WO2006030584A1 - 分析試料調製方法および分析試料ならびに分析試料調製用化合物 - Google Patents

分析試料調製方法および分析試料ならびに分析試料調製用化合物 Download PDF

Info

Publication number
WO2006030584A1
WO2006030584A1 PCT/JP2005/013808 JP2005013808W WO2006030584A1 WO 2006030584 A1 WO2006030584 A1 WO 2006030584A1 JP 2005013808 W JP2005013808 W JP 2005013808W WO 2006030584 A1 WO2006030584 A1 WO 2006030584A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sugar chain
analytical sample
compound
sample preparation
Prior art date
Application number
PCT/JP2005/013808
Other languages
English (en)
French (fr)
Inventor
Shinichiro Nishimura
Hideyuki Shimaoka
Yasuro Shinohara
Jun-Ichi Furukawa
Original Assignee
Sumitomo Bakelite Co., Ltd.
National University Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co., Ltd., National University Corporation Hokkaido University filed Critical Sumitomo Bakelite Co., Ltd.
Priority to JP2006535070A priority Critical patent/JP4783292B2/ja
Publication of WO2006030584A1 publication Critical patent/WO2006030584A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic
    • C07K5/06156Dipeptides with the first amino acid being heterocyclic and Trp-amino acid; Derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates

Definitions

  • the present invention relates to an analytical sample preparation method, and more particularly to an analytical sample preparation method for liberating a predetermined biological polymer from a biological sample as an analytical sample, and using this analytical sample preparation method
  • the present invention relates to an analytical sample to be obtained, and further relates to an analytical sample preparation compound used in this analytical sample preparation method.
  • the biopolymer is a general term for sugar chains, glycoproteins, glycopeptides, peptides, oligopeptides, proteins, nucleic acids, lipids, and the like.
  • biopolymers play an important role in biotechnology fields such as medicine, cell engineering, and organ engineering, and it is important to clarify the control mechanism of biological reactions by these substances. It will lead to the development of the technology field.
  • sugar chains are very diverse and are substances that are involved in various functions of naturally occurring organisms.
  • Sugar chains are one of the important in vivo components that often exist as complex carbohydrates bound to proteins and lipids in vivo. It is becoming clear that sugar chains in the body are deeply involved in cell-to-cell information transmission, protein function and interaction regulation.
  • the sugar chain is a monosaccharide such as glucose, galactose, mannose, fucose, xylose, N-acetylyldarcosamine, N-acetylylgalatatosamine, and sialic acid, and derivatives thereof formed by glycosidic bonds.
  • a generic term for molecules linked in a chain is a monosaccharide such as glucose, galactose, mannose, fucose, xylose, N-acetylyldarcosamine, N-acetylylgalatatosamine, and sialic acid, and derivatives thereof formed by glycosidic bonds.
  • biopolymers having a sugar chain include proteodaricans on the cell wall of plant cells that contribute to cell stabilization, glycolipids that affect cell differentiation, proliferation, adhesion, migration, etc., and cells Glycoproteins involved in intercellular interactions and cell recognition.
  • the mechanisms by which sugar chains contained in these biopolymers control advanced and precise biological reactions while acting, assisting, amplifying, regulating, or inhibiting the functions of these biopolymers are gradually becoming apparent. It is being done.
  • sugar chains and cell separation, cell adhesion If the relationship between epidemiology and canceration of cells is clarified, it is expected that new developments can be made by closely linking this glycoengineering with medicine, cell engineering, or organ engineering.
  • Patent Document 1 describes substances that can specifically react with such sugar chains, and also describes a method for separating sugar chains using these substances!
  • Patent Document 1 WO2004Z058687 Publication
  • Patent Document 1 acid treatment using trifluoroacetic acid or acidic resin is used to release (cut out) the sugar chain captured by the sugar chain-trapping substance from the sugar chain-trapping substance. Examples of use are described. Exposing sugar chains to such harsh conditions means that sugar chains such as the removal of sialic acid residues that bind to the ends of sugar chains removed from biological samples and that are easily released under acidic conditions. Therefore, it was desired to cleave the sugar chain under milder conditions.
  • sialic acid bound to the sugar chain is desired to analyze the sugar chain in the complete state of sialic acid, which is often associated with diseases, and the pretreatment stage before analysis However, if even a part of sialic acid is eliminated, accurate sugar chain information cannot be obtained.
  • the present invention captures the biopolymer using a capture substance when releasing the biopolymer for the analysis sample from the biosample containing the predetermined biopolymer, and the biopolymer It is an object to provide an analytical sample preparation method that makes it possible to perform excision under mild conditions, an analytical sample obtained by applying this method, and a compound used for the preparation of an analytical sample of this biopolymer. As you speak.
  • the analytical sample preparation method includes a sugar chain capturing step of capturing a sugar chain from a biological sample with a specific sugar chain capturing substance,
  • the analytical sample preparation method includes a sugar chain capturing step of capturing a sugar chain from a biological sample by a specific sugar chain capturing substance,
  • a washing step of washing the sugar chain-trapping substance in which the sugar chain is trapped A cleaving step of reacting the sugar chain-trapping substance with the washed sugar chain captured with an oxylamino group-containing compound to form a complex of the sugar chain and the oxylamino group-containing compound;
  • the specific sugar chain-capturing substance used in the sugar chain-trapping step is obtained by a polymerization reaction using a compound represented by the following formula (1).
  • the polymer can be:
  • R 1 represents a polymerizable group
  • R 2 represents an oxylamino group-containing group or oxylamino derivative-containing group
  • B represents an ester group or an amide group
  • A may have a substituent.
  • V represents an alkylene group having 2 to 12 carbon atoms).
  • the reaction between the sugar chain-trapping substance and the biological sample performed in the sugar chain-trapping step can be performed under an acidic pH condition.
  • the oxyl amino group-containing compound to be reacted in the cutting step can be a compound represented by the following formula (2):
  • R 11 is hydrogen; or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent and may be interrupted by —O, 1 S—, —NH 2; or An aromatic ring which may have a group and, if necessary, a group having a linker part L which connects this aromatic ring and an oxylamino group, L may be interrupted by O, 1 S, 1 NH And may have a substituent! /, May! /, A hydrocarbon group having 1 to 10 carbon atoms; or a group containing a moiety selected from peptides, oligopeptides and derivatives thereof).
  • At least one of the hydrogen atoms contained in R 11 is optionally substituted by deuterium, even.
  • R 11 in the compound may contain a moiety consisting of at least one of arginine, tryptophan, ferrolanine, tyrosine, and derivatives thereof.
  • the compound has the following structure: May be:
  • the compound has the following structure:
  • the compound has the following structure:
  • X is a linker consisting of a peptide dimer
  • Y is a functional group capable of reacting with a biopolymer
  • Y in the compound may be a hydrazide group.
  • the compound may be any one of compounds having the following structures:
  • the oxylamino group-containing compound may have a labeled functional group for labeling a sugar chain forming a complex.
  • the reaction between the sugar chain-trapping substance in which the sugar chain has been captured and the oxylamino group-containing compound performed in the excision step is performed under conditions where the pH is close to neutrality. Can be done.
  • the analysis sample according to the present invention is obtained by being prepared from a biological sample by any one of the above-described analysis sample preparation methods.
  • the analytical sample according to the present invention is obtained by reacting a biopolymer with an oxylamine group-containing compound.
  • the oxylamine group-containing compound can be a compound represented by the following formula (2):
  • R 11 is hydrogen; or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent and may be interrupted by —O, 1 S—, —NH 2; or An aromatic ring which may have a group and, if necessary, a group having a linker part L which connects this aromatic ring and an oxylamino group, L may be interrupted by O, 1 S, 1 NH And may have a substituent! /, May! /, A hydrocarbon group having 1 to 10 carbon atoms; or a group containing a moiety selected from peptides, oligopeptides and derivatives thereof).
  • At least one may be substituted with deuterium of the hydrogen atoms contained in R 11.
  • the compound may be any one of compounds having the following structures:
  • the compound for preparing an analytical sample of a biopolymer according to the present invention has the following structure: Sugar chain -NHNH- X-COCH ONH
  • X is a linker having peptide dimer strength
  • the compound for preparing an analytical sample of a biopolymer according to the present invention has the following structure: Fluorescent substance-NHNH- X-COCH ONH
  • the biopolymer when a biopolymer for an analysis sample is released from a biological sample containing a predetermined biopolymer, the biopolymer is captured using a capture substance, and It enables cutting to be performed under mild conditions.
  • FIG. 1 is a flowchart showing a procedure of an embodiment of an analytical sample preparation method according to the present invention. .
  • FIG. 2 is a block diagram showing a schematic configuration of a pretreatment apparatus to which the analytical sample preparation method according to the embodiment is applied.
  • FIG. 3 is a diagram showing a MALDI-TOF-MS chart of the composite obtained in the experimental example.
  • FIG. 4 is a diagram showing a MALDI-TOF-MS chart of the composite obtained in the experimental example.
  • FIG. 5 is a diagram showing a MALDI-TOF-MS chart of the composite obtained in the experimental example.
  • BEST MODE FOR CARRYING OUT THE INVENTION Corrected form (Rule 91)
  • the analytical sample preparation method of the present invention, the analytical sample obtained by applying this method, and the analytical sample preparation compound used in this method are described in detail below.
  • FIG. 1 is a flowchart showing a procedure for capturing and releasing a sugar chain, which is a biopolymer, as an embodiment emphasizing the analytical sample preparation method of the present invention.
  • Corrected form (Rule 91) This embodiment includes step S20 as a capture stage for capturing a predetermined biopolymer from a biological sample with a specific capture substance, and step S30 as a cleaning stage for washing the capture substance from which the biopolymer has been captured. Step S40 as an excision step for forming a complex of the biopolymer and the oxylamino group-containing compound by reacting the captured substance having the washed biopolymer captured with the oxylamino group-containing compound. Including.
  • step S10 a pretreatment is performed to release a predetermined biological sample strength sugar containing a sugar chain or a complex molecule containing a sugar chain, for example, a glycoprotein, a glycopeptide, a glycolipid and the like.
  • the biological sample may be any animal, plant, bacterium, or virus, as long as it is a material to which a sugar chain derived from a living organism is bound or attached.
  • body fluids such as whole blood, plasma, serum, sweat, saliva, urine, spleen, amniotic fluid, and cerebrospinal fluid.
  • biological samples include those that have not been previously separated from the individual. For example, epithelium of mucosal tissue that can be contacted with a test solution from the outside, or glandular tissue, preferably duct tissue attached to the mammary gland, prostate, and spleen. Is included.
  • examples of the pretreatment performed on the biological sample include glycosidase treatment, hydrazine degradation, and protease treatment, cell disruption, degreasing treatment, and heat denaturation treatment as necessary.
  • the obtained sample is obtained in the state of a solution, dispersion, suspension, or dried product.
  • the pretreated biological sample may be used as it is in the next step, or may be dried once and dissolved in a desired solution, and the force used in the next step.
  • step S20 a sugar chain capture reaction is performed in which a specific sugar chain-capturing substance captures a sugar chain using the pretreated biological sample obtained in step S10.
  • the sugar chain capture reaction that is, the reaction between the sugar chain capture substance and the pretreated biological sample
  • the sugar chain capture substance is introduced under the condition that the pH is acidic by introducing the sugar chain capture substance into the pretreated sample.
  • a reaction system under the conditions of pH 2-6, more preferably 3-6, and reaction temperature power -90 ° C, preferably 25-90 ° C, more preferably 40-90 ° C. 10 minutes to 24 hours, preferably 10 minutes to 8 hours, more preferably 10 minutes to 2 hours.
  • the sugar chain-trapping substance used in this reaction is a polymer having an oxylamino group, This oxylamino group reacts with the aldehyde group in the equilibrium between the cyclic hemiacetal type and the non-cyclic aldehyde type formed in a solution such as an aqueous solution from the sugar chain, and provides specific and stable binding. And the sugar chain can be captured. That is, the sugar chain capture reaction is a reaction as shown below.
  • Such a polymer can be obtained by a usual polymerization reaction using the following oxylamino group-containing compound, for example, a suspension polymerization reaction.
  • this polymerization reaction can be carried out in the presence of a polyfunctional compound as a cross-linking agent for polymerizing the oxylamino group-containing compound.
  • Examples of the oxylamino group-containing compound include a compound represented by the following formula (1).
  • R 1 represents a polymerizable group
  • R 2 represents an oxylamino group-containing group or oxylamino derivative-containing group
  • B represents an ester group or an amide group
  • A may have a substituent.
  • V represents an alkylene group having 2 to 12 carbon atoms).
  • C C
  • A may be branched -0-, -S-, —NR 5 represents an alkylene group having 2 to 12 carbon atoms that may be interposed, and R 5 is a hydrogen atom or It may have a substituent! Is an alkylene group having 1 to 8 carbon atoms, and examples of the group A include -CH CH -0-CH CH -0- CH CH
  • R 2 represents an oxylamino group (-0-NH) -containing group or a derivative-containing group thereof.
  • the conductor is an atom or atomic group bonded to the nitrogen of the oxylamino group, other than hydrogen, for example, a t-butoxycarbonyl group (Boc), which is a protecting group for the amino group, bonded to the nitrogen atom of the amin group. is there.
  • Boc t-butoxycarbonyl group
  • a compound that can be copolymerized with an oxylamino group-containing compound can be used as the polyfunctional compound used as the cross-linking agent.
  • a di- or tri- (meth) acrylic polyol for example, where the polyol is ethylene glycol, propylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin, etc.
  • the unsaturated acid is Other than (meth) acrylic acid, such as maleic acid, fumaric acid, etc.
  • Bisacrylamides such as N, N, monomethylenebisacrylamide, etc.
  • polyisocyanate Di (meth) acrylic acid power rubamyl ester obtained by reacting bis (meth) acrylic acid hydroxy ester, for example, polyisocyanate is tolylene diisocyanate, hexamethylene diisocyanate, etc.
  • polyvalent allylic compounds such as arylated starch, arylated cellulose, diallyl phthalate, tetraaryloxetane, pentaerythritol triaryl ether, trimethylolpropane triallyl ether, jetyl Glycol diaryl ether, triallyl trimellitate and the like.
  • ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, N, N, monomethylene bis (meth) acrylamide and the like are preferable.
  • the polymer used in the present embodiment can be one having the following structure.
  • the polymer is shown to be a block copolymer in which the components derived from the oxilamino compound, which is a monomer, and the cross-linking agent are each in the form of a block. It may be randomly polymerized.
  • the polymer may further contain a portion derived from another component of the polymerizable compound.
  • examples of such compounds include acrylic acid and its derivatives, methacrylic acid and its derivatives, and the like.
  • the polymer can be used after being processed into a particle shape.
  • the particle shape at this time is preferably a sphere, and the upper limit of the particle size is 200 ⁇ m, preferably 150 ⁇ m, and the lower limit is 20 ⁇ m, preferably 50 ⁇ m.
  • the average particle diameter is 80-: LOO ⁇ m.
  • Polymer particles having a particle size in such a range can be easily collected by centrifugation, filter, etc., and have a sufficient surface area, so that the reaction efficiency with sugar chains is considered high. .
  • the particle size is much larger than the above range, the reaction efficiency with sugar chains may be reduced due to the small surface area.
  • the particle size is much larger than the above range. If it is small, it may be difficult to collect particles, especially with a filter. In addition, when the particles are packed in a force ram, if the particle size is too small, the pressure loss during liquid flow may increase.
  • Such a polymer is stable in order to stabilize the droplets of the raw material when suspension polymerization is carried out after dissolving the oxylamino compound and the crosslinking agent in a solvent such as black mouth form. It can be obtained by introducing a polymerization initiator and carrying out a polymerization reaction in a state of being dispersed in a dispersion medium such as water using an agent. The polymer thus obtained can be recovered by a technique such as centrifugation. In addition, since this polymer can form stable particles and is stable in water, it can be stored in a state dispersed in water.
