WO2006027907A1 - ディスク装置 - Google Patents

ディスク装置 Download PDF

Info

Publication number
WO2006027907A1
WO2006027907A1 PCT/JP2005/013830 JP2005013830W WO2006027907A1 WO 2006027907 A1 WO2006027907 A1 WO 2006027907A1 JP 2005013830 W JP2005013830 W JP 2005013830W WO 2006027907 A1 WO2006027907 A1 WO 2006027907A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle
traverse
cam member
motor
base
Prior art date
Application number
PCT/JP2005/013830
Other languages
English (en)
French (fr)
Inventor
Shinichi Wada
Koujiro Matsushita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/585,248 priority Critical patent/US7739704B2/en
Publication of WO2006027907A1 publication Critical patent/WO2006027907A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/04Feeding or guiding single record carrier to or from transducer unit
    • G11B17/05Feeding or guiding single record carrier to or from transducer unit specially adapted for discs not contained within cartridges
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/04Feeding or guiding single record carrier to or from transducer unit
    • G11B17/05Feeding or guiding single record carrier to or from transducer unit specially adapted for discs not contained within cartridges
    • G11B17/051Direct insertion, i.e. without external loading means

Definitions

  • the present invention relates to a disk device that performs recording or reproduction on a disk-shaped recording medium such as a CD or DVD, and in particular, a so-called slot-in that can directly insert or eject a disk from an external cover.
  • the present invention relates to a system disk device. Background art
  • the conventional disk device is a force in which a loading method is used in which a disk is placed on a tray or a turntable and the tray is mounted in the device body.
  • a loading method There was a limit to the thinness of the disk unit itself because of the need for a tray turntable.
  • slot-in type disk device in which a disk is directly operated by a lever or the like by a loading motor (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-352498
  • the present invention is a slot-in type disk device that secures a sufficient clearance when a disk is inserted into or removed from the disk device, and further reduces the thickness of the device while reducing the disk to the spindle motor.
  • Disc device that can reliably perform the mounting operation The purpose is to provide a device.
  • the disk device of the first aspect of the present invention comprises a chassis exterior composed of a base body and a lid, a disk insertion slot for directly inserting a disk is formed on the front surface of the chassis exterior, and a traverse base is formed on the base body.
  • a disc provided with a traverse base moving means for displacing the traverse base between the base main body side and the lid body side, provided with a spindle motor, a pickup, and a drive means for moving the pickup on the traverse base.
  • the spindle motor is configured to be urged toward the traverse base by an elastic member
  • the traverse base moving means is a loading motor provided in the chassis exterior, and the driving of the loading motor
  • a sliding slider and a traverse provided on the slider And a spindle cam member that moves the spindle motor downward relative to the traverse base, and a spindle cam member that moves the spindle cam member downward relative to the traverse base.
  • the slider is driven by the loading motor.
  • the spindle cam member is provided on the slider.
  • the spindle cam member is separated from the slider and provided on the traverse base side.
  • the spindle motor includes a plurality of pins inserted into the spindle force member and is driven by the loading motor.
  • the spindle motor is lowered by being transmitted to the spindle motor via a pin.
  • the spindle motor is driven by the loading motor to lower the traverse base after the spindle motor is at the highest position, and after the traverse base is lowered, The traverse base is lowered after the loading motor is reversely rotated to bring the spindle motor to the highest position again.
  • the spindle motor is configured to start the spindle motor and rotate the disk for a predetermined phase or a predetermined time before being driven by the reverse rotation of the loading motor. It is characterized by that.
  • the disk device can be reduced in thickness and size, and in particular, the spindle motor can be moved downward relative to the traverse base. Therefore, even when the traverse base is moved up and down as much as possible, a clearance for inserting the disc can be secured, and the disc device can be made thinner.
  • FIG. 1 is a schematic plan view of a base body of a disk device according to an embodiment of the present invention.
  • FIG. 7 Side view of the main part of the same disk drive showing the same state
  • FIG. 8 Side view of the traverse cam member showing the spindle motor raised.
  • FIG. 11 Side view of the traverse cam member showing the chucking condition
  • FIG. 12 is a side view of the spindle cam member showing the same state.
  • FIG. 13 is a side view of the main part of the disk device showing the same state.
  • FIG. 14 Side view of the traverse cam member showing the highest position during chucking
  • FIG. 15 is a side view of the spindle cam member showing the same state.
  • FIG. 16 Side view of the main part of the same disk drive showing the same state
  • FIG. 18 Side view of the spindle cam member showing the same state.
  • ⁇ 19 Side view of the main part of the disk unit showing the same state
  • FIG. 20 A plan view schematically showing a disk device in another embodiment of the present invention.
  • FIG. 22 is an exploded side view of the traverse base 2 and spindle cam member 30A as seen from the slider 3A side of the apparatus.
  • FIG. 23 Side view of the spindle cam member showing the load eject state of the device.
  • FIG. 24 is a side view of the spindle cam member showing a state where the spindle motor of the apparatus is raised.
  • FIG. 25 is a side view of the spindle cam member showing the chucking state of the apparatus.
  • FIG. 26 is a side view of the spindle cam member showing the highest position in the chucking of the device.
  • FIG. 27 is a side view of the spindle cam member showing the recording / reproducing state of the apparatus.
  • the disk device is configured by urging a spindle motor toward the traverse base by an elastic member, and a traverse base moving means provided on a chassis exterior, and a loading motor It consists of a slider that slides when the motor is driven, a traverse cam member provided on the slider, and a spindle cam member that moves the spindle motor downward relative to the traverse base, and the spindle motor member is driven by the loading motor. It is set as the structure which carries out. According to this embodiment, since the spindle motor can be moved relative to the traverse base, the gap between the base body and the lid can be narrowed.
  • the second embodiment of the present invention is such that a spindle cam member is provided on a slider in the disk device according to the first embodiment.
  • the traverse cam member and the spindle cam member can be provided in a space-saving manner by providing not only the traverse cam member but also the spindle cam member in the slider.
  • the third embodiment of the present invention is such that the spindle cam member is separated from the slider and provided on the traverse base side in the disk device according to the first embodiment. According to this embodiment, by separating the spindle cam member from the slider, it is possible to reduce the influence of the accuracy error of the member and to stably perform the raising / lowering operation of the spindle motor.
  • the spindle motor in the disk device according to the first embodiment, includes a plurality of pins inserted into the spindle cam member, and is driven by a loading motor. The operating force of the member is transmitted to the spindle motor via this pin, and the spindle motor is lowered. According to this embodiment, the spindle motor can be lowered by driving the loading motor.
  • the fifth embodiment of the present invention is a disk device according to the first embodiment.
  • the traverse base is lowered after the spindle motor is at its highest position, and the traverse base is lowered after the traverse base is lowered and the loading motor is reversely rotated to bring the spindle motor to the highest position again. It is what. According to the present embodiment, it is possible to surely perform chucking by performing a plurality of chucking operations.
  • the spindle motor is started and the disk is rotated for a predetermined phase or for a predetermined time before being driven by reverse rotation of the opening motor. It is set as the structure to be made. According to the present embodiment, when a plurality of chucking operations are performed, the chucking can be surely performed by rotating the disk by a predetermined angle.
  • FIG. 1 is a plan view showing an outline in which details of a base main body are omitted in a disk apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the lid of the disk device
  • FIG. 3 is a front view of a bezel attached to the front surface of the chassis exterior of the disk device.
  • a base body 100 and a lid body 200 constitute a chassis exterior
  • a bezel 300 is attached to the front surface of the chassis exterior.
  • the disk device according to the present embodiment is a slot-in type disk device in which a disk is directly inserted from a disk insertion slot 301 provided in the bezel 300 shown in FIG.
  • An insertion space 101 is formed on the front side of the base body 100 so as to correspond to the disc insertion slot 301 in order to directly insert the disc.
  • the spindle motor 1 is held by a traverse base 2 provided on the base body 100.
  • the traverse base 2 holds a pick-up 600 for recording and reproducing signals with respect to the disc and driving means (not shown) for moving the pickup 600.
  • the traverse base 2 is rotationally supported by a virtual rotation support shaft X on the insertion space 101 side on the front side, and the traverse base 2 is moved between the base body 100 side and the lid body 200 side by the traverse base moving means. It becomes a displacement configuration!
  • the base body 100 is provided with a disc ejection lever 4 and a disc insertion lever 5, and the insertion and ejection of the disc is performed by these levers 4 and 5. That is, loading
  • the motor 6 is driven, and this driving force moves the sliders 3A and 3B through the gear group 7 and is performed by a known mechanism by the link group 9 and the pin group 10 connected to the slider 3A.
  • FIG. 2 shows a lid body 200.
  • the lid body 200 has a convex portion that protrudes toward the rotary base 1B at a position facing the rotary base 1B of the spindle motor 1 shown in FIG. 202 is established.
  • a plurality of screw holes 203 are provided in the outer edge portion of the lid body 200, and the lid body 200 is attached to the base body 100 with screws.
  • An opening 201 is provided at the center of the lid 200 (also the center of the convex portion 202).
  • the opening 201 is a circular opening having a larger radius than the center hole of the disk 400. Therefore, the opening is larger than the hub 1 A (see FIG. 1) of the spindle motor 1 that fits into the center hole of the disk 400.
  • FIG. 4 is a plan view of the main part of the disk device, showing the traverse base 2 and the sliders 3A and 3B.
  • FIG. 5 is a side view of the traverse cam member, and
  • FIG. 6 is a side view of the spindle cam member.
  • the spindle motor 1 is supported by three support portions 11 so that it can move up and down independently with respect to the traverse base 2.
  • the spindle motor 1 is urged toward the traverse base 2 by a spindle panel 12 (see FIGS. 7 to 11) at a support portion 11 provided on the traverse base 2, and normally contacts the traverse base 2.
  • the traverse base moving means includes a loading motor 6 provided on the base body 100, a spindle cam member 30A provided on a slider 3A that slides by driving the loading motor 6, and a spindle cam member 30B provided on the slider 3B. Composed.
  • the slider 3A and the slider 3B are connected by a connecting lever 14, and the slider 3B operates together with the slider 3A.
  • the slider 3B is provided with a traverse cam member 40.
  • the traverse cam member 40 is provided with a base cam 41 on which a base pin 18 fixed to the base body 100 slides and a traverse base 2.
  • a traverse cam 42 on which the traversing spin 17 slides is provided.
  • the spindle cam member 30B and traverse cam member 40 are horizontal together with the slider 3B.
  • the base pin 18 moves in the direction perpendicular to the slider 3B.
  • the spindle pin 16 slides in the spindle cam 31 of the spindle cam member 30B, and the traverse pin 17 slides in the traverse cam 32 of the spindle cam member 30B and the traverse cam 42 of the traverse force member 40.
  • the spindle force members 30A and 30B and the traverse cam member 40 are driven.
  • the force constituted by the spindle cam members 30A, 30B and the traverse cam member 40 may be provided with the function of a plurality of cam members in one cam member, and many more. It may be composed of cam members.
  • FIGS. 5 to 7 show the load eject state
  • FIG. 7 is a side view of the main part of the disk device.
  • FIG. 8 to 10 show a state in which the spindle motor is raised, FIG. 8 is a side view of the traverse cam member, FIG. 9 is a side view of the spindle cam member, and FIG. 10 is a side view of the main part of the disk device. is there.
  • FIGS. 14 to 16 show the most raised position in the chucking
  • FIG. 14 is a side view of the traverse cam member
  • FIG. 15 is a side view of the spindle cam member
  • FIG. 16 is a side view of the main part of the disk device.
  • FIGS. 17 to 19 show the recording / reproducing state
  • FIG. 17 is a side view of the traverse cam member
  • FIG. 18 is a side view of the spindle cam member
  • FIG. 19 is a side view of the main part of the disk device.
  • FIG. 5 and FIG. 19 show each state of the mounting operation of the disk 400 to the spindle motor 1.
  • the traverse base 2 is displaced in a direction in which the spindle motor 1 approaches the lid 200 with the front side rotation support shaft X as a fulcrum.
  • the spindle motor 1 is operated in the direction closest to the lid 200 (shown in FIGS.
  • the disk 400 abuts against the lid 200 and between the spindle motor 1 and
  • the spindle motor 1 is sandwiched between the spindle motor 1 by the disk holding mechanism 500 provided on the turntable 1 B of the spindle motor 1. Installed.
  • the disk holding mechanism 500 includes a holding claw 501 and an elastic member 502.
  • the first state in which the holding claw 501 holds the disk 400 so that the disk 400 can rotate integrally with the spindle motor 1, and the first state.
  • a second state a state in which the disk 400 is positioned above the holding claw 501 and the disk 400 is not mounted on the spindle motor 1 by the disk holding mechanism 500).
  • the disk 400 is disposed above the spindle motor 1 (the disk holding mechanism 500 is in the second state), or the disk 400 is disposed. It forms a possible space.
  • the traverse cam member 40 and the spindle force member 30B are in a position closest to the slider 3A side.
  • the traverse cam member 40 is at the lowest position with respect to the base pin 18 as shown in FIG.
  • the spindle pin 16 is in the spindle cam 31 at the lowest position with respect to the spindle cam member 30B. Therefore, as shown in FIG. 7, the traverse base 2 is in the position closest to the base body 100 side, and the spindle motor 1 is also in the position closest to the base body 100 side.
  • FIG. 8 shows a state in which the traverse cam member 40 has moved in the horizontal direction by a predetermined distance XI.
  • the base pin 18 is disposed in the base cam 41 having the same height as that in FIG. 5, and therefore the traverse base 2 maintains the position closest to the base body 100 side.
  • the spindle motor 1 moves in a direction away from the base body 100. As the spindle motor 1 moves up in this way, the disc holding mechanism 500 abuts on the disc 400 as shown in FIG.
  • FIG. 11 shows a state in which the traverse cam member 40 has moved in the horizontal direction by a predetermined distance X2.
  • the traverse cam member 40 moves in the vertical direction by a predetermined height Z1.
  • the spindle pin 16 is placed in the spindle cam 31 having the same height as FIG.
  • the spindle motor 1 moves by a predetermined height Z1 in the vertical direction. As the spindle motor 1 moves up together with the traverse base 2 in this way, a chucking operation is performed as shown in FIG.
  • FIG. 14 shows a state in which the traverse cam member 40 has been moved by a predetermined distance X3 in the horizontal direction.
  • the traverse cam member 40 moves in the vertical direction by a predetermined height Z2.
  • the spindle pin 16 is in the spindle cam 31 having the same height as in FIG. 12, and the traverse cam member 40 and the spindle cam member 30B are held at the same height by the traverse spin 17. Therefore, the spindle motor 1 moves by a predetermined height Z2 in the vertical direction.
  • the spindle motor 1 As the spindle motor 1 is lifted together with the traverse base 2 as described above, the spindle motor 1 is at the highest lifted position as shown in FIG. 16, and the convex portion 202 of the lid 200 is brought into contact with the disk 400.
  • the disk 400 is pushed back by the reaction force by the part 202, the disk 400 is pushed to the disk holding mechanism 500 side, the state of the disk holding mechanism 500 becomes the second state force, and the chucking operation is completed. To do.
  • FIG. 17 shows a state where the traverse cam member 40 has moved by a predetermined distance X4 in the horizontal direction.
  • the traverse cam member 40 is lowered by a predetermined height Z2 in the vertical direction.
  • the spindle pin 16 is in the same spindle cam 31 as FIG. 15, and the traverse cam member 40 and the spindle cam member 30B are held at the same height by the traverse spin 17. Therefore, the spindle motor 1 descends by a predetermined height Z2 in the vertical direction.
  • FIG. 17 shows a state where the traverse cam member 40 has moved by a predetermined distance X4 in the horizontal direction.
  • the spindle motor 1 moves down together with the traverse base 2 in this manner, and in this state, the convex portion 202 of the lid 200 does not hit the disk 400.
  • the lower surface of the convex portion 202 of the lid 200 is provided with a protective film such as urethane coating so that the disk 400 is not damaged.
  • the ejector operation is performed by rotating the loading motor 6 (see Fig. 1) in reverse.
  • the reverse operation is performed. That is, the traverse cam member 40 sequentially moves from the state of FIG. 17 to the states of FIG. 14, FIG. 11, FIG. 8, FIG. 5, and the spindle cam member 30B moves from the state of FIG. Move the states in Fig. 9 and Fig. 6 in order.
  • the spindle motor 1 is relatively lowered from the traverse base 2 against the force of the spindle panel 12.
  • the lid 200 and the traverse base 2 can be moved even if the lifting distance of the traverse base 2 is minimized.
  • a sufficient space for inserting the disk 400 (clearance for inserting the disk) can be secured between the disk device and the disk device as a whole.
  • the spindle motor 1 is started and the disk 400 is rotated for a predetermined phase or a predetermined time.
  • the spindle motor 1 After rotating the disk 400 for a predetermined phase or a predetermined time, the spindle motor 1 is stopped, the loading motor 6 (see FIG. 1) is rotated in the reverse direction, and the state shown in FIGS. 16 through the highest position in the chucking shown in FIG. 16, the force in FIG. 11 is also in the state shown in FIG. 13, and the rotation of the loading motor 6 (see FIG. 1) is stopped. At the stage where the operations so far are performed, the spindle motor 1 is started again to rotate the disk 400 for a predetermined phase or a predetermined time.
  • the spindle motor 1 After rotating the disk 400 for a predetermined phase or a predetermined time, the spindle motor 1 is stopped, and the loading motor 6 (see FIG. 1) is rotated in the forward direction from the state shown in FIGS. The traverse base 2 is lowered as shown in FIGS.
  • the loading operation is completed by the above operation.
  • the loading motor 6 (see Fig. 1) is By reverse rotation and passing the highest ascending position in the chucking, and further rotating the loading motor 6 (see Fig. 1) and passing it again through the highest ascending position in the chucking, the chucking is normally performed in one loading operation. Even if it is not performed, the chucking can be performed via the second highest rise position or the third highest rise position. In particular, in performing these multiple chucking operations, more reliable chucking can be performed by rotating the disk 400.
  • FIG. 20 is a plan view schematically showing a disk device according to another embodiment of the present invention
  • FIG. 21 is an exploded side view of the traverse base 2 and the spindle cam member 30B as seen from the slider 3B side of the device
  • FIG. FIG. 23 to FIG. 27 are side views of the spindle cam member 30B.
  • FIGS. 23 to 27 are exploded side views of the traverse base 2 and the spindle cam member 30A as seen from the side force of the slider 3A.
  • the same functional members as those in the above embodiment are designated by the same reference numerals, and the description thereof is omitted.
  • the traverse cam member 40 is provided on the slider 3B, and the spindle force member 30B is separated from the slider 3B and provided on the traverse base 2 side.
  • the traverse cam member 40 moves in the horizontal direction together with the slider 3B, and also moves in the vertical direction with respect to the slider 3B by the base pin 18 fixed to the base body 100.
  • the slider 3A and the slider 3B are connected by the connecting lever 14, and the slider 3B operates together with the slider 3A.
  • the spindle cam members 30A and 30B move in the horizontal direction when the operation of the slider 3A is transmitted by the first connecting lever 14A and the second connecting lever 14B. Further, the spindle cam members 30A and 30B are moved in the vertical direction with respect to the traverse base 2 by a spindle pin 16 fixed to one spindle motor.
  • the spindle cam member 30A and the spindle cam member 30B are connected by the second connecting lever 14, and the spindle cam member 30B operates together with the spindle cam member 30A.
  • the second connecting lever 14B is connected to the first connecting lever 14A by a connecting pin 14C, and the second connecting lever 14B is operated by the first connecting lever 14A.
  • the spindle cam member 30A and the spindle cam member 3 are not connected to the second connecting lever 14B and the first connecting lever 14A.
  • a configuration in which the OB is operated by the slider 3A may be employed.
  • FIG. 23 shows the load eject state
  • Fig. 24 shows the spindle motor in the raised state
  • Fig. 25 shows the chucking state
  • Fig. 26 shows the highest rise position in the chucking
  • Fig. 27 shows the recording-reproducing state.
  • FIG. 23 corresponds to FIG. 6
  • FIG. 24 corresponds to FIG. 9
  • FIG. 25 corresponds to FIG. 12
  • FIG. 26 corresponds to FIG. 15,
  • FIG. 27 corresponds to FIG.
  • the movement of the material 40 and the traverse base 2 is the same as in FIGS. 5 to 19 and will not be described.
  • the spindle cam member 30B in FIG. 23 is in a position closest to the slider 3A side.
  • the spindle pin 16 is in the lowest spindle cam 31 with respect to the spindle cam member 30B. Therefore, the traverse base 2 is in the position closest to the base body 100 side, and the spindle motor 1 is also in the position closest to the base body 100 side.
  • the spindle pin 16 moves up in the spindle cam 31, so that the spindle motor 1 moves away from the base body 100. As the spindle motor 1 is lifted in this way, the disk holding mechanism 500 comes into contact with the disk 400.
  • the spindle pin 16 is in the spindle cam 31 having the same height as that in FIG. 24, and the traverse cam member 40 and the spindle cam member 30B are held at the same height by the traverse spin 17. Therefore, the spindle motor 1 moves by a predetermined height Z1 in the vertical direction. In this way, the spindle motor 1 moves up together with the traverse base 2 to perform a chucking operation.
  • the spindle pin 16 is in the spindle cam 31 having the same height as that in FIG. 25, and the traverse cam member 40 and the spindle cam member 30B are held at the same height by the traverse spin 17. Therefore, the spindle motor 1 moves by a predetermined height Z2 in the vertical direction. As the spindle motor 1 moves up together with the traverse base 2 in this way, the spindle motor 1 reaches the highest position, and the chucking operation is completed.
  • the spindle pin 16 is in the spindle cam 31 having the same height as in FIG. 15, and the traverse cam member 40 and the spindle cam member 30B are connected by the traverse spin 17. Therefore, the spindle motor 1 is lowered by a predetermined height Z2 in the vertical direction. As the spindle motor 1 moves down together with the traverse base 2 in this way, the convex portion 202 of the lid 200 is not in contact with the disk 400.
  • the spindle cam members 30A and 30B are provided separately from the sliders 3A and 3B, so that the influence of the accuracy error of the members is reduced, and the lifting operation of the spindle motor 1 is stabilized. Can be done.
  • the present invention in a disc apparatus that records or reproduces a disc-shaped recording medium such as a CD or DVD, even if the movement of the traverse base for reliably mounting the disc on the spindle motor is limited.
  • it is possible to secure a space that enables reliable automatic mounting of the disk, and it can be used for a disk device that needs to be thinned and is used as a peripheral device for home video equipment or a computer.

Landscapes

  • Feeding And Guiding Record Carriers (AREA)
  • Holding Or Fastening Of Disk On Rotational Shaft (AREA)

Abstract

 スロットイン方式のディスク装置では、ディスクをディスク装置に挿入したり取り出したりする時に、トラバースベースに支持されたスピンドルモータを下降させて、挿入のための一定のクリアランスを設ける必要があるが、薄型化を図る場合、トラバースベースの昇降のための距離を必要最小限に押さえる必要があった。  スピンドルモータ1をトラバースベース2に対して、下方へ移動させるスピンドルカム部材30A、30Bを設け、ローディングモータ6によってスピンドルカム部材30A、30Bを駆動する構成としたので、トラバースベース2の昇降距離を必要最小限に押さえても、ディスク400挿入のためのクリアランスを確保することが出来るので、更なるディスク装置の薄型化が可能となる。

Description

明 細 書
ディスク装置
技術分野
[0001] 本発明は、 CDや DVDなどのディスク状の記録媒体への記録、または再生を行う ディスク装置に関し、特に外部カゝらディスクを直接挿入し、または直接排出できる、い わゆるスロットイン方式のディスク装置に関する。 背景技術
[0002] 従来のディスク装置は、トレイまたはターンテーブル上にディスクを載置し、このトレ ィゃターンテーブルを装置本体内に装着するローデイング方式が多く採用されてい る力 このようなローデイング方式では、トレィゃターンテーブルが必要な分、ディスク 装置本体を薄型化するには限度があった。このため、最近では、ローデイングモータ によりレバー等でディスクを直接操作する、いわゆるスロットイン方式のディスク装置 が存在する(例えば特許文献 1)。
特許文献 1:特開 2002— 352498号公報
発明の開示
発明が解決しょうとする課題
[0003] しかしこのようなスロットイン方式のディスク装置では、ディスクをこのディスク装置に 挿入したり取り出したりする時に、トラバースベースに支持されたスピンドルモータを 下降させて、挿入のための一定のクリアランスを設ける必要がある。このため、スピン ドルモータを支持して 、るトラバースベースを昇降させる力 トラバースベースの昇降 のための距離が装置の厚み方向に必要とされる。近年、パーソナルコンピュータの小 型化に伴い、ディスク装置も小型化、薄型化が求められており、スロットイン方式のデ イスク装置で薄型化を図る場合、トラバースベースの昇降のための距離を必要最小 限に押さえる必要があった。
[0004] そこで本発明は、スロットイン方式のディスク装置で、ディスクをディスク装置に挿入 したり取り出したりする時に充分なクリアランスを確保した上で、装置の薄型化を図り つつ、スピンドルモータへのディスクの装着動作を確実に行うことができるディスク装 置を提供することを目的とする。
課題を解決するための手段
第 1の本発明のディスク装置は、ベース本体と蓋体とからシャーシ外装を構成し、前 記シャーシ外装のフロント面にディスクを直接挿入するディスク挿入口を形成し、前 記ベース本体にトラバースベースを設け、前記トラバースベースにスピンドルモータと ピックアップと当該ピックアップを移動させる駆動手段とを設け、前記トラバースベー スを前記ベース本体側と前記蓋体側との間で変位させるトラバースベース移動手段 を設けたディスク装置であって、前記スピンドルモータを弾性部材によって前記トラバ ースベース側に付勢して構成し、前記トラバースベース移動手段を、前記シャーシ外 装に設けたローデイングモータと、このローデイングモータの駆動によって摺動するス ライダーと、前記スライダーに設けられたトラバースカム部材と、前記スピンドルモータ を前記トラバースベースに対して、下方へ移動させるスピンドルカム部材とによって構 成し、前記スピンドルカム部材を前記トラバースベースに対して、下方へ移動させるス ピンドルカム部材を前記スライダーに設け、前記ローデイングモータによって前記スラ イダーを駆動する構成としたことを特徴とする。
第 2の本発明は、第 1の発明において、前記スピンドルカム部材を前記スライダーに 設けたことを特徴とする。
第 3の本発明は、第 1の発明において、前記スピンドルカム部材を前記スライダーと 分離して前記トラバースベース側に設けたことを特徴とする
第 4の本発明は、第 1の発明において、前記スピンドルモータは、前記スピンドル力 ム部材に挿入された複数個のピンを備え、前記ローデイングモータにより駆動される 前記スピンドルカム部材の動作力 このピンを介して前記スピンドルモータに伝達さ れて前記スピンドルモータを下降させる構成としたことを特徴とする。
第 5の本発明は、第 1の発明において、前記スピンドルモータは、前記ローデイング モータの駆動により、前記スピンドルモータを最上昇位置とした後に前記トラバース ベースを降下させ、前記トラバースベースの降下の後に前記ローデイングモータを逆 回転させて再び前記スピンドルモータを最上昇位置とした後に前記トラバースベース を降下させる構成としたことを特徴とする。 第 6の本発明は、第 5の発明において、前記スピンドルモータは、前記ローデイング モータの逆回転による駆動の前に、前記スピンドルモータを起動して所定の位相又 は所定時間だけディスクを回転させる構成としたことを特徴とする。
発明の効果
[0006] 本発明によれば、ディスク装置の薄型化と小型化を図ることが出来るものであり、特 に、スピンドルモータをトラバースベースに対して、下方へ移動させることが可能な構 成としたので、トラバースベースの昇降距離を必要最小限に押さえても、ディスク挿入 のためのクリアランスを確保することができ、更なるディスク装置の薄型化が可能とな る。
図面の簡単な説明
[0007] [図 1]本発明の一実施例によるディスク装置のベース本体の概略平面図
[図 2]同ディスク装置の蓋体の平面図
[図 3]同ディスク装置のシャーシ外装のフロント面に装着されるべゼルの正面図
[図 4]同ディスク装置の要部平面図
[図 5]ロード 'ェジェクト状態を示すトラバースカム部材の側面図
[図 6]同状態を示すスピンドルカム部材の側面図
[図 7]同状態を示す同ディスク装置の要部側面図
[図 8]スピンドルモータが上昇した状態を示すトラバースカム部材の側面図
[図 9]同状態を示すスピンドルカム部材の側面図
[図 10]同状態を示す同ディスク装置の要部側面図
[図 11]チヤッキング状態を示すトラバースカム部材の側面図
[図 12]同状態を示すスピンドルカム部材の側面図
[図 13]同状態を示す同ディスク装置の要部側面図
[図 14]チヤッキングにおける最上昇位置を示すトラバースカム部材の側面図
[図 15]同状態を示すスピンドルカム部材の側面図
[図 16]同状態を示す同ディスク装置の要部側面図
[図 17]記録 ·再生状態を示すトラバースカム部材の側面図
[図 18]同状態を示すスピンドルカム部材の側面図 圆 19]同状態を示す同ディスク装置の要部側面図
圆 20]本発明の他の実施例におけるディスク装置の概略を示す平面図
[図 21]同装置のスライダー 3B側力 見たトラバースベース 2及びスピンドルカム部材
30Bの分解側面図
[図 22]同装置のスライダー 3A側から見たトラバースベース 2及びスピンドルカム部材 30Aの分解側面図
[図 23]同装置のロード ·ェジェタト状態を示すスピンドルカム部材の側面図
[図 24]同装置のスピンドルモータが上昇した状態を示すスピンドルカム部材の側面図
[図 25]同装置のチヤッキング状態を示すスピンドルカム部材の側面図
[図 26]同装置のチヤッキングにおける最上昇位置を示すスピンドルカム部材の側面 図
[図 27]同装置の記録 ·再生状態を示すスピンドルカム部材の側面図
符号の説明
1 スピンドノレモータ
2 トラノ ースベース
3A スライダー
3B スライダー
4 排出レバー
5 挿入レノ一
6 ローデイングモータ
12 スピンドノレノ^:ネ
16 スピンドノレビン
17 トラノ ースピン
30A スピンドノレカム音材
30B スピンドノレカム音材
40 トラバースカム部材
100 ベース本体
200 蓋体 202 凸状部
400 ディスク
600 ピックアップ
発明を実施するための最良の形態
本発明の第 1の実施の形態によるディスク装置は、スピンドルモータを弾性部材に よってトラバースベース側に付勢して構成し、トラバースベース移動手段を、シャーシ 外装に設けたローデイングモータと、ローデイングモータの駆動によって摺動するスラ イダーと、スライダーに設けられたトラバースカム部材と、スピンドルモータをトラバー スベースに対して、下方へ移動させるスピンドルカム部材とによって構成し、ローディ ングモータによってスピンドルカム部材を駆動する構成としたものである。本実施の形 態によれば、スピンドルモータをトラバースベースに対して移動させることができるた め、ベース本体と蓋体との隙間を狭くすることができる。
本発明の第 2の実施の形態は、第 1の実施の形態によるディスク装置において、ス ピンドルカム部材をスライダーに設けたものである。本実施の形態によれば、スライダ 一にトラバースカム部材だけでなくスピンドルカム部材を設けることで、省スペースでト ラバースカム部材とスピンドルカム部材とを設けることができる。
本発明の第 3の実施の形態は、第 1の実施の形態によるディスク装置において、ス ピンドルカム部材をスライダーと分離してトラバースベース側に設けたものである。本 実施の形態によれば、スピンドルカム部材をスライダーと分離させることで、部材の精 度誤差の影響を少なくして、スピンドルモータの昇降動作を安定して行わせることが できる。
本発明の第 4の実施の形態は、第 1の実施の形態によるディスク装置において、ス ピンドルモータは、スピンドルカム部材に揷入された複数個のピンを備え、ローデイン グモータにより駆動されるスピンドルカム部材の動作力 このピンを介してスピンドル モータに伝達されてスピンドルモータを下降させる構成としたものである。本実施の 形態によれば、ローデイングモータの駆動によってスピンドルモータの下降を行わせ ることがでさる。
本発明の第 5の実施の形態は、第 1の実施の形態によるディスク装置において、口 ーデイングモータの駆動により、スピンドルモータを最上昇位置とした後にトラバース ベースを降下させ、トラバースベースの降下の後にローデイングモータを逆回転させ て再びスピンドルモータを最上昇位置とした後にトラバースベースを降下させる構成 としたものである。本実施の形態によれば、複数のチヤッキング動作を行わせることに よってチヤッキングを確実に行わせることができる。
本発明の第 6の実施の形態は、第 5の実施の形態によるディスク装置において、口 ーデイングモータの逆回転による駆動の前に、スピンドルモータを起動して所定の位 相又は所定時間だけディスクを回転させる構成としたものである。本実施の形態によ れば、複数のチヤッキング動作を行わせる場合に、ディスクを所定角度回転させるこ とによってチヤッキングを確実に行わせることができる。
実施例
図 1は本発明の一実施例におけるディスク装置において、ベース本体の詳細を省 略した概略を示す平面図である。また、図 2は同ディスク装置の蓋体の平面図、図 3 は同ディスク装置のシャーシ外装のフロント面に装着されるべゼルの正面図である。 本実施例によるディスク装置は、ベース本体 100と蓋体 200とからシャーシ外装が 構成され、このシャーシ外装のフロント面にべゼル 300が装着される。また本実施例 によるディスク装置は、図 3に示すべゼル 300に設けたディスク挿入口 301からデイス クを直接挿入するスロットイン方式のディスク装置である。ベース本体 100のフロント 側にはディスクを直接挿入するため、ディスク挿入口 301に対応して挿入スペース 10 1を形成している。
スピンドルモータ 1は、ベース本体 100に設けたトラバースベース 2によって保持さ れている。またトラバースベース 2は、ディスクに対して信号を記録 '再生するためのピ ックアップ 600とピックアップ 600を移動させる駆動手段(図示せず)とを保持して 、る 。そして、このトラバースベース 2は、フロント側の挿入スペース 101側において、仮想 の回転支持軸 Xにより回転支持され、トラバースベース移動手段によってトラバース ベース 2がベース本体 100側と蓋体 200側との間で変位する構成となって!/、る。ベー ス本体 100には、ディスク排出レバー 4とディスク挿入レバー 5とが設けられており、デ イスクの揷入'排出は、これらのレバー 4、 5によってなされる。すなわち、ローデイング モータ 6を駆動し、この駆動力が歯車群 7を介してスライダー 3A、 3Bを移動させ、ス ライダー 3Aに連結したリンク群 9とピン群 10による公知の機構により行なわれる。
[0011] 図 2は蓋体 200を示し、蓋体 200には、図 1に示すスピンドルモータ 1の回転台 1B に対向する位置において、この回転台 1Bに向力つて突出するように凸状部 202が設 けられている。蓋体 200の外縁部には、複数のビス孔 203が設けられ、蓋体 200は、 ビスによってベース本体 100に取り付けられる。蓋体 200の中央部(凸状部 202の中 央でもある)には、開口部 201が設けられている。この開口部 201は、ディスク 400の 中心孔よりも大きな半径の円形開口である。従って、ディスク 400の中心孔に嵌合す るスピンドルモータ 1のハブ 1 A (図 1参照)よりも大きな開口である。
[0012] 次に、トラバースベース 2を変位させるトラバースベース移動手段について説明する 図 4は同ディスク装置の要部平面図であり、トラバースベース 2およびスライダー 3A 、 3Bを示している。また、図 5はトラバースカム部材の側面図、図 6はスピンドルカム 部材の側面図である。
スピンドルモータ 1は、トラバースベース 2に対して独立して上下動可能なように、三 ケ所の支持部 11により支持されている。また、スピンドルモータ 1は、トラバースベース 2に設けた支持部 11において、スピンドルパネ 12 (図 7〜図 11参照)によってトラバ ースベース 2側に付勢されており、通常はトラバースベース 2に当接している。トラバ ースベース移動手段は、ベース本体 100に設けたローデイングモータ 6と、このロー デイングモータ 6の駆動によって摺動するスライダー 3Aに設けたスピンドルカム部材 30Aと、スライダー 3Bに設けたスピンドルカム部材 30Bにより構成される。なお、スラ イダー 3Aとスライダー 3Bとは、連結レバー 14によって連結され、スライダー 3Bは、ス ライダー 3Aとともに動作する。
[0013] スライダー 3Bには、トラバースカム部材 40が設けられ、このトラバースカム部材 40 には、ベース本体 100に固定されたベースピン 18が摺動するベースカム 41と、トラバ ースベース 2に設けられているトラバースピン 17が摺動するトラバースカム 42が設け られている。
スピンドルカム部材 30B及びトラバースカム部材 40は、スライダー 3Bとともに水平 方向に移動するとともに、ベースピン 18によってスライダー 3Bに対して垂直方向に移 動する。スピンドルピン 16は、スピンドルカム部材 30Bのスピンドルカム 31内を摺動し 、トラバースピン 17は、スピンドルカム部材 30Bのトラバースカム 32内とトラバース力 ム部材 40のトラバースカム 42内を摺動する。
そして、ローデイングモータ 6によってスライダー 3A、 3Bが移動すると、スピンドル力 ム部材 30A、 30B、及びトラバースカム部材 40が駆動される構成となっている。 本実施例では、トラバースベース移動手段として、スピンドルカム部材 30A、 30Bと トラバースカム部材 40によって構成した力 一つのカム部材に複数のカム部材の機 能を持たせてもよ ヽし、また更に多くのカム部材で構成してもよ 、。
図 5から図 19を用いて同ディスク装置の更に詳細な構成と動作について説明する。 図 5から図 7は、ロード ·ェジェタト状態を示し、図 7は同ディスク装置の要部側面図 である。
図 8から図 10は、スピンドルモータが上昇した状態を示し、図 8はトラバースカム部 材の側面図、図 9はスピンドルカム部材の側面図、図 10は同ディスク装置の要部側 面図である。
図 11から図 13は、チヤッキング状態を示し、図 11はトラバースカム部材の側面図、 図 12はスピンドルカム部材の側面図、図 13は同ディスク装置の要部側面図である。 図 14から図 16は、チヤッキングにおける最上昇位置を示し、図 14はトラバースカム 部材の側面図、図 15はスピンドルカム部材の側面図、図 16は同ディスク装置の要部 側面図である。
図 17から図 19は、記録'再生状態を示し、図 17はトラバースカム部材の側面図、 図 18はスピンドルカム部材の側面図、図 19は同ディスク装置の要部側面図である。 図 5力ら図 19は、ディスク 400のスピンドルモータ 1への装着動作の各状態を示して いる。トラバースベース 2は、ディスク 400が挿入された後、フロント側の回転支持軸 X を支点としてスピンドルモータ 1が蓋体 200に近接する方向に変位する。スピンドルモ ータ 1側が蓋体 200に最も近接する方向に動作させた状態の時(図 8から図 10に示 す)、ディスク 400は、蓋体 200に当接し、スピンドルモータ 1との間に挟まれて、スピ ンドルモータ 1の回転台 1 Bに設けたディスク保持機構 500によりスピンドルモータ 1に 装着される。
ディスク保持機構 500は、保持爪 501と弾性部材 502とを備えており、ディスク 400 がスピンドルモータ 1と一体に回転可能なように保持爪 501がディスク 400を保持す る第 1の状態と、第 1の状態とは異なる第 2の状態 (保持爪 501より上方にディスク 40 0が位置し、ディスク保持機構 500によりスピンドルモータ 1にディスク 400が装着され ていない状態)とを有する。
[0015] まず、図 5から図 7に示すように、ロード'ェジェタト状態では、ディスク 400がスピンド ルモータ 1の上方に配置 (ディスク保持機構 500は第 2の状態)され、又はディスク 40 0が配置可能な空間を形成している。このとき、トラバースカム部材 40とスピンドル力 ム部材 30Bは、スライダー 3A側に最も近接した位置にある。この状態では、図 5に示 すようにトラバースカム部材 40は、ベースピン 18に対して最も低い位置にある。また 図 6に示すようにスピンドルピン 16は、スピンドルカム部材 30Bに対して最も低位置の スピンドルカム 31内にある。従って、図 7に示すようにトラバースベース 2はベース本 体 100側に最も近接した位置にあり、スピンドルモータ 1もベース本体 100側に最も 近接した位置にある。
ディスク 400がスピンドルモータ 1の上方に配置された状態で、スピンドルモータ 1の 上昇が始まる。
[0016] 図 8は、トラバースカム部材 40が水平方向に所定距離 XIだけ移動した状態を示し ている。図 8に示す状態では、ベースピン 18は図 5と同一高さのベースカム 41内に 配置されて 、るので、トラバースベース 2はベース本体 100側に最も近接した位置を 維持している。一方、図 9に示すようにスピンドルピン 16は、スピンドルカム 31内を上 昇するので、スピンドルモータ 1はベース本体 100から離間する方向に移動する。こ のようにスピンドルモータ 1が上昇することで、図 10に示すようにディスク保持機構 50 0はディスク 400に当接する。
[0017] 図 11は、トラバースカム部材 40が水平方向に所定距離 X2だけ移動した状態を示 している。図 11に示す状態では、ベースピン 18は図 5より低い位置のベースカム 41 内に配置されるので、トラバースカム部材 40は垂直方向に所定高さ Z1だけ移動する 。一方、図 12に示すようにスピンドルピン 16は図 9と同じ高さのスピンドルカム 31内に あり、トラバースカム部材 40とスピンドルカム部材 30Bとはトラバースピン 17によって 同一高さを保持されるため、スピンドルモータ 1は垂直方向に所定高さ Z1だけ移動 する。このようにスピンドルモータ 1がトラバースベース 2とともに上昇することで、図 13 に示すようにチヤッキング動作となる。
[0018] 図 14は、トラバースカム部材 40が水平方向に所定距離 X3だけ移動した状態を示 している。図 14に示す状態では、ベースピン 18は図 11より低い位置のベースカム 41 内に配置されるので、トラバースカム部材 40は垂直方向に所定高さ Z2だけ移動する 。一方、図 15に示すようにスピンドルピン 16は図 12と同じ高さのスピンドルカム 31内 にあり、トラバースカム部材 40とスピンドルカム部材 30Bとはトラバースピン 17によつ て同一高さを保持されるため、スピンドルモータ 1は垂直方向に所定高さ Z2だけ移動 する。このようにスピンドルモータ 1がトラバースベース 2とともに上昇することで、図 16 に示すようにスピンドルモータ 1は最上昇位置となり、蓋体 200の凸状部 202がデイス ク 400に当接し、この凸状部 202により、ディスク 400が反力により押し返されて、ディ スク 400はディスク保持機構 500側に押され、ディスク保持機構 500の状態が第 2の 状態力 第 1の状態となり、チヤッキング動作が完了する。
[0019] 図 17は、トラバースカム部材 40が水平方向に所定距離 X4だけ移動した状態を示 している。図 17に示す状態では、ベースピン 18は再び図 5と同じ高さのベースカム 4 1内に配置されるので、トラバースカム部材 40は垂直方向に所定高さ Z2だけ降下す る。一方、図 18に示すようにスピンドルピン 16は図 15と同じ高さのスピンドルカム 31 内にあり、トラバースカム部材 40とスピンドルカム部材 30Bとはトラバースピン 17によ つて同一高さを保持されるため、スピンドルモータ 1は垂直方向に所定高さ Z2だけ降 下する。このようにスピンドルモータ 1がトラバースベース 2とともに降下することで、図 19に示すように、この状態では、蓋体 200の凸状部 202がディスク 400に当たらない 状態となって 、る。蓋体 200の凸状部 202の下面はディスク 400を傷つけな 、ように 、ウレタンコーティングなどの保護膜を設けている。なお、上記の状態の内、ディスク 4 00がディスク保持機構 500によって完全に保持されている図 16や図 19の状態は第 1の状態であり、それ以外の状態は第 2の状態である。
なお、ェジェタト動作は、ローデイングモータ 6 (図 1参照)を逆回転して上記の動作 と逆の動作を行う。すなわち、トラバースカム部材 40は、図 17の状態から、図 14、図 11、図 8、図 5の状態を順に移動し、スピンドルカム部材 30Bは、図 18の状態から、 図 15、図 12、図 9、図 6の状態を順に移動する。
[0020] ここで、スピンドルモータ 1は、図 7に示す状態では、スピンドルパネ 12の力に抗し て、トラバースベース 2より相対的に下降させられた状態となっている。このように、ス ピンドルモータ 1をトラバースベース 2に対して、相対的に下方へ移動させることで、ト ラバースベース 2の昇降距離を必要最小限に押さえても、蓋体 200とトラバースベー ス 2との間にディスク 400を挿入する空間(ディスク挿入のためのクリアランス)を充分 確保することができるので、ディスク装置全体の薄型化が可能となるものである。
[0021] 次に、同ディスク装置の他のローデイング動作について説明する。
図 5から図 7に示すロード'ェジェタト状態から、図 8から図 10に示すようにスピンド ルモータ 1を上昇させ、図 11から図 13に示す状態を経由し、図 14から図 16に示す チヤッキングにおける最上昇位置とし、図 17から図 19に示すようにトラバースベース 2を降下させる。
ここまでの動作を行った段階で、スピンドルモータ 1を起動して所定の位相又は所 定時間だけディスク 400を回転する。
所定の位相又は所定時間だけディスク 400を回転させた後にスピンドルモータ 1を 停止し、ローデイングモータ 6 (図 1参照)を逆回転して図 17から図 19に示す状態か ら、再び、図 14から図 16に示すチヤッキングにおける最上昇位置を経由して、図 11 力も図 13に示す状態としてローデイングモータ 6 (図 1参照)の回転を停止する。 ここまでの動作を行った段階で、再びスピンドルモータ 1を起動して所定の位相又 は所定時間だけディスク 400を回転する。
所定の位相又は所定時間だけディスク 400を回転させた後にスピンドルモータ 1を 停止し、ローデイングモータ 6 (図 1参照)を正回転して図 11から図 13に示す状態か ら、図 14から図 16に示すチヤッキングにおける最上昇位置とし、図 17から図 19に示 すようにトラバースベース 2を降下させる。
以上の動作によってローデイング動作を完了する。
[0022] このように、一度ローデイング動作を行った後に、ローデイングモータ 6 (図 1参照)を 逆回転してチヤッキングにおける最上昇位置を経由させ、更にローデイングモータ 6 ( 図 1参照)を正回転してチヤッキングにおける最上昇位置を再度経由させることで、一 度のローデイング動作ではチヤッキングが正常に行われなかった場合であっても、二 度目の最上昇位置又は三度目の最上昇位置の経由によってチヤッキングを行わせ ることができる。特に、これら複数のチヤッキング動作を行うにあたって、ディスク 400 を回転させるためにより確実なチヤッキングを行うことができる。
[0023] 次に、他の実施例を図 20から図 27を用いて説明する。
図 20は本発明の他の実施例におけるディスク装置の概略を示す平面図、図 21は 同装置のスライダー 3B側から見たトラバースベース 2及びスピンドルカム部材 30Bの 分解側面図、図 22は同装置のスライダー 3A側力 見たトラバースベース 2及びスピ ンドルカム部材 30Aの分解側面図、図 23から図 27はスピンドルカム部材 30Bの側 面図である。なお、上記実施例と同一機能部材には同一番号を付して説明を省略す る。
[0024] 本実施例においては、トラバースカム部材 40をスライダー 3Bに設け、スピンドル力 ム部材 30Bをスライダー 3Bと分離させてトラバースベース 2側に設けている。
すなわち、トラバースカム部材 40は、スライダー 3Bとともに水平方向に移動するとと もに、ベース本体 100に固定されたベースピン 18によってスライダー 3Bに対して垂 直方向に移動する。なお、スライダー 3Aとスライダー 3Bとは、連結レバー 14によって 連結され、スライダー 3Bは、スライダー 3Aとともに動作する。
一方、スピンドルカム部材 30A、 30Bは、第 1の連結レバー 14Aと第 2の連結レバ 一 14Bによってスライダー 3Aの動作が伝達されることで水平方向に移動する。また、 スピンドルカム部材 30A、 30Bは、スピンドルモータ 1〖こ固定されたスピンドルピン 16 によってトラバースベース 2に対して垂直方向に移動する。なお、スピンドルカム部材 30Aとスピンドルカム部材 30Bとは、第 2の連結レバー 14によって連結され、スピンド ルカム部材 30Bは、スピンドルカム部材 30Aとともに動作する。また、第 2の連結レバ 一 14Bは、第 1の連結レバー 14Aと連結ピン 14Cによって連結され、第 2の連結レバ 一 14Bは第 1の連結レバー 14Aによって動作する。なお、第 2の連結レバー 14Bと第 1の連結レバー 14Aとを連結せずに、スピンドルカム部材 30Aとスピンドルカム部材 3 OBとをスライダー 3Aによって動作させる構成でもよい。
[0025] 図 23から図 27を用いて同ディスク装置の動作について説明する。
図 23はロード'ェジェタト状態を、図 24はスピンドルモータが上昇した状態を、図 25 はチヤッキング状態を、図 26はチヤッキングにおける最上昇位置を、図 27は記録-再 生状態をそれぞれ示している。なお図 23は図 6に相当し、図 24は図 9に相当し、図 2 5は図 12に相当し、図 26は図 15に相当し、図 27は図 18に相当し、トラバースカム部 材 40やトラバースベース 2の移動については、図 5から図 19と同様であるので説明を 省略する。
[0026] まず、図 23におけるスピンドルカム部材 30Bは、スライダー 3A側に最も近接した位 置にある。この状態では、図 23に示すようにスピンドルピン 16は、スピンドルカム部材 30Bに対して最も低位置のスピンドルカム 31内にある。従って、トラバースベース 2は ベース本体 100側に最も近接した位置にあり、スピンドルモータ 1もベース本体 100 側に最も近接した位置にある。
図 24に示す状態では、スピンドルピン 16は、スピンドルカム 31内を上昇するので、 スピンドルモータ 1はベース本体 100から離間する方向に移動する。このようにスピン ドルモータ 1が上昇することで、ディスク保持機構 500がディスク 400に当接する。 図 25に示す状態では、スピンドルピン 16は図 24と同じ高さのスピンドルカム 31内 にあり、トラバースカム部材 40とスピンドルカム部材 30Bとはトラバースピン 17によつ て同一高さを保持されるため、スピンドルモータ 1は垂直方向に所定高さ Z1だけ移動 する。このようにスピンドルモータ 1がトラバースベース 2とともに上昇することで、チヤ ッキング動作となる。
図 26に示す状態では、スピンドルピン 16は図 25と同じ高さのスピンドルカム 31内 にあり、トラバースカム部材 40とスピンドルカム部材 30Bとはトラバースピン 17によつ て同一高さを保持されるため、スピンドルモータ 1は垂直方向に所定高さ Z2だけ移動 する。このようにスピンドルモータ 1がトラバースベース 2とともに上昇することで、スピ ンドルモータ 1は最上昇位置となり、チヤッキング動作が完了する。
図 27に示す状態では、スピンドルピン 16は図 15と同じ高さのスピンドルカム 31内 にあり、トラバースカム部材 40とスピンドルカム部材 30Bとはトラバースピン 17によつ て同一高さを保持されるため、スピンドルモータ 1は垂直方向に所定高さ Z2だけ降下 する。このようにスピンドルモータ 1がトラバースベース 2とともに降下することで、蓋体 200の凸状部 202がディスク 400に当たらない状態となる。
[0027] 本実施例によれば、スピンドルカム部材 30A、 30Bをスライダー 3A、 3Bと分離させ て設けることで、部材の精度誤差の影響を少なくして、スピンドルモータ 1の昇降動作 を安定して行わせることができる。
産業上の利用可能性
[0028] 本発明は、 CD、 DVD等のディスク状記録媒体の記録または再生を行うディスク装 置において、ディスクを確実にスピンドルモータに装着させるためのトラバースベース の移動を最小限に制限しても、ディスクの確実な自動装着操作が可能となるスペース を確保することが可能となり、家庭用映像機器やコンピュータの周辺装置として用い られる薄型化の必要なディスク装置に利用できる。

Claims

請求の範囲
[1] ベース本体と蓋体とからシャーシ外装を構成し、前記シャーシ外装のフロント面に ディスクを直接挿入するディスク挿入口を形成し、前記ベース本体にトラバースベー スを設け、前記トラバースベースにスピンドルモータとピックアップと当該ピックアップ を移動させる駆動手段とを設け、前記トラバースベースを前記ベース本体側と前記蓋 体側との間で変位させるトラバースベース移動手段を設けたディスク装置であって、 前記スピンドルモータを弾性部材によって前記トラバースベース側に付勢して構成し 前記トラバースベース移動手段を、前記シャーシ外装に設けたローデイングモータと 、前記ローデイングモータの駆動によって摺動するスライダーと、前記スライダーに設 けられたトラバースカム部材と、前記スピンドルモータを前記トラバースベースに対し て、下方へ移動させるスピンドルカム部材とによって構成し、前記ローデイングモータ によって前記スピンドルカム部材を駆動する構成としたことを特徴とするディスク装置
[2] 前記スピンドルカム部材を前記スライダーに設けたことを特徴とする請求項 1に記載 のディスク装置。
[3] 前記スピンドルカム部材を前記スライダーと分離して前記トラバースベース側に設け たことを特徴とする請求項 1に記載のディスク装置。
[4] 前記スピンドルモータは、前記スピンドルカム部材に挿入された複数個のピンを備 え、前記ローデイングモータにより駆動される前記スピンドルカム部材の動作力 この ピンを介して前記スピンドルモータに伝達されて前記スピンドルモータを下降させる 構成としたことを特徴とする請求項 1に記載のディスク装置。
[5] 前記ローデイングモータの駆動により、前記スピンドルモータを最上昇位置とした後 に前記トラバースベースを降下させ、前記トラバースベースの降下の後に前記ローデ イングモータを逆回転させて再び前記スピンドルモータを最上昇位置とした後に前記 トラバースベースを降下させる構成としたことを特徴とする請求項 1に記載のディスク 装置。
[6] 前記ローデイングモータの逆回転による駆動の前に、前記スピンドルモータを起動 して所定の位相又は所定時間だけディスクを回転させる構成としたことを特徴とする 請求項 5に記載のディスク装置。
PCT/JP2005/013830 2004-09-03 2005-07-28 ディスク装置 WO2006027907A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/585,248 US7739704B2 (en) 2004-09-03 2005-07-28 Disk apparatus having traverse and spindle cam members and method of operating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004257560A JP3822621B2 (ja) 2004-09-03 2004-09-03 ディスク装置
JP2004-257560 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006027907A1 true WO2006027907A1 (ja) 2006-03-16

Family

ID=36036200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013830 WO2006027907A1 (ja) 2004-09-03 2005-07-28 ディスク装置

Country Status (5)

Country Link
US (1) US7739704B2 (ja)
JP (1) JP3822621B2 (ja)
CN (1) CN100565683C (ja)
TW (1) TW200609914A (ja)
WO (1) WO2006027907A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084358A (ja) * 2006-09-25 2008-04-10 Pioneer Electronic Corp 記録媒体搬送方法
JP2009116981A (ja) * 2007-11-08 2009-05-28 Sony Optiarc Inc 記録媒体駆動装置及び電子機器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758239B2 (ja) 2006-02-03 2011-08-24 パナソニック株式会社 スロットイン型ディスク装置
JP2010129132A (ja) 2008-11-28 2010-06-10 Teac Corp ディスク装置
JP2012164398A (ja) * 2011-02-07 2012-08-30 Funai Electric Co Ltd 光ディスク装置のドライブ装置
KR102025053B1 (ko) * 2016-10-04 2019-09-24 가부시키가이샤 아루박 게이트 밸브

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109171A (ja) * 1991-10-17 1993-04-30 Sony Corp デイスク再生装置
JP2002352498A (ja) * 2001-05-25 2002-12-06 Matsushita Electric Ind Co Ltd ディスク装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724331A (en) * 1994-08-25 1998-03-03 Discovision Associates Disk drive system having improved cartridge-loading apparatus including direct drive gear train and methods for making and operating same
CN100397518C (zh) * 2001-04-27 2008-06-25 松下电器产业株式会社 盘装置
KR100421007B1 (ko) * 2001-07-13 2004-03-04 삼성전자주식회사 스큐 조정기능을 갖춘 광디스크 드라이브

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109171A (ja) * 1991-10-17 1993-04-30 Sony Corp デイスク再生装置
JP2002352498A (ja) * 2001-05-25 2002-12-06 Matsushita Electric Ind Co Ltd ディスク装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084358A (ja) * 2006-09-25 2008-04-10 Pioneer Electronic Corp 記録媒体搬送方法
JP2009116981A (ja) * 2007-11-08 2009-05-28 Sony Optiarc Inc 記録媒体駆動装置及び電子機器

Also Published As

Publication number Publication date
TW200609914A (en) 2006-03-16
CN1910679A (zh) 2007-02-07
JP2006073140A (ja) 2006-03-16
CN100565683C (zh) 2009-12-02
US20080301722A1 (en) 2008-12-04
US7739704B2 (en) 2010-06-15
TWI375218B (ja) 2012-10-21
JP3822621B2 (ja) 2006-09-20

Similar Documents

Publication Publication Date Title
WO2006027907A1 (ja) ディスク装置
JP2005251298A (ja) チャッキング装置
US20060095926A1 (en) Disc drive device
JP2004296091A (ja) 光ディスクドライブ及び光ディスクドライブ用トレー
JP2005251302A (ja) チャッキング装置
JP2005251304A (ja) チャッキング装置
JP4758239B2 (ja) スロットイン型ディスク装置
JP4254620B2 (ja) ディスクドライブ装置
EP1677296B1 (en) Disk device
JPS649675B2 (ja)
WO2006109796A1 (ja) ディスク装置
JP4315067B2 (ja) ディスクドライブ装置
JP3858704B2 (ja) ディスク装置
JP4229012B2 (ja) ディスクドライブ装置
JP3672097B2 (ja) ディスク装置
JP2006209825A (ja) 光ディスク装置
WO2006022216A1 (ja) ディスク装置のチャッキング方法及びディスク装置
JP2919762B2 (ja) ディスクプレーヤーのディスク装着装置
JP4613529B2 (ja) ディスクドライブ装置
WO2006016656A1 (ja) ディスクドライブ装置
US20090293077A1 (en) Optical disk device
JP2005346896A (ja) ディスクドライブ装置
JPH0676443A (ja) ディスク駆動装置
JPH04195760A (ja) ディスクドライブ装置
JP2004303300A (ja) 光ディスク装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10585248

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580002532.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase