WO2023026536A1 - 面発光素子及び面発光素子の製造方法 - Google Patents
面発光素子及び面発光素子の製造方法 Download PDFInfo
- Publication number
- WO2023026536A1 WO2023026536A1 PCT/JP2022/010412 JP2022010412W WO2023026536A1 WO 2023026536 A1 WO2023026536 A1 WO 2023026536A1 JP 2022010412 W JP2022010412 W JP 2022010412W WO 2023026536 A1 WO2023026536 A1 WO 2023026536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- emitting device
- reflective layer
- light
- surface emitting
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 62
- 238000000034 method Methods 0.000 title description 59
- 239000004065 semiconductor Substances 0.000 claims abstract description 140
- 239000013078 crystal Substances 0.000 claims abstract description 52
- 239000000463 material Substances 0.000 claims abstract description 40
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 53
- 239000002178 crystalline material Substances 0.000 claims description 37
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 32
- 230000001590 oxidative effect Effects 0.000 claims description 17
- 238000010030 laminating Methods 0.000 claims description 14
- 239000012535 impurity Substances 0.000 claims description 9
- 239000003989 dielectric material Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 description 34
- 230000003287 optical effect Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229910017107 AlOx Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18361—Structure of the reflectors, e.g. hybrid mirrors
- H01S5/18363—Structure of the reflectors, e.g. hybrid mirrors comprising air layers
- H01S5/18366—Membrane DBR, i.e. a movable DBR on top of the VCSEL
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18341—Intra-cavity contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18322—Position of the structure
- H01S5/18327—Structure being part of a DBR
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18311—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18322—Position of the structure
- H01S5/1833—Position of the structure with more than one structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18344—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18361—Structure of the reflectors, e.g. hybrid mirrors
- H01S5/18369—Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
- H01S5/3095—Tunnel junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
- H01S5/04254—Electrodes, e.g. characterised by the structure characterised by the shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
- H01S5/04256—Electrodes, e.g. characterised by the structure characterised by the configuration
- H01S5/04257—Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18311—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
- H01S5/18313—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation by oxidizing at least one of the DBR layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18322—Position of the structure
- H01S5/1833—Position of the structure with more than one structure
- H01S5/18336—Position of the structure with more than one structure only below the active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18344—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
- H01S5/18347—Mesa comprising active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18358—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] containing spacer layers to adjust the phase of the light wave in the cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2054—Methods of obtaining the confinement
- H01S5/2059—Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
- H01S5/2063—Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
Definitions
- the present disclosure relates to a surface emitting device and a method for manufacturing the surface emitting device.
- Non-Patent Document 1 and Patent Document 1 disclose a Vertical Cavity Surface Emitting Laser (VCSEL) as a surface emitting device.
- VCSEL Vertical Cavity Surface Emitting Laser
- AlAs/GaAs-based DBR (Distributed Bragg Reflector) substrates are laminated above and below an InP-based active layer, and the DBR substrates form a reflector.
- the DBR substrate has excellent heat dissipation properties, so that favorable characteristics can be obtained.
- the above surface light emitting device employs a buried tunnel junction (BTJ) structure.
- the buried tunnel junction structure provides current control and optical confinement control.
- semiconductor materials and doping concentrations for realizing low voltage, and it is difficult to freely control light confinement. For this reason, it is desired to achieve both current control and optical confinement control in surface emitting devices.
- a surface emitting device includes a semiconductor layer formed of a first crystal material, and a second crystal formed in the semiconductor layer and having a lattice constant or crystal structure different from that of the first crystal material. It comprises a reflective layer made of a material and having a mesa shape, and a light constricting region formed in a part of the reflective layer and controlling light confinement.
- a surface emitting device includes a first reflective layer, a first semiconductor layer, a light emitting layer, a second semiconductor layer, and a second reflective layer that are sequentially stacked, and the first semiconductor layer and the second At least one of the two semiconductor layers is made of a first crystalline material, and at least one of the first reflective layer and the second reflective layer is made of a second crystalline material whose lattice constant or crystal structure is different from that of the first crystalline material. and a light constricting region having a mesa shape and controlling light confinement in a part of at least one of the first reflective layer and the second reflective layer.
- a semiconductor layer is formed from a first crystal material, and a second crystal material having a lattice constant or crystal structure different from that of the first crystal material is used to form the semiconductor layer.
- a reflective layer is formed, the reflective layer is formed in a mesa shape, and a light constricting region for controlling light confinement is formed in a part of the reflective layer.
- FIG. 2 is a cross-sectional view of a main part of the surface emitting device according to the first embodiment of the present disclosure (a cross-sectional view cut along the line AA shown in FIG. 2);
- FIG. 2 is a plan view of a main part of the surface emitting device shown in FIG. 1; It is 1st process sectional drawing explaining the manufacturing method of the surface emitting element which concerns on 1st Embodiment. It is a 2nd process sectional drawing. It is a 3rd process sectional drawing. It is a 4th process sectional drawing. It is a 5th process sectional drawing. It is 6th process sectional drawing. It is a 7th process sectional drawing. It is 8th process sectional drawing. It is 9th process sectional drawing.
- FIG. 1 process sectional drawing explaining the manufacturing method of the surface emitting element which concerns on 1st Embodiment.
- It is a 2nd process sectional drawing. It is a 3rd process sectional drawing. It is a 4th process sectional
- FIG. 13 is a cross-sectional view of a main part corresponding to FIG. 1 (a cross-sectional view cut along the BB cutting line shown in FIG. 13) of the surface emitting device according to the second embodiment of the present disclosure
- FIG. 13 is a plan view of the main part of the surface emitting device shown in FIG. 12 corresponding to FIG. 2
- FIG. 16 is a cross-sectional view of a main part corresponding to FIG. 1 (a cross-sectional view cut along the CC cutting line shown in FIG. 15) of the surface emitting device according to the third embodiment of the present disclosure
- FIG. 15 is a plan view of the main part of the surface emitting device shown in FIG. 14 corresponding to FIG. 2
- FIG. 18 is a cross-sectional view of a main part corresponding to FIG. 1 (a cross-sectional view cut along the DD cutting line shown in FIG. 17) of the surface emitting device according to the fourth embodiment of the present disclosure
- FIG. 17 is a plan view of the main part of the surface emitting device shown in FIG. 16 corresponding to FIG. 2
- FIG. 20 is a cross-sectional view of a main part corresponding to FIG. 1 (a cross-sectional view cut along the EE cutting line shown in FIG. 19) of the surface emitting device according to the fifth embodiment of the present disclosure
- FIG. 19 is a fragmentary plan view corresponding to FIG. 2 of the surface emitting device shown in FIG. 18;
- FIG. 19 is a fragmentary plan view corresponding to FIG. 2 of the surface emitting device shown in FIG. 18;
- FIG. 22 is a cross-sectional view of a principal part corresponding to FIG. 1 (a cross-sectional view cut along the FF cutting line shown in FIG. 21) of the surface emitting device according to the sixth embodiment of the present disclosure
- 21 is a plan view of the main part of the surface emitting device shown in FIG. 20, corresponding to FIG. 2
- FIG. FIG. 24 is a cross-sectional view of a main part corresponding to FIG. 1 (cross-sectional view cut along the GG cutting line shown in FIG. 23) of the surface emitting device according to the seventh embodiment of the present disclosure
- FIG. 23 is a plan view of the main part of the surface emitting device shown in FIG. 22 corresponding to FIG. 2;
- FIG. 26 is a cross-sectional view of a main part corresponding to FIG. 1 (a cross-sectional view taken along the line HH shown in FIG. 25) of the surface emitting device according to the eighth embodiment of the present disclosure
- FIG. 25 is a plan view of the main part of the surface emitting device shown in FIG. 24 corresponding to FIG. 2
- FIG. 21 is a plan view of a main part corresponding to FIG. 2 of a surface emitting device according to a ninth embodiment of the present disclosure
- FIG. 21 is a cross-sectional view of a main part corresponding to FIG. 1 of a surface emitting device according to a tenth embodiment of the present disclosure;
- First Embodiment A first embodiment describes an example in which the present technology is applied to a surface emitting device.
- the basic structure and manufacturing method of the surface emitting device will be described.
- Second Embodiment A second embodiment describes a first example in which the electrode structure is changed in the surface emitting device according to the first embodiment.
- Third Embodiment A third embodiment describes an example in which the present technology is applied to another reflective layer in the surface emitting device according to the second embodiment.
- Fourth Embodiment A fourth embodiment describes a modification of the mesa shape of the reflective layer in the surface emitting device according to the third embodiment. 5.
- Fifth Embodiment A fifth embodiment describes a second example in which the electrode structure is changed in the surface emitting device according to the first embodiment. 6.
- Sixth Embodiment A sixth embodiment describes an example in which a reflective layer different from the reflective layer to which the present technology is applied is formed of a dielectric material in the surface emitting device according to the third embodiment.
- Seventh Embodiment A seventh embodiment describes an application example in which the surface emitting element according to the fifth embodiment and the surface emitting element according to the sixth embodiment are combined.
- Eighth Embodiment The eighth embodiment describes an application example in which the surface emitting device according to the fourth embodiment and the surface emitting device according to the sixth embodiment are combined. 9.
- Ninth Embodiment A ninth embodiment describes a modification of the mesa shape of the reflective layer in the surface emitting device according to the eighth embodiment. 10.
- Tenth Embodiment A tenth embodiment describes a modification of the tunnel junction layer in the surface emitting device according to the first embodiment. 11.
- Other embodiments are also possible.
- FIG. 1 A surface emitting device 1 according to a first embodiment of the present disclosure and a method for manufacturing the surface emitting device 1 will be described with reference to FIGS. 1 to 11.
- FIG. 1 A surface emitting device 1 according to a first embodiment of the present disclosure and a method for manufacturing the surface emitting device 1 will be described with reference to FIGS. 1 to 11.
- FIG. 1 A surface emitting device 1 according to a first embodiment of the present disclosure and a method for manufacturing the surface emitting device 1 will be described with reference to FIGS. 1 to 11.
- the arrow X direction indicated as appropriate indicates one planar direction of the surface light emitting device 1 placed on a planar surface for the sake of convenience.
- the arrow Y direction indicates another planar direction perpendicular to the arrow X direction.
- the arrow Z direction indicates an upward direction orthogonal to the arrow X direction and the arrow Y direction. That is, the arrow X direction, the arrow Y direction, and the arrow Z direction exactly match the X-axis direction, the Y-axis direction, and the Z-axis direction of the three-dimensional coordinate system, respectively. It should be noted that each of these directions is shown to aid understanding of the description and is not intended to limit the direction of the present technology.
- FIG. 1 shows an example of a longitudinal section configuration of the surface light emitting device 1 .
- FIG. 2 shows an example of a planar configuration of the surface emitting device 1 .
- the surface emitting device 1 includes a first reflective layer 3, a first semiconductor layer 4, a light emitting layer 5, a second semiconductor layer 7, and a second reflective layer 8 which are sequentially laminated on a substrate 2.
- a tunnel junction layer 6 is formed between the light emitting layer 5 and the second semiconductor layer 7 .
- the substrate 2, the first reflective layer 3, and the first semiconductor layer 4 are formed in a rectangular shape when viewed from the arrow Z direction (hereinafter simply referred to as "plan view").
- the light emitting layer 5, the tunnel junction layer 6, and the second semiconductor layer 7 are formed in a mesa shape, and are formed in a circular shape that is smaller than the planar size of the substrate 2 and the like in plan view.
- the second reflective layer 8 is formed in a mesa shape, and is formed in a circular shape that is one size smaller than the planar size of the light emitting layer 5 and the like. Since the current confinement region 60 is formed around the tunnel junction layer 6, the current confinement region 60 is actually formed in a mesa shape.
- the surface light emitting device 1 includes a first electrode 11 and a second electrode 12 .
- a first electrode 11 is formed on the first semiconductor layer 4 .
- the first electrode 11 is stacked on the first semiconductor layer 4 and used as a cathode electrode.
- a second electrode 12 is formed on the second semiconductor layer 7 .
- the second electrode 12 is stacked on the second semiconductor layer 7 and used as an anode electrode.
- the substrate 2 is used as an epitaxial growth substrate. GaAs is used for the substrate 2, for example.
- the first reflective layer 3 is formed on the substrate 2 .
- the first reflective layer 3 is made of a second crystalline material that is different in at least one of lattice constant and crystal structure from the first crystalline material of the first semiconductor layer 4, which will be described later.
- the second crystal material is, for example, AlGaAs and GaAs, which are superior in heat dissipation to the first crystal material.
- the first reflective layer 3 is formed by laminating a plurality of AlGaAs layers 31 and GaAs layers 32 repeatedly. That is, the first reflective layer 3 is configured as an AlGaAs/GaAs-based DBR (semiconductor DBR).
- the first reflective layer 3 may be formed on the substrate 2 with a buffer layer interposed therebetween.
- the first semiconductor layer 4 is formed on the first reflective layer 3 .
- the first semiconductor layer 4 is used as a clad layer.
- the first semiconductor layer 4 is made of a first crystal material.
- n-type InP is used as the first crystal material.
- InP is a light-emitting material for the 1.31 ⁇ m band and 1.55 ⁇ m band, which are low-loss regions of optical fibers, and has excellent light-emitting properties. Therefore, InP can be used as a light-emitting material for optical communication laser devices.
- the thickness of the first semiconductor layer 4 is, for example, 100 nm or more and 1000 nm or less.
- Si is used as an n-type impurity to be doped in InP.
- the light emitting layer (or active layer) 5 is formed on the first semiconductor layer 4 .
- the light-emitting layer 5 has a structure in which a plurality of barrier layers and quantum well layers are alternately laminated.
- AlGaInAs for example, is used for the barrier layer.
- the quantum well layer contains at least one element selected from group III elements Al, Ga and In and at least one element selected from group V elements As, P and N.
- the quantum well layer is composed mainly of non-doped AlGaInAs, for example. Quantum wires or quantum dots may also be used instead of quantum well layers.
- the light-emitting layer 5 may be configured as a strain-compensated quantum well.
- the tunnel junction layer 6 is formed on the light emitting layer 5 .
- the tunnel junction layer 6 is formed in the central portion of the mesa shape, and has, for example, a circular shape in plan view.
- the tunnel junction layer 6 here comprises, for example, p-type AlInAs and n-type InP laminated on AlInAs.
- C for example, is used as a p-type impurity to be doped in AlInAs.
- Si is used as an n-type impurity to be doped in InP.
- a current confinement region 60 is formed around the tunnel junction layer 6 .
- the current confinement region 60 is formed by implanting impurities into the tunnel junction layer 6 using an ion implantation method.
- the current confinement region 60 is formed after the second semiconductor layer 7 is formed.
- Protons (H+), for example, are used as impurities.
- Current confinement may also be provided by a buried tunnel junction structure.
- the second semiconductor layer 7 is formed on the tunnel junction layer 6 and the current confinement region 60 .
- the second semiconductor layer 7 is used as a clad layer.
- the second semiconductor layer 7, like the first semiconductor layer 4, is made of the first crystal material.
- n-type InP is used as the first crystal material.
- the thickness of the first semiconductor layer 4 is not particularly limited, it is formed to be, for example, 100 nm or more and 1000 nm or less.
- Si is used as an n-type impurity to be doped in InP.
- the second reflective layer 8 is formed on the second semiconductor layer 7 .
- the second reflective layer 8 is made of a second crystalline material that differs from the first crystalline material of the second semiconductor layer 7 in at least one of lattice constant and crystal structure.
- the second crystalline material is for example GaAs, AlAs and AlGaAs.
- the second reflective layer 8 is formed by laminating a GaAs layer 81, an AlAs layer 82, a GaAs layer 83, an AlGaAs layer 84, and a GaAs layer 85 in sequence. That is, the second reflective layer 8 is configured as an AlGaAs-based DBR (semiconductor DBR).
- the GaAs layer 81 is formed to have a thickness of approximately ⁇ /4n (n is the refractive index of the material), which varies depending on the laser wavelength. For example, when the oscillation wavelength is 1550 nm, the GaAs layer 81 is formed with a thickness of, for example, 100 nm or more and 200 nm or less.
- the AlAs layer 82 is formed with a thickness of, for example, 10 nm or more and 50 nm or less.
- the GaAs layer 83 is formed with a thickness of 100 nm or more and 200 nm or less, for example.
- the AlGaAs layer 84 is formed with a thickness of 100 nm or more and 150 nm or less, for example.
- the GaAs layer 85 is formed with a thickness of 80 nm or more and 130 nm or less, for example.
- the overall thickness of the second reflective layer 8 is, for example, 5 ⁇ m or more and 10 ⁇ m or less.
- the surface emitting device 1 includes the light confinement region 820 optimized independently of the current confinement region 60 .
- a light confinement region 820 is formed in a portion of the second reflective layer 8 . More specifically, the light confinement region 820 is a region formed by oxidizing the AlAs layer 82 exposed from the side surfaces of the mesa shape toward the inside of the mesa shape. That is, the light confinement region 820 is made of AlOx .
- Optical confinement region 820 can control optical confinement.
- the light confinement region 820 is formed by oxidation all around the side surface of the mesa shape.
- the AlAs layer 82 which serves as a light-transmitting region, is formed in a circular shape that is one size smaller than the mesa shape in plan view.
- the circular diameter of the AlAs layer 82 can be set to an optimum value independently of the diameter of the tunnel junction layer 6 whose peripheral shape is defined by the current confinement region 60 .
- the diameter of the AlAs layer 82 is, for example, 5 ⁇ m or more and 20 ⁇ m or less, which is equivalent to the diameter of the tunnel junction layer 6 .
- the light confinement region 820 is arranged at a position separated from the light emitting layer 5 by one period or more of the laminated structure of the second reflective layer 8 .
- the light confinement region 820 is separated from the light emitting layer 5 with at least the GaAs layer 81 of the second reflective layer 8 interposed therebetween.
- the distance between the light confinement region 820 and the light emitting layer 5 is set at, for example, 300 nm or more at a wavelength of 1.3 ⁇ m or more and 1.6 ⁇ m or less.
- the first electrode 11 is formed on the first semiconductor layer 4 . Specifically, the first electrode 11 is formed on the surface along the peripheral edge of the first semiconductor layer 4 around the mesa shape of the light emitting layer 5, the tunnel junction layer 6 and the second semiconductor layer 7. . Although the shape is not specified, here, the first electrode 11 is formed in a rectangular ring shape having the same width dimension in plan view. The first electrode 11 is constructed with an intra-cavity structure that forms an electrode in the first semiconductor layer 4 arranged below the light-emitting layer 5 .
- the second electrode 12 is formed on the second semiconductor layer 7 . Specifically, the second electrode 12 is formed on the surface along the peripheral edge of the second semiconductor layer 7 around the mesa shape of the second reflective layer 8 . Although the shape is not specified like the first electrode 11, here, the second electrode 12 is formed in a circular ring shape having the same width dimension in plan view.
- an epitaxial growth substrate 20 is prepared (see FIG. 3).
- n-type InP for example, is used as the first crystal material.
- a first semiconductor layer 4, a light-emitting layer 5, a tunnel junction layer 6, and a second semiconductor layer 7 are sequentially laminated on an epitaxial growth substrate 20 with an etching stop layer 21 interposed therebetween. It is formed.
- InGaAsP for example, is used for the etching stop layer 21 .
- a current confinement region 60 is formed around the tunnel junction layer 6, as shown in FIG.
- the current confinement region 60 is formed by implanting impurities into the tunnel junction layer 6 through the second semiconductor layer 7 using an ion implantation method.
- a second reflective layer 8 is formed on the second semiconductor layer 7 .
- the second reflective layer 8 is laminated in advance on the substrate 22 with an etching stop layer 23 interposed therebetween.
- the GaAs layer 85, the AlGaAs layer 84, the p-type GaAs layer 83, the AlAs layer 82, and the GaAs layer 81 are sequentially laminated on the substrate 22, respectively.
- a GaAs substrate for example, is used for the substrate 22 .
- InGaP for example, is used for the etching stop layer 23 .
- the second semiconductor layer 7 and the GaAs layer 81 of the second reflective layer 8 are bonded together.
- the bonding method is not particularly limited, a normal temperature bonding method using plasma, an atomic diffusion bonding method using oxidation, or the like is used for bonding. These bonding methods can reduce light absorption at the bonding interface.
- the epitaxial growth substrate 20 is polished, and wet etching is used to remove the epitaxial growth substrate 20 and the etching stop layer 21 . Thereby, the back surface of the first semiconductor layer 4 is planarized.
- the first reflective layer 3 is formed on the first semiconductor layer 4 .
- the first reflective layer 3 is laminated on the substrate 2 in advance. That is, a plurality of AlGaAs layers 31 and a plurality of GaAs layers 32 are laminated on the substrate 2 .
- the bonding the normal temperature bonding method, the atomic diffusion bonding method, or the like is used as described above.
- the substrate 22 is polished, and wet etching is used to remove the substrate 22 and the etch stop layer 23 . Thereby, the surface of the second reflective layer 8 is flattened.
- the second reflective layer 8 is formed in a mesa shape.
- the surface of the AlAs layer 82 of the second reflective layer 8 is exposed from the side surfaces of the mesa shape.
- a light confinement region 820 is formed in part of the second reflective layer 8 .
- the AlAs layer 82 can be selectively oxidized with respect to the GaAs layer 81 , the GaAs layer 83 , the AlGaAs layer 84 and the GaAs layer 85 .
- the AlAs layer 82 is selectively oxidized in the planar direction from the side surface of the mesa shape toward the inside, and the light confinement region 820 is formed.
- Light confinement region 820 is formed of AlO x as it is oxidized using H 2 O.
- the light emitting layer 5, the tunnel junction layer 6 (current confinement region 60) and the second semiconductor layer 7 on the first semiconductor layer 4 are formed in a mesa shape.
- the first electrode 11 is formed on the first semiconductor layer 4 and the second electrode 12 is formed on the second semiconductor layer 7, as shown in FIGS.
- the method for manufacturing the surface light emitting device 1 according to the first embodiment is completed, and the surface light emitting device 1 is manufactured.
- the surface emitting device 1 includes a second semiconductor layer 7 and a second reflective layer 8, as shown in FIGS.
- the second semiconductor layer 7 is made of a first crystalline material.
- the second reflective layer 8 is formed on the second semiconductor layer 7 and is made of a second crystalline material that is at least different in lattice constant or crystal structure from the first crystalline material.
- the second reflective layer 8 has a mesa shape.
- a light confinement region 820 is formed in part of the second reflective layer 8 .
- Optical confinement region 820 controls optical confinement. As a result, the confinement of light is controlled by the light confinement region 820 in the second reflective layer 8 , so the current confinement region 60 can be constructed independently of the light confinement region 820 . Therefore, it is possible to realize the surface light emitting device 1 that can achieve both low voltage and light confinement.
- the light confining region 820 is formed by a region oxidized inward from the side surface of the mesa shape. Therefore, the light confinement region 820 can be easily formed.
- the first semiconductor layer 4 and the second semiconductor layer 7 are made of InP, which is the first crystal material.
- InP is used as a light-emitting material in the 1.31 ⁇ m band and 1.55 ⁇ m band, which are low-loss regions of optical fibers. Therefore, the surface emitting device 1 suitable for an optical communication laser device can be realized.
- the second reflective layer 8 is formed by laminating GaAs and AlGaAs, which are second crystal materials. Therefore, since the second reflective layer 8 is formed of AlGaAs/GaAs DBR, it is excellent in heat dissipation.
- a portion of AlAs inserted in a portion of the second reflective layer 8 is oxidized to form a light confinement region 820.
- FIG. Therefore, the light confinement region 820 can be easily formed.
- a tunnel junction layer 6 is formed between the light emitting layer 5 and the second semiconductor layer.
- a current confinement region 60 is formed around the tunnel junction layer 6 .
- Current confinement region 60 can be independently optimized relative to optical confinement region 820 .
- the first electrode 11 is formed on the first semiconductor layer 4 and the second electrode 12 is formed on the second semiconductor layer 7, as shown in FIGS. That is, with the light emitting layer 5 as the center, current can be taken from the first semiconductor layer 4 and the second semiconductor layer 7 on both upper and lower sides of the light emitting layer 5 . Therefore, no current flows through the junction interface between the first reflective layer 3 and the first semiconductor layer 4, the junction interface between the second semiconductor layer 7 and the second reflective layer 8, that is, the junction interface between InP and GaAs. Therefore, it is possible to effectively suppress or prevent concentration of current density at the joint interface, thereby preventing damage or breakage of the joint interface.
- the light constricting region 820 is formed at a position separated from the light emitting layer 5 by one period or more of the second reflective layer 8.
- the second semiconductor layer 7 is formed from the first crystal material.
- a second reflective layer 8 is formed on the second semiconductor layer 7 from a second crystalline material having a lattice constant or crystal structure different from that of the first crystalline material.
- the second reflective layer 8 is formed in a mesa shape.
- a light confinement region 820 for controlling light confinement is formed in part of the second reflective layer 8 . Therefore, in the manufacturing method of the surface emitting device 1, the light confinement region 820 is formed in a part of the second reflective layer 8 after the mesa shape is formed in the second reflective layer 8. can be formed.
- the light confinement region 820 is formed by partially oxidizing the second reflective layer 8 from the mesa-shaped side surface of the second reflective layer 8 inward.
- the second reflective layer 8 is formed by laminating GaAs and AlGaAs, which are the second crystal materials.
- the light confinement region 820 is formed by oxidizing part of the AlAs inserted between the GaAs and AlGaAs of the second reflecting mirror 8 exposed from the side surface of the mesa shape. Therefore, since the light confinement region 820 is formed by selective oxidation, there is no need to form an oxidation mask, and the number of manufacturing steps in the manufacturing method of the surface light emitting device 1 can be reduced. In addition, since the number of manufacturing processes is reduced, manufacturing yield can be improved.
- Second Embodiment> A surface emitting device 1 according to a second embodiment of the present disclosure will be described with reference to FIGS. 12 and 13. FIG.
- the same components or substantially the same configuration as the components of the surface light emitting device 1 and the manufacturing method of the surface light emitting device 1 according to the first embodiment The same reference numerals are given to the elements, and overlapping descriptions are omitted.
- FIG. 12 shows an example of a vertical cross-sectional configuration of the surface emitting device 1 according to the second embodiment.
- FIG. 13 shows an example of the planar configuration of the surface emitting element 1 .
- a first electrode 11A is formed instead of the first electrode 11 of the surface emitting device 1 according to the first embodiment.
- a first electrode 11A is formed on the first reflective layer 3 . More specifically, the first electrode 11A is arranged on the first reflective layer 3 with the substrate 2 interposed therebetween, and is formed over substantially the entire rear surface of the substrate 2 .
- Components other than the above are the same as those of the surface emitting device 1 according to the first embodiment. Formation steps other than the formation step of the first electrode 11A are the same as the respective steps of the method of manufacturing the surface light emitting device 1 according to the first embodiment.
- the same effect as the surface light-emitting element 1 according to the first embodiment and the method for manufacturing the surface light-emitting element 1 can be obtained. effects can be obtained.
- the first electrode 11A is formed on the first reflective layer 3 with the substrate 2 interposed therebetween.
- a current also flows through the junction interface between the first semiconductor layer 4 and the first reflective layer 3.
- the first electrode 11A can be easily formed.
- the structure is advantageous for the low-output surface light-emitting device 1 .
- FIG. 14 shows an example of a vertical cross-sectional configuration of the surface emitting device 1 according to the third embodiment.
- 15 shows an example of the planar configuration of the surface emitting device 1.
- the surface emitting device 1 according to the third embodiment differs from the surface emitting device 1 according to the second embodiment in the configurations of the first reflective layer 3 and the second reflective layer 8 .
- the first reflective layer 3 is formed by sequentially laminating an n-type AlAs layer 35, an n-type GaAs layer 36, an n-type AlGaAs layer 37, and an n-type GaAs layer 38, respectively.
- the first reflective layer 3 is formed in a mesa shape.
- a light confinement region 350 is formed by partially oxidizing the first reflective layer 3 . Similar to the light confinement region 820 of the surface emitting device 1 according to the first embodiment, the light confinement region 350 is formed by selectively oxidizing the AlAs layer 35 inward from the side surface of the mesa shape. .
- the second reflective layer 8 is formed by repeatedly laminating a plurality of GaAs layers 86 and AlGaAs layers 87 in the same manner as the first reflective layer 3 of the surface emitting device 1 according to the first embodiment. That is, the second reflective layer 8 is configured as a semiconductor DBR.
- the method for manufacturing the surface light emitting device 1 according to the third embodiment is similar to the method for manufacturing the surface light emitting device 1 according to the first embodiment. is substantially the same as
- the same effect as the surface light-emitting element 1 according to the second embodiment and the method for manufacturing the surface light-emitting element 1 can be obtained. effects can be obtained.
- the current confinement is controlled in the current confinement region 60, and the first semiconductor layer is located at a position separated from the light emitting layer 5.
- a bonding interface between 4 and the first reflective layer 3 is formed. Therefore, the current density can be reduced at the junction interface.
- the optical confinement region 350 may be configured to control current confinement.
- the light confinement region 350 is provided in the first reflective layer 3, and similarly to the second reflective layer 8 of the surface emitting device 1 according to the first or second embodiment, A light confinement region 820 may be formed in the second reflective layer 8 .
- FIG. 16 shows an example of a vertical cross-sectional configuration of the surface emitting device 1 according to the fourth embodiment.
- 17 shows an example of the planar configuration of the surface emitting device 1.
- the surface emitting device 1 according to the fourth embodiment differs from the surface emitting device 1 according to the third embodiment in the configurations of the first reflective layer 3 and the first electrode 11A.
- the first reflective layer 3 is formed on the substrate 2 in the surface emitting device 1 according to the third embodiment. Similar to the first reflective layer 3 of the surface emitting device 1 according to the first embodiment, the first reflective layer 3 is formed by repeatedly stacking a plurality of AlGaAs layers 31 and GaAs layers 32, and further, in the third embodiment. As with the first reflective layer 3, an AlAs layer 35, a GaAs layer 36, an AlGaAs layer 37, and a GaAs layer 38 are sequentially laminated. A portion of the first semiconductor layer 4 and a portion of the first reflective layer 3 from the GaAs layer 38 to the AlAs layer 35 are formed in a mesa shape. As shown in FIG. 17, in plan view, a portion of the first semiconductor layer 4 and a portion of the first reflective layer 3 above 45 degrees and 135 degrees are removed in a fan shape to form a mesa shape. ing.
- the light confinement region 350 is formed by partially oxidizing the AlAs layer 35 from the side surface of the mesa shape toward the inside.
- the tunnel junction layer 6 and the current confinement region 60 are formed between the first semiconductor layer 4 and the light emitting layer 5 .
- the first electrode 11 is formed on the surface of the first semiconductor layer 4 that is not formed in the mesa shape. That is, the first electrode 11 is formed with an intra-cavity structure.
- the manufacturing method of the surface emitting device 1 according to the fourth embodiment is substantially the same as the manufacturing method of the surface emitting device 1 according to the first embodiment. be.
- the same effects as those obtained by the surface light-emitting element 1 and the method for manufacturing the surface light-emitting element 1 according to the third embodiment are obtained. effects can be obtained.
- the first reflective layer 3 may be partially formed in a mesa shape. If the surface of the AlAs layer 35 of the first reflective layer 3 is exposed from a part of the side surface of the mesa shape, oxidation can proceed and the light confinement region 350 can be formed.
- the first electrode 11 is formed with an intra-cavity structure. Current cannot flow. Therefore, it is possible to effectively suppress or prevent concentration of current density at the joint interface, thereby preventing damage or breakage of the joint interface.
- FIG. 18 shows an example of a vertical cross-sectional configuration of the surface emitting device 1 according to the fifth embodiment. Further, FIG. 19 shows an example of the planar configuration of the surface emitting device 1. As shown in FIG.
- the first semiconductor layer 4 is made of n-type InP
- the light-emitting layer 5 is made of an undoped InP material
- the second semiconductor layer 7 is made of p-type InP. formed by That is, the surface light emitting device 1 has a pn junction structure that does not include the tunnel junction layer 6 and the current confinement region 60 of the surface light emitting device 1 according to the first embodiment.
- the second reflective layer 8 partially includes a light confinement region 820, like the second reflective layer 8 of the surface emitting device 1 according to the first embodiment.
- the optical confinement region 820 is also used as a current confinement region.
- the first reflective layer 3, the first semiconductor layer 4, the light emitting layer 5, the second semiconductor layer 7 and the second reflective layer 8 are formed in the same size mesa shape.
- the mesa shapes of the first reflective layer 3, the first semiconductor layer 4, the light emitting layer 5 and the second semiconductor layer 7, and the second reflective layer 8 may be different.
- the first electrode 11A is formed over substantially the entire back surface of the substrate 2, similarly to the first electrode 11A of the surface emitting device 1 according to the second embodiment.
- a second electrode 12A is formed on the second reflective layer 8 .
- the second electrode 12A is formed on the GaAs layer 85 of the second reflective layer 8. As shown in FIG. In plan view, the second electrode 12A is formed in a ring shape.
- Components other than the above are the same as those of the surface emitting device 1 according to the second embodiment. Also, the method for manufacturing the surface light-emitting device 1 according to the fifth embodiment is substantially the same as the method for manufacturing the surface light-emitting device 1 according to the second embodiment.
- the same effects as those obtained by the surface-emitting element 1 according to the second embodiment and the method for manufacturing the surface-emitting element 1 are obtained. effects can be obtained.
- a light confinement region 820 is formed in part of the second reflective layer 8 .
- This optical confinement region 820 also serves as a current confinement region.
- the optical confinement region 820 uses AlOx obtained by oxidizing the AlAs layer 82, which has a proven track record in current control and optical confinement control. Therefore, the optical confinement region 820 can also be used as a current confinement region.
- the surface light emitting device 1 of constant current and low voltage specifications can be used effectively without causing damage or breakage at the junction interface because the current density at the junction interface is small.
- FIG. 20 shows an example of a vertical cross-sectional configuration of the surface emitting device 1 according to the sixth embodiment.
- FIG. 21 shows an example of the planar configuration of the surface emitting device 1 .
- a second reflecting layer 9 is formed instead of the second reflecting layer 8 of the surface emitting device 1 according to the third embodiment.
- the second reflective layer 9 is a dielectric DBR formed by repeatedly laminating dielectrics having different refractive indices.
- SiO 2 , SiN, or the like can be used as the dielectric.
- Components other than the above are the same as those of the surface emitting device 1 according to the third embodiment. Also, the method for manufacturing the surface light-emitting device 1 according to the sixth embodiment is substantially the same as the method for manufacturing the surface light-emitting device 1 according to the third embodiment.
- the same effect as the surface light-emitting element 1 according to the third embodiment and the method for manufacturing the surface light-emitting element 1 can be obtained. effects can be obtained.
- a light confinement region 350 is formed in part of the first reflective layer 3 on the substrate 2 side. Therefore, by bonding the substrate 2 to the first semiconductor layer 4, the first reflective layer 3 and the light confinement region 350 can be easily formed.
- FIG. 22 A surface emitting device 1 according to a seventh embodiment of the present disclosure will be described with reference to FIGS. 22 and 23.
- FIG. 23 A surface emitting device 1 according to a seventh embodiment of the present disclosure will be described with reference to FIGS. 22 and 23.
- FIG. 22 shows an example of a vertical cross-sectional configuration of the surface emitting device 1 according to the seventh embodiment.
- FIG. 23 shows an example of the planar configuration of the surface emitting device 1 .
- the surface emitting device 1 according to the seventh embodiment is an application example in which the surface emitting device 1 according to the fifth embodiment and the surface emitting device 1 according to the sixth embodiment are combined.
- the first reflective layer 3 is formed on the substrate 2 . Similar to the first reflective layer 3 of the surface emitting device 1 according to the first embodiment, the first reflective layer 3 is formed by repeatedly laminating a plurality of p-type AlGaAs layers 31 and p-type GaAs layers 32, and further A p-type AlAs layer 35 and a p-type GaAs layer 36 are sequentially laminated. A portion of the AlGaAs layer 31 and the GaAs layer 32, the AlAs layer 35 and the GaAs layer 36 are formed in a mesa shape. The light confinement region 350 is formed by partially oxidizing the AlAs layer 35 from the side surface of the mesa shape toward the inside.
- the first semiconductor layer 4 is made of p-type InP
- the light-emitting layer 5 is made of an undoped InP-based material
- the second semiconductor layer 7 is made of n-type InP.
- the tunnel junction layer 6 and the current confinement region 60 of the surface light emitting device 1 according to the first embodiment are not formed, and the surface light emitting device 1 has a pn junction structure.
- the second reflective layer 9 is a dielectric DBR.
- the first electrode 11 is formed on the GaAs 32 of the first reflective layer 3 .
- a second electrode 12 is formed on the second semiconductor layer 7 . Note that the first electrode 11 may be replaced with the first electrode 11A.
- the first electrode 11A is formed over substantially the entire rear surface of the substrate 2, as shown in FIG. 18, for example.
- Components other than the above are the same as those of the surface emitting device 1 according to the fifth embodiment or the sixth embodiment. Also, the method for manufacturing the surface light-emitting device 1 according to the seventh embodiment is substantially the same as the method for manufacturing the surface light-emitting device 1 according to the fifth or sixth embodiment.
- the same effect as the surface light-emitting element 1 according to the sixth embodiment and the method for manufacturing the surface light-emitting element 1 can be obtained. effects can be obtained.
- FIG. 24 A surface emitting device 1 according to an eighth embodiment of the present disclosure will be described with reference to FIGS. 24 and 25.
- FIG. 24 A surface emitting device 1 according to an eighth embodiment of the present disclosure will be described with reference to FIGS. 24 and 25.
- FIG. 24 shows an example of a vertical cross-sectional configuration of the surface emitting device 1 according to the eighth embodiment. Also, FIG. 25 shows an example of a planar configuration of the surface emitting device 1 .
- the surface emitting device 1 according to the eighth embodiment is an application example in which the surface emitting device 1 according to the fourth embodiment and the surface emitting device 1 according to the sixth embodiment are combined.
- a second reflecting layer 9 is formed instead of the second reflecting layer 8 in the surface emitting device 1 according to the fourth embodiment.
- the tunnel junction layer 6 and the current confinement region 60 are formed between the light emitting layer 5 and the second semiconductor layer 7 .
- Components other than the above are the same as those of the surface emitting device 1 according to the fourth embodiment or the sixth embodiment.
- the method for manufacturing the surface light-emitting device 1 according to the eighth embodiment is substantially the same as the method for manufacturing the surface light-emitting device 1 according to the fourth embodiment or the sixth embodiment.
- the surface-emitting element 1 and the method for manufacturing the surface-emitting element 1 according to the eighth embodiment are obtained. It is possible to obtain the same effects as those obtained by
- FIG. 26 shows an example of the planar configuration of the surface emitting device 1 according to the ninth embodiment.
- the surface emitting device 1 according to the ninth embodiment is an application example of the surface emitting device 1 according to the eighth embodiment.
- a part of the first reflective layer 3, the first semiconductor layer 4, the light emitting layer 5, the tunnel junction layer 6 ( The current confinement region 60) and the mesa shape of the second semiconductor layer 7 are formed by a dot pattern. More specifically, in a plan view, dots (stopping holes; reference numerals omitted) arranged at regular intervals on a circle (broken line) drawn from the center C of the mesa shape with a radius r are shown for convenience. A mesa shape is formed. The dots are formed to a depth reaching the AlAs layer 35 of the first reflective layer 3 . Light confinement region 350 is formed by the oxidized region through the dots. Note that the planar shape of the dots is not limited to a circular shape, and may be an elliptical shape, a rectangular shape, or the like.
- Components other than the above are the same as those of the surface emitting device 1 according to the eighth embodiment. Also, the method for manufacturing the surface light-emitting device 1 according to the ninth embodiment is substantially the same as the method for manufacturing the surface light-emitting device 1 according to the eighth embodiment.
- the same effects as those obtained by the surface light-emitting element 1 according to the eighth embodiment and the method for manufacturing the surface light-emitting element 1 are obtained. effects can be obtained.
- FIG. 27 shows an example of a vertical cross-sectional configuration of the surface emitting device 1 according to the tenth embodiment.
- the surface emitting device 1 according to the tenth embodiment is an application example of the surface emitting device 1 according to the first embodiment.
- the tunnel junction layer 6 of the surface light-emitting device 1 according to the first embodiment is the embedded tunnel junction layer 61 .
- Components other than the above are the same as those of the surface emitting device 1 according to the first embodiment. Also, the method for manufacturing the surface emitting device 1 according to the tenth embodiment is substantially the same as the method for manufacturing the surface emitting device 1 according to the first embodiment.
- the same effect as the surface light-emitting element 1 according to the first embodiment and the method for manufacturing the surface light-emitting element 1 can be obtained. effects can be obtained.
- the present technology is not limited to the above embodiments, and can be modified in various ways without departing from the scope of the present technology.
- a surface emitting device includes a semiconductor layer and a reflective layer.
- the semiconductor layer is formed of a first crystalline material.
- the reflective layer is formed on the semiconductor layer and is made of a second crystalline material that is at least different in lattice constant or crystal structure from the first crystalline material.
- the reflective layer has a mesa shape.
- a light constriction region is formed in part of the reflective layer.
- the optical confinement region controls optical confinement. Therefore, since confinement of light is controlled by the light confinement region in the reflective layer, the current confinement region can be constructed independently of the light confinement region. Therefore, it is possible to realize a surface emitting device that can achieve both low voltage and light confinement.
- a surface emitting device includes a first reflective layer, a first semiconductor layer, a light emitting layer, a second semiconductor layer and a second reflective layer that are sequentially laminated. At least one of the first semiconductor layer and the second semiconductor layer is made of a first crystalline material. At least one of the first reflective layer and the second reflective layer is made of a second crystalline material having a lattice constant or crystal structure different from that of the first crystalline material, and has a mesa shape.
- a part of at least one of the first reflective layer and the second reflective layer further includes a light confinement region for controlling light confinement. The optical confinement region controls optical confinement.
- the confinement of light is controlled by the optical confinement region in at least one of the first reflective layer and the second reflective layer, so that the current confinement region can be constructed independently of the optical confinement region. Therefore, it is possible to realize a surface emitting device that can achieve both low voltage and light confinement.
- a semiconductor layer is formed from a first crystal material, and a second crystal material having a lattice constant or crystal structure different from that of the first crystal material is used to form the semiconductor layer.
- a reflective layer is formed, the reflective layer is formed in a mesa shape, and a light constricting region for controlling light confinement is formed in a part of the reflective layer. Therefore, in the manufacturing method of the surface emitting device 1, the light confinement region is formed in a part of the reflection layer after the mesa shape is formed in the reflection layer, so that the light confinement region can be easily formed.
- the present technology has the following configuration. According to the present technology having the following configuration, it is possible to realize a surface emitting device capable of achieving both low voltage and light confinement. (1) a semiconductor layer made of a first crystalline material; a reflective layer formed on the semiconductor layer and made of a second crystalline material having a lattice constant or crystal structure different from that of the first crystalline material and having a mesa shape; and a light constricting region formed in a part of the reflective layer and controlling light confinement. (2) The surface emitting device according to (1), wherein the light constricting region is formed of a region oxidized inward from the side surface of the mesa.
- (6) comprising a first reflective layer, a first semiconductor layer, a light-emitting layer, a second semiconductor layer and a second reflective layer, which are sequentially stacked; At least one of the first semiconductor layer and the second semiconductor layer is made of a first crystalline material, at least one of the first reflective layer and the second reflective layer is formed of a second crystalline material having a lattice constant or crystal structure different from that of the first crystalline material, and has a mesa shape;
- a surface emitting device further comprising a light confinement region for controlling light confinement in a part of at least one of the first reflective layer and the second reflective layer.
- a tunnel junction layer formed between the first semiconductor layer and the light emitting layer or between the light emitting layer and the second semiconductor layer; a first electrode formed on the first semiconductor layer or the first reflective layer;
- the first semiconductor layer or the second semiconductor layer is made of InP, which is the first crystal material.
- the tunnel junction layer has a current confinement region due to implanted impurities around it, or is a buried tunnel junction layer.
- the reflective layer is formed by laminating GaAs and AlGaAs, which are the second crystal materials, The surface according to (18) or (19) above, wherein the light constricting region is formed by oxidizing a portion of AlAs inserted between the GaAs and the AlGaAs that is exposed from the side surface of the mesa shape.
- a method for manufacturing a light-emitting device is provided.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
このように構成される面発光素子によれば、DBR基板が放熱性に優れているので、良好な特性を得ることができる。
ところで、埋込みトンネル接合構造において、低電圧化の実現には半導体材料及びドーピング濃度に制限があり、光閉じ込めを自由に制御することが難しい。このため、面発光素子では、電流の制御と光閉じ込めの制御とを両立させることが望まれている。
1.第1実施の形態
第1実施の形態は、面発光素子に、本技術を適用した例を説明する。ここでは、面発光素子の基本的な構造並びに製造方法について説明する。
2.第2実施の形態
第2実施の形態は、第1実施の形態に係る面発光素子において、電極構造を変えた第1例を説明する。
3.第3実施の形態
第3実施の形態は、第2実施の形態に係る面発光素子において、別の反射層に本技術を適用した例を説明する。
4.第4実施の形態
第4実施の形態は、第3実施の形態に係る面発光素子において、反射層のメサ形状の変形例を説明する。
5.第5実施の形態
第5実施の形態は、第1実施の形態に係る面発光素子において、電極構造を変えた第2例を説明する。
6.第6実施の形態
第6実施の形態は、第3実施の形態に係る面発光素子において、本技術が適用された反射層とは別の反射層を誘電体材料により形成した例を説明する。
7.第7実施の形態
第7実施の形態は、第5実施の形態に係る面発光素子と第6実施の形態に係る面発光素子とを組み合わせた応用例を説明する。
8.第8実施の形態
第8実施の形態は、第4実施の形態に係る面発光素子と第6実施の形態に係る面発光素子とを組み合わせた応用例を説明する。
9.第9実施の形態
第9実施の形態は、第8実施の形態に係る面発光素子において、反射層のメサ形状の変形例を説明する。
10.第10実施の形態
第10実施の形態は、第1実施の形態に係る面発光素子において、トンネル接合層の変形例を説明する。
11.その他の実施の形態
図1~図11を用いて、本開示の第1実施の形態に係る面発光素子1及び面発光素子1の製造方法を説明する。
なお、これらの各方向は、説明の理解を助けるために示されており、本技術の方向を限定するものではない。
(1)面発光素子1の全体構成
図1は、面発光素子1の縦断面構成の一例を表している。また、図2は、面発光素子1の平面構成の一例を表している。
面発光素子1は、基板2上に順次積層されている第1反射層3と、第1半導体層4と、発光層5と、第2半導体層7と、第2反射層8とを備えている。発光層5と第2半導体層7との間にはトンネル接合層6が形成されている。
第1実施の形態において、基板2、第1反射層3及び第1半導体層4は、矢印Z方向から見て(以下、単に「平面視において」という。)矩形状に形成されている。発光層5、トンネル接合層6及び第2半導体層7は、メサ形状に形成され、平面視において、基板2等の平面サイズよりも小さい、円形状に形成されている。そして、第2反射層8は、メサ形状に形成され、発光層5等の平面サイズよりも一回り小さい、円形状に形成されている。
なお、トンネル接合層6の周囲には電流狭窄領域60が形成されているので、実際には電流狭窄領域60がメサ形状に形成されている。
基板2は、エピタキシャル成長基板として使用される。基板2には、例えばGaAsが使用されている。
第1反射層3は、基板2上に形成されている。第1反射層3は、後述する第1半導体層4の第1結晶材料に対して、格子定数及び結晶構造の少なくとも一方が異なる第2結晶材料により形成されている。
ここでは、第2結晶材料は、第1結晶材料よりも放熱性に優れた、例えばAlGaAs及びGaAsである。第1反射層3は、AlGaAs層31、GaAs層32のそれぞれを繰り返し複数積層して形成されている。つまり、第1反射層3は、AlGaAs/GaAs系DBR(半導体DBR)として構成されている。
なお、第1反射層3は、基板2上にバッファ層を介在させて形成されてもよい。
第1半導体層4は、第1反射層3上に形成されている。第1半導体層4は、クラッド層として使用されている。第1半導体層4は、第1結晶材料により形成されている。ここでは、第1結晶材料として、n型のInPが使用されている。InPは、光ファイバの低損失域である1.31μm帯及び1.55μm帯の発光材料であり、優れた発光特性を備えている。このため、InPは、光通信レーザ素子の発光材料として使用可能である。
第1半導体層4の厚さは、例えば100nm以上1000nm以下に形成されている。InPにドープされるn型不純物には、例えばSiが使用されている。
発光層(又は活性層)5は、第1半導体層4上に形成されている。発光層5は、バリア層と量子井戸層とを交互に複数積層した構造である。
バリア層には、例えばAlGaInAsが使用されている。
量子井戸層は、III族元素であるAl、Ga及びInから選択される少なくとも1つの元素と、V族元素であるAs、P及びNから選択される少なくとも1つの元素とを含んで構成されている。ここでは、量子井戸層は、例えばノンドープのAlGaInAsを主組成として構成されている。
また、量子井戸層の代わりに、量子細線又は量子ドットが使用されてもよい。さらに、第1実施の形態では、発光層5は、歪補償量子井戸として構成されてもよい。
トンネル接合層6は、発光層5上に形成されている。トンネル接合層6は、メサ形状の中央部に形成され、平面視において例えば円形状に形成されている。
トンネル接合層6は、ここでは、例えばp型のAlInAsと、AlInAs上に積層されたn型のInPとを備えている。AlInAsにドープされるp型不純物としては、例えばCが使用されている。InPにドープされるn型不純物としては例えばSiが使用されている。
第2半導体層7は、トンネル接合層6上及び電流狭窄領域60上に形成されている。第2半導体層7は、クラッド層として使用されている。第2半導体層7は、第1半導体層4と同様に、第1結晶材料により形成されている。ここでは、第1結晶材料として、n型のInPが使用されている。
第1半導体層4の厚さは、特に限定されるものではないが、例えば100nm以上1000nm以下に形成されている。InPにドープされるn型不純物には、例えばSiが使用されている。
第2反射層8は、第2半導体層7上に形成されている。第2反射層8は、第1反射層3と同様に、第2半導体層7の第1結晶材料に対して、格子定数及び結晶構造の少なくとも一方が異なる第2結晶材料により形成されている。
ここでは、第2結晶材料は、例えばGaAs、AlAs及びAlGaAsである。詳細に説明すると、第2反射層8は、GaAs層81、AlAs層82、GaAs層83、AlGaAs層84、GaAs層85のそれぞれを順次積層して形成されている。つまり、第2反射層8は、AlGaAs系DBR(半導体DBR)として構成されている。
GaAs層81は、レーザ波長により変化し、ほぼλ/4n(nは材料の屈折率)の厚さに形成されている。例えば発振波長を1550nmとする場合、GaAs層81は、例えば100nm以上200nm以下の厚さに形成されている。AlAs層82は、例えば10nm以上50nm以下の厚さに形成されている。GaAs層83は、例えば100nm以上200nm以下の厚さに形成されている。AlGaAs層84は、例えば100nm以上150nm以下の厚さに形成されている。GaAs層85は、例えば80nm以上130nm以下の厚さに形成されている。そして、第2反射層8の全体の厚さは、例えば5μm以上10μm以下の厚さに形成されている。
第1実施の形態に係る面発光素子1は、電流狭窄領域60に対して、独立に最適化された光狭窄領域820を備えている。光狭窄領域820は、第2反射層8の一部に形成されている。
詳しく説明すると、光狭窄領域820は、メサ形状の側面から露出されるAlAs層82をメサ形状の内側へ向かって酸化して形成された領域である。つまり、光狭窄領域820は、AlOxにより形成されている。光狭窄領域820では、光閉じ込めを制御することができる。
ここでは、光狭窄領域820はメサ形状の側面周囲の全域において酸化により形成されている。このため、光通過領域となるAlAs層82は、平面視において、メサ形状よりも一回り小さい円形状に形成されている。AlAs層82の円形状の直径は、電流狭窄領域60により周囲の形状が規定されるトンネル接合層6の直径に対して、独立に、かつ、最適な値に設定可能である。第1実施の形態では、AlAs層82の直径は、例えば5μm以上20μm以下に形成され、トンネル接合層6の直径に対して同等の値に形成されている。
第1電極11は、第1半導体層4に形成されている。具体的には、第1電極11は、発光層5、トンネル接合層6及び第2半導体層7のメサ形状の周囲において、第1半導体層4の周端に沿った表面上に形成されている。形状が特定さるものではないが、ここでは、第1電極11は、平面視において、同一の幅寸法を有する矩形状のリング形状に形成されている。第1電極11は、発光層5の下層に配置された第1半導体層4に電極を形成するイントラキャビティ構造により構築されている。
第2電極12は、第2半導体層7に形成されている。具体的には、第2電極12は、第2反射層8のメサ形状の周囲において、第2半導体層7の周端に沿った表面上に形成されている。第1電極11と同様に形状が特定されるものではないが、ここでは、第2電極12は、平面視において、同一の幅寸法を有する円形状のリング形状に形成されている。
次に、面発光素子の製造方法を説明する。図3~図11は、第1実施の形態に係る面発光素子1の製造方法を工程毎に示す断面構成を表している。
図3に示されるように、エピタキシャル成長基板20上に、エッチングストップ層21を介在させて、第1半導体層4、発光層5、トンネル接合層6、第2半導体層7のそれぞれが順次積層して形成される。エッチングストップ層21には、例えばInGaAsPが使用される。
基板22には、例えばGaAs基板が使用される。エッチングストップ層23には、例えばInGaPが使用される。第2半導体層7と第2反射層8のGaAs層81とは接合される。接合方法は特に限定されないが、接合にはプラズマを利用した常温接合法、酸化を利用した原子拡散接合法等が使用される。これらの接合方法によれば、接合界面での光吸収を減少させることができる。
この後、前述の図1及び図2に示されるように、第1半導体層4上に第1電極11が形成され、第2半導体層7上に第2電極12が形成される。
第1実施の形態に係る面発光素子1は、図1及び図2に示されるように、第2半導体層7と、第2反射層8とを備える。第2半導体層7は、第1結晶材料により形成される。第2反射層8は、第2半導体層7に形成され、第1結晶材料に対して少なくとも格子定数又は結晶構造が異なる第2結晶材料により形成される。第2反射層8は、メサ形状を有する。
ここで、第2反射層8の一部に光狭窄領域820が形成される。光狭窄領域820は、光閉じ込めを制御する。
このため、第2反射層8において光狭窄領域820により光の閉じ込めが制御されるので、光狭窄領域820とは独立に電流狭窄領域60を構築することができる。従って、低電圧化及び光閉じ込めを両立させることができる面発光素子1を実現することができる。
このため、第1反射層3と第1半導体層4との接合界面、第2半導体層7と第2反射層8との接合界面、すなわちInPとGaAsとの接合界面に電流が流れない。従って、接合界面での電流密度の集中を効果的に抑制又は防止することができるので、接合界面の損傷や破壊を防止することができる。
次に、図5に示されるように、第1結晶材料に対して格子定数又は結晶構造が異なる第2結晶材料により第2反射層8が第2半導体層7に形成される。
次に、図9に示されるように、第2反射層8がメサ形状に形成される。
そして、図10に示されるように、第2反射層8の一部に、光閉じ込めを制御する光狭窄領域820が形成される。
このため、面発光素子1の製造方法では、第2反射層8にメサ形状を形成した後に、第2反射層8の一部に光狭窄領域820が形成されるので、簡易に光狭窄領域820を形成することができる。
このため、選択酸化により光狭窄領域820が形成されるので、酸化マスクを形成する必要が無く、面発光素子1の製造方法において、製造工程数を削減することができる。
加えて、製造工程数が削減されるので、製造上の歩留まりを向上させることができる。
図12及び図13を用いて、本開示の第2実施の形態に係る面発光素子1を説明する。
なお、第2実施の形態並びにそれ以降の実施の形態において、第1実施の形態に係る面発光素子1及び面発光素子1の製造方法の構成要素と同一の構成要素又は実質的に同一の構成要素には同一の符号を付し、重複する説明は省略する。
図12は、第2実施の形態に係る面発光素子1の縦断面構成の一例を表している。また、図13は、面発光素子1の平面構成の一例を表している。
第2実施の形態に係る面発光素子1では、第1実施の形態に係る面発光素子1の第1電極11に代えて、第1電極11Aが形成されている。第1電極11Aは、第1反射層3に形成されている。詳しく説明すると、第1電極11Aは、第1反射層3に基板2を介在して配置され、基板2の裏面のほぼ全域に形成されている。
図14及び図15を用いて、本開示の第3実施の形態に係る面発光素子1を説明する。
図14は、第3実施の形態に係る面発光素子1の縦断面構成の一例を表している。また、図15は、面発光素子1の平面構成の一例を表している。
第3実施の形態に係る面発光素子1は、第2実施の形態に係る面発光素子1の第1反射層3、第2反射層8のそれぞれの構成を変えている。
そして、第1反射層3の一部を酸化して光狭窄領域350が形成されている。第1実施の形態に係る面発光素子1の光狭窄領域820と同様に、光狭窄領域350は、メサ形状の側面から内側へ向かって、AlAs層35を選択に酸化することにより形成されている。
図16及び図17を用いて、本開示の第4実施の形態に係る面発光素子1を説明する。
図16は、第4実施の形態に係る面発光素子1の縦断面構成の一例を表している。また、図17は、面発光素子1の平面構成の一例を表している。
第4実施の形態に係る面発光素子1は、第3実施の形態に係る面発光素子1の第1反射層3、第1電極11Aの構成を変えている。
第1半導体層4の一部と、第1反射層3のGaAs層38からAlAs層35までの一部とがメサ形状に形成されている。図17に示されるように、平面視において、45度上及び135度上の第1半導体層4の一部及び第1反射層3の一部が、扇形状に除去され、メサ形状に形成されている。
第1電極11は、第1半導体層4のメサ形状に形成されていない表面上に形成されている。つまり、第1電極11は、イントラキャビティ構造により形成されている。
図18及び図19を用いて、本開示の第5実施の形態に係る面発光素子1を説明する。
図18は、第5実施の形態に係る面発光素子1の縦断面構成の一例を表している。また、図19は、面発光素子1の平面構成の一例を表している。
第2電極12Aは第2反射層8に形成されている。具体的には、第2電極12Aは第2反射層8のGaAs層85上に形成されている。平面視において、第2電極12Aはリング形状に形成されている。
図20及び図21を用いて、本開示の第6実施の形態に係る面発光素子1を説明する。
図20は、第6実施の形態に係る面発光素子1の縦断面構成の一例を表している。また、図21は、面発光素子1の平面構成の一例を表している。
図22及び図23を用いて、本開示の第7実施の形態に係る面発光素子1を説明する。
図22は、第7実施の形態に係る面発光素子1の縦断面構成の一例を表している。また、図23は、面発光素子1の平面構成の一例を表している。
第7実施の形態に係る面発光素子1は、第5実施の形態に係る面発光素子1と第6実施の形態に係る面発光素子1とを組み合わせた応用例である。
光狭窄領域350は、メサ形状の側面から内側へ向かってAlAs層35の一部を酸化した領域により形成されている。
また、第2反射層9は誘電体DBRである。また、第1電極11は第1反射層3のGaAs32上に形成されている。第2電極12は第2半導体層7上に形成されている。
なお、第1電極11は、第1電極11Aに代えてもよい。第1電極11Aは、例えば図18に示されるように、基板2の裏面のほぼ全域に形成されている。
図24及び図25を用いて、本開示の第8実施の形態に係る面発光素子1を説明する。
図24は、第8実施の形態に係る面発光素子1の縦断面構成の一例を表している。また、図25は、面発光素子1の平面構成の一例を表している。
第8実施の形態に係る面発光素子1は、第4実施の形態に係る面発光素子1と第6実施の形態に係る面発光素子1とを組み合わせた応用例である。
また、第8実施の形態では、トンネル接合層6及び電流狭窄領域60は、発光層5と第2半導体層7との間に形成されている。
図26を用いて、本開示の第9実施の形態に係る面発光素子1を説明する。
図26は、第9実施の形態に係る面発光素子1の平面構成の一例を表している。
第9実施の形態に係る面発光素子1は、第8実施の形態に係る面発光素子1の応用例である。
詳しく説明すると、平面視において、便宜的に示されている、メサ形状の中心Cから半径rにより描かれた円(破線)上に、一定間隔に配置されたドット(止め穴。符号省略)によりメサ形状が形成されている。ドットは第1反射層3のAlAs層35に達する深さに形成されている。光狭窄領域350はドットを通して酸化された領域により形成されている。
なお、ドットの平面形状は、円形状に限定されるものではなく、楕円形状、矩形状等の形状であってもよい。
図27を用いて、本開示の第10実施の形態に係る面発光素子1を説明する。
図27は、第10実施の形態に係る面発光素子1の縦断面構成の一例を表している。
第10実施の形態に係る面発光素子1は、第1実施の形態に係る面発光素子1の応用例である。
本技術は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内において、種々変更可能である。
例えば、本技術では、上記複数の実施の形態に係る面発光素子を2以上組み合わせることができる。
ここで、反射層の一部に光狭窄領域が形成される。光狭窄領域では、光閉じ込めを制御する。
このため、反射層において光狭窄領域により光の閉じ込めが制御されるので、光狭窄領域とは独立に電流狭窄領域を構築することができる。従って、低電圧化及び光閉じ込めを両立させることができる面発光素子を実現することができる。
ここで、第1反射層及び第2反射層の少なくとも一方の一部に、光閉じ込めを制御する光狭窄領域を更に備える。光狭窄領域では、光閉じ込めを制御する。
このため、第1反射層又は第2反射層の少なくとも一方において光狭窄領域により光の閉じ込めが制御されるので、光狭窄領域とは独立に電流狭窄領域を構築することができる。従って、低電圧化及び光閉じ込めを両立させることができる面発光素子を実現することができる。
このため、面発光素子1の製造方法では、反射層にメサ形状を形成した後に、反射層の一部に光狭窄領域が形成されるので、簡易に光狭窄領域を形成することができる。
本技術は、以下の構成を備えている。以下の構成の本技術によれば、低電圧化及び光閉じ込めを両立させることができる面発光素子を実現することができる。
(1)第1結晶材料により形成されている半導体層と、
前記半導体層に形成され、前記第1結晶材料に対して格子定数又は結晶構造が異なる第2結晶材料により形成され、メサ形状を有する反射層と、
前記反射層の一部に形成され、光閉じ込めを制御する光狭窄領域と
を備えている面発光素子。
(2)前記光狭窄領域は、メサ形状の側面から内側へ向かって酸化されている領域により形成されている
前記(1)に記載の面発光素子。
(3)前記半導体層は、前記第1結晶材料であるInPにより形成されている
前記(1)又は(2)に記載の面発光素子。
(4)前記反射層は、前記第2結晶材料であるGaAsとAlGaAsとを積層して形成されている
前記(1)から(3)のいずれか1つに記載の面発光素子。
(5)前記光狭窄領域は、前記GaAsと前記AlGaAsとの間に挿入されたAlAsの一部を酸化して形成されている
前記(4)に記載の面発光素子。
(6)順次積層されている第1反射層、第1半導体層、発光層、第2半導体層及び第2反射層を備え、
前記第1半導体層及び前記第2半導体層の少なくとも一方は、第1結晶材料により形成され、
前記第1反射層及び前記第2反射層の少なくとも一方は、前記第1結晶材料に対して格子定数又は結晶構造が異なる第2結晶材料により形成され、更にメサ形状を有し、
前記第1反射層及び前記第2反射層の少なくとも一方の一部に、光閉じ込めを制御する光狭窄領域を更に備えている面発光素子。
(7)前記第1半導体層と前記発光層との間、又は前記発光層と前記第2半導体層との間に形成されているトンネル接合層と、
前記第1半導体層に形成されている第1電極と、
前記第2半導体層に形成されている第2電極とを更に備えている
前記(6)に記載の面発光素子。
(8)前記第1半導体層と前記発光層との間、又は前記発光層と前記第2半導体層との間に形成されているトンネル接合層と、
前記第1反射層に形成されている第1電極と、
前記第2半導体層に形成されている第2電極とを更に備えている
前記(6)に記載の面発光素子。
(9)前記第1半導体層と前記発光層との間、又は前記発光層と前記第2半導体層との間に形成されているトンネル接合層と、
前記第1半導体層又は前記第1反射層に形成されている第1電極と、
前記第2反射層に形成されている第2電極とを更に備えている
前記(6)に記載の面発光素子。
(10)前記光狭窄領域は、メサ形状の側面から内側へ向かって酸化されている領域により形成されている
前記(6)から(9)のいずれか1つに記載の面発光素子。
(11)前記第1半導体層又は前記第2半導体層は、前記第1結晶材料であるInPにより形成されている
前記(6)から(10)のいずれか1つに記載の面発光素子。
(12)前記第1反射層又は前記第2反射層は、前記第2結晶材料であるGaAsとAlGaAsとを積層して形成されている
前記(6)から(11)のいずれか1つに記載の面発光素子。
(13)前記光狭窄領域は、前記GaAsと前記AlGaAsとの間に挿入されたAlAsの一部を酸化して形成されている
前記(12)に記載の面発光素子。
(14)前記トンネル接合層は、その周囲に注入された不純物による電流狭窄領域を備えている、又は埋込みトンネル接合層である、
前記(7)から(9)のいずれか1つに記載の面発光素子。
(15)前記第1反射層及び前記第2反射層の少なくとも一方の一部が、メサ形状に形成されている
前記(6)から(14)のいずれか1つに記載の面発光素子。
(16)前記光狭窄領域は、前記第1反射層に形成され、
前記第2反射層は、誘電体材料により形成されている
前記(6)から(15)のいずれか1つに記載の面発光素子。
(17)前記光狭窄領域は、前記発光層に対して、前記第1反射層又は前記第2反射層の1周期以上離れた位置に形成されている
前記(12)に記載の面発光素子。
(18)第1結晶材料により半導体層を形成し、
前記第1結晶材料に対して格子定数又は結晶構造が異なる第2結晶材料により前記半導体層に反射層を形成し、
前記反射層をメサ形状に形成し、
前記反射層の一部に、光閉じ込めを制御する光狭窄領域を形成する
面発光素子の製造方法。
(19)前記光狭窄領域は、前記反射層のメサ形状の側面から内側へ、前記反射層の一部を酸化して形成する
前記(18)に記載の面発光素子の製造方法。
(20)前記反射層は、前記第2結晶材料であるGaAsとAlGaAsとを積層して形成され、
前記光狭窄領域は、前記GaAsと前記AlGaAsとの間に挿入されたAlAsの前記メサ形状の側面から露出されている一部を酸化して形成する
前記(18)又は(19)に記載の面発光素子の製造方法。
Claims (20)
- 第1結晶材料により形成されている半導体層と、
前記半導体層に形成され、前記第1結晶材料に対して格子定数又は結晶構造が異なる第2結晶材料により形成され、メサ形状を有する反射層と、
前記反射層の一部に形成され、光閉じ込めを制御する光狭窄領域と
を備えている面発光素子。 - 前記光狭窄領域は、メサ形状の側面から内側へ向かって酸化されている領域により形成されている
請求項1に記載の面発光素子。 - 前記半導体層は、前記第1結晶材料であるInPにより形成されている
請求項1に記載の面発光素子。 - 前記反射層は、前記第2結晶材料であるGaAsとAlGaAsとを積層して形成されている
請求項1に記載の面発光素子。 - 前記光狭窄領域は、前記GaAsと前記AlGaAsとの間に挿入されたAlAsの一部を酸化して形成されている
請求項4に記載の面発光素子。 - 順次積層されている第1反射層、第1半導体層、発光層、第2半導体層及び第2反射層を備え、
前記第1半導体層及び前記第2半導体層の少なくとも一方は、第1結晶材料により形成され、
前記第1反射層及び前記第2反射層の少なくとも一方は、前記第1結晶材料に対して格子定数又は結晶構造が異なる第2結晶材料により形成され、更にメサ形状を有し、
前記第1反射層及び前記第2反射層の少なくとも一方の一部に、光閉じ込めを制御する光狭窄領域を更に備えている面発光素子。 - 前記第1半導体層と前記発光層との間、又は前記発光層と前記第2半導体層との間に形成されているトンネル接合層と、
前記第1半導体層に形成されている第1電極と、
前記第2半導体層に形成されている第2電極とを更に備えている
請求項6に記載の面発光素子。 - 前記第1半導体層と前記発光層との間、又は前記発光層と前記第2半導体層との間に形成されているトンネル接合層と、
前記第1反射層に形成されている第1電極と、
前記第2半導体層に形成されている第2電極とを更に備えている
請求項6に記載の面発光素子。 - 前記第1半導体層と前記発光層との間、又は前記発光層と前記第2半導体層との間に形成されているトンネル接合層と、
前記第1半導体層又は前記第1反射層に形成されている第1電極と、
前記第2反射層に形成されている第2電極とを更に備えている
請求項6に記載の面発光素子。 - 前記光狭窄領域は、メサ形状の側面から内側へ向かって酸化されている領域により形成されている
請求項6に記載の面発光素子。 - 前記第1半導体層又は前記第2半導体層は、前記第1結晶材料であるInPにより形成されている
請求項6に記載の面発光素子。 - 前記第1反射層又は前記第2反射層は、前記第2結晶材料であるGaAsとAlGaAsとを積層して形成されている
請求項6に記載の面発光素子。 - 前記光狭窄領域は、前記GaAsと前記AlGaAsとの間に挿入されたAlAsの一部を酸化して形成されている
請求項12に記載の面発光素子。 - 前記トンネル接合層は、その周囲に注入された不純物による電流狭窄領域を備えている、又は埋込みトンネル接合層である、
請求項7に記載の面発光素子。 - 前記第1反射層及び前記第2反射層の少なくとも一方の一部が、メサ形状に形成されている
請求項6に記載の面発光素子。 - 前記光狭窄領域は、前記第1反射層に形成され、
前記第2反射層は、誘電体材料により形成されている
請求項6に記載の面発光素子。 - 前記光狭窄領域は、前記発光層に対して、前記第1反射層又は前記第2反射層の1周期以上離れた位置に形成されている
請求項12に記載の面発光素子。 - 第1結晶材料により半導体層を形成し、
前記第1結晶材料に対して格子定数又は結晶構造が異なる第2結晶材料により前記半導体層に反射層を形成し、
前記反射層をメサ形状に形成し、
前記反射層の一部に、光閉じ込めを制御する光狭窄領域を形成する
面発光素子の製造方法。 - 前記光狭窄領域は、前記反射層のメサ形状の側面から内側へ、前記反射層の一部を酸化して形成する
請求項18に記載の面発光素子の製造方法。 - 前記反射層は、前記第2結晶材料であるGaAsとAlGaAsとを積層して形成され、
前記光狭窄領域は、前記GaAsと前記AlGaAsとの間に挿入されたAlAsの前記メサ形状の側面から露出されている一部を酸化して形成する
請求項18に記載の面発光素子の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023543657A JPWO2023026536A1 (ja) | 2021-08-26 | 2022-03-09 | |
KR1020247002188A KR20240043742A (ko) | 2021-08-26 | 2022-03-09 | 면 발광 소자 및 면 발광 소자의 제조 방법 |
US18/580,503 US20240339813A1 (en) | 2021-08-26 | 2022-03-09 | Surface emitting device and method for manufacturing surface emitting device |
EP22860834.5A EP4391253A1 (en) | 2021-08-26 | 2022-03-09 | Surface light emitting element, and method for manufacturing surface light emitting element |
CN202280056740.XA CN117882256A (zh) | 2021-08-26 | 2022-03-09 | 表面发射装置和用于制造表面发射装置的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-138210 | 2021-08-26 | ||
JP2021138210 | 2021-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023026536A1 true WO2023026536A1 (ja) | 2023-03-02 |
Family
ID=85322637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/010412 WO2023026536A1 (ja) | 2021-08-26 | 2022-03-09 | 面発光素子及び面発光素子の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240339813A1 (ja) |
EP (1) | EP4391253A1 (ja) |
JP (1) | JPWO2023026536A1 (ja) |
KR (1) | KR20240043742A (ja) |
CN (1) | CN117882256A (ja) |
WO (1) | WO2023026536A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010050934A1 (en) * | 2000-05-31 | 2001-12-13 | Choquette Kent D. | Long wavelength vertical cavity surface emitting laser |
JP2008283053A (ja) | 2007-05-11 | 2008-11-20 | Fuji Xerox Co Ltd | 面発光型半導体レーザ、光学装置、光照射装置、情報処理装置、光送信装置、光空間伝送装置および光伝送システム。 |
JP2009038310A (ja) * | 2007-08-03 | 2009-02-19 | Sumitomo Electric Ind Ltd | 面発光型半導体光デバイス |
US20090305447A1 (en) * | 2008-06-06 | 2009-12-10 | Finisar Corporation | Implanted vertical cavity surface emitting laser |
JP2010080571A (ja) * | 2008-09-25 | 2010-04-08 | Nec Corp | 面発光レーザ及びその製造方法 |
JP2013175712A (ja) * | 2012-01-24 | 2013-09-05 | Fuji Xerox Co Ltd | 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置 |
WO2021024508A1 (ja) * | 2019-08-08 | 2021-02-11 | 富士ゼロックス株式会社 | 発光装置、光学装置及び情報処理装置 |
JP2021138210A (ja) | 2020-03-03 | 2021-09-16 | 株式会社デンソー | 車両データ管理装置、車両データ管理システムおよび車両データ管理方法 |
-
2022
- 2022-03-09 KR KR1020247002188A patent/KR20240043742A/ko unknown
- 2022-03-09 WO PCT/JP2022/010412 patent/WO2023026536A1/ja active Application Filing
- 2022-03-09 US US18/580,503 patent/US20240339813A1/en active Pending
- 2022-03-09 CN CN202280056740.XA patent/CN117882256A/zh active Pending
- 2022-03-09 EP EP22860834.5A patent/EP4391253A1/en active Pending
- 2022-03-09 JP JP2023543657A patent/JPWO2023026536A1/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010050934A1 (en) * | 2000-05-31 | 2001-12-13 | Choquette Kent D. | Long wavelength vertical cavity surface emitting laser |
JP2008283053A (ja) | 2007-05-11 | 2008-11-20 | Fuji Xerox Co Ltd | 面発光型半導体レーザ、光学装置、光照射装置、情報処理装置、光送信装置、光空間伝送装置および光伝送システム。 |
JP2009038310A (ja) * | 2007-08-03 | 2009-02-19 | Sumitomo Electric Ind Ltd | 面発光型半導体光デバイス |
US20090305447A1 (en) * | 2008-06-06 | 2009-12-10 | Finisar Corporation | Implanted vertical cavity surface emitting laser |
JP2010080571A (ja) * | 2008-09-25 | 2010-04-08 | Nec Corp | 面発光レーザ及びその製造方法 |
JP2013175712A (ja) * | 2012-01-24 | 2013-09-05 | Fuji Xerox Co Ltd | 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置 |
WO2021024508A1 (ja) * | 2019-08-08 | 2021-02-11 | 富士ゼロックス株式会社 | 発光装置、光学装置及び情報処理装置 |
JP2021138210A (ja) | 2020-03-03 | 2021-09-16 | 株式会社デンソー | 車両データ管理装置、車両データ管理システムおよび車両データ管理方法 |
Non-Patent Citations (2)
Title |
---|
ANDREI CALIMAN ET AL.: "8 mW fundamental mode output of wafer fused VCSELs emitting in the 1550-nm band.", OPTICS EXPRESS, vol. 19, no. 18, 29 August 2011 (2011-08-29), pages 16996 - 17001 |
KOYAMA, FUMIO: "Latest Progress in Surface Emitting Devices: Low-Thresholding of Surface Emitting Devices", KOGAKU - JAPANESE JOURNAL OF OPTICS, OYO BUTSURI GAKKAI. KOGAKU KONWAKAI, TOKYO, JP, vol. 27, no. 10, 30 September 1998 (1998-09-30), JP , pages 560 - 565, XP009543741, ISSN: 0389-6625 * |
Also Published As
Publication number | Publication date |
---|---|
CN117882256A (zh) | 2024-04-12 |
KR20240043742A (ko) | 2024-04-03 |
EP4391253A1 (en) | 2024-06-26 |
US20240339813A1 (en) | 2024-10-10 |
JPWO2023026536A1 (ja) | 2023-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4184769B2 (ja) | 面発光型半導体レーザ及びその製造方法 | |
JP4347369B2 (ja) | 面発光レーザの製造方法 | |
JP5273516B2 (ja) | トンネル接合発光素子 | |
US20050100068A1 (en) | Surface-emitting laser diode having reduced device resistance and capable of performing high output operation, surface-emitting laser diode array, electrophotographic system, surface-emitting laser diode module, optical telecommunication system, optical interconnection system using the surface-emitting laser diode, and method of fabricating the surface-emitting laser diode | |
JP4868004B2 (ja) | 面発光型半導体レーザおよびその製造方法 | |
US20070030873A1 (en) | Polarization control in VCSELs using photonics crystals | |
JP4728656B2 (ja) | 面発光レーザ素子 | |
US20100111125A1 (en) | Vertical-cavity surface-emitting laser diode (vcsel), method for fabricating vcsel, and optical transmission apparatus | |
JP5029254B2 (ja) | 面発光レーザ | |
JP2022076016A (ja) | エッチングされた平坦化vcselおよびその作製方法 | |
JP4515949B2 (ja) | 面型光半導体素子 | |
JP2007165798A (ja) | 半導体レーザ素子 | |
US20090304036A1 (en) | Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array | |
US20090180509A1 (en) | Surface emitting semiconductor laser and method of manufacturing the same | |
JP5006242B2 (ja) | 面発光半導体レーザ素子 | |
JPWO2007135772A1 (ja) | 発光素子 | |
JP5023595B2 (ja) | 面発光レーザ素子 | |
JP5005937B2 (ja) | 面発光レーザ素子 | |
WO2023026536A1 (ja) | 面発光素子及び面発光素子の製造方法 | |
JP2000353858A (ja) | 面発光レーザとその作製方法 | |
CN112103767B (zh) | 一种垂直腔面发射激光器及其制备方法 | |
JP2009246035A (ja) | 長波長帯域面発光レーザ素子 | |
WO2022097513A1 (ja) | 垂直共振器型面発光レーザ素子及び垂直共振器型面発光レーザ素子の製造方法 | |
JP7310897B2 (ja) | 面発光レーザの作製方法 | |
WO2022181085A1 (ja) | 面発光レーザ及び面発光レーザの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22860834 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023543657 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280056740.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022860834 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022860834 Country of ref document: EP Effective date: 20240319 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |