WO2005088791A1 - 単一モード光ファイバと高い結合効率で結合可能とする半導体レーザ - Google Patents

単一モード光ファイバと高い結合効率で結合可能とする半導体レーザ Download PDF

Info

Publication number
WO2005088791A1
WO2005088791A1 PCT/JP2005/004556 JP2005004556W WO2005088791A1 WO 2005088791 A1 WO2005088791 A1 WO 2005088791A1 JP 2005004556 W JP2005004556 W JP 2005004556W WO 2005088791 A1 WO2005088791 A1 WO 2005088791A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
layers
semiconductor laser
type cladding
Prior art date
Application number
PCT/JP2005/004556
Other languages
English (en)
French (fr)
Inventor
Yasuaki Nagashima
Atsushi Yamada
Yoshiharu Shimose
Tomoyuki Kikugawa
Original Assignee
Anritsu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corporation filed Critical Anritsu Corporation
Priority to US10/553,161 priority Critical patent/US7483470B2/en
Priority to EP05720811A priority patent/EP1727250A1/en
Publication of WO2005088791A1 publication Critical patent/WO2005088791A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • H01S2301/185Semiconductor lasers with special structural design for influencing the near- or far-field for reduction of Astigmatism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Definitions

  • the present invention relates to a semiconductor laser, and more particularly, to a semiconductor laser capable of being coupled with a single mode optical fiber with high coupling efficiency.
  • Optical signals used in optical communication systems are transmitted in optical fibers laid over long distances. For this reason, semiconductor lasers used as light sources require high output and high stability.
  • the light spot size of the semiconductor laser is 2-3 ⁇ m and the single mode optical fiber is Since the spot size is about 10 ⁇ m and the optical waveguide spot sizes differ from each other, coupling loss occurs.
  • FIG. 17 is a transparent perspective view showing a schematic configuration of a semiconductor optical device disclosed in Patent Document 1 below.
  • a semiconductor optical device 51 disclosed in Patent Document 1 has an MQW (Multi Quantum Well: Multiple Quantum Well) in a constituent part 52 required for device formation such as a clad, a cap and an electrode.
  • MQW active layer 53 is joined to a tapered optical waveguide 55 via a butt joint 54.
  • MQW active layer 53 is a strained superlattice active layer, and constitutes active region 56.
  • the optical waveguide 55 is an optical waveguide in which the layer thickness and the band gap wavelength are continuously changed, and constitutes a spot size conversion region 57.
  • the laser beam emitted from the active region 56 of the MQW active layer 53 is tapered by the butt joint 54.
  • the light is propagated to the spot size conversion area 57 of 55, the spot size is converted in the spot size conversion area 57, and the light is emitted from the light emitting end 55a.
  • the laser beam having the converted spot size is incident from the light emitting end 55a from the light incident surface of the single mode optical fiber, and the semiconductor optical device 51 and the single mode optical fiber are optically coupled.
  • the spot diameter of laser light emitted from the semiconductor laser can be adjusted to the core diameter of a single-mode optical fiber.
  • the inventors of the present application have previously reported in US Patent Application No. (10/692, 125) and European Patent Application No. (03 025 058.3) that the n-type cladding layer is made of InP.
  • InGaAsP which has a higher refractive index than the mold cladding layer, it is possible to obtain high-power optical output with a simple configuration and expand the maximum active layer width that can suppress transverse higher-order modes.
  • a semiconductor light emitting device applicable to a semiconductor laser is disclosed.
  • the present invention has been made in view of the above problems, and does not require a lens or other spot size conversion unit as in the related art when optically coupling with a single mode optical fiber. It is another object of the present invention to provide a semiconductor laser capable of coupling a high-power laser beam to a single-mode optical fiber at a low cost with high coupling efficiency while maintaining the fundamental transverse mode.
  • a semiconductor laser characterized in that light oscillated only in a fundamental transverse mode and emitted from an emission end can be optically coupled to an external single-mode optical fiber (31).
  • the semiconductor laser according to the first aspect wherein light emitted from the emission end can be optically coupled to the external single-mode optical fiber without a lens.
  • a semiconductor laser according to a first aspect wherein light emitted from the emission end can be optically coupled to the external single-mode optical fiber by a butt joint.
  • the first SCH layer has a multilayer structure including a plurality of layers (4a, 4b, 4c,..., 4 ′), and the second SCH layer includes a plurality of layers (6a, 6b, 6c,.
  • a semiconductor laser according to a fourth aspect is provided, which includes a multilayer structure comprising 6)).
  • the refractive index of the plurality of barrier layers in the active layer is ns
  • the refractive indices and thicknesses of the plurality of layers in the first SCH layer are sequentially set to nl, n2, n3, nN and tl, t2, t3, tN,
  • the refractive indices and thicknesses of the plurality of layers in the second SCH layer are sequentially set to nl, n2, n3, nN and tl, t2, t3, When tN, the relationship of the thickness of each layer is equal to
  • the magnitude relationship between the refractive indexes of the respective layers includes the relationship between the refractive index n of the active layer and the refractive index na of the n-type cladding layer, which is the highest, and the refractive index nb of the p-type cladding layer. So that it becomes smaller
  • the difference in the refractive index between adjacent layers in each of the plurality of layers constituting the first SCH layer and the second SCH layer depends on the difference between the active layer and the n-type cladding layer and the p-type cladding layer. Towards the layer, so that it gets smaller
  • the semiconductor laser is set in the following relationship.
  • the refractive index of the plurality of barrier layers in the active layer is ns
  • the refractive indices and thicknesses of the plurality of layers in the first SCH layer are set to nl, n2, n3,..., NN and tl, t2, t3,. ,
  • the relationship between the refractive indices of the layers includes the relationship in which the refractive index ns of the n-type cladding layer having the highest refractive index ns of the active layer is higher than the refractive index nb of the p-type cladding layer. So that the active layer force and the distance force become smaller.
  • the refractive index difference between adjacent layers is equal to each other;
  • the refractive index of the plurality of barrier layers in the active layer is ns
  • the refractive indices and thicknesses of the plurality of layers in the first SCH layer are set to nl, n2, n3,..., NN and tl, t2, t3,. ,
  • the refractive indices and thicknesses of the plurality of layers in the second SCH layer are sequentially changed to nl, n2, n3,..., NN and tl, t2, t3,.
  • the relationship between the refractive indices of the layers includes the relationship in which the refractive index ns of the n-type cladding layer having the highest refractive index ns of the active layer is higher than the refractive index nb of the p-type cladding layer.
  • the difference in the refractive index between the adjacent layers in each of the plurality of layers constituting the first SCH layer and the second SCH layer is reduced so that the force of the active layer also decreases as the force increases.
  • ns-nl nl-n2> n2-n3>, ⁇ ⁇ -,> ⁇ — nb> nN— na
  • the refractive index of the layer having the lowest refractive index among the plurality of layers forming the active layer is ns, and the refractive index and the thickness of the plurality of layers in the first SCH layer are closer to the active layer.
  • NN and tl, t2, t3,..., TN, respectively, and the refractive indexes and thicknesses of the plurality of layers in the second SCH layer are close to those of the active layer.
  • Nl, n2, n3, ..., nN and tl, t2, t3, ..., tN respectively, the relationship of the thickness of each layer is equal to each other,
  • the magnitude relationship between the refractive indexes of the respective layers includes the relationship between the refractive index n of the active layer and the refractive index na of the n-type cladding layer, which is the highest, and the refractive index nb of the p-type cladding layer. So that it becomes smaller
  • Each of the plurality of layers constituting the first SCH layer and the second SCH layer So that the refractive index difference between adjacent layers becomes smaller as the active layer moves toward the n-type cladding layer and the P-type cladding layer.
  • ns-nl > nl-n2> n2-n3>, ...,> ⁇ ( ⁇ — 1) — ⁇
  • the refractive index of the layer having the lowest refractive index among the plurality of layers forming the active layer is ns, and the refractive indexes and the thicknesses of the plurality of layers in the first SCH layer are close to those of the active layer.
  • Nl, n2, n3,..., NN and tl, t2, t3, ⁇ -, tN, respectively, and the refractive indexes and thicknesses of the plurality of layers in the second SCH layer are defined as the active layer.
  • the magnitude relationship of the refractive index of each layer is represented by the refractive index ns of the active layer.
  • the refractive index of the n-type cladding layer which has the highest refractive index na, including the relation higher than the refractive index nb of the p-type cladding layer, including the relationship of
  • the refractive index difference between adjacent layers is equal to each other;
  • the refractive index of the layer having the lowest refractive index among the plurality of layers forming the active layer is ns, and the refractive indexes and the thicknesses of the plurality of layers in the first SCH layer are close to those of the active layer.
  • the refractive indices and thicknesses of the plurality of layers in the second SCH layer are sequentially set to nl, n2, n3, nN and tl, t2, t3, Assuming that tN, the refractive index of each layer is larger than the refractive index nb of the n-type cladding layer, which has the highest refractive index ns of the active layer, and higher than the refractive index nb of the p-type cladding layer.
  • the difference in the refractive index between the adjacent layers in each of the plurality of layers constituting the first SCH layer and the second SCH layer is reduced so that the force of the active layer also decreases as the force increases.
  • ns-nl > nl-n2> n2-n3>, ...,> ⁇ ( ⁇ — 1) — nN
  • the relationship between the thicknesses of the respective layers is such that the farther from the active layer, the greater the thickness.
  • a semiconductor laser according to a fourth aspect is provided, wherein the semiconductor laser is formed as a carrier structure.
  • the n-type cladding layer, the first SCH layer, the active layer, the second SCH layer and part of the p-type cladding layer are formed in a mesa shape
  • the semiconductor laser is the semiconductor laser
  • the semiconductor laser according to the first aspect wherein the semiconductor laser is formed as a ridge structure is provided.
  • the p-type cladding layer is formed as a ridge structure portion in which the outer substantially central portion is raised upward.
  • the semiconductor laser is the semiconductor laser
  • a semiconductor laser according to a fourteenth aspect further comprising an electrode (20) formed on the insulating layer while being partially connected to the contact layer.
  • composition wavelength of InGaAsP constituting the n-type cladding layer is equal to or more than the composition wavelength of InP and equal to or less than 0.98 / m.
  • a semiconductor laser according to a sixteenth aspect wherein the composition wavelength power of InGaAsP constituting the n-type cladding layer is 0.996 zm or more and 0.98 ⁇ m or less.
  • the semiconductor substrate is an n-type
  • the n-type cladding layer is formed below the active layer
  • the p-type cladding layer is formed above the active layer.
  • a semiconductor device comprising: A semiconductor laser according to the first aspect, wherein the n-type cladding layer is formed above the active layer and the p-type cladding layer is formed below the active layer when the semiconductor laser is of a mold type. Is done.
  • the n-type cladding layer (3) is formed of a four-element material of In, Ga, As, and P, and the composition wavelength of the n-type cladding layer (3) is adjusted. 0.9-6-0.98 xm and the width of the active layer (5) is set to 7-14 xm, so that high output laser light can be supplied to external single mode light while maintaining the fundamental oscillation transverse mode.
  • the fiber can be coupled with high coupling efficiency.
  • a lens, a tapered optical waveguide, and other spot size converters as in the prior art are not required, which simplifies manufacturability, shortens the element length, and reduces the element length. Cost can be reduced.
  • FIG. 1 is a perspective view showing a schematic configuration of a semiconductor laser according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of the semiconductor laser according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing refractive index characteristics of each layer of the semiconductor laser according to the first embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between the horizontal spot diameter of emitted light and the efficiency of light coupling to a single-mode optical fiber when the flatness of the light spot of the semiconductor laser according to the first embodiment of the present invention is used as a parameter.
  • FIG. 4 is a graph showing the relationship between the horizontal spot diameter of emitted light and the efficiency of light coupling to a single-mode optical fiber when the flatness of the light spot of the semiconductor laser according to the first embodiment of the present invention is used as a parameter.
  • FIG. 5 is a diagram showing the relationship between the horizontal spot diameter of the semiconductor laser according to the first embodiment of the present invention and the spread angle of the far-field image of the laser emission light.
  • FIG. 6 is a diagram showing the relationship between the active layer width of the semiconductor laser according to the first embodiment of the present invention and the spread angle of the far-field image of the laser emission light.
  • FIG. 7 is a graph showing the maximum lateral higher-order mode for suppressing the composition wavelength of InGaAsP used for the n-side cladding layer in the same active layer structure of the semiconductor laser according to the first embodiment of the present invention.
  • FIG. 8 is a view showing light distribution characteristics of the semiconductor laser according to the first embodiment of the present invention. It is.
  • FIG. 9 is a diagram showing refractive index characteristics of each layer of a semiconductor laser according to another embodiment of the present invention.
  • FIG. 10 is a diagram showing refractive index characteristics of each layer of a semiconductor laser according to another embodiment of the present invention.
  • FIG. 11 is a view showing a supply current versus output characteristic of the semiconductor laser according to another embodiment of the present invention shown in FIG.
  • FIG. 12 is a view for explaining a semiconductor laser having a ridge structure according to another embodiment of the present invention.
  • FIG. 13 is a diagram showing an example in which a semiconductor laser according to another embodiment of the present invention is configured on a p-type substrate.
  • FIG. 14 is a view showing refractive index characteristics of each layer of a semiconductor laser according to another embodiment of the present invention.
  • FIG. 15 is a diagram for explaining one example and another example of optical coupling between the semiconductor laser according to the present invention and an external single-mode optical fiber.
  • FIG. 16 is a view showing refractive index characteristics of each layer of a semiconductor laser according to another embodiment of the present invention.
  • FIG. 17 is a perspective view of a conventional semiconductor optical device disclosed in Patent Document 1. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a perspective view showing the overall configuration of a semiconductor laser according to the first embodiment of the present invention
  • FIG. 2 is a partially enlarged cross-sectional view of the semiconductor laser according to the first embodiment of the present invention.
  • the semiconductor laser 1 includes a semiconductor substrate 2 made of n-type InP, an n-type clad layer 3 made of n-type InGaAsP, Be the first
  • An active layer 5 made of AsP and a second SCH layer 6 made of InGaAsP are sequentially stacked.
  • the n-type cladding layer 3, the first SCH layer 4, the active layer 5, and the second SCH layer 6 are formed in a mesa shape, and are formed of p-type InP on both sides of the mesa type.
  • Lower buried layer 7 and n-type InP A strong upper carrier layer 8 is formed.
  • a p-type cladding layer 9 made of p-type InP is formed on the upper side of the second SCH layer 6 and on the upper surface of the upper carrier layer 8.
  • a p-type contact layer 10 is formed on the upper surface of the p-type cladding layer 9.
  • a p-electrode 11 is provided on the upper surface of the p-type contact layer 10.
  • an n-electrode 12 is provided on the lower surface of the semiconductor substrate 2.
  • the active layer 5 includes four well layers 5a and five well layers 5a located on both sides of each well layer 5a.
  • a four-layer MQW (Multiple Quantum Well) structure in which the barrier layers 5b and 5b are stacked is adopted.
  • the first SCH layer 4 located below the active layer 5 having the four-layer MQW structure has a multilayer structure including a plurality of layers 4a, 4b, 4c,.
  • the second SCH layer 6 located above the active layer 5 has a multilayer structure including a plurality of layers 6a, 6b, 6c,..., 6N.
  • the refractive index of the barrier layer 5b in the active layer 5 is ns
  • the refractive index of the n-type cladding layer 3 is na
  • the refractive index of the p-type cladding layer 9 is nb.
  • the refractive indices and thicknesses of the layers 4a, 4b, 4c, ..., 4N constituting the first SCH layer 4 are nl, n2, n3, ..., nN and tl, t2, respectively. , t3, nN, and similarly, the refractive indices and thicknesses of the respective layers 6a, 6b, 6c, 6N constituting the second SCti layer 6 are nl, n2, n3, , nN, and tl, t2, t3, ⁇ , tN.
  • the magnitude relationship between the refractive indices is set to be smaller as the distance from the active layer 5 is increased, as shown by the following inequality, and the refractive index na of the n-type cladding layer 3 made of InGaAsP is The refractive index is set higher than the refractive index nb of the p-type cladding layer 9 made of InP, as shown by the following inequality.
  • the refractive index difference between adjacent layers constituting the first SCH layer 4 and the second SCH layer 6 is set as shown by the following inequality.
  • the thicknesses tl, t2, t3,..., TN of the respective layers constituting the first SCH layer 4 and the second SCH layer 6 are set to be equal.
  • the width of the active layer 5 that can obtain a sufficient coupling efficiency with a single-mode optical fiber while suppressing the generation of higher-order transverse modes will be described.
  • the semiconductor laser 1 when the light P generated in the active layer 5 is emitted from the end faces la and lb of the semiconductor laser 1 to the outside, the emitted light is It is emitted to the outside with a spot diameter of a size.
  • the spot diameter refers to the maximum light intensity l / e 2 (in the light intensity distribution at the end of the light emitted from the end of the active layer 5).
  • e is the diameter of the part that is the base of the natural logarithm.
  • FIG. 4 is a graph showing the relationship between the horizontal spot diameter of emitted light and the efficiency of optical coupling to a single-mode optical fiber, using the flatness of the light spot in the semiconductor laser 1 according to the present invention as a parameter.
  • the flatness of the light spot is the ratio of the spot diameter in the horizontal direction to the vertical direction, and is 1: 1 ⁇ 35, 1: 1.2, 1: 1 and 1: 0, respectively. 8, 1: 0.65.
  • the semiconductor laser 1 oscillates in the fundamental lateral mode, and the light emitted from the end face la, lb of the semiconductor laser 1 emits either one of the end face la, lb of the semiconductor laser 1 as described later.
  • FIG. 5 shows the horizontal spot diameter and the distance of the laser emission light in the semiconductor laser 1 according to the present invention.
  • FIG. 4 shows a relationship diagram with a spread angle of a field image.
  • FIG. 6 shows a relationship diagram between the width of the active layer 5 of the semiconductor laser 1 and the spread angle of the far-field image of the laser emission light in the semiconductor laser 1 according to the present invention.
  • the width of the active layer 5 and the horizontal spot diameter are substantially equal when the same spread angle is obtained. I have.
  • the width of the active layer 5 can be regarded as the spot diameter.
  • the width of the active layer 5 in order to obtain a high optical coupling efficiency of about 75% or more in the optical coupling with the single mode optical fiber, the width of the active layer 5 must be 7 1 If it is 4 ⁇ m, it is good.
  • the semiconductor laser 1 of the present embodiment by forming the n-side cladding layer of InGa AsP, the equivalent refractive index of the optical waveguide for guiding light inside the semiconductor laser 1 is reduced. As a result, it is possible to achieve a semiconductor laser having a wide active layer width while suppressing the occurrence of higher transverse modes.
  • the InP layer is composed of InGaAsP, which has a higher refractive index than the p-type cladding layer. This makes it possible to obtain a high-power optical output with a simple configuration and the maximum active layer width that can suppress transverse higher-order modes. It discloses a semiconductor light emitting device applicable to a semiconductor laser that can be expanded.
  • a signal is transmitted between a semiconductor laser and a single-mode optical fiber in order to transmit an optical signal from the semiconductor laser as a light source targeted in the present invention. Since it is not assumed that optical coupling is performed without a lens, the width of the expandable active layer is disclosed to be not less than 3.5 zm and not more than 4. O zm at the maximum.
  • the semiconductor light emitting device disclosed in these prior applications is used as an optical communication system, Even when applied to a semiconductor laser as a light source as used in a system, the width of the expandable active layer is limited to 3.5 / im to 4.0 / im, so the semiconductor laser is not applicable. It is impractical to optically couple a lens and a single-mode optical fiber without a lens in terms of the coupling loss as described above.
  • the active layer 5 in order to obtain a high optical coupling efficiency of about 75% or more in the optical coupling with the single mode optical fiber, the active layer 5 must be formed. No disclosure, including analysis and investigation, of what would be good if the width was 714 ⁇ m was not made.
  • An example of the relationship is shown in FIG.
  • the composition wavelength is 0.925 ⁇ m in the ⁇ - side cladding layer in the same manner as in the case of a semiconductor laser using a normal ⁇ cladding layer having a composition wavelength of 0.925 ⁇ m in the n-side cladding layer.
  • the InGaAs sP semiconductor laser has a cutoff width of about 3.5 ⁇ .
  • the cut-off width becomes about 7 / im
  • the fiber composition wavelength is 0.98 ⁇
  • each of the layers 4a, 4b, 4c, 6a, 6b, 6b, which constitute the first and second SCH layers 4, 6 The difference in the refractive index between the adjacent layers in 6c is set to be smaller as going from the active layer 5 to each of the cladding layers 3 and 9.
  • the refractive index sharply decreases in the high refractive index regions near the active layer 5 in the first and second SCH layers 4 and 6.
  • the refractive index decreases slowly.
  • the concentration of light in the optical waveguide for guiding light inside the semiconductor laser 1 of the present embodiment The optical confinement coefficient can be reduced, and the internal loss can be reduced.
  • the refractive index na of the n-type cladding layer 3 made of InGaAsP is higher than the refractive index nb of the p-type cladding layer 9 made of InP, as shown in FIG.
  • the light distribution is skewed toward the n-type cladding layer 3 as shown by the characteristic curve A in contrast to the symmetrical characteristic curve when both cladding layers 3 and 9 have the same refractive index.
  • the semiconductor laser 1 of the present embodiment since the difference in the refractive index between the active layer 5 and the n-type cladding layer 3 is smaller than that of the conventional laser, the maximum active layer width that can suppress the transverse higher-order mode is also large. It can be enlarged, which is further advantageous for increasing the output of the laser.
  • the transverse higher-order mode can be suppressed.
  • the maximum active layer width can be increased to about 7-14 / m.
  • the semiconductor laser 1 of the present embodiment the light spot size that can prevent the decrease in the optical output due to the increase in the element resistance value can be increased.
  • the semiconductor laser 1 of the present embodiment there is no danger that the light output is reduced due to an increase in the element resistance value which does not require the thickness of the p-type cladding layer 9 to be increased.
  • the first and second SCH layers 4 and 6 are used as one method for reducing the light confinement coefficient between the active layer 5 and the first and second SCH layers 4 and 6, the first and second SCH layers 4 and 6 are used.
  • the difference in the refractive index between adjacent layers in each layer constituting 6 is set to be smaller as the distance from the active layer 5 is increased, and the thickness of each layer is made equal.
  • the present invention is not limited to this.
  • the refractive index difference between the adjacent layers constituting the first and second SCH layers 4 and 6 is made equal.
  • the thickness of each layer is set as shown by the following two equations so that the thickness of each layer farther from the active layer 5 increases. May be.
  • the difference in the refractive index between adjacent layers constituting the first and second SCH layers 4 and 6 is far from the active layer 5.
  • the following two inequalities may be set so that the thickness becomes as small as possible and the thickness of each layer becomes farther from the active layer 5 and becomes larger as the thickness increases.
  • the refractive index of the region near the active layer 5 in the first and second SCH layers 4 and 6 is determined.
  • the refractive index drops sharply in the high region, and the refractive index in the region near both cladding layers 3 and 9 is low, and the refractive index gradually drops in the region.
  • the degree of concentration of light in the optical waveguide for guiding light inside the semiconductor laser 1 of these other embodiments can be reduced, that is, the light confinement coefficient can be set low. Loss is reduced.
  • the refractive index na of the n-type cladding layer 3 made of InGaAsP is higher than the refractive index nb of the p-type cladding layer 9 made of InP.
  • the distribution is biased toward the n-type cladding layer 3 as shown in FIG.
  • the p-type cladding layer is formed by reducing the light confinement coefficient in the active layer 5 and the first and second SCH layers 4, 6.
  • the resonator length L is different from the configuration shown in FIG.
  • L is set to 3 mm.
  • One of the end faces la and lb of the semiconductor laser 1 is an HR film (high reflectivity) film, and the other is an LR (low reflectivity) film.
  • the width of the active layer 5 in the semiconductor laser 1 is set to 9.0 ⁇ .
  • composition wavelengths bandgap wavelength
  • ns l. ⁇ M
  • nb 0.925 z m
  • the composition wavelength nb is uniquely 0.925 m.
  • the thicknesses tl, t2, and t3 of the layers 4a, 4b, 4c and 6a, 6b, 6c as described above in the semiconductor laser 1 are set as follows.
  • the thickness of the n-type cladding layer 3 is about 7.5 / im. Forming such a large thickness of InGaAsP, which is a four-element element, with the spacing between the elements being the same, is a general manufacturing technique. Have difficulty.
  • the composition wavelength na of the n-type cladding layer 3 is 0.97 ⁇ m, the ratio of Ga and As becomes smaller than that of In or P, so that the n-type cladding layer 3 should be formed with such a large thickness. Is even more difficult
  • the composition wavelength na formed to a large thickness of about 7.5 xm is 0.97 xm. It is now possible to realize the n-type cladding layer 3. Hereinafter, an example of the manufacturing process will be described.
  • n-type InP semiconductor substrate 2 having an impurity concentration 1 one 2 X 10 18 / cm 3, using a metal organic vapor phase epitaxy (MOVPE), a layer thickness of impurities 7. 5 / im
  • An n-type cladding layer 3 made of InGaAsP having a concentration of 1 2 ⁇ 10 18 / cm 3 and a composition wavelength of 0.97 xm is formed.
  • a non-doped InGaAsP having a composition wavelength of 0.99 xm, 1.08 ⁇ , and 1.15 ⁇ m was laminated to a thickness of 25 nm, 8 nm, and 3 nm, respectively, to form an SCH layer 4. I do.
  • an InGaAsP well layer 5a and an InGaAsP barrier layer 5b are alternately grown to form an active layer 5 having a multi-quantum well structure with four well layers.
  • a SiN film of about several tens of nm is deposited on the entire surface by a plasma CVD method or the like, and this is formed into a stripe shape of about 10 ⁇ m in width by photolithography. It is immersed in an etching solution consisting of a mixture of hydrogen peroxide and water to form a mesa. Thus, the width of the active layer 5 becomes about 9 ⁇ m.
  • the lower carrier layer 7 of p-type InP and the upper carrier layer 8 of n-type InP are stacked by MOVPE using the SiN film as a growth inhibition mask, and both sides of the mesa are formed. After loading, the SiN film is removed.
  • the upper layer portion of the p-type cladding layer 9 made of the entire surface of the impurity concentration 5- 7 X 10 17 / cm 3 InP 2. grow further, the impurity concentration of 5 X 10 18 Zcm 3 about an InGaAsP p
  • the mold contact layer 10 is grown to 0.
  • a p-electrode 11 is formed on the upper surface of the p-type contact layer 10
  • an n-electrode 12 is formed on the lower side of the semiconductor substrate 2, and then cut out to a length of 3 mm.
  • An HR film 22 is applied to the end face to form a laser structure.
  • FIG. 11 shows the current versus output characteristics of the semiconductor laser 1 configured as described above.
  • a characteristic curve F indicates the characteristics of the semiconductor laser according to the above numerical example.
  • Curve F shows the fiber output characteristics when optically coupled to a single-mode optical fiber, for example, without a lens.
  • the light confinement coefficient of the semiconductor laser in the ⁇ -type cladding layer 9 is 17%.
  • the value of the internal loss estimated from the actually fabricated semiconductor laser is 5-ecnT 1 for the conventional structure, but this semiconductor laser is improved to 3.OcnT 1 or less. I have.
  • the present invention can be similarly applied to a semiconductor laser having a ridge structure shown in FIG. 12, in which the above-described semiconductor laser has a carrier structure.
  • the p-type cladding layer 9 and the p-type contact layer 10 have no SiO force.
  • An insulating layer 23 is formed.
  • the n-type cladding layer 3 made of InGaAsP having a higher refractive index is used for the p-type cladding layer 9 made of InP.
  • the light distribution can be deviated to the n-type cladding layer 3 side, and a high-output laser beam can be obtained as described above.
  • each layer is formed on the n-type semiconductor substrate 2
  • the semiconductor laser in which each layer is formed on the p-type semiconductor substrate 2 ′ Also in the laser, the same effect as described above can be obtained by forming the n-type cladding layer 3 of InGaAsP having a higher refractive index than the p-type cladding layer 9 of InP.
  • the composition wavelength of the outermost layer 4c of the first SCH layer 4 was set longer than the composition wavelength of the n-type cladding layer 3 made of InGaAsP. As shown, the composition wavelength of the outermost layer 4c (4N) of the first SCH layer 4 may be shorter than the composition wavelength of the n-type cladding layer 3 made of InGaAsP.
  • the refractive index nN of the outermost layer 4N of the first SCH layer 4 is equal to the InGaAsP force.
  • Type club The refractive index of the pad layer 32 is set lower than na (na> nN).
  • the n-type cladding layer 3 is made of InGaAsP having a higher refractive index than the p-type cladding layer 9 made of InP, whereby The same effect as the semiconductor laser 1 according to the embodiment can be obtained.
  • the refractive index nN of the outermost layer 4N of the first SCH layer 4 is higher than the refractive index na of the n-type cladding layer 3 having the InGaAsP force.
  • the refractive index of each of the layers is different among the plurality of layers constituting the active layer 5.
  • the refractive index na of the n-type clad layer 3 having the highest refractive index ns of the layer having the lowest refractive index is farther from the active layer, including the relation that the refractive index na of the p-type clad layer 9 is higher than the refractive index nb of the p-type clad layer 9. So that it becomes smaller
  • the refractive index nN of the outermost layer 4N of the first SCH layer 4 is n-type with the InGaAsP force.
  • the refractive index between the adjacent ones of the plurality of layers constituting the first SCH layer 4 and the second SCH layer 6 So that the difference in refractive index between the active layer 5 and the cladding layers 3 and 9 decreases as the force increases.
  • ns-nl > nl-n2> n2-n3>, ⁇ -,> ⁇ ( ⁇ -1) - ⁇
  • each layer is set to be equal to each other.
  • the refractive index nN of the outermost layer 4N of the first SCH layer 4 in the semiconductor laser 1 according to the other embodiment shown in FIG. 14 is higher than the refractive index na of the n-type cladding layer 3 made of InGaAsP.
  • the configuration of the first SCH layer 4 and the second SCH layer 6 is set so that the refractive index difference between adjacent layers is equal to each other (ns).
  • the refractive index nN of the outermost layer 4N of the first SCH layer 4 is smaller than the refractive index na of the n-type cladding layer 3 made of InGaAsP.
  • the configuration in which the refractive index difference between adjacent layers in the plurality of layers constituting the first SCH layer 4 and the second SCH layer 6 is smaller as the distance from the active layer 5 becomes smaller.
  • Ns ⁇ nl> nl_n2> n2_n3>,. ,..., (TN) the refractive index characteristics of the semiconductor laser 1 according to the other embodiment shown in FIG. 10 are partially deformed (ns_nl> nl-n2> n2_n3>,. > n (N_l) -nN).
  • the composition wavelength of inGaAsP is It can be selected in the range of 0.96-0.98 zm, and the width of the active layer 5 can be set to 714 ⁇ m.
  • the composition wavelength of InGaAsP is selected in the range of 0.96 to 0.98 zm, a high output while maintaining the fundamental transverse mode during optical coupling with a single mode optical fiber is obtained. Laser light can be incident on the single mode optical fiber.
  • FIG. 15 shows a case where the semiconductor laser 1 of the present invention is optically coupled to an external single-mode optical fiber 31.
  • the single mode optical fiber 31 has an AR (non-reflective) film 32 formed on a light incident surface 31a.
  • one end face of the semiconductor laser 1 (the LR surface 21 in FIG. 15)
  • the center axis of the laser beam emitted from the laser and the center axis of the core 3 lb of the light incident surface 31a of the single mode optical fiber 31 are made as coincident as possible, and the semiconductor laser 1 having the LR surface 21
  • One end face and the light incident face 31a of the single mode optical fiber 31 provided with the AR film 32 are arranged close to each other (lensless coupling).
  • one end face of the semiconductor laser 1 in FIG. 15, LR surface 21
  • the central axis of the laser beam emitted from the power and the light is made to coincide as much as possible with the central axis of the core 31b of the light incident surface 31a of the single mode optical fiber 31, and the LR surface 21 is provided.
  • One end surface of the semiconductor laser 1 and the light incident surface 3 la of the single mode optical fiber 31 provided with the AR film 32 are arranged so as to abut each other (butt joint connection).
  • the first and second SCH layers 4 and 6 are provided on both sides of the active layer 5, as shown in FIG.
  • Other semiconductor light emitting devices such as a semiconductor laser having no cladding layers 3 and 9 on both sides of the active layer 5 without the layers 4 and 6 and an external cavity type semiconductor laser and a light emitting diode (LED) are also used.
  • the present invention can be similarly applied.
  • the quaternary material (In, Ga, As, P) is used for the n-type cladding layer 3 and the composition wavelength of the n-type cladding layer 3 is 0.96. -0.98 xm and the width of the active layer 5 is set to 7-14 ⁇ m.
  • the semiconductor laser 1 of the present invention while maintaining the oscillation fundamental transverse mode, Since the active layer width is also increased and becomes closer to the mode field diameter of the fiber, sufficient coupling efficiency with a single-mode optical fiber can be obtained even with a lensless lens, for example, and the cost of the laser module can be reduced.
  • a tapered optical waveguide that converts the spot size of laser light according to the core diameter of a single mode optical fiber as in the related art disclosed in Patent Document 1 or the like is used. Since it becomes unnecessary, the element length can be shortened, and the cost of the element can be reduced.
  • a lens or other spot size conversion unit as in the related art is not required, and the basic lateral mode is not required. It is possible to provide a semiconductor laser capable of coupling high-power laser light to a single-mode optical fiber at high cost and with high coupling efficiency while maintaining the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 半導体レーザは、InPからなる基板と、前記基板上に幅が7~14μmとして形成される、多重量子井戸構造を含む活性層と、前記活性層を挟んで前記基板上に形成される、InGaAsPからなるn型クラッド層及びInPからなるp型クラッド層とを有する。前記半導体レーザは、基本横モードのみで発振して出射端部から出射される光が外部の単一モード光ファイバと光結合可能とする。

Description

明 細 書
単一モード光ファイバと高い結合効率で結合可能とする半導体レーザ 技術分野
[0001] 本発明は半導体レーザに係り、特に、単一モード光ファイバと高い結合効率で結合 可能とする半導体レーザに関するものである。
背景技術
[0002] 光通信システムに用いられる光信号は、長距離にわたって敷設された光ファイバ内 を伝送される。このため、光の光源として用いられる半導体レーザの特性としては、高 出力、高安定度が要求される。
[0003] ところで、光信号の伝送に単一モード光ファイバを使用する場合、光源としての半 導体レーザと単一モード光ファイバとの間を光結合することになる。
[0004] しかし、半導体レーザの素子端面と光ファイバの光入射面とをバットジョイントにより 直接突き合わせて結合すると、半導体レーザの光波スポットサイズが 2— 3 β mに対 して単一モード光ファイバのスポットサイズが 10 μ m程度であり、互いの光導波路光 波スポットサイズが異なるために結合損失が生じる。
[0005] このため、半導体レーザからのレーザ光をレンズによって光ファイバのスポットサイ ズに変換して結合損失の低減を図ることが一般的に行われている。
[0006] し力、しながら、光結合にレンズを用いる構成では、半導体レーザと光ファイバとの間 の面倒な光軸調整が必要不可欠であり、光学部品も増すという問題がある。
[0007] そこで、上記問題を解消するため、下記特許文献 1に開示されているようなレンズレ スで単一モード光ファイバと光結合可能な半導体光デバイスの提案がなされている。
[0008] 図 17は、下記特許文献 1に開示される半導体光デバイスの概略的な構成を示す透 視による斜視図である。
[0009] 図 17に示すように、特許文献 1に開示される半導体光デバイス 51は、クラッド、キヤ ップ、電極等の素子化に必要な構成部分 52において、 MQW (Multi Quantum Well :多重量子井戸構造)活性層 53がバットジョイント部 54を介してテーパ光導波 路 55と接合している。 [0010] MQW活性層 53は、歪み超格子活性層であり、活性領域 56を構成している。光導 波路 55は、層厚とバンドギャップ波長を連続的に変化させた光導波路であり、スポッ トサイズ変換領域 57を構成してレ、る。
[0011] そして、上記半導体光デバイス 51を用いて単一モード光ファイバと光結合する場合 には、 MQW活性層 53の活性領域 56から出射されたレーザ光がバットジョイント部 5 4でテーパ光導波路 55のスポットサイズ変換領域 57に伝播され、このスポットサイズ 変換領域 57でスポットサイズが変換されて光出射端 55aから出射される。
[0012] そして、このスポットサイズの変換されたレーザ光は、光出射端 55aから単一モード 光ファイバの光入射面から入射され、半導体光デバイス 51と単一モード光ファイバが 光結合される。
特許文献 1 :特開平 9 - 61652号公報 しかしながら、前記特許文献 1に開示されるテ 一パ光導波路 55を有する従来の半導体光デバイス 51では、光出射端 55aから出射 されるレーザ光のスポットサイズが単一モード光ファイバのスポットサイズに合うように 半導体光デバイス 51にテーパ光導波路 55を一体に形成する必要があるので、設計 が難しぐ作成に手間を要し、作成再現性も得にくいという問題がある。
[0013] ところで、半導体レーザの活性層の幅を広げれば、半導体レーザから出射されるレ 一ザ光のスポット径を単一モードの光ファイバのコア径に合わせることが可能である。
[0014] しかし、単純に半導体レーザの活性層の幅を広げただけでは、半導体レーザから 出射されるレーザ光に横高次モードが発生し、電流一光出力特性において、不連続 点が生じたり、単一モード光ファイバと光結合を行う際に結合損失が大きくなつてしま うという新たな問題が生じる。
[0015] なお、本願の発明者等は、先に、米国特許出願番号(10/692, 125)及び欧州 特許出願番号(03 025 058. 3)において、 n型クラッド層が、 InPからなる p型クラ ッド層より屈折率が大きい InGaAsPによって構成されていることにより、簡単な構成 でハイパワーな光出力が得られると共に、横高次モードを抑圧可能な最大の活性層 幅を拡大可能な半導体レーザに適用可能な半導体発光素子を開示している。
[0016] しかるに、これらの先願で開示されているのは、本願の発明で対象とする光源として の半導体レーザからの光信号の伝送のために半導体レーザと単一モード光ファイバ との間をレンズレスで光結合するようなことを想定していないので、拡大可能な活性 層の幅は、 3. 5 /i m以上であって最大でも 4. 0 /i mまでしか開示されていない。
[0017] したがって、これらの先願で開示されている半導体発光素子を、仮に、光通信シス テムで用いられているような光源としての半導体レーザに適用したとしても、拡大可能 な活性層の幅が 3. 乃至 4. に止どまっているために、当該半導体レーザ と単一モード光ファイバとの間をレンズレスで光結合することは前述したような結合損 失の点から非現実的である。
発明の開示
[0018] そこで、本発明は、上記問題点に鑑みてなされたものであり、単一モード光ファイバ と光結合する際、従来技術のようなレンズやその他のスポットサイズ変換部を必要と せず、基本横モードを保ったまま高出力のレーザ光を低コストで単一モード光フアイ バに高い結合効率で結合可能とする半導体レーザを提供することを目的としている。
[0019] 前記目的を達成するために、本発明の第 1の態様によると、
InPからなる基板(2)と、
前記基板(2)上に幅が 7— 14 / mとして形成される、多重量子井戸構造を含む活 性層(5)と、
前記活性層を挟んで前記基板(2)上に形成される、 InGaAsPからなる n型クラッド 層(3)及び InPからなる p型クラッド層(9)とを具備し、
基本横モードのみで発振して出射端部から出射される光が外部の単一モード光フ アイバ(31)と光結合可能とすることを特徴とする半導体レーザが提供される。
[0020] 前記目的を達成するために、本発明の第 2の態様によると、
前記出射端部から出射される光が、前記外部の単一モード光ファイバとレンズレス で光結合可能とされることを特徴とする第 1の態様に従う半導体レーザが提供される
[0021] 前記目的を達成するために、本発明の第 3の態様によると、
前記出射端部から出射される光が、前記外部の単一モード光ファイバとバットジョイ ントにより光結合可能とされることを特徴とする第 1の態様に従う半導体レーザが提供 される。 [0022] 前記目的を達成するために、本発明の第 4の態様によると、
前記活性層と前記 n型クラッド層との間に形成される InGaAsPからなる第 1の SCH (Separate Confinement Heterostructure:光閉込構造)層 {4)と、 前記活性層と前記 p型クラッド層との間に形成される InGaAsPからなる第 2の SCH 層(6)とをさらに具備することを特徴とする第 1の態様に従う半導体レーザが提供され る。
[0023] 前記目的を達成するために、本発明の第 5の態様によると、
前記第 1の SCH層は複数の層(4a, 4b, 4c, ·'·4Ν)からなる多層構造を含み、 前記第 2の SCH層は、複数の層(6a, 6b, 6c, ·'·6Ν)からなる多層構造を含むこと を特徴とする第 4の態様に従う半導体レーザが提供される。
[0024] 前記目的を達成するために、本発明の第 6の態様によると、
前記活性層における前記複数の障壁層の屈折率を nsとし、
前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力 順次にそれぞれ nl, n2, n3, ···, nN及び tl, t2, t3, ···, tNとし、
前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力 順次にそれぞれ nl, n2, n3, ···, nN及び tl, t2, t3, ···, tNとしたとき、 前 記各層の厚さの関係は互レ、に等しい、
tl=t2=t3 = , ···, =tN
なる関係に設定され、
前記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型ク ラッド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活 性層力 遠ざ力 程小さくなるように
ns>nl>n2>n3>, ·■·, >nN>na>nb
なる関係に設定されていると共に、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が、前記活性層から前記 n型クラッド層及び 前記 p型クラッド層へ向力、う程小さくなるように
ns-nl >nl-n2 >n2-n3 > , ■·-, >ηΝ— nb>nN— na なる関係に設定されていることを特徴とする第 5の態様に従う半導体レーザが提供さ れる。 前記目的を達成するために、本発明の第 7の態様によると、
前記活性層における前記複数の障壁層の屈折率を nsとし、
前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力、ら順次にそれぞれ nl , n2, n3,…, nN及び tl, t2, t3,…, tNとし、
前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力、ら順次にそれぞれ nl , n2, n3,…, nN及び tl, t2, t3,…, tNとしたとき、 前 記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型クラッ ド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活性 層力、ら遠ざ力 程小さくなるように
ns >nl >n2 >n3 > , ·■·, >nN >na >nb
なる関係に設定され、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が互いに等しレ、
ns— nl =nl— n2=n2— n3 = , · · · , =nN— no
(但し、 nN— nb >nN— na)
なる関係に設定されていると共に、
前記各層の厚さの関係は、前記活性層から遠レ、ものほど大きくなるように tl < t2 <t3 < , · · ·, < tN
なる関係に設定されていることを特徴とする第 5の態様に従う半導体レーザが提供さ れる。 前記目的を達成するために、本発明の第 8の態様によると、
前記活性層における前記複数の障壁層の屈折率を nsとし、
前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力、ら順次にそれぞれ nl , n2, n3,…, nN及び tl, t2, t3,…, tNとし、
前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力、ら順次にそれぞれ nl、 n2、 n3,…, nN及び tl, t2, t3,…, tNとしたとき、 前 記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型クラッ ド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活性 層力 遠ざ力る程小さくなるように
ns>nl >n2>n3>, ···, nN>na>nb
なる関係に設定され、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が前記活性層力も遠ざ力^)程小さくなるよう に
ns-nl >nl-n2 >n2-n3 > ,■·-, >ηΝ— nb>nN— na
なる関係に設定されていると共に、
前記各層の厚さの関係は、前記活性層から遠レ、ものほど大きくなるように tl<t2<t3<, ·■·, <tN
なる関係に設定されていることを特徴とする第 5の態様に従う半導体レーザが提供さ れる。 前記目的を達成するために、本発明の第 9の態様によると、
前記活性層を形成する複数の層うちで最も低い屈折率を有する層の屈折率を nsと し、 前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に 近い方から順次にそれぞれ nl, n2, n3,…, nN及び tl, t2, t3, ···, tNとし、 前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力 順次にそれぞれ nl, n2, n3, ···, nN及び tl, t2, t3, ···, tNとしたとき、 前 記各層の厚さの関係は互レ、に等しい、
tl=t2=t3 = , ···, =tN
なる関係に設定され、
前記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型ク ラッド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活 性層力 遠ざ力 程小さくなるように
ns>nl>n2>n3>,…, >nN>nb
且つ
na>nN
