WO2006028166A1 - 車輪姿勢角測定装置及び車輪姿勢角測定方法 - Google Patents

車輪姿勢角測定装置及び車輪姿勢角測定方法 Download PDF

Info

Publication number
WO2006028166A1
WO2006028166A1 PCT/JP2005/016509 JP2005016509W WO2006028166A1 WO 2006028166 A1 WO2006028166 A1 WO 2006028166A1 JP 2005016509 W JP2005016509 W JP 2005016509W WO 2006028166 A1 WO2006028166 A1 WO 2006028166A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
angle
reference wheel
attitude angle
half period
Prior art date
Application number
PCT/JP2005/016509
Other languages
English (en)
French (fr)
Inventor
Yutaka Naruse
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to DE602005008621T priority Critical patent/DE602005008621D1/de
Priority to US11/662,408 priority patent/US7415770B2/en
Priority to EP05782282A priority patent/EP1788374B1/en
Publication of WO2006028166A1 publication Critical patent/WO2006028166A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • G01B21/26Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/22Wheels in a state of motion supported on rollers, rotating platform or other structure substantially capable of only one degree of rotational freedom

Definitions

  • the present invention relates to a wheel attitude angle measuring device and a wheel attitude angle measuring method for measuring an attitude angle of a wheel mounted on a vehicle.
  • Wheels of an automobile such as a passenger car (hereinafter abbreviated as "vehicle” as appropriate) ensure the vehicle's running stability (for example, maneuverability and stability) and a pneumatic tire attached to the vehicle.
  • vehicle the vehicle's running stability (for example, maneuverability and stability) and a pneumatic tire attached to the vehicle.
  • the camber angle the angle at which the center line in the vertical direction of the wheel forms a vertical line when the wheel mounted on the vehicle is viewed from the frontal force of the vehicle) is taken into consideration.
  • Toe angle (angle formed by a straight line passing through the front and rear center of the vehicle and the horizontal diameter line of the wheel (equator line) when the vehicle is straight)
  • caster angle (when the wheel is viewed from the side of the vehicle, the kingpin axis is
  • a certain "posture angle” such as the angle formed with the vertical line is set.
  • Such a specified value of the attitude angle is determined for each vehicle in the design of the vehicle, and the attitude angle of each wheel is determined as necessary, for example, when a pneumatic tire or a tire wheel is replaced.
  • the wheel attitude angle measuring device (so-called wheel alignment measuring device) is used and adjusted based on the specified value.
  • the posture angle (toe angle) to be set is adjusted based on the characteristics of the lateral force Fy generated at the wheel, specifically, the fluctuation rate of the lateral force Fy (for example, the sum of squares of the first derivative of the lateral force Fy). (For example, JP 2000-62639 A (page 4-7, FIG. 15)).
  • the lateral force Fy at a predetermined time including a time point when a reference wheel (for example, a rear wheel) rides on a predetermined protrusion (for example, a plate-like body) is continuously measured.
  • a reference wheel for example, a rear wheel
  • a predetermined protrusion for example, a plate-like body
  • the toe of the non-reference wheel for example, the front wheel
  • the angle is obtained by calculation.
  • the fluctuation rate (characteristic) of the lateral force Fy generated by the rear wheel and the front wheel is equal, so that the steering characteristic of the vehicle is brought closer to-neutral steer. Can do.
  • the above-described method for adjusting the posture angle (toe angle) has a problem to be further improved. That is, in the posture angle (toe angle) adjustment method described above, based on the waveform indicating the transition of the lateral force Fy generated on the rear wheel on the time axis, the lateral force Fy that approximates the waveform as much as possible is obtained. The toe angle of the front wheel that generates the wheel is calculated, but there was a limit to adjusting the toe angle of the front wheel to generate the lateral force Fy that has a waveform that approximates the waveform.
  • the transition of the lateral force Fy generated on the front wheel on the time axis may be changed on the time axis of the lateral force Fy generated on the rear wheel. If there was a case where the transition could not be sufficiently approximated, there was a problem.
  • the present invention has been made in view of such a situation, and when adjusting the attitude angle of a wheel based on the characteristics of the lateral force generated in the wheel, It is an object of the present invention to provide a wheel attitude angle measuring device and a wheel attitude angle measuring method capable of determining an attitude angle value that further approximates the characteristics of the lateral force generated at the rear wheel.
  • the present invention has the following features.
  • a reference wheel for example, wheel 20R which is one of the wheels with pneumatic tires mounted on the vehicle (automobile 10) is a predetermined wheel.
  • the first half period straight line (zone A straight line S) applied based on the value of the first half period fluctuation energy sum when the reference wheel has a different attitude angle (for example, toe angle), and The latter-half period variation energy when the reference wheel has a different attitude angle.
  • the reference wheel reference attitude angle calculation unit (attitude angle calculation unit 509) and the reference wheel reference attitude angle are mounted at different positions in the longitudinal direction of the reference wheel and the vehicle based on the reference wheel reference attitude angle.
  • the gist of the present invention is a wheel attitude angle measuring device (wheel attitude angle measuring device 500).
  • the transition of the lateral force Fy generated on the non-reference wheel on the time axis is sufficiently similar to the transition of the lateral force Fy generated on the reference wheel on the time axis. There is a problem that it may not be possible, but it is possible to avoid such a problem.
  • a second feature of the present invention relates to the first feature of the present invention, wherein the sum of squares is based on a sum of squares of a variation rate of the lateral force when the attitude angle of the reference wheel is different.
  • Reference wheel ideal posture angle calculation unit (posture) that calculates the smallest reference wheel ideal posture angle (toe angle T)
  • Angle calculation unit 509), and the non-reference wheel setting posture angle calculation unit is based on the reference wheel reference posture angle and the reference wheel ideal posture angle!
  • the gist is to calculate the angle.
  • a third feature of the present invention relates to the second feature of the present invention, wherein an intersection of a first half period straight line and a second half period straight line of the non-reference wheel (for example, a singular point P
  • Non-standard wheel reference posture angle calculation unit (posture angle performance) that calculates the non-standard wheel reference posture angle (toe angle ⁇ ), which is the posture angle in FL)
  • a non-reference wheel setting posture angle calculation unit wherein the non-reference wheel setting posture angle calculation unit is based on the difference between the reference wheel reference posture angle and the reference wheel ideal posture angle, and the non-reference wheel reference posture angle.
  • the gist is to calculate the non-reference wheel setting posture angle.
  • a fourth feature of the present invention relates to the first feature of the present invention, in which the sensor signal receiving unit is a sensor that measures the value of the longitudinal force generated in the reference wheel in the predetermined period.
  • the fluctuation energy sum calculation unit determines the first half period or the second half period based on the first derivative value of the longitudinal force.
  • a fifth feature of the present invention relates to the first feature of the present invention, wherein the fluctuating energy sum calculation unit uses a second-order differential value of the lateral force as the fluctuation rate of the lateral force, The gist is to calculate the first half period fluctuation energy sum or the second half period fluctuation energy sum.
  • a sixth feature of the present invention relates to the second feature of the present invention, wherein the reference wheel ideal attitude angle calculation unit uses the second derivative value of the lateral force as the variation rate of the lateral force.
  • the gist is to calculate the sum of squares.
  • a seventh feature of the present invention is that the reference wheel, which is one of the wheels with pneumatic tires mounted on a vehicle, rides on a predetermined protrusion, and the reference wheel is deformed.
  • An eighth feature of the present invention relates to the seventh feature of the present invention, wherein the sum of squares is based on a sum of squares of the lateral force variation rate when the attitude angle of the reference wheel is different.
  • the step of calculating the smallest reference wheel ideal posture angle is further provided, and the step of calculating the non-reference wheel setting posture angle is based on the reference wheel reference posture angle and the reference wheel ideal posture angle, and The gist is that the non-reference wheel setting posture angle is calculated.
  • a ninth feature of the present invention relates to the seventh feature of the present invention, in which a non-reference wheel reference posture angle, which is a posture angle at the intersection of the first half period straight line and the second half period straight line of the non-reference wheel, is calculated.
  • a step of calculating a non-reference wheel reference posture angle, and in the step of calculating the non-reference wheel setting posture angle, a difference between the reference wheel reference posture angle and the reference wheel ideal posture angle, and the non-reference wheel The gist is that the non-reference wheel setting posture angle is calculated based on the wheel reference posture angle.
  • a tenth feature of the present invention relates to the seventh feature of the present invention, wherein the step of receiving the output signal measures the value of the longitudinal force generated in the reference wheel during the predetermined period.
  • the gist of the invention is that the output signal from the sensor is further received and the step of calculating the sum of fluctuation energy determines the first half period or the second half period based on the first derivative value of the longitudinal force.
  • An eleventh feature of the present invention relates to the seventh feature of the present invention, wherein, in the step of calculating the fluctuating energy sum, a second-order differential value of the lateral force is used as a fluctuation rate of the lateral force.
  • the gist is that the first half period fluctuation energy sum or the second half period fluctuation energy sum is calculated.
  • a twelfth feature of the present invention relates to the eighth feature of the present invention, wherein, in the step of calculating the reference wheel ideal posture angle, a second derivative value of the lateral force is used as a variation rate of the lateral force. And the sum of squares is calculated.
  • a wheel attitude angle measuring device and a wheel attitude angle measuring method capable of determining an attitude angle value that more closely approximates the characteristics of the lateral force generated at the front and rear wheels when adjusting the attitude angle of a wheel. Can be provided.
  • FIG. 1 is a schematic side view of a wheel attitude angle measuring system according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a tire driving unit provided in a wheel attitude angle measuring lift according to an embodiment of the present invention.
  • FIG. 3 is a side view of a tire driving unit provided in a wheel attitude angle measuring lift according to an embodiment of the present invention.
  • FIG. 4 is a front view and a side view of a force sensor provided in a tire drive unit according to an embodiment of the present invention.
  • FIG. 5 is a logical block configuration diagram of the wheel attitude angle measurement system according to the embodiment of the present invention.
  • FIG. 6 is an explanatory diagram for explaining the fluctuation rates of the longitudinal force and the lateral force when the wheel rides on the protrusion provided on the tire driving unit according to the present embodiment.
  • FIG. 7 is a diagram showing an operation flow of the wheel attitude angle measurement system according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing an operation flow of the wheel attitude angle measurement system according to the embodiment of the present invention.
  • FIG. 9 is a diagram showing data measured and calculated in the wheel attitude angle measurement system according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing data measured and calculated in the wheel attitude angle measurement system according to the embodiment of the present invention.
  • FIG. 11 is a test of a vehicle set to a posture angle measured and calculated by the wheel posture angle measurement system according to the embodiment of the present invention, and a vehicle set to a posture angle different from the posture angle. It is a figure which shows the feeling evaluation result by a driver.
  • FIG. 12 is a graph showing measurement and performance by the wheel attitude angle measurement system according to the embodiment of the present invention. It is a figure which shows the input fluctuation rate of the vehicle set to the attitude angle different from the said attitude angle and the vehicle set to the calculated attitude angle.
  • FIG. 13 shows behaviors of a vehicle set to a posture angle measured and calculated by the wheel posture angle measurement system according to the embodiment of the present invention, and a vehicle set to a posture angle different from the posture angle.
  • FIG. 1 is a schematic side view of the wheel attitude angle measurement system according to the present embodiment.
  • the wheel attitude angle measurement system according to the present embodiment includes a wheel attitude angle measurement lift 100 and a wheel attitude angle measurement device 500.
  • the wheel attitude angle measuring lift 100 is attached to the mounting table 112 on which the four-wheeled vehicle 10 (vehicle) is mounted, the main lifting mechanism 110 for moving the mounting table 112 up and down, and the mounting table 112. And a secondary lifting mechanism 114 for lifting and lowering the automatic four-wheel vehicle 10.
  • the auxiliary lifting mechanism 114 raises and lowers the vehicle cradle 116.