  • the sugar chain-capturing substance as described above is made into particles, and the particles are filled into a force ram and passed through a pretreated biological sample (continuous type).
  • the particles may be charged into a pretreated biological sample and stirred (batch type).
  • the pretreated biological sample may be continuously put into a reaction container pre-filled with particles and stirred (semi-batch method).
  • step S30 the sugar chain-trapping substance in which the sugar chain has been captured in step S20 is washed to remove the sugar chain and other biological samples that are not captured by the sugar chain-trapping substance. To do.
  • examples of the solution used for washing the sugar chain-trapping substance include an aqueous solution of a surfactant typified by sodium dodecyl sulfate (SDS), alcohols such as methanol and ethanol; water and an aqueous buffer solution, and the like. Is used.
  • SDS sodium dodecyl sulfate
  • alcohols such as methanol and ethanol
  • water and an aqueous buffer solution and the like.
  • the pH of this aqueous solution is preferably near neutral, and its pH is 4 to 10, more preferably 6 to 8.
  • this washing process may be performed continuously by passing the washing solution through the column and the sugar chain capture reaction.
  • substances other than the sugar chain-trapping substance may be removed by filtration or centrifugation.
  • washing step of step S30 may not be performed depending on the state of the initial biological sample, for example, the degree of mixing of substances other than sugar chains.
  • step S40 the sugar chain is released from the sugar chain-trapping substance from which the sugar chain has been captured.
  • a reaction is performed to cut out the sugar chain from the sugar chain-trapping substance.
  • the sugar chain when an oxylamino group-containing compound is used, the sugar chain can be released from the sugar chain-trapping substance, and a complex is formed between the released sugar chain and the oxylamino group-containing compound. Can do. That is, the reaction shown below can be performed.
  • This reaction can be carried out at a pH near neutral, preferably pH 4-7, preferably 4-6, and the reaction temperature at this time is 4-90 ° C, preferably 25-90. It can be carried out at ° C, more preferably at 40 to 90 ° C.
  • the reaction time is 10 minutes to 24 hours, preferably 10 minutes to 8 hours, more preferably 10 minutes to 2 hours.
  • sugar chain cleaving reaction can be performed near neutrality, sialic acid residues are eliminated compared to the conventional cleaving reaction in the presence of a strong acid such as cleaving with trifluoroacetic acid. It is possible to suppress the occurrence of sugar chain hydrolysis and the like.
  • R 11 is hydrogen; or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent and may be interrupted by —O—, 1 S—, —NH 2; or An aromatic ring that may have a substituent and, if necessary, a group having a linker moiety L that connects this aromatic ring and an oxylamino group, L is interrupted by one O—, one S—, one NH— And substituents ( It is also a hydrocarbon group having 1 to 10 carbon atoms) (
  • R 11 of the compound represented by the formula (2) may be a group containing a moiety selected from peptides, oligopeptides and derivatives thereof.
  • Preferable peptides are arginine, tryptophan, ferulanine, and tyrosine, but are not limited thereto.
  • a dipeptide (dimer) containing at least one of arginine, tryptophan, ferulalanin, and tyrosine may be a tripeptide (trimer) or more preferred.
  • derivatives of peptides or oligopeptides include arginine, tributophan, ferrolanine, tyrosine, and other peptide derivatives, and those in which some of the elements constituting these compounds are converted into heavy elements. Is mentioned.
  • compounds containing such peptides or oligopeptides or derivatives thereof include, for example, CH containing a methoxy group (-OCH 3) at the terminal.
  • OX-COCH ONH can be used.
  • X is a linker consisting of a peptide dimer, for example, arginine (R) tryptophan (W) —, —R—fe-lualanine (F) —, one R—tyrosine (Y) — And so on.
  • R arginine
  • W tryptophan
  • F fluorine
  • Y tyrosine
  • Compound (p) can be obtained by deprotecting a compound in which the amino group of the tributophan moiety is protected by a phenyl group or the like.
  • the tributophane moiety can also be replaced by feruaranine, tyrosine and the like. Subsequently, compound (p) and hydroxyamine (BocNHOCH
  • Compound (q) is synthesized by a condensation reaction such as a mixed acid anhydride method with (COOH).
  • This protecting group R of hydroxyamine is not limited to Boc but may be Fmoc, Troc, etc.
  • compound (r) which is the target product can be obtained.
  • the deprotection treatment include treatment with trifluoroacetic acid (TFA) when the protecting group is Boc.
  • compounds containing peptides or oligopeptides or derivatives thereof have a functional group Y capable of reacting with a biopolymer at the terminal.
  • YX-COCH ONH can be used.
  • the functional group X is the same as described above.
  • the functional group Y includes a hydrazide group (—NHNH 2).
  • a hydrazide group (—NHNH 2).
  • the oxylamino group-containing compound may have a labeling functional group for labeling the sugar chain forming the complex during the above reaction.
  • the labeling method examples include imparting fluorescence, increasing light absorption ability, improving crystallinity, improving sensitivity in qualitative analysis, introducing isotope atoms, adjusting polarity, and the like.
  • the label ⁇ functional group refers to a functional group designed so that these labels can be applied to the R 11 part of the formula (2).
  • a labeled functional group in which at least one of the hydrogen atoms contained in R 11 is substituted with deuterium can be introduced into formula (2).
  • the present inventors have found that the compounds (a) to (c) impart increased ultraviolet absorption ability and improved crystallinity to sugar chains. Has been found. It has also been found by the present inventors that compound (d) and compound (e) impart fluorescence to sugar chains. It has been found by the present inventors that compound (f) improves the sensitivity of sugar chain mass spectrometry, particularly MALDI-TOF-MS.
  • the terminal methoxy group may be deuterated.
  • a compound having a deuterated methoxy group shifts its peak by the amount of deuterium during mass spectrometry.
  • the sugar chain captured by the capture substance is cleaved, it binds to a biopolymer such as a sugar chain at the oxylamino group portion, and the peak shift in mass spectrometry by deuterium introduced into the methoxy group
  • a sugar chain and a fluorescent substance are introduced into the incorporated biopolymer, and the biopolymer can be labeled to facilitate detection during mass spectrometry. become.
  • a functional group Y capable of reacting with a biopolymer such as a hydrazide group
  • a fluorescent functional group such as a sugar chain or pyrene (fluorescent light) is included in this functional group.
  • the substance can be bound to the captured biopolymer and labeled as an analysis sample. That is, the following compounds can be obtained as the analytical sample preparation compounds: Glyco-NHNH- X- COCH ONH
  • X is a linker consisting of a peptide dimer as described above.
  • the compound (s) is obtained by treating the compound (q) with hydrazine. Subsequently, the compound (s) is reacted with an aldehyde derivative (R2 is a moiety composed of a fluorescent substance, sugar, etc.) to obtain a compound (t) having an R2 group introduced at the terminal.
  • R2 aldehyde derivative
  • This compound (t) in the presence of a catalyst such as sodium cyanoborohydride (NaCNBH)
  • biopolymer such as a sugar chain captured by a capture substance
  • the biopolymer is bonded to the biopolymer at the oxylamino group moiety and bonded to the hydrazide group.
  • the labeling moiety introduces a sugar chain or a fluorescent substance into the incorporated biopolymer, and the biopolymer can be labeled.
  • a terminal methoxy group is hydrazide to form a labeled moiety, and this labeled moiety is treated with deuterated acetone (Aceton-d) to introduce deuterium.
  • the labeling can be performed in one operation for performing the cleaving reaction.
  • a complex can be obtained.
  • step S50 the complex of the sugar chain obtained by the sugar chain cleaving reaction and the oxilamino group-containing compound is recovered by a separation operation such as centrifugation or filtration.
  • step S60 if necessary, The collected complex is concentrated or dried, and the preparation of the analysis sample is completed.
  • FIG. 2 is a block diagram showing an apparatus to which the analytical sample preparation method of this embodiment is applied.
  • step number is also shown when it relates to each procedure in the flowchart of FIG.
  • the biological sample introduction unit 10 is preliminarily processed with a predetermined method (step S10), and the pretreated biological sample obtained is loaded.
  • This biological sample is a reaction unit 12 described later. It has been introduced to!
  • the cleaning liquid introducing section 14 cleans the reaction mixture after the sugar chain capture reaction (step S3
  • the cleaning liquid for performing (0) is charged and this cleaning liquid is introduced into the reaction section 12 described later.
  • the oxilamino compound solution introduction section 16 is charged with a solution containing an oxylamino group used in the aforementioned sugar chain cleaving reaction (step S40), and this oxylamino compound solution is introduced into the reaction section 12 described later. It's like! /
  • the reaction unit 12 is connected to the biological sample introduction unit 10, the cleaning liquid introduction unit 14, and the oxylamino compound introduction unit 16.
  • the reaction unit 12 is filled with, for example, the aforementioned sugar chain-capturing substance formed of particles, and in the part filled with the particles, the sugar chain-trapping step (step S20) and the washing step (step S30). ), Providing a place to perform the sugar chain cutting step (step S40).
  • the eluate extraction part 18 is provided on the elution side of the reaction part 12, so that the eluate eluted from the reaction part 12 can be taken out after the sugar chain excision reaction (step S40). It has become.
  • the separation unit 20 the eluate obtained in the eluate extraction unit 18 is charged and centrifuged. Thus, a complex of a sugar chain and an oxylamino group-containing compound is separated.
  • the separation unit 20 is directly connected to the eluate extraction unit 18 so that the eluate from the reaction unit 12 is directly charged! /, Or at the eluate extraction unit 18
  • the eluate obtained can be loaded by human operation.
  • the complex of the sugar chain obtained by centrifugation and the compound containing an oxylamino group is freeze-dried! /.
  • the biological sample that has been subjected to the pretreatment is introduced into the reaction unit 12 from the biological sample introduction unit 10, and the introduced biological sample is maintained in the reaction unit 12 under the conditions described above.
  • the sugar chain is also captured by the sugar chain capture substance (step S20).
  • the cleaning solution is introduced into the reaction unit 12 from the cleaning solution introducing unit 14, and the surface of the sugar chain-capturing substance in which the sugar chain is captured is washed under the above-described conditions. These substances and unreacted sugar chains are washed and washed away (step S30).
  • an oxilamino group-containing compound is introduced into the reaction section 12 from the oxilamino compound solution introduction section 16, and the sugar chain excision reaction is performed on the surface of the sugar chain-trapping substance under the conditions described above.
  • the chain forms a complex with the oxilamino group-containing compound and is eluted, and is taken out by the eluate take-out part 18 (step S40).
  • this eluate is processed by a separation means such as centrifugation and filtration to separate the complex of the sugar chain and the oxylamino group-containing compound, and then this complex is used as necessary. Then, the sample is dried by a concentrator / dryer 22 to obtain an analytical sample.
  • a separation means such as centrifugation and filtration to separate the complex of the sugar chain and the oxylamino group-containing compound, and then this complex is used as necessary.
  • the sample is dried by a concentrator / dryer 22 to obtain an analytical sample.
  • the glycan analysis sample obtained by preparing from a biological sample is obtained as a complex of an oxylamino group-containing compound and a glycan, but the oxylamino group-containing compound itself is a small molecule having a small molecular weight. Therefore, it can be subjected to mass spectrometry with the complex as it is.
  • a compound having a labeling functional group as described above is used as an oxylamino group-containing compound, a sugar chain analysis sample can be obtained in a state where the sugar chain is labeled. Therefore, the sugar chain can be easily identified and quantified.
  • the biological sample introduction, the sugar chain capturing step (step S20), the washing step (step S30), and the sugar chain excision step (step S40) are continuously processed.
  • the apparatus has been described, the present invention is not limited to this.
  • the sugar chain is captured by the sugar chain capturing substance (Step S20).
  • the reaction product obtained is filtered through a filter, and a washing solution is introduced on the filter and washed (step S30).
  • the filtered complex is introduced into a solution containing an oxylamino group-containing compound, and sugars are added.
  • a chain scission reaction (step S40) may be performed.
  • the conditions described above can be applied as the conditions for performing each process.
  • the analysis sample obtained by capturing and cutting out (releasing) the sugar chain from the biological sample and the preparation method thereof have been described.
  • an oxyl amino group is added to the biopolymer in the biological sample. It may be an analytical sample obtained by directly reacting a contained compound, for example, the compound of the formula (2).
  • a method for preparing a sugar chain of pheutain, a glycoprotein, as an analysis sample is shown as a model case.
  • an analytical sample is prepared by releasing a sugar chain using a wet-mouthed fetuin that has been subjected to desialic acid treatment in advance.
  • Protease-treated nascent phetchin a type of glycoprotein
  • the portion was made into peptide fragments and treated with glycosidase F to release sugar chains from the peptides to obtain pretreated biological samples.
  • the suspension of the pretreated biological sample is introduced into a dispersion in which polymer particles that have a sugar chain-capturing substance force are dispersed in water, adjusted to pH 2, and then shaken at 40 ° C for 16 hours. Carbohydrate capture reaction was performed.
  • aqueous solution (10 OmM, pH 5) of the compound (a) as an oxylamine group-containing compound is introduced into the reaction product after washing, and reacted at 40 ° C. for 16 hours to cleave the sugar chain, and the sugar chain and the oxylamino group Complex formation with the containing compound was performed.
  • the resulting aqueous solution of the complex was centrifuged, and the supernatant was collected and lyophilized to obtain a complex.
  • Experimental Example 1 the same procedure as in Experimental Example 1 was performed, except that the sugar chain scission reaction was performed using Compound (c) as the oxilamino group-containing compound.
  • MA LDI-TOF MS measurement of the complex was performed.
  • Example 1 the compound (d) was used as the oxilamino group-containing compound, and the same procedure as in Example 1 was performed, except that the sugar chain cleaving reaction was performed. M ALDI-TOF-MS measurements were taken. As shown in FIG. 4, in the same manner as in Experimental Example 1, a sharp peak was obtained at a location corresponding to the molecular weight of compound (d) added to the sugar chain of a cashmere mouthchain.
  • a solution of Boc aminooxyacetic acid (2.5 mmol) in THF (6 ml) was cooled to ⁇ 20 ° C.
  • mixed acid anhydride was prepared by adding N-methylmorpholine (3.0 mmol) and isobutyl formate (3.0 mmol) and stirring for 15 minutes.
  • the reaction solution was adjusted to 0 ° C, and the compound (p) (WR-OMe (3.0 mmol)) was dissolved in water (3 ml) in another reaction solution, and sodium bicarbonate (3.0 mmol) was added.
  • the WR-OMe solution was mixed and stirred for 1 hour.
  • the target [M + H] ion was observed at m / z: 447 by TOF-MS analysis.
  • Example 1 the suspension of the biological sample pretreated by the sugar chain capture reaction was introduced into a given dispersion, the pH was adjusted to 4, the reaction was performed at 60 ° C, and the sugar chain was cleaved. Except that an aqueous solution of the above compound (r) having a pH of 4 was used as the oxilamino group-containing compound, the biological sample was pretreated, sugar chain capture reaction, washing, sugar chain cleaving reaction as in Experimental Example 1. Then, centrifugation, freeze-drying were performed to form a complex between the sugar chain and compound r.
  • the peak of the sugar chain is identified by hiding in the knock ground where there are many peaks derived from other than the sugar chain even at the location corresponding to the molecular weight of the sugar chain of the cashmere chain It was difficult to do.