なる関係に設定されていると共に、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が、前記活性層から前記 n型クラッド層及び 前記 P型クラッド層へ向力う程小さくなるように
ns-nl >nl-n2 >n2-n3 > , ···, >η(Ν— 1)— ηΝ
なる関係に設定されていることを特徴とする第 5の態様に従う半導体レーザが提供さ れる。 前記目的を達成するために、本発明の第 10の態様によると、
前記活性層を形成する複数の層うちで最も低い屈折率を有する層の屈折率を nsと し、 前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に 近レヽ方力ら順次にそれぞれ nl, n2, n3,…, nN及び tl, t2, t3,■·-, tNとし、 前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力、ら順次にそれぞれ nl, n2, n3,…, nN及び tl, t2, t3,…, tNとしたとき、 前 記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型クラッ ド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活性 層力 遠ざ力る程小さくなるように
ns>nl>n2>n3>, ···, >nN>nb
且つ
na^nN
なる関係に設定され、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が互いに等しレ、
ns— nl =nl— n2=n2— n3 = , ···, =nN— no
なる関係に設定されていると共に、
前記各層の厚さの関係は、前記活性層から遠レ、ものほど大きくなるように tl<t2<t3<, ·■·, <tN
なる関係に設定されていることを特徴とする第 5の態様に従う半導体レーザが提供さ れる。 前記目的を達成するために、本発明の第 11の態様によると、
前記活性層を形成する複数の層うちで最も低い屈折率を有する層の屈折率を nsと し、 前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に 近レヽ方力ら順次にそれぞれ nl, n2, n3,…, nN及び tl, t2, t3,■·-, tNとし、 前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力 順次にそれぞれ nl、 n2、 n3, ···, nN及び tl, t2, t3, ···, tNとしたとき、 前 記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型クラッ ド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活性 層力、ら遠ざ力 程小さくなるように
ns>nl>n2>n3>,…, nN>nb
且つ
na>nN
なる関係に設定され、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が前記活性層力も遠ざ力^)程小さくなるよう に
ns-nl >nl-n2 >n2-n3 > , ···, >η(Ν— 1)— nN
なる関係に設定されていると共に、
前記各層の厚さの関係は、前記活性層から遠レ、ものほど大きくなるように
tl<t2<t3<, ···, <tN
なる関係に設定されていることを特徴とする第 5の態様に従う半導体レーザが提供さ れる。 前記目的を達成するために、本発明の第 12の態様によると、
前記半導体レーザは坦込み構造として形成されていることを特徴とする第 4の態様 に従う半導体レーザが提供される。
前記目的を達成するために、本発明の第 13の態様によると、
前記 n型クラッド層、前記第 1の SCH層、前記活性層、前記第 2の SCH層及び前 記 p型クラッド層の一部はメサ型に形成され、
前記半導体レーザは、
前記メサ型に形成された各層の両側で前記半導体基板または前記 n型クラッド層 に一面が接して形成された P型 InPからなる第 1の坦込層(16)と
前記メサ型に形成された各層の両側で一面が前記 p型クラッド層に接し且つ他面が 前記第 1の埋込層(16)の他面に接して形成された n型 InPからなる第 2の埋込層(1 7)とをさらに具備することを特徴とする第 12の態様に従う半導体レーザが提供される
[0026] 前記目的を達成するために、本発明の第 14の態様によると、
前記半導体レーザはリッジ構造として形成されている第 1の態様に従う半導体レー ザが提供される。
[0027] 前記目的を達成するために、本発明の第 15の態様によると、
前記半導体基板が n型であるとき、前記 p型クラッド層は外側のほぼ中央部が上側 に盛り上げられたリッジ構造部分として形成され、
前記半導体レーザは、
前記 p型クラッド層における前記リッジ構造部分の上側に形成されたコンタクト層(1 9)と、
前記コンタクト層の中央部を開口して、前記リッジ構造部分を含む前記 p型クラッド 層を覆うように形成された絶縁層(24)と、
一部が前記コンタクト層と接続された状態で前記絶縁層の上部に形成された電極( 20)とをさらに具備することを特徴とする第 14の態様に従う半導体レーザが提供され る。
[0028] 前記目的を達成するために、本発明の第 16の態様によると、
前記 n型クラッド層を構成する InGaAsPの組成波長が、 InPの組成波長以上で且 つ 0· 98 / m以下であることを特徴とする第 1の態様に従う半導体レーザが提供され る。
[0029] 前記目的を達成するために、本発明の第 17の態様によると、
前記 n型クラッド層を構成する InGaAsPの組成波長力 0. 96 z m以上で且つ 0. 9 8 μ m以下であることを特徴とする第 16の態様に従う半導体レーザが提供される。 前記目的を達成するために、本発明の第 18の態様によると、
前記半導体基板が n型であるとき、前記 n型クラッド層が前記活性層の下方に形成 され、前記 p型クラッド層が前記活性層の上方に形成されることを特徴とする第 1の態 様に従う半導体レーザが提供される。
[0030] 上記目的を達成するために、本発明の第 19の態様によれば、前記半導体基板が p 型であるとき、前記 n型クラッド層が前記活性層の上方に形成され、前記 p型クラッド 層が前記活性層の下方に形成されることを特徴とする第 1の態様に従う半導体レー ザが提供される。
[0031] 以上のような本発明の半導体レーザによれば、 n型クラッド層(3)を In, Ga, As, P の 4元素材料で形成し、 n型クラッド層(3)の組成波長を 0. 96-0. 98 x m、且つ活 性層(5)の幅を 7— 14 x mにしているので、発振基本横モードを維持しながら、高出 力のレーザ光を外部の単一モード光ファイバに高い結合効率で結合可能とすること ができる。
[0032] しかも、本発明の半導体レーザによれば、従来技術のようなレンズやテーパ光導波 路やその他のスポットサイズ変換部が不要となり、製造性簡便化、及び素子長を短く して素子のコストを低減することができる。
図面の簡単な説明
[0033] [図 1]図 1は、本発明の第 1実施形態に係る半導体レーザの概略構成を示す斜視図 である。
[図 2]図 2は、本発明の第 1実施形態に係る半導体レーザの要部の断面図である。
[図 3]図 3は、本発明の第 1実施形態に係る半導体レーザの各層の屈折率特性を示 す図である。
[図 4]図 4は、本発明の第 1実施形態に係る半導体レーザの光スポットの偏平率をパ ラメータとした、出射光の水平方向スポット径と単一モード光ファイバへの光結合効率 の関係図である。
[図 5]図 5は、本発明の第 1実施形態に係る半導体レーザの水平スポット径とレーザ 出射光の遠視野像の広がり角度との関係図である。
[図 6]図 6は、本発明の第 1実施形態に係る半導体レーザの活性層幅とレーザ出射 光の遠視野像の広がり角度との関係図である。
[図 7]図 7は、本発明の第 1実施形態に係る半導体レーザの同一活性層構造におけ る、 n側クラッド層に用いる InGaAsPの組成波長に対する、横高次モードを抑圧でき る最大の活性層幅(=カットオフ幅)の関係図の一例である。
[図 8]図 8は、本発明の第 1実施形態に係る半導体レーザの光の分布特性を示す図 である。
[図 9]図 9は、本発明の他の実施形態に係る半導体レーザの各層の屈折率特性を示 す図である。
[図 10]図 10は、本発明の他の実施形態に係る半導体レーザの各層の屈折率特性を 示す図である。
[図 11]図 11は、図 10に示す本発明の他の実施形態に係る半導体レーザの供給電 流対出力特性を示す図である。
[図 12]図 12は、本発明の他の実施形態に係るリッジ構造の半導体レーザについて 説明するための図である。
[図 13]図 13は、本発明の他の実施形態に係る半導体レーザとして p型基板上に構成 した例を示す図である。
[図 14]図 14は、本発明の他の実施形態に係る半導体レーザの各層の屈折率特性を 示す図である。
[図 15]図 15は、本発明による半導体レーザと外部の単一モード光ファイバの光結合 の一例及び他の例を説明するための図である。
[図 16]図 16は、本発明の他の実施形態に係る半導体レーザの各層の屈折率特性を 示す図である。
[図 17]図 17は、特許文献 1に開示される従来の半導体光デバイスの斜視図である。 発明を実施するための最良の形態
[0034] 以下、図面を参照して本発明の実施形態に係る半導体レーザについて説明する。
[0035] 図 1は、本発明の第 1実施形態に係る半導体レーザの全体の構成を示す斜視図、 図 2は、本発明の第 1実施形態に係る半導体レーザの一部拡大断面図である。
[0036] 図 1に示すように、本発明の第 1実施形態に係る半導体レーザ 1は、 n型 InPからな る半導体基板 2の上に、 n型 InGaAsPからなる n型クラッド層 3、 InGaAsPからなる第
1の SCH (Separate Confinement Heterostructure :光閉込構造)層 4、 InGa
AsPからなる活性層 5、 InGaAsPからなる第 2の SCH層 6が順番に積層されている。
[0037] 図 1において、 n型クラッド層 3、第 1の SCH層 4、活性層 5、第 2の SCH層 6はメサ 型に形成されており、このメサ型の両側に p型 InPからなる下部埋込層 7及び n型 InP 力 なる上部坦込層 8が形成されている。
[0038] また、第 2の SCH層 6の上側及び上部坦込層 8の上面には、 p型 InPからなる p型ク ラッド層 9が形成されている。 p型クラッド層 9の上面には、 p型コンタクト層 10が形成さ れている。さらに、 p型コンタクト層 10の上面には、 p電極 11が設けられている。また、 半導体基板 2の下面には n電極 12が設けられている。
[0039] 本発明の第 1実施形態に係る半導体レーザにおいて、活性層 5としては、図 2に示 すように、 4層の井戸層 5aと、この各井戸層 5aの両側に位置する 5層の障壁層 5bと を積層した 4層の MQW (多重量子井戸)構造が採用されてレ、る。
[0040] この 4層の MQW構造を有した活性層 5の下側に位置する第 1の SCH層 4を複数の 層 4a, 4b, 4c, ·■·, 4Nからなる多層構造とし、同様に、活性層 5の上側に位置する 第 2の SCH層 6を複数の層 6a, 6b, 6c,…, 6Nからなる多層構造とする。
[0041] 図 2に示すように、活性層 5における障壁層 5bの屈折率を ns、 n型クラッド層 3の屈 折率を na、 p型クラッド層 9の屈折率を nbとする。
[0042] また、第 1の SCH層 4を構成する各層 4a, 4b, 4c,…, 4Nの屈折率及び厚さをそ れぞれ nl, n2, n3, ···, nN及び tl, t2, t3, ···, nNとし、同様に、第 2の SCti層 6 を構成する各層 6a, 6b, 6c, ···, 6Nの屈折率及び厚さを nl, n2, n3, ···, nN,及 び tl, t2, t3, ···, tNとする。
[0043] そして、各屈折率の大小関係は、下記の不等式で示すように、活性層 5から遠ざか る程小さくなるように設定され、且つ、 InGaAsPからなる n型クラッド層 3の屈折率 na は、 InPからなる p型クラッド層 9の屈折率 nbより高い、下記の不等式で示すように設 定されている。
[0044] ns>nl>n2>n3>, ·■·, nN>na>nb
さらに、この半導体レーザ 1においては、図 3に示すように、第 1の SCH層 4及び第
2の SCH層 6を構成する隣接する層相互間の屈折率差力 活性層 5からクラッド層 3
, 9へ向う程小さくなるように設定されている。
[0045] すなわち、第 1の SCH層 4及び第 2の SCH層 6を構成する隣接する層相互間の屈 折率差は、下記の不等式で示すように設定されている。
[0046] ns-nl >nl-n2 >n2-n3 > ,■·-, >ηΝ— nb>nN— na また、第 1の SCH層 4及び第 2の SCH層 6構成する各層の厚み tl , t2, t3,…, tN は等しく設定されている。
[0047] すなわち、各層の厚さは
tl =t2 = t3 = , ·■· , =tN
となるように設定されている。
[0048] このように構成された半導体レーザ 1では、 p電極 11と n電極 12との間に直流電圧 を印加すると、活性層 5で光 Pが生起され、その光 Pが図 1に示した半導体レーザ 1の 端面 la, lbから外部へ出射される。
[0049] ここで、半導体レーザ 1において、横高次モードの発生を抑制しつつ、単一モード 光ファイバと十分な結合効率を得ることができる活性層 5の幅について説明する。
[0050] すなわち、半導体レーザ 1では、前述したように、活性層 5で生起された光 Pが半導 体レーザ 1の端面 la, lbから外部へ出射される際、出射される光は所定の大きさの スポット径で外部へ出射される。
[0051] このスポット径とは、本発明による半導体レーザ 1においては、活性層 5の端部から 出射される光の、その端部での光強度分布において、最大光強度の l/e2 (eは自然 対数の底)となる部分の直径を表してレ、る。
[0052] 図 4は、本発明による半導体レーザ 1における光スポットの偏平率をパラメータとし た、出射光の水平方向スポット径と単一モード光ファイバへの光結合効率の関係図 を示している。
[0053] ここで、光スポットの偏平率は、スポット径の水平方向:垂直方向の割合比であり、そ れぞれ 1 : 1 · 35, 1 : 1. 2, 1 : 1 , 1 : 0. 8, 1 : 0. 65の割合比を示している。
[0054] 尚、半導体レーザ 1は基本横モードで発振しており、半導体レーザ 1の端面 la, lb 力 出射される光は、後述するように、半導体レーザ 1の端面 la, lbのいずれか一方 に近接して配置される単一モード光ファイバと、例えば、レンズレスで光結合される。
[0055] 図 4からも分かるように、本発明による半導体レーザ 1では、いずれの光スポットの偏 平率においても約 75%以上の高い光結合効率を得るためには、水平スポット径が 7 一 14 μ mであれば良いことが分力、る。
[0056] 図 5は、本発明による半導体レーザ 1における水平スポット径とレーザ出射光の遠 視野像の広がり角度との関係図を示している。
[0057] 図 6は、本発明による半導体レーザ 1における半導体レーザ 1の活性層 5の幅とレ 一ザ出射光の遠視野像の広がり角度との関係図を示している。
[0058] 図 5と図 6とを比較して分かるように、本発明による半導体レーザ 1では、同一広がり 角度が得られる際の、活性層 5の幅と水平方向スポット径がほぼ同等となっている。
[0059] 従って、本実施形態の半導体レーザ 1においては、活性層 5の幅 =スポット径と見 なすことができる。
[0060] これにより、本実施形態の半導体レーザ 1において、単一モード光ファイバとの光結 合において、約 75%以上の高い光結合効率を得るためには、活性層 5の幅が 7 1 4 μ mであれば良レ、こととなる。
[0061] ところで、この種の半導体レーザ 1では、単純に活性層幅を拡大させただけでは、レ 一ザの発振モードに横高次モードが存在することになり、レーザ特性が悪化するば 力りでなぐファイバへの光結合効率が低下してしまうことになる。
[0062] そこで、本実施形態の半導体レーザ 1では、前述したように、 n側クラッド層を InGa AsPで構成することにより、半導体レーザ 1の内部で光を導く光導波路の等価屈折率 を低減するのと同等の効果を得ることができるので、結果として、横高次モードの発 生を抑えつつ広い活性層幅の半導体レーザを実現することができる。
[0063] なお、上述したように、本願の発明者等は、先に、米国特許出願番号(10/692, 125)及び欧州特許出願番号(03 025 058. 3)において、 n型クラッド層力 InP 力 なる p型クラッド層より屈折率が大きい InGaAsPによって構成されていることによ り、簡単な構成でハイパワーな光出力が得られると共に、横高次モードを抑圧可能な 最大の活性層幅を拡大可能な半導体レーザに適用可能な半導体発光素子を開示 している。
[0064] しかるに、これらの先願で開示されているのは、本願の発明で対象とする光源として の半導体レーザからの光信号の伝送のために半導体レーザと単一モード光ファイバ との間をレンズレスで光結合するようなことを想定していないので、拡大可能な活性 層の幅は、 3. 5 z m以上であって最大でも 4. O z mまでしか開示されていない。
[0065] したがって、これらの先願で開示されている半導体発光素子を、仮に、光通信シス テムで用いられているような光源としての半導体レーザに適用したとしても、拡大可能 な活性層の幅が 3. 5 /i m乃至 4. 0 /i mに止どまっているために、当該半導体レーザ と単一モード光ファイバとの間をレンズレスで光結合することは前述したような結合損 失の点から非現実的である。
[0066] しかも、これらの先願では、本発明の半導体レーザ 1において、単一モード光フアイ バとの光結合において、約 75%以上の高い光結合効率を得るためには、活性層 5の 幅が 7 14 μ mであれば良いことについての分析及び究明を含む開示がなされてい ない。
[0067] 図 7は、本発明による半導体レーザ 1において、同一活性層構造における、 n側クラ ッド層に用いる InGaAsPの組成波長に対する、横高次モードを抑圧できる最大の活 性層幅(=カットオフ幅)の関係の一例を示している。
[0068] これによれば、 n側クラッド層に組成波長が 0. 925 μ mの通常の ΙηΡクラッド層を用 いた半導体レーザの場合と同様に η側クラッド層に組成波長が 0. 925 μ mの InGaA sP半導体レーザでは、カットオフ幅は約 3. 5 μ ΐηである。
[0069] それに対し、 n側クラッド層に用いる InGaAsPの組成波長を 0· 96 μ mとするとカツ トオフ幅は約 7 /i mとなり、さらに糸且成波長を 0. 98 μ ΐηとすれば、カットオフ幅は約 1
4 μ mまで拡大することができる。
[0070] 次に、図 3に基いて本実施形態の半導体レーザ 1の各層の屈折率について説明す る。
[0071] 前述した図 3の屈折率特性に示すように、本実施形態の半導体レーザ 1では、第 1 及び第 2の SCH層 4, 6を構成する各層 4a, 4b, 4c, 6a, 6b, 6cにおける隣接する 層相互間の屈折率差が、活性層 5から各クラッド層 3, 9へ向う程小さくなるように設定 されている。
[0072] これにより、本実施形態の半導体レーザ 1では、第 1及び第 2の SCH層 4, 6内にお ける活性層 5の近傍領域の屈折率の高い領域においては屈折率が急激に低下し、 両クラッド層 3, 9の近傍領域の屈折率の低い領域においては、屈折率が緩慢に低 下する。
[0073] このため、本実施形態の半導体レーザ 1の内部で光を導く光導波路内で光の集中 度を緩和する、すなわち、光閉じ込め係数を低くすることができ、内部損失が低下す る。
[0074] また、本実施形態の半導体レーザ 1では、 InGaAsPからなる n型クラッド層 3の屈折 率 naは、 InPからなる p型クラッド層 9の屈折率 nbより高いので、図 8に示すように、光 の分布が、両クラッド層 3, 9を同一屈折率にしたときの対称な特性曲線 ΑΊこ対して、 特性曲線 Aのように n型クラッド層 3側に偏って分布する。
[0075] このため、本実施形態の半導体レーザ 1では、活性層 5と、第 1及び第 2の SCH層 4 , 6とにおける光閉じ込め係数を低くしたことによる p型クラッド層 9における価電子帯 間光吸収による光損失の増加を抑制することができるので、高出力なレーザ光を得る こと力 Sできる。
[0076] また、本実施形態の半導体レーザ 1では、活性層 5と n型クラッド層 3との屈折率差 が従来のものより小さくなるので、横高次モードを抑圧できる最大の活性層幅も拡大 することができ、レーザの高出力化にさらに有利となる。
[0077] 具体的には、本実施形態の半導体レーザ 1では、 n型クラッド層の組成波長を 0. 9 6-0. 98 μ ΐηの範囲で設定することにより、横高次モードを抑圧できる最大の活性 層幅を 7— 14 / m程度に拡大することができる。
[0078] これにより、本実施形態の半導体レーザ 1では、素子抵抗値の増加による光出力の 低下も防止できるだけでなぐ光スポットサイズを拡大することができるため、後述する ように、例えば、レンズレスでも単一モード光ファイバへ結合することが可能となる。
[0079] また、本実施形態の半導体レーザ 1では、 p型クラッド層 9の厚さを増加させる必要 がなぐ素子抵抗値の増加による光出力の低下を招く恐れもない。
[0080] なお、ここでは、活性層 5と第 1及び第 2の SCH層 4, 6とにおける光の閉じ込め係 数を低減するための一つの方法として、第 1及び第 2の SCH層 4, 6を構成する各層 における隣接するもの同士の屈折率差が活性層 5から遠くなる程小さくなるように設 定し、各層の厚さを等しくしている。
[0081] これに限らず、他の実施形態の半導体レーザ 1として、図 9に示すように、第 1及び 第 2の SCH層 4, 6を構成する隣接する層相互間の屈折率差を等しくし、且つ各層の 厚みを活性層 5から遠いもの程大きくなるように、下記の 2つの式で示すように設定し てもよい。
[0082] ns-nl =nl-n2=n2-n3 = = , · · · , =nN— nb
(但し、 nN— nb >nN— na) ,
tl < t2 <t3, ·■·, < tN
また、さらに他の実施形態の半導体レーザ 1として、図 10に示すように、第 1及び第 2の SCH層 4, 6を構成する隣接する層相互間の屈折率差は、活性層 5から遠くなる 程小さくなり、しかも、各層の厚みを活性層 5から遠レ、もの程大きくなるように、下記の 2つの不等式で示すように設定してもよレ、。
[0083] ns-nl >nl-n2 >n2-n3 > ,…, >nN_nb >nN_na,
tl < t2 <t3, ·■·, < tN
上述した図 9、図 10に示すように、半導体レーザ 1の各層の屈折率特性を設定した 場合でも、第 1及び第 2の SCH層 4, 6内における活性層 5の近傍領域の屈折率の高 い領域においては屈折率が急激に低下し、両クラッド層 3, 9の近傍領域の屈折率が 低レ、領域にぉレ、ては、屈折率が緩慢に低下する。
[0084] このため、これらの他の実施形態の半導体レーザ 1の内部で光を導く光導波路内 で光の集中度を緩和する、すなわち、光閉じ込め係数を低く設定することができるの で、内部損失が低下する。
[0085] また、いずれの実施形態の半導体レーザ 1の場合においても、 InGaAsPからなる n 型クラッド層 3の屈折率 naは、 InPからなる p型クラッド層 9の屈折率 nbより高いので、 光の分布が前記図 8で示すように、 n型クラッド層 3側に偏る。
[0086] このため、いずれの実施形態の半導体レーザ 1の場合においても、活性層 5と第 1 及び第 2の SCH層 4, 6とにおける光閉じ込め係数を低くしたことによる p型クラッド層
9における価電子帯間光吸収による光損失の増加を抑制することができ、高出力なレ 一ザ光を得ることができる。
[0087] 次に、上述した図 10に示す他の実施形態の半導体レーザ 1の各部の屈折率、厚さ につレ、て具体的な数値例とその特性を示す。
[0088] この実施形態の半導体レーザ 1では、共振器長 Lは、図 1に示した構成において、
L = 3mmに設定される。 [0089] また、この半導体レーザ 1における端面 l a、 lbの、端面の一方が HR膜(高反射性) 膜、他方が LR (低反射性)膜とされる。
[0090] また、この半導体レーザ 1における活性層 5の幅は、 9. 0 μ ΐηに設定される。
[0091] そして、この半導体レーザ 1における上述したような各層 4a, 4b, 4c及び 6a, 6b, 6 c, 3, 9の屈折率 ns、 nl、 n2、 n3、 na、 nbは、組成波長(bandgap wavelength) で表すものとして、以下のように設定される。
[0092] ns = l . ^ m
nl = 1. 15 μ m
η2 = 1. 08 μ m
η3 = 0. 99 z m
na = 0. 97 m
nb = 0. 925 z m
なお、 p型クラッド層 9は組成が決まっている InPによって構成されているので、その 糸且成波長 nbは一義的に 0. 925 mとなる。
[0093] また、この半導体レーザ 1における上述したような各層 4a, 4b, 4c及び 6a, 6b, 6c の厚さ tl、 t2、 t3は、以下のように設定される。
[0094] tl = 3. Onm
t2 = 8. Onm
t3 = 25nm
また、 n型クラッド層 3の厚さは約 7. 5 /i mとしている力 4元素である InGaAsPを格 子間間隔を合わせて、このような大きな厚さに形成することは通常の製造技術では困 難である。
[0095] 特に、 n型クラッド層 3の組成波長 naが 0. 97 μ mの場合、 Gaと Asの割合が Inや P に対して微量となるので、このような大きな厚さに形成することはさらに困難さが増す
[0096] しかるに、本発明では、希釈原料の導入や各ガスの流量と成長速度の制御によつ て、約 7. 5 x mの大きな厚さに形成された組成波長 naが 0. 97 x mの n型クラッド層 3を実現することが可能となってレ、る。 [0097] 以下、その製造工程の一例を説明する。
[0098] 先ず、不純物濃度 1一 2 X 1018/cm3の n型 InPの半導体基板 2上に、有機金属気 相成長(MOVPE)法を用いて、層厚が 7. 5 /i mで不純物濃度が 1一 2 X 1018/cm 3、組成波長 0. 97 x mの InGaAsPからなる n型クラッド層 3を形成する。
[0099] 次に、組成波長が 0. 99 x m、 1. 08 μ πι、 1. 15 μ mのノンドープ InGaAsPをそれ ぞれ 25nm、 8nm、 3nmの厚さで積層して、 SCH層 4を形成する。
[0100] そして、第 1の SCH層 4の上に、 InGaAsPの井戸層 5aと InGaAsPの障壁層 5bを 交互に成長し、井戸層数 4の多重量子井戸構造の活性層 5を形成する。
[0101] 次に、活性層 5の上に、組成波長が 1. 15 x m、 1. 08 μ πι、0. 99 z mのノンドー プ InGaAsPをそれぞれ 3nm、 8nm、 25nmの厚さで積層して、第 2の SCH層 6を形 成する。
[0102] そして、第 2の SCH層 6の上に、不純物濃度が 5 7 X 1017/cm3で厚さ 0. 5 μ m の InPからなる p型クラッド層 9の下層部を成長する。
[0103] その後、プラズマ CVD法等により全面に SiN膜を数 10nm程度堆積し、これをフォ トリソグラフイエ程で幅 10 μ m程度のストライプ状に形成したものをエッチングマスクと して、塩酸、過酸化水素水、水の混合液からなるエッチング溶液に浸し、メサ形状を 形成する。これにより活性層 5部分の幅はおよそ 9 μ mとなる。
[0104] 続いて、前記 SiN膜を成長阻害マスクに利用して、 MOVPE法により、 p型 InPの 下部坦込層 7、 n型 InPの上部坦込層 8を積層して、メサ両側部を坦め込んだ後、 Si N膜を除去する。
[0105] その後全面に不純物濃度 5— 7 X 1017/cm3の InPからなる p型クラッド層 9の上層 部を 2. 成長し、さらに、不純物濃度 5 X 1018Zcm3程度の InGaAsPの p型コン タクト層 10を 0. 成長する。
[0106] そして、 p型コンタクト層 10の上面に p電極 11を形成し、半導体基板 2の下側に n電 極 12を形成した後、長さ 3mmで切り出し、前端面に LR膜 21、後端面に HR膜 22を 施し、レーザ構造とする。
[0107] 図 11は、上記のように構成された半導体レーザ 1の電流対出力の特性を示す。
[0108] 図 11において、特性曲線 Fは上記数値例による半導体レーザの特性を示し、特性 曲線 F ま単一モード光ファイバと、例えば、レンズレスで光結合させたときのファイバ 出力特性を示す。
[0109] 本例の半導体レーザによれば、単一モード光ファイバとの結合効率が 80%となる 良好な特性が得られている。
[0110] また、この半導体レーザの ρ型クラッド層 9内における光閉じ込め係数は 17%であり
、従来構造の閉じ込め係数 42%に対して大幅に低減していることが確認されている
[0111] また、実際に作成した半導体レーザから見積もった内部損失の値も、従来構造のも のが 5— ecnT1であるのに対し、この半導体レーザでは、 3. OcnT1以下まで改善され ている。
[0112] また、上述した半導体レーザは坦め込み構造のものである力 図 12に示すリッジ構 造の半導体レーザについても本発明は同様に適用できる。
[0113] なお、図 12において、 p型クラッド層 9及び p型コンタクト層 10の上には SiO力 な
2 る絶縁層 23が形成される。
[0114] このようなリッジ構造の半導体レーザの場合でも、 InPからなる p型クラッド層 9に対し て、それより屈折率が大きい InGaAsPからなる n型クラッド層 3を用いているので、前 記と同様に、光の分布を n型クラッド層 3側に偏らせることができ、上記と同様に高出 力のレーザ光が得られる。
[0115] また、前述した半導体レーザでは、 n型の半導体基板 2上に各層を形成した例を示 したが、図 13に示すように、 p型の半導体基板 2'上に各層を形成した半導体レーザ においても、その n型クラッド層 3を、 InPからなる p型クラッド層 9より屈折率が高い In GaAsPによって構成することで、上記と同様の効果を得ることができる。
[0116] なお、前述した各半導体レーザでは、第 1の SCH層 4の最も外側の層 4cの組成波 長を、 InGaAsPからなる n型クラッド層 3の組成波長より長くしていた力 図 14に示す ように、第 1の SCH層 4の最も外側の層 4c (4N)の組成波長を InGaAsPからなる n型 クラッド層 3の組成波長より短くしてもよい。
[0117] すなわち、この図 14に示す他の実施形態による半導体レーザ 1では、図 14に示す ように、第 1の SCH層 4の最も外側の層 4Nの屈折率 nNが InGaAsP力、らなる n型クラ ッド層 32の屈折率 naよりも低く設定されている(na >nN)。
[0118] このように各層が形成された半導体レーザ 1においても、その n型クラッド層 3を、 In Pからなる p型クラッド層 9より屈折率が高い InGaAsPによって構成することにより、前 述した各実施形態による半導体レーザ 1と同様の効果を得ることができる。
[0119] また、この図 14に示す他の実施形態による半導体レーザ 1では、第 1の SCH層 4の 最も外側の層 4Nの屈折率 nNが InGaAsP力 なる n型クラッド層 3の屈折率 naよりも 低く設定されていることにより、注入されるキャリア(ホール)が溢れ出るのを防止でき るという効果が得られる。
[0120] なお、この図 14に示す他の実施形態による半導体レーザ 1では、図 14に示したよう に、前記各層の屈折率の大小関係は、前記活性層 5を構成する複数の層のうちで最 も低い屈折率を有する層の屈折率 nsが最も高ぐ前記 n型クラッド層 3の屈折率 naが 前記 p型クラッド層 9の屈折率 nbより高い関係を含めて、前記活性層から遠ざかる程 小さくなるように
ns >nl >n2 >n3 > , · · ·, >nN >nb
且つ
na ^nN
なる関係に設定されてレ、る。
[0121] これに加えて、この図 14に示す他の実施形態による半導体レーザ 1では、前述した ように、第 1の SCH層 4の最も外側の層 4Nの屈折率 nNが InGaAsP力 なる n型クラ ッド層 3の屈折率 naよりも低く設定されている (na >nN)以外に、第 1の SCH層 4、第 2の SCH層 6を構成する複数の層における互いに隣接する層相互間の屈折率差が 、活性層 5から両クラッド層 3、 9へ向力 程小さくなるように
ns-nl >nl-n2 >n2-n3 > ,■· - , >η (Ν-1)-ηΝ
なる関係に設定されている。
[0122] また、各層の厚さが互いに等しくなるように
tl =t2 = t3 = , ·■·, =tN
なる関係に設定されている。
[0123] これは、前述した図 3に示す第 1の実施形態による半導体レーザ 1の屈折率特性 (n s-nl >nl-n2 >n2-n3 > , ···, >nN— nb>nN— na)を一部変形するものとして適 用されている。
[0124] しかるに、この図 14に示す他の実施形態による半導体レーザ 1における第 1の SC H層 4の最も外側の層 4Nの屈折率 nNが InGaAsPからなる n型クラッド層 3の屈折率 naよりも低く設定されているレ、う構成は、第 1の SCH層 4及び第 2の SCH層 6を構成 する複数の層における互いに隣接する層相互間の屈折率差が互いに等しくなるよう に(ns— nl=nl— n2=n2— n3 = ,■·-, =nN— nb,但し、 nN— nb>nN— na)設定さ れていると共に、各層の厚さが活性層 5から遠い程大きくなるように (tl<t2く t3,… , tN)設定されている前述した図 9に示す他の実施形態による半導体レーザ 1の屈折 率特性を一部変形する(ns_nl=nl— n2=n2_n3 = ,…, =nN=nb)ものとしても 適用することができる。
[0125] また、この図 14に示す他の実施形態による半導体レーザ 1における第 1の SCH層 4の最も外側の層 4Nの屈折率 nNが InGaAsPからなる n型クラッド層 3の屈折率 naよ りも低く設定されているいう構成は、第 1の SCH層 4及び第 2の SCH層 6を構成する 複数の層における互いに隣接する層相互間の屈折率差が活性層 5から遠くなる程小 さくなるように(ns—nl>nl_n2>n2_n3>, ···, >nN_nb>nN_na)設定されて いると共に、各層の厚さが活性層 5から遠い程大きくなるように (tl<t2く t3く, ···, く tN)設定されている前述した図 10に示す他の実施形態による半導体レーザ 1の屈 折率特性を一部変形する(ns_nl>nl-n2>n2_n3>, ···, >n(N_l)-nN)もの としてち適用すること力 Sできる。
[0126] また、前述した半導体レーザ 1では、 n型クラッド層 3を構成する InGaAsPの組成波 長が 0.97 xmの場合を例にとって説明した力 本発明の半導体レーザ 1では、 inG aAsPの組成波長を 0.96-0.98 zmの範囲で選択し、かつ活性層 5の幅を 7 14 μ mに設定することができる。
[0127] なお、本発明の半導体レーザ 1において、 InGaAsPの組成波長を 0.96—0.98 zmの範囲で選択すれば、単一モード光ファイバと光結合する際に、基本横モード を保ったまま高出力のレーザ光を単一モード光ファイバに入射することができる。
[0128] 図 15は本発明の半導体レーザ 1を外部の単一モード光ファイバ 31と光結合する場 合の概略図である。
[0129] 図 15において、単一モード光ファイバ 31は、光入射面 31aに AR (無反射性)膜 32 が形成されている。
[0130] 本発明の半導体レーザ 1を外部の単一モード光ファイバ 31と光結合する一例として は、図 15に実線で示すように、半導体レーザ 1の一方の端面(図 15では LR面 21)か ら出射されるレーザ光の中心軸と、単一モード光ファイバ 31の光入射面 31aのコア 3 lbの中心軸とをできる限り一致させ、且つ、 LR面 21を備えた前記半導体レーザ 1の 一方の端面と AR膜 32を備えた前記単一モード光ファイバ 31の光入射面 31aとを近 接して配置(レンズレス結合)する。
[0131] また、本発明の半導体レーザ 1を外部の単一モード光ファイバ 31と光結合する他の 例としては、図 15に破線で示すように、半導体レーザ 1の一方の端面(図 15では LR 面 21)力、ら出射されるレーザ光の中心軸と、単一モード光ファイバ 31の光入射面 31 aのコア 31bの中心軸とをできる限り一致させ、且つ、 LR面 21を備えた前記半導体レ 一ザ 1の一方の端面と AR膜 32を備えた前記単一モード光ファイバ 31の光入射面 3 laとを突き合わせて配置 (バットジョイント結合)する。
[0132] これにより、半導体レーザ 1の活性層 5から LR面 21より出射された光は、単一モー ド光ファイバ 31の光入射面 31aのコア 31bに入射される。
[0133] そして、この構成によれば、基本横モードを保ったまま活性層幅を広くして半導体レ 一ザ 1と単一モード光ファイバ 31を高効率な結合効率で光結合することができる。
[0134] また、前述した各半導体レーザ 1では、活性層 5の両側に第 1及び第 2の SCH層 4 , 6が設けられている力 図 16に示すように、第 1及び第 2の SCH層 4, 6を設けず、 活性層 5の両側に両クラッド層 3, 9が隣接している半導体レーザや、外部共振器型 半導体レーザ、発光ダイオード (LED)等の他の半導体発光素子についても本発明 を同様に適用できる。
[0135] このように、本発明の半導体レーザ 1によれば、 n型クラッド層 3に 4元材料 (In, Ga , As, P)を用い、 n型クラッド層 3の組成波長を 0. 96-0. 98 x mにし、かつ活性層 5の幅を 7— 14 μ mに設定してレ、る。
[0136] これにより、本発明の半導体レーザ 1によれば、発振基本横モードを維持しながら 活性層幅も広くなり、ファイバのモードフィールド径に近くなるため、例えば、レンズレ スでも単一モード光ファイバと十分な結合効率が得られ、レーザモジュールの低コス ト化が可能になる。
[0137] しかも、本発明の半導体レーザ 1では、特許文献 1等に開示される従来のようなレー ザ光のスポットサイズを単一モード光ファイバのコア径に合わせて変換するテーパ光 導波路が不要となるので、素子長を短くでき、素子のコストを低減することができる。
[0138] 従って、以上詳述したように、本発明によれば、単一モード光ファイバと光結合する 際、従来技術のようなレンズやその他のスポットサイズ変換部を必要とせず、基本横 モードを保ったまま高出力のレーザ光を低コストで単一モード光ファイバに高い結合 効率で結合可能とする半導体レーザを提供することができる。

Claims

請求の範囲
[1] InPからなる基板と、
前記基板上に幅が 7— 14 μ mとして形成される、多重量子井戸構造を含む活性層 と、 前記活性層を挟んで前記基板上に形成される、 InGaAsPからなる n型クラッド 層及び InPからなる p型クラッド層とを具備し、
基本横モードのみで発振して出射端部から出射される光が外部の単一モード光フ アイバと光結合可能とすることを特徴とする半導体レーザ。
[2] 前記出射端部から出射される光が、前記外部の単一モード光ファイバとレンズレス で光結合可能とされることを特徴とする請求項 1に記載の半導体レーザ。
[3] 前記出射端部から出射される光が、前記外部の単一モード光ファイバとバットジョイ ントにより光結合可能とされることを特徴とする請求項 1に記載の半導体レーザ。
[4] 前記活性層と前記 n型クラッド層との間に形成される InGaAsPからなる第 1の SCH
(separate confinement Heterostruc ure :光 込構造)層と、
前記活性層と前記 P型クラッド層との間に形成される InGaAsPからなる第 2の SCH 層とをさらに具備することを特徴とする請求項 1に記載の半導体レーザ。
[5] 前記第 1の SCH層は、複数の層からなる多層構造を含み、
前記第 2の SCH層は、複数の層からなる多層構造を含むことを特徴とする請求項 4 に記載の半導体レーザ。
[6] 前記活性層における前記複数の障壁層の屈折率を nsとし、
前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力、ら順次にそれぞれ nl , n2, n3,…, nN及び tl, t2, t3,…, tNとし、
前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力、ら順次にそれぞれ nl , n2, n3,…, nN及び tl, t2, t3,…, tNとしたとき、 前 記各層の厚さの関係は互いに等しい、
tl =t2 =t3 = , · · ·, =tN
なる関係に設定され、
前記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型ク ラッド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活 性層力 遠ざ力る程小さくなるように
ns>nl >n2>n3>, ···, >nN>na>nb
なる関係に設定されていると共に、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が、前記活性層から前記 n型クラッド層及び 前記 p型クラッド層へ向力、う程小さくなるように
ns-nl >nl-n2 >n2-n3 > ,■·-, >ηΝ— nb>nN— na
なる関係に設定されていることを特徴とする請求項 5に記載の半導体レーザ。
前記活性層における前記複数の障壁層の屈折率を nsとし、
前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力、ら順次にそれぞれ nl, n2, n3,…, nN及び tl, t2, t3,…, tNとし、
前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力 順次にそれぞれ nl, n2, n3, ···, nN及び tl, t2, t3, ···, tNとしたとき、 前 記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型クラッ ド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活性 層力 遠ざ力る程小さくなるように
ns>nl >n2 n3>, ···, >nN>naノ nb
なる関係に設定され、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が互いに等しレ、
ns— nl =nl— n2=n2— n3 = , ···, =nN— no
(但し、 nN_nb>nN_na)
なる関係に設定されていると共に、
前記各層の厚さの関係は、前記活性層から遠レ、ものほど大きくなるように tl<t2<t3<, ·■·, <tN
なる関係に設定されていることを特徴とする請求項 5に記載の半導体レーザ。
前記活性層における前記複数の障壁層の屈折率を nsとし、
前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力 順次にそれぞれ nl, n2, n3, ···, nN及び tl, t2, t3, ···, tNとし、 前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力 順次にそれぞれ nl、 n2、 n3, ···, nN及び tl, t2, t3, ···, tNとしたとき、 前 記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型クラッ ド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活性 層力、ら遠ざ力 程小さくなるように
ns>nl>n2>n3>, ·■·, nN>na>nb
なる関係に設定され、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が前記活性層力も遠ざ力^)程小さくなるよう に
ns-nl >nl-n2 >n2-n3 > ,■·-, >ηΝ— nb>nN— na
なる関係に設定されていると共に、
前記各層の厚さの関係は、前記活性層から遠レ、ものほど大きくなるように
tl<t2<t3<, ···, <tN
なる関係に設定されていることを特徴とする請求項 5に記載の半導体レーザ。
前記活性層を形成する複数の層うちで最も低い屈折率を有する層の屈折率を nsと し、 前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に 近い方から順次にそれぞれ nl, n2, n3,…, nN及び tl, t2, t3, ···, tNとし、 前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力 順次にそれぞれ nl, n2, n3, ···, nN及び tl, t2, t3, ···, tNとしたとき、 前 記各層の厚さの関係は互いに等しい、
tl=t2 = t3 = , ·■·, =tN
なる関係に設定され、
前記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型ク ラッド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活 性層力 遠ざ力 程小さくなるように
ns>nl>n2>n3>,…, >nN>nb 且つ
na>nN
なる関係に設定されていると共に、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が、前記活性層から前記 n型クラッド層及び 前記 p型クラッド層へ向力、う程小さくなるように
ns-nl >nl-n2 >n2-n3 > ,■·-, >η(Ν-1)-ηΝ
なる関係に設定されていることを特徴とする請求項 5に記載の半導体レーザ。
[10] 前記活性層を形成する複数の層うちで最も低い屈折率を有する層の屈折率を nsと し、 前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に 近レヽ方力ら順次にそれぞれ nl, n2, n3,…, nN及び tl, t2, t3,■·-, tNとし、 前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力 順次にそれぞれ nl, n2, n3, ···, nN及び tl, t2, t3, ···, tNとしたとき、 前 記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型クラッ ド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活性 層力 遠ざ力る程小さくなるように
ns>nl>n2>n3>, ···, >nN>nb
且つ
na^nN
なる関係に設定され、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が互いに等しレヽ
ns— nl =nl— n2=n2— n3 = ,■·■, =nN— nb
なる関係に設定されていると共に、
前記各層の厚さの関係は、前記活性層から遠レ、ものほど大きくなるように tl<t2<t3<, ·■·, <tN
なる関係に設定されていることを特徴とする請求項 5に記載の半導体レーザ。
[11] 前記活性層を形成する複数の層うちで最も低い屈折率を有する層の屈折率を nsと し、 前記第 1の SCH層における前記複数の層の屈折率及び厚さを前記活性層に 近い方から順次にそれぞれ nl, n2, n3,…, nN及び tl, t2, t3, ···, tNとし、 前記第 2の SCH層における前記複数の層の屈折率及び厚さを前記活性層に近い 方力、ら順次にそれぞれ nl、 n2、 n3,…, nN及び tl, t2, t3,…, tNとしたとき、 前 記各層の屈折率の大小関係は、前記活性層の屈折率 nsが最も高ぐ前記 n型クラッ ド層の屈折率 naが前記 p型クラッド層の屈折率 nbより高い関係を含めて、前記活性 層力、ら遠ざ力 程小さくなるように
ns>nl>n2>n3>,…, nN>nb
且つ
na>nN
なる関係に設定され、
前記第 1の SCH層及び第 2の SCH層を構成するそれぞれの前記複数の層におけ る互いに隣接する層相互間の屈折率差が前記活性層力 遠ざ力る程小さくなるよう に
ns-nl >nl-n2 >n2-n3 > , ···, >η(Ν— 1)— nN
なる関係に設定されていると共に、
前記各層の厚さの関係は、前記活性層から遠レ、ものほど大きくなるように tl<t2<t3<, ···, <tN
なる関係に設定されていることを特徴とする請求項 5に記載の半導体レーザ。
[12] 前記半導体レーザは坦込み構造として形成されていることを特徴とする請求項 4に 記載の半導体レーザ。
[13] 前記 n型クラッド層、前記第 1の SCH層、前記活性層、前記第 2の SCH層及び前 記 p型クラッド層の一部はメサ型に形成され、
前記半導体レーザは、
前記メサ型に形成された各層の両側で前記半導体基板または前記 n型クラッド層 に一面が接して形成された P型 InPからなる第 1の坦込層と
前記メサ型に形成された各層の両側で一面が前記 p型クラッド層に接し且つ他面が 前記第 1の埋込層の他面に接して形成された n型 InPからなる第 2の坦込層とをさら に具備することを特徴とする請求項 12に記載の半導体レーザ。
[14] 前記半導体レーザはリッジ構造として形成されてレ、ることを特徴とする請求項 1に記 載の半導体レーザ。
[15] 前記半導体基板が n型であるとき、前記 p型クラッド層は外側のほぼ中央部が上側 に盛り上げられたリッジ構造部分として形成され、
前記半導体レーザは、
前記 p型クラッド層における前記リッジ構造部分の上側に形成されたコンタクト層と、 前記コンタクト層の中央部を開口して、前記リッジ構造部分を含む前記 p型クラッド 層を覆うように形成された絶縁層と、
一部が前記コンタクト層と接続された状態で前記絶縁層の上部に形成された電極と をさらに具備することを特徴とする請求項 14に記載の半導体レーザ。
[16] 前記 n型クラッド層を構成する InGaAsPの組成波長力 InPの組成波長以上で且 つ 0· 98 / m以下であることを特徴とする請求項 1に記載の半導体レーザ。
[17] 前記 n型クラッド層を構成する InGaAsPの組成波長力 0. 96 /i m以上で且つ 0· 9
8 μ m以下であることを特徴とする請求項 16に記載の半導体レーザ。
[18] 前記半導体基板が n型であるとき、前記 n型クラッド層が前記活性層の下方に形成 され、前記 p型クラッド層が前記活性層の上方に形成されることを特徴とする請求項 1 に記載の半導体レーザ。
[19] 前記半導体基板が p型であるとき、前記 n型クラッド層が前記活性層の上方に形成 され、前記 p型クラッド層が前記活性層の下方に形成されることを特徴とする請求項 1 に記載の半導体レーザ。
PCT/JP2005/004556 2004-03-16 2005-03-15 単一モード光ファイバと高い結合効率で結合可能とする半導体レーザ WO2005088791A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/553,161 US7483470B2 (en) 2004-03-16 2005-03-15 Semiconductor laser capable of coupling with single mode optical fiber at high coupling efficiency
EP05720811A EP1727250A1 (en) 2004-03-16 2005-03-15 Semiconductor laser couplable to single mode optical fiber at high coupling efficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-074636 2004-03-16
JP2004074636A JP2005268298A (ja) 2004-03-16 2004-03-16 半導体レーザ

Publications (1)

Publication Number Publication Date
WO2005088791A1 true WO2005088791A1 (ja) 2005-09-22

Family

ID=34975905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004556 WO2005088791A1 (ja) 2004-03-16 2005-03-15 単一モード光ファイバと高い結合効率で結合可能とする半導体レーザ

Country Status (4)

Country Link
US (1) US7483470B2 (ja)
EP (1) EP1727250A1 (ja)
JP (1) JP2005268298A (ja)
WO (1) WO2005088791A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151145A1 (ja) * 2012-04-06 2013-10-10 古河電気工業株式会社 光半導体装置、半導体レーザモジュールおよび光ファイバ増幅器
US10511150B2 (en) 2012-04-06 2019-12-17 Furukawa Electric Co., Ltd. Wavelength-variable laser
US10938183B2 (en) 2012-04-06 2021-03-02 Furukawa Electric Co., Ltd. Wavelength-variable laser

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842277B1 (ko) * 2006-12-07 2008-06-30 한국전자통신연구원 반사형 반도체 광증폭기 및 수퍼 루미네센스 다이오드
US7848375B1 (en) * 2007-05-30 2010-12-07 Finisar Corporation Ridge waveguide laser with flared facet
JP2009004422A (ja) * 2007-06-19 2009-01-08 Anritsu Corp 半導体レーザの良否選別方法およびその良否選別装置
DE102009041934A1 (de) 2009-09-17 2011-03-24 Osram Opto Semiconductors Gmbh Kantenemittierender Halbleiterlaser
JP2011108682A (ja) * 2009-11-12 2011-06-02 Anritsu Corp 外部共振器型半導体レーザとそれを用いたラマン増幅器
US9354410B2 (en) 2012-01-31 2016-05-31 Hewlett Packard Enterprise Development Lp Monolithically integrated, self-aligning, optical-fiber ferrule
JP5916414B2 (ja) * 2012-02-09 2016-05-11 日本オクラロ株式会社 光半導体装置
US11063178B2 (en) * 2017-10-25 2021-07-13 Sensor Electronic Technology, Inc. Semiconductor heterostructure with improved light emission

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234062A (ja) * 1995-02-27 1996-09-13 Nippon Telegr & Teleph Corp <Ntt> 光結合デバイスおよび光結合方法
JPH09289354A (ja) * 1996-04-19 1997-11-04 Matsushita Electric Ind Co Ltd 半導体レーザ素子および光結合装置
JPH11243259A (ja) * 1997-12-25 1999-09-07 Denso Corp 半導体レーザおよび半導体レーザの駆動方法
JP2001210910A (ja) * 1999-11-17 2001-08-03 Mitsubishi Electric Corp 半導体レーザ
JP2002368341A (ja) * 2001-06-08 2002-12-20 Furukawa Electric Co Ltd:The 半導体レーザ素子、それを用いた励起用光源
JP2004153212A (ja) * 2002-11-01 2004-05-27 Anritsu Corp 半導体発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961652A (ja) 1995-08-25 1997-03-07 Nippon Telegr & Teleph Corp <Ntt> 半導体光導波路およびその作製方法
JP2002111135A (ja) 2000-10-02 2002-04-12 Furukawa Electric Co Ltd:The 半導体レーザ素子、それを用いた光ファイバ増幅器用励起光源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234062A (ja) * 1995-02-27 1996-09-13 Nippon Telegr & Teleph Corp <Ntt> 光結合デバイスおよび光結合方法
JPH09289354A (ja) * 1996-04-19 1997-11-04 Matsushita Electric Ind Co Ltd 半導体レーザ素子および光結合装置
JPH11243259A (ja) * 1997-12-25 1999-09-07 Denso Corp 半導体レーザおよび半導体レーザの駆動方法
JP2001210910A (ja) * 1999-11-17 2001-08-03 Mitsubishi Electric Corp 半導体レーザ
JP2002368341A (ja) * 2001-06-08 2002-12-20 Furukawa Electric Co Ltd:The 半導体レーザ素子、それを用いた励起用光源
JP2004153212A (ja) * 2002-11-01 2004-05-27 Anritsu Corp 半導体発光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Post-deadline papers, p.d. 1.4.2002", IEEE/LEOS ANNUAL MEETING, 2002, XP002989882 *
OSA TRENDS IN OPTICS AND PHOTONICS SERIES, vol. 92, 2003, pages 147 - 151, XP008052278 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151145A1 (ja) * 2012-04-06 2013-10-10 古河電気工業株式会社 光半導体装置、半導体レーザモジュールおよび光ファイバ増幅器
US9083150B2 (en) 2012-04-06 2015-07-14 Furukawa Electric Co., Ltd. Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
US9601905B2 (en) 2012-04-06 2017-03-21 Furukawa Electric Co., Ltd. Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
US10020638B2 (en) 2012-04-06 2018-07-10 Furukawa Electric Co., Ltd. Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
US10511150B2 (en) 2012-04-06 2019-12-17 Furukawa Electric Co., Ltd. Wavelength-variable laser
US10938183B2 (en) 2012-04-06 2021-03-02 Furukawa Electric Co., Ltd. Wavelength-variable laser
US11581706B2 (en) 2012-04-06 2023-02-14 Furukawa Electric Co., Ltd. Wavelength-variable laser
US11605935B2 (en) 2012-04-06 2023-03-14 Furukawa Electric Co., Ltd. Wavelength-variable laser

Also Published As

Publication number Publication date
US7483470B2 (en) 2009-01-27
JP2005268298A (ja) 2005-09-29
EP1727250A1 (en) 2006-11-29
US20060285560A1 (en) 2006-12-21

Similar Documents

Publication Publication Date Title
WO2005088791A1 (ja) 単一モード光ファイバと高い結合効率で結合可能とする半導体レーザ
US8319229B2 (en) Optical semiconductor device and method for manufacturing the same
CN110402524B (zh) 半导体激光装置、半导体激光模块以及焊接用激光源系统
JP4983790B2 (ja) 光半導体装置とその製造方法
JP5182362B2 (ja) 光素子及びその製造方法
JPH0277185A (ja) グレーティング結合型表面発光レーザ素子およびその変調方法
JPH08279650A (ja) 半導体レーザ装置、及び半導体レーザ装置の製造方法
JP5205034B2 (ja) 面発光レーザダイオード
JP2007165798A (ja) 半導体レーザ素子
JPH08340147A (ja) 半導体レーザ装置
WO2009119131A1 (ja) 半導体発光素子及びその製造方法
JP4599700B2 (ja) 分布帰還型半導体レーザ
JP4825150B2 (ja) 光半導体集積素子及びその製造方法
JP5957856B2 (ja) 半導体集積素子
JP2009206463A (ja) 半導体発光素子
JP2010021430A (ja) 半導体光素子
JP4146974B2 (ja) 光半導体装置及び光伝送システム
US8731018B2 (en) Semiconductor laser
JP5163355B2 (ja) 半導体レーザ装置
WO2020255183A1 (ja) 半導体光源素子および光半導体導波路窓構造の製造方法
JP2009088242A (ja) 光半導体装置およびその製造方法
JP5957855B2 (ja) 半導体集積素子
JP2002368335A (ja) 半導体レーザ素子およびその作製方法および半導体レーザアレイおよび光通信システムおよび光インターコネクションシステムおよび光ピックアップシステムおよび電子写真システム
WO2023026536A1 (ja) 面発光素子及び面発光素子の製造方法
Voiriot et al. 1.55/spl mu/m high efficiency tapered DFB laser using UV 250 2-in technology process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005720811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006285560

Country of ref document: US

Ref document number: 10553161

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005720811

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10553161

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005720811

Country of ref document: EP