WO2006030778A1 - 半導体レーザ素子及び半導体レーザ素子アレイ - Google Patents

半導体レーザ素子及び半導体レーザ素子アレイ Download PDF

Info

Publication number
WO2006030778A1
WO2006030778A1 PCT/JP2005/016833 JP2005016833W WO2006030778A1 WO 2006030778 A1 WO2006030778 A1 WO 2006030778A1 JP 2005016833 W JP2005016833 W JP 2005016833W WO 2006030778 A1 WO2006030778 A1 WO 2006030778A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
semiconductor laser
curved
light
laser element
Prior art date
Application number
PCT/JP2005/016833
Other languages
English (en)
French (fr)
Inventor
You Wang
Hirofumi Miyajima
Akiyoshi Watanabe
Hirofumi Kan
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to EP05783175A priority Critical patent/EP1796233A4/en
Priority to US11/662,600 priority patent/US20080273564A1/en
Publication of WO2006030778A1 publication Critical patent/WO2006030778A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0655Single transverse or lateral mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/101Curved waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets

Definitions

  • the present invention relates to a semiconductor laser element and a semiconductor laser element array.
  • a spatial transverse single mode type and a multimode type are known as structures of semiconductor laser elements.
  • the width of the waveguide is narrowed in order to limit the oscillation mode in the lateral direction (slow axis direction) within the waveguide to only a single mode.
  • the width of the waveguide is narrow, the area of the output end is also reduced.
  • the single mode type semiconductor laser element is suitably used for an application using a relatively low output laser beam.
  • An example of the single mode semiconductor laser element is a semiconductor laser device disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 10-41582). This semiconductor laser device is intended to increase the laser beam intensity by expanding the width of the waveguide in a single-mode semiconductor laser.
  • a multimode semiconductor laser element in a multimode semiconductor laser element, a plurality of spatial transverse modes may be mixed in the waveguide, so that the width of the waveguide can be increased. Accordingly, it is possible to increase the area of the emission end, and it is possible to emit a laser beam having a relatively large intensity.
  • Such a multimode type semiconductor laser device is suitably used for applications that require a relatively high output laser beam.
  • Patent Document 1 JP-A-10-41582
  • the multimode semiconductor laser device has the following problems. That is, since a plurality of spatial transverse modes coexist in the waveguide, the emission pattern of the laser light emitted from the emission end is disturbed, and the emission angle becomes relatively large. Therefore, the shape of the lens for condensing or collimating the laser beam becomes complicated, and the desired laser beam is obtained. There is a possibility that such a disadvantage that the lens cannot be obtained or the lens becomes expensive. In order to suppress these disadvantages, it is preferable to suppress the lateral higher order mode as much as possible.
  • the present invention has been made in view of the above points, and provides a semiconductor laser element and a semiconductor laser element array that can emit a laser beam having a relatively large intensity and can suppress a transverse higher-order mode.
  • the purpose is to do.
  • a semiconductor laser device includes a first conductivity type cladding layer, a second conductivity type cladding layer, a first conductivity type cladding layer, and a second conductivity type cladding layer.
  • An active layer provided between, a light emitting surface and a light reflecting surface facing each other, and a waveguide configured in the active layer to resonate laser light between the light emitting surface and the light reflecting surface.
  • the waveguide is characterized by extending along a curved axis.
  • this semiconductor laser element suppresses lateral higher-order mode light by bending the waveguide, so that the width of the waveguide can be made wider. Accordingly, it is possible to emit a laser beam having a relatively large intensity.
  • a semiconductor laser device array includes a plurality of the semiconductor laser devices described above, and the plurality of semiconductor laser devices are arranged side by side in a direction along the light emitting surface and the light reflecting surface. ! Characterized by scolding.
  • a semiconductor laser element array by providing the semiconductor laser element described above, there is provided a semiconductor laser element array that can emit a laser beam having a relatively large intensity and can suppress a transverse higher-order mode. Can be provided.
  • the present invention it is possible to provide a semiconductor laser element and a semiconductor laser element array that can emit a laser beam having a relatively large intensity and can suppress a lateral high-order mode.
  • FIG. 1 is a schematic perspective view showing a configuration of a first embodiment of a semiconductor laser element array according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing an II cross section of the semiconductor laser element array shown in FIG.
  • FIG. 3 is a perspective view of a laminate including a p-type cladding layer.
  • FIG. 4 is a cross-sectional view showing (a) a plan view of the laminate and (b) a II-II section of the laminate.
  • FIG. 5 is a plan view showing the shape of a waveguide formed corresponding to the ridge portion.
  • FIG. 6 is a graph showing the correlation between the radius of curvature of a curved waveguide and the loss of light propagating in the waveguide.
  • FIG. 7 is a graph showing the correlation between the radius of curvature of a curved waveguide and the loss of light propagating in the waveguide.
  • FIG. 8 is an enlarged cross-sectional view of the semiconductor laser element array in each manufacturing process.
  • FIG. 9 is a plan view showing a waveguide included in the semiconductor laser device according to the first modification.
  • FIG. 10 is a plan view showing a waveguide included in a semiconductor laser device according to a second modification.
  • FIG. 11 is a plan view showing a waveguide included in a semiconductor laser device according to a third modification.
  • FIG. 1 is a schematic perspective view showing a configuration of a first embodiment of a semiconductor laser element array according to the present invention.
  • a semiconductor laser element array 1 includes a plurality of semiconductor laser elements 3 formed in a single body.
  • the semiconductor laser element array 1 includes only one semiconductor laser element 3, the semiconductor laser element array 1 is not an array but a single semiconductor laser element.
  • the semiconductor laser element array 1 has a light emitting surface la and a light reflecting surface lb facing each other, and a laser light emitting end 4e of each of the plurality of semiconductor laser elements 3 is horizontally disposed on the light emitting surface la. They are arranged side by side.
  • Each of the plurality of semiconductor laser elements 3 has a convex portion 25 formed in a ridge shape.
  • the convex portion 25 extends from the light emitting surface la to the light reflecting surface lb, and its longitudinal direction is curved in a direction along the light emitting surface la and the light reflecting surface lb.
  • a refractive index waveguide (described later) is formed in the semiconductor laser element 3 so as to correspond to the convex portions 25.
  • the laser beam emitting end 4e is an end surface of the refractive index type waveguide on the light emitting surface la side.
  • the plurality of semiconductor laser elements 3 are arranged side by side in the direction along the light emitting surface la and the light reflecting surface lb, and are integrally formed.
  • FIG. 2 is an enlarged cross-sectional view showing an II cross section of the semiconductor laser element array 1 shown in FIG.
  • a semiconductor laser element 3 constituting the semiconductor laser element array 1 includes a substrate 11 and a stacked body 8 in which three semiconductor layers are stacked.
  • the laminated body 8 is configured by sequentially stacking three semiconductor layers of an n-type cladding layer (second conductivity type cladding layer) 13, an active layer 15, and a p-type cladding layer (first conductivity type cladding layer) 17.
  • the p-type cladding layer 17 is provided with a ridge 9.
  • a cap layer 19 electrically connected to the p-type cladding layer 17 is provided on the outer layer of the ridge portion 9, and the ridge portion 9 and the cap layer 19 constitute a convex portion 25.
  • a p-side electrode layer 23 for injecting an electric current from the outside is provided on the outer layer.
  • An insulating layer 21 is provided between the p-type cladding layer 17 and the cap layer 19 and the p-side electrode layer 23, and the insulating layer 21 has an opening 21a in a portion corresponding to the convex portion 25.
  • p-side electrode layer 2 3 is in electrical contact only with the cap layer 19 at the opening 21a, so that current injection with an external force is limited to the cap layer 19 only.
  • An n-side electrode layer 29 is formed on the surface of the substrate 11 opposite to the laminate 8.
  • the substrate 11 is made of n-GaAs.
  • the n-type cladding layer 13 is made of, for example, n-AlGaAs.
  • the active layer 15 is made of, for example, GalnAsZAlGaAs.
  • the p-type cladding layer 17 is made of, for example, p-AlGaAs.
  • the cap layer 19 is made of, for example, p-GaAs.
  • the p-side electrode layer 23 has a TiZPtZAu force, for example.
  • the n-side electrode layer 29 is made of, for example, AuGeZAu.
  • the insulating layer 21 is, for example, SiN force.
  • the semiconductor laser device includes a light guide layer for confining light in the refractive index type waveguide between the active layer and the n-type cladding layer and between the active layer and the p-type cladding layer. Also good.
  • FIG. Fig. 3 is a perspective view of the laminate 8 including the p-type cladding layer 17
  • Fig. 4 (a) is a plan view of the laminate 8
  • Fig. 4 (b) is an illustration of the laminate 8 shown in Fig. 4 (a).
  • II is a sectional view showing a II section.
  • the stacked body 8 is configured by sequentially stacking three semiconductor layers of the n-type cladding layer 13, the active layer 15, and the p-type cladding layer 17.
  • the p-type cladding layer 17 is provided with a convex ridge 9 extending over the light emitting surface la and the light reflecting surface lb.
  • the region other than the ridge portion 9 of the p-type cladding layer 17 is a thin region 10 in which the layer is thinned.
  • the ridge portion 9 has an arc shape whose plan view shape has a longitudinal direction in the direction along the central axis B that is curved with a substantially constant curvature radius ITC.
  • the ridge portion 9 has end faces 9e and 9f and a pair of side faces 9g and 9h facing each other.
  • the pair of side surfaces 9g and 9h each define a region of the ridge portion 9, and is a boundary between the ridge portion 9 and the thin region 10.
  • the end surface 9e is on the light emitting surface la.
  • the end face 9f is on the light reflecting surface lb.
  • the side surface 9g extends to one end of the end surface 9f of the end surface 9e, and the side surface 9h extends to the other end of the end surface 9f.
  • Side 9g & 9h Are curved in the same direction with a substantially constant radius of curvature along the central axis B in the plan view of the force in the thickness direction.
  • a refractive index type waveguide 4 corresponding to the shape of the ridge portion 9 is generated in the active layer 15.
  • the waveguide 4 is a waveguide formed by an effective refractive index distribution inside the active layer 15 generated by current injection into the ridge portion 9.
  • a laser beam emitting end 4 e and a laser beam reflecting end are generated corresponding to the end surfaces 9 e and 9 f of the ridge portion 9, and a pair corresponding to the side surfaces 9 g and 9 h of the ridge portion 9.
  • Side surfaces 4g and 4h are formed.
  • FIG. 5 is a plan view showing the shape of the waveguide 4 generated corresponding to the ridge portion 9.
  • the waveguide 4 is defined by a boundary surface between the active layer 15 and the p-type cladding layer 17 and a boundary surface between the active layer 15 and the n-type cladding layer 13 in the thickness direction.
  • the waveguide 4 has a laser beam emitting end 4e and a laser beam reflecting end 4f at positions corresponding to the end surface 9e and the end surface 9f of the ridge portion 9, respectively.
  • the laser beam emitting end 4e and the laser beam reflecting end 4f are part of the cleavage plane of the active layer 15, and function as resonance surfaces for the laser beam L.
  • the waveguide 4 is curved in the longitudinal direction corresponding to the ridge portion 9. That is, the waveguide 4 extends along the central axis B having a radius of curvature R, and has side surfaces 4g and 4h at positions corresponding to the side surfaces 9g and 9h of the ridge portion 9, respectively.
  • the side surfaces 4 g and 4 h are surfaces generated by the difference in refractive index between the inside and outside of the waveguide 4, and function as reflection surfaces for the laser light L generated in the waveguide 4.
  • the side surfaces 4g and 4h may have a certain thickness when the refractive index inside and outside the waveguide 4 is continuously changing.
  • the planar shapes of the side surfaces 4g and 4h correspond to the planar shapes of the side surfaces 9g and 9h of the ridge portion 9. That is, the planar shapes of the side surfaces 4g and 4h are curved in the same direction (direction along the light exit surface la and the light reflection surface lb) with a substantially constant curvature radius along the central axis B.
  • FIG. 6 is a graph showing the correlation between the radius of curvature of the curved waveguide and the loss of light propagating in the waveguide.
  • graph G1 shows the loss in the relatively high-order spatial transverse mode
  • graph G2 shows the loss in the relatively low-order spatial transverse mode. Note that the wavelengths of light in the graphs Gl and G2 in FIG. 6 are the same.
  • the waveguide 4 is curved
  • the higher the order of the spatial transverse mode the greater the optical loss, making laser oscillation difficult.
  • the semiconductor laser device 3 of the present embodiment the laser oscillation in the lateral high-order mode can be suppressed while maintaining the laser oscillation in the transverse low-order mode, and the beam such as the lateral spatial coherence characteristic Quality can be improved.
  • the smaller the radius of curvature of the waveguide the greater the loss of each mode.
  • the radius of curvature of the central axis B is set so that only the transverse fundamental mode laser beam resonates and the light of other modes cannot resonate. If set, it is possible to realize a single mode laser beam or a laser beam close to a single mode.
  • the transverse higher-order mode light is suppressed by curving the waveguide 4, so that the waveguide The width of 4 can be made wider. Accordingly, it is possible to emit laser light L having a relatively large intensity.
  • Fig. 7 is a graph showing the correlation between the radius of curvature of a curved waveguide and the loss of light propagating in the waveguide.
  • Graphs G3 to G6 have different waveguide widths w to w (w> w> It shows the loss of light propagating in the waveguide where w> w). In addition, this
  • the spatial transverse mode orders in the graphs G3 to G6 in Fig. 7 are the same. As shown in Figure 7, the wider the waveguide width, the greater the loss of light propagating in the waveguide. Therefore, when designing the waveguide, the loss in the transverse low-order mode is small enough to allow laser oscillation, and the loss in the transverse high-order mode is so large that laser oscillation is not possible. Based on the correlation shown in FIG. 7, the radius of curvature R and the waveguide width of the waveguide 4 should be determined.
  • the radius of curvature R is, for example, lmm ⁇ R ⁇ 10mm
  • the waveguide width w is, for example, 0.03mm ⁇ w ⁇ 0.lm. m is good.
  • the curvature of the central axis B is preferably substantially constant (curvature radius R) in the entire waveguide 4 as in the present embodiment.
  • curvature radius R curvature radius
  • the semiconductor laser element array 1 of the present embodiment by providing a plurality of semiconductor laser elements 3 having the above-described effects, the laser light L in which the oscillation of the transverse higher-order mode is suppressed can be further increased in intensity. Can be emitted.
  • the semiconductor laser device array 1 has the following effects. That is, in the semiconductor laser element array 1, current is partially concentrated and injected into the active layer 15 by the ridge portion 9 of the p-type cladding layer 17. As a result, light coupling or interference occurs between the waveguides 4 of the adjacent semiconductor laser elements 3. Therefore, since the interval between the waveguides 4 can be made relatively narrow, more waveguides 4 can be provided, and a stable laser beam can be emitted with a large output. Further, since the current is partially concentrated and injected into the active layer 15, the electro-optical conversion efficiency is increased and the reactive current can be reduced, so that the heat generation of the semiconductor laser element 3 can be reduced. Therefore, the reliability of the semiconductor laser element array 1 is improved, and a long life can be realized.
  • FIG. 8 shows an enlarged cross-sectional view of the semiconductor laser element array 1 in each manufacturing process.
  • n-type GaAs substrate 11 is prepared, and n-type AlGaAs 2. ⁇ m, GalnAs / AlGaAs 0.3 m, p-type AlGaAs 2.0 m, and p-type GaAs are sequentially formed on substrate 11. 0.1 ⁇ m epitaxial growth is performed to form an n-type cladding layer 13, an active layer 15 having a quantum well structure, a p-type cladding layer 17, and a cap layer 19, respectively (see FIG. 8 (a)).
  • a protective mask 51 is formed in a shape corresponding to the ridge portion 9 by photowork on the cap layer 19 side, and the cap layer 19 and the p-type cladding layer 17 are etched. Etching stops at a depth that does not reach the active layer 15 (see FIG. 8 (b)).
  • a SiN film is deposited on the entire crystal surface, and the SiN film at a position corresponding to the ridge portion 9 is removed by photowork to form an insulating layer 21 (see FIG. 8 (c)).
  • a p-side electrode layer 23 is formed on the entire crystal surface with a TiZPtZAu film.
  • FIG. 9 is a plan view showing a waveguide 41 included in the semiconductor laser device 3a according to this modification.
  • the planar shape of the waveguide 41 is different from that of the waveguide 4 according to the first embodiment. That is, the waveguide 41 includes a curved portion 41a, a waveguide portion 41b generated between one end of the curved portion 41a and the light emitting surface la, and a gap between the other end of the curved portion 41a and the light reflecting surface lb. And the waveguide portion 41c generated in FIG.
  • the longitudinal direction of the curved portion 41a is along a central axis C1 that is curved with a substantially constant curvature (curvature radius R1).
  • the waveguide portion 41b is in contact with the light exit surface la, and its longitudinal direction is substantially perpendicular to the light exit surface la and is along the straight central axis C2.
  • the waveguide portion 41c is in contact with the light reflecting surface lb, and its longitudinal direction is substantially perpendicular to the light reflecting surface lb and is along the straight central axis C3. Note that the boundary portions of the central axes C1 to C3 are smoothly connected.
  • the curved portion 41a has a pair of side surfaces 41h and 41g facing each other.
  • the waveguide portion 41b has a pair of side surfaces 41i and 41j facing each other.
  • the waveguide portion 41c has a pair of side surfaces 41k and 411 facing each other.
  • One end of the side surface 41g of the curved portion 41a is smoothly connected to one end of the side surface 41i of the waveguide portion 41b, and the other end is smoothly connected to one end of the side surface 41k of the waveguide portion 41c.
  • One end of the side surface 41h of the curved portion 41a is smoothly connected to one end of the side surface 41j of the waveguide portion 41b, and the other end is smoothly connected to one end of the side surface 411 of the waveguide portion 41c.
  • the other end of the side surface 41i of the waveguide portion 41b is in contact with one end of the laser beam emitting end 41e, and the other end of the side surface 41j is in contact with the other end of the laser beam emitting end 41e.
  • the other end of the side surface 41k of the waveguide portion 41c is in contact with one end of the laser beam reflecting end 41f, and the other end of the side surface 411 is in contact with the other end of the laser beam reflecting end 41f.
  • the laser light emitting end 41e and the laser light reflecting end 41f are part of the light emitting surface la and the light reflecting surface lb, respectively, and are resonance surfaces for the laser light.
  • the side surfaces 41g and 41h of the curved portion 41a are curved in the same direction with a substantially constant curvature along the central axis C1.
  • the side surfaces 41i and 41j of the waveguide portion 41b extend linearly along the central axis C2 and are substantially perpendicular to the laser light emitting end 41e (light emitting surface la). It touches.
  • the side surfaces 41k and 411 of the waveguide portion 41c extend linearly along the central axis C3, and are in contact with the laser light reflecting end 41f (light reflecting surface lb) substantially perpendicularly.
  • the waveguide 41 having such a shape is realized by having a p-type cladding layer force S having a ridge portion having a similar planar shape.
  • the waveguide according to the present invention can obtain the same effects as those of the first embodiment by including a curved portion in at least a part thereof.
  • the loss in the curved portion 41a increases as the spatial transverse mode order of light propagating inside the waveguide increases. Accordingly, it is possible to suppress the laser oscillation of the transverse high-order mode while maintaining the laser oscillation of the transverse low-order mode, and to improve the beam quality such as the spatial coherence characteristic in the lateral direction.
  • the radius of curvature of the central axis C1 is set so that only the transverse fundamental mode laser beam resonates and other modes of light cannot resonate, a single mode laser beam or a laser beam close to a single mode can be obtained. Can also be realized.
  • the lateral higher-order mode light is suppressed by curving a part of the waveguide 41.
  • the width of the waveguide 41 can be made wider. Accordingly, it is possible to emit a laser beam having a relatively large intensity.
  • the waveguide 41 of the present modification includes a waveguide portion 41b extending along a central axis C2 substantially perpendicular to the light emitting surface la at a portion in contact with the light emitting surface la.
  • the waveguide 41 includes a waveguide portion 41c extending along the central axis C3 substantially perpendicular to the light reflecting surface lb at a portion in contact with the light reflecting surface lb.
  • the waveguide 41 includes the waveguide portion 41b (or 41c) extending substantially perpendicular to the light emitting surface la (or the light reflecting surface lb), so that the light emitting surface la (or It is possible to effectively suppress the laser oscillation of the transverse higher-order mode in a direction different from the direction substantially perpendicular to the light reflecting surface (lb).
  • FIG. 10 is a plan view showing the waveguide 42 included in the semiconductor laser device 3b according to this modification.
  • the planar shape of the waveguide 42 is the same as that of the first embodiment. Different from waveguide 4 That is, the waveguide 42 is generated between the bending portion 42a, the bending portion 42b generated between one end of the bending portion 42a and the light emitting surface la, and the other end of the bending portion 42a and the light reflecting surface lb. And a curved portion 42c.
  • the curved portion 42a is an example of the first curved portion in the present invention
  • the curved portions 42b and 42c are examples of the second curved portion in the present modified example.
  • Each of the curved portions 42a to 42c has a longitudinal direction along a central axis D1 to D3 curved with a substantially constant curvature (curvature radius R2 to R4).
  • the central axes D2 and D3 are curved in a direction different from the central axis D1 (in the opposite direction in this modification). Therefore, the longitudinal direction of the curved portions 42b and 42c is curved in a direction different from the longitudinal direction of the curved portion 42a. Note that the boundary portions of the central axes D1 to D3 are smoothly connected so that their tangent lines coincide with each other.
  • the curved portion 42a has a pair of side surfaces 42h and 42g facing each other.
  • the curved portion 42b has a pair of side surfaces 42i and 43 ⁇ 4 facing each other.
  • the curved portion 42c has a pair of side surfaces 42k and 421 facing each other.
  • One end of the side surface 42g of the bending portion 42a and one end of the side surface 42i of the bending portion 42b are connected so that their tangents coincide with each other at the connection portion.
  • the other end of the side surface 42g and one end of the side surface 42k of the curved portion 42c are connected so that their tangents coincide with each other at the connection portion.
  • One end of the side surface 42h of the curved portion 42a and one end of the side surface 43 ⁇ 4 of the curved portion 42b are connected so that their tangents coincide with each other! /.
  • the other end of the side surface 42h and one end of the side surface 421 of the curved portion 42c are connected so that their tangent lines coincide with each other.
  • the other end of the side surface 42i of the curved portion 42b is in contact with one end of the laser beam emitting end 42e
  • the other end of the side surface 43 ⁇ 4 is in contact with the other end of the laser beam emitting end 42e.
  • the other end of the side surface 42k of the curved portion 42c is in contact with one end of the laser beam reflecting end 42f, and the other end of the side surface 421 is in contact with the other end of the laser beam reflecting end 42f.
  • the laser beam emitting end 42e and the laser beam reflecting end 42f are part of the light emitting surface la and the light reflecting surface lb, respectively, and are resonance surfaces for the laser beam.
  • the side surfaces 42g and 42h of the curved portion 42a are curved in the same direction with a substantially constant curvature along the central axis D1.
  • the side surfaces 42i and 42j of the curved portion 42b are curved in the same direction (the direction opposite to the side surfaces 42g and 42h) with a substantially constant curvature along the central axis D2.
  • Side surfaces 42k and 421 of the curved portion 42c are substantially constant along the central axis D3. Curved in the same direction at the rate (opposite side faces 42g and 42h).
  • the waveguide 42 having such a shape is realized by having a p-type cladding layer having a ridge portion having a similar planar shape.
  • the effect of the first embodiment can be obtained more suitably. That is, in the waveguide 42 of the present modification, the transverse higher-order mode can be more effectively suppressed by including the plurality of curved portions 42a to 42c. Further, since the central axes D1 and D2 (or D3) of the curved portions 42a and 42b (or 42c) are curved in different directions, the lateral higher-order mode can be more stably suppressed. Also in the waveguide 42 of this modification, the waveguide width can be made wider, so that it is possible to emit a laser beam having a relatively large intensity. In this modification, the waveguide 42 includes three curved portions 42a to 42c. However, the waveguide may include any number of curved portions.
  • FIG. 11 is a plan view showing a waveguide 43 included in the semiconductor laser device 3c according to this modification.
  • the longitudinal direction of the waveguide 43 in this modification is along the central axis E curved with a substantially constant curvature (curvature radius R5).
  • the center axis E in this modification differs from the center axis B in the first embodiment described above is that the light exit surface la and the center axis E intersect (that is, the center of the laser light exit end 43e).
  • the relative positional relationship between the point where the light reflecting surface lb and the center axis E intersect that is, the center of the laser light reflecting end 43f).
  • the point where the light emitting surface la intersects with the central axis B (that is, the center of the laser light emitting end 4e), the light reflecting surface lb, and the central axis B Are intersected with each other (that is, the center of the laser light reflecting end 4f) in a substantially symmetrical manner.
  • the point where the light exit surface la and the central axis E intersect and the point where the light reflecting surface lb and the central axis E intersect are displaced from each other from the symmetrical position.
  • the waveguide 43 has a pair of side surfaces 43g and 43h facing each other. One end of the side surface 43g of the waveguide 43 is in contact with one end of the laser beam emitting end 43e, and one end of the side surface 43h is in contact with the other end of the laser beam emitting end 43e. The other end of the side surface 43g of the waveguide 43 is in contact with one end of the laser beam reflecting end 43f, and the other end of the side surface 43h is in contact with the other end of the laser beam reflecting end 43f.
  • the side surfaces 43g and 43h of the waveguide 43 are curved in the same direction along the central axis E with a substantially constant curvature.
  • the contact between the side surface 43g of the waveguide 43 and the laser light emitting end 43e (or the contact point between the side surface 43h of the waveguide 43 and the laser light emitting end 43e), and the side surface 43g of the waveguide 43 and the laser is also offset from the symmetrical positional force.
  • the laser light emitting end 43e and the laser light reflecting end 43f are part of the light emitting surface la and the light reflecting surface lb, respectively, and are resonance surfaces for the laser light.
  • the waveguide 43 having such a shape is realized by the p-type cladding layer having a ridge portion having a similar planar shape.
  • the position of the laser light emitting end 43e and the position of the laser light reflecting end 43f may be asymmetric with respect to each other.
  • Such a waveguide 43 can provide the same effects as those of the first embodiment.
  • the semiconductor laser device and the semiconductor laser device array according to the present invention are not limited to the above-described embodiments and modifications, and can be variously modified.
  • a GaAs-based semiconductor laser element has been exemplified, but the configuration of the present invention can also be applied to semiconductor laser elements of other materials such as GaN-based and InP-based.
  • the center axis is used as the axis, but the axis is not limited to the center axis, and may be an axis that passes through other than the center.
  • the semiconductor laser device includes a first conductivity type cladding layer, a second conductivity type cladding layer, and an active layer provided between the first conductivity type cladding layer and the second conductivity type cladding layer.
  • a light emitting surface and a light reflecting surface facing each other, and a waveguide configured in the active layer and resonating the laser light between the light emitting surface and the light reflecting surface, and the waveguide has a curved axis. I prefer to extend along! /.
  • the semiconductor laser element may have a configuration in which the curvature of the curved axis is substantially constant.
  • the semiconductor laser element may have a configuration in which the waveguide includes a plurality of curved portions, and the curvature of the curved axis is substantially constant for each of the plurality of curved portions. According to these semiconductor laser elements, it is possible to more effectively suppress the laser oscillation in the transverse higher-order mode.
  • the waveguide may include first and second curved portions extending along axes that are curved in different directions. As a result, it is possible to more stably suppress the laser oscillation in the transverse higher-order mode at the curved portion.
  • the semiconductor laser element may have a configuration in which the waveguide includes a waveguide portion that is in contact with the light emitting surface or the light reflecting surface and extends substantially perpendicular to the light emitting surface and the light reflecting surface.
  • the semiconductor laser element array includes a plurality of any of the semiconductor laser elements described above, and the plurality of semiconductor laser elements are arranged side by side in a direction along the light emitting surface and the light reflecting surface, and are integrally formed. Be preferred!
  • the semiconductor laser element array by providing any of the semiconductor laser elements described above, a semiconductor laser element capable of emitting a laser beam having a relatively large intensity and suppressing a lateral high-order mode.
  • An array can be provided.
  • the present invention can be used as a semiconductor laser element and a semiconductor laser element array that can emit a laser beam having a relatively large intensity and can suppress a transverse higher-order mode.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 半導体レーザ素子3は、n型クラッド層13と、活性層15と、p型クラッド層17とを備える。p型クラッド層17は、活性層15に導波路4を形成するリッジ部9を有する。導波路4は、略一定の曲率(曲率半径R)で湾曲している中心軸線Bに沿って延びている。このような導波路4においては、導波路4内で共振する光のうち空間横モードの次数が高い光ほど損失が大きくなる。従って、横低次モードのレーザ発振を維持しつつ、横高次モードのレーザ発振を抑制することができる。これにより、比較的大きな強度のレーザ光を出射可能であって、横高次モードを抑制できる半導体レーザ素子、及び半導体レーザ素子アレイが実現される。

Description

明 細 書
半導体レーザ素子及び半導体レーザ素子アレイ
技術分野
[0001] 本発明は、半導体レーザ素子、及び半導体レーザ素子アレイに関するものである。
背景技術
[0002] 従来より、半導体レーザ素子の構造として空間横シングルモード型とマルチモード 型とが知られている。このうち、シングルモード型の半導体レーザ素子では、導波路 内における横方向(スロー軸方向)の発振モードを単一のモードのみに限定するため に、導波路の幅が狭く形成される。しかし、導波路の幅が狭いと出射端の面積も小さ くなる。また、出射端においてレーザ光密度が過大になると、半導体レーザ素子の信 頼性等に影響する。従って、シングルモード型の半導体レーザ素子は、比較的低出 力のレーザ光を用いる用途に好適に用いられる。なお、このシングルモード型の半導 体レーザ素子の例としては、特許文献 1 (特開平 10— 41582号公報)に開示された 半導体レーザ装置がある。この半導体レーザ装置は、シングルモード型の半導体レ 一ザにおいて導波路の幅を拡張し、レーザ光強度を高めることを目的としている。
[0003] 他方、マルチモード型の半導体レーザ素子では、導波路内において複数の空間横 モードが混在してもよいため、導波路の幅を広く形成できる。従って、出射端の面積 を大きくすることが可能となり、比較的大きな強度のレーザ光を出射することができる 。このようなマルチモード型の半導体レーザ素子は、比較的高出力のレーザ光を必 要とする用途に好適に用いられる。
特許文献 1 :特開平 10- 41582号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、マルチモード型の半導体レーザ素子には、次のような問題がある。すなわ ち、導波路内において複数の空間横モードが混在するため、出射端から出射される レーザ光の出射パターンが乱れ出射角が比較的大きくなつてしまう。従って、このレ 一ザ光を集光またはコリメートするためのレンズの形状が複雑となり、所望のレーザ光 が得られな力つたり、レンズが高価になるといった不利益を生じるおそれがある。これ らの不利益を抑えるためには、横高次モードをできるだけ抑制することが好ましい。
[0005] 本発明は、上述の点を鑑みてなされたものであり、比較的大きな強度のレーザ光を 出射可能であって、横高次モードを抑制できる半導体レーザ素子及び半導体レーザ 素子アレイを提供することを目的とする。
課題を解決するための手段
[0006] 上記課題を解決するために、本発明による半導体レーザ素子は、第 1導電型クラッ ド層と、第 2導電型クラッド層と、第 1導電型クラッド層と第 2導電型クラッド層との間に 設けられた活性層と、互いに対向する光出射面及び光反射面と、活性層において構 成され、光出射面と光反射面との間でレーザ光を共振させる導波路とを備え、導波 路カ 湾曲した軸線に沿って延びていることを特徴とする。
[0007] このような導波路においては、導波路内で共振する光のうち空間横モードの次数が 高い光ほど損失が大きくなる。従って、この半導体レーザ素子によれば、横低次モー ドのレーザ発振を維持しつつ、横高次モードのレーザ発振を抑制することができ、横 方向の空間コヒーレンス特性といったビーム品質を向上できる。また、この半導体レ 一ザ素子は、従来のシングルモード型とは異なり、導波路を湾曲させることによって 横高次モード光を抑制するので、導波路の幅をより広くできる。従って、比較的大き な強度のレーザ光を出射することが可能となる。
[0008] 本発明による半導体レーザ素子アレイは、上記した半導体レーザ素子を複数備え 、複数の半導体レーザ素子が、光出射面及び光反射面に沿った方向に並んで配置 されて一体に形成されて!ヽることを特徴とする。
[0009] 上記半導体レーザ素子アレイによれば、上記した半導体レーザ素子を備えることに よって、比較的大きな強度のレーザ光を出射可能であって、横高次モードを抑制で きる半導体レーザ素子アレイを提供できる。
発明の効果
[0010] 本発明によれば、比較的大きな強度のレーザ光を出射可能であって、横高次モー ドを抑制できる半導体レーザ素子及び半導体レーザ素子アレイを提供できる。
図面の簡単な説明 [0011] [図 1]図 1は、本発明による半導体レーザ素子アレイの第 1実施形態の構成を示す概 略斜視図である。
[図 2]図 2は、図 1に示した半導体レーザ素子アレイの I I断面を示す拡大断面図で ある。
[図 3]図 3は、 p型クラッド層を含む積層体の斜視図である。
[図 4]図 4は、(a)積層体の平面図、及び (b)積層体の II II断面を示す断面図である
[図 5]図 5は、リッジ部に対応して形成される導波路の形状を示す平面図である。
[図 6]図 6は、湾曲した導波路の曲率半径と導波路内を伝搬する光の損失との相関を 示すグラフである。
[図 7]図 7は、湾曲した導波路の曲率半径と導波路内を伝搬する光の損失との相関を 示すグラフである。
[図 8]図 8は、各製造工程における半導体レーザ素子アレイの拡大断面図を示す図 である。
[図 9]図 9は、第 1変形例による半導体レーザ素子が有する導波路を示す平面図であ る。
[図 10]図 10は、第 2変形例による半導体レーザ素子が有する導波路を示す平面図 である。
[図 11]図 11は、第 3変形例による半導体レーザ素子が有する導波路を示す平面図 である。
符号の説明
[0012] 1…半導体レーザ素子アレイ、 la…光出射面、 lb…光反射面、 3…半導体レーザ 素子、 4…導波路、 4e…レーザ光出射端、 4f…レーザ光反射端、 4g, 4h…側面、 8 …積層体、 9· ··リッジ部、 9e, 9f…端面、 9g, 9h…側面、 10…薄厚領域、 11· "基板 、 13· ··η型クラッド層、 15· ··活性層、 17· ··ρ型クラッド層、 19· ··キャップ層、 21· ··絶 縁層、 21a…開口部、 23· ··ρ側電極層、 25· ··凸部、 29· ··η側電極層、 51· ··保護マ スク。
発明を実施するための最良の形態 [0013] 以下、添付図面を参照しながら本発明による半導体レーザ素子及び半導体レーザ 素子アレイの実施の形態を詳細に説明する。なお、図面の説明において同一の要素 には同一の符号を付し、重複する説明を省略する。
[0014] (第 1の実施の形態)
図 1は、本発明による半導体レーザ素子アレイの第 1実施形態の構成を示す概略 斜視図である。図 1を参照すると、半導体レーザ素子アレイ 1は、複数の半導体レー ザ素子 3がー体に形成されてなる。半導体レーザ素子アレイ 1が備える半導体レーザ 素子 3の数は幾つでもよぐ一つのみ備える場合はアレイではなく単体の半導体レー ザ素子となる。半導体レーザ素子アレイ 1は、互いに対向する光出射面 la及び光反 射面 lbを有しており、光出射面 la上には複数の半導体レーザ素子 3それぞれのレ 一ザ光出射端 4eが水平方向に並んで配置されている。また、複数の半導体レーザ 素子 3のそれぞれは、リッジ状に成形された凸部 25を有している。凸部 25は、光出射 面 laから光反射面 lbまで延びており、その長手方向は、光出射面 la及び光反射面 lbに沿った向きに湾曲している。また、半導体レーザ素子 3には凸部 25に対応して 屈折率型導波路 (後述)が形成される。レーザ光出射端 4eは、この屈折率型導波路 の光出射面 la側の端面である。複数の半導体レーザ素子 3は、光出射面 la及び光 反射面 lbに沿った方向に並んで配置されて一体に形成されている。
[0015] 図 2は、図 1に示した半導体レーザ素子アレイ 1の I I断面を示す拡大断面図であ る。図 2を参照すると、半導体レーザ素子アレイ 1を構成する半導体レーザ素子 3は、 基板 11と、 3層の半導体層が積層された積層体 8とを備えている。積層体 8は、 n型ク ラッド層(第 2導電型クラッド層) 13、活性層 15、及び p型クラッド層(第 1導電型クラッ ド層) 17の 3つの半導体層が順に積層されて構成されている。 p型クラッド層 17〖こはリ ッジ部 9が設けられて 、る。リッジ部 9の外側の層には p型クラッド層 17と電気的に接 続されるキャップ層 19が設けられており、リッジ部 9とキャップ層 19とで凸部 25を構成 している。
[0016] 更に外側の層には外部からの電流を注入する p側電極層 23が設けられている。 p 型クラッド層 17及びキャップ層 19と p側電極層 23との間には絶縁層 21が設けられて おり、絶縁層 21は凸部 25に対応する部分に開口部 21aを有している。 p側電極層 2 3は開口部 21aにお 、てキャップ層 19にのみ電気的に接触するようになって 、るの で、外部力もの電流注入はキャップ層 19にのみ限定してなされる。また、基板 11の 積層体 8と反対側の面上には n側電極層 29が形成されて 、る。各構成材料を例示す ると、基板 11は、例えば n—GaAsからなる。 n型クラッド層 13は、例えば n— AlGaAs からなる。活性層 15は、例えば GalnAsZAlGaAsからなる。 p型クラッド層 17は、例 えば p— AlGaAsからなる。キャップ層 19は、例えば p— GaAsからなる。 p側電極層 2 3は、例えば TiZPtZAu力もなる。 n側電極層 29は、例えば AuGeZAuからなる。 絶縁層 21は、例えば SiN力 なる。
[0017] キャップ層 19に電流が注入されると、凸部 25に対応する活性層 15の領域 (換言す れば、リッジ部 9に対応する領域)が活性領域となる。このとき、リッジ部 9とその外部と の屈折率差によって、活性層 15には実効的な屈折率差が生じるため、凸部 25に対 応して活性層 15内に導波路 4が形成される。なお、半導体レーザ素子は、活性層と n 型クラッド層との間、及び活性層と p型クラッド層との間に、屈折率型導波路に光を閉 じ込めるための光ガイド層を備えても良い。
[0018] ここで、図 3及び図 4を参照して p型クラッド層 17について説明する。図 3は p型クラ ッド層 17を含む積層体 8の斜視図、図 4 (a)は積層体 8の平面図、図 4 (b)は図 4 (a) に示した積層体 8の II II断面を示す断面図である。上述のとおり、積層体 8は、 n型 クラッド層 13、活性層 15、及び p型クラッド層 17の 3つの半導体層が順に積層されて 構成されている。
[0019] p型クラッド層 17には、光出射面 laと光反射面 lbとにわたって延びる凸状のリッジ 部 9が設けられている。 p型クラッド層 17のリッジ部 9以外の領域は、層が薄化された 薄厚領域 10となっている。リッジ部 9は、その平面視形状が、略一定の曲率半径 ITC 湾曲した中心軸線 Bに沿った方向を長手方向とする円弧形状となっている。
[0020] リッジ部 9は、端面 9e及び 9f、並びに互いに対向する一対の側面 9g及び 9hを有し ている。一対の側面 9g及び 9hは、それぞれリッジ部 9の領域を規定しており、リッジ 部 9と薄厚領域 10との境界となっている。端面 9eは、光出射面 la上にある。端面 9f は、光反射面 lb上にある。側面 9gは端面 9eの一端力 端面 9fの一端まで延び、側 面 9hは端面 9eの他の一端力 端面 9fの他の一端まで延びて 、る。側面 9g及び 9h は、厚さ方向力 見た平面図において、中心軸線 Bに沿うように略一定の曲率半径 でそれぞれ同じ向きに湾曲している。
[0021] 活性層 15にはリッジ部 9の形状に対応した屈折率型の導波路 4が生成される。導 波路 4は、リッジ部 9への電流注入により生じる活性層 15内部での実効的な屈折率 分布によって形成される導波路である。導波路 4には、リッジ部 9の端面 9e、 9fに対 応してレーザ光出射端 4e、レーザ光反射端 (後述)が生成され、リッジ部 9の側面 9g 、 9hそれぞれに対応して一対の側面 4g、 4hが形成される。
[0022] 図 5は、リッジ部 9に対応して生成される導波路 4の形状を示す平面図である。導波 路 4は、厚さ方向には活性層 15と p型クラッド層 17との境界面、及び活性層 15と n型 クラッド層 13との境界面で規定される。導波路 4は、リッジ部 9の端面 9e及び端面 9f に対応する位置にそれぞれレーザ光出射端 4e及びレーザ光反射端 4fを有している 。レーザ光出射端 4e及びレーザ光反射端 4fは、活性層 15のへき開面の一部であり 、レーザ光 Lに対する共振面として機能する。
[0023] また、導波路 4は、リッジ部 9に対応して長手方向が湾曲している。すなわち、導波 路 4は、曲率半径が Rである中心軸線 Bに沿って延びており、リッジ部 9の側面 9g及 び 9hに対応する位置にそれぞれ側面 4g及び 4hを有している。ここで、側面 4g及び 4hは、導波路 4内外の屈折率差によって生じる面であり、導波路 4内で発生したレー ザ光 Lに対する反射面として機能する。なお、側面 4g及び 4hは、導波路 4内外の屈 折率が連続的に変化している場合には、それぞれが或る一定の厚さを有してもよい。 また、側面 4g及び 4hの平面形状は、リッジ部 9の側面 9g及び 9hの平面形状に対応 する。すなわち、側面 4g及び 4hの平面形状は、中心軸線 Bに沿って略一定の曲率 半径で同じ向き (光出射面 la及び光反射面 lbに沿った向き)に湾曲している。
[0024] ここで、図 6は、湾曲した導波路の曲率半径と導波路内を伝搬する光の損失との相 関を示すグラフである。図 6において、グラフ G1は比較的高次の空間横モードでの 損失を示しており、グラフ G2は比較的低次の空間横モードでの損失を示している。 なお、この図 6の各グラフ Gl、 G2における光の波長は同一としている。
[0025] 図 6に示すように、湾曲した導波路においては、導波路内部を伝搬する光の空間 横モード次数が高いほど、損失が大きくなる傾向がある。従って、導波路 4が、湾曲し た中心軸線 Bに沿って延びていることによって、空間横モードの次数が高い光ほど光 損失が大きくなり、レーザ発振が困難となる。このように、本実施形態の半導体レーザ 素子 3によれば、横低次モードのレーザ発振を維持しつつ、横高次モードのレーザ 発振を抑制することができ、横方向の空間コヒーレンス特性といったビーム品質を向 上できる。また、導波路の曲率半径が小さいほど各モードの損失が大きくなる傾向が あるので、横基本モードのレーザ光のみが共振し、他のモードの光が共振できないよ うに中心軸線 Bの曲率半径を設定すれば、単一モードのレーザ光、或いは単一モー ドに近いレーザ光を実現することも可能となる。
[0026] 更に、本実施形態の半導体レーザ素子 3によれば、従来のシングルモード型レー ザ素子とは異なり、導波路 4を湾曲させることによって横高次モード光を抑制するの で、導波路 4の幅をより広くできる。従って、比較的大きな強度のレーザ光 Lを出射す ることが可能となる。
[0027] なお、中心軸線 Bの曲率半径を設定するときには、導波路幅に応じた損失の変化も 考慮するとよい。例えば、図 7は、湾曲した導波路の曲率半径と導波路内を伝搬する 光の損失との相関を示すグラフであり、グラフ G3〜G6はそれぞれ異なる導波路幅 w 〜w (w >w >w >w )の導波路内を伝搬する光の損失を示している。なお、この
1 4 1 2 3 4
図 7の各グラフ G3〜G6における空間横モード次数は同じとしている。図 7に示すよう に、導波路幅が広いほど、導波路内を伝搬する光の損失は大きくなる。従って、導波 路を設計する際には、横低次モードの損失がレーザ発振可能な程度に小さぐ且つ 横高次モードの損失がレーザ発振不可能な程度に大きくなるように、図 6及び図 7に 示す相関に基づいて、導波路 4の曲率半径 R及び導波路幅を決定するとよい。一例 を挙げると、単一モード或いは単一モードに近いレーザ光を実現するためには、曲 率半径 Rを例えば lmm≥R≥10mm、導波路幅 wを例えば 0. 03mm≥w≥0. lm mとするとよい。
[0028] また、本実施形態の半導体レーザ素子 3によれば、上記した効果以外にも、以下に 説明するような効果が得られる。すなわち、中心軸線 Bの曲率は、本実施形態のよう に、導波路 4の全体において略一定(曲率半径 R)であることが好ましい。これにより、 共振する空間横モードと共振が抑制される空間横モードとの境界が導波路 4全体に おいて均一となるので、導波路 4において横高次モードのレーザ発振をより効果的に 抑帘 Uすることができる。
[0029] また、本実施形態の半導体レーザ素子アレイ 1によれば、上記効果を有する半導体 レーザ素子 3を複数備えることによって、横高次モードの発振が抑制されたレーザ光 Lを更に大きな強度で出射することができる。
[0030] 更に、本実施形態による半導体レーザ素子アレイ 1は、次の効果を有する。すなわ ち、半導体レーザ素子アレイ 1では、 p型クラッド層 17のリッジ部 9によって、活性層 1 5に対して電流が部分的に集中して注入される。これにより、隣り合う半導体レーザ素 子 3の導波路 4同士での光の結合や干渉が生じに《なる。従って、各導波路 4同士 の間隔を比較的狭くすることが可能になるので、導波路 4をより多く設けることができ、 大出力で安定したレーザ光を出射することができる。さらに、活性層 15に対して電流 が部分的に集中して注入されることにより、電気 ·光変換効率が高まり、無効電流を 低減できるので、半導体レーザ素子 3の熱発生を低減できる。従って、半導体レーザ 素子アレイ 1の信頼性が高まり、長寿命化を実現できる。
[0031] ここで、半導体レーザ素子アレイ 1の製造方法について、図 8を参照しながら説明 する。図 8は、各製造工程における半導体レーザ素子アレイ 1の拡大断面図を示して いる。まず、 n型 GaAsの基板 11を準備し、基板 11上に順に、 n型 AlGaAsを 2. Ο μ m、 GalnAs/AlGaAsを 0. 3 m、 p型 AlGaAsを 2. 0 m、 p型 GaAsを 0. 1 ^ m ェピタキシャル成長させ、それぞれ n型クラッド層 13、量子井戸構造を有する活性層 15、 p型クラッド層 17、キャップ層 19を形成する(図 8 (a)参照)。
[0032] 続いて、キャップ層 19側にフォトワークによりリッジ部 9に対応する形状に保護マスク 51を形成し、キャップ層 19及び p型クラッド層 17をエッチングする。エッチングは活性 層 15に達しない深さで停止する(図 8 (b)参照)。続いて、 SiN膜を結晶表面全体に 堆積し、フォトワークによりリッジ部 9に対応する位置の SiN膜を除去し、絶縁層 21を 形成する(図 8 (c)参照)。続いて、 TiZPtZAu膜で p側電極層 23を結晶表面全体 に形成する。また、基板 1 1側の表面の研磨、化学処理を行い、 AuGeZAuにより n 側電極層 29を形成する(図 8 (d)参照)。こうして、半導体レーザ素子アレイ 1 (半導体 レーザ素子 3)が完成する。 [0033] (第 1の変形例)
次に、第 1実施形態による半導体レーザ素子アレイ 1 (半導体レーザ素子 3)の第 1 変形例について説明する。図 9は、本変形例による半導体レーザ素子 3aが有する導 波路 41を示す平面図である。この導波路 41は、その平面形状が第 1実施形態による 導波路 4と異なる。すなわち、導波路 41は、湾曲部 41aと、湾曲部 41aの一端と光出 射面 laとの間に生成された導波路部分 41bと、湾曲部 41aの他端と光反射面 lbとの 間に生成された導波路部分 41cとを含んで構成されている。湾曲部 41aは、その長 手方向が、略一定の曲率(曲率半径 R1)で湾曲した中心軸線 C1に沿っている。導 波路部分 41bは、光出射面 laに接しており、その長手方向が、光出射面 laに略垂 直であり直線状の中心軸線 C2に沿っている。導波路部分 41cは、光反射面 lbに接 しており、その長手方向が、光反射面 lbに略垂直であり直線状の中心軸線 C3に沿 つている。なお、中心軸線 C1〜C3における相互の境界部分は、円滑に繋がってい る。
[0034] 湾曲部 41aは、互いに対向する一対の側面 41h及び 41gを有する。導波路部分 41 bは、互いに対向する一対の側面 41i及び 41jを有する。導波路部分 41cは、互いに 対向する一対の側面 41k及び 411を有する。湾曲部 41aの側面 41gの一端は導波路 部分 41bの側面 41iの一端と円滑に繋がっており、他端は導波路部分 41cの側面 41 kの一端と円滑に繋がっている。湾曲部 41aの側面 41hの一端は導波路部分 41bの 側面 41jの一端と円滑に繋がっており、他端は導波路部分 41cの側面 411の一端と 円滑に繋がっている。導波路部分 41bの側面 41iの他端はレーザ光出射端 41eの一 端に接しており、側面 41jの他端はレーザ光出射端 41eの他端に接している。導波路 部分 41cの側面 41kの他端はレーザ光反射端 41fの一端に接しており、側面 411の 他端はレーザ光反射端 41fの他端に接している。なお、レーザ光出射端 41e及びレ 一ザ光反射端 41fは、それぞれ光出射面 la及び光反射面 lbの一部であり、レーザ 光に対する共振面である。
[0035] 湾曲部 41aの側面 41g及び 41hは、それぞれ中心軸線 C1に沿って略一定の曲率 で同じ向きに湾曲している。導波路部分 41bの側面 41i及び 41jは、それぞれ中心軸 線 C2に沿って直線状に延びており、レーザ光出射端 41e (光出射面 la)と略垂直に 接している。導波路部分 41cの側面 41k及び 411は、それぞれ中心軸線 C3に沿って 直線状に延びており、レーザ光反射端 41f (光反射面 lb)と略垂直に接している。本 変形例では、このような形状の導波路 41が、同様の平面形状を有するリッジ部を p型 クラッド層力 S有すること〖こよって実現される。
[0036] 本変形例の導波路 41のように、本発明における導波路は、その少なくとも一部に湾 曲部を含むことによって、上記第 1実施形態と同様の効果を得ることができる。すなわ ち、本変形例の導波路 41では、導波路内部を伝搬する光の空間横モード次数が高 いほど、湾曲部 41aにおける損失が大きくなる。従って、横低次モードのレーザ発振 を維持しつつ、横高次モードのレーザ発振を抑制することができ、横方向の空間コヒ 一レンス特性といったビーム品質を向上できる。また、横基本モードのレーザ光のみ が共振し、他のモードの光が共振できないように中心軸線 C1の曲率半径を設定す れば、単一モードのレーザ光、或いは単一モードに近いレーザ光を実現することも可 能となる。
[0037] 更に、本変形例の半導体レーザ素子 3aにおいても、従来のシングルモード型レー ザ素子とは異なり、導波路 41の一部を湾曲させることによって横高次モード光を抑制 するので、導波路 41の幅をより広くできる。従って、比較的大きな強度のレーザ光を 出射することが可能となる。
[0038] また、本変形例の導波路 41は、光出射面 laに接する部分に、光出射面 laと略垂 直な中心軸線 C2に沿って延びる導波路部分 41bを含んでいる。或いは、導波路 41 は、光反射面 lbに接する部分に、光反射面 lbと略垂直な中心軸線 C3に沿って延 びる導波路部分 41cを含んでいる。これらのように、導波路 41が、光出射面 la (或い は光反射面 lb)に対して略垂直に延びる導波路部分 41b (或いは 41c)を含むことに より、光出射面 la (或いは光反射面 lb)に対し略垂直な方向とは異なる方向におけ る横高次モードのレーザ発振を効果的に抑えることができる。
[0039] (第 2の変形例)
次に、第 1実施形態による半導体レーザ素子アレイ 1 (半導体レーザ素子 3)の第 2 変形例について説明する。図 10は、本変形例による半導体レーザ素子 3bが有する 導波路 42を示す平面図である。この導波路 42は、その平面形状が第 1実施形態に よる導波路 4と異なる。すなわち、導波路 42は、湾曲部 42aと、湾曲部 42aの一端と 光出射面 laとの間に生成された湾曲部 42bと、湾曲部 42aの他端と光反射面 lbとの 間に生成された湾曲部 42cとを含んで構成されている。湾曲部 42aは、本発明にお ける第 1の湾曲部の一例であり、湾曲部 42b及び 42cは、本変形例における第 2の湾 曲部の一例である。湾曲部 42a〜42cのそれぞれは、それらの長手方向が、略一定 の曲率(曲率半径 R2〜R4)で湾曲した中心軸線 D1〜D3にそれぞれ沿って 、る。 中心軸線 D2及び D3は、中心軸線 D1とは異なる向き (本変形例では逆向き)に湾曲 している。従って、湾曲部 42b及び 42cの長手方向は、湾曲部 42aの長手方向とは 異なる向きに湾曲している。なお、中心軸線 D1〜D3における相互の境界部分は、 互 、の接線が一致するように滑らかに繋がって 、る。
[0040] 湾曲部 42aは、互いに対向する一対の側面 42h及び 42gを有する。湾曲部 42bは 、互いに対向する一対の側面 42i及び 4¾を有する。湾曲部 42cは、互いに対向する 一対の側面 42k及び 421を有する。湾曲部 42aの側面 42gの一端と湾曲部 42bの側 面 42iの一端とは、接続部分における互いの接線が一致するように繋がっている。同 様に、側面 42gの他端と湾曲部 42cの側面 42kの一端とは、接続部分における互い の接線が一致するように繋がって 、る。湾曲部 42aの側面 42hの一端と湾曲部 42b の側面 4¾の一端とは、接続部分における互 、の接線が一致するように繋がって!/、る 。側面 42hの他端と湾曲部 42cの側面 421の一端とは、接続部分における互いの接 線が一致するように繋がっている。また、湾曲部 42bの側面 42iの他端はレーザ光出 射端 42eの一端に接しており、側面 4¾の他端はレーザ光出射端 42eの他端に接し ている。湾曲部 42cの側面 42kの他端はレーザ光反射端 42fの一端に接しており、 側面 421の他端はレーザ光反射端 42fの他端に接している。なお、レーザ光出射端 4 2e及びレーザ光反射端 42fは、それぞれ光出射面 la及び光反射面 lbの一部であり 、レーザ光に対する共振面である。
[0041] 湾曲部 42aの側面 42g及び 42hは、それぞれ中心軸線 D1に沿って略一定の曲率 で同じ向きに湾曲している。湾曲部 42bの側面 42i及び 42jは、それぞれ中心軸線 D 2に沿って略一定の曲率で同じ向き(側面 42g及び 42hとは逆の向き)に湾曲してい る。湾曲部 42cの側面 42k及び 421は、それぞれ中心軸線 D3に沿って略一定の曲 率で同じ向き (側面 42g及び 42hとは逆の向き)に湾曲している。本変形例では、この ような形状の導波路 42が、同様の平面形状を有するリッジ部を p型クラッド層が有す ること〖こよって実現される。
[0042] 本変形例の導波路 42のように、互いに異なる向きに湾曲した中心軸線 D1及び D2
(または D3)に沿って延びる湾曲部 42a及び 42b (または 42c)を導波路 42が含むこ とによって、上記第 1実施形態の効果を更に好適に得ることができる。すなわち、本 変形例の導波路 42では、複数の湾曲部 42a〜42cを含むことにより、横高次モード を更に効果的に抑えることができる。また、湾曲部 42a及び 42b (または 42c)の中心 軸線 D1及び D2 (または D3)が互いに異なる向きに湾曲していることによって、横高 次モードをより安定して抑制することができる。また、本変形例の導波路 42において も、導波路幅をより広くできるので、比較的大きな強度のレーザ光を出射することが可 能となる。なお、本変形例では導波路 42が 3つの湾曲部 42a〜42cを含んで構成さ れているが、導波路は湾曲部を幾つ含んでもよい。
[0043] (第 3の変形例)
次に、第 1実施形態による半導体レーザ素子アレイ 1 (半導体レーザ素子 3)の第 3 変形例について説明する。図 11は、本変形例による半導体レーザ素子 3cが有する 導波路 43を示す平面図である。本変形例における導波路 43は、その長手方向が、 略一定の曲率(曲率半径 R5)で湾曲した中心軸線 Eに沿って 、る。本変形例におけ る中心軸線 Eが上記第 1実施形態の中心軸線 Bと異なる点は、光出射面 laと中心軸 線 Eとが交差する点 (すなわち、レーザ光出射端 43eの中心)と、光反射面 lbと中心 軸線 Eとが交差する点 (すなわち、レーザ光反射端 43fの中心)との相対位置関係で ある。図 5を参照すると、第 1実施形態の導波路 4では、光出射面 laと中心軸線 Bとが 交差する点 (すなわち、レーザ光出射端 4eの中心)と、光反射面 lbと中心軸線 Bとが 交差する点(すなわち、レーザ光反射端 4fの中心)とは、互いに略対称に配置されて いる。対して、図 11に示す本変形例では、光出射面 laと中心軸線 Eとが交差する点 と、光反射面 lbと中心軸線 Eとが交差する点とが、対称位置から互いにずれて配置 されている。なお、ここでいう対称位置とは、光出射面 la及び光反射面 lbと平行であ り且つこれらの面の中央に位置する面を挟んで面対称である位置を指すものとする。 [0044] 導波路 43は、互いに対向する一対の側面 43g及び 43hを有する。導波路 43の側 面 43gの一端はレーザ光出射端 43eの一端に接しており、側面 43hの一端はレーザ 光出射端 43eの他端に接して 、る。導波路 43の側面 43gの他端はレーザ光反射端 43fの一端に接しており、側面 43hの他端はレーザ光反射端 43fの他端に接してい る。また、導波路 43の側面 43g及び 43hは、それぞれ中心軸線 Eに沿って略一定の 曲率で同じ向きに湾曲している。本変形例では、導波路 43の側面 43gとレーザ光出 射端 43eとの接点(或いは、導波路 43の側面 43hとレーザ光出射端 43eとの接点)と 、導波路 43の側面 43gとレーザ光反射端 43fとの接点(或いは、導波路 43の側面 43 hとレーザ光反射端 43fとの接点)とは、対称位置力も互いにずれて位置している。な お、レーザ光出射端 43e及びレーザ光反射端 43fは、それぞれ光出射面 la及び光 反射面 lbの一部であり、レーザ光に対する共振面である。本変形例では、このような 形状の導波路 43が、同様の平面形状を有するリッジ部を p型クラッド層が有すること によって実現される。
[0045] 本変形例の導波路 43のように、本発明における導波路は、レーザ光出射端 43eの 位置とレーザ光反射端 43fの位置とが互いに非対称であってもよい。このような導波 路 43によっても、上記第 1実施形態と同様の効果を得ることができる。
[0046] 本発明による半導体レーザ素子及び半導体レーザ素子アレイは、上記各実施形態 及び変形例に限られるものではなぐ他に様々な変形が可能である。例えば、上記各 実施形態では GaAs系半導体レーザ素子を例示したが、本発明の構成は、 GaN系 や InP系など、他の材料系の半導体レーザ素子にも適用できる。また、上記各実施 形態及び変形例では軸線として中心軸線を用いているが、軸線は中心軸線に限ら れず、中心以外を通る軸線でもよい。
[0047] ここで、半導体レーザ素子は、第 1導電型クラッド層と、第 2導電型クラッド層と、第 1 導電型クラッド層と第 2導電型クラッド層との間に設けられた活性層と、互いに対向す る光出射面及び光反射面と、活性層において構成され、光出射面と光反射面との間 でレーザ光を共振させる導波路とを備え、導波路が、湾曲した軸線に沿って延びて 、ることが好まし!/、。
[0048] また、半導体レーザ素子は、湾曲した軸線の曲率が略一定である構成としてもよい 。または、半導体レーザ素子は、導波路が複数の湾曲部を含み、湾曲した軸線の曲 率が、複数の湾曲部毎に略一定である構成としてもよい。これらの半導体レーザ素子 によれば、横高次モードのレーザ発振をより効果的に抑制することができる。
[0049] また、半導体レーザ素子は、導波路が、互いに異なる向きに湾曲した軸線に沿って 延びる第 1及び第 2の湾曲部を含む構成としてもよい。これにより、湾曲部において横 高次モードのレーザ発振をより安定して抑制することができる。
[0050] また、半導体レーザ素子は、導波路が、光出射面または光反射面に接しており光 出射面及び光反射面に対して略垂直に延びる導波路部分を含む構成としてもよい。 これにより、光出射面及び光反射面に対して略垂直な方向とは異なる方向における 横高次モードのレーザ発振を効果的に抑えることができる。
[0051] また、半導体レーザ素子アレイは、上記したいずれかの半導体レーザ素子を複数 備え、複数の半導体レーザ素子が、光出射面及び光反射面に沿った方向に並んで 配置されて一体に形成されて!ヽることが好ま ヽ。
[0052] 上記半導体レーザ素子アレイによれば、上記したいずれかの半導体レーザ素子を 備えることによって、比較的大きな強度のレーザ光を出射可能であって、横高次モー ドを抑制できる半導体レーザ素子アレイを提供できる。
産業上の利用可能性
[0053] 本発明は、比較的大きな強度のレーザ光を出射可能であって、横高次モードを抑 制できる半導体レーザ素子、及び半導体レーザ素子アレイとして利用可能である。

Claims

請求の範囲
[1] 第 1導電型クラッド層と、
第 2導電型クラッド層と、
前記第 1導電型クラッド層と前記第 2導電型クラッド層との間に設けられた活性層と 互いに対向する光出射面及び光反射面と、
前記活性層において構成され、前記光出射面と前記光反射面との間でレーザ光を 共振させる導波路と
を備え、
前記導波路が、湾曲した軸線に沿って延びていることを特徴とする、半導体レーザ 素子。
[2] 前記湾曲した軸線の曲率が略一定であることを特徴とする、請求項 1に記載の半導 体レーザ素子。
[3] 前記導波路が複数の湾曲部を含み、
前記湾曲した軸線の曲率力 前記複数の湾曲部毎に略一定であることを特徴とす る、請求項 1に記載の半導体レーザ素子。
[4] 前記導波路が、互いに異なる向きに湾曲した軸線に沿って延びる第 1及び第 2の 前記湾曲部を含むことを特徴とする、請求項 3に記載の半導体レーザ素子。
[5] 前記導波路が、前記光出射面または前記光反射面に接しており前記光出射面及 び前記光反射面に対して略垂直に延びる導波路部分を含むことを特徴とする、請求 項 1〜4のいずれか一項に記載の半導体レーザ素子。
[6] 請求項 1〜5のいずれか一項に記載の半導体レーザ素子を複数備え、
前記複数の半導体レーザ素子が、前記光出射面及び光反射面に沿った方向に並 んで配置されて一体に形成されていることを特徴とする、半導体レーザ素子アレイ。
PCT/JP2005/016833 2004-09-14 2005-09-13 半導体レーザ素子及び半導体レーザ素子アレイ WO2006030778A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05783175A EP1796233A4 (en) 2004-09-14 2005-09-13 SEMICONDUCTOR LASER ELEMENT AND MATRIX OF SEMICONDUCTOR LASER ELEMENTS
US11/662,600 US20080273564A1 (en) 2004-09-14 2005-09-13 Semiconductor Laser Element and Semiconductor Laser Element Array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-267422 2004-09-14
JP2004267422A JP2006086228A (ja) 2004-09-14 2004-09-14 半導体レーザ素子及び半導体レーザ素子アレイ

Publications (1)

Publication Number Publication Date
WO2006030778A1 true WO2006030778A1 (ja) 2006-03-23

Family

ID=36060029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016833 WO2006030778A1 (ja) 2004-09-14 2005-09-13 半導体レーザ素子及び半導体レーザ素子アレイ

Country Status (5)

Country Link
US (1) US20080273564A1 (ja)
EP (1) EP1796233A4 (ja)
JP (1) JP2006086228A (ja)
CN (1) CN101019284A (ja)
WO (1) WO2006030778A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160524A (ja) * 2011-01-31 2012-08-23 Hitachi Ltd 半導体レーザおよびその製造方法
DE102011100175B4 (de) 2011-05-02 2021-12-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Laserlichtquelle mit einer Stegwellenleiterstruktur und einer Modenfilterstruktur
US9450152B2 (en) 2012-05-29 2016-09-20 Micron Technology, Inc. Solid state transducer dies having reflective features over contacts and associated systems and methods
US8902945B1 (en) * 2012-08-06 2014-12-02 Emcore Corporation Semiconductor laser gain device with mode filter
EP2816680A1 (de) * 2013-06-18 2014-12-24 PBC Lasers GmbH Laser
DE102016111442A1 (de) 2016-06-22 2017-12-28 Osram Opto Semiconductors Gmbh Halbleiterlichtquelle
CN115764544B (zh) * 2023-01-09 2023-05-12 中国科学院长春光学精密机械与物理研究所 一种高边模抑制比窄线宽外腔激光器及光学设备
CN115764543B (zh) * 2023-01-09 2023-05-12 中国科学院长春光学精密机械与物理研究所 一种抗辐射窄线宽外腔激光器、光学设备
CN116505367A (zh) * 2023-05-25 2023-07-28 杭州温米芯光科技发展有限公司 一种半导体结构及制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511400A (en) * 1978-07-03 1980-01-26 Xerox Corp Injection laser
JPH02214181A (ja) * 1989-02-14 1990-08-27 Mitsubishi Electric Corp 半導体レーザ装置
JP2000236138A (ja) * 1999-02-15 2000-08-29 Hitachi Cable Ltd 多波長外部グレーティングレーザアレイ
JP2002289965A (ja) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd 半導体レーザ装置、及び光ピックアップ装置
JP2003304035A (ja) * 2002-04-09 2003-10-24 Mitsubishi Electric Corp 半導体光素子
JP2004214226A (ja) * 2002-12-26 2004-07-29 Toshiba Corp 半導体レーザ装置
JP2004221321A (ja) * 2003-01-15 2004-08-05 Mitsubishi Electric Corp 波長可変半導体光装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219053A1 (en) * 2002-05-21 2003-11-27 The Board Of Trustees Of The University Of Illinois Index guided laser structure
US7190852B2 (en) * 2002-10-15 2007-03-13 Covega Corporation Semiconductor devices with curved waveguides and mode transformers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511400A (en) * 1978-07-03 1980-01-26 Xerox Corp Injection laser
JPH02214181A (ja) * 1989-02-14 1990-08-27 Mitsubishi Electric Corp 半導体レーザ装置
JP2000236138A (ja) * 1999-02-15 2000-08-29 Hitachi Cable Ltd 多波長外部グレーティングレーザアレイ
JP2002289965A (ja) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd 半導体レーザ装置、及び光ピックアップ装置
JP2003304035A (ja) * 2002-04-09 2003-10-24 Mitsubishi Electric Corp 半導体光素子
JP2004214226A (ja) * 2002-12-26 2004-07-29 Toshiba Corp 半導体レーザ装置
JP2004221321A (ja) * 2003-01-15 2004-08-05 Mitsubishi Electric Corp 波長可変半導体光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1796233A4 *

Also Published As

Publication number Publication date
US20080273564A1 (en) 2008-11-06
EP1796233A1 (en) 2007-06-13
EP1796233A4 (en) 2009-03-25
CN101019284A (zh) 2007-08-15
JP2006086228A (ja) 2006-03-30

Similar Documents

Publication Publication Date Title
WO2006030778A1 (ja) 半導体レーザ素子及び半導体レーザ素子アレイ
JP5177285B2 (ja) 光素子及びその製造方法
JPWO2009116140A1 (ja) 光半導体素子及びその製造方法
WO2005086303A1 (ja) 半導体レーザ素子及び半導体レーザ素子アレイ
JP2007184511A (ja) 光導波路を伝搬する光と回折格子とを結合させた光素子
JP6024365B2 (ja) 半導体レーザ装置
WO2005088791A1 (ja) 単一モード光ファイバと高い結合効率で結合可能とする半導体レーザ
WO2008010374A1 (fr) Dispositif laser semi-conducteur
JP2723045B2 (ja) フレア構造半導体レーザ
US9787059B2 (en) Semiconductor light emitting element
JP2006049650A (ja) 半導体レーザ素子及び半導体レーザ素子アレイ
JPS60124887A (ja) 分布帰還形半導体レ−ザ
JP2011082588A (ja) 光導波路を伝搬する光と回折格子とを結合させた光素子
US20240097404A1 (en) High-power, single-spatial-mode quantum cascade lasers
JP2002076510A (ja) 半導体レーザおよびその製造方法
JPH11163456A (ja) 半導体レーザ
JP2002043688A (ja) リッジ型分布帰還半導体レーザ素子
JP2613975B2 (ja) 周期利得型半導体レーザ素子
JPS63150981A (ja) 半導体レ−ザ装置
WO2006001339A1 (ja) 半導体レーザ素子及び半導体レーザ素子アレイ
CN111900625B (zh) 一种激光器及其制造方法
JP2004087564A (ja) 半導体レーザ素子及びその製造方法
JP2012156378A (ja) 半導体レーザ
JP2515729B2 (ja) 半導体レ−ザ装置
US6668002B2 (en) Semiconductor laser device including ARROW structure formed without P-As interdiffusion and Al oxidation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005783175

Country of ref document: EP

Ref document number: 200580030931.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005783175

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11662600

Country of ref document: US