WO2006030494A1 - 樹脂膜の形成方法及び装置 - Google Patents

樹脂膜の形成方法及び装置 Download PDF

Info

Publication number
WO2006030494A1
WO2006030494A1 PCT/JP2004/013377 JP2004013377W WO2006030494A1 WO 2006030494 A1 WO2006030494 A1 WO 2006030494A1 JP 2004013377 W JP2004013377 W JP 2004013377W WO 2006030494 A1 WO2006030494 A1 WO 2006030494A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
resin film
speed
adhesive
Prior art date
Application number
PCT/JP2004/013377
Other languages
English (en)
French (fr)
Inventor
Hideo Kobayashi
Takayuki Suzuki
Naoto Ozawa
Original Assignee
Origin Electric Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Company, Limited filed Critical Origin Electric Company, Limited
Priority to PCT/JP2004/013377 priority Critical patent/WO2006030494A1/ja
Priority to US11/575,107 priority patent/US20080057181A1/en
Priority to CN2004800439704A priority patent/CN101018616B/zh
Priority to DE112004002964.3T priority patent/DE112004002964B4/de
Publication of WO2006030494A1 publication Critical patent/WO2006030494A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/10Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes

Definitions

  • the present invention relates to a method and apparatus for forming a resin film suitable for forming a resin film having a substantially uniform film thickness between or on substrates such as a DVD optical disk substrate.
  • an optical disc such as a DVD has a structure in which two transparent substrates are bonded together with an adhesive.
  • a substrate there is a substrate in which a recording layer including a reflective layer or a semi-transmissive film is formed only on one side, or a substrate in which a recording layer is formed on both substrates.
  • the thickness of both substrates is the same, or the recording layer is formed! /, N! /
  • the substrate is a thin light-transmitting protective layer, and a transparent sheet is used.
  • a bonded disc particularly in an optical disc such as a DVD
  • two substrates are stacked with an adhesive, and then rotated at a high speed so that the adhesive is evenly distributed between the substrates.
  • the adhesive is spread out and the excess adhesive is shaken off, and then the adhesive is cured in a short time by irradiating ultraviolet rays from one side or both sides of the substrate.
  • UV irradiation UV irradiation is performed continuously for a predetermined time using a UV lamp, or UV irradiation is performed using a xenon lamp.
  • the thickness of the light transmission protective layer consisting of the adhesive layer and the sheet or the light transmission protective layer that can be used only by the transparent resin layer is as thin as 0.1 mm.
  • the non-uniformity of the oil layer thickness has a major impact and greatly affects the quality of next-generation large-capacity optical disks.
  • HD DVD has a thickness of 0.6 mm on both substrates to be bonded and is the same as a normal DVD.
  • the thickness of the adhesive for bonding them should be uniform with sufficiently high accuracy. In other words, the uniformity of the adhesive thickness greatly affects the quality of the next generation large capacity optical disc.
  • the present invention has been made in order to solve the conventional problems, and in the process in which the liquid material placed on the substrate is spread by high-speed rotation, the film of the liquid material on the entire surface of the substrate is provided.
  • the object is to make the thickness uniform.
  • the method for forming a resin film according to the first aspect includes a step of spreading the liquid material supplied to the substrate by high-speed rotation and a step of rotating the liquid material alternately at a plurality of times, and By sequentially shifting the irradiation position of the light beam from the inner peripheral side to the outer peripheral side of the substrate during rolling, the liquid substance is sequentially semi-cured or cured by the inner peripheral side force.
  • the film thickness of the liquid material on the entire surface of the substrate can be made uniform.
  • the liquid material is spread during high-speed rotation, and light is irradiated when the liquid material is not substantially spread, and the portions that have reached a predetermined thickness are sequentially cured or semi-cured to obtain a thickness. Therefore, the film thickness can be made more uniform, and a light emitting means with low light emission energy can be used, and the thermal influence on the substrate can be reduced.
  • the effect of semi-curing or curing is ensured, unevenness in the circumferential direction is less likely to occur, and the adhesive that has been cured has started. Since the agent does not release the substrate force, there is also an advantage that it becomes easy to reuse the adhesive released from the substrate cover.
  • the time for performing the low-speed rotation is preferably set to a length required for semi-curing or curing the liquid substance. In this case, it is possible to semi-cure or harden the resin film where light irradiation is required in a short time, and to minimize the thermal influence on the substrate.
  • the low-speed rotation is a rotation speed such that the liquid substance is not substantially spread by the centrifugal force.
  • the resin film is not spread during low-speed rotation, a resin film having a more uniform film thickness can be formed.
  • the liquid substance may be a photo-curing adhesive supplied between a transparent first substrate and a second substrate.
  • the liquid substance may be a transparent synthetic resin material that forms a light transmission protective layer.
  • the supplied liquid substance is irradiated with light rays continuously or intermittently onto a portion where the liquid material is spread by the high-speed rotation and has a predetermined thickness, thereby sequentially starting from the inner periphery side.
  • the thickness of the film may be fixed. According to this method, in the process in which the liquid material is spread by high-speed rotation, the portions having almost the predetermined thickness are sequentially cured or semi-cured to determine the thickness.
  • the film thickness of the liquid material can be made uniform.
  • the film thickness of the spread liquid substance is detected, and when the film thickness reaches a set thickness, A resin film having a substantially uniform thickness may be formed by irradiating the thickened portion with the light beam.
  • the thickness of the liquid material can be made uniform over the entire surface of the substrate because the thickness of the liquid material is determined by sequentially curing or semi-curing portions where the liquid material has reached a predetermined thickness.
  • the resin material may further include a step of irradiating the entire surface of the resin film with light.
  • the resin film having a uniform film thickness on the entire surface of the substrate can be completely cured.
  • the resin film forming apparatus of the present application includes a spinner that rotates and spreads a liquid material supplied to a substrate, a rotation control device that controls a rotation speed of the spinner, and the liquid material by the spinner. And a selective light irradiation means that sequentially shifts the irradiation of light from the inner circumference side to the outer circumference side in the process of spreading the spinner, and the rotation speed of the spinner is alternately rotated at a plurality of times of high speed rotation and low speed rotation. And performing irradiation of the light beam during the low-speed rotation, and semi-curing or curing the liquid substance from the inner peripheral side.
  • the liquid material is spread during high-speed rotation, and light is irradiated when the liquid material is not substantially spread, and the portions having almost the predetermined thickness are sequentially cured or semi-cured to obtain a thickness. Therefore, the film thickness can be made more uniform, and a light emitting means with low light emission energy can be used, and the thermal influence on the substrate can be reduced.
  • the selective light irradiating means includes a light emitting means and a mechanical shirt that is formed by opening a central hole continuously or intermittently, and from the light emitting means as the central hole opens.
  • the irradiation surface area of the light beam may expand toward the outer peripheral side of the substrate. In this case, the portion where the liquid material has reached a predetermined thickness is sequentially cured or semi-cured to thicken it. Therefore, an apparatus capable of forming a liquid material film with a uniform film thickness on the entire surface of the substrate can be provided.
  • the selective light irradiation means is a light emitting lamp including a semiconductor light emitting element in which a plurality of concentric circular arrays are arranged, and is arranged on the outer peripheral side from the semiconductor light emitting element arranged on the inner peripheral side.
  • a resin film having a substantially uniform thickness may be formed by sequentially emitting light toward the semiconductor light emitting element.
  • the adhesive spreading from the inner peripheral side toward the outer peripheral side can be partially cured in the order of the inner peripheral side force.
  • a semiconductor light emitting element such as a light emitting diode is used as the light emitting means, the life is long without being affected by the heat on the substrate, and the cost effect is great.
  • the selective light irradiating means is a light emitting means which is located at a position facing the central hole of the substrate and can move substantially perpendicularly to the surface of the substrate, and the substrate is rotated by the spinner. In the process of spreading the adhesive, the light emitting means may move away from the substrate. In this case, even if an ultraviolet irradiation lamp is used as the light emitting means, the mechanical shirter can be omitted, so that the cost effect is great and the apparatus can be downsized.
  • the selective light irradiating means is a light emitting means for generating spot light, and in the process of rotating the substrate by the spinner to spread the adhesive, the spot light is emitted from the substrate.
  • the circumferential force may also be moved to the outer circumferential side.
  • the spot-like light can be irradiated, the adhesive spreading toward the outer peripheral side can be partially cured in order of the inner peripheral side force.
  • mechanical mechanical adjustment for adjusting the irradiation light can be omitted, the cost effect is great and the apparatus can be downsized.
  • a resin film forming apparatus includes a spinner that spreads a liquid substance supplied to a substrate by rotating at high speed, and a rotation control device that controls the rotation speed of the spinner. And a light irradiation means for sequentially shifting from the inner circumference side toward the outer circumference side in the process of spreading the liquid substance by the spinner, and a plurality of rotation speeds of the spinner alternating between high-speed rotation and low-speed rotation.
  • the liquid substance is semi-cured or cured from the inner periphery side by rotating the light beam during the low-speed rotation.
  • the liquid material is spread during high-speed rotation, and light is irradiated when the liquid material is not substantially spread, and the portions having almost the predetermined thickness are sequentially cured or semi-cured to obtain a thickness. Therefore, the film thickness can be made more uniform, and a light emitting means with low light emission energy can be used, and the thermal influence on the substrate can be reduced.
  • the portions having the predetermined thickness are sequentially cured or semi-cured to determine the thickness.
  • the film thickness of the liquid material can be made uniform.
  • FIG. 1 is a cross-sectional view showing a process of superimposing two substrates of an optical disc with an adhesive.
  • FIG. 2 is a cross-sectional view of a first embodiment of a method and apparatus for forming a resin film according to the present invention.
  • FIG. 3 is a cross-sectional view showing a state where the shirt is opened in the first embodiment.
  • FIG. 4 is a graph showing the rotation speed and the timing of light irradiation.
  • FIG. 5 is a plan view showing a light irradiation area on the disc.
  • FIG. 6 is a plan view showing a shirt according to a second embodiment of the method and apparatus for forming a resin film according to the present invention.
  • FIG. 7 is a cross-sectional view showing a state where the shirt is closed.
  • FIG. 8 is a cross-sectional view showing a state where the shirt is opened.
  • FIG. 9 is a cross-sectional view of another embodiment of the method and apparatus for forming a resin film according to the present invention.
  • FIG. 10 is a cross-sectional view of another embodiment of the method and apparatus for forming a resin film according to the present invention.
  • FIG. 11 is a plan view showing the arrangement of light emitting diodes.
  • FIG. 12 is a cross-sectional view of a light emitting mechanism.
  • FIG. 13 is a graph illustrating an example of disk rotation control.
  • FIG. 14 is a front view showing another embodiment of the method and apparatus for forming a resin film according to the present invention.
  • FIG. 15 is a graph for explaining another example of disk rotation control.
  • FIG. 16 is a cross-sectional view of a light irradiation apparatus in another embodiment of the method and apparatus for forming a resin film according to the present invention.
  • FIG. 17 is a plan view showing movement of a light irradiation position.
  • FIG. 18 is a cross-sectional view showing movement of a light irradiation position.
  • FIG. 19 is a graph showing the effect of the present invention.
  • FIG. 20 is a graph showing the effect of the present invention.
  • FIG. 21 is a cross-sectional view showing a state in which a liquid substance is arranged on a cap in another embodiment of the present invention.
  • FIG. 22 is a cross-sectional view showing a step of performing light irradiation while spreading a liquid substance.
  • FIG. 23 is a cross-sectional view showing a step of curing the spread liquid material.
  • FIG. 24 is a cross-sectional view showing a process of dropping an adhesive again on the formed resin layer.
  • FIG. 25 is a cross-sectional view showing a step of spreading the adhesive by placing a disk on the dropped adhesive.
  • FIG. 1 shows two substrates 1A and 1B (for example, made of polycarbonate) arranged opposite to each other before being superposed, and one substrate 1A is supplied with adhesive 1C as a liquid material in an annular shape.
  • adhesive 1C as a liquid material in an annular shape.
  • the adhesive layer when the adhesive layer reaches a desired thickness in the process of moving the adhesive 1C to the outer peripheral side by high-speed rotation, the adhesive layer is irradiated with light sequentially from the inner periphery to the outer periphery to be semi-cured or Harden.
  • the adhesive layer does not move to the outer peripheral side due to the centrifugal force caused by the subsequent high-speed rotation, it is possible to form a resin film having a substantially uniform thickness. Not only when two substrates are bonded together, but also when a resin film made of a liquid material is formed on one substrate.
  • Curve C in Fig. 12 shows an example of film thickness characteristics when the present invention is applied. Indicates.
  • FIG. 2 and 3 show a first embodiment in which an optical disk is bonded using a mechanical-calculator and an irradiation lamp.
  • Fig. 2 shows the initial state where the irradiation port of the mechanical shotta is getting smaller
  • Fig. 3 shows the state where the irradiation port of the mechanical shotter is enlarged to the maximum.
  • the substrate 1 is a laminate of substrates 1A and IB (see FIG. 1).
  • the substrates 1A and IB have a central hole X, and the central hole X side is referred to as an inner peripheral side, and the outer peripheral end Y side is referred to as an outer peripheral side.
  • the recording layer including the reflective film is formed only on one substrate, the recording layer is not formed on the substrate 1B, and the recording layer including the reflective film is formed on the substrate 1A.
  • a recording layer including a semi-transmissive film is formed on the substrate 1B, and a recording layer including a reflecting film is formed on the substrate 1A.
  • the spinner 2 is a conventional one that has been used conventionally, and can rotate the substrate cradle 3 at a high speed of several thousand revolutions or more.
  • a mechanical shirter 5 is horizontally disposed immediately above the coater house 4 of the spinner 2, and an irradiation lamp 6 such as a discharge lamp or a xenon lamp is provided thereon.
  • the mechanical calcutter 5 has a mechanism in which the central irradiation port 5A is continuously opened or opened stepwise.
  • a plurality of metal plates are arranged in a circular shape, and each metal plate is moved continuously or stepwise to the outer periphery at the same speed.
  • the central hole that becomes 5A may be expanded continuously or stepwise! /.
  • the mechanical-shutter 5 is driven by a shutter drive device 7 such as a small cylinder that advances or retracts individual metal plates in the radial direction.
  • the shotta drive device 7 is a signal from the shutter control device 8. Be controlled.
  • the control device 8 includes a CPU (not shown), and the memory stores data obtained with a large amount of experimental power in advance.
  • the data includes the rotation speed of the spinner 2, the viscosity of the adhesive 1C used, characteristics such as wettability to the substrate, and the spreading speed of the adhesive corresponding to various conditions such as ambient temperature and humidity. That is, it includes data on the relationship between the position on the outer periphery side where the set thickness of the adhesive 1C supplied in an annular shape and time are included. With this data, after the start of high-speed rotation, the time when the set thickness of the adhesive layer at each point in the radial direction of the substrate is obtained. Therefore, by inputting the above conditions to a CPU (not shown), the optimum enlargement speed of the irradiation port 5A of the mechanical shirter 5 can be obtained.
  • an irradiation lamp 6 having a large ultraviolet irradiation energy, which is generally used in the field of manufacturing optical disks, is used.
  • a feature of the present invention is that the substrate 1 is rotated at a high speed to spread the liquid material C supplied to the inner peripheral side of the substrate 1, and the substrate 1 is rotated at a low speed to spread the liquid material C.
  • the substrate 1 is rotated at a high speed to spread the liquid material C supplied to the inner peripheral side of the substrate 1, and the substrate 1 is rotated at a low speed to spread the liquid material C.
  • FIG. 4 is a graph showing an example of the relationship between the rotation speed of the substrate 1, the elapsed time from the start of rotation, and the light irradiation timing
  • FIG. 5 is a plan view showing the light irradiation range on the substrate 1. is there.
