、 本発明の第二の実施形態にかかる送信システム 1の構成 を示す機能ブロック図である。 送信システム 1は、1信号源 1 0、 被測 定物 3 0、 逆特性測定器 4 0、 歪み補償器 5 0、 アンテナ 6 0、 スィ ヅチ 7 2、 7 4、 7 6、 波形記録部 8 0を備える。 以下、 第一の実施 形態と同様な部分は同一の番号を付して説明を省略する。 被測定物 3 0およびアンテナ 6 0は第一の実施形態と同様であり、 説明を省略する。 信号源 1 0は、被測定物 3 0に与える入力信号を生成する。ただし、 入力信号の波形は、 波形記録部 8 0の記録内容に基づくものである。 より詳細には、 信号源 1 0が生成する入力信号の波形が、 波形記録部 8 0の記録内容である入力信号の波形または歪み補償器 5 0の出力す る歪み補償された入力信号の波形である。 波形記録部 8 0は、 入力信号の波形を記録する。 例えば、 波形記録 部 8 0の記録内容は、 AWG (Arbitrary Waveform Generator) のデ ジ夕ルデ一夕である。 スィッチ 7 2は、 波形記録部 8 0の記録内容を、 歪み補償器 5 0ま たはスィヅチ 7 4に導く。 スイッチ 7 2は、 入力端子 7 2 a、 出力端 子 7 2 p、 7 2 qを有する。 入力端子 7 2 aは、 波形記録部 8 0に接 続されている。 出力端子 7 2 pは、 スィッチ 7 4に接続されている。 出力端子 7 2 qは、 歪み補償器 5 0に接続されている。 スィツチ 7 2 は、 入力端子 7 2 aを、 出力端子 7 2 pまたは出力端子 7 2 qに接続 る。 スィッチ 7 4は、 波形記録部 8 0の記録内容である入力信号の波形 または歪み補償器 5 0の出力する歪み補償された入力信号の波形を、 信号源 1 0に導く。 スイッチ 7 4は、 入力端子 7 4 a、 7 4 b、 出力 端子 7 4 pを有する。 入力端子 7 4 aは、 スィッチ 7 2の出力端子 7 2 pに接続されている。 入力端子 7 4 bは、 歪み補償器 5 0に接続さ れている。 出力端子 7 4 pは、 信号源 1 0に接続されている。 スイツ チ 7 4は、 入力端子 7 4 aまたは入力端子 7 4 bを、 出力端子 7 4 p ¾ ^G—9 る。 スィッチ 7 6は、 被測定物 3 0から出力される出力信号を、 アンテ ナ 6 0または逆特性測定器 4 0に導く。 スィツチ 7 6は、 入力端子 7 6 a、 出力端子 7 6 p、 7 6 qを有する。 入力端子 7 6 aは、 被測定 物 3 0に接続されている。 出力端子 7 6 pは、 逆特性測定器 4 0に接 続されている。 出力端子 7 6 qは、 アンテナ 6 0に接続されている。 スィッチ 7 6は、 入力端子 7 6 aを、 出力端子 7 6 pまたは出力端子 7 6 qに接続する。 第 1 0図は、 第二の実施形態にかかる逆特性測定器 4 0の構成を示 す機能プロック図である。 逆特性測定器 4 0は、 信号測定部 4 1、 歪 み信号記録部 4 2 b、 理想信号取得部 4 4、 理想信号記録部 4 、 逆 特性取得部 4 8を備える。 逆特性測定器 4 0は、 関数 1すなわち、 出力信号 Yに対する理想信号 Ytの関係を求めるためのものである。 信号測定部 4 1は、 スィツチ 7 6の出力端子 7 6 pから受けた信号 を測定する。 例えば、 信号のパワーおよび位相を測定する。 出力端子
7 6 pから受けた信号は、 被測定物 3 0から出力される出力信号であ る。 よって、 信号測定部 4 1は、 出力信号を測定する。 理想信号取得部 4 4は、 波形記録部 8 0に記録された波形を読み出 す。 理想信号取得部 4 4は、 波形記録部 8 0に記録された波形を有す る入力信号を、 理想的な被測定物 3 0に与えた場合に、 ¾想的な被測 定物 3 0から出力される理想信号を求める。 例えば、 理想信号 Yt = g(X)である場合、 波形記録部 8 0に記録された波形を Xに代入すれば 理想信号 Ytを求められる。 歪み信号記録部 4 2 b、 理想信号記録部 4 6および逆特性取得部 4 8は、 第一の実施形態と同様であり、 説明を省略する。 歪み補償器 5 0は、 スィッチ 7 2の出力端子 7 2 qから波形記録部
8 0に記録された波形を受けて、 関数 1ι·ιにより変換する。 そして、 関数 1ι·ιにより変換された波形を、 スィッチ 7 4の入力端子 7 4 bに 出力する。 次に、 第 1 1図および第 1 2図を参照して、 第二の実施形態の動作 を説明する。 ただし、 第 1 1図は、 出力信号 Yの測定の際のスィツチ 7 2、 7 4、 7 6の接続態様を示す図である。 第 1 2図は、 歪み補償 器 5 0による歪み補償を行なう際のスィッチ 7 2、 7 4、 7 6の接続 態様を示す図である。 まず、 第 1 1図を参照して、 スイッチ 7 2の入力端子 7 2 aと出力 端子 7 2 pとを接続し、 スィッチ 7 4の入力端子 7 4 aと出力端子 7 4 pとを接続し、 スィッチ 7 6の入力端子 7 6 aと出力端子 7 6 pと を接続する。 波形記録部 8 0に記録された波形は、スィツチ 7 2、 7 4を介して、 信号源 1 0に与えられる。 信号源 1 0は、 波形記録部 8 0に記録され た波形を有する入力信号を生成する。 信号源 1 0の生成する入力信号 は、 被測定物 3 0に与えられる。 被測定物 3 0は、 出力信号 Yを出 力する。 出力信号 Yは、 スィッチ 7 6を介して、 逆特性測定器 4 0に 与えられる。 逆特性測定器 4 0の信号測定部 4 1は、 出力信号 Yを測 定し、 測定結果が歪み信号記録部 4 2 bに記録される。 次に、 理想信号取得部 4 4は、 波形記録部 8 0に記録された波形を 読み出す。 理想信号取得部 4 4は、 波形記録部 8 0 (こ記録された波形 を有する入力信号を、 理想的な被測定物 3 0に与えた場合に、 理想的 な被測定物 3 0から出力される理想信号 Ytを求める。理想信号 Ytは、 理想信号記録部 4 6に記録される。 逆特性取得部 4 8は、 歪み信号記録部 4 2 bから出力信号 Yを、 理 想信号記録部 4 6から理想信号 Ytを取得する。逆特性取得部 4 8は、 関数 hfiすなわち、 出力信号 Yに対する理想信号 Ytの関係を求める。 関数 h-iは、 歪み補償器 5 0に与えられる。 さらに、 第 1 2図を参照して、 スィッチ 7 2の入力端子 7 2 aと出 力端子 7 2 qとを接続し、 スィッチ 7 4の入力端子 7 4 bと出力端子 7 4 pとを接続し、 スイッチ 7 6の入力端子 7 6 aと出力端子 7 6 q とを接続する。 波形記録部 8 0に記録された波形は、 スィッチ 7 2を介して、 歪み 補償器 5 0に与えられる。 歪み補償器 5 0は、 波形を受けて関数 1ι·ι により変換する。 関数 1ι·ιにより変換された波形は、 スィッチ 7 4を 介して、 信号源 1 0に与えられる。 信号源 1 0は、 関数 1ι·ιにより変 換された波形を有する入力信号を生成する。 信号源 1 0の生成する入 力信号は、 1ι·ι(Χ)であり、 被測定物 3 0に与えられる。 被測定物 3 0 は、 出力信号 Y'を出力する。 出力信号 は、 スィッチ 7 6を介して、 アンテナ 6 0により発信される。 なお、 信号 は、 第一の実施形態と 同様に、 理想信号 Ytとなる。 第二の実施形態によれば、 第一の実施形態と同様に、 被測定物 3 0 による非線型な歪みを、 被測定物 3 0の特性に関連した逆特性 1ι·ιに 基づき補償できる。 すなわち、 波形記録部 8 0に記録された波形を、 歪み補償器 5 0が逆特性 1ι·ιに基づき変換して、信号源 1 0に与える。 すると、信号源 1 0の生成する入力信号は 1ι·ι(Χ)となる。 h-i(X)を被測 定物 3 0に与えると、 理想信号 Ytが出力される。 なお、 第二の実施形態において、 被測定物 3 0を取り外し、 信号源 10とスィッチ 76の入力端子 76 aとを直接に接続してもよい。 こ の場合、 信号測定部 41は、 信号源 1 0の生成する入力信号を測定す る。 逆特性取得部 48は、 関数 1すなわち、 測定された入力信号に 対する理想信号 Yt の関係を求める。 波形記録部 80に記録された波 形を、 歪み補償器 50が逆特性 1ι·ιに基づき変換して、 信号源 10に 与えることにより、 信号源 10からアンテナ 60までの信号の伝送の 際の歪みを補償できる。 また、 上記の実施形態は、 以下のようにして実現できる。 CPU、 ハードディスク、 メディア (CD— ROMなど) 読み取り装置を備え たコンビュ一夕のメディァ読み取り装置に、 上記の各部分を実現する プログラムを記録したメディァを読み取らせて、 ハードディスクにィ ンストールする。このような方法でも、上記の実施形態を実現できる。

Claims

請 求 の 範 囲
1 . 入力信号を被測定物に与えた結果、 前記被測定物から出力される 出力信号を測定する信号測定手段と、
前記入力信号に基づき、前記被測定物が理想的なものである場合に、 前記被測定物から出力される理想信号を取得する理想信号取得手段と、 前記出力信号に対する前記理想信号の関係セぁる逆特性を取得する 逆特性取得手段と、
を備えた逆特性測定装置。
2 . 請求項 1に記載の逆特性測定装置であって、
前記入力信号を測定する入力信号測定手段を備え、
前記理想信号取得手段は、 測定された前記入力信号に基づき、 前記 理想信号を取得する、
逆特性測定装置。
3 . 請求項 1に記載の逆特性測定装置であって、
前記入力信号の波形を記録した波形記録手段の記録内容に基づき、 前記入力信号が生成され、
前記理想信号取得手段は、 前記波形記録手段に記録された前記波形 に基づき、 前記理想信号を取得する、
逆特性測定装置。
4 . 波形を記録した波形記録手段の記録内容に基づき生成された入力 信号を測定する入力信号測定手段と、
前記波形記録手段の記録内容を理想信号とする理想信号取得手段と、 測定された前記入力信号に対する前記理想信号の関係である逆特性 を取得する逆特性取得手段と、
を備えた逆特性測定装置。
5 . 請求項 1または 2に記載の逆特性測定装置から前記逆特性を取得 し、 前記入力信号を前記逆特性によって変換したものを、 前記被測定 物に与える歪み補償装置。
6 . 請求項 3または 4に記載の逆特性測定装置から前記逆特性を取得 し、 前記波形記録手段に記録された前記波形を前記逆特性によって変 換する歪み補償装置であって、
前記歪み補償装置の変換結果に基づき、前記入力信号が生成される、 歪み補償装置。
7 . 入力信号を被測定物に与えた結果、 前記被測定物から出力される 出力信号を測定する信号測定工程と、
前記入力信号に基づき、前記被測定物が理想的なものである場合に、 前記被測定物から出力される理想信号を取得する理想信号取得工程と、 前記出力信号に対する前記理想信号の関係である逆特性を取得する 逆特性取得工程と、
を備えた逆特性測定方法。
8 . 波形を記録した波形記録手段の記録内容に基づき生成された入力 信号を測定する入力信号測定工程と、
前記波形記録手段の記録内容を理想信号とする理想信号取得工程と、 測定された前記入力信号に対する前記理想信号の関係である逆特性 を取得する逆特性取得工程と、
を備えた逆特性測定方法。
9 . 入力信号を被測定物に与えた結果、 前記被測定物から出力される 出力信号を測定する信号測定処理と、
前記入力信号に基づき、前記被測定物が理想的なものである場合に、 前記被測定物から出力される理想信号を取得する理想信号取得処理と、 前記出力信号に対する前記理想信号の関係である逆特性を取得する 逆特性取得処理と、
をコンピュータに実行させるためのプログラム。
1 0 . 波形を記録した波形記録手段の記録内容に基づき生成された入 力信号を測定する入力信号測定処理と、
前記波形記録手段の記録内容を理想信号とする理想信号取得処理と、 測定された前記入力信号に対する前記理想信号の関係である逆特性 を取得する逆特性取得処理と、
をコンピュータに実行させるためのプログラム。
1 1 . 入力信号を被測定物に与えた結果、 前記被測定物から出力され る出力信号を測定する信号測定処理と、
前記入力信号に基づき、前記被測定物が理想的なものである場合に、 前記被測定物から出力される理想信号を取得する理想信号取得処理と、 前記出力信号に対する前記理想信号の関係である逆特性を取得する 逆特性取得処理と、
をコンピュータに実行させるためのプログラムを記録したコンビュ 一夕によって読み取り可能な記録媒体。
1 2 . 波形を記録した波形記録手段の記録内容に基づき生成された入 力信号を測定する入力信号測定処理と、
前記波形記録手段の記録内容を理想信号とする理想信号取得処理と、 測定された前記入力信号に対する前記理想信号の関係である逆特性 を取得する逆特性取得処理と、
をコンピュータに実行させるためのプログラムを記録したコンビュ 一夕によって読み取り可能な記録媒体。
PCT/JP2005/017200 2004-09-15 2005-09-12 逆特性測定装置および歪み補償装置、方法、プログラム、記録媒体 WO2006030919A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112005002231T DE112005002231T5 (de) 2004-09-15 2005-09-12 Vorrichtung zur Messung einer inversen Charakteristik, Vorrichtung zur Kompensation der Verzerrung, Verfahren, Programm und Aufzeichnungsmedium
US11/571,692 US7683631B2 (en) 2004-09-15 2005-09-12 Inverse characteristic measuring apparatus, distortion compensation apparatus, method, program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-268181 2004-09-15
JP2004268181A JP4673594B2 (ja) 2004-09-15 2004-09-15 逆特性測定装置および歪み補償装置、方法、プログラム、記録媒体

Publications (1)

Publication Number Publication Date
WO2006030919A1 true WO2006030919A1 (ja) 2006-03-23

Family

ID=36060166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017200 WO2006030919A1 (ja) 2004-09-15 2005-09-12 逆特性測定装置および歪み補償装置、方法、プログラム、記録媒体

Country Status (6)

Country Link
US (1) US7683631B2 (ja)
JP (1) JP4673594B2 (ja)
KR (1) KR20070048779A (ja)
CN (1) CN101014867A (ja)
DE (1) DE112005002231T5 (ja)
WO (1) WO2006030919A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090135891A1 (en) * 2005-07-26 2009-05-28 Advantest Corporation Symbol modulation accuracy measuring device, method, program, and recording medium
JP3919803B1 (ja) * 2006-04-17 2007-05-30 株式会社アドバンテスト 特性取得装置、方法およびプログラム
JP5089187B2 (ja) * 2007-02-08 2012-12-05 株式会社アドバンテスト 増幅制御装置、試験用信号生成モジュール、試験装置、増幅制御方法、プログラム、記録媒体
DE112008001376T5 (de) 2007-05-28 2010-04-08 Advantest Corporation Messgerät und Programm
JP4866388B2 (ja) * 2008-05-22 2012-02-01 富士通株式会社 歪補償装置および歪補償方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268150A (ja) * 2000-03-21 2001-09-28 Hitachi Kokusai Electric Inc リニアライザ
JP2002077285A (ja) * 2000-08-31 2002-03-15 Hitachi Kokusai Electric Inc 送信機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077642B2 (ja) 1997-10-15 2000-08-14 日本電気株式会社 歪み特性測定装置
US6462617B1 (en) * 2001-06-08 2002-10-08 Lucent Technologies Inc. Method and apparatus for calculating the predistortion function from a power amplifier model
JP4168259B2 (ja) * 2003-02-21 2008-10-22 日本電気株式会社 非線形歪補償回路および非線形歪補償方法ならびに送信回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268150A (ja) * 2000-03-21 2001-09-28 Hitachi Kokusai Electric Inc リニアライザ
JP2002077285A (ja) * 2000-08-31 2002-03-15 Hitachi Kokusai Electric Inc 送信機

Also Published As

Publication number Publication date
US7683631B2 (en) 2010-03-23
DE112005002231T5 (de) 2007-08-16
JP4673594B2 (ja) 2011-04-20
US20080036470A1 (en) 2008-02-14
JP2006084277A (ja) 2006-03-30
CN101014867A (zh) 2007-08-08
KR20070048779A (ko) 2007-05-09

Similar Documents

Publication Publication Date Title
WO2006030919A1 (ja) 逆特性測定装置および歪み補償装置、方法、プログラム、記録媒体
TW200907361A (en) Measuring device and program
JP3211861B2 (ja) フーリエ分光器
US20050273188A1 (en) Method and apparatus for improving characteristics of acoustic and vibration transducers
JP2010080665A (ja) 光受信装置および光受信方法
JP4769583B2 (ja) 歪補償増幅装置
JP2023106057A (ja) 送信装置、送信機、送信方法、およびプログラム
JP2008005129A (ja) 非線形歪補償回路、送信装置、非線形歪補償方法、プログラム、記録媒体
TW527787B (en) Method and apparatus for accurate measurement of communications signals
JP2001505014A (ja) 2線式共通帯域動作における全2重伝送による伝送リンクのインタフェース用測定装置
JP2009128334A (ja) インピーダンス測定装置、及び検出方法
Urbansky et al. A high-quality digital radio-frequency capacitor microphone with improved dynamic range
WO2004055976A1 (ja) 歪み補償用テーブル作成方法及び歪み補償方法
JP3139039B2 (ja) Nmr装置の受信装置
JPWO2002033427A1 (ja) ノイズ測定装置、方法、記録媒体
Bortoni et al. Real-Time Voice-Coil Temperature and Cone Displacement Control of Loudspeakers
JP2008070354A (ja) 合算温度補償信号を使用する非線形センサ温度補償
JP3805237B2 (ja) 高周波モジュール検査装置
JP4275688B2 (ja) A/d変換装置
JP2000253499A (ja) インパルス応答測定装置
WO2007099837A1 (ja) 信号測定装置、方法、プログラム、記録媒体
JP2017098871A (ja) 特性検出装置及び特性検出方法
JP2016023941A (ja) レゾルバ信号の振幅自動調整方法
JPH11118530A (ja) 記録計
JP5846808B2 (ja) ゲイン調整システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11571692

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580027923.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077005462

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120050022315

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005002231

Country of ref document: DE

Date of ref document: 20070816

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11571692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607