  • the wheel 20F and the wheel 20R of the four-wheeled vehicle 10 can be separated from the mounting table 112 (specifically, a wheel drive unit 200 described later).
  • a wheel driving unit 200 is provided at a position where the automobile 10 is in contact with the wheel 20F and the wheel 20R in a state where the automobile 10 is mounted on the mounting table 112.
  • the wheel stopper plate 164 is formed by rotating the wheels of the four-wheeled motor vehicle 10 other than the wheel for measuring the attitude angle. It is to lock so that there is no.
  • the wheel stopper plate 164 is composed of a pair of plate-like bodies whose one end surfaces are rotatably supported, and the other end surfaces (free end surfaces) of the respective plate-like bodies are wheels 20R (20F ) Also touches the front and rear forces of the four-wheeled vehicle 10 against the ground contact surface (not shown) to stop the rotation of the wheels 20R (20F).
  • the wheel stopper plate 164 is connected to a hydraulic cylinder (not shown), and is configured such that the free end surface comes into contact with the ground contact surface of the wheel 20R (20F) by operating the hydraulic cylinder. Has been.
  • the rod 174 is attached to the mounting table 112, and is configured to be able to turn in the front-rear direction of the automobile 10 around the attachment portion. Further, the rod 174 is configured to be able to expand and contract, and the distance sensor 176 attached to the tip of the rod 174 can be positioned substantially at the center of the wheel 20R (20F).
  • the distance sensor 176 is a sensor that measures the distance from the wheel 20R (20F).
  • a non-contact sensor using laser light is used as the distance sensor 176.
  • the wheel attitude angle measuring lift 100 includes a total of four wheel drive units 200, wheel stopper plates 164, rods, depending on the number of wheels of the automobile 10. 174 and a distance sensor 176 are provided.
  • the configuration of the wheel attitude angle measuring lift 100 described above is the same as that disclosed in Japanese Patent Laid-Open No. 2000-62639.
  • the wheel attitude angle measuring device 500 is a toe angle (toe angle T) to be set in the automobile 10.
  • Power such as a display unit 513 and an operation unit 515 for displaying the result of the calculation is also configured.
  • the logical block configuration of the wheel attitude angle measuring device 500 will be described later.
  • FIG. 2 is a plan view of the wheel drive unit 200.
  • 3A shows a cross-sectional view in the Ilia-Ilia direction shown in FIG. 2
  • FIG. 3B shows a cross-sectional view in the Illb-Ilb direction shown in FIG.
  • the wheel drive unit 200 includes a frame 222 that includes a pair of main frames 222A and side plates 222B that connect the pair of main frames 222A. [0040] Inside the frame 222 is provided a flyer 234 to which a number of aluminum alloy plate pieces 232 are connected. The flyer 234 is configured to be able to circulate inside the frame 222 by a sprocket 228 attached to a pair of drive shafts 224.
  • a gear 226 is attached to one end of the drive shaft 224.
  • the gear 226 is connected to a shaft drive motor 262 (see FIG. 5) via a power transmission mechanism (not shown).
  • a chain 230 is stretched over the sprocket 228 attached to one drive shaft 224 and the sprocket 228 attached to the other drive shaft 224.
  • a plurality of protrusions 238 having a constant thickness are provided at a constant interval on the flyer 234 to which a large number of plate pieces 232 are connected.
  • the protrusion 238 moves while being in contact with the tread surface of the wheel 20R (20F) when the flyer 234 is driven by the flyer drive motor 262, and the front-rear force Fx, that is, the four-wheeled vehicle 10 is applied to the wheel 20R (20F).
  • a longitudinal force and a lateral force Fy that is, a force in the vehicle width direction of the automobile 10 are generated.
  • the vehicle width direction slide guide rail 250 extends along the drive shaft 224 direction, that is, along the vehicle width direction of the four-wheeled vehicle 10, so that the flyer 234 (frame 222) can move in the vehicle width direction. It is configured.
  • a bracket 256 is provided on one side plate 222B so as to protrude toward the support portion 248B of the support frame 248, and a rotating shaft 258 on which a male screw is formed is screwed into the bracket 256. .
  • the rotation shaft 258 is connected to the rotation shaft (not shown) of the vehicle width direction motor 260 attached to the support portion 248B. That is, as the vehicle width direction motor 260 rotates based on the control by the wheel attitude angle measuring device 500, the flyer 234 (frame 222) moves in the vehicle width direction.
  • a turntable 300 for changing the arrangement direction of the flyer 234 with respect to the horizontal diameter line (equatorial line) of the wheel 20R (20F) and the arrangement direction of the flyer 234 are detected.
  • a flyer arrangement direction detection unit 310 is arranged below the bottom portion 248A of the support frame 248, a turntable 300 for changing the arrangement direction of the flyer 234 with respect to the horizontal diameter line (equatorial line) of the wheel 20R (20F) and the arrangement direction of the flyer 234 are detected.
  • a flyer arrangement direction detection unit 310 is arranged below the bottom portion 248A of the support frame 248, a turntable 300 for changing the arrangement direction of the flyer 234 with respect to the horizontal diameter line (equatorial line) of the wheel 20R (20F) and the arrangement direction of the flyer 234.
  • the turntable 300 is connected to a handle (not shown) that rotates the turntable 300 via a feed screw (not shown).
  • the chatter placement direction detection unit 310 includes a rotary encoder (not shown) that detects the rotation amount of the turn table 300. Detect the orientation of LA 234. Note that the turntable 300 and the flyer arrangement direction detection unit 310 can have the same configuration as the device disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-30945.
  • a load receiving plate member 242 is provided between the pair of main frames 222 A, and a flat plate guide 240 and a guide plate 244 are fixed above the load receiving plate member 242. Further, the flat plate guide 240 has an engagement groove 240A, and the guide plate 244 has a receiving groove 244A.
  • a large number of steel balls 246 are arranged in the passage formed by the engaging groove 240A and the receiving groove 244A. Further, the load receiving plate member 242 is provided with a rectangular groove 242A communicating with a passage formed by the engaging groove 240A and the receiving groove 244A. The ball 246 circulates in a passage formed by the engagement groove 240A and the receiving groove 244A and a passage formed by the rectangular groove 242A.
  • the plate piece 232 can be moved by the flat plate guide 240, the guide plate 244 and the load receiving plate member 242.
  • the flyer 234 can form a flat surface within a certain range without being dented by the load of the automobile 10.
  • the lateral force Fy is generated in the wheel 20R (20F) by driving the radial blade 234 by the radial drive motor 262
  • the lateral force Fy is calculated from the flat plate guide 240 to the ball 246 to the guide plate 244 to the load. This is transmitted to the frame 222 via the receiving plate member 242, and the side plate 222 B moves in the vehicle width direction of the automobile 10.
  • the force sensor 252 includes a measuring beam 252A, a connecting plate 252B, and a rectangular frame 252C.
  • the measuring beam 252A has a force detection element constituted by a load cell. Both ends of the measuring beam 252A are fixed to a rectangular frame 252C, and an intermediate portion of the measuring beam 252A is connected to a connecting plate 252B. The rectangular frame 252C is attached to the side plate 222B with screws.
  • the force sensor 252 can detect a force (lateral force Fy) generated in the vehicle width direction of the four-wheeled vehicle 10 as shown in FIG. Furthermore, the force sensor 252 can detect a force (front-rear force Fx) generated in the front-rear direction of the automobile 4 as shown in FIG.
  • the wheel attitude angle measuring device 500 includes an operation control unit 501, a sensor signal receiving unit 503, a fluctuation rate calculation unit 505, a fluctuation energy sum calculation unit 507, and an attitude angle calculation unit. 509, a display unit 513, an operation unit 515, and a storage unit 517.
  • the wheel attitude angle measuring device 500 can be configured using a computer device (personal computer) operating on an operating system.
  • the operation control unit 501 controls the operation of the wheel attitude angle measuring lift 100.
  • the operation control unit 501 includes a vehicle width direction motor 260 that moves the main elevating mechanism 110, the sub elevating mechanism 114, and the wheel drive unit 200 (Kitabira 234) in the vehicle width direction of the automobile 10. And connected to a flyer driving motor 262 for driving the flyer 234.
  • the operation control unit 501 controls the main elevating mechanism 110, the sub elevating mechanism 114, the vehicle width direction motor 260, or the flyer driving motor 262 described above based on the control information output by the operation unit 515. .
  • the sensor signal receiving unit 503 is a reference wheel (for example, wheel 20R) force that is one of the wheels with pneumatic tires mounted on the four-wheeled vehicle 10 (vehicle).
  • the output signal from the sensor 252 is received.
  • the sensor signal receiving unit 503 further receives an output signal from the force sensor 252 that measures the value of the longitudinal force Fx generated in the wheel 20R.
  • the reference wheel is the wheel 20R.
  • the sensor signal receiving unit 503 receives an output signal from a distance sensor 176 attached to the tip end of the rod 174 and an orientation signal detecting unit 310 that detects the orientation direction of the chatter 234. is there.
  • the sensor signal receiving unit 503 outputs data (front / rear force Fx, lateral force Fy) generated based on the output signal from the force sensor 252 to the fluctuation rate calculating unit 505. Note that the sensor signal receiving unit 503 can perform the same processing for the non-reference wheel (wheel 20F).
  • the fluctuation rate calculation unit 505 uses the output signal from the force sensor 252, that is, the data of the longitudinal force Fx and the lateral force Fy generated on the wheel 20R (20F), and the longitudinal force Fx and the lateral force Fx. It calculates the longitudinal force fluctuation rate d and the lateral force fluctuation rate d, which are fluctuation rates for each unit time dt of Fy.
  • the reference wheel is provided on the flyer 234, rides on the protrusion 238, and proceeds in the direction D (actually, it is provided on the flyer 234).
  • the “period T” (predetermined period), as shown in FIG. 20R) is set for the period from the point of contact with the protrusion 238 (PI ') to the point of time when the deformation of the reference wheel (pneumatic tire) returns to the protrusion 238 (P3')! .
  • the fluctuation energy sum calculation unit 507 increases the deformation of the wheel 20R (20F) to the maximum deformation time point when the wheel 20R (20F) rides on the protrusion 238.
  • the first half period fluctuation energy sum (hereinafter referred to as fluctuation energy sum E "), which is the sum of the lateral force fluctuation rates d in zone A, which is the first half period, is calculated.
  • the fluctuation energy sum calculation unit 507 starts from the maximum deformation point of time during which the deformation of the wheel 20R (20F) becomes substantially maximum as the wheel 20R (20F) rides on the protrusion 238 during the period T.
  • the second half period fluctuation energy sum (hereinafter referred to as fluctuation energy sum E "), which is the sum of the lateral force fluctuation rates d in zone B, which is the second half period, is calculated.
  • the fluctuation energy sum calculation unit 507 performs the fluctuation energy sum E ”as shown in FIG.
  • the fluctuation energy sum calculation unit 507 performs the fluctuation energy sum E "as shown in FIG.
  • zone ⁇ and zone ⁇ may be set based on the relevant point in time.
  • the posture angle calculation unit 509 is configured to perform the operation when the toe angle (posture angle) of the wheels 20R (20F) is different. Based on a number of points indicating the value of the variable energy sum E "
  • a straight line S (first half period straight line) and wheel 20R (20F) with different toe angles
  • Zone B is applied based on multiple points indicating the value of the variable energy sum E "
  • (reference wheel reference attitude angle) is calculated, and in this embodiment, reference wheel reference is made.
  • a posture angle calculation unit is configured.
  • the posture angle calculation unit 509 changes the toe angle of the wheel 20R (20F) (for example, four types of toe angles), and linearly interpolates the value of the fluctuation energy sum E "at each toe angle.
  • the toe angle of the wheel 20R (20F) is changed by rotating the turntable 300 provided below the wheel drive unit 200, thereby turning the horizontal diameter line (equatorial line of the wheel 20R (20F)). ) By changing the arrangement direction of the flyer 234.
  • the toe angle of the wheel 20R (20F) can be adjusted by adjusting the suspension mounting state of the automobile 10 instead of changing the arrangement direction of the flyer 234 with respect to the horizontal diameter line of the wheel 2 OR (20F). You can change!
  • the posture angle calculation unit 509 applies a zone B straight line S (Fig. 9 (a3) by linearly interpolating the value of the fluctuation energy sum E "when the toe angles of the wheels 20R are different.
  • the posture angle calculation unit 509 performs a zone A straight line S, a zone B straight line S,
  • the posture angle calculation unit 509 has a toe angle T that minimizes the sum of squares based on the sum of squares of a plurality of lateral force fluctuation rates d when the toe angles (posture angles) of the wheels 20R are different.
  • a reference wheel ideal posture angle calculation unit is configured.
  • the posture angle calculation unit 509 calculates the period T (Fig. 6 (a
  • attitude angle calculation unit 509 is installed in zones A of the wheel 20F (non-reference wheel) mounted in different positions in the longitudinal direction of the wheel 20R (reference wheel) and the four-wheeled vehicle 10! Straight line S and
  • Wheel reference attitude angle a non-reference wheel reference attitude angle calculation unit is configured.
  • the posture angle calculation unit 509 calculates the toe angle T at the singular point P by the same method as that of the wheel 20R described above (see FIG. 9 (b3)).
  • the posture angle calculation unit 509 includes a toe angle T (standard wheel reference posture angle) and a toe angle T (standard wheel reference posture angle) (standard wheel reference posture angle) and a toe angle T (standard wheel reference posture angle) (standard wheel reference posture angle) (standard wheel reference posture angle) (standard wheel reference posture angle) (standard wheel reference posture angle) (standard wheel reference posture angle) (standard wheel reference posture angle) (standard wheel reference posture angle) (standard wheel reference posture angle) and a toe angle T (standard
  • the non-reference wheel setting posture angle calculation unit is configured.
  • the posture angle calculation unit 509 uses a ratio based on the difference between the toe angle T and the toe angle T.
  • attitude angle calculation unit 509 uses the following formula to calculate attitude angle T.
  • ⁇ NBA ⁇ NBR + ( ⁇ BR ⁇ I) ⁇ (( ⁇ NBR) ((T BR) 2 + ( ⁇ NBR) 2 )
  • the display unit 513 also displays the distance between the distance sensor 176 output by the sensor signal receiving unit 503 and each wheel, the disposition direction (torque) of the flyer 234 relative to the horizontal diameter line (equator line) of the wheel 20R (20F). Angle), longitudinal force Fx, lateral force Fy, fluctuation rate (d,
  • the display unit 513 is configured by a CRT or LCD display.
  • the operation unit 515 receives details of operations performed on the wheel attitude angle measuring apparatus 500 by the operator.
  • the operation unit 515 includes a keyboard and a mouse.
  • the storage unit 517 includes the fluctuation energy sum “, E”) calculated by the fluctuation energy sum calculation unit 507 and the toe angles ( ⁇ , ⁇ , ⁇ , T) calculated by the posture angle calculation unit 509.
  • step S10 the operator prepares for the measurement by adding a wheel drive unit 200 (Kitabira 234) to each wheel of the four-wheeled vehicle 10 mounted on the mounting table 112.
  • the position of the wheel drive unit 200 is adjusted so that the wheels abut, and wheels other than the wheel 20R to be measured (for example, the left rear wheel ZRL) are locked by the wheel stopper plate 164.
  • step S20 the operator operates the operation unit 515 to drive the wheeler 234 of the wheel drive unit 200.
  • the protrusion 238 force provided on the flyer 234 moves while coming into contact with the tread surface of the wheel 20R, and generates a longitudinal force Fx and a lateral force Fy on the wheel 20R.
  • step S30 wheel attitude angle measuring apparatus 500 outputs an output signal from force sensor 252 provided in wheel drive unit 200, specifically, a voltage output from a load cell that constitutes force sensor 252. Receives a value (unit: volts). The voltage value is associated with the longitudinal force Fx and the lateral force Fy, and is equivalent to 100kgZ5V when converted to kg.
  • step S40 the operator confirms whether or not the data (voltage values) of the longitudinal force Fx and the lateral force Fy generated by the wheel 20R to be measured have been normally acquired. To do.
  • step S40 If the data of the longitudinal force Fx and the lateral force Fy generated on the wheel 20R cannot be acquired normally (NO in step S40), the operator executes the processing of steps S20 and S30 again. . In addition, when changing the toe angle of the other rear wheel (for example, the right rear wheel ZRR) and the rear wheel (NO in step S50), the operator performs the processing of steps S10 to S40. Run repeatedly.
  • the toe angle is changed by rotating the turntable 300 provided below the wheel drive unit 200 and rotating the horizontal diameter line (equator line) of the wheel 20R. This is done by changing the arrangement direction of the flyer 234 relative to.
  • steps S10 to S40 described above is performed for four types (or five types) of toe angles for both wheels 20R (RL / RR).
  • a toe angle of 1 degree substantially corresponds to a voltage of 5 V associated with the lateral force Fy. That is, in this embodiment, since the voltage value output by the cell is used as it is, the toe angle is indicated by the voltage value. Of course, the voltage value may be converted into a toe angle value to execute the processing. Alternatively, the toe angle value obtained based on the output value of the chatter wheel arrangement direction detection unit 310 (single encoder) that detects the rotation amount of the turntable 300 is associated with the voltage value at the toe angle. Accordingly, the toe angle value may be displayed instead of the voltage value.
  • the voltage value is approximately in the range of 3. OV to + 5.
  • OV that is, in the toe angle range of approximately 0.6 degrees to +1.0 degrees.
  • Four types of toe angle values are set.
  • step S50 When the measurement of both rear wheels is completed (YES in step S50), the worker unlocks the wheels in step S60.
  • step S70 the wheel attitude angle measurement device 500 uses the longitudinal force Fx and lateral force Fy data generated in the wheel 20R to calculate the rate of change of the longitudinal force Fx and lateral force Fy per unit time dt.
  • the longitudinal force fluctuation rate d and the lateral force fluctuation rate d are calculated.
  • Fig. 9 (al) shows a fluctuation state of the longitudinal force Fx and the lateral force Fy generated when the wheel 20R (left rear wheel ZRL) rides on the protrusion 238.
  • the longitudinal force Fx is indicated by a solid line
  • the lateral force Fy is indicated by a dotted line.
  • Fig. 9 (a2) shows the longitudinal force fluctuation rate d and lateral force fluctuation rate d calculated based on the longitudinal force Fx and lateral force Fy data shown in Fig. 9 (al) (longitudinal force Fx and lateral force Fx). (2nd derivative value of Fy)
  • step S80 the wheel attitude angle measuring apparatus 500 determines the fluctuation energy in the zone A based on the lateral force fluctuation rate d (secondary differential value of the lateral force Fy).
  • Zone B is a period of maximum deformation time (period P2 to P3 in Fig. 6 (a)) in which the deformation of the wheel 20R accompanying the wheel 20R riding on the protrusion 238 is almost the maximum.
  • the wheel attitude angle measuring apparatus 500 uses the zone A as the fluctuation energy sum E ".
  • step S90 the wheel attitude angle measuring device 500 is based on a plurality of points indicating the value of the fluctuation energy sum E "when the wheel 20R (left rear wheel ZRL) has a different angle!
  • Zone B applied based on singular point P (or right rear wheel ZR)
  • the toe angle T (reference wheel reference attitude angle) at the singular point P) of R is calculated.
  • the wheel attitude angle measuring device 500 is applied to the zone A straight lines S 1 and S 2 by linear interpolation of the values of the fluctuation energy sums E "and E" at the respective toe angles.
  • the wheel attitude angle measuring device 500 is configured to detect the torque at the singular point P (singular point P).
  • FIG. 9 (a3) shows the zone A straight line S and the zone of the wheel 20R (left rear wheel ZRL) described above.
  • the voltage value associated with the toe angle T is calculated to be about 2.414V.
  • step S100 the wheel attitude angle measurement device 500 performs the calculation based on the square sum of a plurality of lateral force fluctuation rates d when the toe angles of the wheels 20R are different.
  • step S110 the wheel attitude angle measuring apparatus 500 displays or stores the calculation results in steps S70 to S90, and ends the measurement related to the wheel 20R.
  • the process of step S100 may be executed in parallel with the process of step S80 or before the process of step S80.
  • steps S210 to S280 is the same as the processing of steps S10 to S80 (see FIG. 7) described above, and the same processing is executed for the wheel 20F. .
  • step S290 the wheel attitude angle measuring device 500 is mounted at different positions in the front-rear direction of the wheel 20R (reference wheel) and the automatic four-wheel vehicle 10, and the wheel 20F (non-reference wheel) is mounted.
  • Singular point P (or right front wheel) that is the intersection of zone A straight line S and zone B straight line S
  • the wheel attitude angle measurement apparatus 500 calculates the toe angle T at the singular point P (singular point P) of the wheel 20F by the same processing as the wheel 20R described above (see step S90).
  • Figs. 9 (bl) to (b3) show data relating to the wheel 20F (the left front wheel ZFL), bl) is the fluctuation state of the longitudinal force Fx and the lateral force Fy, and (b2) is the longitudinal force fluctuation rate d and the lateral force fluctuation rate d (longitudinal force fluctuation rate d) calculated based on the longitudinal force Fx and lateral force Fy data.
  • the calculated voltage value is calculated to be about 0.710V.
  • step S300 the wheel attitude angle measuring apparatus 500 determines that the difference between the toe angle T (reference wheel reference attitude angle) and the toe angle T (reference wheel ideal attitude angle) And
  • the toe angle ⁇ (non-reference wheel setting attitude angle) is calculated.
  • the measuring device 500 starts with the toe angle T of the rear axle (RL / RR) and the toe angle of the front axle (FL / FR).
  • the wheel attitude angle measuring apparatus 500 calculates the difference between the toe angle T and the toe angle T as follows.
  • the wheel attitude angle measuring device 500 has the above-mentioned moment ratio, toe angle T and torque.
  • the toe angle T is calculated as follows using the difference from the single angle T.
  • wheel attitude angle measuring apparatus 500 may calculate the toe angle T using the following equation instead of the calculation method described above.
  • ⁇ + ( ⁇ ⁇ ) ⁇ (( ⁇ ) ((
  • step S310 the operator determines the wheel 20 based on the value of the toe angle T (voltage value) set to the wheel 20F calculated in step S300.
  • Figure 11 shows the results of the feeling evaluation by the test driver as a graph. As shown in the figure, for three types of automobiles with different drive systems and displacements, the standard toe angle (the toe angle set when a new vehicle is set) and the toe angle T (adjustment)
  • the running stability was compared with the state set to the rear toe angle.
  • test conditions are as follows.
  • Figure (a) shows the variation of input to the front, rear, left and right lower arms when FF car B is set to the standard toe angle and the motorway is driven for about 6 minutes. it's shown.
  • (b) shows that FF car B is set to toe angle T (adjusted toe angle) and
  • the sum of the fluctuation rate of the input to the arm (the first derivative of the input) has been improved by 14 to 15%.
  • the toe angle T is set, the standard toe angle is set for the front lower arm.
  • the ratio is reduced to 0.88517, and the rear lower arm is reduced to 0.8636 for the standard toe angle ratio.
  • the frequency of fluctuations is small and fluctuates within a certain range.
  • Fig. 13 shows the auto set to the toe angle T calculated using the wheel attitude angle measurement system.
  • (a) to (c) in the figure show (1) yorate, (2) steering angle, and (3) roll amount during slalom running by an automobile.
  • the vertical axis of the graphs shown in (a) to (c) in the figure shows (1) to (3) above for a certain direction as (+), and (1) above for the opposite direction.
  • ⁇ (3) is expressed by (1). It should be noted that the directions (1) to (3) indicated by (+) and (1) do not match (for example, the direction of the current rate and the steering angle).
  • the figure (a) shows an automobile from the toe angle T to the “out side” (in the width direction of the automobile 10).
  • Figure (b) shows an automobile with a toe angle T force “inside” (inside of the width of 10 automobiles).
  • wheel attitude angle measurement system (wheel attitude angle measurement lift 100 and wheel attitude angle measurement device 500) according to the present embodiment described above, based on the value of the fluctuation energy sum E ".
  • T reference wheel reference attitude angle
  • T non-reference wheel setting attitude angle
  • Wheel and wheel 20R (rear wheel) are balanced by the characteristics of lateral force Fy, and the characteristics of lateral force Fy generated at wheel 20F (front wheel) and wheel 20R (rear wheel) can be more approximated.
  • the value of the toe angle T can be easily determined.
  • the moment of the four-wheeled vehicle 10 generated by the lateral force Fy generated at each wheel can be balanced near the center of gravity of the vehicle body constituting the four-wheeled vehicle 10. .
  • the inventor outputs from each wheel according to the input (fluctuation energy sum E ") due to disturbance (riding on the protrusion 238) with respect to each wheel (RLZRRZFLZFR) of the automobile 10.
  • the steering characteristics of the four-wheeled vehicle 10 set at the toe angle T are as follows.
  • the automobile four-wheeled vehicle 10 exhibits linear and stable movement, and the running stability such as the maneuverability and stability of the automobile four-wheeled vehicle 10 is further improved.
  • the power transmitted to the four-wheeled vehicle 10 is reduced, improving the so-called vibration ride comfort Can do.
  • the toe angle T can be calculated even when the sum of fluctuating energy differs greatly between the reference wheel and the non-reference wheel due to differences in the equation. In other words, suspension of automobile 10
  • the toe angle ⁇ can be calculated without being affected by the Yon form.
  • the toe angle (toe angle T) to be set is calculated based on the longitudinal force Fx and the lateral force Fy generated at each wheel.
  • the automobile 4 which is a passenger car has been described as an example. Can be applied.
  • the lateral force is represented as the fluctuation energy sum E ", E".
  • the wheel 20R (rear wheel) is the reference wheel.
  • the wheel 20F front wheel is the reference wheel. You can do it.
  • the operation control unit 501, the sensor signal receiving unit 503, the fluctuation rate calculation unit 505, the fluctuation energy sum calculation unit 507, and the posture angle calculation unit 509 constituting the wheel attitude angle measurement device 500 described above are a personal computer. It can also be provided as a program that can be executed by a computer device.
  • the wheel attitude angle measuring device can determine the attitude angle value that more closely approximates the characteristics of the lateral force generated at the front wheels and the rear wheels. This is useful for adjusting the angle of attack.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Body Structure For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 本発明に係る車輪姿勢角測定装置は、基準車輪(RL)に発生する前後力変動率dFx及び横力変動率dFyに基づいて、変動エネルギー和EA”,EB”を演算し、基準車輪参照姿勢角(トー角TBR)を演算する。さらに、車輪姿勢角測定装置は、非基準車輪(FL)の非基準車輪参照姿勢角(トー角TNBR)を演算し、トー角TBRとトー角TIとの差、及びトー角TNBRに基づいて、非基準車輪に設定するトー角TNBAを演算する。このような車輪姿勢角測定装置によれば、車輪において発生する横力の特性に基づいて車輪の姿勢角を調整する場合において、前輪と後輪とにおいて発生する横力の特性がさらに近似する姿勢角の値を決定することができる。

Description

明 細 書
車輪姿勢角測定装置及び車輪姿勢角測定方法
技術分野
[0001] 本発明は、車両に装着されている車輪の姿勢角を測定する車輪姿勢角測定装置 及び車輪姿勢角測定方法に関する。
背景技術
[0002] 乗用車など、自動四輪車 (以下、車両と適宜省略する)の車輪には、車両の走行安 定性 (例えば、操縦性や安定性)の確保や、車両に装着される空気入りタイヤの偏摩 耗の抑制などを考慮して、一般的に、キャンバー角(車両に装着されている車輪を車 両の正面力 見たときに、車輪縦方向の中心線が鉛直線と成す角度)、トー角(車両 を直進状態として、車両の前後中心を通る直線と車輪の水平直径線 (赤道線)の成 す角度)、キャスター角(車両の側面から車輪を見たときに、キングピン軸が鉛直線と 成す角度)などの一定の"姿勢角"が設定されている。
[0003] このような姿勢角の規定値は、車両の設計において車両ごとに決定されており、各 車輪の姿勢角は、必要に応じて、例えば、空気入りタイヤやタイヤホイールの交換時 などに、車輪姿勢角測定装置 (いわゆるホイールァライメント測定装置)を用い、当該 規定値に基づ!ヽて調整される。
[0004] また、車両に装着される空気入りタイヤやタイヤホイールを交換した場合など、車両 の状態の変化に伴って理想的な姿勢角の値が変化する場合があり得ることを考慮し て、車輪において発生する横力 Fyの特性、具体的には、横力 Fyの変動率 (例えば、 横力 Fyの一次微分値の自乗和)に基づいて、設定すべき姿勢角(トー角)を調整す る方法が開示されている(例えば、特開 2000— 62639号公報 (第 4— 7頁、第 15図)
) o
[0005] この調整方法では、まず、基準車輪 (例えば、後輪)が所定の突起 (例えば、板状体 )に乗り上げた時点を含む所定時間における横力 Fyが連続して測定される。次いで 、後輪において発生する横力 Fyの時間軸上の推移を示す波形に基づいて、当該波 形に極力近似する波形となる横力 Fyを発生させる非基準車輪 (例えば、前輪)のトー 角が演算によって求められる。
[0006] このような調整方法によれば、後輪及び前輪にお!、て発生する横力 Fyの変動率( 特性)が同等となるため、車両のステアリング特性を-ユートラルステアに近付けること ができる。
[0007] しかしながら、上述した姿勢角(トー角)の調整方法には、さらに改善すべき課題が あった。すなわち、上述した姿勢角(トー角)の調整方法では、後輪において発生す る横力 Fyの時間軸上の推移を示す波形に基づいて、当該波形に極力近似する波 形となる横力 Fyを発生させる前輪のトー角が演算されるが、前輪のトー角を当該波 形に近似する波形となる横力 Fyを発生させるように調整することには、限界があった
[0008] つまり、車両、空気入りタイヤまたはタイヤホイールの種類などによっては、前輪に おいて発生する横力 Fyの時間軸上の推移を、後輪において発生する横力 Fyの時 間軸上の推移に充分に近似させることができな 、場合があると 、つた問題があった。
[0009] そこで、本発明は、このような状況に鑑みてなされたものであり、車輪において発生 する横力の特性に基づ 、て車輪の姿勢角を調整する場合にぉ 、て、前輪と後輪と において発生する横力の特性がさらに近似する姿勢角の値を決定することができる 車輪姿勢角測定装置及び車輪姿勢角測定方法を提供することを目的とする。
発明の開示
[0010] 上述した課題を解決するため、本発明は、次のような特徴を有している。まず、本発 明の第 1の特徴は、車両(自動四輪車 10)に装着されている空気入りタイヤ付き車輪 のうちの何れかの車輪である基準車輪 (例えば、車輪 20R)が所定の突起 (突起 238 )に乗り上げることに伴い、前記基準車輪の変形がほぼ最大となる変形最大時点を含 む所定期間 (期間 T)において、前記基準車輪に発生する横力 (横力 Fy)の値を測 定するセンサ (力センサ 252)力もの出力信号を受信するセンサ信号受信部(センサ 信号受信部 503)と、前記出力信号を用いて、前記変形最大時点 (P2)までの前半 期間 (ゾーン A)における前記横力の変動率 (横力変動率 d )の和である前半期間 変動エネルギー和(変動エネルギー和 E ")、及び前記変形最大時点からの後半期 間(ゾーン B)における前記横力の変動率の和である後半期間変動エネルギー和(変 動エネルギー和 E ")を演算する変動エネルギー和演算部(変動エネルギー和演算
B
部 507)と、前記基準車輪の姿勢角(例えば、トー角)が異なる場合における前記前 半期間変動エネルギー和の値に基づ ヽて当てはめられる前半期間直線 (ゾーン A直 線 S )、及び前記基準車輪の姿勢角が異なる場合における前記後半期間変動エネ
A
ルギー和の値に基づいて当てはめられる後半期間直線 (ゾーン B直線 S )の交点(
B
例えば、特異点 P )における姿勢角である基準車輪参照姿勢角(トー角 τ )を演算
RL BR
する基準車輪参照姿勢角演算部 (姿勢角演算部 509)と、前記基準車輪参照姿勢 角に基づ 、て、前記基準車輪と前記車両の前後方向にお 、て異なる位置に装着さ れている非基準車輪 (例えば、車輪 20F)に設定する非基準車輪設定姿勢角(トー角 T )を演算する非基準車輪設定姿勢角演算部 (姿勢角演算部 509)とを備える車
NBA
輪姿勢角測定装置 (車輪姿勢角測定装置 500)であることを要旨とする。
[0011] このような車輪姿勢角測定装置によれば、前半期間変動エネルギー和の値に基づ いて当てはめられる前半期間直線、及び後半期間変動エネルギー和の値に基づい て当てはめられる後半期間直線の交点における姿勢角である基準車輪参照姿勢角 に基づいて、非基準車輪設定姿勢角が演算される。
[0012] このため、上述した従来の姿勢角(トー角)調整方法のように、非基準車輪において 発生する横力 Fyの時間軸上の推移を、基準車輪にお!、て発生する横力 Fyの時間 軸上の推移に近似させるといった複雑な処理を実行する必要がなぐ非基準車輪設 定姿勢角を容易かつ確実に設定することができる。
[0013] また、従来の姿勢角調整方法では、非基準車輪において発生する横力 Fyの時間 軸上の推移を、基準車輪において発生する横力 Fyの時間軸上の推移に充分に近 似させることができない場合があるといった問題があつたが、このような問題を回避す ることがでさる。
[0014] 本発明の第 2の特徴は、本発明の第 1の特徴に係り、前記基準車輪の姿勢角が異 なる場合における前記横力の変動率の自乗和に基づいて、前記自乗和が最も小さく なる基準車輪理想姿勢角(トー角 T )を演算する基準車輪理想姿勢角演算部 (姿勢
I
角演算部 509)をさらに備え、前記非基準車輪設定姿勢角演算部が、前記基準車輪 参照姿勢角及び前記基準車輪理想姿勢角に基づ!、て、前記非基準車輪設定姿勢 角を演算することを要旨とする。
[0015] 本発明の第 3の特徴は、本発明の第 2の特徴に係り、前記非基準車輪の前半期間 直線及び後半期間直線の交点 (例えば、特異点 P
FL )における姿勢角である非基準 車輪参照姿勢角(トー角 τ )を演算する非基準車輪参照姿勢角演算部 (姿勢角演
NBR
算部 509)をさらに備え、前記非基準車輪設定姿勢角演算部が、前記基準車輪参照 姿勢角と前記基準車輪理想姿勢角との差、及び前記非基準車輪参照姿勢角に基 づ 、て、前記非基準車輪設定姿勢角を演算することを要旨とする。
[0016] 本発明の第 4の特徴は、本発明の第 1の特徴に係り、前記センサ信号受信部が、前 記所定期間において、前記基準車輪に発生する前後力の値を測定するセンサから の出力信号をさらに受信し、前記変動エネルギー和演算部が、前記前後力の一次 微分値に基づいて前記前半期間または前記後半期間を決定することを要旨とする。
[0017] 本発明の第 5の特徴は、本発明の第 1の特徴に係り、前記変動エネルギー和演算 部が、前記横力の変動率として、前記横力の二次微分値を用い、前記前半期間変 動エネルギー和または前記後半期間変動エネルギー和を演算することを要旨とする
[0018] 本発明の第 6の特徴は、本発明の第 2の特徴に係り、前記基準車輪理想姿勢角演 算部が、前記横力の変動率として、前記横力の二次微分値を用い、前記自乗和を演 算することを要旨とする。
[0019] 本発明の第 7の特徴は、車両に装着されている空気入りタイヤ付き車輪のうちの何 れかの車輪である基準車輪が所定の突起に乗り上げることに伴い、前記基準車輪の 変形がほぼ最大となる変形最大時点を含む所定期間において、前記基準車輪に発 生する前後力及び横力の値を測定するセンサからの出力信号を受信するステップと 、前記出力信号を用いて、前記変形最大時点までの前半期間における前記横力の 変動率の和である前半期間変動エネルギー和、及び前記変形最大時点からの後半 期間における前記横力の変動率の和である後半期間変動エネルギー和を演算する ステップと、前記基準車輪の姿勢角が異なる場合における前記前半期間変動エネル ギー和の値に基づいて当てはめられる前半期間直線、及び前記基準車輪の姿勢角 が異なる場合における前記後半期間変動エネルギー和の値に基づいて当てはめら れる後半期間直線の交点における姿勢角である基準車輪参照姿勢角を演算するス テツプと、前記基準車輪参照姿勢角に基づいて、前記基準車輪と前記車両の前後 方向において異なる位置に装着されている非基準車輪に設定する非基準車輪設定 姿勢角を演算するステップとを備える車輪姿勢角測定方法であることを要旨とする。
[0020] 本発明の第 8の特徴は、本発明の第 7の特徴に係り、前記基準車輪の姿勢角が異 なる場合における前記横力の変動率の自乗和に基づいて、前記自乗和が最も小さく なる基準車輪理想姿勢角を演算するステップをさらに備え、前記非基準車輪設定姿 勢角を演算するステップでは、前記基準車輪参照姿勢角及び前記基準車輪理想姿 勢角に基づ 、て、前記非基準車輪設定姿勢角が演算されることを要旨とする。
[0021] 本発明の第 9の特徴は、本発明の第 7の特徴に係り、前記非基準車輪の前半期間 直線及び後半期間直線の交点における姿勢角である非基準車輪参照姿勢角を演 算する非基準車輪参照姿勢角を演算するステップをさらに備え、前記非基準車輪設 定姿勢角を演算するステップでは、前記基準車輪参照姿勢角と前記基準車輪理想 姿勢角との差、及び前記非基準車輪参照姿勢角に基づいて、前記非基準車輪設定 姿勢角が演算されることを要旨とする。
[0022] 本発明の第 10の特徴は、本発明の第 7の特徴に係り、前記出力信号を受信するス テツプでは、前記所定期間において、前記基準車輪に発生する前後力の値を測定 するセンサからの出力信号がさらに受信され、前記変動エネルギー和を演算するス テツプでは、前記前後力の一次微分値に基づいて前記前半期間または前記後半期 間が決定されることを要旨とする。
[0023] 本発明の第 11の特徴は、本発明の第 7の特徴に係り、前記変動エネルギー和を演 算するステップでは、前記横力の変動率として、前記横力の二次微分値が用いられ 、前記前半期間変動エネルギー和または前記後半期間変動エネルギー和が演算さ れることを要旨とする。
[0024] 本発明の第 12の特徴は、本発明の第 8の特徴に係り、前記基準車輪理想姿勢角 を演算するステップでは、前記横力の変動率として、前記横力の二次微分値が用い られ、前記自乗和が演算されることを要旨とする。
[0025] すなわち、本発明の特徴によれば、車輪において発生する横力の特性に基づいて 車輪の姿勢角を調整する場合において、前輪と後輪とにおいて発生する横力の特 性がさらに近似する姿勢角の値を決定することができる車輪姿勢角測定装置及び車 輪姿勢角測定方法を提供することができる。
図面の簡単な説明
[図 1]図 1は、本発明の実施形態に係る車輪姿勢角測定システムの概略側面図であ る。
[図 2]図 2は、本発明の実施形態に係る車輪姿勢角測定用リフトに設けられているタ ィャ駆動部の平面図である。
[図 3]図 3は、本発明の実施形態に係る車輪姿勢角測定用リフトに設けられているタ ィャ駆動部の側面図である。
[図 4]図 4は、本発明の実施形態に係るタイヤ駆動部に設けられている力センサの正 面図及び側面図である。
[図 5]図 5は、本発明の実施形態に係る車輪姿勢角測定システムの論理ブロック構成 図である。
[図 6]図 6は、本実施形態に係るタイヤ駆動部に設けられている突起を車輪が乗り上 げることに伴う前後力及び横力の変動率を説明するための説明図である。
[図 7]図 7は、本発明の実施形態に係る車輪姿勢角測定システムの動作フローを示 す図である。
[図 8]図 8は、本発明の実施形態に係る車輪姿勢角測定システムの動作フローを示 す図である。
[図 9]図 9は、本発明の実施形態に係る車輪姿勢角測定システムにおいて測定、演 算されるデータを示す図である。
[図 10]図 10は、本発明の実施形態に係る車輪姿勢角測定システムにおいて測定、 演算されるデータを示す図である。
[図 11]図 11は、本発明の実施形態に係る車輪姿勢角測定システムによって測定、演 算された姿勢角に設定された車両と、当該姿勢角と異なる姿勢角に設定された車両 のテストドライバーによるフィーリング評価結果を示す図である。
[図 12]図 12は、本発明の実施形態に係る車輪姿勢角測定システムによって測定、演 算された姿勢角に設定された車両と、当該姿勢角と異なる姿勢角に設定された車両 の入力変動率を示す図である。
[図 13]図 13は、本発明の実施形態に係る車輪姿勢角測定システムによって測定、演 算された姿勢角に設定された車両と、当該姿勢角と異なる姿勢角に設定された車両 の挙動を示す図である。
発明を実施するための最良の形態
[0027] (車輪姿勢角測定装置を含む車輪姿勢角測定システムの構成)
次に、本発明の実施形態に係る車輪姿勢角測定装置を含む車輪姿勢角測定シス テムの構成について、図面を参照しながら説明する。なお、以下の図面の記載にお いて、同一または類似の部分には、同一または類似の符号を付している。ただし、図 面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すベ きである。したがって、具体的な寸法などは以下の説明を参酌して判断すべきもので ある。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれ ていることは勿論である。
[0028] (1)全体概略構成
まず、車輪姿勢角測定システムの全体構成について説明する。図 1は、本実施形 態に係る車輪姿勢角測定システムの概略側面図である。同図に示すように、本実施 形態に係る車輪姿勢角測定システムは、車輪姿勢角測定用リフト 100と、車輪姿勢 角測定装置 500とによって構成されている。
[0029] 車輪姿勢角測定用リフト 100は、自動四輪車 10 (車両)が載置される載置台 112と 、載置台 112を昇降させる主昇降機構 110と、載置台 112に取り付けられており、自 動四輪車 10を昇降させる副昇降機構 114とを備えて 、る。
[0030] 具体的には、副昇降機構 114は、車両受け台 116を昇降させる。車両受け台 116 が上昇することによって、自動四輪車 10の車輪 20F及び車輪 20Rを載置台 112 (具 体的には、後述する車輪駆動部 200)力も離隔させることができる。
[0031] また、自動四輪車 10が載置台 112に載置された状態で、車輪 20F及び車輪 20Rと 当接する位置には、車輪駆動部 200が設けられている。
[0032] 車輪止め板 164は、姿勢角を測定する車輪以外の自動四輪車 10の車輪が回転し ないようにロックするものである。具体的には、車輪止め板 164は、一端面を回動可 能に支持された一対の板状体によって構成されており、それぞれの板状体の他端面 (自由端面)が車輪 20R(20F)の接地面 (不図示)に自動四輪車 10の前方及び後方 力も当接して、車輪 20R (20F)の回転を制止する。
[0033] なお、車輪止め板 164には、油圧シリンダ (不図示)に接続されており、油圧シリン ダを作動させることによって、自由端面が車輪 20R (20F)の接地面に当接するように 構成されている。
[0034] ロッド 174は、載置台 112に取り付けられており、当該取付部分を中心として、自動 四輪車 10の前後方向に回動できるように構成されている。また、ロッド 174は伸縮で きるように構成されており、ロッド 174の先端に取り付けられている距離センサ 176を 車輪 20R(20F)のほぼ中心部に位置させることができる。
[0035] 距離センサ 176は、車輪 20R(20F)との距離を測定するセンサである。本実施形 態では、距離センサ 176として、レーザ光による非接触型のセンサが用いられている
[0036] なお、同図では図示されていないが、車輪姿勢角測定用リフト 100には、自動四輪 車 10の車輪数に応じて、計 4つの車輪駆動部 200、車輪止め板 164、ロッド 174及 び距離センサ 176が設けられている。また、上述した車輪姿勢角測定用リフト 100の 構成は、特開 2000— 62639号公報において開示されているものと同様である。
[0037] 車輪姿勢角測定装置 500は、自動四輪車 10に設定するべきトー角(トー角 T )
NBA
の演算の結果などを表示する表示部 513や操作部 515など力も構成されている。な お、車輪姿勢角測定装置 500の論理ブロック構成については後述する。
[0038] (2)車輪駆動部の構成
次に、図 2及び図 3 (a) , (b)を参照して、車輪姿勢角測定用リフト 100に設けられて いる車輪駆動部 200の構成について説明する。図 2は、車輪駆動部 200の平面図で ある。また、図 3 (a)は、図 2に示した Ilia— Ilia方向の断面図、図 3 (b)は、図 2に示し た Illb— Illb方向の断面図をそれぞれ示している。
[0039] 車輪駆動部 200は、一対のメインフレーム 222Aと、一対のメインフレーム 222Aを 接続する側板 222Bとによって構成されるフレーム 222を有している。 [0040] フレーム 222の内側には、アルミニウム合金製の板片 232が多数連結されたキヤタ ビラ 234が設けられている。キヤタビラ 234は、一対の駆動軸 224に取り付けられてい るスプロケット 228によって、フレーム 222の内側において循環できるように構成され ている。
[0041] また、駆動軸 224の一端には、歯車 226が取り付けられて 、る。歯車 226は、動力 伝達機構 (不図示)を介して、キヤタビラ駆動モータ 262 (図 5参照)と連結されている 。さらに、一方の駆動軸 224に取り付けられているスプロケット 228と、他方の駆動軸 224に取り付けられているスプロケット 228にはチェーン 230が掛け渡されている。
[0042] また、板片 232が多数連結されたキヤタビラ 234には、一定の厚さを有する突起 23 8が、一定の間隔で複数設けられている。突起 238は、キヤタビラ 234がキヤタビラ駆 動モータ 262によって駆動されると、車輪 20R(20F)のトレッド面と当接しながら移動 し、車輪 20R(20F)に前後力 Fx、つまり自動四輪車 10の前後方向の力、及び横力 Fy、つまり自動四輪車 10の車幅方向の力を発生させる。
[0043] 車幅方向スライドガイドレール 250は、駆動軸 224方向、つまり、自動四輪車 10の 車幅方向に沿って延びており、キヤタビラ 234 (フレーム 222)が車幅方向に移動でき るように構成されている。
[0044] 一方の側板 222Bには、支持フレーム 248の支持部 248B側に突出するようにブラ ケット 256が設けられており、ブラケット 256には、雄ねじが形成された回転軸 258が ねじ込まれている。回転軸 258は、支持部 248Bに取り付けられている車幅方向モー タ 260の回転軸 (不図示)と接続されている。すなわち、車幅方向モータ 260が車輪 姿勢角測定装置 500による制御に基づいて回転することによって、キヤタビラ 234 (フ レーム 222)が車幅方向に移動する。
[0045] 支持フレーム 248の底部 248Aの下方には、車輪 20R (20F)の水平直径線(赤道 線)に対するキヤタビラ 234の配置方向を変化させるターンテーブル 300と、キヤタピ ラ 234の配置方向を検出するキヤタビラ配置方向検出部 310とが配置されている。
[0046] ターンテーブル 300は、送りねじ(不図示)を介して、ターンテーブル 300を回転さ せるハンドル (不図示)と接続されている。また、キヤタビラ配置方向検出部 310は、タ ーンテーブル 300の回転量を検出するロータリエンコーダ(不図示)を有し、キヤタピ ラ 234の配置方向を検出する。なお、ターンテーブル 300及びキヤタビラ配置方向検 出部 310は、例えば、特開 2001— 30945号公報に開示されている装置と同様の構 成とすることができる。
[0047] また、一対のメインフレーム 222Aの間には、荷重受け板部材 242が設けられてお り、荷重受け板部材 242の上方には、平板ガイド 240及びガイド板 244が固定されて いる。さら〖こ、平板ガイド 240には係合溝 240A、ガイド板 244には受け溝 244Aが、 それぞれ刻まれている。
[0048] 係合溝 240Aと受け溝 244Aとによって形成される通路には、鋼製のボール 246が 多数配置されている。また、荷重受け板部材 242には、係合溝 240Aと受け溝 244A とによって形成される通路に連通される矩形溝 242Aが設けられている。ボール 246 は、係合溝 240Aと受け溝 244Aとによって形成される通路、及び矩形溝 242Aによ つて形成される通路を循環する。
[0049] すなわち、キヤタビラ 234を構成する板片 232に自動四輪車 10の荷重が加わった 場合でも、板片 232は、平板ガイド 240、ガイド板 244及び荷重受け板部材 242によ つて移動可能に支持され、キヤタビラ 234は、自動四輪車 10の荷重によって凹むこと なぐ一定範囲において平面を形成することができる。
[0050] また、キヤタビラ 234がキヤタビラ駆動モータ 262によって駆動されることによって、 車輪 20R(20F)において前後力 Fxが発生すると、前後力 Fxは、スプロケット 228を 介してフレーム 222に伝達され、側板 222Bが自動四輪車 10の前後方向に移動する
[0051] 側板 222Bが自動四輪車 10の前後方向に移動すると、力センサ 252の測定用梁 2 52Aが前後方向に変形し、力センサ 252によって前後力 Fxの大きさが測定される。
[0052] 一方、キヤタビラ 234がキヤタビラ駆動モータ 262によって駆動されることによって、 車輪 20R(20F)において横力 Fyが発生すると、横力 Fyは、平板ガイド 240〜ボー ル 246〜ガイド板 244〜荷重受け板部材 242を介してフレーム 222に伝達され、側 板 222Bが自動四輪車 10の車幅方向に移動する。
[0053] 側板 222Bが自動四輪車 10の車幅方向に移動すると、力センサ 252の測定用梁 2 52Aが車幅方向に変形し、力センサ 252によって横力 Fyの大きさが測定される。 [0054] (3)力センサの構成
次に、図 4 (a)及び (b)を参照して、車輪駆動部 200 (フレーム 222)に設けられてい る力センサ 252の構成について説明する。同図(a)及び (b)に示すように、力センサ 252は、測定用梁 252Aと、連結板 252Bと、矩形枠 252Cとを備えている。
[0055] 測定用梁 252Aは、ロードセルによって構成される力検出素子を有している。測定 用梁 252Aの両端部は、矩形枠 252Cに固定されており、測定用梁 252Aの中間部 は、連結板 252Bに連結されている。また、矩形枠 252Cは、ねじによって側板 222B に取り付けられている。
[0056] 力センサ 252は、同図(a)に示すように、自動四輪車 10の車幅方向に発生する力( 横力 Fy)を検出することができる。さらに、力センサ 252は、同図(b)に示すように、自 動四輪車 10の前後方向に発生する力(前後力 Fx)を検出することができる。
[0057] (4)車輪姿勢角測定システムの論理ブロック構成
次に、図 5を参照して、上述した車輪姿勢角測定用リフト 100と、車輪姿勢角測定 装置 500とによって構成される車輪姿勢角測定システムの論理ブロック構成につい て説明する。
[0058] 同図に示すように、車輪姿勢角測定装置 500は、動作制御部 501と、センサ信号 受信部 503と、変動率演算部 505と、変動エネルギー和演算部 507と、姿勢角演算 部 509と、表示部 513と、操作部 515と、記憶部 517とを備えている。
[0059] なお、本実施形態に係る車輪姿勢角測定装置 500は、オペレーティングシステム 上において動作するコンピュータ装置 (パーソナルコンピュータ)を用いて構成するこ とがでさる。
[0060] 動作制御部 501は、車輪姿勢角測定用リフト 100の動作を制御するものである。具 体的には、動作制御部 501は、主昇降機構 110と、副昇降機構 114と、車輪駆動部 200 (キヤタビラ 234)を自動四輪車 10の車幅方向に移動させる車幅方向モータ 260 と、キヤタビラ 234を駆動するキヤタビラ駆動モータ 262とに接続されて 、る。
[0061] 動作制御部 501は、操作部 515によって出力された制御情報に基づいて、上述し た主昇降機構 110、副昇降機構 114、車幅方向モータ 260またはキヤタビラ駆動モ ータ 262を制御する。 [0062] センサ信号受信部 503は、自動四輪車 10 (車両)に装着されている空気入りタイヤ 付き車輪のうちの何れかの車輪である基準車輪 (例えば、車輪 20R)力 キヤタビラ 2 34上に設けられている突起 238に乗り上げることに伴い、基準車輪の変形がほぼ最 大となる変形最大時点を含む期間 T (所定期間)において、基準車輪に発生する横 力 Fyの値を測定する力センサ 252からの出力信号を受信するものである。
[0063] また、センサ信号受信部 503は、期間 Tにおいて、車輪 20Rに発生する前後力 Fx の値を測定する力センサ 252からの出力信号をさらに受信する。なお、以下、本実施 形態では、基準車輪を車輪 20Rとした場合を例として説明する。
[0064] また、センサ信号受信部 503は、ロッド 174の先端に取り付けられている距離セン サ 176及びキヤタビラ 234の配置方向を検出するキヤタビラ配置方向検出部 310か らの出力信号を受信するものである。
[0065] さらに、センサ信号受信部 503は、力センサ 252からの出力信号に基づいて生成さ れたデータ (前後力 Fx,横力 Fy)を変動率演算部 505に出力する。なお、センサ信 号受信部 503は、非基準車輪 (車輪 20F)についても同様の処理を実行することがで きる。
[0066] 変動率演算部 505は、力センサ 252からの出力信号、つまり、車輪 20R(20F)に お ヽて発生した前後力 Fx及び横力 Fyのデータを用いて、前後力 Fx及び横力 Fyの 単位時間 dtごとの変動率である前後力変動率 d 及び横力変動率 d を演算するも のである。
[0067] 具体的には、変動率演算部 505は、前後力変動率 d として、前後力 Fxの一次微 分値( = dFxZdt)及び二次微分値( = d2FxZdt2)を演算する。また、変動率演算 部 505は、横力変動率 d として、横力 Fyの一次微分値( = dFyZdt)及び二次微分 値( = d2FyZdt2)を演算する。
[0068] ここで、図 6 (a)及び (b)は、基準車輪が、キヤタビラ 234上に設けられて 、る突起 2 38に乗り上げ、方向 Dに進行 (実際には、キヤタビラ 234に設けられている突起 238 が方向 Dと逆方向に進行)する際における前後力 Fxの変動率 (一次微分値 =dFxZ dt)及び横力 Fyの変動率 (一次微分値 = dFyZdt)を示して 、る。
[0069] 本実施形態では、 "期間 T" (所定期間)として、同図に示すように、基準車輪 (車輪 20R)が、突起 238に当接した時点(PI ' )から、突起 238に乗り上げて基準車輪 (空 気入りタイヤ)の変形が戻った時点 (P3 ' )までの期間が設定されて!、る。
[0070] 変動エネルギー和演算部 507は、期間 Tのうち、車輪 20R (20F)が突起 238に乗 り上げることに伴 ヽ、車輪 20R (20F)の変形がほぼ最大となる変形最大時点までの 前半期間であるゾーン Aにおける横力変動率 d の和である前半期間変動エネルギ 一和(以下、変動エネルギー和 E ")を演算するものである。
[0071] また、変動エネルギー和演算部 507は、期間 Tのうち、車輪 20R(20F)が突起 238 に乗り上げることに伴い、車輪 20R(20F)の変形がほぼ最大となる変形最大時点か らの後半期間であるゾーン Bにおける横力変動率 d の和である後半期間変動エネ ルギー和(以下、変動エネルギー和 E ")を演算するものである。
[0072] 具体的には、変動エネルギー和演算部 507は、変動エネルギー和 E "として、図 6
(a)及び (b)に示すように、期間 Tのうち、車輪 20R(20F)が突起 238に乗り上げる( 実際には、キヤタビラ 234によって移動する突起 238によって車輪 20Rが押し上げら れる)ことに伴い、車輪 20R(20F)の変形がほぼ最大となる変形最大時点までの期 間であるゾーン A (図中の P1〜P2の期間)における横力変動率 d (二次微分値)の 総和( =∑ d2Fy/dt2)を演算する。
[0073] また、変動エネルギー和演算部 507は、変動エネルギー和 E "として、図 6 (a)及び
(b)に示すように、期間 Tのうち、車輪 20R(20F)が突起 238に乗り上げることに伴い 、車輪 20R(20F)の変形がほぼ最大となる変形最大時点力 の期間であるゾーン B (図中の P2〜P3の期間)における横力変動率 d (二次微分値)の総和(=∑d2Fy
Zdt2)を演算する。
[0074] なお、本実施形態では、変動エネルギー和演算部 507による検出を容易にするた め、車輪 20R (20F)が突起 238に当接した時点(ΡΙ ' )、及び車輪 20R(20F)が突 起 238に乗り上げ、車輪 20R (20F)の変形が戻った時点(Ρ3' )に代えて、前後力変 動率 d がほぼ最大となる時点(PI及び P3)を基準としている力 当該時点(P1 '及 び Ρ3' )を正確に検出できる場合には、当該時点に基づいて、ゾーン Α及びゾーン Β を設定してもよい。
[0075] 姿勢角演算部 509は、車輪 20R(20F)のトー角(姿勢角)が異なる場合におけるゾ ーン Aの変動エネルギー和 E "の値を示す複数の点に基づ!/、て当てはめられるゾー
A
ン A直線 S (前半期間直線)、及び車輪 20R(20F)のトー角が異なる場合における
A
ゾーン Bの変動エネルギー和 E "の値を示す複数の点に基づいて当てはめられるゾ
B
ーン B直線 S (後半期間直線)の交点である特異点 P (特異点 P )におけるトー角
B RL RR
τ (基準車輪参照姿勢角)を演算するものであり、本実施形態では、基準車輪参照
BR
姿勢角演算部を構成する。
[0076] 例えば、姿勢角演算部 509は、車輪 20R(20F)のトー角を変更 (例えば、 4種類の トー角)し、それぞれのトー角における変動エネルギー和 E "の値を線形補間するこ
A
とによって当てはめられるゾーン A直線 S (図 9 (a3)参照)を求める。
A
[0077] なお、車輪 20R(20F)のトー角を変更は、車輪駆動部 200の下方に設けられてい るターンテーブル 300を回転させることによって、車輪 20R(20F)の水平直径線(赤 道線)に対するキヤタビラ 234の配置方向を変化させることによって行われる。
[0078] このような方法を用いることによって、車輪 20Rのトー角を変更することができない 自動四輪車にも対応することができる。さらに、車輪 20Rのトー角を実際に変更する 必要がないため、迅速に異なるトー角のデータを取得することができる。勿論、車輪 2 OR (20F)の水平直径線に対するキヤタビラ 234の配置方向を変化させることに代え て、自動四輪車 10のサスペンションの取付状態を調整することによって、車輪 20R( 20F)のトー角を変更してもよ!/、。
[0079] さらに、姿勢角演算部 509は、車輪 20Rのトー角が異なる場合における変動エネル ギー和 E "の値を線形補間することによって当てはめられるゾーン B直線 S (図 9 (a3
B B
)参照)を求める。次いで、姿勢角演算部 509は、ゾーン A直線 Sとゾーン B直線 Sと
A B
の交点である特異点 P におけるトー角
RL τ を演算する。
BR
[0080] また、姿勢角演算部 509は、車輪 20Rのトー角(姿勢角)が異なる場合における複 数の横力変動率 d の自乗和に基づいて、当該自乗和が最も小さくなるトー角 T (基
Fy I 準車輪理想姿勢角)を演算するものであり、本実施形態では、基準車輪理想姿勢角 演算部を構成する。
[0081] 具体的には、姿勢角演算部 509は、横力変動率 d の自乗和として、期間 T (図 6 (a
Fy
)参照)における横力変動率 d (二次微分値)の自乗和 E" ( =∑ (d2Fy/dt2) 2)を、 異なる値に設定された車輪 20Rのトー角ごと (例えば、 4種類のトー角)に演算する。
[0082] また、姿勢角演算部 509は、車輪 20R (基準車輪)と自動四輪車 10の前後方向に お!、て異なる位置に装着されて 、る車輪 20F (非基準車輪)のゾーン A直線 S及び
A
ゾーン B直線 Sの交点である特異点 P (特異点 P )におけるトー角 T (非基準車
B FL FR NBR
輪参照姿勢角)を演算するものであり、本実施形態では、非基準車輪参照姿勢角演 算部を構成する。
[0083] 例えば、姿勢角演算部 509は、上述した車輪 20Rと同様の方法によって、特異点 P におけるトー角 T を演算する(図 9 (b3)参照)。
FL NBR
[0084] また、姿勢角演算部 509は、トー角 T (基準車輪参照姿勢角)と、トー角 T (基準
BR I
車輪理想姿勢角)との差、及びトー角 τ (非基準車輪参照姿勢角)に基づいて、車
NBR
輪 20F (非基準車輪)に設定するトー角 T (非基準車輪設定姿勢角)を演算するも
NBA
のであり、本実施形態では、非基準車輪設定姿勢角演算部を構成する。
[0085] 具体的には、姿勢角演算部 509は、トー角 T と、トー角 Tとの差に基づく比率を用
BR I
いて、トー角 T を演算する。また、姿勢角演算部 509は、以下の式を用いてトー角
NBA
τ NBAを演算することもでさる。
[0086] τ NBA =τ NBR + (τ BR τ I) χ ( (τ NBR ) ( (T BR )2+ (τ NBR )2)
なお、トー角 T の具体的な演算方法については、後述する。
NBA
[0087] 表示部 513は、また、センサ信号受信部 503によって出力された距離センサ 176と 各車輪との距離、車輪 20R (20F)の水平直径線 (赤道線)に対するキヤタビラ 234の 配置方向(トー角)、記憶部 517に記憶されている前後力 Fx、横力 Fy、変動率 (d ,
Fx d )、及び変動エネルギー和(E ", E ")などの値またはグラフを表示するものであ
Fy A B
る。具体的には、表示部 513は、 CRTや LCDによる表示機によって構成されている
[0088] 操作部 515は、作業者による車輪姿勢角測定装置 500に対する操作内容を受け 付けるものである。具体的には、操作部 515は、キーボードやマウスなどによって構 成されている。
[0089] 記憶部 517は、変動エネルギー和演算部 507によって演算された変動エネルギー 和 ", E ")や、姿勢角演算部 509によって演算されたトー角(Τ , Τ , Τ , T
A B BR I NBR NB )の値を記憶するものである。
A
[0090] (車輪姿勢角測定システムの動作)
次に、上述した車輪姿勢角測定システムの動作について説明する。
[0091] (1)後輪の測定
まず、図 7を参照して、本実施形態において基準車輪となる車輪 20Rに係る測定に ついて説明する。
[0092] 同図に示すように、ステップ S10において、作業者は、測定の準備として、載置台 1 12に載置されている自動四輪車 10の各車輪に車輪駆動部 200 (キヤタビラ 234)が 当接するように車輪駆動部 200の位置を調整するとともに、測定対象となる車輪 20R (例えば、左後輪 ZRL)以外の車輪を車輪止め板 164によってロックする。
[0093] ここで、距離センサ 176と各車輪との距離のデータに基づいて、 自動四輪車 10の 載置位置が前後方向にお 、て斜めになって!/、る場合、表示部 513にその旨が表示 され、作業者は、車幅方向モータ 260を作動させ、自動四輪車 10の載置位置を修正 する。
[0094] ステップ S20において、作業者は、操作部 515を操作し、車輪駆動部 200のキヤタ ビラ 234を駆動させる。キヤタビラ 234を駆動させることによって、キヤタビラ 234に設 けられている突起 238力 車輪 20Rのトレッド面と当接しながら移動し、車輪 20Rに 前後力 Fx及び横力 Fyを発生させる。
[0095] ステップ S30において、車輪姿勢角測定装置 500は、車輪駆動部 200に設けられ ている力センサ 252からの出力信号、具体的には、力センサ 252を構成するロードセ ルから出力される電圧値 (単位:ボルト)を受信する。当該電圧値は、前後力 Fx及び 横力 Fyと対応付けられており、 kgに換算すると、 100kgZ5Vに相当する。
[0096] ステップ S40にお 、て、作業者は、測定対象の車輪 20Rにお 、て発生した前後力 Fx及び横力 Fyのデータ(電圧値)が正常に取得できたカゝ否かを確認する。
[0097] 車輪 20Rにお 、て発生した前後力 Fx及び横力 Fyのデータが正常に取得できなか つた場合 (ステップ S40の NO)、作業者は、再度ステップ S20及び S30の処理を実 行する。また、作業者は、他方の後輪 (例えば、右後輪 ZRR)、及び後輪のトー角を 変更して測定を継続する場合 (ステップ S50の NO)、ステップ S10〜S40の処理を 繰り返し実行する。
[0098] 本実施形態では、トー角の変更は、上述したように、車輪駆動部 200の下方に設け られて 、るターンテーブル 300を回転させることによって、車輪 20Rの水平直径線 ( 赤道線)に対するキヤタビラ 234の配置方向を変化させることによって行われる。
[0099] また、本実施形態では、両方の車輪 20R (RL/RR)を対象とし、 4種類 (もしくは 5 種類)のトー角について上述したステップ S10〜S40の処理が実行される。
[0100] なお、車輪 20R(20F)を構成する空気入りタイヤの種別などによるが、トー角 1度は 、横力 Fyと対応付けられる電圧 5Vにほぼ相当する。すなわち、本実施形態では、口 ードセルによって出力される電圧値をそのまま用いるため、トー角は、当該電圧値に よって示される。勿論、当該電圧値をトー角の値に変換して処理を実行してもよい。 或いは、ターンテーブル 300の回転量を検出するキヤタビラ配置方向検出部 310 (口 一タリエンコーダ)の出力値に基づいて得られるトー角の値と、当該トー角における電 圧値とを対応付けておくことによって、電圧値に代えて、トー角の値を表示させるよう にしてもよい。
[0101] また、本実施形態では、当該電圧値が、概ね 3. OV〜 + 5. OVの範囲、つまり、 概ね 0. 6度〜 + 1. 0度のトー角の範囲内において、上述した 4種類のトー角の値 が設定される。
[0102] 両後輪の測定が終了した場合 (ステップ S50の YES)、作業者は、ステップ S60に おいて、車輪のロックを解除する。
[0103] ステップ S70において、車輪姿勢角測定装置 500は、車輪 20Rにおいて発生した 前後力 Fx及び横力 Fyのデータを用いて、前後力 Fx及び横力 Fyの単位時間 dtごと の変動率である前後力変動率 d 及び横力変動率 d を演算する。
[0104] 具体的には、車輪姿勢角測定装置 500は、前後力変動率 d として、前後力 Fxの 一次微分値 ( = dFx/dt)及び二次微分値 ( = d2Fx/dt2)を演算し、横力変動率 d として、横力 Fyの一次微分値 ( = dFy/dt)及び二次微分値 ( = d2Fy/dt2)を演算 する。
[0105] ここで、図 9 (al)は、車輪 20R (左後輪 ZRL)が、突起 238に乗り上げることに伴い 発生した前後力 Fx及び横力 Fyの変動状況を示している。具体的には、同図(al)で は、車輪 20Rのトー角を変更して測定したそれぞれのトー角における前後力 Fx及び 横力 Fyの変動状況が示されている。同図(al)では、前後力 Fxが実線で示され、横 力 Fyが点線で示されて 、る。
[0106] 図 9 (a2)は、同図(al)示した前後力 Fx及び横力 Fyのデータに基づいて演算され た前後力変動率 d 及び横力変動率 d (前後力 Fx及び横力 Fyの二次微分値)を示 l·y
している。同図(a2)では、前後力 Fxの二次微分値が実線で示され、横力 Fyの二次 微分値が点線で示されて 、る。
[0107] 次いで、図 7に示すように、ステップ S80において、車輪姿勢角測定装置 500は、 横力変動率 d (横力 Fyの二次微分値)に基づ 、て、ゾーン Aにおける変動エネルギ
Fy
一和 E "を演算するとともに、ゾーン Bにおける変動エネルギー和 E "を演算する。
A B
[0108] なお、ゾーン Aは、上述したように、車輪 20Rが突起 238に乗り上げる(実際には、 キヤタビラ 234によって移動する突起 238によって車輪 20Rが押し上げられる)ことに 伴い、車輪 20Rの変形がほぼ最大となる変形最大時点までの期間(図 6 (a)の Pl〜 P2の期間)である。
[0109] また、ゾーン Bは、車輪 20Rが突起 238に乗り上げることに伴う車輪 20Rの変形が ほぼ最大となる変形最大時点力もの期間(図 6 (a)の P2〜P3の期間)である。
[0110] 具体的には、車輪姿勢角測定装置 500は、変動エネルギー和 E "として、ゾーン A
A
における横力変動率 d (二次微分値)の総和(=∑d2FyZdt2)を演算するとともに、
Fy
変動エネルギー和 E "として、ゾーン Bにおける横力変動率 d (二次微分値)の総和
B Fy
(=∑d2FyZdt2)を演算する。
[0111] ステップ S90において、車輪姿勢角測定装置 500は、車輪 20R (左後輪 ZRL)のト 一角が異なる場合における変動エネルギー和 E "の値を示す複数の点に基づ!/、て
A
当てはめられるゾーン A直線 S 、及び変動エネルギー和 E "の値を示す複数の点に
A B
基づいて当てはめられるゾーン B直線 Sの交点である特異点 P (または右後輪 ZR
B RL
Rの特異点 P )におけるトー角 T (基準車輪参照姿勢角)を演算する。
RR BR
[0112] 具体的には、車輪姿勢角測定装置 500は、それぞれのトー角における変動エネル ギー和 E ", E "の値を線形補間することによって当てはめられるゾーン A直線 S , S
A B A
を求める。さらに、車輪姿勢角測定装置 500は、特異点 P (特異点 P )におけるト
B RL RR 一角 T を演算する。
BR
[0113] ここで、図 9 (a3)は、上述した車輪 20R (左後輪 ZRL)のゾーン A直線 S及びゾー
A
ン B直線 Sの交点である特異点 P を示している。同図(a3)では、特異点 P におけ
B RL RL
るトー角 T と対応付けられる電圧値は、約 2. 414Vと演算される。
BR
[0114] 次いで、図 7に示すように、ステップ S100において、車輪姿勢角測定装置 500は、 車輪 20Rのトー角が異なる場合における複数の横力変動率 d の自乗和に基づいて
Fy
、当該自乗和が最も小さくなるトー角 T (基準車輪理想姿勢角)を演算する。
I
[0115] 具体的には、車輪姿勢角測定装置 500は、期間 T (図 6 (a)参照)における横力変 動率 d (二次微分値)の自乗和 E" ( =∑ (d2Fy/dt2) 2)を、異なる値に設定された
Fy
車輪 20Rのトー角ごとに演算する。
[0116] ステップ S110において、車輪姿勢角測定装置 500は、ステップ S70〜S90におけ る演算の結果を表示したり、記憶したりして、車輪 20Rに係る測定を終了する。なお、 ステップ S 100の処理は、ステップ S80の処理と並行して、またはステップ S80の処理 よりも先に実行してもよい。
[0117] (2)前輪の測定
次に、図 8を参照して、本実施形態において非基準車輪となる車輪 20Fに係る測 定について説明する。なお、以下、上述した車輪 20Rと同様の処理については、適 宜その説明を省略する。
[0118] 同図に示すように、ステップ S210〜S280の処理は、上述したステップ S10〜S80 の処理(図 7参照)と同様であり、車輪 20Fにつ 、ても同様の処理が実行される。
[0119] ステップ S290において、車輪姿勢角測定装置 500は、車輪 20R (基準車輪)と自 動四輪車 10の前後方向にぉ 、て異なる位置に装着されて 、る車輪 20F (非基準車 輪)のゾーン A直線 S及びゾーン B直線 Sの交点である特異点 P (または右前輪の
A B FL
特異点 P )におけるトー角 τ (非基準車輪参照姿勢角)を演算する。
FR NBR
[0120] 具体的には、車輪姿勢角測定装置 500は、上述した車輪 20Rと同様の処理 (ステ ップ S90参照)によって、車輪 20Fの特異点 P (特異点 P )におけるトー角 T を
FL FR NBR
演算する。
[0121] ここで、図 9 (bl)〜(b3)は、車輪 20F (左前輪 ZFL)に係るデータを示しており、 ( bl)は、前後力 Fx及び横力 Fyの変動状況、(b2)は、前後力 Fx及び横力 Fyのデー タに基づいて演算された前後力変動率 d 及び横力変動率 d (前後力 Fx及び横力
Fx
Fyの二次微分値)、 (b3)は、ゾーン A直線 S及びゾーン B直線 Sの交点である特
A B
異点 P を示している。同図(b3)では、特異点 P におけるトー角 T と対応付けら
FL FL NBR
れる電圧値は、約 0. 710Vと演算される。
[0122] 次いで、図 8に示すように、ステップ S300において、車輪姿勢角測定装置 500は、 トー角 T (基準車輪参照姿勢角)と、トー角 T (基準車輪理想姿勢角)との差、及びト
BR I
一角 T (非基準車輪参照姿勢角)に基づいて、車輪 20F (非基準車輪)に設定す
NBR
るトー角 τ (非基準車輪設定姿勢角)を演算する。
NBA
[0123] ここで、図 10を参照して、トー角 T の演算方法について説明する。車輪姿勢角
NBA
測定装置 500は、まず、後輪軸 (RL/RR)のトー角 T と、前輪軸 (FL/FR)のトー
BR
角 T の値に基づいて、以下のように後輪軸と前輪軸の参照トー角(τ , T )の
NBR BR NBR
比率 (モーメント比率)を演算する。
[0124] (0. 710V+ 1. 013V) / (2. 414V+2. 160V) =0. 377
次いで、車輪姿勢角測定装置 500は、トー角 T とトー角 Tとの差を以下のように演
BR I
算する。
[0125] 2. 414V- 1. 420V=0. 994V …(左後輪 ZRL)
2. 160V- 1. 360V=0. 800V …(右後輪 ZRR)
さらに、車輪姿勢角測定装置 500は、上述したモーメント比率、及びトー角 T とト
BR
一角 Tとの差を用いて、トー角 T を以下のように演算する。
I NBA
[0126] 0. 710V- (0. 994VX 0. 377) =0. 335V …(左前輪 ZFL)
1. 013V- (0. 800VX 0. 377) =0. 717V …(右前輪 ZFR)
なお、車輪姿勢角測定装置 500は、上述した演算方法に代えて、以下の式を用い て、トー角 T を演算してもよい。
NBA
[0127] τ =τ + (τ τ ) χ ( (τ ) ( (
NBR T ) 2+ (τ ) 2)
NBA NBR BR I BR NBR
次いで、図 8に示すように、ステップ S310において、作業者は、ステップ S300にお V、て演算された車輪 20Fに設定するトー角 T (電圧値)の値に基づ 、て、車輪 20
NBA
Fがトー角 T となるように、自動四輪車 10の前輪サスペンション (不図示)の取付状
NBA 態を調整する。
[0128] なお、作業者は、トー角 T と対応付けられている電圧値から、自動四輪車 10の
NBA
車輪 20Fに設定するトー角 T の角度を判断 (上述したように、車輪 20R (20F)を
NBA
構成する空気入りタイヤの種別などによる力 トー角 1. 0度は、電圧 5Vにほぼ相当) して、車輪 20Fを当該トー角に調整する。
[0129] (比較評価)
次に、図 11〜図 13を参照して、上述した車輪姿勢角測定システムによって演算さ れたトー角 T に設定された自動四輪車につ!ヽて実施した走行安定性 (操縦性や
NBA
安定性)に関する比較評価試験の方法ならびにその結果について説明する。
[0130] (1)テストドライバーによる走行安定性の比較
図 11は、テストドライバーによるフィーリング評価の結果をグラフとして示したもので ある。同図に示すように、駆動方式や排気量が異なる 3種類の自動四輪車について 、標準トー角(新車時に設定されているトー角)に設定した状態と、トー角 T (調整
NBA
後トー角)に設定した状態との走行安定性を比較した。
[0131] なお、試験条件などは、以下のとおりである。
[0132] ·車種(駆動方式): FR車 A、 FF車 A、及び FF車 B
•装着タイヤ種別: 新車装着 (OE)タイヤ A, B、及び交換用タイヤ A, B •評点基準: (6)—辛うじて満足、(7)—ほぼ満足、(8)—満足
•評点差異レベル:
(±0. 5)—やや差がある、(± 1. 0)—差がある、(± 2. 0)—大いに差がある 同図に示すように、すべての車種において、トー角 T に調整した後における走行
NBA
安定性が向上している。また、同一の車種 (FR車 A)に異なるタイヤ (新車装着タイヤ A,交換用タイヤ A)を装着した場合でも、トー角 T に調整した後における走行安
NBA
定性が向上している。
[0133] すなわち、自動四輪車や装着されるタイヤの種別によらず、車輪姿勢角測定システ ムを用いて演算されたトー角 T に調整された自動四輪車は、標準トー角に設定し
NBA
た場合と比較して、走行安定性が向上していることが確認された。
[0134] (2)サスペンションへの入力量の比較 図 12 (a)及び (b)は、上述した FF車 Bのサスペンション (具体的には、前後左右の 各ロアアーム)への入力量の変動状況を比較したものである。
[0135] 具体的には、同図 (a)は、 FF車 Bを標準トー角に設定し、高速道路を約 6分間走行 させた場合における前後左右の各ロアアームへの入力変動状況を重ねて表示して いる。一方、同図 (b)は、 FF車 Bをトー角 T (調整後トー角)に設定し、高速道路を
NBA
約 6分間走行させた場合における前後左右の各ロアアームへの入力変動状況を重 ねて表示している。
[0136] FF車 Bをトー角 T に設定した場合、標準トー角に設定した場合と比較して、ロア
NBA
アームへの入力の変動率(当該入力の一次微分値)の総和が、 14〜15%改善され ている。具体的には、トー角 T に設定した場合、フロントロアアームでは標準トー角
NBA
比で 0. 8517に、リアロアアームでは標準トー角比で 0. 8636に当該総和が低減さ れている。
[0137] また、同図 (b)に示したように、トー角 T に設定した場合、標準トー角に設定した
NBA
場合と比較して、当該変動率が小さぐかつ一定以上の幅で変動する頻度も低減し ている。
[0138] すなわち、車輪姿勢角測定システムを用いて演算されたトー角 T に調整すれば
NBA
、車輪 20R(20F)を介して自動四輪車 (サスペンションのロアアーム)に伝達される力 が低減され、いわゆる振動乗り心地性を向上させることができる。
[0139] (3)自動四輪車の挙動比較
図 13は、車輪姿勢角測定システムを用いて演算されたトー角 T に設定された自
NBA
動四輪車の走行安定性をさらに客観的に比較評価するために実施した試験結果を 示している。なお、本試験において用いた自動四輪車は、上述した FR車 Aである。
[0140] 具体的には、同図(a)〜(c)は、自動四輪車によるスラローム走行時の(1)ョーレー ト、(2)ステアリング角、(3)ロール量を示している。また、同図(a)〜(c)に示されてい るグラフの縦軸は、ある方向に対する上記(1)〜(3)を( + )、当該方向と逆方向に対 する上記(1)〜(3)を(一)によって表現している。なお、(+ )と(一)とで示される上記 (1)〜(3)の方向は、一致していないこと(例えば、ョーレートとステアリング角の方向 )に留意されたい。 [0141] 同図(a)は、自動四輪車をトー角 T から"アウト側"(自動四輪車 10の車幅方向
NBA
外側)に 0. 1度オフセットさせた状態でのスラローム走行の結果を示している。一方、 同図(b)は、自動四輪車をトー角 T 力も"イン側"(自動四輪車 10の車幅方向内側
NBA
)に 0. 1度オフセットさせた状態でのスラローム走行の結果を示している。また、同図( c)は、 自動四輪車をトー角 T に設定した状態でのスラローム走行の結果を示して
NBA
いる。
[0142] 同図(a)〜(c)を比較すると、同図(a)では、ステアリング角の増加に対して、途中 力もョーレートが追従せずに"頭打ち"となっている。つまり、ステアリング角を増加さ せていくと、あるタイミングからステアリング角に応じたコーナリングフォースが立ち上 がらなくなり、ドライバ一は、あるタイミングから「ハンドルが切れなくなるような感触」を 持つことになる。
[0143] 同図(b)では、ステアリング角の増加に対して、ョーレートが遅れて発生しており、ス テアリング角に対する応答が緩慢となっている。また、同図(a)及び (c)と比較すると ロール量も大きくなつて 、る。
[0144] 同図(c)では、同図(a)や (b)と比較すると、ステアリング角の増加に対して、ョーレ ートがリニアに追従しており、ドライバ一は、ステアリング操作に対して自動四輪車 10 が俊敏に反応するとともに、ステアリング特性が、ほぼ-ユートラルステアであるような 感覚を持つことになる。
[0145] また、同図(c)では、同図(a)や (b)と比較すると、ロール量、特に、ステアリング角 をほぼ 0度に戻す際、つまり、直進走行に戻る際における逆側へのロール量が少なく 、いわゆる"収まり感"がよぐ操縦性や安定性に優れた特性となっていることが解かる
[0146] (作用'効果)
以上説明した本実施形態に係る車輪姿勢角測定システム (車輪姿勢角測定用リフ ト 100及び車輪姿勢角測定装置 500)によれば、変動エネルギー和 E "の値に基づ
A
いて当てはめられるゾーン A直線 S 、及び変動エネルギー和 E "の値に基づいて当
A B
てはめられるゾーン B直線 Sの交点(特異点 P , P )における姿勢角であるトー角
B RL Fし
T (基準車輪参照姿勢角)に基づいて、トー角 T (非基準車輪設定姿勢角)が演 算される。
[0147] このため、上述した従来の姿勢角(トー角)調整方法のように、車輪 20F (非基準車 輪)において発生する横力 Fyの時間軸上の推移を、車輪 20R (基準車輪)において 発生する横力 Fyの時間軸上の推移に近似させるといった複雑な処理を実行する必 要がなぐトー角 T を容易かつ確実に設定することができる。
NBA
[0148] また、従来の姿勢角調整方法では、車輪 20F (非基準車輪)において発生する横 力 Fyの時間軸上の推移を、車輪 20R (基準車輪)において発生する横力 Fyの時間 軸上の推移に充分に近似させることができな 、場合があると!/、つた問題があつたが、 このような問題を回避することができる。
[0149] すなわち、変動エネルギー和 E "と、変動エネルギー和 E "とが同等となるトー角 T
A B
を用いて、車輪 20F (非基準車輪)のトー角 T が決定されるため、車輪 20F (前
BR NBA
輪)と車輪 20R (後輪)とにおいて発生する横力 Fyの特性がバランスし、車輪 20F (前 輪)と車輪 20R (後輪)とにおいて発生する横力 Fyの特性をより近似させることができ るトー角 T の値を容易に決定することができる。
NBA
[0150] より具体的には、各車輪において発生する横力 Fyによって発生する自動四輪車 1 0のモーメントを、自動四輪車 10を構成する車体の重心位置の付近でバランスさせる ことができる。
[0151] つまり、発明者は、自動四輪車 10の各車輪 (RLZRRZFLZFR)に対する外乱( 突起 238への乗り上げ)による入力(変動エネルギー和 E ")に伴う各車輪からの出
A
力(変動エネルギー和 E ")の比率を同等とすることによって、車体の重心位置の付
B
近で当該モーメントをバランスさせることができるとの仮説を設定し、当該仮説が成立 することを上述した比較評価試験によって立証したのである。
[0152] トー角 T に設定された自動四輪車 10のステアリング特性は、上述したように、二
NBA
ユートラルステアに近づくことになる。つまり、自動四輪車 10は、リニアで安定した挙 動を示すようになり、自動四輪車 10の操縦性や安定性といった走行安定性がさら〖こ 向上する。
[0153] さらに、トー角 T に設定された自動四輪車 10では、車輪 20R(20F)を介して自
NBA
動四輪車 10に伝達される力が低減され、いわゆる振動乗り心地性を向上させること ができる。
[0154] また、このようにトー角 T が決定されるため、自動四輪車 10のサスペンション形
NBA
式の違いなどによって、変動エネルギー和が基準車輪と非基準車輪とで大きく異な る場合でも、トー角 T を演算することができる。つまり、自動四輪車 10のサスペンシ
NBA
ヨン形式の影響を受けることなぐトー角 τ を演算することができる。
NBA
[0155] また、本実施形態に係る車輪姿勢角測定システムによれば、各車輪において発生 する前後力 Fx及び横力 Fyに基づ 、て、設定すべきトー角(トー角 T )が演算され
NBA
るため、空気入りタイヤやタイヤホイールを交換した場合でも、より適切なトー角を容 易に設定することができる。
[0156] (その他の実施形態)
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示 の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない 。この開示力 当業者には様々な代替実施の形態、実施例及び運用技術が明らかと なろう。
[0157] 例えば、上述した本発明の実施形態では、乗用車である自動四輪車 10を例として 説明したが、本発明は、乗用車に限らず、例えば、 SUV、トラックまたはノ スなどにも 勿論適用することができる。
[0158] また、上述した本発明の実施形態では、変動エネルギー和 E ", E "として、横力
A B
変動率 d (二次微分値)の総和( =∑ d2Fy/dt2)が用いられて ヽたが、変動エネル
Fy
ギー和 E ", E "として、一次微分値の総和(和(=∑dFyZdt)や、三次微分値の総
A B
和(=∑ d3FyZdt3)を用いてもよい。
[0159] また、変動エネルギー和 E "と E "との差を自乗した値を用いて、特異点(P など)
A B RL
を求めてもよい。
[0160] さらに、上述した本発明の実施形態では、車輪 20R(20F)の姿勢角として、トー角 について測定、演算が行われていた力 トー角に代えて、例えば、キャンバー角の測 定、演算に本発明を適用することもできる。
[0161] また、上述した本発明の実施形態では、車輪 20R (後輪)が基準車輪とされていた 1S 自動四輪車 10のサスペンション形式によっては、車輪 20F (前輪)を基準車輪と してちよい。
[0162] さらに、上述した車輪姿勢角測定装置 500を構成する動作制御部 501、センサ信 号受信部 503、変動率演算部 505、変動エネルギー和演算部 507及び姿勢角演算 部 509は、パーソナルコンピュータなどのコンピュータ装置によって実行可能なプロ グラムとして提供することもできる。
[0163] このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは 勿論である。したがって、本発明の技術的範囲は、上述の説明力 妥当な特許請求 の範囲に係る発明特定事項によってのみ定められるものである。
産業上の利用の可能性
[0164] 以上のように、本発明に係る車輪姿勢角測定装置は、前輪と後輪とにおいて発生 する横力の特性がさらに近似する姿勢角の値を決定することができるため、車輪の姿 勢角の調整などにおいて有用である。

Claims

請求の範囲
[1] 車両に装着されて 、る空気入りタイヤ付き車輪のうちの何れかの車輪である基準車 輪が所定の突起に乗り上げることに伴い、前記基準車輪の変形がほぼ最大となる変 形最大時点を含む所定期間において、前記基準車輪に発生する横力の値を測定す るセンサからの出力信号を受信するセンサ信号受信部と、
前記出力信号を用いて、前記変形最大時点までの前半期間における前記横力の 変動率の和である前半期間変動エネルギー和、及び前記変形最大時点からの後半 期間における前記横力の変動率の和である後半期間変動エネルギー和を演算する 変動エネルギー和演算部と、
前記基準車輪の姿勢角が異なる場合における前記前半期間変動エネルギー和の 値に基づいて当てはめられる前半期間直線、及び前記基準車輪の姿勢角が異なる 場合における前記後半期間変動エネルギー和の値に基づいて当てはめられる後半 期間直線の交点における姿勢角である基準車輪参照姿勢角を演算する基準車輪参 照姿勢角演算部と、
前記基準車輪参照姿勢角に基づいて、前記基準車輪と前記車両の前後方向にお
V、て異なる位置に装着されて 、る非基準車輪に設定する非基準車輪設定姿勢角を 演算する非基準車輪設定姿勢角演算部と
を備えることを特徴とする車輪姿勢角測定装置。
[2] 前記基準車輪の姿勢角が異なる場合における前記横力の変動率の自乗和に基づ Vヽて、前記自乗和が最も小さくなる基準車輪理想姿勢角を演算する基準車輪理想 姿勢角演算部をさらに備え、
前記非基準車輪設定姿勢角演算部は、前記基準車輪参照姿勢角及び前記基準 車輪理想姿勢角に基づ ヽて、前記非基準車輪設定姿勢角を演算することを特徴と する請求項 1に記載の車輪姿勢角測定装置。
[3] 前記非基準車輪の前半期間直線及び後半期間直線の交点における姿勢角である 非基準車輪参照姿勢角を演算する非基準車輪参照姿勢角演算部をさらに備え、 前記非基準車輪設定姿勢角演算部は、前記基準車輪参照姿勢角と前記基準車 輪理想姿勢角との差、及び前記非基準車輪参照姿勢角に基づいて、前記非基準車 輪設定姿勢角を演算することを特徴とする請求項 2に記載の車輪姿勢角測定装置。
[4] 前記センサ信号受信部は、前記所定期間において、前記基準車輪に発生する前 後力の値を測定するセンサ力もの出力信号をさらに受信し、
前記変動エネルギー和演算部は、前記前後力の一次微分値に基づいて前記前半 期間または前記後半期間を決定することを特徴とする請求項 1に記載の車輪姿勢角 測定装置。
[5] 前記変動エネルギー和演算部は、前記横力の変動率として、前記横力の二次微 分値を用い、前記前半期間変動エネルギー和または前記後半期間変動エネルギー 和を演算することを特徴とする請求項 1に記載の車輪姿勢角測定装置。
[6] 前記基準車輪理想姿勢角演算部は、前記横力の変動率として、前記横力の二次 微分値を用い、前記自乗和を演算することを特徴とする請求項 2に記載の車輪姿勢 角測定装置。
[7] 車両に装着されて 、る空気入りタイヤ付き車輪のうちの何れかの車輪である基準車 輪が所定の突起に乗り上げることに伴い、前記基準車輪の変形がほぼ最大となる変 形最大時点を含む所定期間において、前記基準車輪に発生する横力の値を測定す るセンサからの出力信号を受信するステップと、
前記出力信号を用いて、前記変形最大時点までの前半期間における前記横力の 変動率の和である前半期間変動エネルギー和、及び前記変形最大時点からの後半 期間における前記横力の変動率の和である後半期間変動エネルギー和を演算する ステップと、
前記基準車輪の姿勢角が異なる場合における前記前半期間変動エネルギー和の 値に基づいて当てはめられる前半期間直線、及び前記基準車輪の姿勢角が異なる 場合における前記後半期間変動エネルギー和の値に基づいて当てはめられる後半 期間直線の交点における姿勢角である基準車輪参照姿勢角を演算するステップと、 前記基準車輪参照姿勢角に基づいて、前記基準車輪と前記車両の前後方向にお V、て異なる位置に装着されて 、る非基準車輪に設定する非基準車輪設定姿勢角を 演算するステップと
を備えることを特徴とする車輪姿勢角測定方法。
[8] 前記基準車輪の姿勢角が異なる場合における前記横力の変動率の自乗和に基づ いて、前記自乗和が最も小さくなる基準車輪理想姿勢角を演算するステップをさらに 備え、
前記非基準車輪設定姿勢角を演算するステップでは、前記基準車輪参照姿勢角 及び前記基準車輪理想姿勢角に基づ!、て、前記非基準車輪設定姿勢角が演算さ れることを特徴とする請求項 7に記載の車輪姿勢角測定方法。
[9] 前記非基準車輪の前半期間直線及び後半期間直線の交点における姿勢角である 非基準車輪参照姿勢角を演算する非基準車輪参照姿勢角を演算するステップをさ らに備え、
前記非基準車輪設定姿勢角を演算するステップでは、前記基準車輪参照姿勢角 と前記基準車輪理想姿勢角との差、及び前記非基準車輪参照姿勢角に基づ 、て、 前記非基準車輪設定姿勢角が演算されることを特徴とする請求項 7に記載の車輪姿 勢角測定方法。
[10] 前記出力信号を受信するステップでは、前記所定期間において、前記基準車輪に 発生する前後力の値を測定するセンサからの出力信号がさらに受信され、
前記変動エネルギー和を演算するステップでは、前記前後力の一次微分値に基づ いて前記前半期間または前記後半期間が決定されることを特徴とする請求項 7に記 載の車輪姿勢角測定方法。
[11] 前記変動エネルギー和を演算するステップでは、前記横力の変動率として、前記 横力の二次微分値が用いられ、前記前半期間変動エネルギー和または前記後半期 間変動エネルギー和が演算されることを特徴とする請求項 7に記載の車輪姿勢角測 定方法。
[12] 前記基準車輪理想姿勢角を演算するステップでは、前記横力の変動率として、前 記横力の二次微分値が用いられ、前記自乗和が演算されることを特徴とする請求項 8に記載の車輪姿勢角測定方法。
PCT/JP2005/016509 2004-09-09 2005-09-08 車輪姿勢角測定装置及び車輪姿勢角測定方法 WO2006028166A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602005008621T DE602005008621D1 (de) 2004-09-09 2005-09-08 Radlagewinkelmessinstrument und radlagewinkelmessverfahren
US11/662,408 US7415770B2 (en) 2004-09-09 2005-09-08 Wheel alignment angle measuring apparatus and wheel alignment angle measuring method
EP05782282A EP1788374B1 (en) 2004-09-09 2005-09-08 Wheel attitude angle measuring instrument and wheel attitude angle measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-262229 2004-09-09
JP2004262229A JP4523818B2 (ja) 2004-09-09 2004-09-09 車輪姿勢角測定装置及び車輪姿勢角測定方法

Publications (1)

Publication Number Publication Date
WO2006028166A1 true WO2006028166A1 (ja) 2006-03-16

Family

ID=36036447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016509 WO2006028166A1 (ja) 2004-09-09 2005-09-08 車輪姿勢角測定装置及び車輪姿勢角測定方法

Country Status (7)

Country Link
US (1) US7415770B2 (ja)
EP (1) EP1788374B1 (ja)
JP (1) JP4523818B2 (ja)
CN (1) CN100526839C (ja)
DE (1) DE602005008621D1 (ja)
ES (1) ES2309791T3 (ja)
WO (1) WO2006028166A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086773A1 (de) * 2007-01-16 2008-07-24 Dürr Assembly Products GmbH Vorrichtung zum messen der fahrwerksgeometrie

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240054B2 (ja) * 2006-04-24 2009-03-18 トヨタ自動車株式会社 車両正対装置および車両正対方法
FR2916412B1 (fr) * 2007-05-23 2009-08-21 Michelin Soc Tech Procede de reglage binaire de la position angulaire du plan d'une roue de vehicule automobile.
CN101979268B (zh) * 2010-09-25 2012-09-05 合肥工业大学 一种汽车转向轮摆振控制方法
DE102011084876A1 (de) * 2011-10-20 2013-04-25 Robert Bosch Gmbh System und Verfahren zur Achsvermessung eines Kraftfahrzeugs
US8543291B2 (en) 2012-02-10 2013-09-24 Steven P Young Hydraulic wheel suspension system for a 3-wheeled motorcycle
JP6057131B2 (ja) * 2013-04-26 2017-01-11 株式会社ジェイテクト 車両用試験システム
ITVA20130018U1 (it) * 2013-05-13 2014-11-14 Vamag Srl Banco prova perfezionato per veicoli terrestri.
CN103884514B (zh) * 2014-03-03 2017-08-08 合肥市强科达科技开发有限公司 一种多功能机动车测量仪及检测方法
US10222455B1 (en) * 2014-09-05 2019-03-05 Hunter Engineering Company Non-contact vehicle measurement system
JP6304002B2 (ja) * 2014-12-02 2018-04-04 トヨタ自動車株式会社 ホイールアライメント調節装置
ITUA20162317A1 (it) * 2016-04-05 2017-10-05 Corghi Spa Apparato e metodo per la valutazione dell'assetto di un veicolo.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043750A (ja) * 1998-07-29 2000-02-15 Bridgestone Corp 車両のホイールアライメント調整方法
JP2000062639A (ja) * 1998-08-21 2000-02-29 Bridgestone Corp 車両のホイールアライメント調整方法
JP2001030945A (ja) * 1999-07-16 2001-02-06 Bridgestone Corp ホイールアライメント調整装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699155B2 (ja) * 1995-06-06 2005-09-28 株式会社ブリヂストン 車両のホイールアライメント調整方法
JP3857358B2 (ja) * 1996-06-25 2006-12-13 株式会社ブリヂストン 車両のホイールアライメント調整方法
JP2001018830A (ja) * 1999-07-06 2001-01-23 Bridgestone Corp ホイールアライメント調整装置
JP2003532063A (ja) * 2000-04-25 2003-10-28 スナップ − オン テクノロジーズ,インコーポレイテッド 自動車の車輪および車軸のアライメントの測定
JP3457287B2 (ja) * 2001-03-15 2003-10-14 本田技研工業株式会社 車両の片流れ量計測方法
US6783188B2 (en) * 2001-10-09 2004-08-31 The Yokohama Rubber Co., Ltd. Method of fitting tire-and-wheel assembled body to axle
US7357053B2 (en) * 2006-06-20 2008-04-15 Fori Automation, Inc. Vehicle tie rod adjustment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043750A (ja) * 1998-07-29 2000-02-15 Bridgestone Corp 車両のホイールアライメント調整方法
JP2000062639A (ja) * 1998-08-21 2000-02-29 Bridgestone Corp 車両のホイールアライメント調整方法
JP2001030945A (ja) * 1999-07-16 2001-02-06 Bridgestone Corp ホイールアライメント調整装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1788374A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086773A1 (de) * 2007-01-16 2008-07-24 Dürr Assembly Products GmbH Vorrichtung zum messen der fahrwerksgeometrie

Also Published As

Publication number Publication date
EP1788374A4 (en) 2007-09-26
CN101014846A (zh) 2007-08-08
EP1788374A1 (en) 2007-05-23
US20080022540A1 (en) 2008-01-31
CN100526839C (zh) 2009-08-12
EP1788374B1 (en) 2008-07-30
ES2309791T3 (es) 2008-12-16
JP2006076423A (ja) 2006-03-23
DE602005008621D1 (de) 2008-09-11
US7415770B2 (en) 2008-08-26
JP4523818B2 (ja) 2010-08-11

Similar Documents

Publication Publication Date Title
WO2006028166A1 (ja) 車輪姿勢角測定装置及び車輪姿勢角測定方法
CN106945670B (zh) 基于驾驶员输入预测的汽车防侧翻系统及控制方法
CN110626353B (zh) 一种基于侧倾风险指标的车辆危险状态预警方法
US20100268422A1 (en) Systems and methods for decoupling steering rack force disturbances in electric steering
US20110178671A1 (en) Diagnosis of wheel alignment using gps
JPH11101732A (ja) 路面摩擦係数検出装置
US20180297630A1 (en) System and method for estimating steering torque
JP4179674B2 (ja) 車両のホイールアライメント調整方法
JP6070044B2 (ja) サスペンション制御装置
CN112918464A (zh) 车辆稳态转向控制方法和装置
JP2007240392A (ja) 接地荷重推定装置
JP4193648B2 (ja) 車輌の走行状態判定装置
EP0947359B1 (en) Method for alarming decrease in tyre air-pressure and apparatus therefor
US11840293B2 (en) Turning system for vehicle
CN115071822A (zh) 车辆转向监测方法
JP5089558B2 (ja) 路面摩擦係数推定装置
CN112985843B (zh) 车轮定位失调的检测方法、检测装置及终端
JP2000219146A (ja) 車輌の走行制御装置
JP5326562B2 (ja) 旋回挙動検出装置、旋回挙動検出方法、及びヨーレート推定方法
WO2017095301A1 (en) Method and system for facilitating steering of a vehicle during driving along a road
CN109533156B (zh) 平衡车车轮滑动的判断方法以及平衡车
JP2006142895A (ja) 車両運動制御装置
JPH1178933A (ja) 車両の車体横滑り角推定方法及び推定装置
JP2553702Y2 (ja) パワーステアリング装置
CN115923918A (zh) 马达控制装置和方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11662408

Country of ref document: US

Ref document number: 200580030329.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005782282

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005782282

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11662408

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005782282

Country of ref document: EP