Abstract

  生体試料から特定の捕捉物質により生体高分子を捕捉する捕捉段階と、生体高分子が捕捉された捕捉物質をオキシルアミノ基含有化合物と反応させて、生体高分子とこのオキシルアミノ基含有化合物との複合体を形成する切出段階とを含む分析試料調製方法。

Description

明 細 書
分析試料調製方法および分析試料ならびに分析試料調製用化合物 技術分野
[0001] 本発明は、分析試料調製方法に関し、特に生体試料から所定の生体高分子を分 析するための分析試料として遊離するための分析試料調製方法に関し、およびこの 分析試料調製方法を用いて得られる分析試料に関し、さらにこの分析試料調製方法 に使用される分析試料調製用化合物に関する。
背景技術
[0002] 生体高分子とは、糖鎖、糖タンパク、糖ペプチド、ペプチド、オリゴペプチド、タンパ ク、核酸、脂質などの総称である。
[0003] また、これら生体高分子は、医学、細胞工学、臓器工学などのバイオテクノロジー分 野において重要な役割を担っており、これら物質による生体反応の制御機構を明ら かにすることはバイオテクノロジー分野の発展に繋がることになる。
[0004] この中でも、糖鎖は、非常に多様性に富んでおり、天然に存在する生物が有する様 々な機能に関与する物質である。糖鎖は生体内でタンパク質や脂質などに結合した 複合糖質として存在することが多ぐ生体内の重要な構成成分の一つである。生体 内の糖鎖は細胞間情報伝達,タンパク質の機能や相互作用の調整などに深く関わ つていることが明らかになりつつある。
[0005] なお、糖鎖とは、グルコース,ガラクトース,マンノース,フコース,キシロース, N— ァセチルダルコサミン, N—ァセチルガラタトサミン,シアル酸などの単糖およびこれ らの誘導体がグリコシド結合によって鎖状に結合した分子の総称である。
[0006] 例えば、糖鎖を有する生体高分子としては、細胞の安定化に寄与する植物細胞の 細胞壁のプロテオダリカン、細胞の分化、増殖、接着、移動等に影響を与える糖脂質 、及び細胞間相互作用や細胞認識に関与している糖タンパク質等が挙げられる。こ れらの生体高分子に含まれる糖鎖が、この生体高分子と互いに機能を代行、補助、 増幅、調節、あるいは阻害しあいながら高度で精密な生体反応を制御する機構が次 第に明らかにされつつある。さらに、このような糖鎖と細胞の分ィ匕増殖、細胞接着、免 疫、及び細胞の癌化との関係が明確にされれば、この糖鎖工学と、医学、細胞工学、 あるいは臓器工学とを密接に関連させて新たな展開を図ることが期待できる。
[0007] 特許文献 1には、このような糖鎖と特異的に反応しうる物質が記載されており、これ らの物質を用いて糖鎖を分離などする方法が併せて記載されて!ヽる。
特許文献 1: WO2004Z058687号公報
発明の開示
[0008] ところで、特許文献 1には、糖鎖捕捉物質に捕捉された糖鎖をこの糖鎖捕捉物質よ り遊離する (切り出す)ために、トリフルォロ酢酸や酸性榭脂などを用いた酸処理を用 いる例が記載されている。このような過酷な条件に糖鎖をさらすことは、生体試料から 取り出された糖鎖の末端に結合し、かつ、酸性条件で脱離しやすい性質を持つシァ ル酸残基の脱離など糖鎖の変性を引き起こすおそれがあり、より穏やかな条件での 糖鎖切り出しを行うことが望まれていた。なお、糖鎖に結合するシアル酸の有無およ び結合場所は、疾患と関連することが多ぐシアル酸が完全な状態で糖鎖を分析す ることが望まれ、分析前の前処理段階でシアル酸の一部でも脱離してしまうと正確な 糖鎖情報を得ることができなくなるものである。
[0009] そこで、本発明は、所定の生体高分子を含む生体試料より分析試料のための生体 高分子を遊離するに際して、捕捉物質を用いて生体高分子を捕捉し、この生体高分 子の切り出しを穏ゃ力な条件で行うことを可能にする分析試料調製方法、およびこの 方法を適用して得られる分析試料、ならびにこの生体高分子の分析試料調製に用い られる化合物を提供することを目的として ヽる。
[0010] 本発明に係る分析試料調製方法は、生体試料から特定の糖鎖捕捉物質により糖 鎖を捕捉する糖鎖捕捉段階と、
前記糖鎖が捕捉された糖鎖捕捉物質をォキシルァミノ基含有化合物と反応させて 、糖鎖とこのォキシルァミノ基含有化合物との複合体を形成する切出段階と を含む。
[0011] また、本発明に係る分析試料調製方法は、生体試料から特定の糖鎖捕捉物質によ り糖鎖を捕捉する糖鎖捕捉段階と、
前記糖鎖が捕捉された糖鎖捕捉物質を洗浄する洗浄段階と、 前記洗浄された糖鎖が捕捉された糖鎖捕捉物質をォキシルァミノ基含有化合物と 反応させて、糖鎖とこのォキシルァミノ基含有化合物との複合体を形成する切出段階 と
を含む。
[0012] 前記の 、ずれかの分析試料調製方法にお!、て、糖鎖捕捉段階で用いられる特定 の糖鎖捕捉物質は、下記式(1)で示される化合物を用いた重合反応により得られる ポリマーとすることができる:
R1 - B - A - B - R2 (1)
(式中、 R1は重合性基を表し、 R2はォキシルァミノ基含有基またはォキシルァミノ誘導 体含有基を表し、 Bはエステル基またはアミド基を表し、 Aは置換基を有していてもよ
V、炭素数 2〜 12のアルキレン基を表す)。
[0013] さらに、この分析試料調製方法において、糖鎖捕捉段階で行われる糖鎖捕捉物質 と生体試料との反応は、 pHが酸性条件で行うようにすることができる。
[0014] 前述の ヽずれかの分析試料調製方法にお!、て、切出段階で反応させるォキシル アミノ基含有化合物は、下記式 (2)で示される化合物とすることができる:
R11— ONH (2)
2
(式中、 R11は水素;あるいは置換基を有していてもよぐかつ、—O , 一 S—, -NH —で中断されてもよい炭素数 1〜20の炭化水素基;あるいは置換基を有していてもよ い芳香環および必要に応じてこの芳香環とォキシルァミノ基とをつなぐリンカ一部分 Lを有する基であり、 Lは O , 一 S , 一 NH で中断されてもよぐおよび置換基 を有して!/、てもよ!/、炭素数 1〜10の炭化水素基;あるいはペプチド、オリゴペプチド およびそれら誘導体から選ばれる部分を含む基である)。
[0015] また、この分析資料調製方法において、 R11に含まれる水素原子のうち少なくとも 1 つが重水素に置換されて 、てもよ 、。
[0016] さらに、この分析試料調製方法において、前記化合物中で R11は、アルギニン、トリ プトファン、フエ-ルァラニン、チロシンおよびこれら誘導体の少なくともひとつからな る部分を含んでいてもよい。
[0017] あるいは、この分析試料調製方法において、前記化合物は下記の構造を有してい てもよい:
CH O-X-COCH ONH
3 2 2
(式中、 Xはペプチド二量体力もなるリンカ一である)。
[0018] さらに、この分析試料調製方法において、前記化合物は下記の構造を有していて ちょい:
[0019] (化 1)
Figure imgf000006_0001
[0020] また、前記の分析試料調製方法にぉ 、て、前記化合物は下記の構造を有して 、て ちょい:
Y-X-COCH ONH
2 2
(式中、 Xはペプチド二量体からなるリンカ一であり、 Yは生体高分子と反応し得る官 能基である)。
[0021] さらに、この分析試料調製方法において、前記化合物中で Yは、ヒドラジド基であつ てもよい。
[0022] あるいは、前記の分析試料調製方法にお!、て、前記化合物は、下記の構造を有す る化合物のうち、いずれか一方であってもよい:
[0023] (化 2)
Figure imgf000007_0001
[0024] あるいは、前記の分析試料調製方法にぉ ヽて、前記ォキシルァミノ基含有化合物 は、複合体を形成する糖鎖を標識化するための標識化官能基を有して ヽてもよ ヽ。
[0025] 前述のいずれかの分析試料調製方法において、切出段階で行われる糖鎖が捕捉 された糖鎖捕捉物質と、前記ォキシルァミノ基含有化合物との反応は、 pHが中性付 近の条件で行うことができる。
[0026] また、本発明に係る分析試料は、前述の ヽずれかの分析試料調製方法にて生体 試料より調製されて得られるものである。
[0027] また、本発明に係る分析試料は、生体高分子と、ォキシルァミン基含有化合物とを 反応させて得られるものである。
[0028] さらに、この分析試料であって、前記ォキシルァミン基含有ィ匕合物は、下記式(2) で示される化合物とすることができる:
R11— ONH (2)
2
(式中、 R11は水素;あるいは置換基を有していてもよぐかつ、—O , 一 S—, -NH —で中断されてもよい炭素数 1〜20の炭化水素基;あるいは置換基を有していてもよ い芳香環および必要に応じてこの芳香環とォキシルァミノ基とをつなぐリンカ一部分 Lを有する基であり、 Lは O , 一 S , 一 NH で中断されてもよぐおよび置換基 を有して!/、てもよ!/、炭素数 1〜10の炭化水素基;あるいはペプチド、オリゴペプチド およびそれら誘導体から選ばれる部分を含む基である)。
[0029] また、この分析資料において、 R11に含まれる水素原子のうち少なくとも 1つが重水 素に置換されていてもよい。
[0030] さらに、この分析試料において、前記化合物は、下記の構造を有する化合物のうち 、いずれか一方であってもよい:
[0031] (化 3)
Figure imgf000008_0001
[0032] また、本発明に係る生体高分子の分析試料調製用化合物は、下記構造を有する: 糖鎖 -NHNH- X-COCH ONH
2 2
(式中、 Xはペプチド二量体力 なるリンカ一である)。
[0033] また、本発明に係る生体高分子の分析試料調製用化合物は、下記構造を有する: 蛍光物質- NHNH- X-COCH ONH
2 2
(式中、 Xはペプチド二量体からなるリンカ一である)。
[0034] 本発明によれば、所定の生体高分子を含む生体試料より分析試料のための生体 高分子を遊離するに際して、捕捉物質を用いて生体高分子を捕捉し、この生体高分 子の切り出しを穏やかな条件で行うことを可能にする。
図面の簡単な説明
[0035] 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実 施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
[0036] [図 1]本発明に係る分析試料調製方法の実施形態の手順を示すフローチャートであ る。 .
[図 2]前記実施形態に係る分析試料調製方法を適用する前処理装置の概略構成を 示すプロック図である。
[図 3]実験例で得られた複合体の MALDI—TOF— MSのチャートを示す図である。
[図 4]実験例で得られた複合体の MALDI— TOF— MSのチャートを示す図である。
[図 5]実験例で得られた複合体の MALDI— TOF— MSのチャートを示す図である。 発明を実施するための最良の形態 訂正された用紙 (規則 91) [0037] 以下に、本発明の分析試料調製方法およびこの方法を適用して得られる分析試料 、ならびにこの方法に用レ、られる分析試料調製用化合物につ 、て詳細に説明する。
[0038] 図 1は、本発明の分析試料調製方法に力かる実施形態として、生体高分子である 糖鎖の捕捉、遊離の手順を示すフローチャートである。
訂正された用紙 (規則 91) 本実施形態は、生体試料から特定の捕捉物質により所定の生体高分子を捕捉する 捕捉段階としてのステップ S20と、生体高分子が捕捉された捕捉物質を洗浄する洗 浄段階としてのステップ S30と、洗浄された生体高分子が捕捉された捕捉物質をォキ シルァミノ基含有化合物と反応させて、生体高分子とこのォキシルァミノ基含有化合 物との複合体を形成する切出段階としてのステップ S40とを含む。
[0039] 以下、図 1に示した各ステップについて説明する。
ステップ S10では、糖鎖または糖鎖を含む複合分子、例えば糖タンパク質、糖ぺプ チド、糖脂質などを含む所定の生体試料力 糖を遊離するための予備処理が行われ る。
[0040] ここで、生体試料とは、生物由来の糖鎖が結合または付属する材料であれば特に その由来に限定はなぐ動物、植物、細菌、ウィルスを問わないが、好ましくは動物由 来の体液、例えば全血、血漿、血清、汗、唾液、尿、脾液、羊水、髄液などが挙げら れる。また、生体試料には、個体から予め分離されていないものも含まれ、例えば外 部から試液が接触可能な粘膜組織、あるいは腺組織、好ましくは乳腺、前立腺、脾 臓に付属する管組織の上皮が含まれる。
[0041] また、生体試料に行う予備処理としては、グリコシダーゼ処理、ヒドラジン分解およ び必要に応じてプロテアーゼ処理、細胞破砕、脱脂処理、加熱変性処理が挙げられ 、生体試料を予備処理して得られた試料は、溶液、分散液、懸濁液、乾燥体の状態 で得られる。なお、予備処理済の生体試料は、そのまま次のステップで用いてもよい し、一度乾燥させて所望の溶液に溶解させて力も次のステップで用いてもょ 、。
[0042] ステップ S20では、ステップ S10で得られた予備処理済の生体試料を用いて、特定 の糖鎖捕捉物質に糖鎖を捕捉させる糖鎖捕捉反応が行われる。
[0043] ここで、糖鎖捕捉反応、すなわち糖鎖捕捉物質と予備処理済の生体試料との反応 は、予備処理済の試料に糖鎖捕捉物質を導入して、 pHが酸性の条件で、好ましくは pHが 2〜6、さらに好ましくは 3〜6の条件にて、また反応温度力 〜90°C、好ましく は 25〜90°C、より好ましくは 40〜90°Cの条件における反応系で、 10分間〜 24時間 、好ましくは 10分間〜 8時間、より好ましくは 10分間〜 2時間行われる。
[0044] この反応で用いられる糖鎖捕捉物質は、ォキシルァミノ基を有するポリマーであり、 このォキシルァミノ基力 糖鎖より水溶液などの溶液中で形成される環状のへミアセ タール型と非環状のアルデヒド型との平衡にぉ 、て、アルデヒド基と反応して特異的 、かつ、安定な結合を形成して、糖鎖を捕捉することができるようになる。すなわち、 糖鎖捕捉反応とは、以下に示すような反応をいう。
[0045] (化 4)
Figure imgf000011_0001
[0046] このようなポリマーとしては、以下のォキシルァミノ基含有ィ匕合物を用いた通常の重 合反応、例えば懸濁重合反応により得られるものである。また、この重合反応は、ォ キシルァミノ基含有化合物を重合させるための架橋剤として、多官能の化合物の存 在下で行うようにすることができる。
ォキシルァミノ基含有化合物としては、例えば下記式(1)で示される化合物が挙げ られる。
R1 - B - A - B - R2 (1)
(式中、 R1は重合性基を表し、 R2はォキシルァミノ基含有基またはォキシルァミノ誘導 体含有基を表し、 Bはエステル基またはアミド基を表し、 Aは置換基を有していてもよ V、炭素数 2〜 12のアルキレン基を表す)。
[0047] R1は、炭素 炭素の二重結合 (C = C)を含む重合性基であり、例えば不飽和カル ボン酸由来の基が挙げられ、後述する本発明のポリマーを製造する際の重合部分と なる。例えば、 CH =C(CH ) -, CH =CH-などが挙げられる。
2 3 2
[0048] また、 Bはエステル基またはアミド基であり、 R1と一緒になつて、例えば CH =C(CH )
2 3
CONH-, CH =CHCONH- , CH =CHCOO- , CH =C(CH )COO-などを形成するよう
2 2 2 3
になっている。
[0049] Aは、分岐を有してもよぐ -0- , -S- , —NR5 が介在してもよい炭素数 2〜1 2のアルキレン基を表し、さらに R5は水素原子または置換基を有してもよ!、炭素数 1 〜8のァノレキレン基であり、基 Aとしては、例えば、 -CH CH -0-CH CH - 0- CH CH
2 2 2 2 2 2
-, -CH CH -S-CH CH -S-CH CH -, -CH CH—NH— CH CH—NH— CH CH -, -CH
2 2 2 2 2 2 2 2 2 2 2 2
CH -0-CH CH -, -CH CH - S- CH CH -, - CH CH -などが挙げられる。 [0050] R2は、ォキシルァミノ基 (-0-NH )含有基またはその誘導体含有基を表す。この誘
2
導体は、ォキシルァミノ基の窒素に結合する原子または原子団として、水素以外のも の、例えばァミノ基の保護基である t—ブトキシカルボニル基 (Boc)などがァミン基の 窒素原子に結合したものである。
[0051] このォキシルァミノ基力 糖鎖より水溶液などの溶液中で形成される環状のへミアセ タール型と非環状のアルデヒド型との平衡にぉ 、て、アルデヒド基と反応して特異的 、かつ、安定な結合を形成して、糖鎖を捕捉することができるようになる。
[0052] また、架橋剤として用いられる多官能の化合物としては、ォキシルァミノ基含有ィ匕合 物と共重合を行う化合物を用いることができ、例えば(1)ポリオールのジまたはトリ(メ タ)アクリル酸エステル類、例えばポリオールがエチレングリコール、プロピレングリコ ール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシ プロピレングリコール、ポリグリセリン等であるもの、(2)上記(1)において、不飽和酸 が(メタ)アクリル酸以外のもの、例えばマレイン酸、フマル酸などであるもの、(3)ビス アクリルアミド類、例えば N, N,一メチレンビスアクリルアミドなど、(4)ポリエポキシドと (メタ)アクリル酸を反応させて得られるジまたはトリ(メタ)アクリル酸エステル類、 (5) ポリイソシァネートと (メタ)アクリル酸ヒドロキシエステルを反応させて得られるジ (メタ) アクリル酸力ルバミルエステル類、例えばポリイソシァネートがトリレンジイソシァネート 、へキサメチレンジイソシァネートなどであるもの、(6)多価ァリルイ匕合物、例えばァリ ル化デンプン、ァリル化セルロース、ジァリルフタレート、テトラァリロキシェタン、ペン タエリストールトリァリルエーテル、トリメチロールプロパントリアリルエーテル、ジェチレ ングリコールジァリルエーテル、トリアリルトリメリテート等が挙げられる。これらの中でも 本発明では、エチレングリコールジ (メタ)アタリレート、プロピレングリコールジ (メタ)ァ タリレート、 N, N,一メチレンビス (メタ)アクリルアミド等が好ましい。
[0053] すなわち、本実施形態で用いられるポリマーは、下記のような構造をとるものを用い ることがでさる。
(ォキシルァミノ基含有化合物成分) (架橋剤成分)
m n
以下に、このような構造を有するポリマーを示す。
[0054] (化 5)
Figure imgf000013_0001
[0055] なお、ポリマーは、モノマーであるォキシルァミノ化合物および架橋剤の各成分由 来の部分が、それぞれブロックになった状態のブロック共重合体であるように示され て 、るが、各モノマーがランダムに重合したものであってもよ 、。
[0056] また、このポリマー中には、ォキシルァミノ化合物および架橋剤の他に、さらに別の 重合性化合物の成分由来の部分が含まれていてもよい。このような化合物としては、 アクリル酸およびその誘導体、メタクリル酸およびその誘導体などが挙げられる。この ような化合物をモノマーとして含ませることで、ポリマー中のォキシルァミノ基の密度 やその他の所定の物性を制御することができる。
[0057] また、このポリマーは、粒子形状に加工して用いることができ、このときの粒子の形 状は、球であることが好ましぐその粒径は、上限が 200 μ m、好ましくは 150 μ mで あり、下限が 20 μ m、好ましくは 50 μ mである。また、粒子の平均径は 80〜: LOO μ m である。このような範囲の粒径を有するポリマー粒子は、遠心分離,フィルタなどによ る回収が容易であり,かつ,充分な表面積を有しているために糖鎖との反応効率も高 いと考えられる。粒径が上記の範囲よりも大幅に大きい場合,表面積が小さくなるた めに糖鎖との反応効率が低くなることがある。また,粒径が上記の範囲よりも大幅に 小さい場合,特にフィルタによる粒子の回収が難しくなることがある。さらに,粒子を力 ラムに充填して用いる場合,粒径が過小であると通液の際の圧力損失が大きくなつて しまうことがある。
[0058] このようなポリマーは、ォキシルァミノ化合物と架橋剤とを、クロ口ホルムなどの溶媒 に溶解したのち、懸濁重合を行う場合には原料の液滴を安定ィ匕させるために分散安 定剤を用いて水などの分散媒に分散させた状態で、重合開始剤を導入し、重合反応 を行うことで得ることができる。こうして得られるポリマーは、遠心分離などの技術によ り回収することができる。また、このポリマーは安定した粒子を形成することができ、水 中で安定なため、水に分散させた状態で保存することができる。
[0059] ここで、糖鎖捕捉反応は、上述のような糖鎖捕捉物質を粒子にして、この粒子を力 ラムなどに充填して予備処理済の生体試料を通してもょ 、 (連続式)し、この粒子を 予備処理済の生体試料中に投入して攪拌して行ってもよい(回分式)。また、粒子が 予め充填された反応容器内に予備処理済みの生体試料を連続的に投入して攪拌し て行ってもよい(半回分式)。
[0060] 続ヽて、ステップ S30では、ステップ S20で糖鎖が捕捉された糖鎖捕捉物質を洗浄 して、糖鎖捕捉物質に捕捉されなカゝつた糖鎖、他の生体試料などを除去する。
[0061] ここで、糖鎖捕捉物質の洗浄に用いられる溶液としては、ドデシル硫酸ナトリウム(S DS)に代表される界面活性剤の水溶液、メタノール、エタノールなどのアルコール類 ;水および水性緩衝液などが使用される。ここで、洗浄に水溶液が用いられる場合、 この水溶液の ρΗは中性付近であることが好ましぐその pHは 4〜10、より好ましくは 6〜8である。
[0062] この洗浄処理は、前述したように連続式にて糖鎖捕捉反応を行った場合には、カラ ムに洗浄溶液を通して糖鎖捕捉反応カゝら連続的に処理してもよい。また、回分式お よび半回分式の場合には、ろ過操作あるいは遠心操作により糖鎖捕捉物質以外の 物質を除去してもよい。
[0063] なお、ステップ S30の洗浄工程は、当初の生体試料の状態、例えば糖鎖以外の物 質の混在の程度によっては行わなくても構わない。
[0064] ステップ S40では、糖鎖が捕捉された糖鎖捕捉物質力ゝら糖鎖を遊離させる、すなわ ち糖鎖を糖鎖捕捉物質から切り出す反応を行う。
[0065] この反応で、ォキシルァミノ基含有化合物を使用すると、糖鎖を糖鎖捕捉物質から 遊離させることができるととも〖こ、遊離した糖鎖とォキシルァミノ基含有化合物とで複 合体を形成させることができる。すなわち、下記に示したような反応を行うことができる
[0066] (化 6)
Figure imgf000015_0001
[0067] この反応は、 pHが中性付近、好ましくは pHが 4〜7、好ましくは 4〜6で行うことがで き、このときの反応温度は 4〜90°C、好ましくは 25〜90°C、より好ましくは 40〜90°C で行うことができる。また、反応時間は、 10分間〜 24時間、好ましくは 10分間〜 8時 間、より好ましくは 10分間〜 2時間である。
[0068] 中性付近で、糖鎖切り出し反応を行うことができるため、従来のトリフルォロ酢酸に よる切出しのような強酸の存在下での切出し反応に比べて、シアル酸残基の脱離な ど糖鎖の加水分解などを引き起こすことを抑制することができるようになる。
[0069] この反応で、用いることのできるォキシルァミノ基含有ィ匕合物としては、下記式(2) 示される化合物が挙げられる。
R11— ONH (2)
2
(式中、 R11は水素;あるいは置換基を有していてもよぐかつ、—O—, 一 S—, -NH —で中断されてもよい炭素数 1〜20の炭化水素基;あるいは置換基を有していてもよ い芳香環および必要に応じてこの芳香環とォキシルァミノ基とをつなぐリンカ一部分 Lを有する基であり、 Lは一 O—, 一 S—, 一 NH—で中断されてもよぐおよび置換基 を有して!/、てもよ 、炭素数 1〜10の炭化水素基である) (
例えば、下記のような化合物が挙げられる。
[0070] (化 7)
Figure imgf000016_0001
Figure imgf000016_0002
[0071] また、前記式(2)で示される化合物の R11は、ペプチド、オリゴペプチドおよびそれら 誘導体から選ばれる部分を含む基であってもよ ヽ。
ペプチドとしては、特にアルギニン、トリプトファン、フエ-ルァラニン、チロシンが好 ましいが、これらに限定されない。
[0072] オリゴペプチドとしては、特にアルギニン、トリプトファン、フエ-ルァラニン、チロシン の少なくとも一つを含んだジペプチド(2量体)が好ましぐトリペプチド(3量体)以上 のものであってもよい。
[0073] また、ペプチドまたはオリゴペプチドの誘導体としては、アルギニン、トリブトファン、 フエ-ルァラニン、チロシン、およびその他のペプチドの誘導体、これらの化合物を構 成する元素の一部が重元素化されたもの等が挙げられる。
[0074] 式(2)で示される化合物のうち、このようなペプチドまたはオリゴペプチドあるいはそ れらの誘導体を含んだ化合物としては、例えば末端にメトキシ基 (-OCH )を含む CH O-X-COCH ONHを用 ヽることができる。
2 2
[0075] 式中、 Xはペプチド二量体からなるリンカ一であり、例えば アルギニン (R) トリプ トフアン (W)— , —R—フエ-ルァラニン(F) —, 一R—チロシン (Y)—などが挙げら れる。以下に、 Xがー R— W—で示した構造を有する化合物を示す。
[0076] (化 8)
Figure imgf000017_0001
[0078] (化 9)
BocNHOCH2COOH
H2N Me R, HN、 ,OMe
0
H O τ 〇 R N
(P) (q)
Figure imgf000018_0001
(0
[0079] ただし、
(化 10)
Figure imgf000018_0002
[0080] 化合物 (p)は、トリブトファン部分のァミノ基がフエニル基などにより保護された化合 物の脱保護により得られる。ここで、トリブトファン部分は、フエ-ルァラニン、チロシン などにより置換することもできる。続いて、化合物(p)とヒドロキシァミン (BocNHOCH
2
COOH)との混合酸無水物法などの縮合反応により、化合物(q)が合成される。このヒ ドロキシァミンの保護基 Rは、 Bocに限られることはなぐ Fmoc, Trocなどであってもよ
1
い。続いて、化合物 (q)を脱保護処理することにより、目的物である化合物 (r)が得ら れる。この脱保護処理としては、例えば保護基が Bocである場合には、トリフルォロ酢 酸 (TFA)による処理が挙げられる。
[0081] また、式(2)で示される化合物のうち、ペプチドまたはオリゴペプチドあるいはそれら の誘導体を含んだ化合物としては、末端に生体高分子と反応し得る官能基 Yを有す る Y-X-COCH ONHを用いることができる。式中、官能基 Xは前述と同様であり、官
2 2
能基 Yとしてはヒドラジド基 (-NHNH )が挙げられる。このように、一分子中にォキシル
2
アミノ基およびヒドラジド基による 2官能性をもたせることにより、後述するような利点を 発揮することができるよう〖こなる。
[0082] また、ォキシルァミノ基含有ィ匕合物は、上記の反応にぉ 、て、複合体を形成する糖 鎖を標識ィ匕するための標識ィ匕官能基を有するようにしてもょ 、。
この標識化の方法としては、例えば蛍光性の付与、光吸収能の増大、結晶性の向 上、質力分析における感度向上、同位体原子の導入、極性の調整などが挙げられる 。標識ィ匕官能基とは、式 (2)の R11の部分にこれらの標識ィ匕を行うことができるように 設計された官能基をさす。例えば、 R11に含まれる水素原子のうち少なくとも 1つが重 水素に置換された標識ィ匕官能基を、式 (2)に導入することができる。
[0083] 例えば、上記で例示したィ匕合物の中では、化合物(a)〜(c)は紫外線吸収能の増 大および結晶性の向上を糖鎖に付与することが、本発明者等により見出されている。 また、化合物 (d)および化合物 (e)は蛍光性を糖鎖に付与することが、本発明者等に より見出されている。化合物 (f)は糖鎖の質量分析、特に MALDI— TOF— MSの感 度を向上させることが、本発明者等により見出されている。
[0084] また、特に、上述したようなオリゴペプチドを含む化合物の場合には、例えば末端の メトキシ基を重水素化してもよい。重水素化されたメトキシ基を有する化合物は、質量 分析などの際に重水素の分だけピークがシフトする。これにより、捕捉物質にて捕捉 された糖鎖を切出すときに、ォキシルァミノ基部分で糖鎖などの生体高分子と結合す るとともに、メトキシ基に導入された重水素により質量分析でのピークシフトが観測さ れ、また、取り込んだ生体高分子に糖鎖、蛍光物質を導入することになり、生体高分 子を標識ィ匕して、質量分析の際の検出を容易にすることができるようになる。
[0085] また、オリゴペプチドを含む化合物の末端に生体高分子と反応し得る官能基 Y、例 えばヒドラジド基を含む場合、この官能基 Υに糖鎖、ピレンなどの蛍光性官能基 (蛍 光物質)を結合させるなどして、捕捉された生体高分子の標識ィ匕を行って分析試料と することができる。すなわち、分析試料調製用化合物として下記のような化合物を得 ることができる: 糖鎖- NHNH- X- COCH ONH
2 2
蛍光物質- NHNH- X- COCH ONH
2 2
(式中、 Xは前述したようなペプチド二量体からなるリンカ一である)。
[0086] このような化合物の製法としては、下記に示したようなスキームが挙げられる,
[0087] (化 11)
Figure imgf000020_0001
前記の化合物(q)をヒドラジンで処理することにより、化合物(s)が得られる。続いて 、化合物 (s)をアルデヒド誘導体 (R2は蛍光物質、糖などから構成される部分である) と反応させることにより、末端に R2基が導入された化合物 (t)が得られる。この化合物 (t)を水素化シァノホウ素ナトリウム (NaCNBH )などの触媒の存在下で還元式ァミノ
3
化法などによる還元反応により、 R2が結合した部分に水素を付加して、化合物 (u) が得られる。最後に、化合物 (u)を脱保護処理することにより、目的物である化合物( が得られる。
[0089] このような化合物によれば、捕捉物質にて捕捉された糖鎖などの生体高分子を切 出すときに、ォキシルァミノ基部分でこの生体高分子と結合するとともに、ヒドラジド基 に結合された標識化部分により、取り込んだ生体高分子に糖鎖、蛍光物質を導入す ることになり、生体高分子を標識ィヒすることができる。
[0090] 例えば、以下に示すように、末端のメトキシ基をヒドラジドィ匕して標識ィヒ部分を作り、 この標識化部分を重アセトン (Aceton- d )にて処理して、重水素を導入して標識化す
6
ることができる。以下のスキームでは、ヒドラジド基にアセトンを作用させて得られた非 標識化物を Product 1で表し、ヒドラジド基に重アセトンを作用させて得られた標識ィ匕 物を Product 2で表す。
[0091] (化 12)
差替え用紙(規則 2Φ
Figure imgf000022_0001
[0092] このような標識ィ匕官能基を有するォキシルァミノ基含有ィ匕合物を、ステップ S40の 糖鎖切り出し反応にて用いることで、切り出し反応を行うための一操作にて、標識ィ匕 された複合体を得ることができるようになる。
[0093] ステップ S50では、糖鎖切り出し反応により得られた糖鎖とォキシルァミノ基含有ィ匕 合物との複合体を遠心分離、ろ過などの分離操作により回収し、ステップ S60では、 必要に応じて回収した複合体を濃縮ある 、は乾燥して、分析試料の調製処理は終 了する。
[0094] 図 2は、本実施形態の分析試料調製方法を適用した装置を示すブロック図である。
なお、各構成の説明で、図 1のフローチャートの各手順に関連する場合には、そのス テツプ番号を併せて示す。
[0095] 生体試料導入部 10には、生体試料を所定の手法で予備処理して (ステップ S 10) 得られた予備処理済の生体試料を装入し、この生体試料が後述する反応部 12に導 入されるようになって!/、る。
[0096] 洗浄液導入部 14には、前述の糖鎖捕捉反応後の反応混合物の洗浄 (ステップ S3
0)を行う際の洗浄液を装入し、この洗浄液が後述する反応部 12に導入されるよう〖こ なっている。
[0097] ォキシルァミノ化合物溶液導入部 16には、前述の糖鎖切り出し反応 (ステップ S40 )で用いられるォキシルァミノ基を含有する溶液を装入し、このォキシルァミノ化合物 溶液が後述する反応部 12に導入されるようになって!/、る。
[0098] 反応部 12は、生体試料導入部 10、洗浄液導入部 14およびォキシルァミノ化合物 導入部 16に接続されている。また、反応部 12には、例えば前述した糖鎖捕捉物質を 粒子で形成したものが充填されており、この粒子が充填された部分において、糖鎖 捕捉工程 (ステップ S20)、洗浄工程 (ステップ S30)、糖鎖切出工程 (ステップ S40) を実行する場を提供するようになって 、る。
[0099] 溶出物取出部 18は、反応部 12の溶出側に設けられており、糖鎖切出反応 (ステツ プ S40)の後に、反応部 12より溶出される溶出物を取り出すことができるようになって いる。
[0100] 分離部 20では、溶出物取出部 18で得られる溶出物を装入して、遠心分離処理し て、糖鎖とォキシルァミノ基含有ィ匕合物との複合体を分離するようになっている。なお
、分離部 20は、溶出物取出部 18と直接接続し、反応部 12からの溶出物が直接装入 されるようになって!/、てもよ 、し、あるいは溶出物取出部 18にて得られる溶出物を人 による操作により、装入されるようになって 、てもよ 、。
[0101] 濃縮'乾燥機 22では、遠心分離処理して得られる糖鎖とォキシルァミノ基含有化合 物との複合体を凍結乾燥するようになって!/、る。
[0102] この前処理装置によれば、予備処理が済んだ生体試料を生体試料導入部 10より 反応部 12に導入し、反応部 12では導入された生体試料を、前述したような条件で保 持し、この生体試料力も糖鎖が糖鎖捕捉物質により捕捉される (ステップ S20)。
[0103] 続いて、洗浄液導入部 14より洗浄液を反応部 12に導入し、糖鎖が捕捉された糖鎖 捕捉物質の表面を前述した条件で洗浄して、捕捉されなカゝつた糖鎖以外の物質およ び未反応の糖鎖が洗 、流される(ステップ S30)。
[0104] さらに、ォキシルァミノ化合物溶液導入部 16よりォキシルァミノ基含有ィ匕合物を反 応部 12に導入して、前述した条件、糖鎖捕捉物質の表面において糖鎖切り出し反 応が行われ、糖鎖がォキシルァミノ基含有ィ匕合物と複合体を形成して溶出され、溶 出物取出部 18にて取り出される (ステップ S40)。
[0105] 続いて、分離部 20では、この溶出物を遠心分離、ろ過などの分離手段により処理し 、糖鎖とォキシルァミノ基含有化合物との複合体を分離した後、この複合体は必要に 応じて濃縮'乾燥機 22で乾燥されて、分析試料が得られる。
[0106] このようにして、生体試料より調製されて得られる糖鎖分析試料は、ォキシルァミノ 基含有化合物と糖鎖との複合体で得られるものの、ォキシルァミノ基含有化合物その ものが分子量の小さい小分子なため、複合体のままで質量分析に供することができる 。また、ォキシルァミノ基含有ィ匕合物として上述したような標識ィ匕官能基を持たせたも のを用いた場合、糖鎖の標識化がされた状態で糖鎖分析試料が得られることになる ため、糖鎖の同定、定量が容易になる。
[0107] 例えば、蛍光性を付与することにより標識化された糖鎖およびォキシルァミノ基含 有化合物の複合体では、蛍光を測定することにより、糖鎖の同定、および定量を行う ことが可能になる。紫外線などの光吸収能の増大により標識化された複合体では、測 定感度が増大することになるため、微量な糖鎖の同定を可能にするほか、より正確な 定量を行うことが可能にある。
[0108] なお、図 2では、生体試料導入、糖鎖捕捉工程 (ステップ S20)、洗浄工程 (ステツ プ S30)、糖鎖切出工程 (ステップ S40)を連続的に処理するように構成された装置を 説明したが、これに限定されることはなぐ例えば生体試料に糖鎖捕捉物質力 なる 粒子を導入して、震とうまたは攪拌して、糖鎖を糖鎖捕捉物質に捕捉 (ステップ S20) させて得られる反応物をフィルタにかけてろ過して、このフィルタ上で洗浄液を導入し て洗浄 (ステップ S30)した後に、ろ取した複合体を、ォキシルァミノ基含有化合物を 含む溶液に導入して、糖鎖切り出し反応 (ステップ S40)を行ってもよい。なお、各ェ 程を行う条件は上述したものが適用できる。
[0109] また、本実施形態では、生体試料から糖鎖を捕捉、切出し (遊離)して得られる分析 試料と、その調製方法について説明したが、生体試料中の生体高分子に、ォキシル アミノ基含有化合物、例えば前記式 (2)の化合物を直接反応させて、得られる分析 試料であってもよい。
[0110] なお、本実施形態では、生体試料から遊離させる生体高分子として糖鎖である場 合を説明したが、これに限定されることはなぐ他の生体高分子、例えば糖タンパク、 糖ペプチド、ペプチド、オリゴペプチド、タンパク、核酸、脂質などを遊離させて分析 試料を得ることができる。
(実施例 1)
[0111] 以下、本発明を以下の実験例力もなる実施例により説明する。しかし、本発明はこ れら実験例に限定されるものではな 、。
本実験例では、モデルケースとして糖タンパク質であるフエチュインの糖鎖を分析 試料として調製する方法を示す。なお、現象を単純化するために、予めフエチュイン 力も脱シアル酸処理を行ったァシァ口フエチュインを用いて、糖鎖を遊離して分析試 料を調製する。
[0112] (実験例 1)
(生体試料の予備処理)
糖タンパクの一種であるァシァ口フエチュインをプロテアーゼ処理して、タンパク質 部分をペプチド断片化し、グリコシダーゼ Fによる処理を行って糖鎖をペプチドから 遊離させて、予備処理済の生体試料を得た。
[0113] (糖鎖捕捉反応)
予備処理済の生体試料の懸濁物を、糖鎖捕捉物質力 なるポリマー粒子を水に分 散させた分散液に導入して、 pH2に調整した後に、 40°Cで 16時間震とうして糖鎖捕 捉反応を行った。
[0114] (洗浄)
糖鎖捕捉反応後の反応物を、 0. 5%SDS、メタノール、水にて洗浄した。 (糖鎖切出反応)
洗浄後の反応物に、ォキシルァミン基含有化合物としての化合物(a)の水溶液(10 OmM, pH5)を導入し、 40°Cで 16時間反応させて、糖鎖切り出し反応、および糖鎖 とォキシルァミノ基含有化合物との複合体形成を行った。
(遠心分離、凍結乾燥)
得られた複合体の水溶液を遠心分離処理して、上澄みを回収して凍結乾燥して、 複合体を得た。
[0115] この複合体の MALDI—TOF— MSを測定したところ、図 3に示したように、チヤ一 トにおいてァシァ口フエチュインの糖鎖に化合物(a)が付加した分子量に該当する場 所にシャープなピークが得られた。
[0116] (実験例 2)
実験例 1にお 、て、ォキシルァミノ基含有ィ匕合物として化合物(c)を用いて、糖鎖切 り出し反応を行った以外は、実験例 1と同様の操作を行って、得られた複合体の MA LDI-TOF MS測定を行った。
実験例 1と同様に、ァシァ口フエチュインの糖鎖に化合物 (c)が付加した分子量に 相当する場所にシャープなピークが得られた。
[0117] (実験例 3)
実験例 1にお 、て、ォキシルァミノ基含有ィ匕合物として化合物(d)を用いて、糖鎖 切り出し反応を行った以外は、実験例 1と同様の操作を行って、得られた複合体の M ALDI - TOF - MS測定を行つた。 図 4に示したように、実験例 1と同様に、ァシァ口フ チュインの糖鎖に化合物(d)が 付加した分子量に相当する場所にシャープなピークが得られた。
[0118] (実験例 4)
(4 1)遊離試薬の合成
(a) WR- OMe (化合物(p) )の合成
Z-WR-OMe (10 mg, 20 mmol)および 10% Pd/C (10mg)にメタノール(5ml)をカロえ、 水素ガス雰囲気下、室温で 2時間攪拌した。反応溶液を水系メンブレンフィルタでろ 過することにより Pd/Cを除去し、ろ液を減圧濃縮することで目的物である化合物 (p) ( WR- OMe)を得た。 MALDI- TOF- MSによる解析により、 目的物の [M+H]+イオンを m/ z : 376に観測した。
[0119] (化 13)
Figure imgf000027_0001
(P)
[0120] (b) Boc-NHOCH CO- W- R- OMe (化合物 (q) )の合成
2
Bocアミノォキシ酢酸 (2.5mmol)の THF (6ml)溶液を- 20°Cに冷却した。っ 、で N-メ チルモルホリン(3.0mmol)とギ酸イソブチル(3.0mmol)を添加し、 15分攪拌することで 混合酸無水物を調製した。反応溶液を 0°Cとし、別の反応溶液にて化合物 (p) (WR- OMe (3.0mmol) )を水(3ml)に溶解し、炭酸水素ナトリウム(3.0mmol)を添加すること により調製した WR-OMe溶液を混合し、 1時間攪拌した。反応溶液を減圧濃縮し、得 られた残留物をシリカゲルクロマトグラフィー(展開溶媒:クロ口ホルム Zメタノール = 5 : 1)により精製することで目的物である化合物(q) (Boc-NHOCH2CO-W-R-OMe)を 得た。 MALD卜 TOF- MSによる解析により、 目的物の [M+H]イオンを m/z : 547に観測 した。
[0121] (化 14)
Figure imgf000028_0001
(q )
[0122] (c) H NOCH CO- W- R- OMe (化合物(r) )の合成
2 2
化合物(q) (Boc-NHOCH CO- W- R- OMe (18mg, 33mmmol)に TFA(2ml)を加え、
2
- 20°Cで 2時間攪拌した。反応液を減圧濃縮し、トルエンを加え共沸を繰り返して TF Aを除去して、目的物である化合物(r) (H NOCH CO- W- R- OMe)を得た。 MALDI-
2 2
TOF-MSによる解析により、目的物の [M+H]イオンを m/z :447に観測した。
[0123] (化 15)
Figure imgf000028_0002
(4 2)複合体形成
実験例 1において、糖鎖捕捉反応にて予備処理済みの生体試料の懸濁物を所定 の分散液に導入した後の pHを 4に調整し、反応を 60°Cにて行い、糖鎖切出反応に てォキシルァミノ基含有化合物として上記化合物 (r)の pH4の水溶液を用いた以外 は、実験例 1と同様に、生体試料の予備処理、糖鎖捕捉反応、洗浄、糖鎖切出反応 、遠心分離、凍結乾燥の各処理を行って、糖鎖と化合物 rとの複合体形成を行った。
[0125] この複合体の MALDI—TOF— MSを測定したところ、図 5に示したように、チヤ一 トにおいてァシァ口フエチュインの糖鎖に化合物 (r)が付加した分子量に該当する場 所にシャープなピークが得られた。
[0126] (実験例 5)
実験例 1において、ォキシルァミノ基含有ィ匕合物の代わりに、 10%トリフルォロ酢酸 を用いて糖鎖切り出し反応を行った以外は、実験例 1と同様の操作を行って、得られ た複合体の MALDI—TOF— MS測定を行った。
実験例 1〜4とは異なり、ァシァ口フ チュインの糖鎖の分子量に相当する場所であ つても糖鎖以外の由来のピークが多ぐノックグラウンドに隠れてしまい、糖鎖のピー クを特定することが困難であった。

Claims

請求の範囲
[1] 生体試料から特定の糖鎖捕捉物質により糖鎖を捕捉する糖鎖捕捉段階と、
前記糖鎖が捕捉された糖鎖捕捉物質をォキシルァミノ基含有化合物と反応させて 、糖鎖とこのォキシルァミノ基含有化合物との複合体を形成する切出段階と を含む分析試料調製方法。
[2] 生体試料から特定の糖鎖捕捉物質により糖鎖を捕捉する糖鎖捕捉段階と、
前記糖鎖が捕捉された糖鎖捕捉物質を洗浄する洗浄段階と、
前記洗浄された糖鎖が捕捉された糖鎖捕捉物質をォキシルァミノ基含有化合物と 反応させて、糖鎖とこのォキシルァミノ基含有化合物との複合体を形成する切出段階 と
を含む分析試料調製方法。
[3] 請求項 1または 2に記載の分析試料調製方法にぉ 、て、
前記糖鎖捕捉段階で用いられる特定の糖鎖捕捉物質は、下記式 (1)で示される化 合物を用いた重合反応により得られるポリマーであることを特徴とする分析試料調製 方法:
R1 - B - A - B - R2 (1)
(式中、 R1は重合性基を表し、 R2はォキシルァミノ基含有基またはォキシルァミノ誘導 体含有基を表し、 Bはエステル基またはアミド基を表し、 Aは置換基を有していてもよ
V、炭素数 2〜 12のアルキレン基を表す)。
[4] 請求項 3に記載の分析試料調製方法にぉ 、て、
前記糖鎖捕捉段階で行われる糖鎖捕捉物質と生体試料との反応は、 pHが酸性条 件で行われることを特徴とする分析試料調製方法。
[5] 請求項 1〜4の ヽずれかに記載の分析試料調製方法にお!ヽて、
前記切出段階で反応させるォキシルァミノ基含有ィ匕合物は、下記式(2)で示される 化合物であることを特徴とする分析試料調製方法:
R11— ONH (2)
2
(式中、 R11は水素;あるいは置換基を有していてもよぐかつ、—O—, 一 S—, -NH —で中断されてもよい炭素数 1〜20の炭化水素基;あるいは置換基を有していてもよ い芳香環および必要に応じてこの芳香環とォキシルァミノ基とをつなぐリンカ一部分
Lを有する基であり、 Lは O , 一 S , 一 NH で中断されてもよぐおよび置換基 を有して!/、てもよ!/、炭素数 1〜10の炭化水素基;あるいはペプチド、オリゴペプチド およびそれら誘導体から選ばれる部分を含む基である)。
[6] 請求項 5に記載の分析試料調製方法にぉ 、て、
R11に含まれる水素原子のうち少なくとも 1つが重水素に置換されて 、ることを特徴と する分析試料調製方法。
[7] 請求項 5または 6に記載の分析試料調製方法にぉ 、て、
前記化合物中で R11は、アルギニン、トリプトファン、フエ-ルァラニン、チロシンおよ びこれら誘導体の少なくともひとつからなる部分を含むことを特徴とする分析試料調 製方法。
[8] 請求項 5〜7の 、ずれかに記載の分析試料調製方法にお!、て、
前記化合物は下記の構造を有することを特徴とする分析試料調製方法: CH O-X-COCH ONH
3 2 2
(式中、 Xはペプチド二量体力もなるリンカ一である)。
[9] 請求項 8に記載の分析試料調製方法にぉ 、て、
前記化合物は下記の構造を有することを特徴とする分析試料調製方法: (化 1)
Figure imgf000032_0001
[10] 請求項 5〜7の 、ずれかに記載の分析試料調製方法にお!、て、
前記化合物は下記の構造を有することを特徴とする分析試料調製方法: Y-X-COCH ONH
2 2
(式中、 Xはペプチド二量体からなるリンカ一であり、 Yは生体高分子と反応し得る官 能基である)。
[11] 請求項 10に記載の分析試料調製方法において、
前記化合物中で Yは、ヒドラジド基であることを特徴とする分析試料調製方法。
[12] 請求項 5または 6に記載の分析試料調製方法にぉ 、て、
前記化合物は、下記の構造を有する化合物のうち、いずれか一方であることを特徴 とする分析試料調製方法:
(化 2)
Figure imgf000032_0002
請求項 5または 6に記載の分析試料調製方法において、
前記ォキシルァミノ基含有化合物は、複合体を形成する糖鎖を標識化するための 標識化官能基を有することを特徴とする分析試料調製方法。
[14] 請求項 1〜13のいずれかに記載の分析試料調製方法において、
前記切出段階で行われる糖鎖が捕捉された糖鎖捕捉物質と、前記ォキシルァミノ 基含有化合物との反応は、 pHが中性付近の条件で行われることを特徴とする分析 試料調製方法。
[15] 請求項 1〜14のいずれかに記載の分析試料調製方法にて生体試料より調製され て得られる分析試料。
[16] 生体高分子と、ォキシルァミン基含有化合物とを反応させて得られる分析試料。
[17] 請求項 16に記載の分析試料であって、
前記ォキシルァミン基含有ィ匕合物は、下記式(2)で示される化合物であることを特 徴とする分析試料:
R11— ONH (2)
2
(式中、 R11は水素;あるいは置換基を有していてもよぐかつ、—O—, 一 S—, -NH —で中断されてもよい炭素数 1〜20の炭化水素基;あるいは置換基を有していてもよ い芳香環および必要に応じてこの芳香環とォキシルァミノ基とをつなぐリンカ一部分 Lを有する基であり、 Lは一 O—, 一 S—, 一 NH—で中断されてもよぐおよび置換基 を有して!/、てもよ!/、炭素数 1〜10の炭化水素基;あるいはペプチド、オリゴペプチド およびそれら誘導体から選ばれる部分を含む基である)。
[18] 請求項 17に記載の分析試料調製方法にぉ 、て、
R11に含まれる水素原子のうち少なくとも 1つが重水素に置換されて 、ることを特徴と する分析試料。
[19] 請求項 17または 18に記載の分析試料において、
前記化合物は、下記の構造を有する化合物のうち、いずれか一方であることを特徴 とする分析試料:
(化 3) 2
Figure imgf000034_0001
(r)
下記構造を有する生体高分子の分析試料調製用化合物: 糖鎖 -ΝΗΝΗ- X-COCH ONH
2 2
(式中、 Xはペプチド二量体力 なるリンカ一である)。
[21] 下記構造を有する生体高分子の分析試料調製用化合物: 蛍光物質- NHNH- X- COCH ONH
2 2
(式中、 Xはペプチド二量体力 なるリンカ一である)。
訂正された用紙 (規則 91)
PCT/JP2005/013808 2004-09-14 2005-07-28 分析試料調製方法および分析試料ならびに分析試料調製用化合物 WO2006030584A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006535070A JP4783292B2 (ja) 2004-09-14 2005-07-28 分析試料調製方法および分析試料ならびに分析試料調製用化合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-266222 2004-09-14
JP2004266222 2004-09-14
JP2005-033229 2005-02-09
JP2005033229 2005-02-09

Publications (1)

Publication Number Publication Date
WO2006030584A1 true WO2006030584A1 (ja) 2006-03-23

Family

ID=36059845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013808 WO2006030584A1 (ja) 2004-09-14 2005-07-28 分析試料調製方法および分析試料ならびに分析試料調製用化合物

Country Status (2)

Country Link
JP (1) JP4783292B2 (ja)
WO (1) WO2006030584A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156587A (ja) * 2007-12-25 2009-07-16 Sumitomo Bakelite Co Ltd 糖タンパク質糖鎖の分析方法
JP2009192337A (ja) * 2008-02-14 2009-08-27 Sumitomo Bakelite Co Ltd オキシルアミノ基含有化合物および標識化された標的化合物
JP2009216609A (ja) * 2008-03-12 2009-09-24 Sumitomo Bakelite Co Ltd 糖鎖試料調製方法
JP2009216608A (ja) * 2008-03-12 2009-09-24 Sumitomo Bakelite Co Ltd 試料調製方法
WO2009133696A1 (ja) * 2008-04-30 2009-11-05 住友ベークライト株式会社 糖鎖標識方法
JPWO2008018170A1 (ja) * 2006-08-09 2009-12-24 住友ベークライト株式会社 糖鎖捕捉物質およびその用途
WO2010018834A1 (ja) 2008-08-12 2010-02-18 国立大学法人 北海道大学 アンモニウム塩による還元性糖鎖遊離方法
CN105473553A (zh) * 2013-08-16 2016-04-06 住友电木株式会社 用于标记糖链试样的化合物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532874A (ja) * 2000-05-05 2003-11-05 プロティスタ インターナショナル アーベー 糖含有実体の分離

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532874A (ja) * 2000-05-05 2003-11-05 プロティスタ インターナショナル アーベー 糖含有実体の分離

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEYUKI SHIMAOKA: "Kosoku Tosa Kaiseki no Tameno Tosa Blotting-yo Kobunshi no Kaihatsu. ( Synthesis and Evaluation of Glyco-Blotting Polymer Particle - A New Methodology of High-troughput GlycopatterinIng)", POLYMER PREPRINTS, JAPAN, vol. 53, no. 2, 1 September 2004 (2004-09-01), pages 5376 - 5377, 2W09, XP002998300 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518495A3 (en) * 2006-08-09 2013-11-27 Sumitomo Bakelite Company, Ltd. Sugar chain-capturing substance and use thereof
US9714328B2 (en) 2006-08-09 2017-07-25 Sumitomo Bakelite Company, Ltd. Sugar chain-capturing substance and use thereof
JP2012177126A (ja) * 2006-08-09 2012-09-13 Sumitomo Bakelite Co Ltd 糖鎖捕捉物質およびその用途
JP2012184431A (ja) * 2006-08-09 2012-09-27 Sumitomo Bakelite Co Ltd 糖鎖捕捉物質およびその用途
US9340651B2 (en) 2006-08-09 2016-05-17 Sumitomo Bakelite Company Limited Sugar chain-capturing substance and use thereof
JPWO2008018170A1 (ja) * 2006-08-09 2009-12-24 住友ベークライト株式会社 糖鎖捕捉物質およびその用途
KR101433973B1 (ko) * 2006-08-09 2014-08-25 스미토모 베이클리트 컴퍼니 리미티드 당쇄 포착물질 및 그 용도
JP2012211134A (ja) * 2006-08-09 2012-11-01 Sumitomo Bakelite Co Ltd 糖鎖捕捉物質およびその用途
JP2012211133A (ja) * 2006-08-09 2012-11-01 Sumitomo Bakelite Co Ltd 糖鎖捕捉物質およびその用途
JP2009156587A (ja) * 2007-12-25 2009-07-16 Sumitomo Bakelite Co Ltd 糖タンパク質糖鎖の分析方法
JP2009192337A (ja) * 2008-02-14 2009-08-27 Sumitomo Bakelite Co Ltd オキシルアミノ基含有化合物および標識化された標的化合物
JP2009216609A (ja) * 2008-03-12 2009-09-24 Sumitomo Bakelite Co Ltd 糖鎖試料調製方法
JP2009216608A (ja) * 2008-03-12 2009-09-24 Sumitomo Bakelite Co Ltd 試料調製方法
CN102144164A (zh) * 2008-04-30 2011-08-03 住友电木株式会社 标记糖链的方法
JP5500067B2 (ja) * 2008-04-30 2014-05-21 住友ベークライト株式会社 糖鎖標識方法
US8828732B2 (en) 2008-04-30 2014-09-09 Sumitomo Bakelite Co., Ltd. Method of labeling sugar chain
WO2009133696A1 (ja) * 2008-04-30 2009-11-05 住友ベークライト株式会社 糖鎖標識方法
WO2010018834A1 (ja) 2008-08-12 2010-02-18 国立大学法人 北海道大学 アンモニウム塩による還元性糖鎖遊離方法
CN105473553A (zh) * 2013-08-16 2016-04-06 住友电木株式会社 用于标记糖链试样的化合物

Also Published As

Publication number Publication date
JPWO2006030584A1 (ja) 2008-05-08
JP4783292B2 (ja) 2011-09-28

Similar Documents

Publication Publication Date Title
WO2006030584A1 (ja) 分析試料調製方法および分析試料ならびに分析試料調製用化合物
JP5301706B2 (ja) 糖鎖捕捉物質およびその用途
JP5026070B2 (ja) ポリマー粒子
de Paz et al. Exploration of the use of an acylsulfonamide safety-catch linker for the polymer-supported synthesis of hyaluronic acid oligosaccharides
JP5115988B2 (ja) 分析試料調製方法および分析試料ならびに糖鎖捕捉物質
Meinjohanns et al. Versatile solid-phase thiolytic reduction of azido and N-Dts groups in the synthesis of haemoglobin (67–76) O-glycopeptides and photoaffinity labelled analogues to study glycan T-cell specificity
EP0175290A2 (de) Glycopeptide, Verfahren zu ihrer Herstellung und ihre Verwendung
JP5289707B2 (ja) オキシルアミノ基含有化合物
JPWO2015108020A1 (ja) 組成物、糖鎖試料の調製方法及び糖鎖の分析方法
EP3034495A1 (en) Compound for labelling sugar chain sample
JP2017025177A (ja) 組成物、組成物の製造方法、糖鎖試料の調製方法及び糖鎖の分析方法
REAL FERNANDEZ Modified Glycopeptides to Investigate Antigen-Antibody Interaction in Multiple Sclerosis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535070

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase