WO2006030814A1 - 抵抗変化素子及びそれを用いた不揮発性メモリ - Google Patents

抵抗変化素子及びそれを用いた不揮発性メモリ Download PDF

Info

Publication number
WO2006030814A1
WO2006030814A1 PCT/JP2005/016913 JP2005016913W WO2006030814A1 WO 2006030814 A1 WO2006030814 A1 WO 2006030814A1 JP 2005016913 W JP2005016913 W JP 2005016913W WO 2006030814 A1 WO2006030814 A1 WO 2006030814A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
material layer
resistance change
resistance
oxygen
Prior art date
Application number
PCT/JP2005/016913
Other languages
English (en)
French (fr)
Inventor
Tsutomu Kanno
Akihiro Odagawa
Yasunari Sugita
Akihiro Sakai
Hideaki Adachi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006535170A priority Critical patent/JP3903323B2/ja
Publication of WO2006030814A1 publication Critical patent/WO2006030814A1/ja
Priority to US11/417,200 priority patent/US7473612B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0054Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0078Write using current through the cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/009Write using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/31Material having complex metal oxide, e.g. perovskite structure

Definitions

  • the present invention relates to a resistance change element and a nonvolatile memory using the resistance change element.
  • a variable resistance element having V is disclosed.
  • Patent Document 1 US Patent No. 6204139
  • Patent Document 2 JP 2003-068983 A
  • Non-Patent Document 1 Physics Reports Vol.346 (2001) pp.387-531
  • the resistance change element using the oxide shown by PCMO has room for improvement in terms of operation stability and reproducibility.
  • the manufacturing process of the variable resistance element may include a heat treatment process in a hydrogen atmosphere (that is, in a reducing atmosphere) for the purpose of reducing leakage current, as in a general semiconductor process.
  • a heat treatment process in a hydrogen atmosphere that is, in a reducing atmosphere
  • oxygen desorption occurs during heat treatment in a reducing atmosphere.
  • the electrical conduction mechanism of the oxide changes, the resistance change capability disclosed in Patent Document 1 is inhibited, and in the worst case, the resistance change does not occur.
  • the present invention has been made in view of the strong point, and it is a main object of the present invention to provide a resistance change element in which a decrease in resistance change capability is suppressed even when heat treatment is performed in a reducing atmosphere. .
  • the present invention relates to the following resistance change element, a manufacturing method thereof, and a nonvolatile memory using the resistance change element.
  • [0012] It is composed of a material layer and a first electrode and a second electrode, which are two electrodes electrically connected to the material layer, and a current flows between the first electrode and the second electrode. Or a resistance change element in which the resistance of the material layer changes by applying a voltage,
  • An oxide semiconductor having a perovskite structure has a composition formula: Pr Ca CoO (where X Is 0. 4 ⁇ x ⁇ 0.6)).
  • a resistance change element in which the resistance of the material layer is changed by applying a current or voltage between the electrode and the second electrode.
  • An oxide semiconductor having a perovskite structure has a composition formula: Pr Ca CoO (where X
  • variable resistance element according to Item 7, wherein 1 -X X 3 indicates 0.4 ⁇ x ⁇ 0.6.
  • variable resistance element according to Item 7, wherein a current or voltage is applied in a pulse shape.
  • a nonvolatile memory including the variable resistance element according to item 7 and a transistor, wherein the variable resistance element and the transistor are electrically connected.
  • variable resistance element of the present invention has a material layer of RMCoO (where R represents a rare earth element, M
  • the material layer exhibits a resistance change characteristic equal to or better than that of a conventional PCMO by being subjected to a heat treatment in an oxygen atmosphere (hereinafter also referred to as "oxygen treatment").
  • oxygen treatment oxygen atmosphere
  • the resistance change element of the present invention can be suitably applied to a nonvolatile memory.
  • a nonvolatile memory can be obtained by combining the variable resistance element of the present invention and a transistor.
  • the resistance change element of the present invention can be applied to a sensor that detects light, heat, stress, magnetism, and the like in addition to a logic circuit.
  • the resistance change element of the present invention can also be applied to an electronic device that requires a random access memory function, such as an image display.
  • FIG. 1 is a schematic configuration diagram of a resistance change element.
  • FIG. 2 is a conceptual diagram of the configuration of a memory element.
  • FIG. 3 is a configuration diagram of memory elements arranged in an array.
  • FIG. 4 is a diagram showing a memory operation method of the memory element.
  • FIG. 5 is an explanatory diagram of an output detection operation of the resistance change element.
  • FIG. 6 is a schematic configuration diagram of a memory element.
  • FIG. 7 is a diagram showing a method for manufacturing a memory element.
  • FIG. 8 is an external view of a variable resistance element of Example 1 and a memory element of Example 2.
  • FIG. 9 is a diagram showing a method for manufacturing a memory element (resistance change element).
  • FIG. 10 is a diagram showing a memory operation method of a memory element (resistance change element).
  • variable resistance element of the present invention and a nonvolatile memory using the variable resistance element will be described.
  • the resistance change element of the present invention has a chemical formula: RMCoO (where R represents a rare earth element, and M represents
  • the resistance of the material layer is changed by applying a current or a voltage between the first electrode and the second electrode.
  • the material layer is made of an oxide semiconductor having a perovskite structure represented by a chemical formula: RMCoO.
  • R represents a rare earth element
  • M represents an alkaline earth element (the same applies hereinafter).
  • the material layer (oxide semiconductor) represented by the above chemical formula does not exhibit resistance change characteristics only by being formed by a thin film manufacturing method.
  • the oxygen treatment in which the material layer is heated in an oxygen atmosphere, It exhibits resistance change characteristics equivalent to or better than PCMO of the product.
  • a decrease in resistance change capability is suppressed. That is, the resistance change characteristic developed by oxygen treatment is stably maintained against the non-stoichiometry of RMCoO. Even if oxygen desorption occurs due to the heat treatment, it is stably maintained.
  • R may be a rare earth element, and among these, Pr is preferable.
  • M may be an alkaline earth element, but Ca is preferred among them. That is, as the oxide semiconductor having a perovskite structure, a compound represented by the chemical formula: PrCaCoO is preferable. More specifically
  • An oxide semiconductor is preferable.
  • the R and M elements in the oxide semiconductor having a perovskite structure are not limited to one type.
  • a part of Ca may be replaced with Sr, Ba, or the like.
  • the combination of powerful elements can be selected as appropriate according to the characteristics of the variable resistance element that is the final product.
  • the first electrode and the second electrode are electrically connected to the material layer, respectively. Then, by applying a current or a voltage between the first electrode and the second electrode, the resistance of the material layer changes.
  • Examples of the electrically connected mode include a mode in which the material layer is sandwiched, in which the first electrode is stacked on one side of the material layer and the second electrode is stacked on the other side. It is done.
  • the first electrode also referred to as the lower electrode
  • the first electrode is an electrode on which a material layer can be formed. That is, when the variable resistance element of the present invention is manufactured by laminating an electrode and a material layer, after forming the material layer on the first electrode (lower electrode), the second electrode (upper portion) is formed on the material layer. It is also manufactured by forming an electrode).
  • the resistance change element may be formed on a substrate as indicated by 14 in FIG.
  • An example of the substrate is a Si (100) substrate having a thermal oxide film on the surface.
  • the first electrode an electrode on which a material layer can be formed is used.
  • the material of the first electrode include platinum (Pt), iridium (Ir), and oxides thereof.
  • Pt platinum
  • Ir iridium
  • oxides thereof When the material is used, it is preferable because the crystal structure of the first electrode is stably maintained even when exposed to a high-temperature oxygen atmosphere in the oxygen treatment process of the material layer.
  • Other materials include conductive oxides such as SrTiO and SrRuO that partially contain Nb, Cr, La, and the like. The material is
  • the first electrode may be a single layer made of the above-described materials, or may be a multilayer formed by combining a plurality of materials.
  • the first electrode has a multilayer of Pt and Ti, and Ti adheres to SiO.
  • the second electrode may be a conductive material!
  • the material of the second electrode include gold (Au), platinum (Pt), noretium (Ru), iridium (Ir), iridium tantanole (Ir-Ta), titanium (Ti), aluminum (A1 ), Copper (Cu), tantalum (Ta), tin-doped indium oxide (ITO), and the like. These materials are preferable from the viewpoint of reducing the consumption electrode of the resistance change element having a low resistivity.
  • the second electrode may be a single layer made of the above materials or a multilayer composed of a plurality of materials.
  • the thicknesses of the material layer, the first electrode, and the second electrode are not particularly limited.
  • the thickness of the material layer is usually preferably about 50 to 1000 nm.
  • the thickness of the first electrode is usually preferably about 50 to 1000 nm.
  • the thickness of the second electrode is usually preferably about 50 to about LOOOnm.
  • the resistance of the material layer is changed by applying a current or a voltage between the first electrode and the second electrode. And the resistance value after a change is hold
  • the application mode of the current or voltage is not limited, but it is preferable to apply a pulsed power in view of reducing the power consumption of the variable resistance element and increasing the speed.
  • the resistance value of the material layer can be easily controlled by adjusting the polarity and magnitude of the pulse.
  • pulsed voltage shown waveform
  • current is also called pulse current.
  • variable resistance element of the present invention has the above characteristics, it can be suitably applied to a nonvolatile memory (memory element).
  • a nonvolatile memory memory element
  • it can be applied as a nonvolatile memory by electrically connecting a resistance change element and a transistor.
  • variable resistance element of the present invention and a nonvolatile memory using the variable resistance element will be specifically described with reference to the drawings.
  • variable resistance element shown in FIG. 1 has a perovskite structure represented by a chemical formula: RMCoO
  • the resistance value of the material layer 12 changes and the resistance value is maintained.
  • the application of current or voltage is preferably pulsed. In this case, it is possible to reduce the power consumption during writing / erasing / reading of the resistance change element and to speed up the resistance change operation. In addition, the pulse shape is preferred from the viewpoint of Joule heat loss and device efficiency.
  • the resistance of the material layer 12 can be changed to a high state force and a low state force. it can.
  • the resistance can be changed from a low state to a high state by applying the pulse with the polarity reversed.
  • a positive bias is defined as the positive sign of the potential of the second electrode 13 and a negative bias is defined as the reverse.
  • the resistance change element of the present invention can be applied to a nonvolatile memory (memory element).
  • the nonvolatile memory can be manufactured by electrically connecting the variable resistance element and the transistor.
  • a memory element 20 can be formed by electrically connecting a transistor (switching element) 21 and a resistance change element.
  • the memory element 20 may be used alone or in combination.
  • the memory elements 20 may be used arranged in a matrix (see FIG. 3).
  • a random access nonvolatile memory can be obtained.
  • Bn of the bit line 33 and Wn of the word line 31 Bn, Wn
  • Writing to and reading from the memory element can be performed by changing the magnitude of the applied pulse bias.
  • the positive bias is SET (write)
  • the negative bias is R ESET (erase)
  • READ (read) is about 1Z1000 to 1Z4 compared to the voltage at SET 'RESET. Changes in current obtained by applying a small voltage to are detected.
  • a reference resistor 51 as shown in FIG. 5 so as not to be affected by variations in the absolute value of the resistor.
  • variable resistance element of the present invention includes the following steps:
  • a second electrode forming step of forming a second electrode on the material layer that has undergone the oxygen treatment step can be suitably manufactured by the manufacturing method.
  • an insulating acid such as SiO is formed on the substrate 14 on which the transistor 21 is arranged.
  • the insulating oxide film 66 separates the upper and lower electrodes (lower wiring and upper wiring) of the memory element and acts as an interlayer insulating layer.
  • an insulating material such as 2 2 3 or a laminate strength thereof.
  • the insulating oxide film 66 can be formed by a general thin film process. For example, pulsed laser deposition (PLD); ion beam deposition (IBD); cluster ion beam; sputtering methods such as RF, DC, ECR, helicon, ICP, counter target; PVD (Physical Vapor Deposition) such as MBE, ion plating method, etc.
  • PLD pulsed laser deposition
  • IBD ion beam deposition
  • cluster ion beam cluster ion beam
  • sputtering methods such as RF, DC, ECR, helicon, ICP, counter target
  • PVD Physical Vapor Deposition
  • MBE Physical Vapor Deposition
  • the thin film process can also be applied to the formation of the first electrode 11 (lower electrode), the contact electrode 61, the material layer 12, and the second electrode 13 (upper electrode).
  • a contact hole 71 is formed in the insulating oxide film 66.
  • the contact hole 71 can be formed by general fine processing. For example, microfabrication used in semiconductor processes; GMR, TMR magnetic head, magnetic memory (MRAM), etc.
  • microfabrication used in the process for manufacturing a functional device can be used. Specific examples include physical or chemical etching methods such as ion milling, RIE (Reactive Ion Etching), and FIB (Focused Ion Beam).
  • RIE Reactive Ion Etching
  • FIB Flucused Ion Beam
  • a photolithography technique using a stepper, an EB (Electron Beam) method, or the like may be combined.
  • the microfabrication technology can also be applied to the processing of other layers.
  • the planarization process can be performed by CMP (Chemical Mechanical Polishing), cluster ion beam etching, or the like.
  • an acid oxide having a perovskite structure represented by RMCoO is deposited and the surface is deposited.
  • the material layer 12 embedded in the contact hole 71 exhibits resistance change characteristics by performing oxygen treatment.
  • the resistance change characteristic of the material layer 12 after the oxygen treatment is sufficiently maintained even when the material layer 12 is subsequently subjected to heat treatment in a reducing atmosphere.
  • the oxygen treatment step is a step of heating the material layer 12 in an oxygen atmosphere (an atmosphere containing one or more oxygen molecules, ozone, and a group force including atomic oxygen force is also selected).
  • the heating temperature is a temperature at which oxygen can react actively with the material layer 12.
  • the atmosphere contains oxygen molecules, about 400 to 800 ° C is preferable.
  • the heating temperature can be set as appropriate depending on the type of atmosphere, such as a range force of 100 to 800 ° C.
  • the heating time is appropriately set according to the heating temperature. Usually, it is about 30 minutes to 12 hours, and when the heating temperature is low! In general, set the heating time longer.
  • the oxygen treatment step may be performed on the material layer that is in the process of being formed only by the formed material layer 12. Yes. Depending on the thickness, type, and the like of the material layer 12, it may be difficult to diffuse oxygen only by subjecting the formed material layer to oxygen treatment. Therefore, oxygen can be sufficiently diffused throughout the material layer by incorporating an oxygen treatment step in the middle of the formation of the material layer. In this case, the material layer 12 finally subjected to the oxygen treatment is obtained by repeating the material layer formation step and the oxygen treatment step.
  • the second electrode 13 (upper electrode) is provided.
  • the film is formed by combining a thin film process, fine processing, flattening, and the like.
  • the variable resistance element shown in Fig. 1 was fabricated by magnetron sputtering.
  • the first electrode 11 was made of 200 nm Pt.
  • Pr_Ca CoO hereinafter referred to as “PCCO” in Example 1
  • the second electrode 13 was made of lOOOnm Ag.
  • PCCO material layer 12
  • Atmospheric gas Mixed gas of oxygen and argon (oxygen partial pressure is 20% of total pressure) • Input power: 100W.
  • the substrate temperature was again set to 650 ° C, and 300 nm of PCCO was further deposited.
  • Example 1 When returning to room temperature after deposition, the same oxygen treatment as described above was performed again. That is, in Example 1, the material layer forming step and the oxygen treatment step were repeated twice.
  • Example 1 nine types of resistance change elements were manufactured by shaking the composition X of PCCO.
  • a resistance change element was manufactured in the same manner as in Example 1 except that oxygen treatment was not performed.
  • Comparative Example 2 (Conventional Example B), Pr Ca MnO (hereinafter referred to as Comparative Example 2) was applied to the material layer 12.
  • the resistance change element was manufactured using “PCMO”.
  • a method of manufacturing the variable resistance element of Comparative Example 2 is as follows.
  • the substrate 14 a Si (lOO) substrate having a thermal oxide film on its surface was used.
  • the materials and formation methods of the first electrode 11 and the second electrode 13 were the same as those in Example 1.
  • PCMO material layer 12
  • Atmospheric gas Mixed gas of oxygen and argon (oxygen partial pressure is 20% of total pressure) • Input power: 100W.
  • the growth was temporarily stopped and oxygen treatment was performed.
  • the oxygen treatment was performed by holding the material layer at 500 ° C. for 5 hours in a pure oxygen atmosphere of 50 Pa.
  • the substrate temperature was again set to 700 ° C, and 300 nm of PCMO was further deposited.
  • PCMO Pr Ca MnO
  • variable resistance element was manufactured using the above. In Comparative Example 3, except that oxygen treatment was not performed Then, a resistance change element was produced in the same manner as in Comparative Example 2.
  • Example 1 The material layer 12 formed in Example 1 and Comparative Examples 1 to 3 was all polycrystalline as a result of examination by X-ray diffraction.
  • FIG. 8 shows an external view of the variable resistance element manufactured in Example 1 and Comparative Examples 1 to 3. Such an appearance was formed by using a metal mask in the following manner.
  • a first metal mask having a rectangular opening with a width of 0.5 mm and a length of 10 mm was disposed on the substrate 14.
  • a second metal mask having a 1 mm ⁇ 1 mm square opening was prepared and arranged so that the center of the opening coincided with the center of the rectangle of the first electrode 11.
  • the material layer 12 was formed by depositing PCCO or PCMO on the metal mask.
  • the first metal mask is placed so that the center of the opening coincides with the center of the material layer 12, and the long side direction of the first electrode 11 and the long side direction of the opening of the metal mask are Arranged to be orthogonal.
  • the second electrode 13 having a width of 0.5 mm and a length of 10 mm was formed.
  • Example 1 and Comparative Examples 1 to 3 resistance change elements having a junction area (overlapping area of the first electrode, the material layer, and the second electrode) of 0.5 mm ⁇ O.5 mm were manufactured.
  • Example 1 and Comparative Examples 1 to 3 a Pt single layer film was used as the first electrode 11, but it is not limited to a single layer film, and may be a multilayer film in combination with other materials.
  • Pt and SiO on the substrate surface have poor adhesion, Ti or other material can be used between Pt and the substrate to prevent separation.
  • An adhesive layer may be provided to form a multilayer film.
  • conductive materials such as Au, Pt, Cu, Al, and ITO may be used alone. Use a combination of conductive materials.
  • writing to the resistance change element was performed by applying a SET voltage and a RESET voltage as shown in FIG. 4, and the resistance value of the resistance change element was measured with the READ voltage.
  • the voltage was a pulse voltage, and was applied between the first electrode 11 and the second electrode 13 using a pulse generator.
  • the SET voltage was 5V
  • the RESET voltage was 15V
  • both pulse widths were 25 Ons.
  • the READ voltage was IV and the pulse width was 250ns.
  • the resistance change rate (%) is the maximum resistance value read after applying the SET voltage and RESET voltage, and R is the minimum value.
  • Resistance change rate (%) (R -R) / R X IOO
  • Table 1 shows the value of the resistance change rate of each resistance change element.
  • each resistance change element was heated to 400 ° C at room temperature and 0.5 hours at 400 ° C. Retained. Thereafter, after the temperature was lowered to room temperature, the resistance change rate of each resistance change element was examined in the same manner as described above. Table 1 shows the resistance change rate of each resistance variable element.
  • the resistance change elements of Sample Nos. 11 to 19 maintained a resistance change rate of 10% or more after the heat treatment in a reducing atmosphere. In particular, a large resistance change rate was maintained in the composition range of 0.4 ⁇ x ⁇ 0.6.
  • the resistance change elements of Conventional Example A (Comparative Example 1) and Conventional Example B (Comparative Example 2) have a resistance change rate of 5% or less after heat treatment in a reducing atmosphere, and have stable characteristics. It deteriorated to the point where it was difficult to detect it automatically. The writing and erasing operations with the SET voltage and RESET voltage are also unstable.
  • PCMO is sensitive to oxygen deficiency in a reducing atmosphere even when oxygen treatment is applied, and has poor resistance change characteristics. It is remarkable.
  • RMCoO such as PCCO and PCMO are similar in that oxygen non-stoichiometry is slight.
  • PCMO like the Mn oxide having the perovskite structure described in Non-Patent Document 1, has a characteristic change with respect to the oxygen non-stoichiometry, or the resistance change characteristic is rapidly increased by heat treatment in a reducing atmosphere. It is changing sharply.
  • RMCoO has a slight change in the absolute conductivity due to the heat treatment.
  • the resistance change characteristic is highly retainable.
  • PC CO is gold at a low temperature specifically near the composition of Pr Ca CoO (0.4 ⁇ x ⁇ 0.6).
  • the material layer 12 includes Pr Ca CoO (hereinafter referred to as Pr Ca CoO
  • FIG. 9 shows a manufacturing procedure of the memory element. Hereinafter, the manufacturing procedure will be described with reference to FIG.
  • a substrate 14 having a MOS transistor 21 and a Si (100) plane on the surface was prepared.
  • An insulating oxide film 66 was deposited on the substrate 14 by sputtering (FIG. 9 (a)).
  • a contact hole 71 was formed in the insulating oxide film 66 by photolithography and ion milling (FIG. 9 (b)).
  • an Ir layer 72 having a thickness of 600 nm was formed by a sputtering method (FIG. 9 (c)), and then the surface was treated with CMP to obtain the embedded first electrode shown in FIG. 9 (d). 11 and contact electrode 61 were formed.
  • an extraction electrode 91 made of Ir and having a thickness of 200 nm was formed by sputtering. From the above, a lower electrode with a diameter of 0.8 m was formed at a location avoiding the top of the transistor (Fig. 9 (e)).
  • the material layer 12 (PCCO) was formed.
  • the material layer 12 was formed by a magnetron notter under the following conditions (Fig. 9 (f)).
  • Atmospheric gas Mixed gas of oxygen and argon (oxygen partial pressure is 20% of total pressure) • Input power: 100W.
  • the growth was once stopped and oxygen treatment was performed.
  • the oxygen treatment was performed by holding the material layer at 500 ° C. for 5 hours in a pure oxygen atmosphere of 50 Pa.
  • the substrate temperature was again set to 650 ° C, and PCCO was further deposited by lOOnm.
  • the same oxygen treatment as described above was performed.
  • a PCCO thin film (12 in Fig. 9 (f)) with a total thickness of 400 nm was obtained.
  • the PCCO thin film was subjected to photolithography and ion milling to obtain a diameter of 0.
  • a contact hole 71 having a diameter of 0.35 / z m was formed on the material layer 12 (PCCO) by photolithography (FIG. 9 (i)).
  • the second electrode 13 having a thickness of 300 nm is formed. Formed. (Fig. 9 (j))
  • the second electrode was formed by magnetron sputtering.
  • the atmosphere of magnetron sputtering was an argon atmosphere of 0.7 Pa.
  • Example 2 the extraction electrode 91 is provided, and the material layer 12 (PCCO) is formed at a location avoiding the top of the transistor for the following reason.
  • a flat portion that avoids this is more advantageous for forming a highly crystalline material layer 12 (PCCO) than directly above a transistor that is prone to unevenness due to many processes.
  • the present invention is not limited to this, and a configuration in which the material layer 12 is disposed directly on the transistor may be employed.
  • Example 2 The memory element fabricated in Example 2 corresponds to the conceptual diagram shown in FIG. Such a memory element is provided with a bit line connected to the second electrode 13 and a word line connected to the gate electrode 65, and by controlling these, memory performance by writing, erasing and reading is exhibited.
  • Example 2 an output obtained by writing and erasing was detected by applying a voltage to the word wiring, and a read signal was obtained by detecting a differential output with the resistance change element for comparison. The transistor was turned on at the timing of writing, erasing, and reading.
  • a timing chart showing the operation of the memory element is shown in FIG.
  • the memory element manufactured in Example 2 can be a random access type memory element by arranging in an array as shown in FIG.
  • Example 4 For comparison with the memory element of Example 2, a memory element of Comparative Example 4 (Conventional Example D) was fabricated.
  • the memory element of Comparative Example 4 was fabricated by the same procedure as in Example 2 except that PCMO was used as the material layer 12.
  • Example 2 The memory power of Example 2 and Comparative Example 4 (Conventional Example D) was also evaluated in terms of heat treatment resistance in a reducing atmosphere, from the viewpoint of memory operation.
  • each memory element was raised to 400 ° C at room temperature in an atmosphere in which a mixed gas of hydrogen and nitrogen (with 5% of the total amount of hydrogen) flowed, and then 0 ° C at 400 ° C. Hold for 5 hours. Thereafter, the memory operation was confirmed after the temperature was lowered to room temperature.
  • the memory operation was confirmed by detecting the output obtained by writing and erasing by applying a voltage to the word wiring. Specifically, the MOS transistor is operated and FIG. After applying SET and RESET voltages as shown in 0, reading and applying the READ voltage, the memory operation was confirmed from the change in current characteristics.
  • Example 3 (Sample Nos. 3-1 to 3-8)
  • variable resistance elements Eight types were fabricated according to the following procedure.
  • a substrate 14 having a Si (100) surface was prepared.
  • the first electrode 11 (Pt) having a thickness of 400 nm was formed on the substrate 14 by magnetron sputtering.
  • the first electrode 11 is a Pt single layer film, but as described above, it may be a multilayer film.
  • the conditions for magnetron sputtering were as follows.
  • next material layer 12 was formed on the first electrode 11.
  • Sample number 3—3 La Ba CoO (hereinafter referred to as “LBCO”).
  • Atmospheric gas Mixed gas of oxygen and argon (oxygen partial pressure is 20% of total pressure) • Input power: 100W.
  • the material layer 12 was kept at 500 ° C for 5 hours in a pure oxygen atmosphere of lOOPa. Raw processing was performed. As described above, a material layer 12 having a thickness of 600 nm subjected to oxygen treatment was obtained. The material layer 12 (LCCO, LSCO and LBCO) was confirmed to be all polycrystalline by X-ray diffraction.
  • a second electrode 13 (Ag) having a thickness of lOOOnm was formed using a metal mask having an opening with a diameter of 0.5 mm.
  • the second electrode 13 was formed by magnetron sputtering under the following conditions.
  • the material layer 12 was changed to the following to produce a resistance change element. Other conditions are the same as above.
  • the material layer was changed to the following one in which Ca of LCCO and Sr of LSCO were partially replaced with Ba, to produce a resistance change element.
  • Other conditions are the same as described above.
  • Example 3 The eight types of resistance change elements fabricated in Example 3 were evaluated for heat resistance by the same heat treatment as in Example 1, and a mixed gas of hydrogen and nitrogen (the amount of hydrogen was 5% of the total) was flowed. In this state, the temperature was raised to 400 ° C at room temperature and held at 400 ° C for 0.5 hours. Table 2 shows the resistance change rate. All of the resistance change elements Nos. 3-1 to 3-8 produced in Example 3 maintained good characteristics even after the heat treatment, but in particular, Sample 3-8 was stable before and after the heat treatment. Retains resistance change characteristics!
  • Nd 0 B Sr 0. 5 Co0 3 advantageously 840 600 71.4
  • variable resistance element of the present invention has a perovskite structure whose material layer is represented by RMCoO.
  • the material layer By subjecting the material layer to an oxygen treatment that is heated in an oxygen atmosphere, the material layer exhibits resistance change characteristics equivalent to or better than conventional PCMO. In addition, the resistance of the material layer after oxygen treatment is sufficiently maintained even when heat treatment is performed in a reducing atmosphere later.
  • the resistance change element of the present invention can be preferably applied to a nonvolatile memory.
  • a nonvolatile memory can be obtained by combining the variable resistance element of the present invention and a transistor.
  • the resistance change element of the present invention can be applied to sensors that detect light, heat, stress, magnetism, and the like in addition to logic circuits.
  • the variable resistance element of the present invention can also be applied to electronic devices that require a random size access memory function such as an image display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

 本発明は、還元雰囲気下における熱処理を施した場合でも、抵抗変化の能力の低下が抑制されている抵抗変化素子及びそれを用いた不揮発性メモリを提供する。  本発明は、具体的には、(1)化学式:RMCoO3(但し、Rは希土類元素を示し、Mはアルカリ土類元素を示す)で示されるペロブスカイト構造を有する酸化物半導体からなる材料層と、前記材料層に対して電気的に接続された2つの電極である第1電極及び第2電極とから構成され、第1電極と第2電極との間に電流又は電圧を印加することによって材料層の抵抗が変化する抵抗変化素子並びに(2)前記抵抗変化素子とトランジスタとを有し、前記抵抗変化素子とトランジスタとは電気的に接続されている不揮発性メモリ、を提供する。

Description

明 細 書
抵抗変化素子及びそれを用いた不揮発性メモリ
技術分野
[0001] 本発明は、抵抗変化素子及びそれを用いた不揮発性メモリに関する。
背景技術
[0002] メモリは、現在あらゆる機能分野において採用されており、情報化社会を支える重 要な基幹電子部品である。
[0003] 従来のメモリは、 SRAM, DRAM及び FLASHのように電荷容量 Cの変化によりス イッチ動作するものが主流である。また、これらの組み合わせにより、種々の論理回 路、複雑なメモリ等が作製されている。
[0004] 近年、情報端末の普及及び電子部品価格のデフレーション化の影響により、メモリ 等の機能素子の微細化や低価格ィ匕の要請が高まってきて 、る。情報端末に実装さ れる不揮発性メモリの分野でも、新技術により微細化や低価格化の要請に応えたも のが提案されている。
[0005] 他方、上記メモリをナノメーター領域まで微細化したものは、電荷容量 Cが十分でな い。従って、電荷容量 cの変化を利用したメモリでは、微細化と高性能化とを共に進 めるには限界がある。
[0006] 最近、電荷容量 Cではなぐ電気抵抗 Rの変化をスィッチ又はメモリに応用する技 術に期待が寄せられている。電気抵抗 Rは、電荷容量に縛られないため微細化に限 界がない。電気抵抗 Rの変化を用いた機能素子としては、例えば、特許文献 1及び 2 において、次の化学式: PrCaMnO (以下「PCMO」とも言う)で示される酸化物を用
3
Vヽた抵抗変化素子が開示されて ヽる。
特許文献 1 :米国特許第 6204139号明細書
特許文献 2 :特開 2003— 068983号公報
非特許文献 1 : Physics Reports Vol.346 (2001) pp.387- 531
発明の開示
発明が解決しょうとする課題 [0007] し力しながら、 PCMOで示される酸ィ匕物を用いた抵抗変化素子は、動作安定性及 び再現性の点で改善の余地がある。
[0008] 例えば、前記抵抗変化素子の製造工程には、一般的な半導体プロセスと同様に、 リーク電流の軽減を目的として水素雰囲気下 (即ち、還元雰囲気下)における熱処理 過程が含まれる場合がある力 PCMOは、還元雰囲気下での熱処理において酸素 の脱離が起こる。その結果、酸化物の電気伝導のメカニズムが変化し、特許文献 1に 開示される抵抗変化の能力が阻害され、最悪の場合には、抵抗変化が生じなくなる
[0009] 本発明は、力かる点に鑑みてなされ、還元雰囲気下における熱処理を施した場合 でも、抵抗変化の能力の低下が抑制されている抵抗変化素子を提供することを主な 目的とする。
課題を解決するための手段
[0010] 本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の酸化物 と特定の処理とを組み合わせる場合には、上記目的を達成できることを見出し、本発 明を完成するに至った。
[0011] 即ち、本発明は下記の抵抗変化素子及びその製造方法並びに当該抵抗変化素 子を用いた不揮発性メモリに係る。
[0012] 1.材料層と、前記材料層に対して電気的に接続された 2つの電極である第 1電極 及び第 2電極とから構成され、第 1電極と第 2電極との間に電流又は電圧を印加する ことによって材料層の抵抗が変化する抵抗変化素子、の製造方法であって、
(1)第 1電極を形成する第 1電極形成工程、
(2)第 1電極上に、化学式: RMCoO (但し、 Rは希土類元素を示し、 Mはアルカリ土
3
類元素を示す)で示されるベロブスカイト構造を有する酸化物半導体からなる材料層 を形成する材料層形成工程、
(3)材料層を酸素雰囲気下において加熱する酸素処理工程、及び、
(4)酸素処理工程を経た材料層上に第 2電極を形成する第 2電極形成工程、 を有する製造方法。
[0013] 2.ぺロブスカイト構造を有する酸化物半導体が、組成式: Pr Ca CoO (但し、 X は 0. 4≤x≤0. 6を示す)で示される、上記項 1に記載の製造方法。
[0014] 3.材料層形成工程と酸素処理工程とが繰り返される、上記項 1に記載の製造方法
[0015] 4.酸素処理工程が、酸素分子、オゾン及び原子酸素力 なる群力 選択された 1 種以上を含む雰囲気にお ヽて材料層を加熱する工程である、上記項 1に記載の製 造方法。
[0016] 5.酸素処理工程が、 100〜800°Cで材料層を加熱する工程である、上記項 1に記 載の製造方法。
[0017] 6.酸素処理工程が、 30分〜 12時間、材料層を加熱する工程である、上記項 1に 記載の製造方法。
[0018] 7.化学式: RMCoO (但し、 Rは希土類元素を示し、 Mはアルカリ土類元素を示す
3
)で示されるベロブスカイト構造を有する酸化物半導体からなる材料層と、前記材料 層に対して電気的に接続された 2つの電極である第 1電極及び第 2電極とから構成さ れ、第 1電極と第 2電極との間に電流又は電圧を印加することによって材料層の抵抗 が変化する抵抗変化素子。
[0019] 8.ぺロブスカイト構造を有する酸化物半導体が、組成式: Pr Ca CoO (但し、 X
1 -X X 3 は 0. 4≤x≤0. 6を示す)で示される、上記項 7に記載の抵抗変化素子。
[0020] 9.電流又は電圧をパルス状に印加する、上記項 7に記載の抵抗変化素子。
[0021] 10.上記項 7に記載の抵抗変化素子とトランジスタとを有し、前記抵抗変化素子とト ランジスタとは電気的に接続されている、不揮発性メモリ。
発明の効果
[0022] 本発明の抵抗変化素子は、材料層が RMCoO (但し、 Rは希土類元素を示し、 M
3
はアルカリ土類元素を示す)で示されるベロブスカイト構造を有する酸化物半導体か らなる。
[0023] 前記材料層は、酸素雰囲気下における加熱処理 (以下「酸素処理」とも言う)に供 することにより、従来品の PCMOと同等か又はより良好な抵抗変化特性を発現する。 また、酸素処理後の材料層は、後に還元雰囲気下における熱処理を施した場合でも 、抵抗変化の能力の低下が抑制されている。 [0024] 本発明の抵抗変化素子は、不揮発性メモリに好適に適用できる。例えば、本発明 の抵抗変化素子とトランジスタとを組み合わせることにより不揮発性メモリとできる。そ の他、本発明の抵抗変化素子は、論理回路のほか、光、熱、応力、磁気等を検知す るセンサーに適用できる。また本発明の抵抗変化素子は、画像表示器のようなランダ ムアクセスメモリ機能を要する電子機器にも適用できる。
図面の簡単な説明
[0025] [図 1]抵抗変化素子の構成概略図である。
[図 2]メモリ素子の構成概念図である。
[図 3]アレイ状に配置したメモリ素子構成図である。
[図 4]メモリ素子のメモリ動作方法を示す図である。
[図 5]抵抗変化素子の出力検出動作説明図である。
[図 6]メモリ素子の構成概略図である。
[図 7]メモリ素子の作製方法を示す図である。
[図 8]実施例 1の抵抗変化素子及び実施例 2のメモリ素子の外観図である。
[図 9]メモリ素子 (抵抗変化素子)の作製方法を示す図である。
[図 10]メモリ素子 (抵抗変化素子)のメモリ動作方法を示す図である。
符号の説明
[0026] 10 抵抗変化素子
11 第 1電極(下部電極)
12 材料層
13 第 2電極 (上部電極)
14 基板
20 メモリ素子
21 トランジスタ
30 アレイ状に配したメモリ素子
31 ワード線
33 ビット線
51 参照抵抗 61 コンタクト電極
62 ドレイン電極
63 ソース電極
64 ゲート酸化層
65 ゲート電極
66 絶縁酸化膜
71 コンタクトホール
72 導電体
91 引出電極
92 層間絶縁
発明を実施するための最良の形態
[0027] 以下、本発明の抵抗変化素子及びそれを用いた不揮発性メモリについて説明する
[0028] 1.抵抗変化素子
本発明の抵抗変化素子は、化学式: RMCoO (但し、 Rは希土類元素を示し、 Mは
3
アルカリ土類元素を示す)で示されるベロブスカイト構造を有する酸化物半導体から なる材料層と、前記材料層に対して電気的に接続された 2つの電極である第 1電極 及び第 2電極とから構成され、第 1電極と第 2電極との間に電流又は電圧を印加する ことによって材料層の抵抗が変化することを特徴とする。
[0029] 材料層は、化学式: RMCoOで示されるぺロブスカイト構造を有する酸化物半導
3
体力もなる。式中、 Rは希土類元素を示し、 Mはアルカリ土類元素を示す (以下同じ)
[0030] 前記化学式で示される材料層(酸化物半導体)は、薄膜作製法により形成しただけ では抵抗変化特性は示さないが、酸素雰囲気下において材料層を加熱する酸素処 理によれば、従来品の PCMOと同等か又はより良好な抵抗変化特性を発現する。ま た、酸素処理後の材料層は、後に還元雰囲気下における熱処理を施した場合でも、 抵抗変化の能力の低下が抑制されている。即ち、酸素処理により発現した抵抗変化 特性は、 RMCoOの不定比性に対して安定に維持されるため、還元雰囲気におけ る熱処理により酸素脱離が生じても安定に維持される。
[0031] Rは希土類元素であればよいが、その中でも Prが好ましい。 Mはアルカリ土類元素 であれば良いが、その中でも Caが好ましい。つまり、ぺロブスカイト構造を有する酸 化物半導体としては、化学式: PrCaCoOで示されるものが好ましい。より具体的に
3
は、水素雰囲気等の還元雰囲気下における熱処理後でも抵抗変化特性が低下し難 い観点からは、組成式: Pr Ca CoO (但し、 xは 0. 4≤x≤0. 6を示す)で示され
1 -X X 3
る酸化物半導体が好ましい。
[0032] なお、ぺロブスカイト構造を有する酸化物半導体における R、 Mの元素は、 1種類に 限定されない。例えば、アルカリ土類元素として Caを用いる場合に、 Caの一部を Sr、 Ba等に置換してもよい。力かる元素の組み合わせについては、最終製品である抵抗 変化素子の特性に応じて適宜選択できる。
[0033] 材料層には、第 1電極及び第 2電極がそれぞれ電気的に接続されている。そして、 第 1電極と第 2電極との間に電流又は電圧を印加することにより、材料層の抵抗が変 化する。電気的に接続されている態様としては、材料層を挟持する態様であって、材 料層の片面に第 1電極が積層されており、他面に第 2電極が積層されている態様が 挙げられる。ここで、第 1電極(下部電極とも言う)は、その上に材料層を形成できる電 極を言うものとする。即ち、本発明の抵抗変化素子を、電極と材料層とを積層すること により製造する場合には、第 1電極 (下部電極)上に材料層を形成後、材料層上に第 2電極 (上部電極とも言う)を形成することにより製造する。なお、抵抗変化素子は、図 1の 14で示されるような基板上に形成してもよい。基板としては、例えば、表面に熱酸 化膜を有する Si (100)基板が挙げられる。
[0034] 第 1電極は、その上部に材料層を形成できるものを用いる。第 1電極の材質として は、例えば、プラチナ (Pt)、イリジウム (Ir)、これらの酸ィ匕物等がある。当該材質を用 いる場合には、材料層の酸素処理工程に際して高温の酸素雰囲気に晒されても、第 1電極の結晶構造が安定に維持されるため好ましい。他の材質としては、 Nb、 Cr、 L a等を一部に含有する SrTiO、 SrRuOなどの導電性酸ィ匕物がある。当該材質は、
3 3
上部に材料層をェピタキシャル成長させることができる点で好ましい。第 1電極は、前 記材料カゝらなる単層でも良ぐ複数の材料を組み合わせた複層でもよい。例えば、表 面に熱酸化膜 (SiO )を有する Si基板上に第 1電極 (Pt)を形成する場合には、両者
2
の密着性が不十分な場合があるが、第 1電極を Ptと Tiとの複層とし、 Tiを SiOと密着
2 させることによって密着'性を高めることができる。
[0035] 第 2電極は、導電材料であればよ!ヽ。第 2電極の材質としては、例えば、金 (Au)、 プラチナ(Pt)、ノレテ-ゥム(Ru)、イリジウム(Ir)、イリジウムタンタノレ (Ir-Ta)、チタン (Ti)、アルミニウム (A1)、銅(Cu)、タンタル (Ta)、錫添加インジウム酸ィ匕物(ITO) 等がある。これらの材質は、抵抗率が低ぐ抵抗変化素子の消費電極を低減できる観 点から好ましい。第 2電極は、第 1電極と同様に、前記材料からなる単層でもよぐ複 数の材料を組み合わせた複層でもよ ヽ。
[0036] 前記材料層、第 1電極及び第 2電極の厚さは特に限定されない。材料層の厚さは、 通常 50〜1000nm程度が好ましい。第 1電極の厚さは、通常 50〜1000nm程度が 好ましい。また、第 2電極の厚さは、通常 50〜: LOOOnm程度が好ましい。
[0037] 本発明の抵抗変化素子は、第 1電極と第 2電極との間に電流又は電圧を印加する ことによって材料層の抵抗が変化する。そして、変化後の抵抗値は保持される。電流 又は電圧の印加態様は限定的ではないが、抵抗変化素子の消費電力低減及び高 速ィ匕の観点力 パルス状の印加が好ましい。そして、パルスの極性及び大きさを調整 することにより、材料層の抵抗値を簡便に制御できる。以下、パルス状の(波形を示 す)電圧をパルス電圧とも言!ヽ、同様に電流をパルス電流とも言う。
[0038] 本発明の抵抗変化素子は、上記特性を有するため、不揮発性メモリ(メモリ素子)に 好適に適用できる。例えば、抵抗変化素子とトランジスタとを電気的に接続することに より、不揮発性メモリとして適用できる。
[0039] 以下、本発明の抵抗変化素子及びそれを用いた不揮発性メモリについて、図面を 用いて具体的に説明する。
[0040] 図 1に示される抵抗変化素子は、化学式: RMCoOで示されるぺロブスカイト構造
3
を有する酸化物半導体からなる材料層 12、第 1電極 (下部電極) 11、第 2電極 (上部 電極) 13及び基板 14から構成される。
[0041] 図 1において、第 2電極 13と第 1電極 11との間に電流又は電圧を印加した場合に は、材料層 12の抵抗値が変化し、その抵抗値は保持される。 [0042] 電流又は電圧の印加は、パルス状が好ま 、。この場合には、抵抗変化素子の書 き込み ·消去 ·読み出しにおける消費電力を軽減できるとともに抵抗変化の動作を高 速化できる。その他、ジュール熱損失やデバイス効率の観点からもパルス状が好まし い。
[0043] 図 1において、第 1電極 11に対して、第 2電極 13を正バイアスにおいてパルス電圧 又は電流を印加することにより、材料層 12の抵抗を高い状態力も低い状態に変化さ せることができる。他方、パルスの極性を逆にして印加することにより、抵抗を低い状 態から高い状態に変化させることができる。なお、第 1電極 11の電位を 0とした場合に 、第 2電極 13の電位の符号が正となるものを正バイアス、逆を負バイアスと定義する。
[0044] 本発明の抵抗変化素子は、不揮発性メモリ (メモリ素子)に適用できる。不揮発性メ モリは、抵抗変化素子とトランジスタとを電気的に接続することにより作製できる。例え ば、図 2に示すように、トランジスタ (スイッチング素子) 21と抵抗変化素子とを電気的 に接続することにより、メモリ素子 20とできる。メモリ素子 20は単独で使用してもよぐ 複数を組み合わせて使用してもよい。例えば、メモリ素子 20をマトリクス状に配置して 使用してもよい(図 3参照)。
[0045] 例えば、図 3に示すようにメモリ素子 20をアレイ状に配置することにより、ランダムァ クセス型の不揮発性メモリとできる。図 3では、ビット線 33のうちの Bnとワード線 31のう ちの Wnとを選択することにより、 (Bn, Wn)のメモリ素子への書き込み ·読み出しを行 うことができる。
[0046] 前記メモリ素子への書き込み ·読み出しは、印加するパルスバイアスの大きさを変え ること〖こより行える。図 4に示すように、正バイアスを SET (書き込み)、負バイアスを R ESET (消去)とし、 READ (読み出し)においては、 SET 'RESETの際の電圧と比 較して 1Z1000〜1Z4程度の十分に小さな電圧を印加することで得られる電流の 変化を検出する。検出の際には、抵抗の絶対値のばらつきに影響されないように、図 5に示すように参照抵抗 51を用いて差分検出することが好ましい。なお、大面積基板 上に材料層を形成した場合には、基板上の領域に応じて抵抗値にばらつきが生じる ことが想定される。そのため、読み出しに用いる参照抵抗としては近接したメモリ素子 の 1つを用いるのがよぐやはり差分検出することが好まし 、。 [0047] 2.抵杭栾ィ 素子の i¾告方法
本発明の抵抗変化素子は、下記工程;
(1)第 1電極を形成する第 1電極形成工程、
(2)第 1電極上に、化学式: RMCoO (但し、 Rは希土類元素を示し、 Mはアルカリ土
3
類元素を示す)で示されるベロブスカイト構造を有する酸化物半導体からなる材料層 を形成する材料層形成工程、
(3)材料層を酸素雰囲気下において加熱する酸素処理工程、及び、
(4)酸素処理工程を経た材料層上に第 2電極を形成する第 2電極形成工程、 を有する製造方法によって好適に製造できる。
[0048] 以下、前記 1つのメモリ素子の製造方法を示すことにより、抵抗変化素子の製造方 法を説明する。具体的には、図 6に示すように、トランジスタ 21が設けられた基板 14 上に、抵抗変化素子 10を作製する手順について説明する。作製手順を図 7に示す。
[0049] (1)第 1電極形成工程
先ず、図 7 (a)に示すように、トランジスタ 21を配した基板 14上に SiO等の絶縁酸
2
化膜 66を堆積する。絶縁酸化膜 66は、図 7 (i)に示すように、メモリ素子の上下電極 (下部配線及び上部配線)を分離し、層間絶縁層として作用するため、 SiO、 Al O
2 2 3 等の絶縁材料又はその積層体力も構成することが好ましい。
[0050] 絶縁酸ィ匕膜 66は、一般の薄膜プロセスにより形成できる。例えば、パルスレーザデ ポジション(PLD);イオンビームデポジション(IBD);クラスターイオンビーム; RF、 D C、 ECR、ヘリコン、 ICP、対向ターゲット等のスパッタリング法; MBE、イオンプレー ティング法等の PVD (Physical Vapor Deposition)法; CVD (Chemical Vapor Deposit ion)法; MOCVD (Metal Organic Chemical Vapor Deposition)法;メツキ法;金属有 機化合物堆積法 (MOD: Metallorganic Decomposition);ゾルゲル法;などにより开成 できる。なお、力かる薄膜プロセスは、第 1電極 11 (下部電極)、コンタクト電極 61、材 料層 12及び第 2電極 13 (上部電極)の形成にも適用できる。
[0051] 次いで、絶縁酸ィ匕膜 66に対して、図 7 (b)に示すように、コンタクトホール 71を形成 する。コンタクトホール 71は、一般の微細加工により形成できる。例えば、半導体プロ セスで用いられる微細加工; GMR、 TMR磁気ヘッド、磁気メモリ(MRAM)等の磁 性デバイス作製プロセスで用いられる微細加工などが利用できる。具体的には、ィォ ンミリング、 RIE (Reactive Ion Etching)、 FIB (Focused Ion Beam)等の物理的又は化 学的エッチング法が挙げられる。なお、微細パターン形成のために、ステッパー、 EB (Electron Beam)法等を用いたフォトリソグラフィー技術を組み合わせてもよい。前記 微細加工技術は、他の層の加工にも適用できる。
[0052] 次いで、導電体 72を堆積する(図 7 (c) )。
[0053] 次いで、導電体 72の表面を平坦化することにより、図 7 (d)に示すような埋め込み型 の第 1電極 11及びコンタクト電極 61を得る。平坦化処理は、 CMP処理(Chemical M echanical Polishing)、クラスターイオンビームエッチング等により行える。
[0054] (2)材料層形成工程
第 1電極 11及びコンタクト電極 61上に絶縁酸ィ匕膜 66を堆積後(図 7 (e) )、コンタク トホール 71を形成する(図 7 (f ) )。
[0055] 次 、で、 RMCoOで示されるぺロブスカイト構造を有する酸ィ匕物を堆積し、表面を
3
平坦化することにより、埋め込み型の材料層 12を形成する(図 7 (g) (h) ) G
[0056] (3)酸素処理工程
コンタクトホール 71に埋め込まれた材料層 12は、酸素処理を施すことにより、抵抗 変化特性を発現する。酸素処理後の材料層 12の具備する抵抗変化特性は、後に還 元雰囲気下において熱処理を受けた場合でも、抵抗変化の能力は十分に維持され る。
[0057] 前記酸素処理工程は、材料層 12を酸素雰囲気 (酸素分子、オゾン及び原子酸素 力もなる群力も選択された 1種以上を含む雰囲気)下において加熱する工程である。
[0058] 加熱温度は、材料層 12に対して酸素が活発に反応し得る温度であればょ 、。例え ば、酸素分子を含む雰囲気であれば 400〜800°C程度が好ましい。また、オゾン又 は原子酸素を含む雰囲気であれば 100〜800°C程度が好ましい。即ち、加熱温度 は 100〜800°Cの範囲力ら、雰囲気の種類に応じて適宜設定できる。
[0059] 加熱時間は、加熱温度に応じて適宜設定する。通常は 30分〜 12時間程度であり、 加熱温度が低!、場合には、一般に加熱時間を長く設定する。
[0060] 酸素処理工程は、形成後の材料層 12だけでなぐ形成途中の材料層に施してもよ い。材料層 12の厚さ、種類等によっては、形成後の材料層に酸素処理を施すだけで は酸素が拡散し難い場合がある。そこで、材料層の形成途中に酸素処理工程を組 み込むことにより材料層全体に十分に酸素を拡散することができる。この場合には、 材料層形成工程と酸素処理工程とを繰り返すことにより、最終的に酸素処理が施さ れた材料層 12を得る。
[0061] (4)第 2電極形成工程
最後に、図 7 (i)に示すように第 2電極 13 (上部電極)を設ける。この場合も、薄膜プ 口セス、微細加工、平坦化処理等を組み合わせることにより形成する。
[0062] 上記過程を経て、メモリ素子は得られる。
実施例
[0063] 以下に実施例及び比較例を示して本発明をより詳細に説明する。
[0064] ¾施例 ί (試料番^ ·ί ίから ί 9)及び比 例 ί〜3
《抵抗変化素子の製造〉〉
マグネトロンスパッタ法により図 1に示す抵抗変化素子を作製した。第 1電極 11には 、 200nmの Ptを用いた。材料層 12には、 600nmの Pr _ Ca CoO (以下、実施例 1 において「PCCO」と記載する)を用いた。第 2電極 13には、 lOOOnmの Agを用いた 。基板 14には、表面に熱酸ィ匕膜を有する Si (lOO)基板を用いた。
[0065] 第 1電極 11 (Pt)及び第 2電極 13 (Ag)の形成におけるマグネトロンスパッタの条件 を次に示す。
•基板温度:室温、
•成長 (堆積)時のガス圧: lPa、
•雰囲気ガス:アルゴンのみ、
•投入電力: 80W。
[0066] 材料層 12 (PCCO)の形成におけるマグネトロンスパッタの条件を次に示す。
'基板温度: 650°C、
•成長 (堆積)時のガス圧: 3Pa、
•雰囲気ガス:酸素とアルゴンとの混合ガス (酸素分圧は全圧に対して 20%) •投入電力: 100W。 [0067] 材料層を 300nm成長 (堆積)させた後、一旦成長を停止して酸素処理を施した。酸 素処理は、材料層を 50Paの純酸素雰囲気下、 500°Cで 5時間保持する処理とした。
[0068] 酸素処理後、再び基板温度を 650°Cにし、更に PCCOを 300nm堆積した。
[0069] 堆積後、室温に戻す際に、再び前記同様の酸素処理を行った。即ち、実施例 1で は材料層形成工程と酸素処理工程とを 2回繰り返した。
[0070] 実施例 1では、 PCCOの組成 Xを振ることにより、 9種類の抵抗変化素子を作製した
。即ち、 0. 1≤χ≤0. 9の範囲において、 0. 1間隔で 9種類の材料層を作製し、試料 番号を 1― 1から 1— 9とした (表 1参照)。
[0071] 比較例 1 (従来例 A)として、酸素処理を施さずに抵抗変化素子 (x=0. 5)を作製し た。比較例 1では、酸素処理を施さない以外は、実施例 1と同様にして抵抗変化素子 を作製した。
[0072] 比較例 2 (従来例 B)として、材料層 12に Pr Ca MnO (以下、比較例 2におい
0. 7 0. 3 3
て「PCMO」と記載する)を用いて抵抗変化素子を作製した。
[0073] 比較例 2の抵抗変化素子の製造方法は次の通りである。
[0074] 基板 14には、表面に熱酸ィ匕膜を有する Si (lOO)基板を用いた。
[0075] 第 1電極 11及び第 2電極 13の材質及び形成方法は、実施例 1と同じとした。
[0076] 材料層 12 (PCMO)の形成におけるマグネトロンスパッタの条件を次に示す。
'基板温度: 700°C、
•成長 (堆積)時のガス圧: 3Pa、
•雰囲気ガス:酸素とアルゴンとの混合ガス (酸素分圧は全圧に対して 20%) •投入電力: 100W。
[0077] 材料層を 300nm成長 (堆積)させた後、一旦成長を停止して酸素処理を施した。酸 素処理は、材料層を 50Paの純酸素雰囲気下、 500°Cで 5時間保持する処理とした。
[0078] 酸素処理後、再び基板温度を 700°Cにし、更に PCMOを 300nm堆積した。
[0079] 堆積後、室温に戻す際に、再び前記同様の酸素処理を行った。即ち、比較例 2で は、材料層形成工程と酸素処理工程とを 2回繰り返した。
[0080] 比較例 3 (従来例 C)として、材料層 12に Pr Ca MnO (以下、「PCMO」と記載
0. 7 0. 3 3
する)を用いて抵抗変化素子を作製した。比較例 3では、酸素処理を施さない以外は 、比較例 2と同様にして抵抗変化素子を作製した。
[0081] 実施例 1及び比較例 1〜3で形成した材料層 12は、 X線回折により調べた結果、全 て多結晶であった。
[0082] 実施例 1及び比較例 1〜3で作製した抵抗変化素子の外観図を図 8に示す。このよ うな外観は下記の要領でメタルマスクを用いることにより形成した。
[0083] 基板 14上に、幅 0. 5mm,長さ 10mmの長方形の開口部を有する第 1のメタルマス クを配置した。メタルマスクの上カゝら Ptを堆積することにより、基板 14上に幅 0. 5mm X長さ 10mmの第 1電極 11を形成した。
[0084] 次 、で、 1mm X 1mmの正方形の開口部を有する第 2のメタルマスクを用意し、開 口部の中心と第 1電極 11の長方形の中心とがー致するように配置した。メタルマスク の上力も PCCO又は PCMOを堆積することにより、材料層 12を形成した。
[0085] 次いで、第 1のメタルマスクを、開口部の中心が材料層 12の中心と一致するように、 且つ、第 1電極 11の長辺方向とメタルマスクの開口部の長辺方向とが直交するように 配置した。メタルマスクの上から Agを堆積することにより、幅 0. 5mm X長さ 10mmの 第 2電極 13を形成した。
[0086] 即ち、実施例 1及び比較例 1〜3では、接合面積 (第 1電極、材料層及び第 2電極 の重なり面積)が 0. 5mm X O. 5mmの抵抗変化素子を作製した。
[0087] 実施例 1及び比較例 1〜3では、第 1電極 11として Pt単層膜を用いたが、単層膜に 限定されず、他の材料との組み合わせによる多層膜としてもよい。例えば、 Ptと基板 表面の SiOとは密着性が悪いため、剥離が生じないように Ptと基板との間に Ti等の
2
接着層を設けて多層膜としてもよい。また、第 2電極 13についても、実施例 2及び比 較例 1〜3で使用した Ag以外に、 Au、 Pt、 Cu、 Al、 ITO等の導電性材料を単独使 用してもよく、複数の導電性材料を組み合わせて使用してもょ 、。
[0088] 《メモリ動作の確認》
実施例 1及び比較例 1〜3 (従来例 A〜C)の抵抗変化素子のメモリ動作を確認した
[0089] 具体的には、図 4に示すような SET電圧、 RESET電圧を印加することにより抵抗変 化素子への書き込みを実施し、 READ電圧で抵抗変化素子の抵抗値を測定した。 [0090] 電圧はパルス電圧とし、パルスジェネレーターを用いて第 1電極 11と第 2電極 13と の間に印加した。 SET電圧は 5V、 RESET電圧は一 5 Vとし、パルス幅はどちらも 25 Onsとした。 READ電圧は IVとし、パルス幅は 250nsとした。
[0091] メモリ動作は、抵抗変化率の観点から評価した。ここで、抵抗変化率 (%)は、 SET 電圧及び RESET電圧を印加後に読み出した抵抗値の最大値を R 、最小値を R
max mi と定義し、次式力 導かれる値である。
[0092] 抵抗変化率(%) = (R -R ) /R X IOO
max min min
[0093] 各抵抗変化素子の抵抗変化率の値を下記表 1に示す。
[0094] PCCOを酸素処理した試料番号 1—1から 1—9の抵抗変化素子は、 50%以上の 抵抗変化率を示した。他方、 PCCOを酸化処理しなかった従来例 A (比較例 1)の抵 抗変化素子は、高々 5%程度の抵抗変化率であった。従来例 B (比較例 2)及び従来 例 C (比較例 3)の抵抗変化素子は、 PCMOの酸素処理の有無に関わらず同程度の 抵抗変化率を示した。
[0095] 次いで、各抵抗変化素子の還元雰囲気下における耐熱性を調べた。具体的には、 水素と窒素の混合気体 (水素量を全体の 5%とした)を流した雰囲気において各抵抗 変化素子を室温力も 400°Cまで昇温後、 400°Cで 0. 5時間保持した。その後、室温 まで降温後、前記と同様にして各抵抗変化素子の抵抗変化率を調べた。各抵抗変 化素子の抵抗変化率の値を表 1に示す。
[0096] 試料番号 1 1から 1 9の抵抗変化素子は、還元雰囲気下における熱処理後に おいて、 10%以上の抵抗変化率を維持した。特に 0. 4≤x≤0. 6の組成範囲では 大きな抵抗変化率を維持した。
[0097] 一方、従来例 A (比較例 1)及び従来例 B (比較例 2)の抵抗変化素子は、還元雰囲 気下における熱処理後において抵抗変化率は 5%以下であり、特性を安定的に検 出することが困難な程に劣化した。し力も SET電圧、 RESET電圧による書き込み、 消去動作も不安定になった。
[0098] 以上より、 PCCOを酸素処理した抵抗変化素子は、還元雰囲気下におけて酸素脱 離が起こってもその影響を受け難いことが分かる。一方、 PCMOは酸素処理を施し た場合も、還元雰囲気下における酸素欠損に対して敏感であり、抵抗変化特性の劣 化が顕著である。
[0099] [表 1]
Figure imgf000016_0001
[0100] 《考察》
PCCO等の RMCoOと、 PCMOとは、酸素不定比性が僅かである点で同様だ力
3
還元雰囲気での熱処理に対する耐性が顕著に異なる。 PCMOは、非特許文献 1に 記載のぺロブスカイト構造を有する Mn酸化物と同様に、酸素不定比性に対する特 性変化が顕著である為なのか、抵抗変化特性が還元雰囲気下での熱処理により急 峻に変化している。他方、 RMCoOは、当該熱処理により伝導度絶対値の幾分の変
3
化は生じると考えられるものの、抵抗変化特性は保持性が高い。
[0101] PCCOの組成範囲が 0. 4≤x≤0. 6の場合において、還元雰囲気下における熱 処理耐性が非常に高い理由は明らかではないが、次の理由が考えられる。即ち、 PC COは Pr Ca CoOの組成付近 (0. 4≤x≤0. 6)において特異的に低温下で金
0. 5 0. 5 3
属ー絶縁体転移を起こすため、これが熱処理耐性の発現に関与していると考えられ る。
[0102] ¾施例 2及び比!^列 4 (従 例 D)
《メモリ素子 (抵抗変化素子)の製造》
[0103] 図 6に示される構造のメモリ素子を作製した。材料層 12には、 Pr Ca CoO (以
0. 5 0. 5 3 下、実施例 2にお 、て「PCCO」と記載する)を用いた。 [0104] メモリ素子の作製手順を図 9に示す。以下、図 9に従って作製手順を説明する。
[0105] MOSトランジスタ 21及び Siの(100)面を表面に有する基板 14を用意した。
[0106] 基板 14上に、絶縁酸ィ匕膜 66をスパッタ法により堆積した(図 9 (a) )。
[0107] 次いで、絶縁酸ィ匕膜 66に、フォトリソグラフィー及びイオンミリング法によりコンタクト ホール 71を設けた(図 9 (b) )。
[0108] 次いで、スパッタ法により厚さ 600nmの Ir層 72を形成した(図 9 (c) )後、表面を CM P処理することにより、図 9 (d)に示される埋め込み型の第 1電極 11及びコンタクト電 極 61を形成した。次いで、 Irからなる厚さ 200nmの引出電極 91をスパッタ法により 形成した。以上より、トランジスタ部の直上を避けた箇所に直径 0. 8 mの下部電極 を形成した (図 9 (e) )。
[0109] 次!、で、材料層 12 (PCCO)を形成した。材料層 12は、次の条件のマグネトロンス ノ ッタにより形成した (図 9 (f) )。
'基板温度: 650°C、
•成長 (堆積)時のガス圧: 3Pa、
•雰囲気ガス:酸素とアルゴンとの混合ガス (酸素分圧は全圧に対して 20%)、 •投入電力: 100W。
[0110] 材料層を lOOnm成長させた後、一旦成長を停止して酸素処理を施した。酸素処理 は、材料層を 50Paの純酸素雰囲気下、 500°Cで 5時間保持する処理とした。酸素処 理後、再び基板温度を 650°Cにし、更に PCCOを lOOnm堆積した。堆積後、室温に 戻す際に、前記同様の酸素処理を行った。このような堆積及び酸素処理を繰り返す ことにより、合計 400nmの厚さの PCCO薄膜(図 9 (f)の 12)とした。
[0111] 次いで、当該 PCCO薄膜をフォトリソグラフィー及びイオンミリング法により、直径 0.
5 mのサイズに加工した(図 9 (g)の 12)。
[0112] 次いで、ポジレジストをスピンコーターにより塗布後、 120°Cで 30分ベータし、層間 絶縁層 92を形成した(図 9 (h) )。
[0113] 次いで、フォトリソグラフィ一によつて、材料層 12 (PCCO)上部に直径 0. 35 /z mの サイズのコンタクトホール 71を形成した(図 9 (i) )。
[0114] 次いで、コンタクトホール 71に Ptを堆積することにより、厚さ 300nmの第 2電極 13 を形成した。(図 9 (j) )第 2電極は、マグネトロンスパッタ法により形成した。マグネトロ ンスパッタの雰囲気は、 0. 7Paのアルゴン雰囲気とした。
[0115] 実施例 2において、引出電極 91を設けて材料層 12 (PCCO)を、トランジスタ直上 を避けた箇所に形成したのは次の理由に基づく。即ち多数のプロセスを経るために 凹凸ができやすいトランジスタ直上よりも、それを避けた平坦な箇所の方が結晶性の 高い材料層 12 (PCCO)の形成に有利だ力もである。し力しながら、高い集積度が必 要なデバイスの場合はこれに限定されず、材料層 12をトランジスタ直上に配置するよ うな構成を採用することもあり得る。
[0116] 実施例 2で作製したメモリ素子は、図 2に示した概念図と対応している。かかるメモリ 素子は、第 2電極 13に接続するビット線とゲート電極 65に接続するワード線とを設け 、これらを制御することにより、書き込み、消去、読み出しによるメモリ性能を発揮する 。実施例 2では、ワード配線への電圧印加により、書き込み、消去によって得られる出 力を検出し、比較用の抵抗変化素子との差動出力を検出することにより読み出し信 号とした。トランジスタは、書き込み、消去、読み出しのタイミングで ON状態とした。当 該メモリ素子の動作を示すタイミングチャートを図 10に示す。
[0117] 実施例 2で作製したメモリ素子は、図 3に示すようにアレイ状に配置することにより、 ランダムアクセス型のメモリ素子とできる。
[0118] 実施例 2のメモリ素子との比較のため、比較例 4 (従来例 D)のメモリ素子を作製した 。比較例 4のメモリ素子は、材料層 12として PCMOを用いた以外は、実施例 2と同様 の手順により作製した。
[0119] 《メモリ動作の確認》
実施例 2及び比較例 4 (従来例 D)のメモリ素子の還元雰囲気下における熱処理耐 性を、メモリ動作の観点力も評価した。
[0120] 具体的には、水素と窒素の混合気体 (水素量を全体の 5%とした)を流した雰囲気 にて各メモリ素子を室温力 400°Cまで昇温後、 400°Cで 0. 5時間保持した。その後 、室温まで降温後、メモリ動作を確認した。
[0121] メモリ動作は、ワード配線への電圧印加により、書き込み、消去によって得られる出 力を検出することにより確認した。具体的には、 MOSトランジスタを動作させて、図 1 0に示すような SET、 RESET電圧を印加させた後、読み出しし READ電圧を印加し て、電流特性の変化からメモリ動作を確認した。
[0122] 比較例 4 (従来例 D)のメモリ素子では、抵抗変化特性及びメモリ動作は認められな かった。実施例 2のメモリ素子では、抵抗変化特性及びメモリ動作が確認でき、高温 熱プロセスに対する耐性が示された。
[0123] 還元雰囲気における熱処理温度を 700°Cに変えた場合には、実施例 2及び比較 例 4 (従来例 4)のどちらのメモリ素子についてもメモリ動作は認められな力つた。
[0124] 実施例 3 (試料番吾 3— 1から 3— 8)
《抵抗変化素子の作製〉〉
以下の手順に従って、 8種類の抵抗変化素子を作製した。
[0125] Siの(100)面を表面に有する基板 14を用意した。
[0126] マグネトロンスパッタ法により、基板 14上に厚さ 400nmの第 1電極 11 (Pt)を形成し た。実施例 3では、第 1電極 11は Pt単層膜であるが、前記の通り、多層膜としてもよ い。マグネトロンスパッタの条件は、次の通りとした。
•基板温度:室温、
'成長 (堆積)時のガス圧: 0. 7Pa、
•雰囲気ガス:アルゴンのみ、
•投入電力: 80W。
[0127] 次いで、第 1電極 11上に、次の材料層 12を形成した。
•試料番号 3— 1 : La Ca CoO (以下「LCCO」と記載する)、
0. 5 0. 5 3
•試料番号 3— 2 : La Sr CoO (以下「LSCO」と記載する)、
0. 5 0. 5 3
•試料番号 3— 3 :La Ba CoO (以下「LBCO」と記載する)。
0. 5 0. 5 3
[0128] 材料層 12の作製におけるマグネトロンスパッタの条件は、次の通りとした。
'基板温度: 700°C、
•成長 (堆積)時のガス圧: 3Pa、
•雰囲気ガス:酸素とアルゴンとの混合ガス (酸素分圧は全圧に対して 20%)、 •投入電力: 100W。
[0129] 材料層 12を形成後、 lOOPaの純酸素雰囲気下、 500°Cにおいて 5時間保持し、酸 素処理を行った。以上より、酸素処理を施した厚さ 600nmの材料層 12を得た。材料 層 12 (LCCO、 LSCO及び LBCO)は、 X線回折により全て多結晶であるのを確認し た。
[0130] 次いで、直径 0. 5mmの開口部を有するメタルマスクを用いて、厚さ lOOOnmの第 2電極 13 (Ag)を形成した。第 2電極 13は、次の条件のマグネトロンスパッタにより形 成した。
•基板温度:室温、
'成長 (堆積)時のガス圧: 0. 7Pa、
•雰囲気ガス:アルゴンのみ、
•投入電力: 80W。
[0131] 以上より、試料番号 3—1から 3— 3までの抵抗変化素子を作製した。
[0132] 次いで、材料層 12を、次のものに変えて抵抗変化素子を作製した。他の条件は前 記と同じである。
'試料番号 3— 4 : Nd Ca CoO、
0. 5 0. 5 3
'試料番号 3— 5 :Nd Sr CoO、
0. 5 0. 5 3
•試料番号 3— 6 :Nd Ba CoO 0
0. 5 0. 5 3
[0133] 次いで、材料層を、 LCCOの Ca及び LSCOの Srを一部 Baに置換した次のものに 変えて抵抗変化素子を作製した。他の条件は前記と同じである。
•試料番号 3— 7 :La Ca Ba CoO、
0. 5 0. 4 0. 1 3
•試料番号 3— 8 :La Sr Ba CoO。
0. 5 0. 4 0. 1 3
[0134] 《メモリ動作の確認》
実施例 3で作製した 8種類の抵抗変化素子について、耐熱性の評価を実施例 1と 同様の熱処理で実施し、水素と窒素の混合気体 (水素量は全体の 5%とした)を流し た状態で、室温力 400°Cまで昇温して、 400°Cで 0. 5時間保持して行った。抵抗 変化率を表 2に示す。実施例 3にて作製した全ての試料番号 3— 1から 3— 8までの 抵抗変化素子が、熱処理後も良好な特性を維持していたが、中でも試料 3— 8は熱 処理前後を通して安定な抵抗変化特性を保持して!/ヽた。
[0135] [表 2] 酸化処 抵抗変 水素中熱処 水索中熱処理
K料番号 材料 JS12 理工程 化率 理後の抵抗 前後の抵抗変
(%) 変化率(<½) 化率の比(96)
3- 1 La0. sCa0 。リ 3 有り 800 700
3-2 La0 5Sr0. eCo03 有り 980 800 81. 6
3-3 La0 sBa0 sCo0 有り 300 200 66. 7
3-4 Nd0. sCa0 sCo03 有リ 850 750 88. 2
Nd0 BSr0.5Co03 有リ 840 600 71. 4
3-6 Nd0.5Ba0. sCo03 有り 410 260
3-7 La0 6Ca0 4Ba0 , Co03 有り 900 820 91. 1
3-8 LaQ.6Sr0 4Ba0 ,Co03 有り 1100 970 88. 2 産業上の利用可能性
[0136] 本発明の抵抗変化素子は、材料層が RMCoOで示されるぺロブスカイト構造を有
3
する酸化物半導体からなる。
[0137] 前記材料層は、酸素雰囲気下において加熱する酸素処理に供することにより、従 来品の PCMOと同等か又はより良好な抵抗変化特性を発現する。また、酸素処理後 の材料層は、後に還元雰囲気下における熱処理を施した場合でも、抵抗変化の能 力は十分維持される。
[0138] 本発明の抵抗変化素子は、不揮発性メモリに好適に適用できる。例えば、本発明 の抵抗変化素子とトランジスタとを組み合わせることにより不揮発性メモリは得られる。 その他、本発明の抵抗変化素子は、論理回路のほか、光、熱、応力、磁気等を検知 するセンサーに適用できる。また本発明の抵抗変化素子は、画像表示器のよo tう卜なラン ダム 寸 アクセスメモリ機能を要する電子機器にも適用できる。

Claims

請求の範囲 [1] 材料層と、前記材料層に対して電気的に接続された 2つの電極である第 1電極及 び第 2電極とから構成され、第 1電極と第 2電極との間に電流又は電圧を印加するこ とによって材料層の抵抗が変化する抵抗変化素子、の製造方法であって、
(1)第 1電極を形成する第 1電極形成工程、
(2)第 1電極上に、化学式: RMCoO (但し、 Rは希土類元素を示し、 Mはアルカリ土
3
類元素を示す)で示されるベロブスカイト構造を有する酸化物半導体からなる材料層 を形成する材料層形成工程、
(3)材料層を酸素雰囲気下において加熱する酸素処理工程、及び、
(4)酸素処理工程を経た材料層上に第 2電極を形成する第 2電極形成工程、 を有する製造方法。
[2] ぺロブスカイト構造を有する酸化物半導体が、組成式: Pr Ca CoO (但し、 Xは
1 -X X 3
0. 4≤x≤0. 6を示す)で示される、請求項 1に記載の製造方法。
[3] 材料層形成工程と酸素処理工程とが繰り返される、請求項 1に記載の製造方法。
[4] 酸素処理工程が、酸素分子、オゾン及び原子酸素力 なる群力 選択された 1種 以上を含む雰囲気にぉ ヽて材料層を加熱する工程である、請求項 1に記載の製造 方法。
[5] 酸素処理工程が、 100〜800°Cで材料層を加熱する工程である、請求項 1に記載 の製造方法。
[6] 酸素処理工程が、 30分〜 12時間、材料層を加熱する工程である、請求項 1に記載 の製造方法。
[7] 化学式: RMCoO (但し、 Rは希土類元素を示し、 Mはアルカリ土類元素を示す)
3
で示されるベロブスカイト構造を有する酸化物半導体からなる材料層と、前記材料層 に対して電気的に接続された 2つの電極である第 1電極及び第 2電極とから構成され 、第 1電極と第 2電極との間に電流又は電圧を印加することによって材料層の抵抗が 変化する抵抗変化素子。
[8] ぺロブスカイト構造を有する酸化物半導体が、組成式: Pr Ca CoO (但し、 Xは
1 -X X 3
0. 4≤x≤0. 6を示す)で示される、請求項 7に記載の抵抗変化素子。 電流又は電圧をパルス状に印加する、請求項 7に記載の抵抗変化素子。
請求項 7に記載の抵抗変化素子とトランジスタとを有し、前記抵抗変化素子とトラン ジスタとは電気的に接続されている、不揮発性メモリ。
PCT/JP2005/016913 2004-09-14 2005-09-14 抵抗変化素子及びそれを用いた不揮発性メモリ WO2006030814A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006535170A JP3903323B2 (ja) 2004-09-14 2005-09-14 抵抗変化素子及びそれを用いた不揮発性メモリ
US11/417,200 US7473612B2 (en) 2004-09-14 2006-05-04 Method for fabricating a variable-resistance element including heating a RMCoO3 perovskite structure in an oxygen atmosphere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-266381 2004-09-14
JP2004266381 2004-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/417,200 Continuation US7473612B2 (en) 2004-09-14 2006-05-04 Method for fabricating a variable-resistance element including heating a RMCoO3 perovskite structure in an oxygen atmosphere

Publications (1)

Publication Number Publication Date
WO2006030814A1 true WO2006030814A1 (ja) 2006-03-23

Family

ID=36060066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016913 WO2006030814A1 (ja) 2004-09-14 2005-09-14 抵抗変化素子及びそれを用いた不揮発性メモリ

Country Status (4)

Country Link
US (1) US7473612B2 (ja)
JP (1) JP3903323B2 (ja)
CN (1) CN1914733A (ja)
WO (1) WO2006030814A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539610B2 (ja) * 2007-03-02 2014-07-02 ピーエスフォー ルクスコ エスエイアールエル 相変化メモリのプログラム方法と読み出し方法
US8144498B2 (en) * 2007-05-09 2012-03-27 Intermolecular, Inc. Resistive-switching nonvolatile memory elements
KR101104443B1 (ko) * 2008-02-12 2012-01-12 파나소닉 주식회사 비휘발성 반도체 기억 장치 및 그 제조 방법
US20140048799A1 (en) * 2011-02-16 2014-02-20 William Marsh Rice University Invisible/transparent nonvolatile memory
CN103779496B (zh) * 2012-10-25 2017-07-28 中芯国际集成电路制造(上海)有限公司 相变存储单元的制作方法
JP6618481B2 (ja) 2014-04-02 2019-12-11 フランク ナタリ ドープト希土類窒化物材料および同材料を含むデバイス
JP6684224B2 (ja) 2014-04-02 2020-04-22 サイモン エドワード グランビル 希土類窒化物を含む磁性材料およびデバイス
US11177438B2 (en) * 2019-05-23 2021-11-16 Tetramen Inc. Patterning oxidation resistant electrode in crossbar array circuits
CN115662719B (zh) * 2022-12-29 2023-03-17 西北工业大学 一种无铅厚膜电阻浆料及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263646A (ja) * 1994-03-25 1995-10-13 Mitsubishi Chem Corp 強誘電体ダイオード素子、並びにそれを用いたメモリー装置、フィルター素子及び疑似脳神経回路
JP2004185756A (ja) * 2002-12-05 2004-07-02 Sharp Corp 不揮発性メモリ装置
JP2004186553A (ja) * 2002-12-05 2004-07-02 Sharp Corp 不揮発性メモリセル及び不揮発性半導体記憶装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204139B1 (en) * 1998-08-25 2001-03-20 University Of Houston Method for switching the properties of perovskite materials used in thin film resistors
US6693821B2 (en) 2001-06-28 2004-02-17 Sharp Laboratories Of America, Inc. Low cross-talk electrically programmable resistance cross point memory
US7326979B2 (en) * 2002-08-02 2008-02-05 Unity Semiconductor Corporation Resistive memory device with a treated interface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263646A (ja) * 1994-03-25 1995-10-13 Mitsubishi Chem Corp 強誘電体ダイオード素子、並びにそれを用いたメモリー装置、フィルター素子及び疑似脳神経回路
JP2004185756A (ja) * 2002-12-05 2004-07-02 Sharp Corp 不揮発性メモリ装置
JP2004186553A (ja) * 2002-12-05 2004-07-02 Sharp Corp 不揮発性メモリセル及び不揮発性半導体記憶装置

Also Published As

Publication number Publication date
CN1914733A (zh) 2007-02-14
US20060273877A1 (en) 2006-12-07
JP3903323B2 (ja) 2007-04-11
JPWO2006030814A1 (ja) 2008-05-15
US7473612B2 (en) 2009-01-06

Similar Documents

Publication Publication Date Title
US10833125B2 (en) Memory element with a reactive metal layer
WO2006075574A1 (ja) 抵抗変化素子とその製造方法
JP4857014B2 (ja) 抵抗変化素子とそれを用いた抵抗変化型メモリ
JP4699932B2 (ja) 抵抗変化素子とそれを用いた抵抗変化型メモリならびにその製造方法
JP3903323B2 (ja) 抵抗変化素子及びそれを用いた不揮発性メモリ
JP3919205B2 (ja) 抵抗変化素子とその製造方法
CN102593141B (zh) 一种电场调制型随机存储单元阵列及存储器
US20080107801A1 (en) Method of making a variable resistance memory
US20080200003A1 (en) Method for Forming Multi-Layered Binary Oxide Film for Use in Resistance Random Access Memory
WO2006013819A1 (ja) 抵抗変化素子とそれを用いた抵抗変化型メモリ
JP2006060232A (ja) 不揮発性メモリ素子及びその製造方法
US20080106925A1 (en) Correlated electron memory
JP2004273656A (ja) Epir素子及びそれを利用した半導体装置
JP2008192995A (ja) 抵抗変化素子とその製造方法ならびにそれを用いた抵抗変化型メモリ
WO2006101152A1 (ja) 不揮発性メモリ素子
JP4701427B2 (ja) スイッチング素子およびそれを用いたアレイ型機能素子
CN101159309A (zh) 一种低功耗电阻存储器的实现方法
JP2006080259A (ja) 抵抗変化素子およびそれを用いた不揮発性メモリ、ならびにこれらの製造方法
JP2010199348A (ja) 半導体メモリとその製造方法
WO2010073897A1 (ja) 抵抗変化素子
WO2006101151A1 (ja) 不揮発性メモリ素子
CN101101960A (zh) 一种可降低复位操作电流的电阻存储器
Chuang et al. Effects of electric fields on the switching properties improvements of RRAM device with a field-enhanced elevated-film-stack structure
WO2007007608A1 (ja) 半導体記憶装置及びその製造方法
JP4655021B2 (ja) 可変抵抗素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006535170

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 11417200

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580003381.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11417200

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase