WO2006025148A1 - バクテリアセルロース有機ゲルを利用したリチウムイオン導電性材料、それを用いたリチウムイオン電池及びバクテリアセルロースエアロゲル - Google Patents

バクテリアセルロース有機ゲルを利用したリチウムイオン導電性材料、それを用いたリチウムイオン電池及びバクテリアセルロースエアロゲル Download PDF

Info

Publication number
WO2006025148A1
WO2006025148A1 PCT/JP2005/011978 JP2005011978W WO2006025148A1 WO 2006025148 A1 WO2006025148 A1 WO 2006025148A1 JP 2005011978 W JP2005011978 W JP 2005011978W WO 2006025148 A1 WO2006025148 A1 WO 2006025148A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacterial cellulose
lithium
lithium ion
gel
cellulose
Prior art date
Application number
PCT/JP2005/011978
Other languages
English (en)
French (fr)
Other versions
WO2006025148A6 (ja
Inventor
Shoichiro Yano
Takashi Sawaguchi
Toshiki Hagiwara
Hideaki Maeda
Megumi Nakajima
Kazuhiro Sasaki
Original Assignee
Univ Nihon
Shoichiro Yano
Takashi Sawaguchi
Toshiki Hagiwara
Hideaki Maeda
Megumi Nakajima
Kazuhiro Sasaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nihon, Shoichiro Yano, Takashi Sawaguchi, Toshiki Hagiwara, Hideaki Maeda, Megumi Nakajima, Kazuhiro Sasaki filed Critical Univ Nihon
Priority to JP2006531321A priority Critical patent/JP5110462B2/ja
Priority to EP05755722A priority patent/EP1798802A4/en
Priority to US11/659,892 priority patent/US20080220333A1/en
Publication of WO2006025148A1 publication Critical patent/WO2006025148A1/ja
Publication of WO2006025148A6 publication Critical patent/WO2006025148A6/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Lithium conductive material using bacterial cellulose organic gel Lithium conductive material using bacterial cellulose organic gel
  • the present invention relates to a bacterial cellulose organic gel (hereinafter referred to as "bacterial cellulose organogel”).
  • the present invention also relates to a nocteria cellulose air mouth gel, a production method thereof, a novel composite material using the same, and a production method thereof.
  • the polymer electrolyte is a three-dimensional entanglement of linear polymer molecular chains! /, That is, a so-called physical gel in which an electrolyte is supported in a matrix of physically cross-linked polymer and a chemically crosslinked polymer. It can be divided into so-called chemical gels in which an electrolyte is supported in a matrix with molecular chain strength.
  • a chemical gel can be easily obtained by forming a crosslinked polymer by polymerization of monomers on the spot.
  • Cellulose is a main component of plant cell walls, and cellulose of wood, which is a higher plant, is used as a raw material for paper and pulp by digestion and bleaching. Cellulose is not only produced by higher plants, but also other sources of cellulose such as bacteria, seaweed, and squirts are known. In 1886, AJBrown's powerful acetic acid bacteria were added to a medium containing carbohydrates in a cellulose membrane. This system has been attracting attention as a biosynthetic model since
  • Patent Document 1 JP 2003-317695
  • Patent Document 2 JP-A-59-120159
  • Patent Document 3 JP-A-61-281800
  • Patent Document 4 JP-A 62-36467
  • the present invention provides a lithium-ion conductive material using a bacterial cellulose organic gel as a novel material. Furthermore, the present invention provides a production method thereof and a lithium ion battery using the same. The present invention also provides a bacterial cellulose air mouth gel, a method for producing the same, and a novel composite material using the same. Furthermore, the present invention provides a bacterial cell. Provided are a composite material using a roulose hydrogel and a bacterial cellulose air-mouth gel and a method for producing the same.
  • the inventors of the present invention do not have the above-mentioned drawbacks of conventional lithium ion conductive materials based on new materials! ⁇
  • the water of bacterial cellulose hydrogel produced by acetic acid bacteria is completely replaced with a non-aqueous organic solvent containing lithium ions, and the bacterial cellulose organic gel containing lithium ions Further, the present invention was completed by finding that the resulting gel has good lithium ion conductivity.
  • the inventors have found that the moisture of bacterial cellulose hydrogel can be completely dried using a solvent in a supercritical state without impairing the shape, and the present invention has been completed.
  • the present invention relates to a lithium ion conductive material substituted with a nonaqueous solvent containing a hydraulic lithium compound in bacterial cellulose hydrogel.
  • the non-aqueous solvent may be polyethylene glycol dimethyl ether, polyethylene glycol jetinoreethyl ester, polyethylene glycolenoresimethacrylate, polyethylene glycol ditalariate, polypropylene glycol dimetatalylate, or polypropylene glycol diester.
  • the present invention relates to a lithium-ion conductive material selected from the group consisting of attalylate.
  • the present invention also relates to a non-aqueous solvent power, particularly a lithium ion conductive material that is polyethylene glycol dimethyl ether.
  • the present invention relates to lithium compound power lithium perchlorate (LiCIO), lithium tetrafluoroborate.
  • LiBF lithium hexafluorophosphate
  • LiPF lithium trifluoromethanesulfonate
  • LiCF SO LiCF SO
  • LiN (CF SO) lithium bistrifluoromethanesulfonilimide
  • the present invention relates to a lithium ion conductive material characterized by being selected from the group consisting of 3 3 3 2 2 force.
  • the present invention also relates to a lithium ion conductive material that is a lithium compound power, particularly lithium trifluoromethanesulfonimide.
  • the nocteria cellulose hydrogel is immersed in a non-aqueous solvent containing a lithium compound, allowed to stand for a certain period of time under reduced pressure and heating, and subsequently heated to further decrease.
  • the present invention relates to a method for producing a lithium ion conductive material characterized by being left for a certain period of time under pressure.
  • the non-aqueous solvent is made from polyethylene glycol dimethyl ether, polyethylene glycol jetyl ether, polyethylene glycol dimetatalylate, polyethylene glycol diatalate, polypropylene glycol dimetatalylate, and polypropylene glycol diatalate.
  • the present invention relates to a method for producing a lithium-ion conductive material, which is selected from the group consisting of:
  • the present invention also relates to a method for producing a lithium ion conductive material, wherein the non-aqueous solvent is polyethylene glycol dimethyl ether.
  • the lithium compound may be lithium perchlorate (LiCIO), lithium tetrafluoroborate.
  • LiBF lithium hexafluorophosphate
  • LiPF lithium trifluoromethanesulfonate
  • the present invention relates to a method for producing a lithium ion conductive material, which is selected from the group consisting of 3 3 3 2 2.
  • the first stage heating temperature and standing time are 30 to 90 ° C and 12 to 36 hours, respectively, and the second stage heating temperature and standing time are 100 to 160 ° C, respectively.
  • a method for producing a lithium ion conductive material which is 12 to 36 hours.
  • the first stage heating temperature and the standing time are 60 ° C and 24 hours, respectively, and the second stage heating temperature and the standing time are 130 ° C and 24 hours, respectively.
  • the present invention relates to a method for producing a lithium ion conductive material.
  • the present invention also relates to a lithium ion battery comprising an anode, a cathode, and a lithium ion conductive material according to the present invention disposed therebetween.
  • the present inventors have developed various polymer composite materials in which inorganic substances are mixed and dispersed.
  • the present inventors have found that there are problems from the viewpoint of mechanical, electrical characteristics, and environmental conservation.
  • a method for producing composite materials in which various inorganic substances and organic polymer substances are dispersed in bacterial cellulose hydrogel I came to find it. That is, the present inventor has cultivated bacterial cellulose-producing bacteria under vigorous culture conditions that have not been known so far, and thereby various kinds of bacteria can be obtained.
  • the bacterial cellulose composite material incorporating an inorganic material and Z or an organic material which is meant by the present invention, contains a bacterial cellulose hydrogel incorporating an inorganic material and / or an organic material, or a part of its moisture. Excluding those that have been removed or almost completely free of moisture.
  • the present invention relates to a composite material having a completely new function that can be applied to a wide range of technical fields, and relates to a bacterial cellulose composite material incorporating an inorganic material and / or an organic material.
  • the present invention also relates to a composite material characterized in that the inorganic material and Z or organic material are silica gel, shiranolane, carbon nanotube, and Z, polyvinyl alcohol, or hydroxypropyl cellulose.
  • the present invention provides a bacterial cellulose composite material in which an inorganic material and / or an organic material is incorporated by culturing bacterial cellulose-producing bacteria in a culture medium to which an inorganic material and Z or an organic material are added. It relates to a method of manufacturing.
  • glucose, mannitol, sucrose, maltose, starch hydrolyzate, molasses, ethanol, acetic acid, and citrate are used as carbon sources in the culture medium, and ammonium sulfate is used as the nitrogen source.
  • Ammonium salts such as ammonium, ammonium chloride, and ammonium phosphate, nitrates, urea, and polypeptone are used.
  • Inorganic salts include phosphates, calcium salts, iron salts, and manganese salts.
  • the present invention relates to a method for producing a soaked bacterial cellulose composite material.
  • the present invention incorporates an inorganic material and / or an organic material, wherein the culture medium contains glucose, polypeptone, yeast extract, and mannitol.
  • the present invention relates to a method for producing a nocteria cellulose composite material.
  • the present invention provides an inorganic material and a Z or organic material, which is a bacterium belonging to the genus Acetopacter, Darconobacter, Agrobacterium, Syudomonas, etc.
  • the present invention relates to a method for producing a bacterial cellulose composite material.
  • the present invention provides a bacterial cellulose composite material incorporating an inorganic material and Z or an organic material, characterized in that it is a bacterial cellulose-producing bacterium, Acetopacter xylinum (IFO N 0 13772). It relates to a manufacturing method.
  • the present invention relates to a new strain obtained from bacterial cellulose-producing bacteria Acetopacter xylinum (IFO N 0 13772) (Independent Administrative Institution, National Institute of Advanced Industrial Science and Technology, Deposited Biological Deposit Center No. FERM P—
  • the present invention relates to a method for producing a bacterial cell mouth composite material incorporating an inorganic material and / or an organic material, characterized in that it is an international deposit number FERM BP-10357).
  • the present invention also incorporates an inorganic material and Z or organic material, wherein the inorganic material and Z or organic material are silica gel, shirasulane, carbon nanotube and Z or polyvinyl alcohol, hydroxypropyl cellulose.
  • the present invention relates to a method for producing a soaked bacterial cellulose composite material.
  • the present invention relates to a bacterial cellulose air mouth gel, which is a novel air mouth gel.
  • the present invention also relates to a method for producing a bacterial cellulose air-mouth gel by dehydrating and drying nocteria cellulose hydrogel with supercritical ethanol.
  • the present invention also relates to a method for producing a bacterial hydrogel by causing water or a salt-containing water to be absorbed into a powerful bacterial cellulose air mouth gel.
  • the present invention relates to a method for producing a bacterial cellulose organogel by allowing a powerful bacterial cellulose air gel to absorb a solvent containing an organic solvent or a salt.
  • the present invention includes hydrogels, organgels, and hydrogels and organogels containing various salts, which have obtained bacterial cellulose air-mouth gel force.
  • the lithium ion conductive material useful in the present invention is obtained by completely replacing the water in the bacterial cellulose hydrogel with a non-aqueous solvent containing a lithium compound, and thus has excellent lithium ion conductivity, and It has excellent mechanical strength. Using a lithium ion conductive material having such characteristics as a separator, a lithium ion battery exhibiting excellent performance can be obtained.
  • the composite material obtained by the production method according to the present invention exhibits excellent formability, mechanical and electrical properties, and biodegradability.
  • the bacterial cellulose air-mouthed gel that is useful in the present invention is a dried gel that hardly changes in the shape of the bacterial cellulose hydrogel. Therefore, various types of organic solvents including water can be contained almost without limitation, and hydrogels and organogels can be prepared. These can be substrates for various novel composite materials.
  • Fig. 1 shows the results of comparison of the thickness of bacterial cellulose gel formed by a variant of Acetopacter xylinum.
  • Figure 2 shows a Cole-Cole plot of PEO-BC gel electrolyte (measurement temperature 55 ° C, film thickness 0.1076cm 9.78xl0 " 3 S / cm) o
  • FIG. 3 shows the amount of silica present in the sample obtained in Example 7.
  • FIG. 4 shows the results of the bow I tension test of the sample obtained in Example 7.
  • FIG. 5 shows the DMA test results of the sample obtained in Example 7.
  • FIG. 6 shows an electron micrograph of Shirasu balloon bacterial cellulose obtained in Example 8.
  • FIG. 7 shows the amount of shirasu balloon present in the sample obtained in Example 8.
  • FIG. 8 shows the results of the bow I tension test of the sample obtained in Example 8.
  • FIG. 9 shows the DMA test results of the sample obtained in Example 8.
  • FIG. 10 shows an electron micrograph of carbon nanotube bacterial cellulose obtained in Example 9.
  • FIG. 11 shows the abundance of carbon nanotubes in the sample obtained in Example 9.
  • FIG. 12 shows the results of the bow I tension test of the sample obtained in Example 9.
  • FIG. 13 shows the DMA test results of the sample obtained in Example 9.
  • FIG. 14 shows the results of the bow I tension test of the sample obtained in Example 10.
  • FIG. 15 shows the DMA test results of the sample obtained in Example 10.
  • FIG. 16 shows the results of the bow I tension test of the sample obtained in Example 11.
  • FIG. 17 shows the DMA test results of the sample obtained in Example 11.
  • FIG. 18 shows an electron micrograph (10,000 magnifications) of the bacterial cellulose air-mouth gel obtained in Example 13.
  • FIG. 19 shows the compression test results of bacterial cellulose hydrogel, bacterial cellulose air gel, bacterial cellulose polyethylene oxide gel, and bacterial cellulose xylene gel.
  • FIG. 20 shows an infrared absorption spectrum of the bacterial cellulose PEO ether obtained in Example 18.
  • FIG. 21 shows temperature dependence of lithium ion conductivity of bacterial cellulose PEO gel electrolyte (Mw250 and Mw550) and PEO graft bacterial cellulose solid electrolyte.
  • FIG. 22 shows an infrared absorption spectrum of the bacterial cellulose PEO ester obtained in Example 20.
  • the lithium ion conductive material according to the present invention is a bacterial cellulose organic gel substituted with a non-aqueous solvent containing a hydraulic lithium compound in a nocterella cellulose hydrogel.
  • the components of the bacterial cellulose hydrogel used in the present invention are produced by microorganisms and are cellulose, a heteropolysaccharide having cellulose as a main chain, ⁇ -1, 3 ⁇ Any of Dalkan such as ⁇ -1, 2, etc. or a mixture of them.
  • Constituent components other than cellulose in the case of heteropolysaccharides include hexoses such as mannose, fructose, galactose, xylose, arabinose, rhamnose, glucuronic acid, pentoses, and organic acids.
  • the bacterial cellulose hydrogel usable in the present invention is a gel-like substance (plate-like or film-like) composed of cellulose fibers and water, and has very high mechanical strength.
  • the high mechanical strength of such bacterial cellulose is that the fibrous cellulose fibrils discharged from the bacterial cells are randomly entangled by adjusting the culture conditions of the acetic acid bacteria that are the producing bacteria as appropriate. Can be achieved.
  • the bacterial cellulose hydrogel that can be used in the present invention is characterized in that the solid content in bacterial cellulose is extremely low at 0.5 to 1.0% by mass, despite its high mechanical strength.
  • the bacterial cellulose hydrogel usable in the present invention is not particularly limited as long as it is a so-called cellulose-producing bacterium.
  • Aseto Pakuta represented by BPR2001 share ⁇ _ xylinum subsp Gerhard black full Amen chest of drawers (Acetobacter xvlinu m subsp. Sucrofermentans, / cell Bokuno Kuta ⁇ , a r Nrinamu (Acetobacter xylinum ATC C23768, Acetobacter's Xylinum ATCC23769, Acetobacter's A.
  • the shape of the bacterial cellulose hydrogel usable in the present invention is not particularly limited. By selecting culture conditions, culture equipment, etc. as appropriate, the preferred shape (columnar, plate-like, In the case of a film, etc., length, width, height, thickness. In the case of a disc shape, the radius, thickness, etc.) can be freely produced. Further, the obtained bacterial cellulose hydrogel can be cut into a preferred shape as it is. Specific examples include a plate shape, a column shape, a film shape, a disc shape, a rib shape, a column shape, and a line shape.
  • the bacterial cellulose hydrogel usable in the present invention can be stored for a long period of time by a generally known storage method. If necessary, a storage stabilizer can be added.
  • the non-aqueous solvent substituted for the moisture of the bacterial cellulose hydrogel according to the present invention can completely replace the moisture of the bacterial cellulose hydrogel without dissolving the lithium salt described below and destroying the shape.
  • polyethylene glycol dimethyl ether is particularly preferred for this purpose because a solvent that can stably withstand electrochemical changes of lithium Z lithium ions is preferred.
  • the lithium compound used together with the non-aqueous solvent according to the present invention is not particularly limited as long as it is sufficiently dissolved in the non-aqueous solvent and stably present.
  • LiPF lithium trifluoromethanesulfonate
  • LiCF SO lithium trifluoromethanesulfonate
  • lithium compounds that can withstand the electrochemical changes of lithium Z lithium ions are preferred.
  • lithium bistrifluoromethanesulfonylimide is particularly preferred.
  • the lithium ion content is not particularly limited, and can be adjusted to a concentration suitable for the purpose of using the battery cellulose organic gel, which is useful in the present invention. Specifically, it can range from 0 to 20 mol% with respect to the EO unit, and when used as a lithium ion conductor in a lithium ion battery, it can range from 5 to 6 mol%.
  • the bacterial cellulose organic gel which is useful in the present invention is characterized by having extremely high mechanical strength despite its extremely low solid content. Various measuring methods for evaluating the mechanical strength of the organic gel can be used. Further, the bacterial cellulose organic gel can be cut into a preferable shape as it is. Specific examples include a plate shape, a column shape, a film shape, a disk shape, a ribbon shape, a column shape, and a line shape.
  • the bacterial cellulose organic gel according to the present invention contains lithium ions, and the ionic conductivity can be evaluated by various measuring methods.
  • the lithium ion conductivity of the bacterial cellulose organic gel containing lithium ions according to the present invention depends on the type of non-aqueous organic solvent, the type and concentration of the lithium ions contained, the temperature, the shape, or the like. .
  • the production method according to the present invention is characterized in that the moisture of the bacterial cellulose hydrogel is completely replaced with a non-aqueous solvent containing a lithium compound. Therefore, there is no particular limitation as long as it is a method that can replace water molecules in bacterial cellulose hydrogel with non-aqueous solvent molecules without significantly degrading the shape and properties of the gel. Specifically, it can be replaced by immersing the nocteria cellulose hydrogel in a non-aqueous solvent. In addition, soaking can be done under reduced pressure conditions to make replacement faster and more complete. Furthermore, it is also possible to carry out under suitable heating conditions.
  • the heating temperature and the standing time for the first stage are 30 to 90 ° C and 12 to 36 hours, preferably 50 to 70 ° C and 20 to 30 hours, particularly preferably 60 ° C and 24 hours. It is.
  • the heating temperature and the standing time in the second stage are 100 to 160 ° C and 12 to 36 hours, preferably 120 to 140 ° C and 20 to 30 hours, particularly preferably 130 ° C and 24 hours. is there.
  • a lithium ion battery according to the present invention includes an anode and a cathode, and a lithium ion conductive material according to the present invention provided therebetween.
  • the anode and cathode materials used according to the present invention are not particularly limited, and may be any materials that are usually used in known lithium ion batteries.
  • the cathode material used in accordance with the present invention is capable of occluding and releasing lithium ions. It is a carbon material that can be produced.
  • Various shapes such as a plate shape, a film shape, and a ribbon shape that are not particularly limited can be selected as appropriate for the shape of the lithium ion conductor of the lithium ion battery that is useful in the invention.
  • the bacterial cellulose composite material useful in the present invention is characterized in that it has a structure in which various inorganic materials and Z or organic materials are incorporated into bacterial cellulose fibers.
  • bacterial cellulose includes a hydrogel containing water, a part containing water, and a dried product from which water has been removed.
  • inorganic materials and Z or organic materials to be incorporated There is no particular limitation.
  • Preferred inorganic materials and Z or organic material types for imparting desired physical properties to the composite material can be selected. Specific examples include inorganic materials such as silica gel, shirasu balloon, and carbon nanotube, or organic materials such as polyvinyl alcohol and hydroxypropyl pill cellulose.
  • shape (or size) materials of various shapes such as a spherical shape, a needle shape, a rod shape, a plate shape, and an amorphous shape are taken in.
  • nano-sized materials are incorporated into the composite of the present invention.
  • the content can be appropriately selected so as to meet the purpose of use of the composite material with no particular limitation.
  • the content of inorganic material and / or organic material in the bacterial cellulose composite material is in the range of 1 to 25% by weight.
  • the structure of the composite according to the present invention has a structure in which an inorganic material and a Z or organic material, which are not simply a mixture of a cellulose material, an inorganic material, and Z or an organic material as known in the art, are cellulose. It is incorporated in the fiber in an almost uniformly dispersed state and has a special structure. Such a structure can be easily observed by using, for example, an electron microscope.
  • the complex according to the present invention also includes a product obtained by further variously treating a bacterial cellulose hydrogel obtained by the culture method described below.
  • a product obtained by further variously treating a bacterial cellulose hydrogel obtained by the culture method described below include dehydration drying treatment, compression deformation treatment, dehydration compression drying treatment, molding treatment, dehydration after molding treatment, drying, compression deformation, dehydration compression drying treatment, and the like.
  • dehydration drying treatment for example, bacterial cellulose hydrogel can be dried into thin pieces and deformed into paper, plate, or ribbon.
  • compression dehydration can be performed using an appropriate mold. Thus, a desired three-dimensional shape can be formed.
  • Powerful molded composites include acoustic materials such as cones for speakers, dishes such as dishes and cups, materials for medical equipment, materials for toy stationery, materials for construction, clothing materials, materials for interiors of cars and houses, etc. Can be preferably used. In addition, it is extremely excellent in biodegradability and is a material with excellent environmental compatibility.
  • the physical properties of the composite of the present invention can be evaluated using various conventionally known physical property measuring methods and apparatuses.
  • both the hydrogel state and the dried state can be evaluated using various conventionally known physical property measurement methods and apparatuses.
  • the treatment described above and the molded composite can also be evaluated using various methods and apparatuses for measuring physical properties.
  • mechanical strength characteristics can be evaluated by dynamic viscoelasticity measurement and tensile test, and thermodynamic characteristics can be evaluated by thermogravimetry.
  • the production method according to the present invention comprises cultivating bacterial cellulose-producing bacteria in a culture medium to which an inorganic material and / or an organic material is added under a specific culture condition, whereby an inorganic material and a Z or organic material It is a method that makes it possible to obtain a bacterial cellulose hydrogel that incorporates.
  • the bacterial cellulose-producing bacterium usable in the present invention is not particularly limited as long as it can produce cellulose in the medium.
  • Acetopacter genus for example, Acetopacter genus, Darconopacter genus, Agrobacterium genus, Pseudomonas genus, etc. Bacteria belonging to can be mentioned.
  • Acetobacter xylinum is preferred, and Acetobacter xylinum (IFO NO 13772) is particularly preferred. More preferred is a mutant strain of acetobutter xylinum (IFO NO 13772).
  • the medium components usable in the present invention include carbon sources, nitrogen sources, inorganic salts, and, if necessary, a medium containing organic micronutrients such as amino acids and vitamins. , Mannitol, sucrose, maltose, starch hydrolyzate, molasses, ethanol, acetic acid, citrate, ammonium sulfate, ammonium chloride salt, ammonium phosphate Ammonium salts such as hum, nitrates, urea, and polypeptone are used.
  • Inorganic salts include phosphates, calcium salts, iron salts, and manganese salts.
  • Organic micronutrients include amino acids, vitamins, fatty acids, nucleic acids, casamino acids, yeast extract, and soy protein hydrolysates. . Glucose, polypeptone, yeast etastratate and mannitol are preferred.
  • the inorganic material and / or the organic material may be added at any time during the cultivation. It is preferable to add them before starting the cultivation.
  • the culture conditions of the present invention may be about 1 to 15 days, preferably about 1 to 3 days while controlling the pH at 5-9 and the temperature at 10-40 ° C, particularly preferably 25-30 ° C.
  • the culture forms that can be used in the present invention include static culture, aeration and agitation culture, shaking culture, vibration culture, and airlift culture.
  • the present invention is not particularly limited, but static culture is preferred.
  • the shape of the culture vessel can be selected so that the bacterial cellulose hydrogel is produced in a desired shape without any particular limitation.
  • the bacterial cellulose air gel that is useful in the present invention is a novel air mouth gel obtained by drying a bacterial cellulose hydrogel.
  • the structure can be easily observed with an electron microscope.
  • Figure 5 shows an example. From this photograph, it can be seen that the inside of the air mouth gel is extremely thin, tens of nanometers, and has a structure in which cellulose fibrils are highly branched in three dimensions.
  • the drying method There is no particular limitation on the drying method, but any means that can be dehydrated and dried without greatly impairing the shape may be used.
  • a method using a supercritical solvent methanol, ethanol, isopropanol, or isobutanol is preferable. Specific examples include supercritical drying using ethanol.
  • the pressure is 6.38 to llMPa and the temperature is 243 to 300 ° C.
  • the bacterial cellulose air mouth gel which is useful in the present invention is slightly transparent in white. They also tend to adhere to the surface of various materials. It easily adheres to glass, metal, plastic, skin, etc. This adhesion is not based on static electricity. Also, the remaining amount is not due to surface moisture. Moreover, it can be easily cut with a sharp knife such as a knife.
  • Solvent is water, polar organic solvent, nonpolar An organic solvent is included. Specifically, water, toluene, benzene, xylene, jetyl ether, ethyl acetate, acetone methyl ethyl ketone, methanol, ethanol, isopropanol, isobutanol, polyethylene glycol dimethyl ether (Mw250), polyethylene glycol (Mw600), dimethyl Examples include sulfoxide, dimethylacetamide, dimethylformamide, n-hexane, tetrahydrofuran, and silicon oil.
  • Organogel containing the solvent maintains its shape. Furthermore, when the organogel is lifted from the solvent, it tends to be retained in the gel against the gravity. Bacterial cellulose air-mouthed gel, which is effective in the present invention, can be simultaneously inhaled in various solvents when immersed in water or other solvents.
  • the solvent is made of polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dimethacrylate, polyethylene glycol diacrylate, polypropylene glycol dimethacrylate, and polypropylene glycol diacrylate.
  • lithium salts include lithium perchlorate (LiCIO),
  • LiBF Lithium fluoroborate
  • LiPF Lithium hexafluorophosphate
  • LiCF SO Lithium fonate
  • Li bistrifluoromethanesulfonilimide Li
  • Lithium compounds that are resistant to electrochemical changes of lithium Z lithium ions are preferred for use in lithium batteries, and lithium bistrifluoromethanesulfonimide is particularly preferred for this purpose).
  • glucose. .5g, Polypeptone 0.5g, Magnesium sulfate 0.lg, Yeast Etastrata 0.5 g and 0.5 g mantol were dissolved in 100 ml of pure, 2 g of agar was added to the solution, and dissolved by heating. Place 8 ml of this in a test tube and put a urethane culture stopper. Further, the stopper is covered with aluminum foil. Sterilized by heating at 120 ° C for 9 minutes in an autoclave. The sterilized solution was left obliquely overnight and the resulting gel was used as a slant medium.
  • Acetobacter xylinum (FERM P-20332) was inoculated into the slant medium and cultured at 30 ° C.
  • Glucose 15g, Polypeptone 2.5g, Magnesium sulfate 0.5g, Yeast ethastract 2.5g, Mann-zol 2.5g was dissolved in pure 500ml and 120 in an oven. Sterilized by heating at C for 9 minutes.
  • a solution similar to the culture solution was prepared, about 5 ml of which was added to the test tube, and the bacteria were washed from the slant medium.
  • the solution was returned to the culture solution again and allowed to stand at 30 ° C for 3 days for the activity of the bacteria, which was used as a mother liquor.
  • the mother liquor and the culture broth were mixed at a ratio of 1: 1, ethanol was added so as to be 0.4% by mass, and the mixture was developed in a deep bottom petri dish. This was statically cultured at 30 ° C for 25 days to obtain a bacterial cellulose gel.
  • the resulting gel was thoroughly washed with running water and immersed in a 1% by weight aqueous sodium hydroxide solution for 24 hours to dissolve and remove impurities such as bacteria.
  • the sample was immersed in a 0.5% by weight aqueous sodium hypochlorite solution for 12 hours for bleaching, and then washed thoroughly with running water to obtain a bacterial cellulose sample.
  • Acetopacter xylinum (IF013772) was cultured in the same manner as in Example 1.
  • the obtained Acetopacter xylinum was deposited as YMNU-01 at the National Institute of Advanced Industrial Science and Technology (the National Institute of Advanced Industrial Science and Technology, the Patent Biological Depositary Center). It is characterized by deposit number FERM P-20332 and international deposit number FERM BP-10357). As shown in Figure 1, the resulting Acetopacter xylinum was founded to produce extremely thick gels.
  • 118 g of bacterial cellulose sample was immersed in the electrolytic solution prepared in a separable flask and allowed to stand at 60 ° C. under reduced pressure for 24 hours to mix the dispersion medium. Next, the temperature was raised stepwise, and finally left at 130 ° C under reduced pressure for 24 hours to replace the dispersion medium to obtain a gel electrolyte.
  • Impedance was measured using an impedance measurement device (HP, PRECISION LCR METER 4284A type) with an applied voltage of 10 mV and a measurement frequency of 20 Hz to: LMHz, a copper plate with a diameter of 23.5 mm in a helium atmosphere at 30 ° C. .
  • the measured sample had a cylindrical shape with a diameter of 23.5 mm and a thickness of 3.29 mm.
  • the resulting Nyquist plot is shown in Figure 2.
  • a 5 mass% manganese (II) sulfate aqueous solution was prepared.
  • a manganese oxide electrode was prepared by electrolysis at a DC voltage of 3 V using a carbon rod as the positive electrode and a copper plate as the negative electrode.
  • a 0.75 mm thick lithium ribbon was cut into 20 mm ⁇ 10 mm to form a cathode.
  • an agar medium was produced as follows. 0.5 g of glucose, 0.5 g of polypeptone, 0.1 lg of magnesium sulfate, 0.5 g of yeast educt, 0.5 g of mannitol were dissolved in 100 ml of pure, 2 g of agar was added to the solution and dissolved by heating. Place 8 ml of this in a test tube and put a urethane culture stopper. Further, the stopper is covered with aluminum foil. With autoclave 1
  • Acetopacter xylinum was inoculated into the slant culture medium and cultured at 30 ° C.
  • a culture solution was prepared as follows. Glucose 15 g, polypeptone 2.5 g, yeast educt 2.5 g and mantol 2.5 g were dissolved in 500 ml of pure and heat sterilized at 120 ° C. for 9 minutes in an autoclave.
  • a mother liquor was prepared as follows. A solution similar to the culture solution was prepared, about 5 ml of which was added to the test tube, and the bacteria on the slant medium was also washed away. The solution was returned again to the culture solution and left at 30 ° C for 3 days for the activity of the bacteria, which was used as a mother liquor.
  • Culture solution 80 ml, mother solution 100 ml, colloidal silica 20 ml, mother solution 100 ml, culture solution 90 ml, colloidal silica 10 ml, and culture solution 95 colloidal silica 5 ml were mixed and cultured for 25 days after developing in a deep shear.
  • the resulting gel was washed thoroughly with running water, then immersed in 0.5% by weight aqueous sodium hypochlorite solution for 12 hours, bleached, washed thoroughly with running water, and then colloidal. Silica bacterial cellulose sample was used.
  • Colloidal silica bacterial cellulose sample is heat-pressed at 120 ° C, l-2MPa Shrink to make a film.
  • the culture solution 100 ml
  • mother solution 100 ml
  • Shirasu balloon 0.1 to 2 g
  • the resulting gel was thoroughly washed with running water, then immersed in 0.5% by weight aqueous sodium hypochlorite solution for 12 hours for bleaching, and then washed thoroughly with running water. A bacterial cellulose sample was used.
  • FIG. 6 is an electron micrograph of Shirasu balloon bacterial cellulose, which shows that bacterial cellulose fibrils are formed on the surface of the Shirasu balloon (spheroids of several zm) and the surrounding space.
  • Culture solution 100 ml, mother solution 100 ml, carbon nanotubes 0.02 ⁇ : Lg was mixed and developed in a deep bottom dish and cultured for 25 days.
  • the resulting gel was thoroughly washed with running water, then immersed in 0.5% by weight sodium hypochlorite aqueous solution for 12 hours for bleaching, and then washed thoroughly with running water. Nanotube bacterial cellulose samples were used.
  • Fig. 10 is an electron micrograph of the carbon nanotube bacterial cellulose, which shows that the carbon nanotube (spherical of several nm) and the fibrils of the bacterial cell mouth are intertwined in a complex manner.
  • Example 10 Method for producing bacterial cellulose incorporating polyvinyl alcohol
  • the resulting gel was thoroughly washed with running water, then immersed in 0.5% by weight sodium hypochlorite aqueous solution for 12 hours, bleached, washed thoroughly with running water, Alcohol bacterial cellulose samples were used.
  • a polybulu alcohol bacterial cellulose sample was compressed with a heat press at 120 ° C. and 1 to 2 MPa to form a film.
  • Example 11 Method for Producing Bacterial Cellulose Incorporating Hydroxypropyl Cellulose 1. Culture of bacterial cellulose-producing bacteria in the presence of hydroxypropylcellulose (Nippon Soda)
  • a culture solution (100 ml), a mother solution (100 ml), and hydroxypropylcellulose (0.1-4 g) were mixed and developed in a deep-bottomed petri dish, followed by culturing for 25 days.
  • bacterial senorelose genole Approximately 20 mm x 20 mm x 20 mm (8 g) of bacterial senorelose genole was placed in a 100 ml volume stainless steel autoclave. Ethanol was introduced to maintain the conditions of about 6.5 MPa and about 243 ° C. After about 3 minutes, the pressure was returned to normal pressure and ethanol was removed. The resulting dried bacterial cellulose gel had almost no change in shape and weighed 0.5 g. As a result, it can be seen that the bacterial cellulose gel can be almost completely dried while maintaining its shape with supercritical ethanol.
  • the bacterial cellulose gel was washed and cut into cubes of lOmmxlOmmxlOmm as samples.
  • the obtained sample was immersed in ethanol for 24 hours, and then the ethanol was exchanged and further immersed for 24 hours. By repeating this three times, the dispersion medium was also exchanged with ethanol for hydraulic power.
  • the sample was placed in a 50 ml autoclave and treated at a pressure of 6.38 MPa and a temperature of 243 ° C to 300 ° C for 10 minutes as a condition for ethanol to be in a supercritical state.
  • the shape of the resulting dried bacterial cell mouth gel (bacterial air mouth gel) was lOmmxlOmmxlOmm. This result shows that there is almost no shape change by a drying process.
  • the weight was 6 mg. From this result, it can be seen that the resulting bacterial cellulose air-mouth gel has a density of about 6 mgZcm3 and is an extremely light material.
  • Fig. 18 shows a scanning electron microscope (SEM) photographic image of the cross section of the bacterial cellulose air-mouth gel obtained. It can be seen that the interior space is almost uniformly filled with a network structure in which many thin fibrils are entangled. It can also be seen that fibrils are on the order of nanometers.
  • Fig. 19 shows the results of compressive strength measured by the JIS K7208 method using a universal testing machine. It can be seen that it is about twice as strong as the hydrogel. This result is presumed that the hydrogel is plasticized by water.
  • the air mouth gel obtained above was brought into contact with water at room temperature under a vacuum of llmmHg to absorb water and become a hydrogel.
  • the shape and weight of the resulting hydrogel are 7 lOmmxlO mmxlOmm, lg.
  • the air-mouthed gel obtained above was brought into contact with the following organic solvent at room temperature under a vacuum of llmmHg, thereby absorbing the solvent and becoming an organogel.
  • Solvent Xylene, Shape 13.6mmxl4.0mmxl2.lmm, Weight 2.104g
  • Solvent Polyethylene oxide, shape Il.9mmxl2.12mmx7.3mm, weight 1.383g
  • Fig. 19 shows the results of compressive strength measured by the JIS K7208 method. Depending on the type of solvent It can be seen that the strength is different. This result is presumed to be due to the viscosity and polarity of various solvents.
  • Fig. 19 shows the results of compressive strength measured by the JIS K7208 method. It can be seen that the strength varies depending on the type of solvent. This result is presumed to be due to the viscosity of the solvent and the interaction with cellulose.
  • Polyethylene oxide (PEO) having a molecular weight of 250 in which lithium salt was dissolved was added to the battery cellulose air-mouth gel under reduced pressure to obtain a bacterial cellulose-PEO organgel having Li + conductivity. As shown in Fig. 21, this Li + electrolyte exhibited almost the same Li + conductivity as the lithium salt PEO solution.
  • Fig. 19 shows the results of a compressive strength test of bacterial cellulose hydrogel, bacterial cellulose air-mouth gel, and buttery cellulose PEO organogel. From this result, it can be seen that the hydrogel is the strongest organogel which is weaker than the air mouth gel.
  • Bacterial cellulose air-mouth gel (10mmxl0mmxl0mm, 6mg) was reacted with 0.027g of sodium methoxide in 50ml of xylene for 1 hour. Thereafter, the pressure was reduced to remove xylene, and the reaction was carried out with 50 g of acidic ethylene at 8 MPa for 140 hours at 140 ° C. The resulting crude reaction product was repeatedly washed with ethanol, water, and then acetone to obtain bacterial cellulose PEO ether.
  • FIG. 20 shows the infrared absorption spectrum of the ether having the PEO side chain obtained.
  • the bacterial cellulose PEO ether obtained in the above example was immersed in an ethanol solution of lithium trifluoromethanesulfonimide (LiTFSI) for 24 hours. After 120 ° C And dried under reduced pressure to obtain bacterial cellulose PEO ether Li ion conductive membrane.
  • LiTFSI lithium trifluoromethanesulfonimide
  • FIG. 21 shows the measurement results of lithium ion conductivity of the obtained ion electric membrane.
  • the bacterial cellulose PEO ester obtained in the above example was immersed in an ethanol solution of lithium trifluoromethanesulfonimide (LiTFSI) for 48 hours. Thereafter, it was dried under reduced pressure at room temperature to obtain a bacterial cellulose PEO ester Li ion conductive membrane.
  • LiTFSI lithium trifluoromethanesulfonimide
  • FIG. 21 shows the measurement results of lithium ion conductivity of the obtained ion electric membrane.
  • Bacterial cellulose air gel (30mmx20mmxl5mm, 52mg) is placed in a round bottom flask, depressurized with a vacuum pump, heated and dehydrated at 350 ° C for 4 hours at O.lmmHg, and black sponge-like bacterial cellulose 1.7 mg of air mouth gel dehydrate was obtained. [0131] (Example 24) Preparation of anode and preparation of lithium battery
  • the voltage of this battery was 3.4V.
  • the material of the present invention is a lithium ion conductor material using a novel material, and a lithium ion battery can be easily constructed. Therefore, it can be used extremely widely in various technical fields that use lithium ion conductive materials and lithium ion batteries, such as home appliances, electronic equipment, automobiles, architecture, optical equipment, aerospace equipment, and other fields. is there.
  • the bacterial cellulose composite material useful in the present invention has a structure in which an inorganic material and Z or an organic material are incorporated into bacterial cellulose. Therefore, such materials exhibit excellent moldability, mechanical and electrical properties, and biodegradability.
  • the effects brought about by these new materials are very excellent properties that cannot be predicted at all by the physical properties of previously known materials, and there are many unresolved issues that have been strongly desired for conventional composite materials. It is a thing to wipe out.
  • the present invention has novel physical properties in various technical fields such as pharmaceuticals, medical products, medical devices, home appliances, electronic devices, automobiles, architecture, optical devices, aerospace related devices and other fields. Remarkable demands for powerful materials have been recognized, and their industrial applicability is extremely high.
  • the bacterial cellulose air-mouthed gel which is useful in the present invention has excellent filter performance, water absorption rate, water absorption speed and liquid permeability, and is excellent in gel stability over time and gel strength after water absorption. .
  • the material also has the ability to absorb organic solvents. Therefore, the hard materials are useful for sanitary materials such as sanitary napkins, disposable diapers, adult sheets, tampons, and sanitary cotton. In addition, the above materials do not deteriorate the gel structure even when used for a long period of time, and are also highly elastic. is there. Furthermore, the high water-absorbing polymer is expected to be applied to cosmetics where shape, elasticity, water absorption, and breathability are regarded as important.
  • the host country ⁇ accepts the first microorganism received in year S.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 機械的強度に優れ、イオン伝導性が高いリチウムイオン導電性材料を提供する。さらに無機材料及び/又は有機材料を取り込ませたバクテリアセルロース複合材料を提供する。また、バクテリアセルロースエアロゲルを提供する。  バクテリアセルロースヒドロゲル中の水を、リチウム化合物を含有する非水溶媒で置換する。バクテリアセルロース産生菌を、無機材料及び/又は有機材料が添加された培養培地中で培養する。バクテリアセルロースヒドロゲルを脱水乾燥する。

Description

明 細 書
バクテリアセルロース有機ゲルを利用したリチウムィォン導電性材料、 そ
れを用いたリチウムイオン電池及びバクテリアセルロースエア口ゲル
技術分野
[0001] 本発明はバクテリアセルロース有機ゲル(以下、「バクテリアセルロースオルガノゲル
」とも記載する。)、及びそれを利用したリチウムイオン導電性材料、その製造方法、 及びそれを用いたリチウムイオン電池に関する。また本発明は、ノ クテリアセルロース エア口ゲル、その製造方法、及びそれを用いた新規複合材料とその製造方法に関す る。
背景技術
[0002] 従来、種々の形式の電池が実用に供されて!、るが、電子機器のワイヤレス化等に 対応するために、軽量で高起電力と高エネルギーを得ることができ、し力も自己放電 の少ないことからリチウムイオン電池が注目嫌めている。特に、近年一層の軽量ィ匕 と薄膜ィ匕の要求に伴い、従来の電解液に代えて、ポリマー電解質を用いたリチウムィ オン電池の実用化が急がれている。このようなリチウムイオン電池によれば、従来の 電解液電池と比較して、電解液の漏れが少ないので、外装として、従来の金属缶に 代えて、アルミニウム薄膜を有するラミネート榭脂フィルム等を用いることができ、かく して、屈曲性を有する薄型電池とすることができる点からも、種々のポリマー電解質を 用いたリチウムイオン電池が研究開発されている (例えば特許文献 1を参照)。
[0003] ポリマー電解質は、直線状のポリマー分子鎖の三次元の絡み合!/、、即ち、物理架 橋したポリマーカゝらなるマトリックス中に電解液を担持した所謂物理ゲルと、化学架橋 したポリマー分子鎖力 なるマトリックス中に電解液を担持した所謂化学ゲルに分け られる。化学ゲルを用いて電池を製造する場合には、例えば、電池容器内において 、いわばその場でモノマーの重合によって架橋ポリマーを形成させて、簡便に化学ゲ ルを得ることができる利点がある力 反面、電池の電極ゃセパレータ中に未反応モノ マーや重合開始剤が残存して、電池特性に好ましくな 、影響を与えると 、う欠点を有 する。物理ゲルを用いて電池を製造する場合には、物理ゲルに適度な機械的強度を 付与するために、電解液中のポリマー濃度を増やす必要があり、また、ポリマー濃度 を増やさないのであれば、高分子量のポリマーを用いる必要がある力 このような場 合には、加熱下に電解液中にポリマーを溶解させることが必要となり、また、そのため に多大の時間を要することとなる。更に、加熱による電解質塩の劣化等の問題も生じ る。
[0004] セルロースは、植物細胞壁の主成分であり、紙 ·パルプの原料としては高等植物で ある木材のセルロースが蒸解 '漂白により利用されている。またセルロースを作るのは 高等植物だけではなぐまた、その他のセルロース源としてバクテリア、海藻、ホヤ等 も知られているが、 1886年、 A.J.Brown力 ある種の酢酸菌が炭水化物を含む培地に セルロース膜を形成することを報告して以来、この系は生合成モデルとして注目され
、研究が行われてきた。その結果、酢酸菌が生産するバクテリアセルロースは、純粋 なセルロースとして菌体外に排出され、その形状としては幅数十應のリボン状微細繊 維が網目構造が形成していることが観察されるとともに、パルプ繊維に比較して極端 に細いことが明らかにされた。また、その特徴としては、微細な構造を有すること、セ ルロースとして純度が高いこと、ヤング率が高いこと、生分解性が高いこと等も知られ ている。その利用は主に高付加価値製品に限定されている。例えば、特開昭 59— 1 20159号に開示されている医療用パッド、特開昭 61— 281800号に開示されている 音響用振動板、特開昭 62— 36467号に開示されている高力学強度成形材料等に 詳しく記載されている如くである。
特許文献 1 :特開 2003— 317695
特許文献 2 :特開昭 59— 120159号
特許文献 3:特開昭 61— 281800号
特許文献 4:特開昭 62— 36467号
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、新規な材料としてバクテリアセルロース有機ゲルを利用したリチウムィォ ン導電性材料を提供する。さらに本発明はその製造方法、及びそれを用いたリチウ ムイオン電池を提供する。また本発明は、バクテリアセルロースエア口ゲル、その製造 方法、及びそれを用いた新規複合材料を提供する。さらには本発明は、バクテリアセ ルロースヒドロゲル、及びバクテリアセルロースエア口ゲルを利用した複合材料とその 製造方法を提供する。
課題を解決するための手段
[0006] 本発明者等は新規材料に基づぐ従来のリチウムイオン導電性材料の有する上記 欠点のな!ヽ優れたリチウムイオン導電性材料を見出すべく鋭意研究した結果、酢酸 菌が生産するバクテリアセルロースヒドロゲルの水分を、リチウムイオンを含有する非 水有機溶媒で完全に置換してリチウムイオン含有バクテリアセルロース有機ゲルとす ることができ、さらに得られるゲルが良好なリチウムイオン伝導性を有することを見出し 本発明を完成した。
[0007] また、超臨界状態の溶媒を用いてバクテリアセルロースヒドロゲルの水分を形状を 損なうことなく完全に乾燥できることを見出し本発明を完成した。
[0008] すなわち本発明は、バクテリアセルロースヒドロゲル中の水力 リチウム化合物を含 有する非水溶媒で置換されているリチウムイオン導電性材料に関する。
[0009] また本発明は、かかる非水溶媒が、ポリエチレングリコールジメチルエーテル、ポリ エチレングリコールジェチノレエ一テル、ポリエチレングリコーノレジメタクリレート、ポリエ チレングリコールジアタリレート、ポリプロピレングリコールジメタタリレートおよびポリプ ロピレングリコールジアタリレートからなる群より選択されることを特徴とするリチウムィ オン導電性材料に関する。
[0010] また本発明は力かる非水溶媒力 特にポリエチレングリコールジメチルエーテルで あるリチウムイオン導電性材料に関する。
[0011] さらに本発明は、リチウム化合物力 過塩素酸リチウム (LiCIO ) ,四フッ化ホウ酸リ
4
チウム(LiBF )、六フッ化リン酸リチウム(LiPF )、三フッ化メタンスルホン酸リチウム(
4 6
LiCF SO )およびリチウムビストリフルォロメタンスルホ二ルイミド(LiN (CF SO ) )
3 3 3 2 2 力 なる群より選択されることを特徴とするリチウムイオン導電性材料に関する。
[0012] また本発明はリチウム化合物力 特にリチウムトリフルォロメタンスルホンイミドである リチウムイオン導電性材料に関する。
[0013] また、本発明は、ノ クテリアセルロースヒドロゲルを、リチウム化合物を含有する非水 溶媒中に浸漬させ、減圧及び加熱下に一定期間放置し、引き続き昇温させ更に減 圧下で一定期間放置することを特徴とする、リチウムイオン導電性材料の製造方法に 関する。
[0014] さらに本発明は、非水溶媒が、ポリエチレングリコールジメチルエーテル、ポリェチ レングリコールジェチルエーテル、ポリエチレングリコールジメタタリレート、ポリエチレ ングリコールジアタリレート、ポリプロピレングリコールジメタタリレートおよびポリプロピ レングリコールジアタリレートからなる群より選択されることを特徴とする、リチウムィォ ン導電性材料の製造方法に関する。
[0015] また本発明は、非水溶媒が、ポリエチレングリコールジメチルエーテルである、リチ ゥムイオン導電性材料の製造方法に関する。
[0016] また本発明は、リチウム化合物が、過塩素酸リチウム (LiCIO )、四フッ化ホウ酸リチ
4
ゥム(LiBF )、六フッ化リン酸リチウム(LiPF ) ,三フッ化メタンスルホン酸リチウム(Li
4 6
CF SO )およびリチウムビストリフルォロメタンスルホ二ルイミド(LiN (CF SO ) )力
3 3 3 2 2 らなる群より選択されることを特徴とするリチウムイオン導電性材料の製造方法に関す る。
[0017] さらに本発明は、一段階目の加熱温度及び放置時間がそれぞれ 30〜90°C及び 1 2〜36時間であり、かつ二段階目の加熱温度及び放置時間がそれぞれ 100〜160 °C及び 12〜36時間である、リチウムイオン導電性材料の製造方法に関する。
[0018] また本発明は、一段階目の加熱温度及び放置時間がそれぞれ 60°C及び 24時間 であり、かつ二段階目の加熱温度及び放置時間がそれぞれ 130°C及び 24時間であ る、リチウムイオン導電性材料の製造方法に関する。
また、本発明は、陽極、陰極及びその間に配置された本発明にかかるリチウムイオン 導電性材料を含むことを特徴とする、リチウムイオン電池に関する。
[0019] また本発明者等は、無機物が混合分散された種々の高分子複合材料が種々開発 されているが、その機械的、電気的特性、環境保全の観点からも問題があることに鑑 み、ノ^テリアセルロースを用いた複合材料の実用化を目指し、鋭意研究を行った結 果、バクテリアセルロースヒドロゲル中に種々の無機物質、有機高分子物質が分散さ れた複合材料の製造方法を見出すに至った。すなわち本発明者は、従来知られて いな力つた培養条件でバクテリアセルロース産生菌を培養することにより、種々の無 機材料及び z又は有機材料をバクテリアセルロースヒドロゲル中に取り込ませること ができること、さらに得られた無機材料及び z又は有機材料を取り込ませたパクテリ ァセルロースヒドロゲルを脱水等の処理をすることにより、無機材料及び z又は有機 材料を取り込ませたバクテリアセルロース複合材料が得られることを見いだし本発明 を完成した。
[0020] 以下、本発明の意味する無機材料及び Z又は有機材料を取り込ませたバクテリア セルロース複合材料には、無機材料及び/又は有機材料を取り込ませたバクテリア セルロースヒドロゲル、若しくはその水分の一部を除いたもの、若しくは水分をほぼ完 全に除いたものを含む。
[0021] すなわち本発明は、広範な技術分野に応用できる全く新しい機能を有する複合材 料であって、無機材料及び/又は有機材料を取り込ませたバクテリアセルロース複 合材料に関する。
[0022] また本発明は、無機材料及び Z又は有機材料がシリカゲル、シラスノ レーン、カー ボンナノチューブ及び Z又はポリビニルアルコール、ヒドロキシプロピルセルロースで あることを特徴とする複合材料に関する。
[0023] さらに本発明は、バクテリアセルロース産生菌を、無機材料及び Z又は有機材料が 添加された培養培地中で培養することで、無機材料及び,又は有機材料を取り込ま せたバクテリアセルロース複合材料を製造する方法に関する。
[0024] また本発明は、培養培地において、炭素源として、グルコース、マン-トール、スク ロース、マルトース、澱粉加水分解物、糖蜜、エタノール、酢酸、クェン酸が使用され 、窒素源として、硫酸アンモ-ゥム、塩化アンモ-ゥム、リン酸アンモ-ゥム等のアンモ ニゥム塩、硝酸塩、尿素、ポリペプトンが使用され、無機塩類として、リン酸塩、カルシ ゥム塩、鉄塩、マンガン塩が使用され、有機微量栄養素として、アミノ酸、ビタミン、脂 肪酸、核酸、カザミノ酸、イーストエキストラタト、大豆蛋白加水分解物が使用されるこ とを特徴とする、無機材料及び/又は有機材料を取り込ませたバクテリアセルロース 複合材料の製造方法に関する。
[0025] また、本発明は培養培地が、グルコース、ポリペプトン、イーストェクストラタト、マン 二トールを含有することを特徴とする、無機材料及び/又は有機材料を取り込ませた ノ クテリアセルロース複合材料の製造方法に関する。
[0026] また本発明は、バクテリアセルロース産生菌力 ァセトパクター属、ダルコノバクタ一 属、ァグロバクテリウム属、シユードモナス属等に属する細菌であることを特徴とする、 無機材料及び Z又は有機材料を取り込ませたバクテリアセルロース複合材料の製造 方法に関する。
[0027] さらに本発明は、バクテリアセルロース産生菌力 ァセトパクターキシリナム(IFO N 0 13772)であることを特徴とする、無機材料及び Z又は有機材料を取り込ませたバ クテリアセルロース複合材料の製造方法に関する。
[0028] さらに本発明は、バクテリアセルロース産生菌力 ァセトパクターキシリナム(IFO N 0 13772)から得られた新種株 (独立行政法人産業技術総合研究所、特許生物寄託 センター寄託番号 FERM P— 20332、国際寄託番号 FERM BP— 10357)であ ることを特徴とする、無機材料及び/又は有機材料を取り込ませたバクテリアセル口 ース複合材料の製造方法に関する。
[0029] また本発明は、無機材料及び Z又は有機材料がシリカゲル、シラスノ レーン、カー ボンナノチューブ及び Z又はポリビニルアルコール、ヒドロキシプロピルセルロースで あることを特徴とする、無機材料及び Z又は有機材料を取り込ませたバクテリアセル ロース複合材料の製造方法に関する。
[0030] また本発明者等は、ノ クテリアセルロースヒドロゲルの形状をほとんど損なうことなく 完全に乾燥する方法を鋭意研究した結果、特定の溶媒を超臨界条件を用いて乾燥 できることを見出した。
[0031] 従って、本発明は、新規なエア口ゲルである、バクテリアセルロースエア口ゲルに関 する。
[0032] また、本発明は、ノ クテリアセルロースヒドロゲルを、超臨界エタノールで脱水乾燥 してバクテリアセルロースエア口ゲルを製造する方法に関する。
[0033] また本発明は、力かるバクテリアセルロースエア口ゲルに、水又は塩を含む水を吸 収させて、バクテリアヒドロゲルを製造する方法に関する。
[0034] さらに本発明は、力かるバクテリアセルロースエア口ゲルに、有機溶媒又は塩を含 む溶媒を吸収させて、バクテリアセルロースオルガノゲルを製造する方法に関する。 [0035] また、本発明には、バクテリアセルロースエア口ゲル力も得られたヒドロゲル、オルガ ノゲル、また種々の塩を含むヒドロゲル、オルガノゲルが含まれる。
発明の効果
[0036] 本発明に力かるリチウムイオン導電性材料は、バクテリアセルロースヒドロゲル中の 水をリチウム化合物を含有する非水溶媒で完全に置換されたものであることから、リ チウムイオン伝導性に優れ、かつ機械的強度に優れた特性を示す。かかる特性を有 するリチウムイオン導電性材料をセパレータとして用いて優れた性能を発揮するリチ ゥムイオン電池が得られる。
[0037] 本発明に力かる製造方法によれば、ノ クテリアセルロース繊維中に種々の無機材 料及び/又は有機材料を取り込ませることができる。従って本発明による製造方法に より得られる複合材料は優れた成形性、機械的、電気的特性、生分解性を示す。
[0038] 本発明に力かるバクテリアセルロースエア口ゲルは、バクテリアセルロースヒドロゲル の形状にはほとんど変化なぐ乾燥したものである。従って、水を始め種々の種類の 有機溶媒をほぼ制限なく含ませることができ、ヒドロゲル、オルガノゲルを調製するこ とができる。これらは種々の新規な複合材料の基材となることができる。
図面の簡単な説明
[0039] [図 1]図 1はァセトパクターキシリナムの変異体が形成するバクテリアセルロースゲル の厚さを比較した結果を示す。
[図 2]図 2は、 PEO— BCゲル電解質の Cole-Coleプロットを示す(測定温度 55°C、膜 厚 0.1076cm 9.78xl0"3S/cm) o
[図 3]図 3は、実施例 7で得られた試料のシリカの存在量を示す。
[図 4]図 4は、実施例 7で得られた試料の弓 I張試験結果を示す。
[図 5]図 5は、実施例 7で得られた試料の DMA試験結果を示す。
[図 6]図 6は、実施例 8で得られたシラスバルーンバクテリアセルロースの電子顕微鏡 写真を示す。
[図 7]図 7は、実施例 8で得られた試料のシラスバルーンの存在量を示す。
[図 8]図 8は、実施例 8で得られた試料の弓 I張試験結果を示す。
[図 9]図 9は、実施例 8で得られた試料の DMA試験結果を示す。 [図 10]図 10は、実施例 9で得られたカーボンナノチューブバクテリアセルロースの電 子顕微鏡写真を示す。
[図 11]図 11は、実施例 9で得られた試料のカーボンナノチューブの存在量を示す。
[図 12]図 12は、実施例 9で得られた試料の弓 I張試験結果を示す。
[図 13]図 13は、実施例 9で得られた試料の DMA試験結果を示す。
[図 14]図 14は、実施例 10で得られた試料の弓 I張試験結果を示す。
[図 15]図 15は、実施例 10で得られた試料の DMA試験結果を示す。
[図 16]図 16は、実施例 11で得られた試料の弓 I張試験結果を示す。
[図 17]図 17は、実施例 11で得られた試料の DMA試験結果を示す。
[図 18]図 18は、実施例 13で得られたバクテリアセルロースエア口ゲルの電子顕微鏡 写真(1万倍)を示す。
[図 19]図 19は、バクテリアセルロースヒドロゲル、バクテリアセルロースエア口ゲル、バ クテリアセルロースポリエチレンォキシドゲル、バクテリアセルロースキシレンゲルの圧 縮試験結果を示す。
[図 20]図 20は、実施例 18で得られたバクテリアセルロース PEOエーテルの赤外線 吸収スペクトルを示す。
[図 21]図 21は、バクテリアセルロース PEOゲル電解質(Mw250及び Mw550)、 PEOグ ラフトバクテリアセルロース固体電解質のリチウムイオン導電率の温度依存性を示す
[図 22]図 22は、実施例 20で得られたバクテリアセルロース PEOエステルの赤外線吸 収スペクトルを示す。
発明を実施するための最良の形態
[0040] (リチウムイオン導電性材料)
本発明によるリチウムイオン導電性材料は、ノ クテリアセルロースヒドロゲル中の水 力 リチウム化合物を含有する非水溶媒で置換されたバクテリアセルロース有機ゲル であることを特徴とする。
[0041] ここで本発明に用いられるバクテリアセルロースヒドロゲルの成分は、微生物により 産生されるものであって、セルロース、セルロースを主鎖としたへテロ多糖、 β— 1、 3 ヽ β— 1、 2等のダルカン、のいずれか或はそれらの混合物である。なお、ヘテロ多糖 の場合のセルロース以外の構成成分は、マンノース、フラクトース、ガラクトース、キシ ロース、ァラビノース、ラムノース、グルクロン酸等の 6炭糖、 5炭糖及び有機酸等であ る。
[0042] また本発明において使用可能なバクテリアセルロースヒドロゲルは、セルロース繊維 と水とからなるゲル状物質 (板状、膜状)であるにも拘わらず、非常に高い機械的強 度を有する。かかるバクテリアセルロースの高い機械的強度は、産生菌である酢酸菌 の培養条件を適宜調整することにより、培養時にランダムに動き回るため菌細胞から 排出された繊維状のセルロースフイブリルをランダムに絡み合わせることにより達成す ることができる。また本発明にお 、て使用可能なバクテリアセルロースヒドロゲルはそ の高い機械的強度にも拘わらず、バクテリアセルロース中に含まれる固体含分は 0. 5〜1. 0質量%と極めて低いことを特徴とする。
[0043] 本発明において使用可能なバクテリアセルロースヒドロゲルは、いわゆるセルロース 生産菌であれば特に限定されない。具体的には、 BPR2001株に代表されるァセト パクタ^ _ ·キシリナム ·サブスピーシーズ ·シュクロフアーメンタンス (Acetobacter xvlinu m subsp. sucrofermentans 、 /セ卜ノ クタ ~~ , arンリナム(Acetobacter xylinum ATC C23768、ァセトバクタ一'キシリナム ATCC23769、ァセトバクタ一'パスッリアヌス( A. pasteurianus ) ATCC10245、ァセトパクターキシリナム(IFO NO 13772)、ァセト バクタ一 ·キシリナム ATCC14851、ァセトバクタ一'キシリナム ATCC11142及びァ セトバクタ一'キシリナム ATCC10821等の酢酸菌(ァセトバクター属)、その他に、ァ グロバクテリウム属、リゾピウム属、サルシナ属、シユードモナス属、ァクロモパクター 属、アルカリゲネス属、ァェロバクター属、ァゾトパクター属及びズーグレア属並びに それらを NTG (ニトロソグァ-ジン)等を用いる公知の方法によって変異処理すること により創製される各種変異株である。有利にはァセトパクターキシリナム(IFO NO 13 772)である。さらに好ましくはァセトパクター ·キシリナム(IFO NO 13772)の変異株で ある。
[0044] また本発明で使用可能なバクテリアセルロースヒドロゲルの形状にっ 、ても特に制 限はない。培養条件、培養装置等適宜選択することにより、好まし形状 (柱状、板状、 膜状等の場合には、縦、横、高さ、厚み。円盤状の場合には半径、厚み等)に自由に 産性させることができる。また、得られたバクテリアセルロースヒドロゲルはそのまま好 ましい形状に切りとることも可能である。具体的には、板状、柱状、膜状、円盤状、リボ ン状、柱状、線状等が挙げられる。
[0045] また本発明で使用可能なバクテリアセルロースヒドロゲルは通常公知の保存方法に より長期間保存することができる。必要な場合、保存安定剤を添加することもできる。
[0046] 本発明によるバクテリアセルロースヒドロゲルの水分と置換される非水溶媒は、下で 説明するリチウム塩を溶解させ、かつ形状を破壊することなくバクテリアセルロースヒド 口ゲルの水分と完全に置換され得るものであればよく特には限定されない。具体的に は、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールジェチルエー テル、ポリエチレングリコールジメタタリレート、ポリエチレングリコールジアタリレート、 ポリプロピレングリコールジメタタリレートおよびポリプロピレングリコールジアタリレート 力 なる群より選択される 1以上、若しくはそれらの混合物が挙げられる。またリチウム 電池に使用する場合、リチウム Zリチウムイオンの電気化学変化に安定に耐える溶 媒が好ましぐこの目的のために特にポリエチレングリコールジメチルエーテルが好ま しい。
[0047] さらに本発明により非水溶媒と共に使用されるリチウム化合物は、かかる非水溶媒 に十分に溶解し、かつ安定に存在するものであれば特に制限はない。具体的には、 過塩素酸リチウム (LiCIO ) ,四フッ化ホウ酸リチウム (LiBF )、六フッ化リン酸リチウ
4 4
ム(LiPF )、三フッ化メタンスルホン酸リチウム(LiCF SO )およびリチウムビストリフ
6 3 3
ルォロメタンスルホ二ルイミド (LiN (CF SO ) )力もなる群より選択される一種以上を
3 2 2
使用することが好ましい。リチウム電池に使用する場合、リチウム Zリチウムイオンの 電気化学変化に安定に耐えるリチウム化合物が好ましぐこの目的のために特にリチ ゥムビストリフルォロメタンスルホ-ルイミドが好ましい。
[0048] さらにリチウムイオンの含有量についても特に制限はなぐ本発明に力かるバタテリ ァセルロース有機ゲルを利用する目的に適した濃度にすることが可能である。具体 的には EO単位に対して 0〜20モル%の範囲が可能であり、リチウムイオン電池のリ チウムイオン伝導体として使用する場合には、 5〜6モル%の範囲が可能である。 [0049] 本発明に力かるバクテリアセルロース有機ゲルは、固形分が極めて低いにも拘わら ず極めて高!ヽ機械的強度を有することを特徴とする。有機ゲルの機械的強度を評価 する種々の測定方法が使用可能である。また、バクテリアセルロース有機ゲルはその まま好ましい形状に切りとることも可能である。具体的には、板状、柱状、膜状、円盤 状、リボン状、柱状、線状等が挙げられる。
[0050] 本発明にカゝかるバクテリアセルロース有機ゲルは、リチウムイオンを含有するもので あり、そのイオン伝導性は種々の測定方法で評価することができる。
[0051] 本発明にカゝかるリチウムイオンを含有するバクテリアセルロース有機ゲルのリチウム イオン伝導性は非水有機溶媒の種類、含有リチウムイオンの種類と濃度、温度、若し くは形状等に依存する。
[0052] 本発明に力かる製造方法は、バクテリアセルロースヒドロゲルの水分を、リチウム化 合物を含有する非水溶媒に完全に置換することを特徴とする。従ってバクテリアセル ロースヒドロゲル中の水分子を、ゲルの形状、性質を大きく損なうことなく非水溶媒分 子と置換することができる方法であれば特に制限はな 、。具体的には非水溶媒中に ノ クテリアセルロースヒドロゲルを浸漬させることにより置換することが可能である。さら に置換をより迅速に、また完全にするために、浸漬を減圧条件下で行うことも可能で ある。さらに適当な加温条件下で行うことも可能である。より具体的には、非水溶媒中 にバクテリアセルロースヒドロゲルを浸漬させ、減圧かつ加熱条件下に一定期間放置 し、引き続き昇温させ更に減圧下で一定期間放置することが好ましい。ここで第一段 階目の加熱温度及び放置時間は、 30〜90°C及び 12〜36時間、有利には 50〜70 °C及び 20〜30時間、特に有利には 60°C及び 24時間である。また第二段階目の加 熱温度及び放置時間は、 100〜160°C及び 12〜36時間、有利には 120〜140°C 及び 20〜30時間、特に有利には 130°C及び 24時間である。
[0053] 本発明にかかるリチウムイオン電池は、陽極及び陰極と、その間に設けられた本発 明にかかるリチウムイオン導電性材料を含むことを特徴とする。ここで、本発明により 使用される陽極および陰極材料は特に制限されず、通常公知のリチウムイオン電池 で使用される材料であればよい。特に陽極材料としては LiMnO、 LiCoOまたは Li
2 2
NiOである。また本発明により使用される陰極材料としてはリチウムイオンを吸蔵 ·放 出できる炭素材料である。本発明に力かるリチウムイオン電池のリチウムイオン伝導 体の形状についても特に制限はなぐ板状、膜状、リボン状等の種々の形状を適宜 選択することが可能である。
[0054] 本発明に力かるバクテリアセルロース複合材料は、バクテリアセルロース繊維中に 種々の無機材料及び Z又は有機材料を取り込ませた構造であることを特徴とする。 ここでバクテリアセルロースには水分を含むヒドロゲル、水分を一部含むもの、また水 分が除かれた乾燥したものを含む。
[0055] 取り込まれる無機材料及び Z又は有機材料の、種類、形状、含有量につ!ヽては特 に制限はない。複合材料に望まれる物性を付与するための好ましい無機材料及び Z又は有機材料の種類を選択することができる。具体的にはシリカゲル、シラスバル ーン、カーボンナノチューブ等の無機材料、又はポリビニルアルコール、ヒドロキシプ 口ピルセルロース等の有機材料が挙げられる。また形状 (又はサイズ)についても球 状、針状、棒状、板状、または無定型等種々の形状の材料が取り込まれる。特に本 発明の複合体にはナノサイズの材料が取り込まれる。また含有量についても特に制 限はなぐ複合材料の使用目的に合致するように適宜選択することができる。通常バ クテリアセルロース複合材料中の無機材料及び/又は有機材料の含有量は、 1〜2 5重量%の範囲である。
[0056] さらに、本発明に力かる複合体の構造は、従来知られているような単にセルロース 材料と無機材料及び Z又は有機材料を混合したものではなぐ無機材料及び Z又 は有機材料がセルロース繊維中にほぼ均一に分散した状態で取り込まれて 、る特 徴的な構造を有する。かかる構造は、例えば電子顕微鏡を用いることにより容易に観 察することができる。
[0057] また本発明にかかる複合体には、以下説明する培養方法で得られるバクテリアセル ロースヒドロゲルをさらに種々の処理をして得られる物も含まれる。かかる処理は、具 体的には脱水乾燥処理、圧縮変形処理、脱水圧縮乾燥処理、成形処理、成形処理 後の脱水、乾燥、圧縮変形、脱水圧縮乾燥処理等が挙げられる。かかる処理をおこ なうことにより、例えばバクテリアセルロースヒドロゲルを乾燥薄片化して紙状、板状、 リボン状に形状変形することができる。また適当な型を用いて圧縮脱水成形させるこ とにより、望ましい立体形状に成形することができる。力かる成形された複合体は、ス ピー力用コーン等の音響材、皿、コップ等の食器類、医療用具用材料、玩具文具用 材、建築用材、衣類用材、車や家屋の内装用材等に好ましく使用できる。また生分 解性にぉ 、ても非常に優れており、環境適合性に優れた材料である。
[0058] 本発明の複合体の有する物性は、従来公知の種々の物性測定方法、装置を用い て評価することができる。またヒドロゲルの状態、乾燥された状態のいずれについても 従来公知の種々の物性測定方法、装置を用いて評価することができる。さらに上で 説明した処理、成形された複合体についても種々の物性測定方法、装置を用いて評 価することができる。
具体的には機械的強度特性は動的粘弾性測定、引張試験により、さらに熱力学的 特性については熱重量測定により評価することができる。
[0059] 本発明にかかる製造方法は、バクテリアセルロース産生菌を無機材料及び/又は 有機材料が添加された培養培地中で特定の培養条件下で培養することで、無機材 料及び Z又は有機材料を取り込んだバクテリアセルロースヒドロゲルを得ることが可 能となる方法である。
[0060] 本発明で使用可能なバクテリアセルロース産生菌は、培地中においてセルロースを 生産できるものであれば特に限定されるものではなぐ例えばァセトパクター属、ダル コノパクター属、ァグロバクテリウム属、シユードモナス属等に属する細菌を挙げること ができる。これらのなかでもァセトパクター属の細菌が好ましぐァセトパクター'キシリ ナム(Acetobacter xylinum)、有利にはァセトバクタ一'キシリナム(IFO NO 13772)が 特に好ましい。さらに好ましくはァセトバタター ·キシリナム(IFO NO 13772)の変異株 である。具体的には独立行政法人産業技術総合研究所に寄託された寄託番号の変 異株の使用が好ましい。
[0061] 本発明で使用可能な培地成分は、炭素源、窒素源、無機塩類、その他必要に応じ てアミノ酸、ビタミン等の有機微量栄養素を含有する培地を用いればよぐ炭素源とし て、グルコース、マン-トール、スクロース、マルトース、澱粉加水分解物、糖蜜、エタ ノール、酢酸、クェン酸が使用され、窒素源として、硫酸アンモ-ゥム、塩ィ匕アンモ- ゥム、リン酸アンモ-ゥム等のアンモ-ゥム塩、硝酸塩、尿素、ポリペプトンが使用され 、無機塩類として、リン酸塩、カルシウム塩、鉄塩、マンガン塩が使用され、有機微量 栄養素として、アミノ酸、ビタミン、脂肪酸、核酸、カザミノ酸、イーストエキストラタト、 大豆蛋白加水分解物が使用される。好ましくはグルコース、ポリペプトン、イーストエタ ストラタト、マン-トールである。
[0062] 無機材料及び,又は有機材料は培養の任意の時点で添加してよ!ヽが、培養を開 始する前に添加しておくことが好ましい。本発明の培養条件は、 pHは 5〜9、温度は 10〜40°C、特に好ましくは 25〜30°Cに制御しつつ 1〜15日間、好ましくは 1〜3日 間程度が良い。本発明で使用可能な培養形態は、静置培養、通気攪拌培養、振盪 培養、振動培養、エアリフト型の培養などがあり、本発明は特に限定するものではな いが、静置培養が好ましい。培養容器の形状についても特に制限はなぐ望む形状 でバクテリアセルロースヒドロゲルが生成するように選択することができる。
[0063] (バクテリアセルロースエア口ゲル)
また、本発明に力かるバクテリアセルロースエア口ゲルは、バクテリアセルロースヒド 口ゲルを乾燥して得られる新規なエア口ゲルである。構造は電子顕微鏡により容易に 観察できる。図 5に一例を示した。この写真から、エア口ゲル内部は、数十 nmの極め て細 、セルロースフイブリルが 3次元に高度に分岐した構造をもって 、ることが分かる 。乾燥の方法は特に制限はないが、形状を大きく損なわずに脱水乾燥し得る手段で あればよい。例えば超臨界溶媒メタノール、エタノール、イソプロパノール、イソブタノ ール、による方法が好ましい。具体的にはエタノールを用いる超臨界乾燥が挙げられ る。この場合、圧力が 6.38〜llMPa、温度が 243〜300°Cの範囲が好ましい。
[0064] 得られたエア口ゲルの形状はほとんど変化しな 、。従って密度は非常に小さ 、。約
6mgZlの程度である。本発明に力かるバクテリアセルロースエア口ゲルは、白色やや 透明である。また種々の材質の表面に付着する傾向がある。ガラス、金属、プラスチ ック、皮膚等に容易に付着する。この付着は静電気に基づくものではない。また残量 表面水分によるものでもな 、。またナイフ等の鋭利な刃物で容易に切断することがで きる。
[0065] 本発明に力かるバクテリアセルロースエア口ゲルは水、その他の溶媒に漬けた場合 その溶媒を容易に吸い込むことができる。溶媒には水の他、極性有機溶媒、無極性 有機溶媒が含まれる。具体的には、水、トルエン、ベンゼン、キシレン、ジェチルエー テル、酢酸ェチル、アセトンメチルェチルケトン、メタノール、エタノール、イソプロパノ ール、イソブタノール、ポリエチレングリコールジメチルエーテル(Mw250)ポリエチレ ングリコール (Mw600)、ジメチルスルホキシド、ジメチルァセトアミド、ジメチルホルムァ ミド、 n-へキサン、テトラヒドロフラン、シリコン油が挙げられる。当該溶媒を含んだオル ガノゲルはその形状を維持する。さらにオルガノゲルを溶媒カゝら持ち上げると重力に 逆らってゲル内にかなり保持される傾向がある。本発明に力かるバクテリアセルロース エア口ゲルは水、その他の溶媒に漬けた場合その溶媒に同時に存在させて種々の 塩を同時に吸い込むことができる。例えば、リチウムイオン導電性材料を得る目的で は、溶媒としてポリエチレングリコールジメチルエーテル、ポリエチレングリコールジェ チルエーテル、ポリエチレングリコールジメタタリレート、ポリエチレングリコールジァク リレート、ポリプロピレングリコールジメタタリレートおよびポリプロピレングリコールジァ タリレートからなる群より選択される 1以上、若しくはそれらの混合物が挙げられる(ま たリチウム電池に使用する場合、リチウム Zリチウムイオンの電気化学変化に安定に 耐える溶媒が好ましぐこの目的のために特にポリエチレングリコールジメチルエーテ ルが好ましい)。またリチウム塩としては具体的には、過塩素酸リチウム (LiCIO ) ,四
4 フッ化ホウ酸リチウム(LiBF )、六フッ化リン酸リチウム(LiPF )、三フッ化メタンスノレ
4 6
ホン酸リチウム(LiCF SO )およびリチウムビストリフルォロメタンスルホ二ルイミド(Li
3 3
N (CF SO ) )からなる群より選択される一種以上を使用することが好ましい(リチウ
3 2 2
ム電池に使用する場合、リチウム Zリチウムイオンの電気化学変化に安定に耐えるリ チウム化合物が好ましぐこの目的のために特にリチウムビストリフルォロメタンスルホ 二ルイミドが好ましい)。
実施例
[0066] 以下では、本発明を実施例により詳細に説明する。なお、本発明は実施例に限定 されるものではない。
[0067] (実施例 1)バクテリアセルロースの調製:
1.寒天培地の製造
グルコース。. 5g、ポリペプトン 0. 5g、硫酸マグネシウム 0. lg、イーストエタストラタ ト 0. 5g、 0. 5gマン-トールを純粋 100mlに溶解させ、該溶液にァガー 2gを添カロし 加熱溶解させた。これを試験管に 8mlずつ取り分けウレタン培養栓をする。更に該栓 をアルミ箔でしつ力り覆う。オートクレーブで 120°C、 9分間加熱滅菌を行った。滅菌 した溶液を一晩斜めにして放置し、生成したゲル状物を斜面培地とした。
[0068] 2.培地への植菌
前記斜面培地へァセトパクターキシリナム(FERM P— 20332)を植菌し、 30°C で培養を行った。
[0069] 3.培養液の調製
グルコース 15g、ポリペプトン 2. 5g、硫酸マグネシウム 0. 5g、イーストエタストラクト 2. 5g、マン-卜ール 2. 5gを純粋 500mlに溶解させォー卜クレーブで 120。Cで 9分間 加熱滅菌を行った。
[0070] 4.母液の調製
培養液と同様の溶液を作成し、そのうち約 5mlを試験管に添加し、斜面培地から菌 を洗い取った。該液を再び培養液中に戻し、菌の活性ィ匕のために 30°Cで 3日間放 置し、これを母液とした。
[0071] 5.培養
母液と培養液とを 1 : 1の割合で混合し、 0. 4質量%となるようにエタノールを加え、 深底シャーレに展開した。これを 30°Cで 25日間静置培養しバクテリアセルロースゲ ルを得た。
[0072] 6.バクテリアセルロースゲルの漂白
生成したゲルを流水で十分に洗浄し、 1質量%の水酸ィ匕ナトリウム水溶液に 24時 間浸し、細菌体等の不純物を溶解除去した。次いで 0. 5質量%の次亜塩素酸ナトリ ゥム水溶液に 12時間浸し漂白を行った後に、流水で十分に洗浄し、これをバクテリア セルロース試料とした。
[0073] (実施例 2) ァセトパクターキシリナムの変異株
ァセトパクターキシリナム (IF013772)を実施例 1と同様の方法にて培養した。得 られたァセトパクターキシリナムは YMNU -01として独立行政法人産業技術総合 研究所に寄託した (独立行政法人産業技術総合研究所、特許生物寄託センター寄 託番号 FERM P— 20332、国際寄託番号 FERM BP— 10357)であることを特 徴とする。図 1に示されるように、得られたァセトパクターキシリナムは、極めて厚いゲ ルを生成することが分力つた。
[0074] (実施例 3)バクテリアセルロースゲル電解質の製造
1.リチウムイオン電解液の調製
リチウムビストリフルォロメタンスルホ-ルイミド 78. 50gをポリエチレングリコールジメ チルエーテル 200gに溶解させて電解液とした。
[0075] 2.ゲル電解質の調製
セパラブルフラスコに調製した前記の電解液にバクテリアセルロース試料 118gを浸 漬させ 60°Cで減圧下に 24時間放置し分散媒混合を行った。次いで段階的に昇温さ せ、最終的に 130°Cで減圧下に 24時間放置し分散媒交換を行いゲル電解質とした
[0076] (実施例 4)ゲル電解質のリチウムイオン伝導性の測定
1.インピーダンス柳 j定
インピーダンス測定装置(HP社製、 PRECISION LCR METER 4284A型)を用い印 加電圧 10mV、測定周波数 20Hz〜: LMHz、 30°Cヘリウム雰囲気下、直径 23. 5m mの銅板で試料を挟みインピーダンスを測定した。測定した試料は直径 23. 5mm, 厚さ 3. 29mmの円筒形であった。得られたナイキストプロットを図 2に示す。これによ り該ゲル電解質のイオン伝導率は 9. 78xlO_3[SZcm]であった。
[0077] (実施例 5)リチウムイオン電池の作成
1.陽極の調製
5質量%の硫酸マンガン (II)水溶液を調製した。正極を炭素棒、負極を銅板として 直流電圧 3Vで電気分解を行い酸化マンガン電極を調製した。
[0078] 2.陰極の調製
グローブボックス内、窒素雰囲気下で、 0. 75mm厚のリチウムリボンを 20mm X 10 mmに切断して陰極とした。
[0079] 3.電池の作成及び電圧の測定
厚さ 5mmのバクテリアセルロース試料を 20mm X 20mmに切断し、陽極と陰極の 間に挟みリチウム電池を作成した。該電池の電圧をテスター(DIGITAL MLTMETER
CD721型)で複数回測定した結果、平均値 3. 4Vの電圧が確認された。
[0080] (実施例 6)バクテリアセルロースヒドロゲルを利用した複合材料の製造
ここで寒天培地を次のように製造した。グルコース 0. 5g、ポリペプトン 0. 5g、硫酸 マグネシウム 0. lg、イーストエタストラクト 0. 5g、 0. 5gマン-トールを純粋 100mlに 溶解させ、該溶液にァガー 2gを添加し加熱溶解させた。これを試験管に 8mlずつ取 り分けウレタン培養栓をする。更に該栓をアルミ箔でしつ力り覆う。オートクレープで 1
20°C、 9分間加熱滅菌を行った。滅菌した溶液を一晩斜めにして放置し、生成した ゲル状物を斜面培地とした。
[0081] また前記斜面培地へァセトパクター'キシリナムを植菌し、 30°Cで培養を行った。
[0082] また培養液を次のように調製した。グルコース 15g、ポリペプトン 2. 5g、イーストエタ ストラクト 2. 5g、マン-トール 2. 5gを純粋 500mlに溶解させオートクレーブで 120°C で 9分間加熱滅菌を行った。
[0083] さらに、母液を次のように調製した。培養液と同様の溶液を作成し、そのうち約 5ml を試験管に添加し、斜面培地力も菌を洗い取った。該液を再び培養液中に戻し、菌 の活性ィ匕のために 30°Cで 3日間放置し、これを母液とした。
[0084] (実施例 7)コロイダルシリカを取り込んだバクテリアセルロースの製造方法
1.コロイダルシリカ(日産化学工業株式会社製スノーテックス 0、スノーテックス S、 スノーテックス 20)存在下でのバクテリアセルロース産生菌の培養
培養液 80ml、母液 100ml、コロイダルシリカ 20ml、母液を 100mlとし培養液を 90 ml、コロイダルシリカ 10ml及び、培養液 95コロイダルシリカ 5mlを混合し深底シヤー レに展開後 25日間培養を行った。
[0085] 2.コロイダルシリカバクテリアセルロースゲルの漂白
25日後に、生成したゲルを流水で十分に洗浄し、次いで 0. 5質量%の次亜塩素 酸ナトリウム水溶液に 12時間浸し漂白を行った後に、流水で十分に洗浄し、これをコ ロイダルシリカバクテリアセルロース試料とした。
[0086] 3.コロイダルシリカバクテリアセルロース試料の圧縮フィルムの製造
コロイダルシリカバクテリアセルロース試料をヒートプレスで 120°C、 l〜2MPaで圧 縮し、フィルムとした。
[0087] 4.コロイダルシリカバクテリアセルロース試料中のシリカの存在の測定
コロイダルシリカバクテリアセルロース試料の乾燥フィルムを約 lOOmg秤量し、 900 °Cの電気炉で 3時間加熱し、灰分の質量から無機成分の含有量を見積もった。結果 を図 3に示す。これによりシリカの存在が示唆される。
[0088] 5.引張試験
結果を図 4に示す。この図からコロイダルシリカを含有しないバクテリアセルロースよ り破断強度が低下したことが分かる。
[0089] 6. DMA試験
結果を図 5に示す。この図からコロイダルシリカを含有しないバクテリアセルロースよ り貯蔵弾性率が向上したことが分かる。
[0090] (実施例 8)シラスバルーンを取り込んだバクテリアセルロースの製造方法
1.シラスバルーン (パブリック 'ストラテジー株式会社製)存在下でのバクテリアセル ロース産生菌の培養
培養液 100ml、母液 100ml、シラスバルーン 0. l〜2gを混合し深底シャーレに展 開後 25日間培養を行った。
[0091] 2.シラスバルーンバクテリアセルロースゲルの漂白
25日後に、生成したゲルを流水で十分に洗浄し、次いで 0. 5質量%の次亜塩素 酸ナトリウム水溶液に 12時間浸し漂白を行った後に、流水で十分に洗浄し、これをシ ラスバルーンバクテリアセルロース試料とした。
[0092] 3.シラスバルーンバクテリアセルロース試料の圧縮フィルムの製造
シラスバルーンバクテリアセルロース試料をヒートプレスで 120°C、 l〜2MPaで圧 縮し、フィルムとした。図 6は、シラスバルーンバクテリアセルロースの電子顕微鏡写 真であり、シラスバルーン (数/ z m程度の球状)の表面、及び周囲の空間にバクテリア セルロースのフィブリルが生成していることが分力る。
[0093] 4.シラスバルーンバクテリアセルロース試料中のシラスバルーンの存在の測定 シラスバルーンバクテリアセルロース試料の乾燥フィルムを約 lOOmg秤量し、 900 °Cの電気炉で 3時間加熱し、灰分の質量から無機成分の含有量を見積もった。結果 を図 7に示す。これによりシラスバルーンの存在が示唆される。
[0094] 5.引張試験
結果を図 8に示す。この図からシラスバルーンの充填量の増加と共にシラスバル一 ンを含有しないバクテリアセルロースより破断強度が低下したことが分かる。
[0095] 6. DMA試験
結果を図 9に示す。この図から室温以下では、シラスバルーンを含有しないバタテリ ァセルロースより貯蔵弾性率が向上し、室温以上ではシラスバルーンを含有しないバ クテリアセルロースより貯蔵弾性率が低下したことが分かる。また、 tan δピークがシラ スバルーン充填量の増加と共にブロードィ匕し、高温側にシフトした。これは、シラノー ル基の ΟΗとビラノース環の ΟΗ基同士の水素結合により、ビラノース環の運動が束縛 されたと考えられる。
[0096] (実施例 9)カーボンナノチューブを取り込んだバクテリアセルロースの製造方法
1.カーボンナノチューブ (株式会社物産ナノテク研究所製)存在下でのバクテリア セルロース産生菌の培養
培養液 100ml、母液 100ml、カーボンナノチューブ 0. 02〜: Lgを混合し深底シャ ーレに展開後 25日間培養を行った。
[0097] 2.カーボンナノチューブバクテリアセルロースゲルの漂白
25日後に、生成したゲルを流水で十分に洗浄し、次いで 0. 5質量%の次亜塩素 酸ナトリウム水溶液に 12時間浸し漂白を行った後に、流水で十分に洗浄し、これを力 一ボンナノチューブバクテリアセルロース試料とした。
[0098] 3.カーボンナノチューブバクテリアセルロース試料の圧縮フィルムの製造
カーボンナノチューブバクテリアセルロース試料をヒートプレスで 120°C、 l〜2MPa で圧縮し、フィルムとした。図 10は、カーボンナノチューブバクテリアセルロースの電 子顕微鏡写真であり、カーボンナノチューブ (数 nm程度の球状)とバクテリアセル口 一スのフイブリルが複雑に絡み合う状態であることが分かる。
[0099] 4.カーボンナノチューブバクテリアセノレロース試料中のカーボンナノチューブの存 在の測定
カーボンナノチューブバクテリアセルロース試料の乾燥フィルムを約 lOOmg秤量し 、 900°Cの電気炉で 3時間加熱し、灰分の質量力 無機成分の含有量を見積もった 。結果を図 11に示す。これによりカーボンナノチューブの存在が示唆される。
[0100] 5.引張試験
結果を図 12に示す。この図からカーボンナノチューブを含有しないバクテリアセル ロースより破断強度、歪み共に向上したことが分力る。
[0101] 6. DMA試験
結果を図 13に示す。この図から、カーボンナノチューブを含有しないバクテリアセ ルロースより貯蔵弾性率が向上し、耐熱性も向上したことが分かる。
[0102] (実施例 10)ポリビニルアルコールを取り込んだバクテリアセルロースの製造方法
1.ポリビュルアルコール(SCIENTIFIC POLYMER PRODUCTS, INC製) 存在下でのバクテリアセルロース産生菌の培養
培養液 100ml、母液 100ml、ポリビュルアルコール 0. l〜4gを混合し深底シヤー レに展開後 25日間培養を行った。
[0103] 2.ポリビュルアルコールバクテリアセルロースゲルの漂白
25日後に、生成したゲルを流水で十分に洗浄し、次いで 0. 5質量%の次亜塩素 酸ナトリウム水溶液に 12時間浸し漂白を行った後に、流水で十分に洗浄し、これをポ リビュルアルコールバクテリアセルロース試料とした。
[0104] 3.ポリビュルアルコールバクテリアセルロース試料の圧縮フィルムの製造
ポリビュルアルコールバクテリアセルロース試料をヒートプレスで 120°C、 l〜2MPa で圧縮し、フィルムとした。
[0105] 5.引張試験
結果を図 14に示す。この図からポリビュルアルコールを含有しないバクテリアセル ロースより破断強度が低下したことが分力る。
[0106] 6. DM A試験
結果を図 15に示す。この図から、ポリビュルアルコールを含有しないバクテリアセル ロースより貯蔵弾性率が低下したことが分かる。
[0107] (実施例 11)ヒドロキシプロピルセルロースを取り込んだバクテリアセルロースの製造 方法 1.ヒドロキシプロピルセルロース(日本曹達製)存在下でのバクテリアセルロース産 生菌の培養
培養液 100ml、母液 100ml、ヒドロキシプロピルセルロース 0. l〜4gを混合し深底 シャーレに展開後 25日間培養を行った。
[0108] 2.ヒドロキシプロピルセルロースバクテリアセルロースゲルの漂白
25日後に、生成したゲルを流水で十分に洗浄し、次いで 0. 5質量%の次亜塩素 酸ナトリウム水溶液に 12時間浸し漂白を行った後に、流水で十分に洗浄し、これをヒ ドロキシプロピルセルロースバクテリアセルロース試料とした。
[0109] 3.ヒドロキシプロピルセルロースバクテリアセルロース試料の圧縮フィルムの製造 ヒドロキシプロピルセルロースバクテリアセルロース試料をヒートプレスで 120°C、 1 〜2MPaで圧縮し、フィルムとした。
[0110] 5.引張試験
結果を図 16に示す。この図からヒドロキシプロピルセルロースを含有しないバタテリ ァセルロースより破断強度が低下したことが分かる。
[0111] 6. DMA試験
結果を図 17に示す。この図からヒドロキシプロピルセルロースを含有しないバタテリ ァセルロースより貯蔵弾性率が低下したことが分かる。
[0112] (実施例 12)バクテリアセルロースゲルの乾燥
約 20mm X 20mm X 20mm (8g)のバクテリアセノレロースゲノレを、 100ml容積のス テンレススチール製オートクレーブに入れた。エタノールを導入して、約 6. 5MPa、 約 243°Cの条件を維持した。約 3分後、圧力を常圧に戻しエタノールを除去した。得 られた乾燥バクテリアセルロースゲルは、その形状はほとんど変化せず重量は 0. 5g であった。この結果バクテリアセルロースゲルは超臨界エタノールにより形状を維持し た状態でほぼ完全に乾燥することができることが分かる。
[0113] また得られた乾燥バクテリアセルロースゲルをそのまま水中に入れ放置するとバタ テリアセルロースヒドロゲルが再生された。また得られた乾燥バクテリアセルロースゲ ルを圧縮して板状とした後、温水に入れて放置すると同様にバクテリアセルロースヒド 口ゲルが再生された。この結果は乾燥バクテリアセルロースゲルは圧縮しても水酸基 の再配列により構造の変化が起こらないことを意味する。
[0114] (実施例 13)バクテリアセルロースエア口ゲルの製造
バクテリアセルロースゲルを洗浄し、 lOmmxlOmmxlOmmの立方体に切り出し試料と した。得られた試料をエタノール中に 24時間浸漬した後エタノールを交換しさらに 24 時間浸漬した。これを 3回繰り返すことにより分散媒を水力もエタノールに交換した。 試料を 50mlのオートクレープに入れ、エタノールが超臨界状態となる条件として、圧 力 6.38MPa、温度 243°C〜300°Cで 10分間処理した。得られた乾燥バクテリアセル口 ースゲル(バクテリアエア口ゲル)の形状は lOmmxlOmmxlOmmであった。この結果は 、乾燥処理による形状変化がほとんどないことを示す。また重量は 6mgであった。こ の結果から、得られたバクテリアセルロースエア口ゲルの密度が約 6mgZcm3であり 、極めて軽い材料であることが分かる。
[0115] 図 18に得られたバクテリアセルロースエア口ゲルの断面の走査電子顕微鏡(SEM) 写真像を示す。内部空間はほぼ均一に多くの細いフィブリルがからみあつている網 目構造で満たされて ヽることが分かる。またフィブリルはナノメートルオーダーであるこ とも分かる。
[0116] また万能試験機を用い JIS K7208法で圧縮測定した圧縮強度の結果を図 19に示し た。ヒドロゲルに比較して約 2倍の強度を有することが分かる。この結果はヒドロゲル が水によって可塑ィ匕されているものと推定される。
[0117] (実施例 14)
上で得られたエア口ゲルを、室温で、 llmmHgの真空下で水と接触させることにより 水を吸収し、ヒドロゲルとなった。得られたヒドロゲルの形状及び、重量は、 lOmmxlO mmxlOmm、 lgであつ 7こ。
[0118] (実施例 15)
上で得られたエア口ゲルを、室温で、 llmmHgの真空下で次の有機溶媒と接触させ ることにより、溶媒を吸収し、オルガノゲルとなった。
溶媒:キシレン、形状 13.6mmxl4.0mmxl2.lmm、重量 2.104g
溶媒:ポリエチレンォキシド、形状 Il.9mmxl2.12mmx7.3mm、重量 1.383g
また JIS K7208法により測定した圧縮強度の結果を図 19に示した。溶媒の種類によ り強度が相違することが分かる。この結果は各種溶媒の粘度及び、極性によるものと 推定される。
[0119] (実施例 16)
上で得られたエア口ゲルを、室温で、 llmmHgの真空下、次の塩を溶解した水又は 有機溶媒と接触させることにより、塩を分散したヒドロゲル、又はオルガノゲルを得た。 溶媒(塩):ポリエチレンォキシド(LiN (CF SO ) )、形状12.1mmxll.6xll.7mm、重
3 2 2
量 2.104g
また JIS K7208法により測定した圧縮強度の結果を図 19に示した。溶媒の種類によ り強度が相違することが分かる。この結果は溶媒の粘度及び、セルロースとの相互作 用にによるものと推定される。
[0120] (実施例 17) Li+導電性を持つバクテリアセルロース PEOオルガノゲル
リチウム塩を溶解した分子量 250のポリエチレンォキシド(PEO)を減圧下でバタテリ ァセルロースエア口ゲルに加えて Li +導電性を持つバクテリアセルロース— PEOオル ガノゲルを得た。図 21に示されるように、この Li+電解質はリチウム塩 PEO溶液とほぼ 同じ Li+導電率を示した。
[0121] また図 19にバクテリアセルロースヒドロゲル、バクテリアセルロースエア口ゲル、バタ テリアセルロース PEOオルガノゲルの圧縮強度試験の結果を示した。この結果から 、ヒドロゲルはエア口ゲルよりも弱ぐオルガノゲルが最も強いことが分かる。
[0122] (実施例 18) バクテリアセルロース PEOエーテル
バクテリアセルロースエア口ゲル(10mmxl0mmxl0mm、 6mg)をキシレン 50ml中で ナトリウムメトキシド 0.027gとともに 1時間攪拌して反応させた。後減圧してキシレンを 除き、酸ィ匕エチレン 50gと、 8MPaで 140°C、 6時間反応させた。得られた粗反応生成 物をエタノール、水、次いでアセトンで繰り返し洗浄し、バクテリアセルロース PEOェ 一テルを得た。図 20には、得られた PEO側鎖を有するエーテルの赤外線吸収スぺ ク卜ルを示した。
[0123] (実施例 19) バクテリアセルロース PEOエーテル Liイオン伝導膜
上の実施例で得られたバクテリアセルロース PEOエーテルを。その後、リチウムトリフ ルォロメタンスルホンイミド(LiTFSI)のエタノール溶液に、 24時間浸した。後、 120°Cに て減圧乾燥してバクテリアセルロース PEOエーテル Liイオン伝導膜を得た。
[0124] 図 21に、得られたイオン電動膜のリチウムイオン伝導度測定結果を示した。
[0125] (実施例 20) バクテリアセルロース PEOエステル
ポリ(エチレングリコール)メチルエーテル(Mn350) (PEG— 350) 8.2gを、アセトン 1 50ml中で、ジヨーンズ試薬 (57.2g)と 48時間攪拌して反応させ、末端の水酸基を酸 化した。イソプロピルアルコールを 20mlカ卩えて反応を停止させた。後クロ口ホルムに て抽出し、水で洗浄し、乾燥して末端カルボン酸 (PEO-350モノカルボン酸)を得た。
[0126] バクテリアセルロースヒドロゲル(20mmx20mmxl0mm、 4g)を、 200mlの N、 N,—ジ メチルァセトアミド(DMAc)中で 24時間保持してこれを 5回繰り返し水と、 DMAcとを交 換した。さらに上の PEO— 350モノカルボン酸と、 0.2gの 4 [N、 N,一ジメチルァミノ ]ピリジン(DMAP)と、 3.3gの N、 N,ージシクロへキシルカルボジイミド(DCC)との存 在下、室温にて 4日間攪拌して脱水縮合反応させた。得られた粗反応生成物をエタ ノール、水、次いでアセトンで洗浄し、バクテリアセルロース PEOエステルを得た。図 2 2には、得られた PEO側鎖を有するエステルの赤外線吸収スペクトルを示した。
[0127] (実施例 21) バクテリアセルロース PEOエステル Liイオン伝導膜
上の実施例で得られたバクテリアセルロース PEOエステルを、リチウムトリフルォロメ タンスルホンイミド (LiTFSI)のエタノール溶液に、 48時間浸した。後、室温にてにて減 圧乾燥してバクテリアセルロース PEOエステル Liイオン伝導膜を得た。
[0128] 図 21に、得られたイオン電動膜のリチウムイオン伝導度測定結果を示した。
[0129] (実施例 22) IPN構造を有する有機 無機複合エア口ゲル
バクテリアセルロースヒドロゲル(10mmxl0mmxl0mm、 lg)に、 500ml水中でテトラエ トキシシラン 17.3gを加え、その場重合を行った。得られたゲルをエタノール超臨界乾 燥させた。走査型電子顕微鏡観察の結果、有機 無機複合エア口ゲルは IPN構造を 有することが分かる。
[0130] (実施例 23) バクテリアセルロースエア口ゲル脱水物
バクテリアセルロースエア口ゲル(30mmx20mmxl5mm、 52mg)を、丸底フラスコに入 れ、真空ポンプを用いて減圧し、 O.lmmHgにて 350°C、 4時間加熱脱水を行い、また 黒色スポンジ状のバクテリアセルロースエア口ゲル脱水物として 1.7mg得た。 [0131] (実施例 24)陽極の作成およびリチウム電池の作成
LiMn 0粉末 4g、グラフアイト 0.75g、 5wt%ポリフッ化ビ-リデン /N-メチルピロリドン
2 4
溶液 0.5gを乳鉢に入れ、混練した。テフロンシート上に混練物をシート上に広げ、 10 0°C乾燥機で 1時間乾燥させた。これにステンレスメッシュをかぶせ、常温で 3t/cm2で プレスし、圧着を行い、陽極とした。この陽極とリチウム箔で BCゲル電解質をはさみ、 電池とした。この電池に 6Vの電圧をかけ、 30分間充電を行った。
この電池の電圧は 3. 4Vであった。
産業上の利用可能性
[0132] 本発明の材料は新規な材料を用いたリチウムイオン伝導体材料であり、また容易に リチウムイオン電池を構築することができるものである。従って、リチウムイオン伝導性 材料やリチウムイオン電池を利用する種々の技術分野、例えば家電、電子機器、自 動車、建築、光学機器、航空宇宙関連機器その他あらゆる分野の市場において極め て大きな利用が可能である。
[0133] 本発明に力かるバクテリアセルロース複合材料は、バクテリアセルロース中に無機 材料及び Z又は有機材料が取り込まれた構造を有する。それゆえにかかる材料は、 優れた成形性、機械的、電気的特性、生分解性を奏する。カゝかる新規な材料によりも たらされる効果は従来知られてきた材料の有する物性力 は全く予想できない非常 に優れた性質であり、従来の複合材料において強く希望されてきた未解決課題の多 くを一掃するものである。種々の技術分野、例えば医薬品、医療用製品、医療装置、 家電、電子機器、自動車、建築、光学機器、航空宇宙関連機器その他あらゆる分野 の巿場にお 、て、新規な物性を有する本発明に力かる材料は極めて大きな要求が 認められその産業上に利用可能性は極めて高 、。
[0134] 本発明に力かるバクテリアセルロースエア口ゲルは、優れたフィルター性能、吸水倍 率、吸水速度及び液通過性を有し、吸水後のゲルの経時安定性及びゲルの強度に 優れている。また該材料は、有機溶媒の吸収能力をも有する。従って、力かる材料は 、生理用ナプキン、紙おむつ、成人用シーツ、タンポン、及び衛生綿等の衛生材料 に有用である。また、上記材料は、長時間使用してもゲル構造が劣化せず、さらには 弾力性に富むので、保水剤、止水剤等の園芸、土壌建築用資材としても使用可能で ある。更に、上記高吸水性ポリマーは、形状、弾力性、吸水性、及び通気性の重要 視される化粧品への応用も期待される。
紙面による写し(注意 電子データが原本となります)
[この用紙は、国際出顔の一部を構成せず、国際出顔の用紙の枚数に算入しない]
0-1 様式 PCT/RO/134 (SAFE)
この寄託された微生物又はその他の生物
材料に関する表示(PCT規則 13の 2)は、
0-1-1 右記によって作成された。
0-2 国際出願番号
0-3 出顏人又は代理人の書類記号
PCT994
1 下記の表示は発明の詳铀な説明中に記載
された微生物又は生物材料に関連している h oo
1-1 段落番号 0028, 0073
1-3 寄託の表示
1-3-1 寄託機関の名称 I POD (独)産業技術総合研究所 特許生物寄託センタ 一 (I P0D)
1-3-2 寄託機関のあて名 曰本国 〒305- 8566 茨城県つくば市東 1丁目 1番地 1
中央第 6
1-3-3 寄託の日付 2004年 12月 1 7日 (17. 1 2. 2004)
1-3-4 受託番号 I POD FERM BP- 10357
1-5 この表示を行うための指定国 すべての指定国 受理官庁記入欄
0-4 この用紙は国際出願とともに受理した
(はい/いいえ) ノ
0-4-1 権限のある職員 国際事務局記入欄
0-5 この用紙が国際事務局に受理された日
i I August 2005
0-5-1 権限のある職員
差替え用紙; (規則 26) r特許手 fg T e等の π g¾的承 is
RECOGNITION OF THE DEPOSIT OF MICROORGANISMS
に関するブタペスト条約」
FOR THE PURPOSES OP PATENT PROCEDURE
RECEIPT】N THE CASE OF AN ORIGINAL DEPO SIT 下記 膝寄託当; 5によって規則 7.1に従い
issued pursuant to Rule 7.1 by the INTERNATIONAL 発行する。
DEPOSITARY AUTHORITY Identifled at the bottom of this page. 原寄託についての受託証
氏名 (名称)
矢野 彰一郎 殿
あて名 T 101-8308
¾京都千代田区神田跋河台 1一 8—
Γ I .微生物の表示
(布托者が付した職刖のための表示)
YMNU-01 FER BP - 10357
II.科学的性質及び分類学上の位 «
I櫊の微生物には、次の事項を記裁した文 *が添付されていた。
] 科学的性質
B 分類学上の位 fi
in.原 *托申 ISの受托
本国 寄托当 Λは、 年 月 Sに受領した 1櫊の微生物を受托する。
IV.移管申請の受託
本国際寄托当局は、 平成 16年 12月 17 日(国内受托日)に受 !ΐした I檷の微生物を受托する,
(平成 16年 12月 17 日に ¾託された PERM P- 20332 より移管)
V. 国際 当局
独立行政法人産莱技術铯合研究所 特許生物 ¾托センター 名称 International Patent Organism Depositary Ιί ¾ίΠ πϋΐ|ϊ'¾ίί
National Institute of Advanced Industrial Science &nd Technqt¾8 ' - センター 正 ¾¾¾¾t
i !ky輸囊 あて名 日本国 茨城 iftつくば市東 1丁目 1番地 1 中央第 6 (郵便番号 305- 8566)
AIST Tsukubfl Central 6, 1-1, Hlgashl l -cnome Tsukuba-shi
Jbarakl-ken 305-8566 Japan
平成 17年 (05〉 6月 24 3

Claims

29
請求の範囲
[1] ノくクテリアセルロースヒドロゲル中の水力 リチウム化合物を含有する非水溶媒で置 換されている、リチウムイオン導電性材料。
[2] 非水溶媒が、ポリエチレングリコールジメチルェ一テル、ポリエチレングリコールジェ チルエーテル、ポリエチレングリコールジメタタリレート、ポリエチレングリコールジァク リレート、ポリプロピレングリコールジメタクリレートおよびポリプロピレングリコールジァ タリレートからなる群より選択される、請求項 1記載のリチウムイオン導電性材料。
[3] 非水溶媒が、ポリエチレングリコーノレジメチルエーテルである、請求項 2記載のリチ ゥムイオン導電性材料。
[4] リチウム化合物が、過塩素酸リチウム(LiCIO )、四フッ化ホウ酸リチウム (LiBF )、
4 4 六フッ化リン酸リチウム(LiPF;)、三フッ化メタンスルホン酸リチウム(LiCF SO )およ
6 3 3 びリチウムビストリフルォロメタンスルホ二ルイミド(LiN (CF SO ) )からなる群より選
3 2 2
択される、請求項 1から 3までのいずれ力 4項記載のリチウムイオン導電性材料。
[5] リチウム化合物が、リチウムトリフルォロメタンスルホンイミドである、請求項 4記載のリ チウムイオン導電性材料。
[6] バクテリアセルロースヒドロゲルを、リチウム化合物を含有する非水溶媒中に浸漬さ せ、減圧及び加熱下に一定期間放置し、引き続き昇温させ更に減圧下で一定期間 放置することにより分散媒交換を行う、リチウムイオン導電性材料の製造方法。
[7] 非水溶媒が、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールジェ チルエーテル、ポリエチレングリコールジメタクリレート、ポリエチレングリコールジァク リレート、ポリプロピレングリコールジメタタリレートおよびポリプロピレングリコールジァ クリレートからなる群より選択される、請求項 6記載の方法。
[8] 非水溶媒が、ポリエチレングリコールジメチルエーテルである、請求項 7記載の方法
[9] リチウム化合物が、過塩素酸リチウム(LiCIO )、四フッ化ホウ酸リチウム(LiBF )、
4 4 六フッ化リン酸リチウム(LiPF;)、三フッ化メタンスルホン酸リチウム(LiCF SO )およ
6 3 3 びリチウムビストリフルォロメタンスルホ二ルイミド(LiN (CF SO ) )力 なる群より選
3 2 2
択される、請求項 6から 8までのいずれか 1項記載の方法。
差替 用紙 (規則 26) 30
〔10] —段階目の加熱温度及び放置時間がそれぞれ 30〜90°C及び 12〜36時間であり
、かつ二段階目の加熱温度及ぴ放置時間がそれぞれ 100~160°C及び 12〜36時 間である、請求項 6から 9までの!/、ずれか 1項記載の方法。
[11] —段階目の加熱温度及び放置時間がそれぞれ 及び 24時間であり、かつ二 段階目の加熱温度及び放置時間がそれぞれ 130 及び 24時間である、請求項 10 記載の方法。
[12] 陽極、陰極及びその間に配置された請求項 1から 5までのいずれ力 項記載のリチ ゥムイオン導電性材料を含む、リチウムイオン電池。
[13] 無機材料及び Z又は有機材料を取り込ませたバクテリアセル口一ス複合材料。
[14] 無機材料及び Z又は有機材料がシリカゲル、シラスバルーン、カーボンナノチュー ブ及び/又はポリビュルアルコール、ヒドロキシプロピルセル口一スである、請求項 1
3記載の複合材料。
[15] バクテリアセルロース産生菌を、無機材料及び/又は有機材料が添加された培養 培地中で培養する、無機材料及び Z又は有機材料を取り込ませたバクテリアセル口 ース複合材料の製造方法。
[16] 培養培地において、炭素源として、グルコース、マンニトール、スクロース、マルトー ス、澱粉加水分解物、糖蜜、エタノール、酢酸、クェン酸が使用され、窒素源として、 硫酸アンモニゥム、塩化アンモニゥム、リン酸アンモニゥム等のアンモニゥム塩、硝酸 塩、尿素、ポリペプトンが使用され、無機塩類として、リン酸塩、カルシウム塩、鉄塩、 マンガン塩が使用され、有機微量栄養素として、アミノ酸、ビタミン、脂肪酸、核酸、力 ザミノ酸、イーストエキストラタト、大豆蛋白加水分解物が使用される、請求項 15記载 の製造方法。
[17] 培養培地が、グルコース、ポリペプトン、ィ一ストェクストラクト、マン-トールを含有 する、請求項 15又は 16記載の方法。
[18] ノくクテリアセルロース産生菌力 ァセトバタター属、ダルコノバクター属、ァグロパク テリゥム属、シユードモナス属等に属する細菌である、請求項 15から 17までのいずれ 力 ^項記載の方法。
[19] バクテリアセルロース産生菌が、ァセトパクターキシリナムである、請求項 15から 18
差替え用紙: (規則 26) 31
までのいずれか 1項記載の方法。
[20] 無機材料及び/又は有機材料がシリカゲル、シラスバルーン、力一ボンナノチュー ブ及び/又はポリビニルアルコール、ヒドロキシプロピルセルロースである、請求項 1 . 5から 19までのいずれ力 1項記載の製造方法。
[21] バクテリアセルロースエア口ゲル。
[22] ノくクテリアセルロースヒドロゲルを、超臨界エタノールで脱水乾燥してバクテリアセル ロースエア口ゲルを製造する方法。
[23] ノくクテリアセルロースエア口ゲルに、水又は塩を含む水を吸収させて、バクテリアセル ロースヒドロゲルを製造する方法。
[24] ノくクテリアセルロースエア口ゲルに、有機溶媒又は塩を含む溶媒を吸収させて、 Λ クテリアセルロースオルガノゲルを製造する方法。
訂正された用紙 (細 1191》
PCT/JP2005/011978 2004-08-30 2005-06-29 バクテリアセルロース有機ゲルを利用したリチウムイオン導電性材料、それを用いたリチウムイオン電池及びバクテリアセルロースエアロゲル WO2006025148A6 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006531321A JP5110462B2 (ja) 2004-08-30 2005-06-29 バクテリアセルロース有機ゲルを利用したリチウムイオン導電性材料、それを用いたリチウムイオン電池及びバクテリアセルロースエアロゲル
EP05755722A EP1798802A4 (en) 2004-08-30 2005-06-29 LITHIUMIONIC LINE MATERIAL WITH BACTERIAL CELLULOSE ORGANOGEL, LITHIUM ION BATTERY AND BACTERIAL CELLULAR EAEROGEL
US11/659,892 US20080220333A1 (en) 2004-08-30 2005-06-29 Lithium Ion Conductive Material Utilizing Bacterial Cellulose Organogel, Lithium Ion Battery Utilizing the Same and Bacterial Cellulose Aerogel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004250716 2004-08-30
JP2004-250716 2004-08-30

Publications (2)

Publication Number Publication Date
WO2006025148A1 true WO2006025148A1 (ja) 2006-03-09
WO2006025148A6 WO2006025148A6 (ja) 2006-03-09

Family

ID=

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113590A (ja) * 2006-11-02 2008-05-22 Univ Kansai アミノ脂質の製造方法
JP2008127510A (ja) * 2006-11-22 2008-06-05 Univ Nihon バクテリアセルロースと有機高分子からなる複合材料
JP2010245133A (ja) * 2009-04-01 2010-10-28 Nippon Chemicon Corp ゲル電解質及びその製造方法、このゲル電化質を用いた電気化学素子
WO2013042720A1 (ja) * 2011-09-20 2013-03-28 日産化学工業株式会社 セルロースファイバーをバインダーとして含有するリチウム二次電池電極形成用スラリー組成物及びリチウム二次電池用電極
JP2014118498A (ja) * 2012-12-17 2014-06-30 Chiba Flour Milling Co Ltd 発酵セルロース又は発酵セルロース製剤の精製方法、及び、精製発酵セルロース又は精製発酵セルロース製剤、並びに化粧料、医薬品、医薬部外品
JP2015163679A (ja) * 2005-12-02 2015-09-10 エリオット・キャピタル・インベストメンツ・ザ・サード・リミテッド 様々な医学的用途のための移植可能な微生物セルロース材料
JP2017533339A (ja) * 2014-11-06 2017-11-09 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ セルロース系機能複合材、エネルギー貯蔵装置及びその製造方法
JP2019533894A (ja) * 2016-11-09 2019-11-21 ブルー・ソリューションズ・カナダ・インコーポレイテッド 固体高分子電解質のためのリチウム塩グラフトナノ結晶セルロース
CN112624085A (zh) * 2020-12-28 2021-04-09 宿迁市美达净化科技有限公司 一种纤维素基的全碳气凝胶的制备方法
CN112930366A (zh) * 2018-06-13 2021-06-08 科罗拉多大学校务委员会(一个法人团体) 细菌纤维素凝胶、生产工艺以及使用方法
CN113782827A (zh) * 2021-09-15 2021-12-10 山东省科学院新材料研究所 一种固态电解质薄膜及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236467A (ja) * 1985-04-16 1987-02-17 Agency Of Ind Science & Technol バクテリアセルロ−ス含有高力学強度成形材料
JPS63294794A (ja) * 1987-05-26 1988-12-01 Daicel Chem Ind Ltd バクテリアセルロ−ス膜の乾燥法
JPH05292005A (ja) * 1992-04-13 1993-11-05 Ricoh Co Ltd コードレス電話機
JPH06329701A (ja) * 1993-05-17 1994-11-29 Nakano Vinegar Co Ltd 高強度微生物セルロース複合化物,その製造法及び用途
JPH10125560A (ja) * 1996-10-21 1998-05-15 Honda Motor Co Ltd 有機溶媒を電解液とするコンデンサ用セパレータおよびその製造方法
JP2000048792A (ja) * 1998-07-29 2000-02-18 Mitsubishi Paper Mills Ltd 非水電解液電池およびその製造方法
JP2000313702A (ja) * 1998-09-14 2000-11-14 Canon Inc セルロース含有複合体とその製造方法、糖類化合物とその製造方法、紙の資源化方法、古紙の再資源化方法、及び成形体とその製造方法
JP2004201552A (ja) * 2002-12-25 2004-07-22 Asahi Kasei Corp 微生物産生セルロース系物質/無機複合体およびその製造法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236467A (ja) * 1985-04-16 1987-02-17 Agency Of Ind Science & Technol バクテリアセルロ−ス含有高力学強度成形材料
JPS63294794A (ja) * 1987-05-26 1988-12-01 Daicel Chem Ind Ltd バクテリアセルロ−ス膜の乾燥法
JPH05292005A (ja) * 1992-04-13 1993-11-05 Ricoh Co Ltd コードレス電話機
JPH06329701A (ja) * 1993-05-17 1994-11-29 Nakano Vinegar Co Ltd 高強度微生物セルロース複合化物,その製造法及び用途
JPH10125560A (ja) * 1996-10-21 1998-05-15 Honda Motor Co Ltd 有機溶媒を電解液とするコンデンサ用セパレータおよびその製造方法
JP2000048792A (ja) * 1998-07-29 2000-02-18 Mitsubishi Paper Mills Ltd 非水電解液電池およびその製造方法
JP2000313702A (ja) * 1998-09-14 2000-11-14 Canon Inc セルロース含有複合体とその製造方法、糖類化合物とその製造方法、紙の資源化方法、古紙の再資源化方法、及び成形体とその製造方法
JP2004201552A (ja) * 2002-12-25 2004-07-22 Asahi Kasei Corp 微生物産生セルロース系物質/無機複合体およびその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1798802A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163679A (ja) * 2005-12-02 2015-09-10 エリオット・キャピタル・インベストメンツ・ザ・サード・リミテッド 様々な医学的用途のための移植可能な微生物セルロース材料
JP2008113590A (ja) * 2006-11-02 2008-05-22 Univ Kansai アミノ脂質の製造方法
JP2008127510A (ja) * 2006-11-22 2008-06-05 Univ Nihon バクテリアセルロースと有機高分子からなる複合材料
JP2010245133A (ja) * 2009-04-01 2010-10-28 Nippon Chemicon Corp ゲル電解質及びその製造方法、このゲル電化質を用いた電気化学素子
WO2013042720A1 (ja) * 2011-09-20 2013-03-28 日産化学工業株式会社 セルロースファイバーをバインダーとして含有するリチウム二次電池電極形成用スラリー組成物及びリチウム二次電池用電極
JPWO2013042720A1 (ja) * 2011-09-20 2015-03-26 日産化学工業株式会社 セルロースファイバーをバインダーとして含有するリチウム二次電池電極形成用スラリー組成物及びリチウム二次電池用電極
US10020513B2 (en) 2011-09-20 2018-07-10 Nissan Chemical Industries, Ltd. Slurry composition for forming lithium secondary battery electrode containing cellulose fiber as binder, and lithium secondary battery electrode
JP2014118498A (ja) * 2012-12-17 2014-06-30 Chiba Flour Milling Co Ltd 発酵セルロース又は発酵セルロース製剤の精製方法、及び、精製発酵セルロース又は精製発酵セルロース製剤、並びに化粧料、医薬品、医薬部外品
JP2017533339A (ja) * 2014-11-06 2017-11-09 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ セルロース系機能複合材、エネルギー貯蔵装置及びその製造方法
JP2019533894A (ja) * 2016-11-09 2019-11-21 ブルー・ソリューションズ・カナダ・インコーポレイテッド 固体高分子電解質のためのリチウム塩グラフトナノ結晶セルロース
JP7022759B2 (ja) 2016-11-09 2022-02-18 ブルー・ソリューションズ・カナダ・インコーポレイテッド 固体高分子電解質のためのリチウム塩グラフトナノ結晶セルロース
CN112930366A (zh) * 2018-06-13 2021-06-08 科罗拉多大学校务委员会(一个法人团体) 细菌纤维素凝胶、生产工艺以及使用方法
CN112624085A (zh) * 2020-12-28 2021-04-09 宿迁市美达净化科技有限公司 一种纤维素基的全碳气凝胶的制备方法
CN113782827A (zh) * 2021-09-15 2021-12-10 山东省科学院新材料研究所 一种固态电解质薄膜及其制备方法和应用

Also Published As

Publication number Publication date
JP5466251B2 (ja) 2014-04-09
EP1798802A4 (en) 2009-05-27
US20080220333A1 (en) 2008-09-11
JPWO2006025148A1 (ja) 2008-05-08
JP5110462B2 (ja) 2012-12-26
JP2012126912A (ja) 2012-07-05
EP1798802A1 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP5466251B2 (ja) バクテリアセルロース有機ゲルを利用したリチウムイオン導電性材料
JPWO2006025148A6 (ja) バクテリアセルロース有機ゲルを利用したリチウムイオン導電性材料、それを用いたリチウムイオン電池及びバクテリアセルロースエアロゲル
Zhu et al. In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets
CN109251342B (zh) 一种纳米纤维素/碳纳米管/聚二甲基硅氧烷导电复合膜及其制备方法
Lin et al. Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels
US20090309072A1 (en) Bacterial cellulose film and carbon nanotubes-like thin film structures developed from bacterial cellulose
Illa et al. Bacterial cellulose-derived carbon nanofibers as anode for lithium-ion batteries
Dobashi et al. Activated carbon monoliths derived from bacterial cellulose/polyacrylonitrile composite as new generation electrode materials in EDLC
Wu et al. Insights into hierarchical structure–property–application relationships of advanced bacterial cellulose materials
Ding et al. The facile and controllable synthesis of a bacterial cellulose/polyhydroxybutyrate composite by co-culturing Gluconacetobacter xylinus and Ralstonia eutropha
Annapurna et al. Microbial extracellular polysaccharide-based membrane in polymer electrolyte fuel cells
Hindatu et al. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell
Xiong et al. Recent progress of green biomass based composite materials applied in supercapacitors, sensors, and electrocatalysis
Zhao et al. A new environmentally friendly gel polymer electrolyte based on cotton-PVA composited membrane for alkaline supercapacitors with increased operating voltage
CN106905565B (zh) 一种卡拉胶-魔芋葡甘聚糖-氧化石墨烯薄膜的制备方法
Ramírez-Carmona et al. Production of bacterial cellulose hydrogel and its evaluation as a proton exchange membrane
Fatima et al. Biosynthesis and characterization of bacterial cellulose membranes presenting relevant characteristics for air/gas filtration
Wu et al. Structural-enhanced bacterial cellulose based alkaline exchange membranes for highly selective CO2 electrochemical reduction and excellent conductive performance in flexible zinc-air batteries
Prilepskii et al. Conductive bacterial cellulose: From drug delivery to flexible electronics
CN110797515A (zh) 一种制备三维介孔八硫化九钴-碳纳米纤维-硫锂硫电池正极材料的方法
Zhang et al. Preparation and properties of a chitosan–hyaluronic acid-polypyrrole conductive hydrogel catalyzed by laccase
Serra et al. Sustainable lithium-ion battery separators based on cellulose and soy protein membranes
Kanbua et al. Green synthesis of sulfonated cellulose/polyether block amide/polyethylene glycol diacrylate (SC/PEBAX/PEGDA) composite membrane by gamma radiation and sulfonation techniques for battery application
Sirajudeen et al. Composite of medium‐chain‐length polyhydroxyalkanoates‐co‐methyl acrylate and carbon nanotubes as innovative electrodes modifier in microbial fuel cell
Kiangkitiwan et al. Multilayered bacterial cellulose/reduced graphene oxide composite films for self-standing and binder-free electrode application

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531321

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005755722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005755722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11659892

Country of ref document: US