  • the substrate 1 bonded with the adhesive 1C sandwiched is first rotated for a certain time at the first high-speed rotation speed VI, and at this time, the adhesive disposed on the inner peripheral side of the substrate 1 1C reaches the outer peripheral side at once, and excess adhesive is released from the outer peripheral edge of the substrate 1.
  • the released adhesive is received at the coater house 4.
  • the substrate rotation speed is reduced to the low speed rotation speed VL or less, and the irradiation lamp 6 is turned on while the low speed rotation speed is VL or less, or during a part of the time zone therebetween.
  • the substrate rotation speed is kept at a minimum value for a certain period of time and then turns to acceleration. When it reaches a minimum value, it immediately turns to acceleration again, and is accelerated to the second high-speed rotation speed V2.
  • the second and subsequent high-speed rotation speeds V2–V5 may be smaller than the first high-speed rotation speed VI. It is no longer necessary to shake off excess adhesive.
  • Substrate rotation speed reaches V2, then V2 for a certain time
  • the force to turn to deceleration after being held, the value will turn to deceleration as soon as V2 is reached. That is, the high speed rotation and the low speed rotation are repeated as follows. 0 ⁇ V1 ⁇ VL or less (R1 is irradiated) ⁇ V 2 ⁇ VL or less (R2 is irradiated) ⁇ V3 ⁇ VL or less (R3 is irradiated) ⁇ V4 ⁇ VL or less (R4 is irradiated) ⁇ V5 ⁇ 0
  • high-speed rotation is performed 5 times, and irradiation is performed 4 times.
  • the preferred number of exposures is 2-6.
  • the irradiation lamp 6 is turned on at the time when it becomes VL or less, except immediately after the start of rotation and immediately before the stop of rotation.
  • the first to fourth irradiation areas R1–R4 expand in stages as shown in Figure 5.
  • the movement distance and irradiation time of this irradiation area can be set by experimentally finding in advance the location where the adhesive thickness becomes predetermined as the adhesive spreads and the irradiation time required for fixing the adhesive. Should. Adhesive fixation is defined as semi-curing or curing to such an extent that spreading does not proceed substantially even at high speeds.
  • the substrate 1 is rotated at a high speed to spread the adhesive 1C, and then rotated at a low speed to generate ultraviolet rays.
  • the irradiation port 5A of the mechanical shirter 5 is opened to a position corresponding to a radius of 20 mm while irradiating the surface, and the adhesive layer distributed within the radius of 20 mm is semi-cured or cured.
  • the one-sided irradiation was stopped, and the substrate 1 was rotated again at a high speed to further spread the adhesive 1C having a radius of 20 mm or more, and then rotated at a low speed to achieve a radius of 30 mm while irradiating ultraviolet rays.
  • the irradiation port 5A of the mechanical shirter 5 is opened to the position where it hits, and the adhesive layer is semi-cured or hardened. In this way, high-speed rotation and low-speed rotation are alternately repeated, and ultraviolet rays are irradiated in a state of low-speed rotation at respective positions including radii of 20 mm, 30 mm, and 45 mm.
  • the inner peripheral adhesive can be completely cured from the semi-cured state.
  • the irradiation does not have to be continuously performed during the low-speed rotation period P1-P4. Irradiation may be performed only during a part of each time period, or irradiation may be discontinuous such as in a pulse form.
  • the substrate rotation speed is not limited, the number of rotations at a high speed is generally adjusted in the range of 1,000-1, 2, OOOr. P. M.
  • the low-speed rotation speed VL at the time of irradiation is preferably about 100-600 rpm.
  • the maximum speed V2—V5 may be reduced step by step.
  • the number of substrate rotations required to generate the same centrifugal force is a force that becomes smaller toward the outer peripheral side of the substrate.
  • the light irradiation time in each low-speed rotation time zone P1-P4 may be gradually increased. This is because the irradiation energy density of light per unit area decreases as the region to be irradiated moves to the outer peripheral side.
  • FIG. 6 is a plan view of the mechanical shirter 50 of this example
  • FIG. 7 is a state where the slit part forming the irradiation port is closed
  • FIG. 8 is a state where the slit part forming the irradiation port is opened. Show.
  • the mechanical shirter 50 of this embodiment includes a disk-shaped fixed shirter member 50A located on the lower side, and a plurality of movable annular shirter members 50B disposed thereon.
  • the fixed shutter member 50A has a plurality of concentric circular tracks, and in each track, a blind portion a without a hole and a slit portion b with a hole are alternately arranged.
  • the movable annular shirter member 50B is an annular metal plate having a constant width and is rotatably disposed on each track of the fixed shirter member 50A.
  • Each movable annular shirter member 50B includes a member for each track. Corresponding to the pillow part a and the slit part b, the blind part a 'and the slit part b are alternately formed!
  • An annular guide member 50C protruding upward is provided at a position where the tracks 51, 52,... Of the fixed shirt member 50A are divided.
  • the guide member 50C guides the movable annular shirter member 50B so that it can move in the circumferential direction so as not to disengage the force S and the track force.
  • Each track 51, 52... Has a rectangular shape with a circumferential length L and a radial width W.
  • Shaped slits b are formed at regular intervals.
  • the area between the slit part b and the adjacent slit part b is the blind part a, and the distance between the slit part b and the slit part b, that is, the circumferential length of the blind part a is the circumference of the slit part b. It is somewhat larger than the length L in the direction.
  • the fixed-shutter member 50A has a fixed width of each of the tracks 51, 52,..., And has a blind portion a 'and a slit portion b' having approximately the same size as the blind portion a and the slit portion b.
  • Each movable annular shirter member 50B is moved clockwise and counterclockwise by a distance approximately equal to one slit portion b 'according to the guide member 50C. Can do.
  • the movable annular shirter member 50B if the movable annular shirter member 50B is sequentially operated in order from the track on the inner peripheral side and the slit portion b 'is matched with the slit portion b, the light irradiation region Can be shifted to the outer peripheral side sequentially.
  • the operation timing of the movable annular shirt member 50B is synchronized with the timing when the adhesive is spread by the centrifugal force and the adhesive layer reaches the set thickness. Actually, there is a delay in the operation of the mechanical shirter 50 and the driving device 7, and the driving timing is determined in consideration of these.
  • the movement of the movable annular shirter member 50B is performed by the shirter driving device 7 and the shirter control device 8 shown in Figs.
  • the shatter drive device 7 is composed of a combination of a cam and a motor (not shown), or a plurality of small cylinder devices, etc., and opens or closes the irradiation port by moving it by one slit in the circumferential direction. Can do.
  • the movable annular shirt member 50B in which the slit b is aligned with the slit b and the irradiation port is opened may be left as it is, or the irradiation port is closed after a certain period of time.
  • the ultraviolet irradiation region becomes discontinuous from the inner side to the outer side of the substrate, but the adhesive layer of the portion irradiated with the ultraviolet ray is semi-cured or cured, The uncured adhesive on the inner peripheral side is also prevented from moving by centrifugal force.
  • the light irradiation position is also discontinuous in the circumferential direction, but in order to prevent curing unevenness, the blind portion a and the slit portion b of the fixed shirt member 50A and the blind portion a of the movable annular shirt member 50B are a. What is necessary is just to make length of 'and the slit part b' small suitably.
  • the blind portion a and the slit portion b of the fixed shirt member 50A are alternately arranged in the substrate radial direction. This is preferable because the movement of the adhesive layer portion not irradiated with ultraviolet rays can be suppressed without problems.
  • a cooling mechanism for reducing the thermal influence on the substrate 1 and the wavelength selective filter 9 It is equipped with.
  • a wavelength selection filter 9 that cuts a specific wavelength such as an infrared wavelength is provided between a discharge lamp 6 'capable of continuously generating ultraviolet rays and a mechanical shirter 5, and the heat-resistant glass 10 is a mechanical-cutter 5 And spinner 2.
  • the left and right directions of the drawing are opened and the front and back sides of the drawing are closed so as to form a wind tunnel that surrounds the mechanical shatter 5, and the cooling air flows to the right as indicated by the arrows in the drawing. ! /
  • the wavelength selective filter 9 that cuts a specific wavelength such as the infrared wavelength is used as a member constituting the wind tunnel, thereby removing the infrared rays that become heat and effectively flowing the cooling air.
  • the Calcutta 5 is effectively cooled, and at the same time, the wavelength selective filter 9 is also cooled. Therefore, in this embodiment, the influence of heat on the substrate 1 can be reduced.
  • the wavelength selective filter 9 may be a heat resistant glass plate only for forming a wind tunnel. Since the operation of the mechanical filter 5 is the same as that of the above embodiment, the description thereof is omitted.
  • a substrate is used. It is characterized by having almost no thermal effect on
  • the spreading of the adhesive by high-speed rotation and the interruption of the spreading are repeated alternately, and the spreaded adhesive part is semi-cured by irradiating light when the spreading is interrupted.
  • the adhesive is spread to a predetermined thickness from the circumferential side to the outer circumferential side and semi-cured repeatedly.
  • the light beam means light having a wavelength band effective for the curing reaction of the adhesive or resin used.
  • the semiconductor light-emitting lamp 11 is disposed immediately above the substrate 1.
  • the semiconductor light-emitting lamp 11 includes a large number of light-emitting diodes 11a as light-emitting semiconductor elements and a support member ib that supports them.
  • a large number of light emitting diodes 11a are arranged close to each other, and are attached to the support 1 lb so that the light emitting surfaces H of the large number of light emitting diodes 11a are all in the same plane.
  • the arrangement of multiple light emitting diodes 1 la is preferably concentric.
  • the light emitting diodes 1 la are preferably connected in parallel.
  • the light emitting diodes may not necessarily be provided to face the entire surface of the substrate 1 but may be arranged so as to form a part of the entire circumference, for example, a 120 degree fan shape. Further, there may be an interval between the annular light emitting diodes adjacent to each other in the radial direction. For example, a plurality of annular light emitting diodes may be provided at intervals.
  • each light emitting diode 11a is connected to the negative electrode of the DC power source 12, and the anode side thereof is connected to the DC power source 12 via the protective resistor 13 and the switching device 14. Connected to the positive electrode.
  • the switching control device 14 opens and closes the circuit at a fixed cycle in the simplest case, but it may include a simple sequencer or CPU to sequentially connect and open a plurality of light emitting diodes 11a. is there.
  • the light emitting surface H of each light emitting diode 1 la is not in contact with the upper surface of the substrate 1, and the efficiency is improved as the distance between the light emitting surface H and the upper surface of the upper substrate 1 is as narrow as possible.
  • the distance between the light emitting surface H and the upper surface of the substrate 1 should be 10 mm or less, preferably in the range of 1 to 7 mm.
  • the light emitting diode used here is much smaller than the ultraviolet energy generated by the ultraviolet irradiation lamp, so that light emitting in the wavelength region of 280 nm or more and 600 ⁇ m or less semi-cures the adhesive. It is effective for.
  • This apparatus is a rotary drive device such as a motor that rotates the substrate cradle 3 through the rotary shaft 15. And a rotation control device 17 that controls the rotation drive device 16.
  • the substrate cradle 3 is rotated by alternately repeating high-speed rotation and low-speed rotation. Any high-speed rotation can be performed at a constant rotation speed vl of about 1,000 – 12, OOOr. Pm.
  • the adhesive is spread to the outer periphery side at this high-speed rotation time T1, and at a low-speed rotation time T2.
  • the spreading of the adhesive layer is temporarily interrupted so that the adhesive is semi-cured so that the spread adhesive layer is not further spread by subsequent high speed rotation.
  • each low-speed rotation time T2 is a rotation speed at which the spread of the adhesive is not substantially performed. As a specific example, it is 100-600 rpm.
  • each low-speed rotation period T2 is longer than each high-speed rotation time T1 because the ultraviolet energy emitted from the semiconductor light-emitting lamp 11 is weak and it takes time to semi-cure the adhesive layer.
  • a substrate having a radial force of 1 ⁇ 2 mm is irradiated with ultraviolet rays over a width of several mm at positions on the circumference corresponding to 20 mm, 30 mm, and 45 mm.
  • the rotation speed, the length of time T1 and T2, and the like can be adjusted by the rotation control device 17.
  • the rotation control device 17 includes a number of rotation models (high-speed rotation speed vl, low-speed rotation speed v2, and so on) that are suitable for characteristics including the viscosity of the adhesive, ambient environmental conditions, etc. (Combinations such as the length of each time)), and the rotation model that fits various conditions by inputting data such as the key for the operator to select the rotation model or the characteristics of the adhesive. Is automatically selected. It should be noted that the high-speed rotation speed and the low-speed rotation speed at each position need not be the same, and the rotation speeds may be suitable.
  • an operator inputs necessary data such as adhesive viscosity to a CPU (not shown) of the rotation control device 17.
  • This input data depends on the required film thickness accuracy.
  • a rotation model that matches within the rotation control device 17 is selected.
  • the rotation control device 17 sends a control signal to the rotation drive device 16, and the rotation of the rotation drive device 16 causes the substrate cradle 2 to perform the first high-speed rotation according to the selected rotation model.
  • This high-speed rotation time T1 is a light emitting array arranged in an annular shape on the innermost side of the semiconductor light emitting lamp 11. Substrate facing the photodiode 11a
  • the length is such that the thickness of the adhesive layer in the surface area is almost a predetermined thickness.
  • the switching control device 14 Immediately after the period T1, the switching control device 14 operates immediately after moving to the first low-speed rotation or at the time of high-speed rotation, and the light-emitting diodes 11a arranged in an annular shape on the innermost side of the semiconductor light-emitting lamp 11 Make it emit light. Actually, immediately after the rotation control device 17 sends a high-speed rotation drive signal to the rotation drive device 16, or after a delay of time T1, a signal S is given to the switching control device 14 to operate it.
  • the ultraviolet light from the semiconductor light-emitting lamp 11 causes the adhesive layer having a substantially predetermined thickness in the substrate surface area facing the light-emitting diode 11a to be in a semi-cured state, and does not move to the outer peripheral side by centrifugal force due to high-speed rotation thereafter.
  • the second high-speed rotation is started, and the adhesive is spread again to a predetermined thickness within a certain range.
  • This range corresponds to the substrate surface area facing the light emitting diode 11a arranged second inside the semiconductor light-emitting lamp 11 that emits light for the second time, and the adhesive layer in the substrate surface area is semi-cured.
  • the adhesive layer of the annular surface area having a width extending from the inner periphery to the outer periphery is spread and semi-cured to a predetermined thickness, and the predetermined thickness is determined.
  • an adhesive layer having a uniform thickness as a whole is formed so as not to be affected by centrifugal force due to subsequent high-speed rotation.
  • the semiconductor light-emitting lamp 11 located on the inner peripheral side has started to emit light, it is preferable to emit light to promote curing until the bonding process for one substrate is completed. ,. This is because the irradiation energy of the light emitting diode is small and the thermal adverse effect is small.
  • a laser diode that generates ultraviolet rays having a wavelength region of 280 nm or more and 600 nm or less can be used instead of the light emitting diode.
  • the cost is high, the low-speed rotation time can be shortened, and the time required for the optical disc bonding process can be shortened.
  • one piece on each circumference or several pieces at equal intervals may be arranged.
  • FIG. 14 shows an embodiment using a light irradiation member 18 to which a plasma display technology or the like is applied instead of the semiconductor light emitting lamp of the above embodiment. Same symbols used in previous examples The same symbol indicates a similar member.
  • the plasma display panel has a large number of electrodes arranged in a predetermined arrangement, and it is well known that only a portion where a voltage is applied between the electrodes emits light. .
  • This embodiment uses such a function.
  • the filter material for cutting ultraviolet rays is removed, and the ultraviolet rays are easily emitted to the outside.
  • the light beam irradiating member 18 that also serves as the plasma means force is preferably arranged at a distance of about 17 mm from the substrate 1, and is sequentially applied by the irradiation pattern control device 19 toward the inner peripheral side force and the outer peripheral side as in the previous embodiment. Shift the irradiation area. At that time, high-speed rotation and low-speed rotation are performed alternately. Since the rotation control is the same as in the above embodiment, the description thereof is omitted.
  • the irradiation pattern control device 19 has a plurality of irradiation patterns (irradiation width, each irradiation time, each of which are adapted to the characteristics including the viscosity of the adhesive, ambient environmental conditions, etc., from various experiments performed in advance. (Irradiation stop time, etc.) data is stored, and the operator selects the irradiation pattern automatically or selects the irradiation pattern that meets the various conditions by entering data such as the adhesive characteristics. To do.
  • Each irradiation time and each irradiation pause time should be set in conjunction with the high-speed rotation time T1 and low-speed rotation time T2 in the rotation model selected in the rotation control measure 17.
  • the rotation control device 17 gives a drive signal to the rotation drive device 16 to cause the substrate cradle 3 to perform the first high-speed rotation, as shown in FIG.
  • the control signal S is received from the rotation control device 17 after the high-speed rotation time T1.
  • the irradiation pattern control device 19 causes the pixels in the circumferential region of the light irradiation member 18 located on the innermost side according to the irradiation pattern to emit light during the first low-speed rotation time T2 of the substrate cradle 3. .
  • the ring portion of the innermost adhesive is semi-cured by receiving the ultraviolet light generated by the light emission.
  • the irradiation pattern control device 19 stops the irradiation of the light beam irradiation member 18, and when the second low-speed rotation time is reached, the light irradiation is performed according to the irradiation pattern. Pixels (not shown) in the circumferential portion located on the second inner peripheral side of the member 18 are caused to emit light. Thereafter, such an operation is repeated, and the adhesive layer is semi-cured to the outermost side of the substrate 1. After pressing, the substrate is transferred to another position (not shown), and the entire surface of the adhesive layer is cured by irradiating the entire surface with ultraviolet rays.
  • the light-emitting portion of the light irradiation member 18 is in a light-emitting state until the end of each bonding step from the viewpoint of promoting curing.
  • the light irradiation member 18 used in this embodiment preferably has a structure in which annular electrodes having different radii are arranged at regular intervals.
  • the adhesive layer of the annular surface area having a width in which the inner peripheral force is also directed toward the outer periphery is spread to a predetermined thickness. Then, by semi-curing and sequentially determining the predetermined thickness, it is possible to prevent the influence of centrifugal force due to subsequent high-speed rotation, and to form an adhesive layer having a uniform thickness as a whole.
  • FIG. 15 shows a rotational speed control program in this embodiment
  • FIG. 16 shows a sectional view of the apparatus.
  • Figures 17 and 18 show changes in the light irradiation positions P1 to P4.
  • FIG. 19 shows the relationship between an arbitrary position in the radial direction of the substrate and the film thickness of the resin film according to this example.
  • the end of the optical fiber 20 is vertically arranged, and the ultraviolet rays supplied from the ultraviolet light source 21 are spot-shaped on the adhesive 1 C spread between the substrates 1 A and 1 B. Irradiate.
  • the irradiation control device 22 controls the ultraviolet light source 21 to control ultraviolet on / off, irradiation time, and irradiation intensity, and is linked to the rotation control device 17.
  • the adhesive 1 C (S 1 in FIG. 18) in the first position P 1 spread by the high-speed rotation speed v3 is semi-cured, and the film thickness is secured to Thl as shown in FIG.
  • the film thickness distribution on the outer peripheral side from the first position P 1 is thicker than the inner peripheral part as shown by the dotted line DL1.
  • High-speed rotational force Lowering the rotational speed to a low rotational speed that does not substantially spread the adhesive reduces the centrifugal force acting on the adhesive 1C. During this period, the amount of the adhesive 1C spread on the outer peripheral side can be reduced or eliminated.
  • the rotation speed vl of the low-speed rotation is 100-600 rpm.
  • the speed is again increased from the low speed vl to the high speed v2, and the adhesive 1C is spread again.
  • the control unit (not shown) starts moving the optical fiber 20 to the second position P2 (radius r2).
  • the optical fiber 20 may be moved to the second position P2 during high-speed rotation during time t2-3.
  • the adhesive 1C at the position opposite to the first position P1 is semi-cured and loses its fluidity and does not spread, the film thickness Thl does not fluctuate and the outer peripheral side of the second position P2 is not changed.
  • Adhesive 1C is spread.
  • the film thickness is lower than the film thickness indicated by the dotted line DL2 in which the position force of the radius r2 in FIG. 19 is also drawn.
  • Substrate 1 is rotated at a high speed of v2 and then lowered again to a low speed of v1.
  • time t3-4 when rotating at a low speed of vl and irradiating the adhesive 1C distributed at the second position P2 with the optical fiber 20, the adhesive 1C is semi-cured, as shown in FIG. In addition, the film thickness is secured at Th2. Since the circumference becomes longer from the inner circumference to the outer circumference of the board, the time 1 t4 is longer than the time tl 1 t2, so that the adhesive 1C of the entire circumference at the second position P2 is effectively applied. It can be semi-cured.
  • the high-speed rotation and the low-speed rotation are alternately repeated to spread the adhesive 1C to a predetermined film thickness at the time of high-speed rotation, and each region of the adhesive 1C at the time of low-speed rotation.
  • the film thickness can be made uniform as a whole, as shown in FIG.
  • the spot-shaped ultraviolet rays were irradiated.
  • the substrate 1 semi-cured with the adhesive 1C is transferred to another position (not shown), and the entire substrate 1 is irradiated with ultraviolet rays to completely cure the adhesive 1C.
  • the adhesive 1C since the adhesive 1C is semi-cured and polymerization starts, the adhesive 1C can be completely cured with a small irradiation energy.
  • the semi-cured force may be completely cured so that the fluidity of the adhesive 1C is lost. In this case, it is possible to omit the curing process by ultraviolet irradiation of the entire area of the substrate at another position.
  • the irradiation control device 22 has a plurality of irradiation patterns (irradiation width, each irradiation time, each irradiation) adapted to characteristics including the viscosity of the adhesive, ambient environmental conditions, and the like based on various experiments performed in advance.
  • Data such as downtime
  • the operator selects the irradiation pattern, or inputs data such as the adhesive characteristics, so that the irradiation pattern that meets the various conditions is automatically selected. You may be made to do.
  • the irradiation time and the irradiation pause time may be set in conjunction with the high-speed rotation time and the low-speed rotation time in the rotation model selected in the rotation control measure 17.
  • the film thickness measuring means Ml is arranged at a position facing the substrate 1 at the same radial distance as the optical fiber 20, and the film thickness of the adhesive 1C spread by high-speed rotation is set.
  • the film thickness measuring means Ml is arranged at a position facing the substrate 1 at the same radial distance as the optical fiber 20, and the film thickness of the adhesive 1C spread by high-speed rotation is set.
  • a high-speed rotation at the rotation speed v3, and a force rotating at a rotation speed v2 lower than the rotation speed v3 in the second and subsequent high-speed rotations first, a high-speed rotation at the rotation speed v3, and a force rotating at a rotation speed v2 lower than the rotation speed v3 in the second and subsequent high-speed rotations.
  • the adhesive 1C applied to the inner peripheral side is spread almost to the outer peripheral side, and the inner peripheral film thickness is set to a predetermined film thickness.
  • the film thickness on the outer peripheral side is gradually determined by the second and subsequent rotations that are lower than the first rotation speed.
  • the rotational speed may be controlled so that the rotational speed at the time of high-speed rotation is gradually decreased as the second high-speed rotation proceeds from the first high-speed rotation to the third high-speed rotation.
  • the film thickness can be made uniform with high accuracy in a short time.
  • the first rotation speed v3 and the second and subsequent rotation speeds v2 may be controlled to the same rotation speed.
  • the light may be irradiated when it is decelerated below the low speed VL.
  • the optical fiber 20 is moved from the inner peripheral side of the substrate 1 to the outer peripheral side.
  • several or a plurality of optical fibers 20 are moved from the inner peripheral side of the substrate 1 to the outer peripheral side. It may be arranged at a predetermined position in the radial direction so that the inner peripheral side force is also irradiated in order.
  • the moving time of the optical fiber 20 and the moving device are unnecessary, and the processing time can be shortened and the device can be downsized. Furthermore, since there is no need to move the optical fiber 120, irradiation can be continued even after irradiation at a predetermined position of the substrate 1 is completed. In this case, the adhesive 1C can be completely cured from the semi-cured state.
  • a semiconductor light emitting element may be used to irradiate ultraviolet rays in a spot shape. Further, ultraviolet rays may be partially irradiated using a shutter as shown in FIG. 2 or FIG. Further, the ultraviolet rays may be reflected from the movable mirror and the angle may be varied to irradiate the ultraviolet rays from the inner peripheral side to the outer peripheral side, or move the movable mirror for irradiation.
  • the adhesive layer of the annular surface area having a width in which the inner peripheral force is also directed toward the outer periphery has a predetermined thickness.
  • the predetermined thickness By spreading and semi-curing or curing, and sequentially determining the predetermined thickness, it will not be affected by centrifugal force due to subsequent high-speed rotation, and form an adhesive layer with a uniform thickness as a whole be able to. Even if the irradiation intensity of ultraviolet rays is weak, it can be sufficiently semi-cured or cured by irradiating at low speed, and the variation in film thickness can be minimized.
  • the process of forming the adhesive layer between two substrates has been described.
  • the liquid material supplied to the inner peripheral side of one substrate is not bonded to the substrate.
  • the present invention can be similarly applied to a case where a film having a uniform film thickness is formed by extending the entire surface from the peripheral side to the outer periphery.
  • it is effective for forming a light-transmitting protective layer for a next-generation large-capacity optical disk that requires a highly accurate film thickness.
  • the light irradiating member 18 such as a light emitting diode or plasma means has a lower intensity of emitted light than a lamp that emits ultraviolet light such as a normal discharge lamp or a xenon lamp, but generates heat. Therefore, since the thermal effect on the substrate is small, the distance between the light emitting surface H and the substrate 1 is significantly larger than that of the lamp as described above. Can be small. Therefore, even with light from the light irradiation member 18, the liquid substance can be semi-cured in a relatively short time.
  • a liquid crystal shirt using liquid crystal technology may be used instead of the mechanical shirter of the above embodiment.
  • a liquid crystal shatter is provided between the irradiation lamp and the substrate, and an electric signal is given to the liquid crystal, so that light is sequentially added from the inner periphery to the outer periphery, and the adhesive layer between the substrates or on the substrate The resin layer is semi-cured to a predetermined thickness.
  • a liquid crystal shirt is used, a high speed operation speed can be achieved.
  • a film thickness sensor (not shown) is used, and the inner peripheral side force sequentially detects the film thickness, compares the detected film thickness with a predetermined set film thickness, and makes them equal.
  • the adhesive layer may be semi-cured or cured by irradiating with ultraviolet rays.
  • the film thickness sensor has the same function as a laser displacement meter.
  • the measurement principle of the laser displacement meter is briefly explained. The measurement principle is a system that applies triangulation, which is configured by combining a light emitting element and a light receiving element, and a semiconductor laser is used as the light emitting element. Laser light emitted from the semiconductor laser is condensed through the projection lens and irradiated onto the adhesive layer through the substrate.
  • a part of the light beam reflected from the adhesive layer passes through the lens and forms a spot on the light receiving element.
  • the incident angle of the reflected light incident on the light receiving element of the film thickness sensor changes, so that the thickness between the substrate and the adhesive layer can be known. Since the thickness of the substrate is divided in advance, the thickness of the adhesive layer can be detected momentarily by correcting the thickness of the substrate.
  • detection can be similarly performed using a CCD.
  • the liquid material is spread by a spinner and is semi-cured or cured sequentially, when the substrate is carried to the next process by a transfer means (not shown), the conventional 2 It is possible to obtain a higher quality optical disc because the substrates are not slightly displaced.
  • the UV curable liquid material currently sold to the extent that curing does not start during normal handling.
  • a photopolymerization initiator is added, the light emitting diode, the liquid crystal means, the plasma means, etc. have a lower ultraviolet intensity than that of a flash lamp or a discharge lamp. It is preferable to increase the polymerization initiator in a range without affecting the optical properties, mechanical properties, and storage properties.
  • the photopolymerization initiator added to the liquid substance is increased to significantly increase the sensitivity to ultraviolet rays, it becomes impossible to handle the adhesive in a conventional environment, which is preferable for illumination in this case.
  • red light-emitting diodes, yellow light-emitting diodes, etc. are used for illumination by combining a wavelength selective filter that cuts the wavelength range for curing a liquid substance, for example, 300-420 m, and a lamp.
  • a diode for ultraviolet light emission is used as a curing device for a liquid substance sensitized to ultraviolet light, and a red light emitting diode, the plasma means, a liquid crystal means, etc. are used as illumination for a place where the adhesive is handled.
  • a red light emitting diode, the plasma means, a liquid crystal means, etc. are used as illumination for a place where the adhesive is handled.
  • a lamp of a type in which ultraviolet rays spread circularly according to the distance is used as a force irradiation lamp using a mechanical shatter, and the irradiation lamp is used as a central hole in the substrate.
  • the ultraviolet irradiation can be shifted from the inner periphery side to the outer periphery of the substrate by moving the irradiation lamp gradually upward as the substrate is spread by high-speed rotation. Therefore, the mechanical shirter can be omitted.
  • the irradiation lamp for example, a lamp capable of forming an ultraviolet spot having a diameter of about 10 mm on the substrate 1, and moving the ultraviolet spot toward the outer periphery from the inner peripheral side of the substrate, An ultraviolet spot is sequentially irradiated to the inner periphery side force outer periphery along the circles having different diameters with respect to the rotating substrate. Therefore, the mechanical shirter can be omitted, which is advantageous in terms of cost and miniaturization, and the transfer of the substrate to the spinner. The work is also easy.
  • the mechanical shatter is cooled by cooling air from the horizontal direction of the drawing, but there is a cooling mechanism for the irradiation lamp that allows the cooling air to flow upward.
  • it is not necessary to provide a separate cooling mechanism for the mechanical-shutter but if the wind blown from the top through the irradiation port of the mechanical-shutter to the substrate 1 causes inconvenience, the spinner and the mechanical-shutter What is necessary is just to provide heat-resistant glass in between.
  • the power usage fee can be greatly reduced, which is very preferable from the viewpoint of the environment and can also reduce the cost.
  • FIG. 21 to FIG. 25 show an example in which the adhesive layer is formed by two coating film processes.
  • a conical cap 63 protruding upward is coaxially and detachably attached to the center of the substrate base 61.
  • the first adhesive 64 is disposed on the cap 63.
  • the substrate pedestal 61 is rotated while alternately repeating high-speed rotation and low-speed rotation, and the position of the optical fiber 20 is stepwise P1 ⁇ P2 ⁇ P3 ⁇ P4 , And irradiate at each position P1-P4 by the optical fiber 20 during low-speed rotation. Thereby, a uniform coating film 65 is formed.
  • the second adhesive 66 is supplied to the inner peripheral side of the resin layer 65 in an annular shape concentric with the substrate 1A, and as shown in FIG. 25, the substrate 1A Overlay substrate 1B on top.
  • the amount of the second adhesive may be much smaller than the first adhesive, since it is only necessary to obtain adhesive strength.
  • the first adhesive and the second adhesive may be the same adhesive or different adhesives.
  • the laminated substrate K1A + 65 + second adhesive layer 67 + 1B) is rotated at a high speed, and the excess second adhesive is shaken off to obtain a thickness necessary for bonding the substrates 1A and IB. Then, the second adhesive layer 67 is formed. By irradiating the entire surface of the obtained laminated substrate 1 with ultraviolet rays, the second adhesive layer 67 is cured and a disk is obtained.
  • the first adhesive layer 65 which occupies most of the adhesive necessary for bonding the substrates 1A and IB, has a uniform thickness by being cured stepwise.
  • the thin second adhesive layer 67 which only needs to obtain an adhesive force, is formed by simply rotating at a high speed. Therefore, an adhesive layer (65 + 67) having a substantially uniform thickness is formed. Obtainable. As a result, the cap 63 can be used to apply the adhesive.
  • the present invention can also form a resin film so as to have a predetermined film thickness profile from the inner periphery side toward the outer periphery side, for example. It is. Industrial applicability
  • the liquid material is sequentially spread and semi-cured or cured sequentially when the predetermined film thickness is reached, so that the film thickness is determined.
  • a film having a uniform thickness can be formed over the entire surface of the substrate that is not spread.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 光ディスクなどの基板間の内周側に供給された接着剤等の液状物質、あるいは基板上の内周側に供給された液状物質を、高速回転によって展延させる工程と低速回転させる工程とを交互に複数回行い、低速回転時に内周側から外周側に向かって順次、連続的に又は間欠的に光線の照射を移行させて、内周側から順次、液状物質を半硬化又は硬化させる。これにより、内周側から外周側へ向けて段階的に、液状物質による樹脂膜の厚みを確定する。

Description

明 細 書
樹脂膜の形成方法及び装置
技術分野
[0001] 本発明は、 DVDの光ディスク基板などの基板間、又は基板上にほぼ均一な膜厚の 榭脂膜を形成するのに適した榭脂膜の形成方法及び装置に関する。
背景技術
[0002] 一般に、 DVDのような光ディスクは、 2枚の透明な基板が接着剤により貼り合わされ た構造を有する。基板としては、一方だけに反射層又は半透過膜を含む記録層が形 成されたもの、又は双方の基板に記録層が形成されたものがある。一方の基板のみ に記録層が形成されている場合、双方の基板の厚みが等しいものや、記録層の形成 されて!/、な!/、基板が光透過保護層として薄 、透明なシートを有するものもある。基板 を 2枚貼り合わせた構造のものを、 2枚接着剤を介して貼り合わせて、計 4枚の基板を 積層した構造のものもある。透明なガラスやレンズを複数枚、接着剤を介して貼り合 わせる場合もある。
[0003] このような貼り合わせ型のディスクを製造する場合、特に DVDのような光ディスクで は、接着剤を介して 2枚の基板を重ねた後に、高速回転させて接着剤を基板間で均 一に展延して余分な接着剤を振り切り、その後に基板の一方側から、又は双方から 紫外線を照射して接着剤を短時間で硬化することが一般的に行われている。紫外線 の照射としては、 UVランプを使って所定の時間だけ連続的に紫外線を照射したり、 あるいはキセノンランプを使ってノ ルス的に紫外線を照射することが行われている。
[0004] しかし、これらランプを使用する硬化方法は、 V、ずれの場合も、高速回転の遠心力 により接着剤が外周側に偏る傾向があり、接着剤層は実際には均一にならず、図 20 の曲線 Aおよび曲線 Bで示すように、基板の内周側よりも外周側の膜厚が厚くなると いう問題がある。曲線 Aは基板を回転数 3, OOOr. p. m.で 13秒間回転させた場合 の膜厚特性を示し、曲線 Bは基板を 3, OOOr. p. m.で 20秒間回転させた場合の膜 厚特性を示す。
[0005] 曲線 A、 Bのいずれの場合も、接着剤層の厚みの最大の差は 8 μ m程度であるが、 現在の DVDの品質を更に向上させる上で障害となっていた。光学的にディスク情報 を読みとる際の誤差を生じるからである。図 20の曲線 Aおよび曲線 Bで示すように、 内周の膜厚を既定値に合わせると、外周側の膜厚が厚くなり、外周側の膜厚を既定 値に合わせると、内周側の膜厚が薄くなる。つまり、回転時間又は回転数をどのよう に調整しても接着剤層の膜厚の均一化を図ることはできない。
[0006] 特に、ブルーレイディスク(Blu- ray Disc)、又は HD DVD (High-Definition DVD)と 称される次世代大容量光ディスクにあっては、接着剤層の厚みの不均一性は大きな 問題になる。
[0007] ブルーレイディスクでは、接着層とシートとからなる光透過保護層、あるいは透明な 榭脂層だけ力もなる光透過保護層の厚みが 0. 1mmと非常に薄いので、接着層や 透明な榭脂層の厚みの不均一性は大きな影響を及ぼし、次世代大容量光ディスクの 品質を大きく左右する。
[0008] HD DVDは、貼り合わされる双方の基板が 0. 6mmの厚みであって、通常の DVD と同じであるが、それらを貼り合わせる接着剤の膜厚を十分に高い精度で均一にしな ければならず、 、ずれにせよ接着剤の厚みの均一性が次世代大容量光ディスクの品 質を大きく左右する。
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、従来のカゝかる問題点を解決するためになされたものであり、基板に載せ られた液状物質が高速回転によって展延される過程で、基板全面における液状物質 の膜厚の均一化を図ることを課題とする。
課題を解決するための手段
[0010] 第 1の態様に係る榭脂膜の形成方法は、基板に供給された液状物質を高速回転に よって展延させる工程と、低速回転させる工程とを交互に複数回行い、前記低速回 転時に前記基板の内周側から外周側に向かって順次光線の照射位置を移行させる ことによって、前記液状物質を内周側力 順次半硬化又は硬化させる。
[0011] この榭脂膜の形成方法によれば、液状物質が高速回転によって展延される過程で
、ほぼ所定の厚みになった箇所を順次、硬化又は半硬化させて厚みを確定して行く ので、基板全面における液状物質の膜厚の均一化を図れる。
[0012] さらに、高速回転時に液状物質を展延し、実質的に液状物質が展延されないとき に光を照射して、ほぼ所定の厚みになった箇所を順次、硬化又は半硬化させて厚み を確定して行くので、より膜厚の均一化を図れると共に、発光エネルギーの小さい発 光手段を用いることができ、基板への熱的影響を小さくできる。また、展延のために流 動中の接着剤に光照射をする構成に比して、半硬化または硬化させる効果が確実と なり、周方向におけるムラなどが生じにくいうえ、硬化の始まった接着剤が基板力も放 出されることがないから、基板カゝら放出された接着剤を再利用することが容易になる 利点も有する。
[0013] 前記低速回転を行う時間は、前記液状物質の半硬化又は硬化に要する長さにする ことが好ましい。この場合、短い時間で光照射の必要な箇所の榭脂膜を半硬化又は 硬化させることができ、基板への熱的影響を最小限に抑えることができる。
[0014] 前記低速回転は、その遠心力で前記液状物質が実質的に展延しない程度の回転 数であることが好ましい。この場合、低速回転時に榭脂膜が展延されないので、より 均一な膜厚の榭脂膜を形成することができる。
[0015] 前記液状物質は、透明な第 1の基板と第 2の基板との間に供給された光硬化型接 着剤であってもよい。前記液状物質は、透明な合成樹脂材料であり、光透過保護層 を形成するものであってもよ 、。
[0016] 供給された前記液状物質が、前記高速回転によって展延されて所定の厚みになつ た部分に、光線を連続的又は間欠的に照射することによって、順次、内周側から前 記所定の厚みを確定させてもよい。この方法によれば、液状物質が高速回転によつ て展延される過程で、ほぼ所定の厚みになった箇所を順次、硬化又は半硬化させて 厚みを確定して行くので、基板全面における液状物質の膜厚の均一化を確実に図 れる。
[0017] 少なくとも回転速度と前記液状物質の粘度などを含む特性とをパラメータとして、予 め供給された前記液状物質が所定の厚みになるデータを求めておき、そのデータに 基づいて前記光線の照射のタイミングを決めることによって、ほぼ均一の厚みの榭脂 膜を形成してもよい。この場合、自動的に、液状物質がほぼ所定の厚みになった箇 所を順次、硬化又は半硬化させて厚みを確定して行くので、基板全面における液状 物質の膜厚の均一化を図れる。
[0018] 供給された前記液状物質が前記高速回転によって展延する過程で、その展延され る前記液状物質の膜厚を検出し、該膜厚が設定の厚みになったとき、その設定の厚 みになった部分に前記光線を照射することによって、ほぼ均一の厚みの榭脂膜を形 成してもよい。この場合、液状物質がほぼ所定の厚みになった箇所を順次、硬化又 は半硬化させて厚みを確定して行くので、基板全面における液状物質の膜厚の均一 化を図れる。
[0019] 前記液状物質により榭脂膜が形成された後、その榭脂膜全面に光線を照射するェ 程をさらに有していてもよい。この場合、基板全面における均一な膜厚の榭脂膜を完 全に硬化させることができる。
[0020] 本願の榭脂膜の形成装置は、基板に供給された液状物質を高速回転させて展延 するスピンナと、前記スピンナの回転速度を制御する回転制御装置と、前記スピンナ によって前記液状物質を展延させる過程で内周側から外周側に向かって順次光線 の照射を移行する選択的光照射手段とを具備し、前記スピンナの回転速度を高速回 転と低速回転とを交互に複数回行い、前記低速回転時に前記光線の照射を行い、 前記内周側から前記液状物質を半硬化又は硬化させる。
[0021] この榭脂膜の形成装置によれば、液状物質が高速回転によって展延される過程で 、ほぼ所定の厚みになった箇所を順次、硬化又は半硬化させて厚みを確定して行く ので、基板全面における液状物質の膜厚の均一化を確実に図れる。
[0022] さらに、高速回転時に液状物質を展延し、実質的に液状物質が展延されないとき に光を照射して、ほぼ所定の厚みになった箇所を順次、硬化又は半硬化させて厚み を確定して行くので、より膜厚の均一化を図れると共に、発光エネルギーの小さい発 光手段を用いることができ、基板への熱的影響を小さくできる。
[0023] 前記選択的光照射手段は、発光手段と、中央穴が連続的又は間欠的に開いて行 くメカ-カルシャツタとを有し、前記中央穴が開いて行くにしたがって前記発光手段か らの光線の照射面域が前記基板の外周側に拡大して行くものであってもよい。この 場合、液状物質がほぼ所定の厚みになった箇所を順次、硬化又は半硬化させて厚 みを確定できるので、基板全面に均一な膜厚の液状物質膜を形成できる装置を提 供できる。
[0024] 前記選択的光照射手段は、同心円状に複数の環状配列がなされた半導体発光素 子を具備する発光ランプであり、内周側に配列された前記半導体発光素子から外周 側に配列された前記半導体発光素子に向力つて順次発光することによって、ほぼ均 一の厚みの榭脂膜を形成するものであってもよい。この場合、内周側から外周側に 向けて展延する接着剤を内周側力 順番に部分的に硬化することができる。さらに、 発光手段として発光ダイオードのような半導体発光素子を用いるので、基板への熱 的影響がなぐ長寿命であり、コスト面での効果も大きい。
[0025] 前記選択的光照射手段は、前記基板の中央孔に対向する位置にあって、その基 板面に対してほぼ垂直に移動できる発光手段であり、前記スピンナによって前記基 板を回転させて前記接着剤を展延する過程で、該発光手段が前記基板から離れて 行くものであってもよい。この場合、発光手段として紫外線照射ランプを用いたとして も、メカ-カルシャツタを省略できるので、コスト面での効果が大きぐまた装置の小型 化ができる。
[0026] 前記選択的光照射手段は、スポット光を生じる発光手段であり、前記スピンナによ つて前記基板を回転させて前記接着剤を展延する過程で、前記スポット光を前記基 板の内周側力も外周側に移動させて行くものであってもよい。この場合、スポット状の 光を照射できるため、内周側力 外周側に向けて展延する接着剤を内周側力 順番 に部分的に硬化することができる。さらに、照射光を調節するメカ-カルシャツタを省 略できるので、コスト面での効果が大きぐまた装置の小型化ができる。
[0027] 本発明の他の態様に係る榭脂膜の形成装置は、基板に供給された液状物質を高 速回転させて展延するスピンナと、前記スピンナの回転速度を制御する回転制御装 置と、前記スピンナによって前記液状物質を展延させる過程で内周側から外周側に 向かって順次移行する光照射手段とを具備し、前記スピンナの回転速度を高速回転 と低速回転とを交互に複数回行い、前記低速回転時に前記光線の照射を行い、前 記内周側から前記液状物質を半硬化又は硬化させる。
[0028] この装置によれば、液状物質が高速回転によって展延される過程で、ほぼ所定の 厚みになった箇所を順次、硬化又は半硬化させて厚みを確定して行くので、基板全 面における液状物質の膜厚の均一化を確実に図れる。
[0029] さらに、高速回転時に液状物質を展延し、実質的に液状物質が展延されないとき に光を照射して、ほぼ所定の厚みになった箇所を順次、硬化又は半硬化させて厚み を確定して行くので、より膜厚の均一化を図れると共に、発光エネルギーの小さい発 光手段を用いることができ、基板への熱的影響を小さくできる。 発明の効果
[0030] 本発明では、液状物質が高速回転によって展延される過程で、ほぼ所定の厚みに なった箇所を順次、硬化又は半硬化させて厚みを確定して行くので、基板全面にお ける液状物質の膜厚の均一化を図れる。
図面の簡単な説明
[0031] [図 1]図 1は、光ディスクの 2枚の基板を接着剤を介して重ね合わせる工程を示す断 面図である。
[図 2]図 2は、本発明に係る榭脂膜形成方法及び装置の第 1の実施例の断面図であ る。
[図 3]図 3は、第 1実施例においてシャツタを開いた状態を示す断面図である。
[図 4]図 4は、回転速度と光照射のタイミングを示すグラフである。
[図 5]図 5は、ディスクに対する光の照射領域を示す平面図である。
[図 6]図 6は、本発明に係る榭脂膜形成方法及び装置の第 2実施例のシャツタを示す 平面図である。
[図 7]図 7は、シャツタが閉じた状態を示す断面図である。
[図 8]図 8は、シャツタが開いた状態を示す断面図である。
[図 9]図 9は、本発明に係る榭脂膜形成方法及び装置の他の実施例の断面図である
[図 10]図 10は、本発明に係る榭脂膜形成方法及び装置の他の実施例の断面図であ る。
[図 11]図 11は、発光ダイオードの配列を示す平面図である。 [図 12]図 12は、発光機構の断面図である。
[図 13]図 13は、ディスクの回転制御の一例を説明するグラフである。
[図 14]図 14は、本発明に係る榭脂膜形成方法及び装置の他の実施例を示す正面 図である。
[図 15]図 15は、ディスクの回転制御の他の例を説明するグラフである。
[図 16]図 16は、本発明に係る榭脂膜形成方法及び装置の他の実施例における光照 射装置の断面図である。
[図 17]図 17は、光照射位置の移動を示す平面図である。
[図 18]図 18は、光照射位置の移動を示す断面図である。
[図 19]図 19は、本発明の効果を示すグラフである。
[図 20]図 20は、本発明の効果を示すグラフである。
[図 21]図 21は、本発明の他の実施例において液状物質をキャップ上に配置した状 態を示す断面図である。
[図 22]図 22は、液状物質を展延させながら光照射を行う工程を示す断面図である。
[図 23]図 23は、展延させた液状物質を硬化させる工程を示す断面図である。
[図 24]図 24は、形成した榭脂層上に再度、接着剤を滴下する工程を示す断面図で ある。
[図 25]図 25は、滴下した接着剤上にディスクを載せて接着剤を展延させる工程を示 す断面図である。
符号の説明
1 基板
2 スピンナ
3 基板受台
4 コーターハウス
5 メカ二カノレシャッタ
6 照射ランプ
7 シャツタ駆動装置
8 シャツタ制御装置 9 波長選択フィルタ
10 耐熱ガラス
11 半導体発光ランプ
12 電源
13 保護用抵抗
14 スィッチ制御装置
15 回転軸
16 回転駆動装置
17 回転制御装置
18 光線照射部材
19 照射パターン調整装置
20 光ファイバ一
21 紫外線光源
22 照射制御装置
発明を実施するための最良の形態
[0033] まず、本発明の基本的な考え方について説明する。図 1は重ね合わせる前の対向 配置された 2枚の基板 1Aと 1B (例えばポリカーボネート製)を示し、一方の基板 1A には円環状に液状物質として接着剤 1Cが供給されている。基板 1Aと 1Bとを重ね合 わせると、その接着剤の位置は、押しつぶされて広がるが、基板 1Aに供給された位 置と基本的には変わらない。次に、貼り合わせたディスクの高速回転を開始すると、 その遠心力により接着剤 1Cは内周から外側に展延する。
[0034] 本発明では、高速回転によって接着剤 1Cが外周側に移動する過程で、接着層が 所望の厚みになる時点で、内周から外周まで接着層に順次光線を照射して半硬化 又は硬化させる。これにより、その後の高速回転による遠心力によって接着層が外周 側に移動しな 、ようにすれば、ほぼ均一の厚みの榭脂膜を形成することが可能であ る。 2枚の基板を貼り合わせる場合に限らず、 1枚の基板上に液状物質による榭脂膜 を形成する場合にも全く同様に
本発明は適用できる。図 12の曲線 Cが、本発明を適用した場合の膜厚特性の一例 を示す。
[0035] 以下、図面によってより具体的に本発明の実施例を説明する。図 2および図 3は、メ 力-カルシャツタと照射ランプを用いて光ディスクの貼り合せを行う第 1の実施例を示 す。図 2はメカ-カルシャツタの照射口が小さくなつている初期状態を示し、図 3はメカ 二カルシャツタの照射口が最大に拡大した状態を示す。
[0036] 基板 1は、基板 1A、 IBを積層したものである(図 1参照)。基板 1A、 IBは中央孔 X を有し、中央孔 X側を内周側、外周端 Y側を外周側と称する。一方の基板だけに反 射膜を含む記録層が形成されている場合には、基板 1Bには記録層が形成されてお らず、基板 1Aに反射膜を含む記録層が形成されている。双方の基板に記録層が形 成されている場合には、基板 1Bに半透過膜を含む記録層が形成され、基板 1Aに反 射膜を含む記録層が形成されている。接着剤 1Cの供給された基板 1Aと基板 1Bとが 重ね合わされ基板 1となった後に、基板 1B側を上にしてスピンナ 2の基板受台 3に載 置される。スピンナ 2は従来力 使用されている通常のものであり、基板受台 3を数千 回転以上まで高速回転させることができる。
[0037] スピンナ 2のコーターハウス 4の直ぐ上方には、メカ-カルシャツタ 5が水平に配置さ れ、その上には、放電灯又はキセノンランプのような照射ランプ 6が備えられている。 メカ-カルシャツタ 5は、中央の照射口 5Aが連続的に開ぐ又は段階的に開く機構を 有する。カメラのシャツタのように、複数の金属板を円状に部分的に重ねて配置し、そ れぞれの金属板を同一速度で外周側に連続的又は段階的に移動させることにより、 照射口 5Aとなる中央孔が連続的又は段階的に拡大するものでもよ!/、。照射口 5Aが 順次拡大することによって、照射ランプ 6からの紫外線の照射領域が基板 1の内周側 力 外周側まで順次広がって行く。
[0038] メカ-カルシャツタ 5は、個々の金属板を放射方向に前進又は後退させるそれぞれ の小型シリンダのようなシャツタ駆動装置 7によって駆動され、シャツタ駆動装置 7はシ ャッタ制御装置 8からの信号で制御される。制御装置 8は図示しな 、CPUなどを備え ており、そのメモリには予め多くの実験力も得られたデータが格納されている。
[0039] データには、スピンナ 2の回転速度、用いる接着剤 1Cの粘度、基板への濡れ性な どの特性、周囲の雰囲気の温度や湿度などの諸条件に対応する接着剤の展延速度 、つまり円環状に供給された接着剤 1Cが設定膜厚なる外周側の位置と時間との関 係データなどが含まれる。このデータによって、高速回転の開始後、基板の放射方向 に向けての各点での接着層の設定の厚みになる時刻が求まる。したがって、前記諸 条件を図示しない CPUに入力することによって、メカ-カルシャツタ 5の照射口 5Aの 最適な拡大速度も求まる。この実施例では、光ディスクの製造分野で一般的に用い られて 、る紫外線照射エネルギーの大きな照射ランプ 6を用いて 、る。
[0040] 本発明の特徴は、基板 1を高速回転させることにより基板 1の内周側に供給された 液状物質 Cを展延させる工程と、基板 1を低速回転させて液状物質 Cの展延を抑制 する工程とを交互に行い、低速回転時に基板 1の内周側から外周側に向かって段階 的に光線の照射領域を移行させて行くことによって、前記液状物質を内周側から順 次半硬化又は硬化させることにある。
[0041] このような構成によれば、展延のために流動中の接着剤に光照射をする構成に比 して、半硬化または硬化させる効果が確実となり、周方向における硬化ムラひいては 厚さ不均一などが生じにくいうえ、硬化の始まった接着剤が基板力も放出されること がないから、基
板力 放出された接着剤を再利用することが容易になる利点も有する。
[0042] 図 4は、基板 1の回転速度と、回転開始からの経過時間と、光照射タイミングの関係 の一例を示すグラフ、図 5は基板 1上での光の照射範囲を示す平面図である。図 1に 示すように接着剤 1Cを挟んで貼り合わせられた基板 1は、まず第 1の高速回転速度 VIで一定時間回転され、このときに基板 1の内周側に配置されている接着剤 1Cは 一気に外周側に達し、過剰な接着剤が基板 1の外周縁から放出される。放出された 接着剤はコーターハウス 4で受け止められる。
[0043] 次に、基板回転速度は低速回転速度 VL以下にまで減速され、低速回転速度 VL 以下である間、あるいはその間の一部の時間帯で、照射ランプ 6が点灯される。基板 回転速度は、極小値で一定時間保持されたのちに加速に転じる力 極小値に達した ら即座に再び加速に転じ、第 2の高速回転速度 V2まで加速される。第 2以降の高速 回転速度 V2— V5は、第 1の高速回転速度 VIより小さくてよい。もはや過剰の接着 剤を振り切る必要はないからである。基板回転速度は V2へ到達後、 V2で一定時間 保持されたのちに減速に転じる力、値 V2に達したらすぐに減速に転じる。すなわち、 以下のように高速回転と低速回転を繰り返す。 0→V1→VL以下 (R1に光照射)→V 2→VL以下 (R2に光照射)→V3→VL以下 (R3に光照射)→V4→VL以下 (R4に 光照射)→V5→0
この例では 5回高速回転を行い、 4回照射を行うが、これに限定される必要はなぐ 基板 1の外径などに応じて適宜設定すべきである。一般的な光ディスクの場合、好ま しい照射回数は 2— 6回である。
[0044] この例では、回転開始直後と回転停止直前を除いて、 VL以下となる時点で照射ラ ンプ 6が点灯される。第 1回目一第 4回目の照射領域 R1— R4は、図 5に示すように 段階的に拡大していく。この照射領域の移動距離および照射時間は、接着剤の展延 が進むにつれ接着剤の厚さが所定となる箇所、および接着剤の固定に要する照射 時間をあらかじめ実験で求めておくことにより、設定すべきである。接着剤の固定とは 、展延が高速回転によっても実質的に進行しない程度に半硬化または硬化させるこ とと定義する。
[0045] 例えば、半径が 60mmの基板では、メカ-カルシャツタ 5の照射口 5Aを閉じた状態 で、基板 1を高速回転させて接着剤 1Cを展延させ、その後、低速回転させて、紫外 線を照射しながら半径 20mmに相当する位置までメカ-カルシャツタ 5の照射口 5A を開いて、半径 20mmの範囲に分布する接着層を半硬化又は硬化させる。次に、一 端照射を停止させて、再び、基板 1を高速回転させて、半径 20mm以降の接着剤 1C をさらに展延させ、その後、低速回転させて、紫外線を照射しながら半径 30mmに相 当する位置までメカ-カルシャツタ 5の照射口 5Aを開 、て、接着層を半硬化又は硬 化させる。このように高速回転と低速回転とを交互に繰り返して、半径 20mm、 30m m、 45mmを含むそれぞれの位置で、低速回転させた状態で紫外線を照射する。
[0046] こうすることにより、図 20の曲線 Cに示すように、接着剤層の均一化が明らかに向上 し、最大の膜厚差はほぼ 2 mとなり、従来の 1Z4程度になる。これは、低速回転さ せることで、接着剤 1Cに働く回転の遠心力を小さくして展延を抑えて、所望の膜厚を 得ているからである。さらに、照射領域で半硬化又は硬化された接着剤は、その後の 高速回転による遠心力によっても外周側へ動かな 、ことが確認できて 、る。 [0047] なお、紫外線の照射は、低速回転時のみ行っている力 高速回転時にも紫外線の 照射を継続してもよい。この場合、少なくとも内周側の接着剤を半硬化状態から完全 硬化させることができる。また、低速回転時間帯 P1— P4の間に照射が継続して行わ れなくてもよい。各時間帯内の一部の時間帯でのみ照射してもよいし、照射はパルス 状など不連続であってもよ 、。
[0048] 基板回転速度は限定されるものではないが、高速での回転数は一般に 1, 000— 1 2, OOOr. p. m.の範囲で調整される。照射時の低速回転速度 VLは 100— 600r. p . m.程度であることが好ましい。最高速度 V2— V5は、段階的に小さくなつてもよい 。同じ遠心力を生じさせるために必要な基板回転数は基板の外周側ほど小さくなる 力もである。また、各低速回転時間帯 P1— P4における光照射時間は、徐々に長くな つて 、てもよ 、。照射すべき領域が外周側へ移動するほど単位面積あたりの光の照 射エネルギー密度が低下するからである。
[0049] 別の機構のメカ-カルシャツタを用いる第 2の実施例を、図 6—図 8を用いて説明す る。図 6はこの例のメカ-カルシャツタ 50の平面図であり、図 7は照射口を形成するス リット部が閉じた状態、図 8は照射口を形成するスリット部が開!ヽた状態をそれぞれ示 す。
[0050] この実施例のメカ-カルシャツタ 50は、下側に位置する円板状の固定シャツタ部材 50Aと、その上に配置された複数の可動環状シャツタ部材 50Bとを有する。固定シャ ッタ部材 50Aは、同心円をなす複数の円環状トラックを有し、各トラックには、穴のな いめくら部 aと、穴のあいたスリット部 bが交互に配置されている。可動環状シャツタ部 材 50Bは、固定シャツタ部材 50Aの各トラック上に回転可能に配置された、一定幅の 円環状をなす金属板であり、各可動環状シャツタ部材 50Bには、前記各トラックのめ くら部 aとスリット部 bに対応して、めくら部 a'とスリット部 b,が交互に形成されて!、る。
[0051] 固定シャツタ部材 50Aのトラック 51、 52· ··を分ける位置には、上方へ突出する環状 のガイド部材 50Cが設けられている。ガイド部材 50Cは、可動環状シャツタ部材 50B 力 Sトラック力も外れないようにして、円周方向移動可能にガイドする。トラックは二つ以 上であり、コストなどの面力も五つ以下の範囲で決められることが望ましい。
[0052] 各一定幅のトラック 51、 52· ··には、円周方向の長さ Lと放射方向の幅 Wをもつ矩形 状のスリット部 bが一定間隔で形成されている。スリット部 bと隣のスリット部 bとの間の 領域がめくら部 aであり、スリット部 bとスリット部 bとの間隔、すなわち、めくら部 aの周方 向の長さはスリット部 bの周方向の長さ Lよりも幾分大きくなつている。
[0053] 固定シャツタ部材 50Aの一定幅のトラック 51、 52、 · · ·のそれぞれには、それらのめ くら部 aとスリット部 bとほぼ同じ大きさのめくら部 a'とスリット部 b'とを有する可動環状 シャツタ部材 50Bがそれぞれ重ねられており、各可動環状シャツタ部材 50Bは、ガイ ド部材 50Cに従って一つのスリット部 b'分にほぼ等しい距離だけ、時計方向、反時 計方向に動くことができる。
[0054] このメカ-カルシャツタ 50によれば、内周側のトラックから順に、可動環状シャツタ部 材 50Bを順次動作させて、スリット部 bにスリット部 b'を合致させれば、光の照射領域 を内周側力 外周側に順次移行させることができる。可動環状シャツタ部材 50Bの動 作タイミングは、遠心力によって接着剤が展延され、接着層が設定された厚みになる タイミングと同期させる。なお、実際には、メカ-カルシャツタ 50や駆動装置 7の動作 遅れがあるので、それらを考慮して駆動タイミングが決められる。
[0055] これら可動環状シャツタ部材 50Bの動作は、図 2と図 3に示したシャツタ駆動装置 7 とシャツタ制御装置 8により行われる。シャツタ駆動装置 7は図示しないカムとモータと の組み合わせ、又は複数の小型のシリンダ装置などによって構成され、周方向に一 つのスリット分程度だけ移動させることによって、照射口を開いたり、閉めたりすること ができる。スリット部 bにスリット部 b'を合致させて照射口を空けた可動環状シャツタ部 材 50Bはそのままの状態にしておいても良いし、一定時間の経過後に照射口を閉め るようにしてちょい。
[0056] この実施例では、紫外線の照射領域が基板の内側方向から外側方向に向けて不 連続的になるが、紫外線が照射された部分の接着層が半硬化又は硬化されることに より、それより内周側にある未硬化の接着剤も遠心力によって動くことが阻止される。 また、この例では、光照射位置が周方向にも不連続であるが、硬化ムラを防ぐために は、固定シャツタ部材 50Aのめくら部 aとスリット部 bと可動環状シャツタ部材 50Bのめ くら部 a'とスリット部 b'との長さを適当に小さくすればよい。また、基板半径方向に固 定シャツタ部材 50Aのめくら部 aとスリット部 bとが交互に配置されるようにしておいた 方が、紫外線の照射されない接着層部分の動きを問題なく抑えるので好ましい。
[0057] この実施例においても、前記実施例と同様に、高速回転と低速回転とを交互に繰り 返して、低速回転時に、内周側のトラック力も外周側のトラックへと照射口を順に開く ようにする。これにより、全体的に均一な厚みの接着剤層を形成することができる。
[0058] 次に、図 9に示す実施例は、前述のようなメカ-カルシャツタ 5 (または 50)に加えて 、基板 1への熱的影響を低減するための冷却機構、および波長選択フィルタ 9を備え ている。赤外線波長など特定の波長をカットする波長選択フィルタ 9は、連続的に紫 外線を発生することのできる放電灯 6'とメカ-カルシャツタ 5との間に設けられ、耐熱 ガラス 10はメカ-カルシャツタ 5とスピンナ 2との間に設けられる。これらはメカ-カル シャツタ 5を囲む風洞を構成するよう、図面の左右方向が開かれ、図面の表裏方向が 閉じられており、冷却風が図示矢印のように左力も右に流れるようになって!/、る。
[0059] メカ-カルシャツタ 5を比較的光の反射が良好なアルミニウム板で作ったとしても、 繰り返し動作を行っている過程で、メカ-カルシャツタ 5の温度がかなり高くなり、その 動作にも悪影響を与えることがあると共に、基板 1に大きな影響を与え、好ましくない 歪みを生じたり、チルトを大きくすることがある。したがって、この実施例では赤外線波 長など特定の波長をカットする波長選択フィルタ 9を風洞を構成する部材として用い ることによって、熱となる赤外線を除去すると共に、冷却風を有効に流してメカ-カル シャツタ 5を有効に冷却し、同時に波長選択フィルタ 9も冷却している。したがって、こ の実施例では基板 1に対する熱の影響を小さくすることができる。なお、風洞を形成 するためだけならば、波長選択フィルタ 9は耐熱ガラス板でもよい。メカ-カルフィルタ 5の動作は前記実施例と同様であるので説明を省略する。
[0060] 次に、図 10ないし図 13の実施例では、発光ダイオード又はレーザダイオードのよう な発光半導体素子を複数の同心円をなすトラック上に多数配列してなる発光ランプ を用いることによって、基板への熱的影響を皆無に近い状態にしたことを特徴とする
[0061] 先の実施例と同一の符号で示す要素は、先の実施例と類似した部品を示すものと する。この実施例でも、高速回転による接着剤の展延と展延中断とを交互に繰り返し 、展延中断のときに光線を照射して展延された接着剤部分を半硬化させる、つまり内 周側から外周側に向かって接着剤を所定厚みに展延することとその半硬化を繰り返 し行う。ここで光線とは、用いられる接着剤、又は樹脂の硬化反応に有効な波長帯を もつ光を言う。
[0062] 図 10に示すように、基板 1の直上に半導体発光ランプ 11が配置されている。図 11 に示すように、半導体発光ランプ 11は、発光半導体素子としての多数の発光ダイォ ード 11aと、これらを支持する支持体 l ibとからなる。この実施例では、多数の発光ダ ィオード 11aを近接して配設しており、多数の発光ダイオード 11aの発光面 Hがすべ て同一平面にあるように支持体 1 lbに取り付けられる。多数の発光ダイオード 1 laの 配置は同心円状であるのが好まし 、。大多数の発光ダイオード 1 laにつ 、ては図示 を省略している力 隣り合うもの同士をほぼ隣接させて全面に設けた場合には 350な V、し 450個程度の発光ダイオード 1 laで一つの発光ランプが構成される。これら発光 ダイオード 1 laは並列接続されるのが好ま ヽ。発光ダイオードは必ずしも基板 1の 全面に対向して設けられていなくてもよぐ全周の一部分、例えば、 120度の扇形に なるように配置されていてもよい。また、放射方向に隣り合う環状配置の発光ダイォー ド間は間隔があってもよぐ例えば、環状配置の発光ダイオードは間隔をおいて複数 備えられてもよい。
[0063] 図 12に示すように、各発光ダイオード 11aの力ソード側は直流電源 12の負極に接 続され、それらのアノード側は保護抵抗器 13、及びスイッチング装置 14を介して直 流電源 12の正極に接続される。スイッチング制御装置 14は、最も簡単なものでは一 定の周期で回路を開閉するものであるが、ある複数の発光ダイオード 11aを順次接 続、開放するために、簡単なシーケンサ又は CPUを備える場合もある。各発光ダイ オード 1 laの発光面 Hは基板 1の上面に接触しない位置で、できるだけ発光面 Hと上 側の基板 1の上面との間の間隔が狭いほど効率がよい。これは光が距離の 2乗で減 衰するからであり、発光面 Hと基板 1の上面との間の間隔は 10mm以下、好ましくは 1 ないし 7mmの範囲が良い。ここで用いる発光ダイオードは、紫外線照射ランプが生 じる紫外線エネルギーに比べてはるかに小さいので、波長が 280nm以上かつ 600η m以下の波長領域の光を発生するものが、接着剤を半硬化するのに有効である。
[0064] この装置は、回転軸 15を通して基板受台 3を回転させるモータのような回転駆動装 置 16、回転駆動装置 16を制御する回転制御装置 17を備える。この実施例では、図 13に示すように、基板受台 3を高速回転と低速回転とを交互に繰り返して回転させる 。いずれの高速回転も 1, 000— 12, OOOr. p. m.程度の一定の回転数 vlであって もよぐこの高速回転時間 T1で接着剤の外周側への展延を行い、低速回転時間 T2 で接着剤層の展延を一時的に中断して接着剤を半硬化させ、展延された接着剤層 がその後の高速回転で更に展延されな 、ようにする。
[0065] それぞれの低速回転時間 T2の回転数 v2は、接着剤の展延が実質的に行われな い程度の回転数であり、具体例として 100— 600r. p. m.である。この実施例では、 各低速回転期間 T2は、半導体発光ランプ 11の発光する紫外線エネルギーが弱ぐ 接着層を半硬化させるのに時間が力かるために、各高速回転時間 T1よりも長くなつ ている。具体的には、この実施例では半径力 ½0mmの基板で、 20mm、 30mm, 45 mmに相当する円周上の位置で、それぞれ幅数 mmにわたつて紫外線を照射するこ とがでさる。
[0066] 回転数、時間 T1と T2の長さなどは回転制御装置 17によって調整することができる 。回転制御装置 17には、予め行われた各種の実験から、接着剤の粘度などを含む 特性、周囲の環境条件などに適合する多数の回転モデル (高速回転数 vl、低速回 転数 v2、それらの各時間の長さなどの組み合わせ)のデータが格納されており、作業 者が回転モデルを選択するカゝ、あるいは接着剤の特性などのデータを入力すること により、諸条件に適合する回転モデルが自動的に選択される。なお、それぞれの位 置での高速回転数、低速回転数は同じである必要はなぐ適した回転数で行えばよ い。
[0067] 次に、この実施例の動作について説明する。先ず、作業者が接着剤の粘度など必 要なデータを回転制御装置 17の不図示の CPUに入力する。この入力するデータは 要求される膜厚の精度によって異なる。この作業によって、回転制御装置 17内で適 合する回転モデルが選択される。これに伴い、回転制御装置 17は回転駆動装置 16 に制御信号を送り、回転駆動装置 16の回転駆動により基板受台 2は選択された回転 モデルに従って、最初の高速回転を行い、基板 1の内周側で接着剤 1Cの展延を行 う。この高速回転時間 T1は、半導体発光ランプ 11の最内側に環状に配列された発 光ダイオード 11aに対向する基板
面域の接着剤層の膜厚がほぼ所定の厚みになる程度の長さである。
[0068] その期間 T1の後、直ぐに最初の低速回転に移るのと同時に、又は高速回転時にス イッチング制御装置 14が動作し、半導体発光ランプ 11の最内側に環状に配列され た発光ダイオード 11aを発光させる。実際には、回転制御装置 17が回転駆動装置 1 6に高速回転の駆動信号を送出した後直ぐに、あるいは時間 T1だけ遅れて信号 Sを スイッチング制御装置 14に与えて、これを動作させる。半導体発光ランプ 11からの 紫外線によって、発光ダイオード 11aに対向する基板面域のほぼ所定の厚みの接着 剤層は半硬化状態となり、その後の高速回転による遠心力で外周側に動くことは無 い。
[0069] 次に 2回目の高速回転に移り、再び接着剤がある範囲でほぼ所定の厚みに展延さ れる。その範囲は、 2回目に発光する半導体発光ランプ 11の 2番目に内側に配列さ れた発光ダイオード 11aに対向する基板面域に相当し、その基板面域の接着層が半 硬化される。 3回目もこのような動作を繰り返すことによって、内周から外周に向かつ てある幅の環状面域の接着剤層を所定の厚みに展延して半硬化させ、その所定の 厚みを確定することによって、以後の高速回転による遠心力の作用を受けないように し、全体的に均一な厚みの接着剤層を形成する。
[0070] なお、内周側に位置する半導体発光ランプ 11がー且発光開始した後は、基板 1枚 の接着工程が終了するまで、硬化を促進するために発光させてぉ 、た方が好ま 、 。発光ダイオードの照射エネルギーは小さいこと、および熱的な悪影響が少ないこと による。
[0071] 図示しないが同様の実施例として、発光ダイオードの代わりに波長が 280nm以上 で、 600nm以下の波長領域の紫外線を発生するレーザダイオードを用いることもで きる。この場合、コストは高くなるものの、低速回転時間を短くでき、光ディスクの貼り 合せ工程に要する時間を短縮できる。この場合には、各円周上に 1個、又は等間隔 に数個配置すればよい。
[0072] 図 14は、前記実施例の半導体発光ランプに代えてプラズマディスプレイ技術など を応用した光線照射部材 18を用いる実施例を示す。前記実施例で用いた記号と同 じ記号は類似する部材を示すものとする。
[0073] プラズマディスプレイパネルは、良く知られて ヽるように、所定の配列で配置された 多数の電極を有し、電極間に電圧を印加した箇所だけが発光することはよく知られて いる。この実施例はそのような機能を利用するものである。しかし、この実施例では紫 外線を用いるので、紫外線をカットするためのフィルタ材料などは除去されており、紫 外線を外部に発光し易いようになつている。ここでは、紫外線を外部に発光し易い構
Figure imgf000020_0001
、るものをプラズマ手段と 、う。
[0074] プラズマ手段力もなる光線照射部材 18は、好ましくは基板 1から 1一 7mm程度離し て配置され、照射パターン制御装置 19によって前記実施例のように内周側力 外周 側に向力つて順次照射領域を移行させる。そのとき、高速回転と低速回転を交互に 行う。回転制御については前記実施例と同様であるので、説明を省略する。
[0075] 照射パターン制御装置 19には、予め行われた各種の実験から、接着剤の粘度など を含む特性、周囲の環境条件などに適合する複数の照射パターン (照射幅、各照射 時間、各照射休止時間など)のデータが格納されており、作業者が照射パターンを 選択するか、あるいは接着剤の特性などのデータを入力することにより、諸条件に適 合する照射パターンを自動的に選択する。各照射時間と各照射休止時間は、回転 制御措置 17で選定された回転モデルにおける高速回転時間 T1、低速回転時間 T2 に連動して、設定されるようにして
ちょい。
[0076] 照射パターン制御装置 19は、回転制御装置 17が回転駆動装置 16に駆動信号を 与えて、図 13に示すように、基板受台 3に最初の高速回転を行わせると同時に、又 はその高速回転時間 T1だけ遅れて、回転制御装置 17から制御信号 Sを受ける。そ の制御信号 Sによって、照射パターン制御装置 19は、基板受台 3の最初の低速回転 時間 T2に照射パターンに従って最も内周側に位置する光線照射部材 18の円周領 域の画素を発光させる。この発光による紫外線を受けて、最も内周側の接着剤の環 状部分が半硬化される。
[0077] 次に 2回目の高速回転時間に入ると、照射パターン制御装置 19は光線照射部材 1 8を照射停止させ、 2回目の低速回転時間になると、照射パターンに従って光線照射 部材 18の 2番目に内周側に位置する円周部分の画素(図示せず)を発光させる。以 後このような動作を繰り返して、基板 1の最外側まで接着剤層を半硬化させる。し力る 後に、図示しない別のポジションに基板を移載し、紫外線を全面に照射して接着剤 層を完全に硬化させる。半硬化の過程で、光線照射部材 18の発光した部分は硬化 の促進という面から、一旦発光した領域の画素はそれぞれの貼り合せ工程の最後ま で発光状態にしておいた方が好ましい。なお、この実施例に用いる光線照射部材 18 は、電極として半径の異なる環状電極を一定間隔で配置した構造を有することが好 ましい。
[0078] 以上述べたように、この実施例でも前述のような動作を複数回繰り返すことによって 、内周力も外周に向力つてある幅の環状面域の接着剤層を所定の厚みに展延して 半硬化させ、その所定の厚みを順次確定することによって、以後の高速回転による 遠心力の作用を受けないようにし、全体的に均一な厚みの接着剤層を形成すること ができる。
[0079] 次に、図 15—図 19を用いて、本発明の他の実施例を説明する。前記実施例で用 いた記号と同じ記号は相当する部材を示すものとする。図 15は、この実施例での回 転数制御プログラムを示し、図 16は装置の断面図を示す。図 17および図 18は光照 射位置 P1— P4の変化を示す。図 19は、この実施例による基板の半径方向の任意 の位置と榭脂膜の膜厚との関係を示す。
[0080] 図 16において、基板受台 3上には、接着剤 1Cを介して重ね合わされた基板 1 Aと 1 B力もなる基板 1が基板 1B側を上にして載置されている。基板 1の上方には、光ファ ィバー 20の端部が垂直に配置され、紫外線光源 21から供給された紫外線を基板 1 Aと基板 1Bとの間に展延された接着剤 1Cにスポット状に照射する。照射制御装置 2 2は、紫外線光源 21を制御して紫外線のオン'オフ、照射時間、照射強度を制御す るもので、回転制御装置 17と連動している。
[0081] 次に、動作について説明する。先ず、図 15に示すスピンプログラムの時間 tOから回 転を開始して、回転数 v3まで上昇させる。高速回転による遠心力によって、基板 1A と基板 1B間の中心孔付近に存在する接着剤 1Cは外周側に展延される。回転数 T3 で数秒間回転を維持した後、回転数 vlまで下げる。 [0082] 回転数が vlまで下がった時間 tlで、基板 1の内周側の第 1位置 P1 (半径 rl)の上 方に配置された光ファイバ一 20によって、紫外線光源 21から供給された紫外線を照 射し、時間 tl一 t2の間、低速の回転数 vlで回転しながら紫外線を照射し続ける。高 速の回転数 v3によって展延された第 1位置 P 1の接着剤 1 C (図 18の S 1 )を半硬化さ せ、図 19に示すように膜厚が Thlに確保される。 1回目の高速回転では、第 1位置 P 1よりも外周側の膜厚分布は、点線 DL1のように内周部と比較して厚くなる。高速回 転数力 接着剤の展延が実質的に行われない程度の低速回転数に下げて回転させ ることで、接着剤 1Cに働く遠心力の作用が小さくなるため、紫外線を照射している期 間に、接着剤 1Cが外周側に展延される量を低減、あるいは無くすことができる。低速 回転の回転数 vlは、具体例として 100— 600r. p. m.である。
[0083] 次に、時間 t2で、低速の回転数 vlから高速の回転数 v2まで再び上昇させ、接着 剤 1Cを再び展延させる。また、時間 t2で、不図示の制御装置によって、光ファイバ一 20を第 2位置 P2 (半径 r2)まで移動開始する。光ファイバ一 20は、時間 t2— 3の間 の高速回転時に第 2位置 P2に移動させればよい。このとき、第 1位置 P1に対向する 位置にある接着剤 1Cは半硬化して流動性がなくなって展延しないために、膜厚 Thl は変動せずに、第 2位置 P2よりも外周側の接着剤 1Cが展延される。 2回目の高速回 転によって、図 19の半径 r2の位置力も描かれている点線 DL2で示す膜厚よりも膜厚 が下がる。基板 1を回転数 v2で高速回転した後、再び低速の回転数 vlまで下げる。
[0084] 時間 t3—4の間、回転数 vlで低速回転させて、光ファイバ一 20によって紫外線を 第 2位置 P2に分布する接着剤 1Cに照射して半硬化させると、図 19に示すように膜 厚が Th2に確保される。基板の内周から外周に行くほど円周が長くなるため、時間 t3 一 t4は、時間 tl一 t2よりも長くすることで、第 2位置 P2での円周全体の接着剤 1Cを 効果的に半硬化させることができる。
[0085] このように、時間 t4以降も、高速回転と低速回転とを交互に繰り返して、高速回転 時に接着剤 1Cを所定の膜厚まで展延して、低速回転時に接着剤 1Cの各領域 S2— S4に紫外線を照射して半硬化させることで、図 19に示す膜厚 Thl— Th4のように、 全体的に膜厚を均一化することができる。
[0086] 高速回転と低速回転とを交互に繰り返し行いながら、スポット状の紫外線を照射し て接着剤 1Cを半硬化させた基板 1は、図示しない別のポジションに移載され、紫外 線を基板 1の全体に照射して、接着剤 1Cを完全に硬化させる。この場合、接着剤 1C は半硬化して重合が開始されて ヽるため、小さな照射エネルギーで接着剤 1Cを完 全に硬化させることができる。また、この実施例では、接着剤 1Cの流動性が無くなる ように半硬化している力 完全に硬化させてもよい。この場合、別のポジションでの基 板全領域の紫外線照射による硬化工程を省くことができる。
[0087] 照射制御装置 22には、予め行われた各種の実験から、接着剤の粘度などを含む 特性、周囲の環境条件などに適合する複数の照射パターン (照射幅、各照射時間、 各照射休止時間など)のデータを格納しておき、作業者が照射パターンを選択する カゝ、あるいは接着剤の特性などのデータを入力することにより、諸条件に適合する照 射パターンが自動的に選択されるようにしてもよい。また、前記各照射時間と各照射 休止時間は、回転制御措置 17で選定された回転モデルにおける高速回転時間、低 速回転時間に連動して設定されるようにしてもょ ヽ。
[0088] 図 17に示すように、膜厚測定手段 Mlを、光ファイバ一 20と同じ半径距離で基板 1 と対向する位置に配置し、高速回転によって展延される接着剤 1Cの膜厚を測定して 、目標となる所定の膜厚になる直前に紫外線を照射するように制御することで、接着 剤の粘度などを含む特性、周囲の環境条件に影響されずに常に均一な膜厚を得る ようにしてもよい。
[0089] また、この実施例では、最初に回転数 v3の高速回転を行い、 2回目以降の高速回 転で回転数 v3よりも低い回転数 v2で回転している力 最初の高速回転で、内周側に 塗布された接着剤 1Cをほぼ外周側に展延させ、さらに、内周側の膜厚を所定の膜 厚にしている。最初の回転数よりも低い 2回目以降の回転で、徐々に外周側の膜厚 を確定していく。また、高速回転時の回転数を最初の高速回転から 2回目、 3回目の 高速回転に進むに従って徐々に低くするように回転数を制御しても構わない。このよ うな回転数の制御を行うことによって、短時間で高い精度で膜厚を均一化することが できる。最初の回転数 v3と 2回目以降の回転数 v2とを同じ回転数にして制御しても 構わない。また、図 4に示す照射タイミングのように、低速回転速度 VL以下に減速さ れたら、光を照射するようにしてもよい。 [0090] この実施例では、光ファイバ一 20を基板 1の内周側から外周側に移動しているが、 数個又は複数個の光ファイバ一 20を基板 1の内周カゝら外周の半径方向の所定の位 置に配置して、内周側力も順番に照射するようにしてもよい。この構成では、光フアイ バー 20の移動時間及び移動装置が不要となり、処理時間の短縮と装置の小型化が 可能となる。さらに、光ファイバ一 20を移動する必要がないため、基板 1の所定位置 での照射が終了しても照射を継続することができる。この場合、接着剤 1Cを半硬化 状態から、完全に硬化させることができる。
[0091] 光ファイバ一 20の代わりに、半導体発光素子を用いて、スポット状に紫外線を照射 してもよい。また、図 2または図 6に示すようなシャッターを用いて、紫外線を部分的に 照射するようにしてもよい。さらに、紫外線を可動ミラーで反射して、角度を可変する ことで内周側から外周側に紫外線を照射、又は、可動ミラーを移動させて照射しても よい。
[0092] 以上述べたように、この実施例でも高速回転と低速回転とを交互に繰り返すことに よって、内周力も外周に向力つてある幅の環状面域の接着剤層を所定の厚みに展延 して半硬化又は硬化させ、その所定の厚みを順次確定することによって、以後の高 速回転による遠心力の作用を受けないようにし、全体的に均一な厚みの接着剤層を 形成することができる。また、紫外線の照射強度が弱くても、低速回転時に照射する ことで、十分に半硬化又は硬化させることができ、膜厚の変動を最小限に抑えること ができる。
[0093] 以上の実施例では、 2枚の基板間における接着剤層を形成する工程について述べ たが、基板を貼り合わせずに、 1枚の基板の内周側に供給された液状物質を内周側 カゝら外周に至るまで全体的に展延して、均一な膜厚の皮膜を形成する場合について も、本発明を同様に適用できる。特に、高い精度の膜厚が要求される次世代大容量 光ディスクの光透過保護層の形成に有効である。
[0094] 発光ダイオード、プラズマ手段のような光線照射部材 18は、通常の放電灯やキセノ ンランプなどのような紫外線を発光するランプに比べて、発光する光の強さは弱いが 、発生する熱が比較にならないほど小さぐしたがって、基板への熱影響が小さいの で、前述のようにその発光面 Hと基板 1との間の距離をランプの場合に比べて大幅に 小さくできる。したがって、光線照射部材 18からの光であっても、比較的短い時間で 液状物質を半硬化することができる。
[0095] さらに前記実施例のメカ-カルシャツタに代えて、液晶技術を応用した液晶シャツタ を用いてもよい。すなわち、照射ランプと基板との間に液晶シャツタを設け、液晶に電 気信号を与えることで、内周から外周に向力つて順次光線を追加させて、基板間の 接着剤層、又は基板上の榭脂層を所定の厚みに半硬化させる。液晶シャツタを用い た場合、動作スピードの高速ィ匕が可能となる。
[0096] 以上の実施例において、図示しない膜厚センサを用い、内周側力も順次膜厚を検 出し、検出された膜厚と予め決められた設定膜厚とを比較し、それらが等しくなつた 部分の接着剤層に紫外線を照射して半硬化又は硬化させても良い。膜厚センサは レーザ変位計と同様な機能を有する。レーザ変位計における測定原理について簡単 に説明する。その測定原理は、三角測量を応用した方式であり、発光素子と受光素 子とを組み合わせて構成され、発光素子としては半導体レーザが用いられる。半導 体レーザの発するレーザ光はその投光レンズを通して集光され、基板を通して接着 剤層に照射される。そして、接着剤層から反射された光線の一部分はそのレンズを 通して受光素子上にスポットを結ぶ。接着剤層の膜厚が変わると、膜厚センサの受光 素子に入射される反射光の入射角が変化するので、基板と接着剤層との厚みを知る ことができる。基板の厚みは予め分力つているので、基板の厚みを補正することにより 、接着剤層の厚みを時々刻々と検出することができる。
[0097] なお、 CCDを用いても同様に検出が可能である。また、図示しないが、基板 1の半 径の長さに相当する範囲に CCD素子を敷き詰めた棒状の CCDセンサを利用し、反 射された光の強度力ゝら膜厚を検出することも可能である。
[0098] 以上の説明では説明が分かり易いように、内周側から外周まで一定速度の光照射 の移行、あるいはすべて一定の光照射時間とその休止時間の繰り返しで述べてきた 力 膜厚の変化が大きな内周部、比較的膜厚の変化が大きな外周部をそれらの間の 中間部分よりも細力べ前述のような工程を行ってもよい。
[0099] この発明では、スピンナで液状物質を展延させながら、順次半硬化又は硬化させて いるので、図示しない移載手段によって次の工程に基板を運ぶ際に、従来のように 2 枚の基板が僅かにずれることが無くなり、より一層品質の高い光ディスクを得ることが できる。
[0100] さらに、本発明で用いるのに適した特別な液状物質について述べると、現在、巿販 されている紫外線硬化型の液状物質は通常の取扱いの過程で硬化が開始すること が無い程度に、光重合開始剤が添加されているが、発光ダイオード、前記液晶手段 、前記プラズ手段などはフラッシュランプや放電灯に比べて紫外線の光度が低 、の で、紫外線に対する感度を高めるよう添加する光重合開始剤を、光学特性、機械特 性、保存特性に影響の無 、範囲で増量するのが好ま 、。
[0101] また、液状物質に添加する光重合開始剤を増やして、紫外線に対する感度をかな り高くすると、従来の環境で接着剤を扱うことは不可能になるので、この場合の照明 には好ましくは赤色発光ダイオード、黄色発光ダイオードなどを用いる力 液状物質 を硬化させる波長範囲、例えば 300— 420 mの波長をカットする波長選択フィルタ とランプとを組み合わせて、照明として用いるとよい。
[0102] このように、紫外線に対し増感された液状物質の硬化装置として紫外線発光用のダ ィオードを用い、その接着剤を取り扱う場所の照明として、赤色発光ダイオード、前記 プラズマ手段、液晶手段などを用いることにより、電力使用料を大幅に低減すること ができ、環境の面からも非常に好ましぐまたコストも削減できる。
[0103] 以上の実施例では、照射ランプを用いた場合に、メカ-カルシャツタを用いた力 照 射ランプとして距離に従って紫外線が円状に広がるタイプのランプを用い、その照射 ランプを基板の中央孔の真上に配置し、基板の高速回転による展延に伴って、前記 照射ランプを徐々に上方に移動させることにより、紫外線の照射を基板の内周側から 外周まで移行させることができる。したがって、メカ-カルシャツタを省略することがで きる。
[0104] また、照射ランプとして、例えば直径 10mm程度の紫外線スポットを基板 1上に形 成できるランプを用い、基板の内周側カゝら外周に向けて前記紫外線スポットを移動さ せることによって、回転している基板に対して径の異なる円に沿って内周側力 外周 まで順次紫外線スポットが照射される。したがって、メカ-カルシャツタを省略すること ができるので、コスト面と小型化の面で有利であり、またスピンナヘの基板の移載動 作も容易になる。
[0105] また、図 9に示した実施例ではメカ-カルシャツタを図面水平方向からの冷却風で 冷却したが、照射ランプの冷却機構としてランプの上方力 冷却風を通流させるもの があり、この上方からの冷却風を利用してメカ-カルシャツタを冷却しても勿論よ!/、。 この場合には、メカ-カルシャツタの冷却機構を別途設ける必要はないが、上方から メカ-カルシャツタの照射口を通して基板 1に吹き付けられる風が不都合を生じる場 合には、スピンナとメカ-カルシャツタとの間に耐熱ガラスを備えればよい。
[0106] 光照射手段として発光ダイオード、プラズマディスプレイパネルなど用いる場合には 、電力使用料を大幅に低減することができ、環境の面から非常に好ましぐまたコスト も削減できる。
[0107] 図 21—図 25は、接着剤層を 2度の塗膜工程で形成する場合の実施例を示す。こ の例では、基板受台 61の中央に、上方へ突出する円錐状のキャップ 63が同軸かつ 着脱可能に取り付けられている。基板 1Aを基板受台 61に載せた後、このキャップ 63 上に第 1の接着剤 64が配置される。次に、基板受台 61を先の実施例と同様に、高速 回転および低速回転を交互に繰り返しながら回転させ、光ファイバ一 20の位置を段 階的に P1→P2→P3→P4と外周側へ移動させて、低速回転時に光ファイバ一 20に より各位置 P1— P4で照射を行う。これにより、均一な塗膜 65が形成される。
[0108] 次に、キャップ 63を取り除いた上で、基板 1Aの全面に紫外線を照射し、塗膜を硬 ィ匕させて榭脂層 65を得る。
[0109] 次に、図 24に示すように、榭脂層 65の内周側に第 2の接着剤 66を基板 1Aと同心 の円環状に供給し、さらに図 25に示すように、基板 1A上に基板 1Bを重ねる。第 2の 接着剤の量は、単に接着力を得ればよいので、第 1の接着剤よりも遙かに少量でよ い。第 1の接着剤と第 2の接着剤は同じ接着剤であっても、異なる接着剤であっても よい。
[0110] 次に、積層した基板 K1A+65 +第 2の接着剤層 67+ 1B)を、高速回転させ、過 剰な第 2の接着剤を振り切り、基板 1A、 IBの接着に必要な厚さの第 2の接着剤層 6 7を形成する。得られた積層基板 1の全面に紫外線を照射することにより、第 2の接着 剤層 67が硬化されてディスクが得られる。 [0111] この実施例によれば、基板 1A、 IBの接合に必要な接着剤の大部分の厚さを占め る第 1の接着剤層 65を、段階的に硬化させることにより均一な厚さに形成する一方、 単に接着力を得ればよい、薄い第 2の接着剤層 67を高速回転させるのみで形成す るので、実質的に均一な厚さの接着剤層(65 + 67)を得ることができる。し力も、キヤ ップ 63を使用して接着剤の塗布を行うことができるようになる。
[0112] なお、本発明は、膜厚を均一にする目的以外にも、例えば内周側から外周側へ向 けて所定の膜厚プロフィールを有するように、榭脂膜を形成することも可能である。 産業上の利用可能性
[0113] 本発明では、液状物質を順次展延させると共に、所定の膜厚になった時点で順次 半硬化又は硬化させて膜厚を確定してゆくので、その後の高速回転による遠心力に よっても展延されることがなぐ基板全面にわたって厚みの均一な膜を形成することが できる。

Claims

請求の範囲
[1] 基板の内周側に液状物質を供給する工程と、
前記基板を高速回転することによって前記液状物質を展延させる工程と、前記基 板を前記高速回転の速度よりも遅い速度で低速回転させる工程とを交互に行う工程 と、
照射領域を前記内周側から外周側に向かって段階的に移動させて前記低速回転 時に光照射を行うことにより、前記液状物質を前記基板の内周側から外周側へ書け て順次半硬化又は硬化させることを特徴とする榭脂膜の形成方法。
[2] 請求項 1の榭脂膜の形成方法であって、前記低速回転の各時間は、前記液状物 質の半硬化又は硬化に要する長さである。
[3] 請求項 1の榭脂膜の形成方法であって、前記低速回転は、それにより生じる遠心力 で前記液状物質が実質的に展延しない回転数である。
[4] 請求項 1の榭脂膜の形成方法であって、前記液状物質は、透明な第 1の基板と第 2 の基板との間に供給された接着剤であり、前記基板を通して前記光線を照射すること によって、前記接着剤によるほぼ均一の厚みの接着層を形成する。
[5] 請求項 1の榭脂膜の形成方法であって、前記液状物質は、透明な合成樹脂材料か らなり、前記基板にほぼ均一の厚みの光透過保護層を形成する。
[6] 請求項 1の榭脂膜の形成方法であって、前記高速回転によって展延されて所定の 厚みになった部分に光線を連続的に又は間欠的に照射することによって、順次、内 周側から前記所定の厚みを確定させる。
[7] 請求項 1の榭脂膜の形成方法であって、少なくとも回転速度と前記液状物質の粘 度を含む特性とをパラメータとして、予め供給された前記液状物質が所定の厚みに なるデータを求めておき、そのデータに基づいて前記光線の照射のタイミングを決め ることによって、ほぼ均一の厚みの榭脂膜を形成する。
[8] 請求項 1の榭脂膜の形成方法であって、供給された前記液状物質が前記高速回 転によって展延する過程で、その展延される前記液状物質の膜厚を検出し、該膜厚 が設定の厚みになるとき、その設定の厚みになつた部分に前記光線を照射する。
[9] 請求項 1の榭脂膜の形成方法であって、前記液状物質力 榭脂膜が形成された後 、その榭脂膜全面に光線を照射することによって、ほぼ均一の厚みの榭脂膜を形成 する。
[10] 基板に供給された液状物質を高速回転させて展延するスピンナと、
前記スピンナの回転速度を制御する回転制御装置と、
前記スピンナによって前記液状物質を展延させる過程で内周側から外周側に向か つて順次光線の照射を移行する選択的光照射手段とを具備し、
前記スピンナの回転速度を高速回転と低速回転とを交互に複数回行!、、前記低速 回転時に前記光線の照射を行 、、前記内周側から前記液状物質を半硬化又は硬化 させることを特徴とする榭脂膜の形成装置。
[11] 請求項 10の榭脂膜の形成装置であって、前記選択的光照射手段は、発光手段と
、中央穴が連続的又は間欠的に開いて行くメカ-カルシャツタとを有し、前記中央穴 が開いて行くにしたがって前記発光手段力 の光線の照射面域が前記基板の外周 側に拡大して行くように構成されて 、る。
[12] 請求項 10の榭脂膜の形成装置であって、前記選択的光照射手段は、同心円状に 複数の環状配列がなされた半導体発光素子を具備する発光ランプであり、内周側に 配列された前記半導体発光素子から外周側に配列された前記半導体発光素子に向 力つて順次発光する。
[13] 請求項 10の榭脂膜の形成装置であって、前記選択的光照射手段は、前記基板の 中央孔に対向する位置にあって、その基板面に対してほぼ垂直に移動できる発光手 段であり、前記スピンナによって前記基板を回転させて前記接着剤を展延する過程 で、該発光手段が前記基板から離れて行くように構成されている。
[14] 請求項 10の榭脂膜の形成装置であって、前記選択的光照射手段は、スポット光を 生じる発光手段であり、前記スピンナによって前記基板を回転させて前記接着剤を 展延する過程で、前記スポット光を前記基板の内周側から外周側に移動させて行く ように構成されている。
[15] 基板に供給された液状物質を高速回転させて展延するスピンナと、
前記スピンナの回転速度を制御する回転制御装置と、
前記スピンナによって前記液状物質を展延させる過程で内周側から外周側に向か つて順次移行する光照射手段とを具備し、
前記スピンナの回転速度を高速回転と低速回転とを交互に複数回行!、、前記低速 回転時に前記光線の照射を行 、、前記内周側から前記液状物質を半硬化又は硬化 させることを特徴とする榭脂膜の形成装置。
請求項 15の榭脂膜の形成装置であって、前記光照射手段は、スポット光を生じる 発光手段であり、前記スピンナによって前記基板を回転させて前記接着剤を展延す る過程で、前記発光手段を前記基板の内周側から外周側に移動させて行くように構 成されている。
PCT/JP2004/013377 2004-09-14 2004-09-14 樹脂膜の形成方法及び装置 WO2006030494A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2004/013377 WO2006030494A1 (ja) 2004-09-14 2004-09-14 樹脂膜の形成方法及び装置
US11/575,107 US20080057181A1 (en) 2004-09-14 2004-09-14 Resin Layer Forming Method And Apparatus For The Same
CN2004800439704A CN101018616B (zh) 2004-09-14 2004-09-14 树脂膜的形成方法及装置
DE112004002964.3T DE112004002964B4 (de) 2004-09-14 2004-09-14 Verfahren und Vorrichtung zum Herstellen einer optischen Platte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013377 WO2006030494A1 (ja) 2004-09-14 2004-09-14 樹脂膜の形成方法及び装置

Publications (1)

Publication Number Publication Date
WO2006030494A1 true WO2006030494A1 (ja) 2006-03-23

Family

ID=36059762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013377 WO2006030494A1 (ja) 2004-09-14 2004-09-14 樹脂膜の形成方法及び装置

Country Status (4)

Country Link
US (1) US20080057181A1 (ja)
CN (1) CN101018616B (ja)
DE (1) DE112004002964B4 (ja)
WO (1) WO2006030494A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409671B2 (en) 2006-09-04 2013-04-02 Origin Electric Company, Limited Method and apparatus for forming resin film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2328149A1 (en) * 2009-11-26 2011-06-01 Pheenix Alpha AB Method and arrangement to create a surface layer on a disc.
CN111569717A (zh) * 2020-05-26 2020-08-25 安徽省怀宁县顶雪食品有限公司 一种食品加工用快速搅拌装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125878A (ja) * 1985-11-25 1987-06-08 Mitsubishi Rayon Co Ltd 塗膜硬化法
JPH05253535A (ja) * 1992-03-12 1993-10-05 Nkk Corp 回転塗布方法
JPH10328614A (ja) * 1997-05-30 1998-12-15 Mitsubishi Chem Corp 着色レジストの塗布方法
JP2002319192A (ja) * 2001-04-19 2002-10-31 Tdk Corp スピンコーティング方法および装置
JP2003340359A (ja) * 2002-05-30 2003-12-02 Matsushita Electric Ind Co Ltd 高精度スピン成膜方法
JP2004033826A (ja) * 2002-06-28 2004-02-05 Dainippon Ink & Chem Inc 液状物体の塗布方法及び塗布装置と円板状物体の貼り合わせ方法及び貼り合わせ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210539A (ja) * 1988-06-28 1990-01-16 Matsushita Electric Ind Co Ltd 光ディスク基板の製造方法
JPH1074342A (ja) * 1996-08-30 1998-03-17 Sony Corp 光学記録媒体の製造方法
DE19721170A1 (de) * 1997-05-21 1998-11-26 Emtec Magnetics Gmbh Verfahren und Vorrichtung zum Herstellen eines Films oder einer Schicht mit beidseitiger Oberflächenstruktur
JP2001209980A (ja) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd 光学的情報記録媒体の製造方法および製造装置
TWI250514B (en) * 2001-02-23 2006-03-01 Tdk Corp Method for making optical information medium and optical information medium
DE60307271T2 (de) * 2002-05-21 2007-10-18 Koninklijke Philips Electronics N.V. Herstellungsverfahren eines optischen speichermediums und ein solches medium
US20040134603A1 (en) * 2002-07-18 2004-07-15 Hideo Kobayashi Method and apparatus for curing adhesive between substrates, and disc substrate bonding apparatus
CN100358032C (zh) * 2003-01-14 2007-12-26 皇家飞利浦电子股份有限公司 制造光学数据存储介质的方法、光学数据存储介质和执行所述方法的设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125878A (ja) * 1985-11-25 1987-06-08 Mitsubishi Rayon Co Ltd 塗膜硬化法
JPH05253535A (ja) * 1992-03-12 1993-10-05 Nkk Corp 回転塗布方法
JPH10328614A (ja) * 1997-05-30 1998-12-15 Mitsubishi Chem Corp 着色レジストの塗布方法
JP2002319192A (ja) * 2001-04-19 2002-10-31 Tdk Corp スピンコーティング方法および装置
JP2003340359A (ja) * 2002-05-30 2003-12-02 Matsushita Electric Ind Co Ltd 高精度スピン成膜方法
JP2004033826A (ja) * 2002-06-28 2004-02-05 Dainippon Ink & Chem Inc 液状物体の塗布方法及び塗布装置と円板状物体の貼り合わせ方法及び貼り合わせ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409671B2 (en) 2006-09-04 2013-04-02 Origin Electric Company, Limited Method and apparatus for forming resin film

Also Published As

Publication number Publication date
CN101018616A (zh) 2007-08-15
CN101018616B (zh) 2010-04-21
DE112004002964T5 (de) 2007-08-02
DE112004002964B4 (de) 2014-01-16
US20080057181A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4036367B2 (ja) 樹脂膜の形成方法及び装置
JP6737613B2 (ja) 光学体及び発光装置
US8409671B2 (en) Method and apparatus for forming resin film
WO2006030494A1 (ja) 樹脂膜の形成方法及び装置
JP4554646B2 (ja) 樹脂膜形成方法及び樹脂膜形成装置
JP2003123331A (ja) 多層光記録媒体の製造方法および多層光記録媒体
JP2005317053A (ja) 光ディスクの作製方法及び光ディスク装置
TWI291972B (en) Method and apparatus for forming resin layers
KR20070045331A (ko) 수지막의 형성 방법 및 장치
WO2003028024A1 (fr) Procede de production d'un support d'enregistrement optique multicouche et systeme de production d'un support d'enregistrement optique multicouche
JP2003091888A (ja) 光記録媒体の製造方法および光記録媒体製造装置
JP2003099991A (ja) 光記録媒体の製造方法および光記録媒体製造装置
JP4043907B2 (ja) 光ディスクの製造装置
JP4179502B2 (ja) 塗布膜の形成方法及び装置
US6665245B1 (en) Optical disk initialization method and apparatus
JP2004164801A (ja) 光記録ディスクの製造方法および光記録ディスクの製造システム
US8743672B2 (en) Optical disk manufacturing apparatus and optical disk manufacturing method
JP2006048828A (ja) ディスク貼り合わせ方法および光ディスク製造装置
JP4531645B2 (ja) 光学記録媒体の製造方法
JP4549969B2 (ja) 光ディスク製造方法及び装置
JP2005149661A (ja) 多層光記録媒体製造方法、多層光記録媒体製造装置および多層光記録媒体
JP2006040397A (ja) 情報記録媒体の製造方法および情報記録媒体
JPH10208268A (ja) 光ディスクマーキング装置及び方法、並びに光ディスク
JP2006155726A (ja) 光ディスクの製造方法および製造装置
JP2006040396A (ja) 情報記録媒体の製造方法および情報記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11575107

Country of ref document: US

Ref document number: 200480043970.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120040029643

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077006380

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112004002964

Country of ref document: DE

Date of ref document: 20070802

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWP Wipo information: published in national office

Ref document number: 11575107

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607