WO2006022143A1 - バランス型弾性表面波フィルタ - Google Patents

バランス型弾性表面波フィルタ Download PDF

Info

Publication number
WO2006022143A1
WO2006022143A1 PCT/JP2005/014672 JP2005014672W WO2006022143A1 WO 2006022143 A1 WO2006022143 A1 WO 2006022143A1 JP 2005014672 W JP2005014672 W JP 2005014672W WO 2006022143 A1 WO2006022143 A1 WO 2006022143A1
Authority
WO
WIPO (PCT)
Prior art keywords
idt
balanced
idts
acoustic wave
electrode fingers
Prior art date
Application number
PCT/JP2005/014672
Other languages
English (en)
French (fr)
Inventor
Yuichi Takamine
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to EP05770560.0A priority Critical patent/EP1729415B1/en
Priority to US10/595,383 priority patent/US7425882B2/en
Priority to JP2006531689A priority patent/JP4315199B2/ja
Publication of WO2006022143A1 publication Critical patent/WO2006022143A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • H03H9/0066Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel
    • H03H9/0071Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically parallel the balanced terminals being on the same side of the tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0033Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only
    • H03H9/0038Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only the balanced terminals being on the same side of the track
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14576Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger
    • H03H9/14582Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger the last fingers having a different pitch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14588Horizontally-split transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6469Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes
    • H03H9/6476Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes the tracks being electrically parallel

Definitions

  • the present invention relates to a balanced surface acoustic wave filter having balanced-unbalanced variable capacity, and more specifically, IDT has a narrow pitch electrode finger and a ratio of input / output impedance is a specific value.
  • the present invention relates to a balanced surface acoustic wave filter.
  • Patent Document 1 discloses a balanced surface acoustic wave filter shown in FIG.
  • longitudinally coupled resonator type surface acoustic wave filter sections 503 and 504 are connected to an unbalanced input terminal 502.
  • the surface wave filter units 503 and 504 respectively include first to third IDTs (interdigital transducers) 503a to 503c and 504a to 504c arranged in the surface wave propagation direction.
  • the second IDTs 503b and 504b in the center are electrically connected to the unbalanced input terminal 502.
  • the first and third IDTs 503a and 503c arranged on both sides of the IDT 503b in the surface wave propagation direction are electrically connected to the first balanced output terminal 505.
  • the first and third IDTs 504a and 504c are arranged on both sides of the center IDT 504b of the surface acoustic wave filter unit 502, and are electrically connected to the second balanced output terminal 506.
  • the input impedance on the unbalanced input terminal 502 side is 50 ⁇
  • the characteristic impedance on the first and second balanced output terminals 505 and 506 side is 150 ⁇ . ⁇ .
  • the input / output impedance ratio was 1: 3. This is because the antenna is connected to the input end of the non-type surface acoustic wave filter 501, which is normally 50 ⁇ , whereas the input impedance of the IC connected to the output side is 150 ⁇ . It depends.
  • Patent Documents 2 and 3 each have a balanced-unbalanced transformation as in the balanced surface acoustic wave filter described in Patent Document 1, except that the electrode structure is different.
  • a noise type surface acoustic wave filter is disclosed.
  • the impedance ratio between the unbalanced signal terminal and the balanced signal terminal was about 1: 3 to 1: 4.
  • balanced mixer ICs with an input impedance of about 100 ⁇ are commercially available as ICs connected to the output side of this type of balanced surface acoustic wave filter.
  • the output impedance of the balanced surface acoustic wave filter connected to the IC is required to be 100 ⁇ .
  • the input / output impedance ratio of the surface acoustic wave filter is required to be 1: 2.
  • Patent Document 4 discloses a balanced surface acoustic wave filter having a balanced-unbalanced conversion function and having an impedance ratio of 1: 2 between the unbalanced signal terminal and the balanced signal terminal.
  • FIG. 27 is a plan view showing an electrode structure of a balanced surface acoustic wave filter described in Patent Document 4.
  • FIG. in the non-surface acoustic wave filter 601 longitudinally coupled resonator surface acoustic wave filter sections 603 and 604 are connected to an unbalanced input terminal 602.
  • the longitudinally coupled resonator-type surface acoustic wave filter units 603 and 604 have first to third IDTs 603a to 603c and 604a to 604c, respectively, arranged in the surface wave propagation direction.
  • the second IDTs 603b and 604b at the center are electrically connected to the unbalanced input terminal 602, respectively.
  • the first and third IDTs 603a and 603c located on both sides of the IDT 603b in the surface wave propagation direction are electrically connected to the first balanced output terminal 605.
  • the surface acoustic wave filter unit 604 is electrically connected to the IDT 604a, 604c force second balanced output terminal 606 located on both sides of the IDT 604b in the surface wave propagation direction.
  • IDTs 603a and 603b have narrow-pitch electrode finger portions N in the vicinity of portions adjacent to each other with a gap in the surface wave propagation direction. That is, the electrode finger pitch in the vicinity of IDT 603b of IDT 603a is narrower than that in the remaining portions.
  • the IDT portion having a relatively narrow electrode finger pitch is referred to as a narrow pitch electrode finger portion N.
  • narrow pitch electrode finger portions N are provided in the vicinity of the IDT 603a side end portion of IDT 603b.
  • IDTs 603b, 603c, IDTs 604a to 604c are provided with narrow-pitch electrode finger portions N in the vicinity of the portions where they meet each other across the gap.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-308672
  • Patent Document 2 JP-A-6-204781
  • Patent Document 3 Japanese Patent Laid-Open No. 11-97966
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-48675
  • the IDT impedance decreases as the electrode finger cross width increases, and decreases as the number of electrode fingers increases.
  • the center IDT 603b in the surface acoustic wave filter unit 603 is connected to the unbalanced input terminal 602, and the IDTs 603a and 603c on both sides are connected to the first balanced output terminal 605. It is connected to the.
  • the crossing width of the IDT 603b cannot be made different from the crossing width of the IDTs 603a and 603c. Therefore, as described above, the input / output impedance ratio is changed by making the number of electrode fingers of the unbalanced IDT 603b different from the number of electrode fingers of the balanced IDTs 603a and 603c.
  • the impedance of the first balanced output terminal 605 is a value depending on the number of electrode fingers of the balanced IDT 603a.
  • the impedance on the unbalanced terminal 602 side is a value corresponding to 1Z2 which is the number of pairs of electrode fingers on the unbalanced side IDT 603b.
  • the impedance ratio of the unbalanced signal terminal and balanced signal terminal can be set to 1: 2.
  • the impedance ratio between the unbalanced signal terminal and the balanced signal terminal cannot be accurately set to 1: 2, and tends to deviate from 1: 2. .
  • An object of the present invention is to solve the above-mentioned disadvantages of the prior art, have a balanced-unbalanced conversion function, and obtain a plurality of passbands without degrading filter characteristics such as bandwidth and loss.
  • the degree of freedom in adjusting the impedance of the resonance mode can be increased, and therefore the impedance ratio of the unbalanced signal terminal and the balanced signal terminal can be easily and accurately set to 1: 2, etc., and it has sufficient bandwidth. It is to provide a surface wave filter.
  • a first invention of the present application is a balanced surface acoustic wave filter having a balanced / unbalanced conversion function connected to an unbalanced terminal and first and second balanced terminals, wherein the piezoelectric substrate, The first to third IDTs arranged along the surface wave propagation direction on the piezoelectric substrate, and the second IDT in the center or the first and third IDTs on both sides are connected to the unbalanced terminals.
  • a first surface acoustic wave filter section in which the first and third IDTs on either side or the second IDT in the center are connected to the first balanced terminal, and in the surface wave propagation direction on the piezoelectric substrate.
  • a first IDT to a third IDT arranged in the center, and a second IDT arranged in the center or first and third IDTs on both sides are connected to the unbalanced terminal, and The third IDT or the central second IDT is connected to the second balanced terminal, and the first surface acoustic wave filter section is the output signal for the input signal.
  • a second surface acoustic wave filter unit configured to have a phase difference of 180 degrees, and in the first and second surface acoustic wave filter units, adjacent to each other with a gap in the surface wave propagation direction.
  • the period of some electrode fingers including the electrode fingers is made smaller than the period of the electrode fingers in the main part of the IDT.
  • the electrode finger pitch of the IDT narrow pitch electrode fingers connected to the unbalanced terminals of the first and second surface acoustic wave filter sections is Pl.
  • the electrode finger pitch of the IDT narrow pitch electrode finger connected to the balanced terminal is P2
  • the IDT narrow pitch current connected to the unbalanced terminal of the first and second surface acoustic wave filter units is P2.
  • a second invention is a balanced surface acoustic wave filter having a balance-unbalance conversion function connected to an unbalanced terminal and the first and second balanced terminals, the piezoelectric substrate, and the piezoelectric substrate
  • the first IDT to the third IDT are arranged along the surface wave propagation direction on the upper side.
  • the second IDT in the center or the first and third IDTs on both sides are connected to the unbalanced terminal.
  • the first elastic surface wave filter unit having the first IDT, the third IDT, or the second IDT in the center connected to the first balanced terminal, and on the piezoelectric substrate, in the surface wave propagation direction.
  • a first IDT to a third IDT arranged in the middle, and the second IDT arranged in the center or the first and third IDTs on both sides are connected to the unbalanced terminal, and the first and first IDTs on both sides are connected.
  • 3 IDT or the center second IDT is connected to the second balanced terminal, and the first surface acoustic wave filter section is the phase of the output signal relative to the input signal.
  • the first and second surface acoustic wave filter portions adjacent to each other with a gap in the direction of surface wave propagation, and a second surface acoustic wave filter portion configured to be 180 degrees different from each other.
  • the pitch of some electrode fingers including the electrode fingers is narrower than the period of the electrode fingers in the main part of the IDT
  • the electrode finger portion is connected to the unbalanced terminal of the first and second surface acoustic wave filter portions, and the electrode finger pitch of the narrow pitch electrode finger portion of the IDT is Pl and connected to the balanced terminal.
  • the electrode pitch of the IDT narrow pitch electrode fingers is ⁇ ⁇ ⁇ 2, and the electrode fingers other than the IDT narrow pitch electrode fingers connected to the unbalanced terminals of the first and second elastic surface wave filter units
  • the number of electrode fingers of the part is Kl, and the electrodes other than the narrow pitch electrode finger part of IDT connected to the balanced terminal are connected.
  • the number of electrode fingers of the finger portion is ⁇ 2
  • the number of electrode fingers of the narrow pitch electrode finger portion of the IDT connected to the unbalanced terminal of the first and second surface acoustic wave filter portions is Kln
  • the balanced When the number of electrode fingers of the IDT's narrow pitch electrode fingers connected to the terminal is ⁇ 2 ⁇ ,
  • the metallization ratio in the first and second surface acoustic wave filter sections is d, and the electrode finger crossing width is W. 67. 41 I ⁇ W / d ⁇ 74. 3 ⁇ ⁇ (where ⁇ I is the IDT wavelength).
  • a third invention of the present application is a balanced surface acoustic wave filter having a balanced terminal and a balanced-unbalanced conversion function connected to the first and second unbalanced terminals, the piezoelectric substrate, First to third IDTs arranged in the surface wave propagation direction on the piezoelectric substrate, the second IDT is connected to the unbalanced terminal, and the first and third IDTs on both sides Are connected to the first and second balanced terminals, and each IDT has a narrow-pitch electrode finger portion in the adjacent portion of the first to third IDTs, and the electrodes of the narrow-pitch electrode finger portion The finger pitch is smaller than the electrode finger pitch of the main electrode finger portion of the IDT where the narrow pitch electrode fingers are provided, and the phase of the first IDT is inverted 180 degrees to the phase of the third IDT.
  • the electrode finger pitch of the narrow pitch electrode finger portion of the second IDT positioned at the center is Pl, and the narrow width of the first and third IDTs is
  • the electrode finger pitch of the pitch electrode fingers is P2
  • the number of electrode fingers of the electrode fingers other than the narrow pitch electrode fingers of the second IDT is K1
  • the electrodes other than the narrow pitch electrode fingers of the first and third IDTs When the number of electrode fingers on the finger is ⁇ 2,
  • a fourth invention is a balanced surface acoustic wave filter having a balanced terminal and a balanced-unbalanced conversion function connected to the first and second unbalanced terminals, the piezoelectric substrate, First to third IDTs arranged in the surface wave propagation direction on the piezoelectric substrate, the second IDT is connected to the unbalanced terminal, and the first and third IDTs on both sides are
  • Each IDT is connected to the first and second balanced terminals, and each IDT has a narrow-pitch electrode finger portion in the portion where the first to third IDTs are adjacent to each other, and the electrode of the narrow-pitch electrode finger portion
  • the finger pitch is smaller than the electrode finger pitch of the main electrode finger part of IDT where narrow pitch electrode fingers are provided,
  • the phase of the first IDT is inverted by 180 degrees to the phase of the third IDT, and the electrode finger pitch of the narrow pitch electrode finger portion of the second IDT located in the center is Pl,
  • the electrode pitch of the IDT narrow pitch electrode finger of ID3 is P
  • the metallization ratio of the first to third IDTs is d and the electrode finger crossing width is W, 8 1 I ⁇ W / d ⁇ 148. 6 ⁇ ⁇ (where ⁇ I is the IDT wavelength).
  • a fifth invention is a balanced surface acoustic wave filter having a balanced-unbalanced conversion function connected to an unbalanced terminal and first and second balanced terminals, wherein the piezoelectric substrate, the piezoelectric First to third IDTs arranged in the surface wave propagation direction on the substrate, and the first and third IDTs located on both sides of the surface wave propagation direction are connected to the unbalanced terminal,
  • the second IDT has first and second IDT sections divided in the surface wave propagation direction, and the first and second IDT sections are electrically connected to the first and second balanced signal terminals, respectively.
  • the first to third IDTs are connected so that the phase of the signal flowing from the unbalanced terminal to the first balanced signal terminal is inverted 180 degrees from the phase flowing from the unbalanced terminal to the second balanced signal terminal.
  • the first to third IDTs are spaced in the surface wave propagation direction across the gap, and are adjacent to the adjacent portions.
  • a plurality of neighboring electrode fingers are narrow-pitch electrode fingers having a relatively narrow pitch
  • the electrode fingers of the first and third IDT narrow-pitch electrode fingers connected to the unbalanced signal terminal P1 is the pitch
  • P2 is the electrode finger pitch of the narrow pitch electrode fingers of the second IDT where the first and second IDT parts are connected to the first and second balanced signal terminals
  • the first and third When the number of electrode fingers of the electrode fingers other than the narrow pitch electrode finger of IDT is K1, and the number of electrode fingers of the electrode fingers other than the narrow pitch electrode finger of the second IDT is K2, P1> P2
  • a sixth invention is a balanced surface acoustic wave filter having a balanced-unbalanced conversion function connected to the unbalanced terminal and the first and second balanced terminals, the piezoelectric substrate, the piezoelectric First to third IDTs arranged in the surface wave propagation direction on the substrate, and the first and third IDTs located on both sides of the surface wave propagation direction are connected to the unbalanced terminal,
  • the second IDT has first and second IDT sections divided in the surface wave propagation direction, and the first and second IDT sections are electrically connected to the first and second balanced signal terminals, respectively.
  • the first to third IDTs are connected so that the phase of the signal flowing from the unbalanced terminal to the first balanced signal terminal is inverted 180 degrees from the phase flowing from the unbalanced terminal to the second balanced signal terminal.
  • the first to third IDTs are spaced in the surface wave propagation direction across the gap, and are adjacent to the adjacent portions.
  • a plurality of neighboring electrode fingers are narrow-pitch electrode fingers having a relatively narrow pitch
  • the electrode fingers of the first and third IDT narrow-pitch electrode fingers connected to the unbalanced signal terminal P1 is the pitch
  • P2 is the electrode finger pitch of the narrow pitch electrode fingers of the second IDT where the first and second IDT parts are connected to the first and second balanced signal terminals
  • the first and third The number of electrode fingers of the electrode fingers other than the narrow pitch electrode finger of the IDT is K1
  • the number of electrode fingers of the electrode fingers other than the narrow pitch electrode finger of the second IDT is K2
  • the first, third When the number of electrode fingers of the IDT narrow-pitch electrode fingers is Kln and the number of electrode fingers of the second IDT narrow-pitch electrode fingers is ⁇ 2 ⁇ ,
  • the metallization ratio of the first to third IDTs is d and the electrode finger crossing width is W, 133.8 ⁇ ⁇ W / d ⁇ 148. 6 ⁇ ⁇ (where ⁇ I is the IDT wavelength).
  • the seventh invention of the present application provides a balanced connection connected to the unbalanced terminal and the first and second balanced terminals.
  • a balanced surface acoustic wave filter having an unbalance conversion function comprising: a piezoelectric substrate; and first to third IDTs disposed along the surface wave propagation direction on the piezoelectric substrate; IDT or the first and third IDTs on both sides are connected to the unbalanced terminal, and the first and third IDTs on both sides or the center second IDT are connected to the first balanced terminal
  • the first surface wave filter unit and the first to third IDTs arranged in the surface wave propagation direction on the piezoelectric substrate, and the second IDT arranged in the center or the first and third IDTs on both sides.
  • the first and third IDTs on both sides or the second IDT on the center are connected to the second balanced terminal, and the first surface acoustic wave filter unit and Includes a second surface acoustic wave filter configured so that the phase of the output signal is 180 degrees different from the input signal.
  • the electrode fingers facing the gap and facing the pair of IDTs adjacent to each other with a gap in the surface wave propagation direction are connected to the unbalanced terminal, and the first and third IDTs on both sides or the second IDT on the center are connected to the second balanced terminal, and the first surface acoustic wave filter unit and Includes a second surface acoustic wave filter configured so that the phase of the output signal is 180 degrees different from the input signal.
  • the electrode fingers including the IDT are narrow pitch electrode fingers whose period is smaller than the period of the main electrode fingers of the IDT, and the first and second surface acoustic wave filter portions are
  • the electrode pitch of the IDT narrow-pitch electrode fingers is Pl
  • the number of electrode fingers of the narrow-pitch electrode fingers is Nl
  • a balanced surface acoustic wave filter having a balanced-unbalanced conversion function connected to a balanced terminal and the first and second unbalanced terminals, the piezoelectric substrate, and the piezoelectric substrate on the piezoelectric substrate.
  • IDTs 1st to 3rd IDTs arranged in the surface wave propagation direction, and the second IDT is connected to the unbalanced terminal, and the first and third IDTs on both sides are
  • Each of the IDTs has a narrow pitch electrode finger portion that is connected to the second balanced terminal and the first to third IDTs are adjacent to each other, and the electrode finger pitch of the narrow pitch electrode finger portion is The electrode finger pitch of the main electrode finger portion of the IDT provided with the narrow-pitch electrode fingers, and the phase of the first IDT is inverted 180 degrees to the phase of the third IDT, Unbalanced terminal Connected to the second IDT's narrow-pitch electrode fingers, PI is connected to PI, the number of electrode fingers of the narrow-pitch electrode fingers is connected to Nl, and the first and second balanced terminals are connected to each other.
  • the electrode finger pitch of the narrow pitch electrode fingers of the first and third IDTs is P2
  • the number of electrode fingers of the narrow pitch electrode fingers is N2
  • a ninth invention is a balanced surface acoustic wave filter having a balanced-unbalanced conversion function connected to an unbalanced terminal and first and second balanced terminals, comprising a piezoelectric substrate, a piezoelectric substrate, and a piezoelectric substrate
  • First to third IDTs arranged in the surface wave propagation direction on the substrate, and the first and third IDTs located on both sides of the surface wave propagation direction are connected to the unbalanced terminal
  • the second IDT has first and second IDT sections divided in the surface wave propagation direction, and the first and second IDT sections are electrically connected to the first and second balanced signal terminals, respectively.
  • the first to third IDTs are connected so that the phase of the signal flowing from the unbalanced terminal to the first balanced signal terminal is inverted 180 degrees from the phase flowing from the unbalanced terminal to the second balanced signal terminal.
  • the first to third IDTs are adjacent to each other in the surface wave propagation direction with a gap therebetween, and the first to third IDTs are adjacent to each other.
  • the IDT has a narrow-pitch electrode finger portion in the vicinity of the gap and Pl is used as the electrode pitch of the first and third IDT narrow-pitch electrode finger portions connected to the unbalanced signal terminal.
  • Nl is the number of electrode fingers on the finger, and the first IDT and the second IDT are connected to the first and second balanced signal terminals, respectively.
  • the first and second center IDTs or the first and third IDTs on both sides are connected to the unbalanced terminal.
  • the surface acoustic wave filter section is provided, and the first, third IDT, or second IT of the first surface acoustic wave filter section is provided.
  • DT is connected to the first balanced terminal, and the first, third or second IDT of the second surface acoustic wave filter unit is connected to the second balanced terminal, and the first surface acoustic wave filter unit And the second elastic surface wave filter section are configured so that the phase of the output signal differs by 180 degrees. Therefore, a balanced surface acoustic wave filter having a balance-unbalance conversion function is configured.
  • a pair of IDTs adjacent to each other with a gap therebetween is a period of a part of electrode fingers including the electrode fingers facing the gap. It has a narrow pitch electrode finger portion that is smaller than the period of the electrode finger of the main part of the force IDT. Also, since P1> P2 and 1.12 ⁇ K1 / K2 ⁇ 1.65, it is possible to obtain good filter characteristics with sufficient bandwidth with small insertion loss and VSWR in the passband.
  • a surface acoustic wave filter can be obtained in which the impedance ratio between the unbalanced signal terminal and the balanced signal terminal can be surely 1: 2.
  • the impedance ratio can be changed by adjusting the pitch ratio of the narrow-pitch electrode fingers only by the number of IDT electrode fingers, so that the impedance ratio between the unbalanced signal terminal and the balanced signal terminal can be changed.
  • the impedance on the unbalanced terminal side is 50 ⁇ , and the balanced signal terminal side Therefore, it is possible to easily provide a balanced inertial surface wave filter connected to an IC having an input impedance of 100 ⁇ .
  • the second IDT is connected to the unbalanced terminal, and the first and third IDTs on both sides are connected to the first and second balanced Since the phase of the first IDT is inverted by 180 degrees with respect to the phase of the third IDT !, the balance-unbalance conversion function is provided as in the first invention. It has a balanced surface acoustic wave filter.
  • the first to third IDTs have narrow-pitch electrode fingers and Pl> ⁇ 2 and 1.12 ⁇ 1 / ⁇ 2 ⁇ 1.65.
  • a surface acoustic wave filter that can ensure a good filter characteristic with a sufficient bandwidth with a small VSWR and an impedance ratio between the unbalanced signal terminal and the balanced signal terminal of 1: 2. Can be obtained.
  • the impedance ratio can be changed by adjusting the pitch ratio of the narrow-pitch electrode fingers as much as the number of electrode fingers of the IDT, so the impedance ratio between the unbalanced signal terminal and the balanced signal terminal can be changed. Exactly 1: 2 is possible.
  • the impedance on the unbalanced terminal side is 50 ⁇ , and the balanced signal terminal side Therefore, it is possible to easily provide a balanced inertial surface wave filter connected to an IC having an input impedance of 100 ⁇ .
  • the first to third IDTs are arranged in the surface wave propagation direction on the piezoelectric substrate, and the first and third IDTs are connected to the unbalanced terminals.
  • the second IDT has first and second IDT sections divided in the surface wave propagation direction, and the first and second IDT sections are respectively connected to the first and second balanced signal terminals. Since the phase of the signal flowing from the unbalanced terminal to the first balanced terminal is 180 degrees reversed from the phase flowing from the unbalanced terminal to the second balanced signal terminal, the first and second Similar to the invention, a balanced surface acoustic wave filter having a balanced-unbalanced variable capacity is constructed.
  • the impedance ratio between the unbalanced signal terminal and the balanced signal terminal can be 1: 2 only by obtaining sufficient filter characteristics with sufficient insertion loss in the passband and sufficient bandwidth with small VSWR. A surface acoustic wave filter can be obtained.
  • the impedance ratio can be changed by adjusting the pitch ratio of the narrow pitch electrode fingers as well as the number of electrode fingers of the IDT, so the impedance ratio between the unbalanced signal terminal and the balanced signal terminal can be accurately set. 1: 2.
  • the first and second surface wave filter portions having the first to third IDTs are provided on the piezoelectric substrate, and the first and second surface wave filter portions are provided.
  • the second IDT in the center or the first and third IDTs on both sides are connected to the unbalanced signal terminal, and the first, third or second IDT of the first surface acoustic wave filter section is the first.
  • the 1st, 3rd IDT or 2nd IDT of the 2nd surface acoustic wave filter section is connected to the 2nd balanced signal terminal and is adjacent to the surface wave propagation direction.
  • ⁇ 1 ⁇ ⁇ 2 and ⁇ 1 ⁇ 2 The degree of freedom of ordering can be increased. Therefore, it becomes easy to set the impedance ratio of the unbalanced signal terminal to the balanced signal terminal as 1: 2 without impairing the filter characteristics.
  • the insertion loss and VSWR force S in the passband can be obtained, and the impedance ratio of the unbalanced signal terminal to the balanced signal terminal can be reduced to 1 to obtain a sufficient filter characteristic with a small enough bandwidth.
  • a surface acoustic wave filter that can be set to 2 can be obtained.
  • the impedance ratio can be changed by adjusting the pitch ratio of the narrow pitch electrode fingers only by the number of electrode fingers of the IDT, so that the impedance of the unbalanced signal terminal and the balanced signal terminal can be changed.
  • the ratio can be exactly 1: 2.
  • the first to third IDTs are arranged on the piezoelectric substrate, and the second IDT is Connected to unbalanced signal terminals, first and third IDTs on both sides are connected to first and second balanced signal terminals, and first to third IDTs have narrow pitch electrode fingers
  • P1 ⁇ P2 and N1 ⁇ N2 in a balanced surface acoustic wave filter with balanced and unbalanced deformation
  • P1 ⁇ P2 and N1 ⁇ N2 so that sufficient filter characteristics with sufficient insertion loss and VSWR in the passband are sufficient.
  • the impedance ratio of the unbalanced signal terminal to the balanced signal terminal can be 1: 2.
  • the impedance ratio can be changed by adjusting the pitch ratio of the narrow pitch electrode fingers only by the number of electrode fingers of the IDT, the impedance of the unbalanced signal terminal and the balanced signal terminal can be changed.
  • the ratio can be exactly 1: 2.
  • the first to third IDTs are arranged in the surface wave propagation direction on the piezoelectric substrate, and the first and third IDTs are connected to the unbalanced signal terminal.
  • 2 IDTs are divided into first and second IDT parts, and the first and second IDT parts are connected to the first and second balanced signal terminals, respectively.
  • P1 ⁇ P2 and N1 ⁇ N2 so insertion loss and VSWR in the passband are small.
  • a surface acoustic wave filter capable of setting the impedance ratio of the unbalanced signal terminal to the balanced signal terminal to 1: 2.
  • the impedance ratio can be changed by adjusting the pitch ratio of the narrow pitch electrode fingers only by the number of electrode fingers of the IDT, so that the impedance of the unbalanced signal terminal and the balanced signal terminal can be changed.
  • the ratio can be exactly 1: 2.
  • the VSWR in the passband can be further reduced, and a further better filter characteristic can be obtained. it can.
  • FIG. 1 is a schematic plan view showing an electrode structure of a balanced surface acoustic wave filter according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing attenuation-frequency characteristics of the surface acoustic wave filter according to the first embodiment.
  • FIG. 3 is a graph showing VSWR characteristics of the surface acoustic wave filter of the first embodiment.
  • FIG. 4 is a Smith chart showing the reflection characteristics of S1 and S2 of the surface acoustic wave filter according to the first embodiment.
  • FIG. 5 is a diagram showing attenuation-frequency characteristics of a surface acoustic wave filter in which all electrode finger pitches of narrow pitch electrode finger parts prepared for comparison are all equal.
  • FIG. 6 is a diagram showing VSWR-frequency characteristics of a surface acoustic wave filter in which the electrode finger pitches of the narrow pitch electrode finger parts prepared for comparison are all equal.
  • Fig. 7 shows (a) and (b) the reflection characteristics of SI 1 and S22 of the surface acoustic wave filter prepared for comparison with the same number of electrode fingers in the narrow pitch electrode fingers. This is a Smith chart showing.
  • Fig. 8 shows that (a) and (b) show the surface acoustic wave filter S 11 and S 22 designed with the impedance of the unbalanced signal terminal set to 50 ⁇ and the impedance of the balanced signal terminal set to 150 ⁇ . It is a Smith chart which shows the reflective characteristic.
  • Figure 9 shows (a) and (b) Smith charts showing the reflection characteristics of S11 and S22 when the impedance of the unbalanced signal terminal is 50 ⁇ and the impedance of the balanced signal terminal is 100 ⁇ . It is
  • FIGS. 10A and 10B show the reflection characteristics on the S11 and S22 sides of the surface acoustic wave filter in which the electrode finger cross width of the surface acoustic wave filter is changed to 51. ⁇ ⁇ ⁇ . Smith chart.
  • Fig. 11 shows (a) and (b) that the impedance on the S11 side is increased, and that the impedance on the S22 side is lowered, so that the electrode finger of the IDT is changed to the S11 and S22 side 6 is a Smith chart showing the reflection characteristics of each.
  • FIG. 12 shows (a) and (b) the SI 1 side and S22 when the electrode finger pitch of the narrow pitch electrode finger portion of the IDT is changed from 0.444 ⁇ I to 0.438 ⁇ I. This is a Smith chart showing the reflection characteristics of the side.
  • FIG. 13 shows (a) and (b) the electrode finger pitch of the narrow pitch electrode finger portion of the center second IDT.
  • FIG. 6 is a Smith chart showing reflection characteristics on the SI 1 and S22 sides when H is changed to 0.444 ⁇ I force and 0.445 ⁇ ⁇ .
  • FIG. 14 is a diagram for explaining three resonance modes appearing in a balanced surface acoustic wave filter.
  • FIG. 15 is a diagram for explaining the effective current distribution in each resonance mode shown in FIG. 14.
  • (a) is a schematic configuration diagram of the IDT
  • (b) is a diagram corresponding to the IDT arrangement. It is a figure which shows a resonance mode.
  • FIG. 16 is a diagram showing a change in VSWR when the electrode finger cross width and the number of electrode fingers in the electrode finger portion of the IDT are changed.
  • FIG. 17 is a diagram showing the frequency characteristics of attenuation of the surface acoustic wave filter according to the second embodiment.
  • FIG. 18 is a diagram showing VSWR characteristics of the surface acoustic wave filter of the second embodiment.
  • FIGS. 19A and 19B are Smith charts showing reflection characteristics on the S11 side and the S22 side in the surface acoustic wave filter according to the second embodiment.
  • FIGS. 20 (a) and 20 (b) show the number of electrode fingers of the narrow-pitch electrode fingers connected to the balanced signal terminals in the surface acoustic wave filter of the second embodiment.
  • 6 is a Smith chart showing reflection characteristics on the S11 side and S22 side when the main force is increased to five.
  • FIG. 21 is a schematic plan view showing a surface acoustic wave filter according to a third embodiment of the present invention.
  • FIG. 22 is a schematic plan view showing a surface acoustic wave filter according to a fourth embodiment of the present invention.
  • FIG. 23 is a schematic plan view showing a surface acoustic wave filter according to a fifth embodiment of the present invention.
  • FIG. 24 is a schematic plan view showing a surface acoustic wave filter according to a sixth embodiment of the present invention.
  • FIG. 25 is a schematic plan view showing a surface acoustic wave filter according to a seventh embodiment of the present invention.
  • FIG. 26 is a schematic plan view showing an example of a conventional balanced surface acoustic wave filter.
  • FIG. 27 is a schematic plan view for explaining another example of a conventional balanced surface acoustic wave filter.
  • FIG. 1 is a schematic plan view showing an electrode structure of a balanced surface acoustic wave filter according to the first embodiment of the present invention.
  • the illustrated electrode structure is formed on the piezoelectric substrate 2.
  • the first and second longitudinally coupled resonator type surface acoustic wave filter units 4 and 5 are connected to the unbalanced input terminal 3.
  • the first longitudinally coupled resonator type surface acoustic wave filter unit 4 includes three IDTs 4a to 4c arranged along the surface wave propagation direction and IDTs 4a to 4c! Wave propagation direction It has reflectors 4d and 4e arranged on both sides.
  • the first to third IDTs 4a to 4c have narrow pitch electrode finger portions N.
  • IDT4a, 4b for example, IDT4a, 4b Adjacent to each other.
  • the pitch of the electrode fingers including the electrode fingers facing the gap is made narrower than that of the remaining electrode fingers of the IDT4a, 4b.
  • the electrode finger pitch is relatively narrow, and the electrode finger portion is a narrow pitch electrode finger portion N.
  • IDTs 4b and 4c each have a narrow pitch electrode finger portion N.
  • the narrow-pitch electrode fingers N By providing the narrow-pitch electrode fingers N, the discontinuity of the portion where a pair of IDTs are adjacent to each other with a gap is relaxed, and a bandpass filter with a wide bandwidth is obtained by adjusting the gap between IDTs. It becomes possible.
  • the effect obtained by providing such a narrow-pitch electrode finger is conventionally known, for example, as described in Patent Document 4 described above.
  • the longitudinally coupled resonator-type surface acoustic wave filter unit 5 includes first to third IDTs 5a to 5c and reflectors 5d and 5e.
  • the IDTs 5a to 5c also have narrow pitch electrode fingers N.
  • the unbalanced input terminal 3 is electrically connected to the second IDTs 4b and 5b located at the center of the surface acoustic wave filter sections 4 and 5.
  • the other ends of IDT4b and 5b are connected to ground potential.
  • the first and third IDTs 4a and 4c located on both sides of the second IDT 4b are connected to the first balanced output via the 1-port surface acoustic wave resonator 6, respectively. Electrically connected to terminal 7.
  • the second IDT 5 b at the center is connected to the unbalanced input terminal 3.
  • the first and third IDTs 5a and 5c which are located on both sides of the IDT 5b, are electrically connected to the second balanced output terminal 9 via the 1-port surface acoustic wave resonator 8.
  • the first longitudinally coupled resonator type surface acoustic wave filter unit 4 and the second longitudinally coupled resonator type surface acoustic wave filter unit 5 are different in phase of the output signal from the input signal by about 180 degrees. Except for, all are the same.
  • the IDTs 5a and 5c are 180 degrees out of phase with the IDTs 4a and 4c in the first surface acoustic wave filter unit 4. Accordingly, the phase of the signal extracted from the first balanced output terminal 7 and the signal extracted from the second balanced signal terminal 9 are inverted by 180 degrees. Therefore, in this embodiment, it has an unbalanced input terminal 3 and first and second balanced output terminals 7 and 9. A noise type surface acoustic wave filter 1 is formed.
  • the 1-port surface acoustic wave resonators 6 and 8 are configured to have the same electrode structure.
  • the reason why the 1-port surface acoustic wave resonator 6 is connected is that it is possible to increase the attenuation in the vicinity of the pass band and increase the steepness of the filter characteristics. Also, by connecting the 1-port surface acoustic wave resonators 6 and 8, it is possible to adjust the impedance of a plurality of resonance modes described later in the pass band. However, the surface wave resonators 6 and 8 may not be used.
  • the 1-port surface acoustic wave resonators 6 and 8 may have a structure without a reflector.
  • the electrode finger pitch of the narrow pitch electrode fingers N of the second IDTs 4b and 5b of the first and second surface acoustic wave filter parts 4 and 5 is Pl, and the first and third IDTs 4a, 4c and 5a , P2 is the electrode finger pitch of the narrow pitch electrode finger N of 5c.
  • the number of electrode fingers of the electrode fingers other than the narrow pitch electrode fingers of each second IDT 4b, 5b is Kl, and the number of electrode fingers of the electrode fingers other than the narrow pitch electrode fingers of the first and third IDTs The number is ⁇ 2.
  • the number of electrode fingers of the narrow pitch electrode fingers of the second IDTs 4b and 5b of the first and second surface acoustic wave filter parts 4 and 5 is represented by Kln, and the first and third IDTs 4a, 4c, 5a and 5c Let K2n be the number of electrode fingers in the narrow-pitch electrode fingers.
  • the impedance ratio between the unbalanced input terminal 3 and the balanced output terminals 7 and 9 can be easily changed without significantly affecting the filter characteristics.
  • the impedance ratio can be changed by adjusting the pitch ratio of the narrow-pitch electrode finger ⁇ which is only the number of electrode fingers of the IDT, so that the impedance ratio between the unbalanced signal terminal and the balanced signal terminal can be changed.
  • a surface acoustic wave filter 1 was produced with the following specifications.
  • the electrode finger crossing width of the longitudinally coupled resonator-type surface acoustic wave filter unit 4 was set to 51. ⁇ ⁇ ⁇ . ⁇ ⁇ is
  • IDT4a 4c the electrode finger crossing widths are all equal.
  • the number of electrode fingers of IDT4a is 22 (3)
  • the number of electrode fingers of IDT4b is (3)
  • 31 (3) the number of electrode fingers of IDT4c is (3)
  • the number was 22. Note that the number of electrode fingers inside the box is the number of electrode fingers of one narrow pitch electrode finger part N, and the number of electrode fingers outside the box is the number of electrode fingers other than the narrow pitch electrode finger part N. .
  • Metallization ratio in IDT4a 4c and reflectors 4d and 4e 0.72 except for narrow pitch electrode fingers, and 0.68 for narrow pitch electrode fingers N.
  • Electrode film thickness 0.092 ⁇ ⁇
  • the surface acoustic wave filter unit 5 was designed in the same manner as described above, except that the direction force DT4a, 4c of the IDT 5a, 5c was inverted.
  • Electrode finger crossing width 23.8 ⁇ ⁇ (where ⁇ ⁇ ⁇ ⁇ is a wavelength determined by the electrode finger pitch of IDT6a)
  • Electrode thickness 0.095 ⁇ ⁇ 0
  • a 1 ⁇ 0 substrate with a propagation of 40 ⁇ 5 degrees cut is used as the piezoelectric substrate 2.
  • the electrode was made of A1. In this way, a DCS reception filter with an unbalanced input terminal 3 input impedance of 50 ⁇ and balanced output terminals 7 and 9 impedance of 100 ⁇ is obtained.
  • FIG. 3 shows the VSWR characteristics of the elastic surface wave filter 1.
  • 4 (a) and 4 (b) are Smith charts showing the reflection characteristic S11 on the unbalanced signal terminal side and the reflection characteristic S22 on the balanced signal terminal side.
  • the reflection characteristic on the unbalanced signal terminal side of the surface acoustic wave filter is S11
  • the reflection characteristic on the balanced signal terminal side is S22.
  • One of the features of this embodiment is that the electrode finger pitch P1 of the narrow pitch electrode finger N of the IDTs 4b and 5b connected to the unbalanced input terminal 3 and the balanced output terminals 7 and 9 are connected. This is because the electrode finger pitch P2 of the narrow pitch electrode finger portion N of the IDTs 4a, 4c, 5a, 5c is different.
  • the narrow pitch electrode fingers of the second IDT4b and 5b The electrode pitch P1 of N is set to 0.454 ⁇ ⁇ , and the pitch P2 of the narrow pitch electrode fingers of the first and third IDTs 4a, 4c, 5a, and 5c is set to 0.438 ⁇ ⁇ . . Therefore, narrower pitch of IDT4b, 5b connected to unbalanced input terminal 3 than electrode finger pitch P2 of narrow pitch electrode finger part in IDT4a, 4c, 5a, 5c connected to balanced output terminals 7, 9 The electrode finger pitch P1 of the electrode finger N is increased.
  • the configuration is the same as that of the balanced surface acoustic wave filter 1 of the above embodiment except that the electrode pitches of the narrow pitch electrode fingers N are all equal to 0.447 ⁇ I.
  • the filter characteristics of the balanced surface acoustic wave filter are shown in Figs. Fig. 5 shows the attenuation frequency characteristics of the surface acoustic wave filter prepared for comparison, and Fig. 6 shows the VSWR characteristics.
  • Figures 7 (a) and 7 (b) show the reflection characteristics Sl l and S22, respectively.
  • the pass band of the DCS reception filter is 1805 to 1880 MHz.
  • the surface acoustic wave filter prepared for comparison has a maximum insertion loss of 2.16 dB in the above passband.
  • the maximum value of VSWR was 2.00
  • the maximum insertion loss in the passband was as small as 2.13 dB
  • the maximum value of VSWR in the passband was It can also be seen that it becomes 1.83. Therefore, according to this embodiment, the maximum insertion loss in the passband can be improved to about 0.15 dB, and the VSWR can be improved about 0.20.
  • Crossing width of electrode finger of surface acoustic wave filter 41.7 7 ⁇ ⁇ 0
  • IDT4a electrode fingers 20 (3) IDT4b electrode fingers: (3) 33 (3) IDT4c electrode fingers (3) 20
  • Metallization ratio 0.72 (The metallization ratio of the narrow-pitch electrode fingers is 0.668).
  • Electrode film thickness 0.092 ⁇ ⁇ 0
  • Figures 9 (a) and 9 (b) show the reflection characteristics of a surface acoustic wave filter designed as described above when the impedance of the unbalanced input terminal is 50 ⁇ and the impedance of the balanced output terminal is 100 ⁇ .
  • the reflection characteristics S11 and S22 are shown.
  • the impedance on the S22 side is greatly shifted by the 100 ⁇ force that is the matching point.
  • the electrode finger crossing width of the first and second longitudinally coupled resonator type surface acoustic wave filter sections 4 and 5 is set to 41.7 ⁇ 751.
  • Figures 10 (a) and 10 (b) show the characteristics when changed to ⁇ .
  • the impedance on the S22 side is about 100 ⁇ .
  • the impedance on the S11 side is greatly shifted by the 50 ⁇ force that is the matching point.
  • the resonances A to C include three resonances A to C constituting the passband of the longitudinally coupled resonator type surface acoustic wave filter section as shown in FIGS. And
  • resonance A, resonance B, and resonance C also appear at low frequency forward force, and as is clear from FIG. 15, resonance A is a second-order mode resonance, and resonance B is a zero-order mode resonance.
  • the electrode finger pitch of the narrow pitch electrode finger portion N of IDT4a, 4c, 5a, 5c is set to 0 from the configuration in which the reflection characteristics Sl l, S22 shown in FIGS.
  • the characteristics when changed to 438 ⁇ ⁇ are shown in Fig. 12 (a) and (b). That is, the electrode finger pitch of the narrow-pitch electrode finger part was changed to 0.438 ⁇ .
  • the concentration of resonances A to C on the S11 side that is, the concentration of impedance is improved.
  • the impedance of the resonance B on the S11 side is too capacitive and the resonance C on the S22 side is too inductive.
  • the impedance ratio between the unbalanced input terminal 3 and the balanced output terminals 7 and 9 is about 1: 2. ,Good The logarithm and the crossing width of the electrode finger of IDT that can obtain electrical characteristics were investigated. The results are shown in Figure 16.
  • the number of electrode fingers of the IDT excluding the electrode fingers of the narrow pitch electrode finger part for example, 22/31/22 in the IDTs 4a to 4c of the above-described embodiment.
  • Various surface acoustic wave filters 1 were manufactured by changing the number of electrode fingers of IDT 4a to 4c excluding the electrode fingers of this narrow pitch electrode finger portion, and further changing the electrode finger crossing width, and VSWR was measured.
  • IDTs 5a to 5c are the same as I DT4a to 4c!
  • the VSWR is smaller than the VSWR value of 2.0 in the conventional balanced surface acoustic wave filter, and the improved range is as follows.
  • K1 is the number of electrode fingers of the remaining electrode fingers excluding the electrode fingers of the narrow-pitch electrode fingers N in the second IDTs 4b and 5b in the center
  • K2 is the number of the first, third In IDTs 4a, 4c, 5a, and 5c, the number of electrode fingers of the remaining electrode finger portions excluding the electrode fingers of the narrow pitch electrode finger portion N.
  • the value of the electrode finger crossing width W should be 67.41 I ⁇ W / d ⁇ 74.3 ⁇ ⁇ ⁇ ⁇ when the metallization ratio d of electrode fingers other than the narrow pitch electrode finger ⁇ is used. desirable.
  • the impedance of unbalanced input terminal 3 can be set to 50 ⁇
  • the impedance of balanced output terminals 7 and 9 can be reliably set to 100 ⁇
  • the input impedance can be connected to an IC with 100 ⁇ . It is possible to easily provide a balanced surface acoustic wave filter 1 having excellent filter characteristics.
  • a narrow pin is required only by the number of electrode fingers, that is, the number of electrode fingers. Since the electrode finger pitches PI and P2 of the touch electrode fingers are changed, the ratio between the impedance of the unbalanced input terminal 3 and the impedance of the balanced output terminals 7 and 9 can be accurately set to 1: 2.
  • Kln K2n.
  • the number Kin of the electrode fingers of the narrow pitch electrode fingers of the second IDTs 4b and 5b connected to the unbalanced signal terminal is equal to the balanced signal. It is not always necessary to be equal to the number K2n of electrode fingers of the narrow pitch electrode finger portions of the first and second IDTs 4a, 4c, 5a, and 5c connected to the terminals.
  • a balanced surface acoustic wave filter having the same electrode structure as the balanced surface acoustic wave filter 1 of the first embodiment was produced. Since the electrode structure is the same as that of the first embodiment, the reference numerals of the parts of the surface acoustic wave filter of the second embodiment are the same as those of the first surface acoustic wave filter 1 in the following. The same shall apply, and Figure 1 will be used.
  • the configuration of the surface acoustic wave filter of the second embodiment differs from the surface acoustic wave filter of the first embodiment in the following three points, and the other points are the same.
  • the number of electrode fingers N1 of the narrow pitch electrode fingers N of IDT4b, 5b connected to the unbalanced input terminal 3 is more than that of IDT4a, 4c, 5a, 5c connected to the balanced output terminals 7, 9.
  • the number N2 of electrode fingers of the narrow pitch electrode finger portion N is increased, and the electrode finger pitch P2 is made larger than the electrode finger pitch P1.
  • FIG. 17 and FIG. 18 show the attenuation frequency characteristics and the surface acoustic wave filter of the second embodiment.
  • 19 (a) and 19 (b) are Smith charts showing the reflection characteristics on the S11 side and the reflection characteristics on the S22 side.
  • the maximum insertion loss in the passband of the DCS reception filter is 1.96 dB.
  • the maximum value of VSWR is 1.90. Therefore, compared to the comparative example of the characteristics shown in FIGS. 5 to 7, according to the second embodiment, the maximum insertion loss in the passband can be reduced to about 0.20 dB, and the VSWR is about 0. 10 I can reduce it.
  • the reason why the filter characteristics are improved as compared with the comparative example as described above is as follows.
  • the impedance on the S11 side is increased and the impedance on the S2 2 side is decreased.
  • the number of IDT electrode fingers may be changed.
  • the narrow pitch electrode fingers N connected to balanced output terminals 7 and 9 are increased from 3 to 5 S11 side and S22 Figures 20 (a) and 20 (b) show the reflection characteristics on the side.
  • FIG. 11 (a) and 11 (b) show the reflection characteristics on the side.
  • the change causes the reflection characteristics on both the S11 side and the S22 side to approach the resonance B force S impedance matching point. That is, the impedance of resonance B, which could not be adjusted only by the number of electrode fingers of IDT, is applied to the narrow-pitch electrode fingers of IDT4a, 4c, 5a, and 5c connected to balanced output terminals 7 and 9. It was possible to adjust by changing the number. Finally, by optimizing the number of electrode fingers of the narrow pitch electrode fingers N of IDTs 4a to 4c and 5a to 5c connected to the unbalanced input terminal 3 and the balanced output terminals 7 and 9, respectively, The characteristics of the second embodiment can be obtained.
  • the second IDTs of the longitudinally coupled resonator-type surface acoustic wave filter units 4, 5 are connected to the unbalanced input terminal 3, and the IDTs 4a, 4c, 5a on both sides are connected. , 5c are connected to the first and second balanced output terminals 7 and 9, respectively, so that Nl ⁇ N2 and PI ⁇ P2 in a surface acoustic wave filter having a balanced-unbalanced conversion function.
  • the surface acoustic wave filter is excellent in insertion loss and VSWR in the passband, as well as having an impedance ratio of approximately 1: 2 between the unbalanced input terminal 3 and the balanced output terminals 7 and 9. Can be provided.
  • the electrode finger pitch PI of the second IDTb and 5b connected to the unbalanced input terminal 3 and the balanced output terminals 7 and 9 are connected.
  • other impedance adjustment methods such as making the IDT duty different for each IDT Can be used together.
  • the present invention is not limited to a surface acoustic wave filter having a balance-unbalance conversion function of such an electrode structure.
  • 21 to 23 are schematic plan views showing electrode structures of the surface acoustic wave filters according to the third to fifth embodiments of the present invention.
  • the first and second longitudinally coupled resonator type surface acoustic wave filter sections 34, 35 is connected.
  • the surface acoustic wave filter units 34 and 35 are configured in the same manner as the surface acoustic wave filter units 4 and 5 of the surface acoustic wave filter 1 of the first embodiment.
  • the first and third IDTs 34a and 34c on both sides of the surface wave propagation direction are connected to the unbalanced input terminal 33.
  • the second IDT 34b located in the center is electrically connected to the first balanced output terminal 37 via the 1-port surface acoustic wave resonator 36.
  • Reflectors 34d and 34e are disposed on both sides of the surface wave propagation direction of the portion where the IDTs 34a to 34c are provided.
  • the 1-port surface acoustic wave resonator 36 is configured in the same manner as the 1-port surface acoustic wave resonator 6.
  • the first and third IDTs 35a and 35c on both sides are connected to the unbalanced input terminal 33, and the second IDT 35b is a one-port surface acoustic wave resonance. Child It is connected to the second balanced output terminal 39 via 38. That is, in the surface acoustic wave filter 31, the first and third IDTs 34a, 34c, 35a, and 35c in the surface wave propagation direction are connected to the unbalanced input terminal 33, and the second IDTs 34b and 35b in the center are the first and second IDTs. Are electrically connected to the balanced output terminals 37 and 39 respectively! RU
  • the electrode finger pitch of the narrow pitch electrode finger portions of IDTs 34a, 34c, 35a, 35c connected to the unbalanced input terminal 33 is PI
  • the balanced output Narrow pitch electrode fingers of IDT34a, 34c, 35a, 35c connected to unbalanced input terminal 33 where P2 is the pitch of the electrode fingers of the narrow pitch electrode fingers of IDT34b, 35b connected to terminals 37, 39
  • the number of electrode fingers of the electrode fingers other than the part is Kl
  • the number of electrode fingers of the narrow pitch electrode finger is Kin
  • the metallization ratio in the first and second surface acoustic wave filter parts 34 and 35 is d and the electrode finger cross width is W. 67. 41 I ⁇ W / d ⁇ 74.3 ⁇ ⁇ , which means that if the impedance on the unbalanced input terminal 33 side is 50 ⁇ , the output impedance on the balanced output terminals 37 and 39 can be easily Can be set to 100 ⁇ .
  • the impedance ratio between the unbalanced input terminal 33 and the balanced output terminals 37 and 39 which has only good filter characteristics with small insertion loss and VSWR in the passband. Can be set to 1: 2.
  • FIG. 22 is a schematic plan view showing an electrode structure of the surface acoustic wave filter 41 according to the fourth embodiment.
  • the balanced surface acoustic wave filter 41 of the fourth embodiment five IDTs 42a to 42e are arranged along the surface wave propagation direction! Reflectors 42f and 42g are arranged on both sides of the surface wave propagation direction in the region where IDTs 42a to 42e are provided.
  • the IDTs 42a to 42e have the narrow pitch electrode finger portions N as with the IDTs 4a to 4c. That is, the pair of IDTs adjacent to each other in the surface wave propagation direction across the gap is made smaller than the electrode finger pitch of the remaining portion of the pitch force DT of some electrode fingers including the electrode fingers facing the gap.
  • IDTs 42 a, 42 c, 42 e are connected to the unbalanced input terminal 43.
  • the IDTs 42b and 42d are electrically connected to the first and second balanced output terminals 47 and 49, respectively.
  • Surface acoustic wave finisher with such a balance-unbalance conversion function 41 [This is an unbalanced person terminal 43] This is a narrow pitch electrode finger of IDT42a, 42c, 42e N electrode finger pitch is PI, the number of electrode fingers of the narrow pitch electrode finger part N is K ln, and the number of electrode fingers other than the narrow pitch electrode finger part is K1, and is connected to balanced output terminals 47 and 49.
  • IDT42b, 42d when N2 is P2, N2 is the pitch of electrode fingers, P2 is the number of electrode fingers of the narrow pitch electrode fingers, and K2n is the number of electrode fingers of the narrow pitch electrode fingers, and K2 is the number of electrode fingers other than the narrow pitch electrode fingers ⁇ 1> ⁇ 2 and 1.
  • N2 is the pitch of electrode fingers
  • P2 is the number of electrode fingers of the narrow pitch electrode fingers
  • K2n is the number of electrode fingers of the narrow pitch electrode fingers
  • K2 is the number of electrode fingers other than the narrow pitch electrode fingers ⁇ 1> ⁇ 2 and 1.
  • the impedance ratio between the unbalanced input terminal 43 and the balanced output terminals 47 and 49 should be about 1: 2.
  • the unbalanced input terminal and the balanced output terminal can be easily set to about 1: 2, and the insertion loss and VSWR in the passband can be reduced.
  • FIG. 23 is a schematic diagram showing an electrode structure of a balanced surface acoustic wave filter according to the fifth embodiment.
  • the surface acoustic wave filter 50 of the fifth embodiment is configured in the same manner as the surface acoustic wave filter 41 of the fourth embodiment, except that the number of IDTs is three. That is, in the balanced surface acoustic wave filter 50 of the fifth embodiment, three IDTs 42b to 42d are arranged along the surface wave propagation direction. Reflectors 42f and 42g are provided on both sides of the surface wave propagation direction in the region where the first to third IDTs 42b to 42d are provided.
  • the surface acoustic wave filter 50 is configured in the same manner as the surface acoustic wave filter 41, except that the IDTs 42a and 42e in FIG. Therefore, the same reference numerals are assigned to the same parts, and the explanation shown in FIG. 22 is incorporated.
  • the impedance ratio between the unbalanced input terminal 43 and the balanced output terminals 47 and 49 can be set to about 1: 2 while reducing the insertion loss and VSWR in the passband.
  • the impedance ratio between the balanced input terminal and the balanced output terminal can be easily set to about 1: 2, and the insertion loss and VSWR in the passband can be reduced.
  • FIG. 24 is a schematic plan view showing an electrode structure of a balanced surface acoustic wave filter according to the sixth embodiment.
  • the IDTs 52a to 52e have the narrow pitch electrode finger portions N like the IDTs 42a to 42e.
  • reflectors 52f and 52g are arranged on both sides of the surface wave propagation direction in the region where IDTs 52a to 52e are provided.
  • the central IDT 52c includes IDT portions 52cl and 52c2 divided in the surface wave propagation direction.
  • the IDTs 52b and 52d are electrically connected to the unbalanced input terminal 53.
  • the IDT 52a and the IDT unit 52cl are electrically connected to the first balanced output terminal 57.
  • the IDT section 52c2 and the IDT 52e are electrically connected to the second balanced output terminal 59, thereby realizing balanced-unbalanced transformation.
  • Pl is the electrode finger pitch of the narrow pitch electrode finger portion N of IDTs 52b and 52d connected to the unbalanced input terminal 53 that is an unbalanced signal terminal, and the narrow pitch electrode finger portion N IDT52a, 52c, 52e narrow pitch electrode fingers connected to balanced output terminals 57, 59, where Kin is the number of electrode fingers and K1 is the number of electrode fingers other than the narrow pitch electrode fingers
  • the electrode finger pitch of N is P2
  • the number of electrode fingers of the narrow-pitch electrode finger part is K2n
  • the number of electrode fingers of the electrode finger parts other than the narrow-pitch electrode finger part is ⁇ 2, ⁇ 1> ⁇ 2 and 1
  • the unbalanced signal terminal and the balanced signal terminal do not impair the filter characteristics as in the above-described embodiments.
  • the impedance ratio can be about 1: 2. Also in the sixth embodiment, it is preferable that the balanced output when the impedance on the unbalanced input terminal 53 side is 50 ⁇ by setting 134. 8 1 I ⁇ W / d ⁇ 148.6 ⁇ ⁇ . The impedance on the terminals 57 and 59 side can easily be set to 100 ⁇ .
  • the impedance ratio between the unbalanced input terminal 53 and the balanced output terminals 57 and 59 is about 1: 2, and the surface provides a SAW filter with low insertion loss and VSWR in the passband. be able to.
  • FIG. 25 is a schematic plan view showing an electrode structure of the balanced surface acoustic wave filter according to the seventh embodiment.
  • the surface acoustic wave filter 70 of the seventh embodiment is configured substantially in the same manner as the surface acoustic wave filter 51 of the sixth embodiment, except that the IDTs 52a and 52e shown in FIG. 24 are omitted. ing. Therefore, the same reference numerals are assigned to the same parts, and the explanation given in the sixth embodiment is incorporated.
  • the first to third IDTs 52b to 52d are arranged along the surface wave propagation direction. Then, the second IDT 52c force IDT ⁇ 52cl, 52c2 is divided into ij.
  • Kln K2n by setting P1> P2 and 1.12 ⁇ K1 / K2 ⁇ 1.65.
  • the impedance ratio between the unbalanced signal terminal and the balanced signal terminal without impairing the filter characteristics can be reduced to about 1: 2.
  • the impedance on the terminals 57 and 59 side can easily be set to 100 ⁇ .
  • an unbalanced input is obtained by adopting a structure in which ⁇ 1 ⁇ ⁇ 2 and N1 ⁇ 2, preferably PI ⁇ 2 and Nl ⁇ 2. It is possible to provide a surface acoustic wave filter in which the impedance ratio between the terminal 53 and the balanced output terminals 57 and 59 is about 1: 2, and the insertion force in the pass band and the VSWR are small.
  • the surface acoustic wave filters 41 and 51 according to the fourth and sixth embodiments five IDTs 42a to 42e and 52a to 52e were provided. As described above, in the surface acoustic wave filter according to the present invention, five or more IDTs including only the three IDTs having the first to third IDT forces may be arranged in the surface wave propagation direction. .

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 不平衡信号端子-平衡信号端子のインピーダンス比を1:2とすることができ、しかも良好なフィルタ特性を有するバランス型弾性表面波フィルタを提供する。  不平衡入力端子3に第1,第2の縦結合共振子型弾性表面波フィルタ部4,5の各中央の第2のIDT4b,5bが接続されており、両側の第1,第3のIDT部4a,4c及び5a,5cがそれぞれ第1,第2の平衡出力端子7,9に接続されており、IDT4a~5cが狭ピッチ電極指部Nを有し、第2のIDT4bの狭ピッチ電極指部の電極指ピッチをP1、第1,第3のIDTの狭ピッチ電極指部の電極指ピッチをP2、狭ピッチ電極指部以外の電極指の本数をK1、狭ピッチ電極指部以外の電極指の本数をK2としたときに、P1>P2及び1.12≦K1/K2≦1.65とされている、バランス型弾性表面波フィルタ1。

Description

明 細 書
ノ ンス型弾性表面波フィルタ 技術分野
[0001] 本発明は、平衡—不平衡変浦能を有するバランス型弾性表面波フィルタに関し 、より詳細には、 IDTが狭ピッチ電極指部を有し、かつ入出力インピーダンスの比が 特定の値とされているバランス型弾性表面波フィルタに関する。
背景技術
[0002] 従来、携帯電話機などの通信機器において、平衡—不平衡変換機能を有するバラ ンス型弾性表面波フィルタが広く用いられている。例えば、下記の特許文献 1には、 図 26に示すバランス型弾性表面波フィルタが開示されている。
[0003] 図 26に示すバランス型弾性表面波フィルタ 501では、不平衡入カ端子 502に、縦 結合共振子型表面波フィルタ部 503, 504が接続されている。表面波フィルタ部 503 , 504は、それぞれ、表面波伝搬方向に配置された第 1〜第 3の IDT (インターデジタ ルトランスデューサ) 503a〜503c及び 504a〜504cを有する。中央の第 2の IDT50 3b, 504bが、不平衡入力端子 502に電気的に接続されている。そして、表面波伝 搬方向において、 IDT503bの両側に配置された第 1,第 3の IDT503a, 503cが、 第 1の平衡出力端子 505に電気的に接続されている。他方、弾性表面波フィルタ部 5 04の中央の IDT504bの両側に配置されている第 1,第 3の IDT504a, 504c力第 2 の平衡出力端子 506に電気的に接続されている。
[0004] ノ ランス型弾性表面波フィルタ 501では、不平衡入力端子 502側の入力インピー ダンスが 50 Ωとされており、第 1,第 2の平衡出力端子 505, 506側の特性インピー ダンスは 150 Ωとされている。すなわち、入出力のインピーダンス比は 1 : 3とされてい た。これは、ノ ンス型弾性表面波フィルタ 501の入力端にはアンテナが接続される ため、通常 50 Ωとされていたのに対し、出力側に接続される ICの入力インピーダンス は 150 Ωであったことによる。
[0005] 他方、下記の特許文献 2, 3には、それぞれ、特許文献 1に記載のバランス型弾性 表面波フィルタと同様に、平衡—不平衡変 能を有する但し、電極構造は異なる ノ ランス型弾性表面波フィルタが開示されている。特許文献 2, 3に記載のバランス型 弾性表面波フィルタにお!/、ても、不平衡信号端子と平衡信号端子のインピーダンス 比は、 1 : 3〜 1 :4と程度とされていた。
[0006] 他方、近年、この種のバランス型弾性表面波フィルタの出力側に接続される ICとし て、入力インピーダンスが 100 Ω程度の平衡型ミキサー ICが市販されている。このよ うな ICに対応するには、該 ICに接続されるバランス型弾性表面波フィルタの出力イン ピーダンスは 100 Ωとすることが求められている。また、入力端子側のインピーダンス を 50 Ωとする場合には、弾性表面波フィルタの入出力インピーダンス比は 1: 2とする ことが求められている。
下記の特許文献 4には、平衡ー不平衡変換機能を有し、不平衡信号端子と平衡信 号端子のインピーダンス比が 1: 2とされたバランス型弾性表面波フィルタが開示され ている。図 27は、特許文献 4に記載のバランス型弾性表面波フィルタの電極構造を 示す平面図である。ノ ンス型弾性表面波フィルタ 601では、不平衡入力端子 602 に、縦結合共振子型弾性表面波フィルタ部 603, 604が接続されている。縦結合共 振子型弾性表面波フィルタ部 603, 604は、それぞれ、表面波伝搬方向に配置され た第 1〜第 3の IDT603a〜603c, 604a〜604cを有する。中央の第 2の IDT603b , 604bが、それぞれ、不平衡入力端子 602に電気的に接続されている。 IDT603b の表面波伝搬方向両側に位置する第 1,第 3の IDT603a, 603cは、第 1の平衡出 力端子 605に電気的に接続されている。同様に、弾性表面波フィルタ部 604におい て IDT604bの表面波伝搬方向両側に位置している IDT604a, 604c力 第 2の平 衡出力端子 606に電気的に接続されている。
[0007] ここでは、 IDT603a, 603bは、表面波伝搬方向においてギャップを隔てて隣り合 つている部分近傍に、狭ピッチ電極指部 Nを有する。すなわち、 IDT603aの IDT60 3b近傍部分の電極指ピッチが、残りの部分に比べて電極指ピッチが狭くされている。 この電極指ピッチが相対的に狭い IDT部分を、狭ピッチ電極指部 Nという。同様に、 I DT603bの IDT603a側端部近傍にも狭ピッチ電極指部 Nが設けられて 、る。さらに 、 IDT603b, 603c, IDT604a〜604c【こお!/ヽても、ギャップを隔てて隨り合って ヽる 部分近傍に、それぞれ狭ピッチ電極指部 Nが設けられて ヽる。 [0008] そして、特許文献 4に記載のバランス型弾性表面波フィルタ 601では、不平衡側の I DT603b, 604bと平衡佃 Jの IDT603a, 603c, 604a, 604cとで電極旨の対数 itを 異ならせることにより、入出力インピーダンス比が 1 : 2とされ得る旨が記載されている。 特許文献 1:特開 2001— 308672号公報
特許文献 2:特開平 6 - 204781号公報
特許文献 3:特開平 11― 97966号公報
特許文献 4:特開 2004— 48675号公報
発明の開示
[0009] 弾性表面波フィルタでは、 IDTのインピーダンスは電極指交叉幅が大きくなるほど 小さくなり、電極指の本数が多くなるほど小さくなる。図 25に示した弾性表面波表面 波フィルタ 601では、例えば弾性表面波フィルタ部 603における中央の IDT603bが 不平衡入力端子 602に接続されており、両側の IDT603a, 603cが第 1の平衡出力 端子 605に接続されている。
[0010] 従って、不平衡信号端子—平衡信号端子のインピーダンス比を調整するために、 I DT603bの交叉幅と、 IDT603a、 603cの交叉幅とを異ならせることはできない。よつ て、前述したように、不平衡側の IDT603bの電極指の対数と、平衡側の IDT603a、 603cの電極指の対数とを異ならせることにより、入出力インピーダンス比が変化され ている。例えば、第 1の平衡出力端子 605のインピーダンスは、平衡側 IDT603aの 電極指の対数に依存した値となる。これは、平衡出力端子 605に、 IDT603a, 603c が並列接続されており、かつアース電位を介して平衡出力端子 605と平衡出力端子 606とが直列接続されていることによる。これに対して、不平衡端子 602側のインピー ダンスは、不平衡側 IDT603bの電極指の対数の 1Z2に相当した値となる。すなわ ち、平衡側 IDT603aの電極指の対数に対し、不平衡側 IDT603bの電極指の対数 を 1Z2とすれば、不平衡信号端子 平衡信号端子のインピーダンス比を 1: 2とする ことができる。
[0011] しかしながら、不平衡側の IDT603b, 604bの対数と、両側の IDT603a, 603c, 6 04a, 604cの対数との比を変化させた場合、弾性表面波フィルタ 601の通過帯域を 得るための複数の共振モードの共振周波数に影響を与えるという問題があった。従 つて、対数比を大きく変えることはできな力つた。また、不平衡側の IDTの対数が、平 衡側の IDT603a, 603cの対数よりもかなり少なくなるため、フィルタとしての十分な 帯域幅を得ることができな 、と 、う問題があった。
[0012] 加えて、電極指の対数比を変化させる方法では、不平衡信号端子と平衡信号端子 のインピーダンス比を正確に 1: 2とすることはできず、 1: 2からずれがちであった。
[0013] 本発明の目的は、上述した従来技術の欠点を解消し、平衡ー不平衡変換機能を 有し、帯域幅や損失などのフィルタ特性を劣化させることなぐ通過帯域を得るための 複数の共振モードのインピーダンス調整の自由度を高めることができ、従って不平衡 信号端子 平衡信号端子のインピーダンス比を 1 : 2などに容易にかつ正確に設定 することができ、しかも十分な帯域幅を有する弾性表面波フィルタを提供することにあ る。
[0014] 本願の第 1の発明は、不平衡端子と、第 1,第 2の平衡端子とに接続される平衡 不平衡変換機能を有するバランス型弾性表面波フィルタであって、圧電基板と、前記 圧電基板上において表面波伝搬方向に沿って配置された第 1〜第 3の IDTを有し、 中央の第 2の IDTまたは両側の第 1,第 3の IDTが不平衡端子に接続されており、両 側の第 1,第 3の IDTまたは中央の第 2の IDTが第 1の平衡端子に接続されている第 1の弾性表面波フィルタ部と、前記圧電基板上において表面波伝搬方向に配置され た第 1〜第 3の IDTを有し、中央に配置された第 2の IDTまたは両側の第 1,第 3の I DTが前記不平衡端子に接続されており、両側の第 1,第 3の IDTまたは中央の第 2 の IDTが第 2の平衡端子に接続されており、第 1の弾性表面波フィルタ部とは入力信 号に対する出力信号の位相が 180度異なるように構成されている第 2の弾性表面波 フィルタ部とを備え、前記第 1,第 2の弾性表面波フィルタ部において、表面波伝搬 方向にギャップを隔てて隣り合って 、る一対の IDTにお!/、て、ギャップに面して!/、る 電極指を含む一部の電極指の周期が、 IDTの主たる部分の電極指の周期よりも小さ くされている狭ピッチ電極指部とされており、第 1,第 2の弾性表面波フィルタ部の前 記不平衡端子に接続されて 、る IDTの狭ピッチ電極指部の電極指ピッチを Pl、前 記平衡端子に接続されて 、る IDTの狭ピッチ電極指部の電極指ピッチを P2、第 1, 第 2の弾性表面波フィルタ部の前記不平衡端子に接続されている IDTの狭ピッチ電 極指部以外の電極指部の電極指の本数を Kl、前記平衡端子に接続されて ヽる ID Tの狭ピッチ電極指部以外の電極指部の電極指の本数を K2としたときに、
P1 >P2
1. 12≤K1/K2≤1. 65
とされていることを特徴とする。
第 2の発明は、不平衡端子と、第 1,第 2の平衡端子とに接続される平衡ー不平衡 変換機能を有するバランス型弾性表面波フィルタであって、圧電基板と、前記圧電基 板上において表面波伝搬方向に沿って配置された第 1〜第 3の IDTを有し、中央の 第 2の IDTまたは両側の第 1,第 3の IDTが不平衡端子に接続されており、両側の第 1,第 3の IDTまたは中央の第 2の IDTが第 1の平衡端子に接続されている第 1の弾 性表面波フィルタ部と、前記圧電基板上にぉ 、て表面波伝搬方向に配置された第 1 〜第 3の IDTを有し、中央に配置された第 2の IDTまたは両側の第 1,第 3の IDTが 前記不平衡端子に接続されており、両側の第 1,第 3の IDTまたは中央の第 2の IDT が第 2の平衡端子に接続されており、第 1の弾性表面波フィルタ部とは入力信号に対 する出力信号の位相が 180度異なるように構成されている第 2の弾性表面波フィルタ 部とを備え、前記第 1,第 2の弾性表面波フィルタ部において、表面波伝搬方向にギ ヤップを隔てて隣り合って 、る一対の IDTにお!/、て、ギャップに面して!/、る電極指を 含む一部の電極指の周期が、 IDTの主たる部分の電極指の周期よりも小さくされて いる狭ピッチ電極指部とされており、第 1,第 2の弾性表面波フィルタ部の前記不平 衡端子に接続されて 、る IDTの狭ピッチ電極指部の電極指ピッチを Pl、前記平衡 端子に接続されている IDTの狭ピッチ電極指部の電極指ピッチを Ρ2、第 1,第 2の弾 性表面波フィルタ部の前記不平衡端子に接続されている IDTの狭ピッチ電極指部以 外の電極指部の電極指の本数を Kl、前記平衡端子に接続されて 、る IDTの狭ピッ チ電極指部以外の電極指部の電極指の本数を Κ2、前記第 1,第 2の弾性表面波フ ィルタ部の前記不平衡端子に接続されている IDTの狭ピッチ電極指部の電極指の 本数を Kln、前記平衡端子に接続されて 、る IDTの狭ピッチ電極指部の電極指の 本数を Κ2ηとしたときに、
Ρ1 >Ρ2 Kln=K2n
1. 12≤K1/K2≤1. 65
とされていることを特徴とする。
[0016] 第 1,第 2の発明に係るバランス型弾性表面波フィルタでは、好ましくは、第 1,第 2 の弾性表面波フィルタ部におけるメタライゼーシヨンレシオを d、電極指交叉幅を Wと した時に、 67. 41 I≤W/d≤74. 3 λ Ι (但し、 λ Iは IDTの波長)とされている。
[0017] 本願の第 3の発明は、平衡端子と、第 1,第 2の不平衡端子に接続される平衡ー不 平衡変換機能を有するバランス型弾性表面波フィルタであって、圧電基板と、前記圧 電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え、前記第 2の IDTが前記不平衡端子に接続されており、両側の第 1,第 3の IDTが第 1,第 2の 平衡端子にそれぞれ接続されており、前記第 1〜第 3の IDTが隣り合う部分において 、各 IDTは狭ピッチ電極指部を有し、該狭ピッチ電極指部の電極指ピッチは、狭ピッ チ電極指が設けられている IDTの主たる電極指部の電極指ピッチよりも小さくされて おり、第 1の IDTの位相が第 3の IDTの位相に 180度反転されており、前記中央に位 置している第 2の IDTの狭ピッチ電極指部の電極指ピッチを Pl、前記第 1,第 3の ID Tの狭ピッチ電極指部の電極指ピッチを P2、第 2の IDTの狭ピッチ電極指部以外の 電極指部の電極指の本数を Kl、第 1,第 3の IDTの狭ピッチ電極指部以外の電極 指部の電極指の本数を Κ2としたときに、
Ρ1 >Ρ2
1. 12≤Κ1/Κ2≤1. 65
とされていることを特徴とする。
[0018] 第 4の発明は、平衡端子と、第 1,第 2の不平衡端子に接続される平衡ー不平衡変 換機能を有するバランス型弾性表面波フィルタであって、圧電基板と、前記圧電基板 上において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え、前記第 2の ID Tが前記不平衡端子に接続されており、両側の第 1,第 3の IDTが第 1,第 2の平衡 端子にそれぞれ接続されており、前記第 1〜第 3の IDTが隣り合う部分において、各 I DTは狭ピッチ電極指部を有し、該狭ピッチ電極指部の電極指ピッチは、狭ピッチ電 極指が設けられている IDTの主たる電極指部の電極指ピッチよりも小さくされており、 第 1の IDTの位相が第 3の IDTの位相に 180度反転されており、前記中央に位置し ている第 2の IDTの狭ピッチ電極指部の電極指ピッチを Pl、前記第 1,第 3の IDTの 狭ピッチ電極指部の電極指ピッチを P2、第 2の IDTの狭ピッチ電極指部以外の電極 指部の電極指の本数を Kl、第 1,第 3の IDTの狭ピッチ電極指部以外の電極指部 の電極指の本数を Κ2、第 2の IDTの狭ピッチ電極指部の電極指の本数を Kln、第 1 ,第 3の IDTの狭ピッチ電極指部の電極指の本数を Κ2ηとしたときに、
Ρ1 >Ρ2
Kln=K2n
1. 12≤Κ1/Κ2≤1. 65
とされていることを特徴とする。
[0019] 第 3,第 4の発明のバランス型弾性表面波フィルタでは、好ましくは、第 1〜第 3の I DTのメタライゼーシヨンレシオを d、電極指交叉幅を Wとした時に、 134. 8 1 I≤W/ d≤148. 6 λ Ι (但し、 λ Iは IDTの波長)とされている。
[0020] 第 5の発明は、不平衡端子と、第 1,第 2の平衡端子とに接続される平衡ー不平衡 変換機能を有するバランス型弾性表面波フィルタであって、圧電基板と、圧電基板上 において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え、表面波伝搬方向 両側に位置する第 1,第 3の IDTが、前記不平衡端子に接続されており、前記第 2の I DTが、表面波伝搬方向に分割された第 1,第 2の IDT部を有し、第 1,第 2の IDT部 がそれぞれ第 1,第 2の平衡信号端子に電気的に接続されており、不平衡端子から 第 1の平衡信号端子に流れる信号の位相が、不平衡端子から第 2の平衡信号端子 に流れる位相と 180度反転されるように第 1〜第 3の IDTが構成されており、前記第 1 〜第 3の IDTがギャップを隔てて表面波伝搬方向にぉ 、て隣り合う部分にぉ 、て、 該ギャップ近傍の複数本の電極指が相対的にピッチが狭い狭ピッチ電極指部とされ ており、前記不平衡信号端子に接続されている第 1,第 3の IDTの狭ピッチ電極指部 の電極指ピッチを Pl、第 1,第 2の平衡信号端子に第 1,第 2の IDT部が接続されて いる第 2の IDTの狭ピッチ電極指部の電極指ピッチを P2、第 1,第 3の IDTの狭ピッ チ電極指部以外の電極指部の電極指の本数を K1、第 2の IDTの狭ピッチ電極指部 以外の電極指部の電極指の本数を K2としたときに、 P1 >P2
1. 12≤K1/K2≤1. 65
とされていることを特徴とする。
[0021] 第 6の発明は、不平衡端子と、第 1,第 2の平衡端子とに接続される平衡ー不平衡 変換機能を有するバランス型弾性表面波フィルタであって、圧電基板と、圧電基板上 において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え、表面波伝搬方向 両側に位置する第 1,第 3の IDTが、前記不平衡端子に接続されており、前記第 2の I DTが、表面波伝搬方向に分割された第 1,第 2の IDT部を有し、第 1,第 2の IDT部 がそれぞれ第 1,第 2の平衡信号端子に電気的に接続されており、不平衡端子から 第 1の平衡信号端子に流れる信号の位相が、不平衡端子から第 2の平衡信号端子 に流れる位相と 180度反転されるように第 1〜第 3の IDTが構成されており、前記第 1 〜第 3の IDTがギャップを隔てて表面波伝搬方向にぉ 、て隣り合う部分にぉ 、て、 該ギャップ近傍の複数本の電極指が相対的にピッチが狭い狭ピッチ電極指部とされ ており、前記不平衡信号端子に接続されている第 1,第 3の IDTの狭ピッチ電極指部 の電極指ピッチを Pl、第 1,第 2の平衡信号端子に第 1,第 2の IDT部が接続されて いる第 2の IDTの狭ピッチ電極指部の電極指ピッチを P2、第 1,第 3の IDTの狭ピッ チ電極指部以外の電極指部の電極指の本数を K1、第 2の IDTの狭ピッチ電極指部 以外の電極指部の電極指の本数を K2、第 1,第 3の IDTの狭ピッチ電極指部の電 極指の本数を Kln、第 2の IDTの狭ピッチ電極指部の電極指の本数を Κ2ηとしたと きに、
Ρ1 >Ρ2
Kln=K2n
1. 12≤Κ1/Κ2≤1. 65
とされていることを特徴とする。
第 5,第 6の発明に係るバランス型弾性表面波フィルタでは、好ましくは、第 1〜第 3 の IDTのメタライゼーシヨンレシオを d、電極指交叉幅を Wとした時に、 134. 8 λ Ι≤ W/d≤148. 6 λ Ι (但し、 λ Iは IDTの波長)とされている。
[0022] 本願の第 7の発明は、不平衡端子と、第 1,第 2の平衡端子とに接続される平衡 不平衡変換機能を有するバランス型弾性表面波フィルタであって、圧電基板と、前記 圧電基板上において表面波伝搬方向に沿って配置された第 1〜第 3の IDTを有し、 中央の第 2の IDTまたは両側の第 1,第 3の IDTが不平衡端子に接続されており、両 側の第 1,第 3の IDTまたは中央の第 2の IDTが第 1の平衡端子に接続されている第 1の表面波フィルタ部と、前記圧電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTを有し、中央に配置された第 2の IDTまたは両側の第 1,第 3の IDTが 前記不平衡端子に接続されており、両側の第 1,第 3の IDTまたは中央の第 2の IDT が第 2の平衡端子に接続されており、第 1の弾性表面波フィルタ部とは入力信号に対 する出力信号の位相が 180度異なるように構成されている第 2の弾性表面波フィルタ 部とを備え、前記第 1,第 2の弾性表面波フィルタ部において、表面波伝搬方向にギ ヤップを隔てて隣り合って 、る一対の IDTにお!/、て、ギャップに面して!/、る電極指を 含む一部の電極指の周期が、 IDTの主たる部分の電極指の周期よりも小さくされて いる狭ピッチ電極指部とされており、第 1,第 2の弾性表面波フィルタ部の前記不平 衡端子に接続されて 、る IDTの狭ピッチ電極指部の電極指ピッチを Pl、該狭ピッチ 電極指部の電極指の本数を Nl、前記第 1,第 2の平衡端子にそれぞれ接続されて Vヽる IDTの狭ピッチ電極指部の電極指ピッチを P2、該狭ピッチ電極指部の電極指の 本数を N2としたときに、
P1≠P2
NKN2
とされていることを特徴とする。
第 8の発明では、平衡端子と、第 1,第 2の不平衡端子に接続される平衡ー不平衡 変換機能を有するバランス型弾性表面波フィルタであって、圧電基板と、前記圧電基 板上において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え、前記第 2の I DTが前記不平衡端子に接続されており、両側の第 1,第 3の IDTが第 1,第 2の平衡 端子にそれぞれ接続されており、前記第 1〜第 3の IDTが隣り合う部分において、各 I DTは狭ピッチ電極指部を有し、該狭ピッチ電極指部の電極指ピッチは、狭ピッチ電 極指が設けられている IDTの主たる電極指部の電極指ピッチよりも小さくされており、 第 1の IDTの位相が第 3の IDTの位相に 180度反転されており、前記不平衡端子に 接続されて!ヽる第 2の IDTの狭ピッチ電極指部の電極指ピッチを PI、該狭ピッチ電 極指部の電極指の本数を Nl、前記第 1,第 2の平衡端子にそれぞれ接続されている 前記第 1,第 3の IDTの狭ピッチ電極指部の電極指ピッチを P2、該狭ピッチ電極指 部の電極指の本数を N2としたときに、
P1≠P2
NKN2
とされていることを特徴とする。
[0024] 第 9の発明は、不平衡端子と、第 1,第 2の平衡端子とに接続される平衡ー不平衡 変換機能を有するバランス型弾性表面波フィルタであって、圧電基板と、圧電基板上 において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え、表面波伝搬方向 両側に位置する第 1,第 3の IDTが、前記不平衡端子に接続されており、前記第 2の I DTが、表面波伝搬方向に分割された第 1,第 2の IDT部を有し、第 1,第 2の IDT部 がそれぞれ第 1,第 2の平衡信号端子に電気的に接続されており、不平衡端子から 第 1の平衡信号端子に流れる信号の位相が、不平衡端子から第 2の平衡信号端子 に流れる位相と 180度反転されるように第 1〜第 3の IDTが構成されており、前記第 1 〜第 3の IDTがギャップを隔てて表面波伝搬方向に隣り合って 、る部分にぉ 、て、 第 1〜第 3の IDTがギャップに近接する部分に狭ピッチ電極指部を有し、不平衡信号 端子に接続されている第 1,第 3の IDTの狭ピッチ電極指部の電極指ピッチを Pl、該 狭ピッチ電極指部の電極指の本数を Nl、前記第 1,第 2の平衡信号端子にそれぞ れ第 1,第 2の IDT部が接続されて ヽる第 2の IDTの狭ピッチ電極指部の電極指ピッ チを P2、該狭ピッチ電極指部の電極指の本数を N2としたときに、
P1≠P2
NKN2
とされていることを特徴とする。
[0025] 第 7〜第 9の発明においては、好ましくは、 P1 < P2とされる。
[0026] 第 1,第 2の発明に係るバランス型弾性表面波フィルタでは、中央の第 2の IDTまた は両側の第 1,第 3の IDTが不平衡端子に接続された第 1,第 2の弾性表面波フィル タ部が設けられており、第 1の弾性表面波フィルタ部の第 1,第 3の IDTまたは第 2の I DTが第 1の平衡端子に、第 2の弾性表面波フィルタ部の第 1 ,第 3の IDTまたは第 2 の IDTが第 2の平衡端子に接続されており、第 1の弾性表面波フィルタ部と第 2の弾 性表面波フィルタ部の出力信号の位相が 180度異なるように構成されている。従って 、平衡—不平衡変換機能を有するバランス型弾性表面波フィルタが構成されている
[0027] そして、第 1,第 2の弹¾表面波フィルタ部において、ギャップを隔てて隣り合つてい る一対の IDTは、ギャップに面している電極指を含む一部の電極指の周期力 IDT の主たる部分の電極指の周期よりも小さくされている狭ピッチ電極指部を有する。ま た、 P1 >P2及び 1. 12≤K1/K2≤1. 65とされているため、通過帯域内における 挿入損失及び VSWRが小さぐ十分な帯域幅を有する良好なフィルタ特性を得るこ とができるだけでなぐ不平衡信号端子と平衡信号端子のインピーダンス比を確実に 1 : 2とすることが可能な弾性表面波フィルタを得ることができる。特に、 IDTの電極指 の本数だけでなぐ狭ピッチ電極指部のピッチ比をも調整することにより、インピーダ ンス比を変化することができるので、不平衡信号端子と平衡信号端子とのインピーダ ンス比を正確に 1: 2とすることが可能となる。
[0028] 特に、第 2の発明では、 Κ1η=Κ2ηとされているため、狭ピッチ電極指部の設計が 容易であり、かつ IDTが隣り合つている部分の不連続性を緩和する効果をより一層高 めることができる。
[0029] 第 1,第 2の発明において、 67. 4 1 I≤W/d≤74. 3 λ Iとされている場合には、 不平衡端子側のインピーダンスを 50 Ωとし、平衡信号端子側のインピーダンスを確 実に 100 Ωとすることができ、入力インピーダンスが 100 Ωの ICに接続されるバラン ス型弹性表面波フィルタを容易に提供することができる。
[0030] 第 3, 4の発明に係るバランス型弾性表面波フィルタでは、不平衡端子に第 2の IDT が接続されており、両側の第 1,第 3の IDTが第 1,第 2の平衡端子にそれぞれ接続さ れており、第 1の IDTの位相が第 3の IDTの位相に対して 180度反転されて!、るため 、第 1の発明と同様に、平衡ー不平衡変換機能を有するバランス型弾性表面波フィ ルタが構成されている。そして、第 1〜第 3の IDTは、狭ピッチ電極指部を有し、 Pl > Ρ2及び 1. 12≤Κ1/Κ2≤1. 65とされているため、通過帯域内における挿入損失 及び VSWRが小さぐ十分な帯域幅を有する良好なフィルタ特性を得ることができる だけでなぐ不平衡信号端子と平衡信号端子のインピーダンス比を確実に 1: 2とする ことが可能な弾性表面波フィルタを得ることができる。特に、 IDTの電極指の本数だ けでなぐ狭ピッチ電極指部のピッチ比をも調整することにより、インピーダンス比を変 化することができるので、不平衡信号端子と平衡信号端子のインピーダンス比を正確 に 1: 2とすることが可能となる。
[0031] 特に、第 4の発明では、 Kln=K2nとされているので、狭ピッチ電極指部を有する I DTの設計が容易となり、かつ狭ピッチ電極指部を設けたことによる、隣り合う IDTが 隣り合つている部分の不連続性を緩和する効果を高めることができる。
[0032] 第 3,第 4の発明において、 134. 8 1 I≤W/d≤148. 6 λ Iとされている場合には 、不平衡端子側のインピーダンスを 50 Ωとし、平衡信号端子側のインピーダンスを確 実に 100 Ωとすることができ、入力インピーダンスが 100 Ωの ICに接続されるバラン ス型弹性表面波フィルタを容易に提供することができる。
[0033] 第 5,第 6の発明では、圧電基板上において、第 1〜第 3の IDTが表面波伝搬方向 に配置されており、第 1,第 3の IDTが不平衡端子に接続されており、第 2の IDTが、 表面波伝搬方向に分割された第 1,第 2の IDT部を有し、第 1,第 2の IDT部がそれ ぞれ第 1,第 2の平衡信号端子に接続されており、不平衡端子から第 1の平衡端子に 流れる信号の位相が、不平衡端子から第 2の平衡信号端子に流れる位相と 180度反 転されているため、第 1,第 2の発明と同様に、平衡—不平衡変浦能を有するバラ ンス型弾性表面波フィルタが構成されて 、る。
[0034] そして、第 3の発明においても、第 1〜第 3の IDTが狭ピッチ電極指部を有し、 P1 > Ρ2及び 1. 12≤Κ1/Κ2≤1. 65とされているため、通過帯域内における挿入損失 及び VSWRが小さぐ十分な帯域幅を有する十分なフィルタ特性を得ることができる だけでなぐ不平衡信号端子と平衡信号端子のインピーダンス比を 1: 2とすることが 可能な弾性表面波フィルタを得ることができる。特に、 IDTの電極指の本数だけでな ぐ狭ピッチ電極指部のピッチ比をも調整することにより、インピーダンス比を変化する ことができるので、不平衡信号端子と平衡信号端子のインピーダンス比を正確に 1: 2 とすることができる。 [0035] 特に、第 6の発明では、 Kln=K2nとされて 、るので、狭ピッチ電極指部を有する I DTの設計が容易となり、かつ狭ピッチ電極指部 Νを設けたことによる効果、すなわち IDTが隣り合つている部分の不連続性を緩和する効果をより一層高めることができる
[0036] 第 5, 6の発明において 134. 8 1 I≤W/d≤148. 6 λ Iとされている場合には、不 平衡端子側のインピーダンスを 50 Ωとし、平衡信号端子側のインピーダンスを確実 に 100 Ωとすることができ、入力インピーダンスが 100 Ωの ICに接続されるバランス 型弾性表面波フィルタを容易に提供することができる。
[0037] 第 7の発明では、圧電基板上に第 1〜第 3の IDTを有する第 1,第 2の表面波フィル タ部が設けられており、第 1,第 2の表面波フィルタ部の中央の第 2の IDTまたは両側 の第 1,第 3の IDTが不平衡信号端子に接続されており、第 1の表面波フィルタ部の 第 1,第 3の IDTまたは第 2の IDTが第 1の平衡信号端子に、第 2の弾性表面波フィ ルタ部の第 1,第 3の IDTまたは第 2の IDTが第 2の平衡信号端子に接続されており 、表面波伝搬方向に隣り合つている一対の IDT力 ギャップに面している電極指を含 む一部の電極指の周期が、 IDTの主たる部分の電極指の周期よりも小さくされている 狭ピッチ電極指部を有する、平衡-不平衡変換機能を有するバランス型弾性表面波 フィルタにおいて、 Ρ1≠Ρ2かつ Ν1 <Ν2とされているため、各共振モードのインピー ダンス調整の自由度を高めることができる。従って、フィルタ特性を損なうことなぐ不 平衡信号端子一平衡信号端子のインピーダンス比を 1: 2と設定することが容易となる
[0038] よって、通過帯域内における挿入損失及び VSWR力 S小さぐ十分な帯域幅を有す る十分なフィルタ特性を得ることができるだけでなぐ不平衡信号端子と平衡信号端 子のインピーダンス比を 1: 2とすることが可能な弾性表面波フィルタを得ることができ る。
[0039] 特に、 IDTの電極指の本数だけでなぐ狭ピッチ電極指部のピッチ比をも調整する ことにより、インピーダンス比を変化することができるので、不平衡信号端子と平衡信 号端子のインピーダンス比を正確に 1: 2とすることが可能となる。
[0040] 第 8の発明では、圧電基板上に第 1〜第 3の IDTが配置されており、第 2の IDTが 不平衡信号端子に接続されており、両側の第 1,第 3の IDTが第 1,第 2の平衡信号 端子に接続されており、第 1〜第 3の IDTが狭ピッチ電極指部を有する平衡 不平 衡変 能を有するバランス型弾性表面波フィルタにおいて、 P1≠P2かつ N1 <N 2とされているため、通過帯域内における挿入損失及び VSWRが小さぐ十分な帯域 幅を有する十分なフィルタ特性を得ることができるだけでなく、不平衡信号端子と平 衡信号端子のインピーダンス比を 1: 2とすることが可能な弾性表面波フィルタを得る ことができる。
[0041] 特に、 IDTの電極指の本数だけでなぐ狭ピッチ電極指部のピッチ比をも調整する ことにより、インピーダンス比を変化することができるので、不平衡信号端子と平衡信 号端子のインピーダンス比を正確に 1: 2とすることが可能となる。
[0042] 第 9の発明では、圧電基板上に第 1〜第 3の IDTが表面波伝搬方向に配置されて おり、第 1,第 3の IDTが不平衡信号端子に接続されており、第 2の IDTが、第 1,第 2 の IDT部に分割されており、第 1,第 2の IDT部がそれぞれ第 1,第 2の平衡信号端 子に接続されており、第 1〜第 3の IDTが狭ピッチ電極指部を有する平衡ー不平衡 変換機能を有するバランス型弾性表面波フィルタにおいて、 P1≠P2かつ N1 <N2 とされているため、通過帯域内における挿入損失及び VSWRが小さぐ十分な帯域 幅を有する十分なフィルタ特性を得ることができるだけでなく、不平衡信号端子と平 衡信号端子のインピーダンス比を 1: 2とすることが可能な弾性表面波フィルタを得る ことができる。
[0043] 特に、 IDTの電極指の本数だけでなぐ狭ピッチ電極指部のピッチ比をも調整する ことにより、インピーダンス比を変化することができるので、不平衡信号端子と平衡信 号端子のインピーダンス比を正確に 1: 2とすることが可能となる。
[0044] 第 7〜第 9の発明において、好ましくは、 P1 < P2とされ、その場合には、通過帯域 内の VSWRをより一層小さくすることができ、より一層良好なフィルタ特性を得ること ができる。
図面の簡単な説明
[0045] [図 1]図 1は、本発明の第 1の実施形態に係るバランス型弾性表面波フィルタの電極 構造を示す模式的平面図である。 圆 2]図 2は、第 1の実施形態の弾性表面波フィルタの減衰量—周波数特性を示す 図である。
[図 3]図 3は、第 1の実施形態の弾性表面波フィルタの VSWR特性を示す図である。
[図 4]図 4は、(a)及び (b)は、第 1の実施形態の弾性表面波フィルタの S1及び S2の 各反射特性を示すスミスチャートである。
[図 5]図 5は、比較のために用意した狭ピッチ電極指部の電極指ピッチが全て等しくさ れている弾性表面波フィルタの減衰量—周波数特性を示す図である。
[図 6]図 6は、比較のために用意した狭ピッチ電極指部の電極指ピッチが全て等しくさ れている弾性表面波フィルタの VSWR—周波数特性を示す図である。
[図 7]図 7は、(a)及び (b)は、狭ピッチ電極指部の電極指の本数を全て等しくした比 較のために用意した弾性表面波フィルタの SI 1及び S22の反射特性を示すスミスチ ヤートである。
[図 8]図 8は、(a)及び (b)は、不平衡信号端子のインピーダンスを 50 Ω及び平衡信 号端子のインピーダンスを 150 Ωとして設計された弾性表面波フィルタの S 11及び S 22の反射特性を示すスミスチャートである。
[図 9]図 9は、(a)及び (b)は、不平衡信号端子のインピーダンスを 50 Ω、平衡信号端 子のインピーダンスを 100 Ωとした場合の S 11及び S22の反射特性を示すスミスチヤ ートである。
[図 10]図 10は、(a)及び (b)は、弾性表面波フィルタの電極指交叉幅を 51. Ο λ Ιに 変更した弾性表面波フィルタの S11及び S22側の反射特性を示す各スミスチャート である。
[図 11]図 11は、(a)及び (b)は、 S 11側のインピーダンスを高ぐ S22側のインピーダ ンスを低くするために、 IDTの電極指を変更した場合の S 11及び S22側の各反射特 性を示すスミスチャートである。
[図 12]図 12は、(a)及び (b)は、 IDTの狭ピッチ電極指部の電極指ピッチを 0. 444 λ Iから 0. 438 λ Iに変化した場合の SI 1側及び S22側の反射特性を示すスミスチヤ ートである。
[図 13]図 13は、(a)及び (b)は、中央の第 2の IDTの狭ピッチ電極指部の電極指ピッ チを 0. 444 λ I力ら 0. 454 λ ΐに変更した場合の SI 1及び S22側の反射特性を示す 各スミスチャートである。
[図 14]図 14は、バランス型弾性表面波フィルタにお 、て現れる 3つの共振モードを説 明するための図である。
[図 15]図 15は、図 14に示した各共振モードの有効電流分布を説明するための図で あり、(a)は IDTの概略構成図、(b)は IDTの配置に対応した各共振モードを示す図 である。
[図 16]図 16は、電極指交叉幅及び IDTの電極指部分の電極指の本数を変化させた 場合の VSWRの変化を示す図である。
[図 17]図 17は、第 2の実施形態の弾性表面波フィルタの減衰量 周波数特性を示 す図である。
[図 18]図 18は、第 2の実施形態の弾性表面波フィルタの VSWR特性を示す図である
[図 19]図 19は、(a)及び (b)は、第 2の実施形態の弾性表面波フィルタにおける S11 側及び S22側における反射特性を示すスミスチャートである。
[図 20]図 20は、(a)及び (b)は、第 2の実施形態の弾性表面波フィルタにおいて、平 衡信号端子に接続されている狭ピッチ電極指部の電極指の本数を 3本力 5本に増 加させた場合の S11側及び S22側における反射特性を示すスミスチャートである。
[図 21]図 21は、本発明の第の 3実施形態に係る弾性表面波フィルタを示す模式的平 面図である。
[図 22]図 22は、本発明の第 4の実施形態に係る弾性表面波フィルタを示す模式的平 面図である。
[図 23]図 23は、本発明の第 5の実施形態に係る弾性表面波フィルタを示す模式的平 面図である。
[図 24]図 24は、本発明の第 6の実施形態に係る弾性表面波フィルタを示す模式的平 面図である。
[図 25]図 25は、本発明の第 7の実施形態に係る弾性表面波フィルタを示す模式的平 面図である。 [図 26]図 26は、従来のバランス型弾性表面波フィルタの一例を示す模式的平面図で ある。
[図 27]図 27は、従来のバランス型弾性表面波フィルタの他の例を説明するための模 式的平面図である。
符号の説明
1…バランス型弾性表面波フィルタ
2…圧電基板
3…不平衡入力端子
4…第 1の縦結合共振子型弾性表面波フィルタ部
4a〜4c…第 1〜第 3の IDT
4d, 4e…反射器
5…第 2の縦結合共振子型弾性表面波フィルタ部
5 &〜 5c…第 1〜第 3の IDT
5d, 5e…反射器
6· · · 1ポート型弾性表面波共振子
7…第 1の平衡出力端子
8· · · 1ポート型弾性表面波共振子
9…第 2の平衡出力端子
21 · · 'バランス型弾性表面波フィルタ
22…圧電基板
23· ··不平衡入力端子
24a〜24e- "IDT
24f, 24g…反射器
25, 26· ··第 1,第 2の平衡信号端子
31 · · 'バランス型弾性表面波フィルタ
32…圧電基板
33· ··不平衡入力端子
34, 35…弾性表面波フィルタ部 34a〜34e- "IDT
34cl, 34c2- "IDT分割部
34f, 34g…反射器
37, 39…平衡出力端子
41…弾性表面波フィルタ
42a〜42e- "IDT
43· ··不平衡入力端子
47, 49…平衡出力端子
50, 51…弾性表面波フィルタ
52a~52e- --IDT
52f, 52g…反射器
53· ··不平衡入力端子
57, 59…平衡出力端子
70…弾性表面波フィルタ
N…狭ピッチ電極指部
発明を実施するための最良の形態
[0047] 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発 明を明らかにする。
[0048] 図 1は、本発明の第 1の実施形態に係るバランス型弾性表面波フィルタの電極構造 を示す模式的平面図である。
[0049] ノ ンス型弾性表面波フィルタ 1では、圧電基板 2上に、図示の電極構造が形成さ れている。
[0050] ノ ンス型弾性表面波フィルタ 1では、不平衡入力端子 3に、第 1,第 2の縦結合共 振子型弾性表面波フィルタ部 4, 5が接続されている。
[0051] 第 1の縦結合共振子型弾性表面波フィルタ部 4は、表面波伝搬方向に沿って配置 された 3個の IDT4a〜4cと、 IDT4a〜4cが配置されて!、る領域の表面波伝搬方向 両側に配置された反射器 4d, 4eとを有する。第 1〜第 3の IDT4a〜4cは、狭ピッチ 電極指部 Nを有する。すなわち、 IDT4a, 4bを例〖ことると、 IDT4a, 4bは、ギャップを 隔てて隣り合つている。 IDT4a, 4bでは、該ギャップに面している電極指を含む複数 本の電極指のピッチが、当該 IDT4a, 4bの残りの主体となる電極指部分に比べて電 極指ピッチが狭くされて 、る。この電極指ピッチが相対的に狭 、電極指部が狭ピッチ 電極指部 Nである。
[0052] IDT4b, 4cが隣り合つている部分においても、 IDT4b, 4cは、それぞれ、狭ピッチ 電極指部 Nを有する。狭ピッチ電極指部 Nを設けることにより、ギャップを隔てて一対 の IDTが隣り合う部分の不連続性が緩和され、かつ IDT間のギャップを調整すること により、帯域幅の広いバンドパスフィルタを得ることが可能となる。このような狭ピッチ 電極指部を設けたことによる効果は、例えば前述した特許文献 4に記載のように従来 より知られている。
[0053] 縦結合共振子型弾性表面波フィルタ部 5も、同様に第 1〜第 3の IDT5a〜5c及び 反射器 5d, 5eを有する。そして、 IDT5a〜5cもまた、狭ピッチ電極指部 Nを有する。
[0054] 不平衡入力端子 3には、弾性表面波フィルタ部 4, 5の中央に位置している第 2の I DT4b, 5bが電気的に接続されている。 IDT4b, 5bの他端はアース電位に接続され ている。
[0055] 弾性表面波フィルタ部 4において、第 2の IDT4bの両側に位置している第 1,第 3の IDT4a, 4cは、 1ポート型弾性表面波共振子 6を介して第 1の平衡出力端子 7に電気 的に接続されている。
[0056] 同様に、弾性表面波フィルタ部 5においては、中央の第 2の IDT5bが不平衡入力 端子 3に接続されている。 IDT5bの両側に位値する第 1,第 3の IDT5a, 5c力 1ポ ート型弾性表面波共振子 8を介して第 2の平衡出力端子 9に電気的に接続されてい る。第 1の縦結合共振子型弾性表面波フィルタ部 4と、第 2の縦結合共振子型弾性表 面波フィルタ部 5とは、入力信号に対する出力信号の位相が約 180度異なっているこ とを除いては、全て同様とされている。
[0057] 上記のように、 IDT5a, 5cは、第 1の弾性表面波フィルタ部 4における IDT4a, 4cと 位相は 180度反転されている。従って、第 1の平衡出力端子 7から取出される信号と 、第 2の平衡信号端子 9から取出される信号の位相が 180度反転されている。よって 、本実施形態では、不平衡入力端子 3と、第 1,第 2の平衡出力端子 7, 9とを有する ノ ランス型弾性表面波フィルタ 1が構成されて ヽる。
[0058] 1ポート型弾性表面波共振子 6, 8は同じ電極構造を有するように構成されている。
[0059] 上記 1ポート型弾性表面波共振子 6が接続されているのは、通過帯域近傍の減衰 量の拡大及びフィルタ特性の急峻性を高めることができるからである。また、 1ポート 型弾性表面波共振子 6, 8の接続により、通過帯域内における後述の複数の共振モ ードのインピーダンスを調整することも可能となる。もっとも、表面波共振子 6, 8は用 いられずともよい。
[0060] なお、 1ポート型弾性表面波共振子 6, 8は、反射器を有しない構造であってもよい
[0061] 第 1,第 2の弾性表面波フィルタ部 4, 5の各第 2の IDT4b, 5bの狭ピッチ電極指部 Nの電極指ピッチを Pl、第 1,第 3の IDT4a, 4c, 5a, 5cの狭ピッチ電極指部 Nの電 極指ピッチを P2とする。また、各第 2の IDT4b, 5bの狭ピッチ電極指部以外の電極 指部の電極指の本数を Kl、第 1,第 3の IDTの狭ピッチ電極指部以外の電極指部 の電極指の本数を Κ2とする。さらに、第 1,第 2の弾性表面波フィルタ部 4, 5の第 2 の IDT4b, 5bの狭ピッチ電極指部の電極指の本数を Kln、第 1,第 3の IDT4a, 4c , 5a, 5cの狭ピッチ電極指部の電極指の本数を K2nとする。本実施形態の特徴は、 Ρ1 >Ρ2、Κ1η=Κ2η及び 1. 12≤Κ1/Κ2≤1. 65とされていることにある。それに よって、フィルタ特性にあまり影響与えることなぐ不平衡入力端子 3と平衡出力端子 7, 9とのインピーダンス比を容易に変化させることができる。特に、 IDTの電極指の 本数だけでなぐ狭ピッチ電極指部 Νのピッチ比をも調整することにより、インピーダ ンス比を変化することができるので、不平衡信号端子と平衡信号端子のインピーダン ス比を正確に例えば 1: 2とすることが可能となる。
[0062] 特に、第 1,第 2の弾性表面波フィルタ部 4, 5におけるメタライゼーシヨンレシオを d 、電極指交叉幅を Wとしたとき、 67. 41 I≤W/d≤74. 3 λ Ι (但し、 λ ΐは IDTの波 長)とされている場合には、不平衡入力端子 3側のインピーダンスを 50 Ωとして、平衡 出力端子 7, 9側のインピーダンスを 100 Ωに確実に設定することが容易となる。これ を、具体的な実験例を参照しつつ、より詳細に説明する。
[0063] なお、本明細書の添付の図面の電極構造では、図示を容易とするために、 IDTや 反射器の電極指の本数は、実際の電極指の本数よりも少なく図示されていることを指 摘しておく。
[0064] 以下の仕様で弾性表面波フィルタ 1を作製した。
[0065] 縦結合共振子型弾性表面波フィルタ部 4の電極指交叉幅を 51. Ο λ Ιとした。 λ ΐは
IDTの狭ピッチ電極指部以外の電極指ピッチであり、 IDT4a 4cにおいて、電極 指交叉幅は全て等しくした。
[0066] IDT4aの電極指の本数は 22本(3本)であり、 IDT4bの電極指の本数は(3本) 31 本(3本)であり、 IDT4cの電極指の本数は(3本) 22本とした。なお、カツコ内の電極 指の本数は、 1つの狭ピッチ電極指部 Nの電極指の本数であり、カツコ外の電極指の 本数は、狭ピッチ電極指部 N以外の電極指の本数である。
[0067] 反射器 4d, 4eのそれぞれの電極指の本数: 85本。
[0068] IDT4a 4c及び反射器 4d, 4eにおけるメタライゼーシヨンレシオ:狭ピッチ電極指 部以外は 0. 72、狭ピッチ電極指部 Nでは 0. 68とした。
[0069] 電極膜厚 =0. 092 λ Ι
[0070] なお、弾性表面波フィルタ部 5は、 IDT5a, 5cの向き力 DT4a, 4cと反転されてい ることを除いては、上記と同様に設計した。
[0071] 1ポート型弾性表面波共振子 6の仕様
電極指交叉幅: 23. 8 λ Ι (但し、 λ ΐは、 IDT6aの電極指ピッチで定まる波長とする
) o
[0072] IDTの電極指の本数: 161本。
反射器 6a, 6cのそれぞれの電極指の本数: 15本。
[0073] メタライゼーシヨンレシオ: 0. 60
電極膜厚: 0. 095 λ Ι0
なお、圧電基板 2としては、 40± 5度丫カット 伝搬の 1¾0基板を用い、上記各
3
電極は A1により形成した。このようにして、不平衡入力端子 3の入力インピーダンスが 50 Ω、平衡出力端子 7, 9のインピーダンスが 100 Ωである、 DCS受信用フィルタを
5X十し 7
[0074] 上記のようにして設計した弾性表面波フィルタ 1の特性を図 2〜図 4に示す。図 2は 、上記弾性表面波フィルタ 1の減衰量周波数特性を示す。また、図 3は、上記弾性表 面波フィルタ 1の VSWR特性を示す。図 4 (a)及び (b)は、不平衡信号端子側におけ る反射特性 S11及び平衡信号端子側における反射特性 S22を示すスミスチャートで ある。なお、本明細書に添付の図面においては、以下、弾性表面波フィルタの不平 衡信号端子側の反射特性を S11、平衡信号端子側の反射特性を S22とする。
[0075] 本実施形態の特徴の 1つは、不平衡入力端子 3に接続されている IDT4b, 5bの狭 ピッチ電極指部 Nの電極指ピッチ P1と、平衡出力端子 7, 9に接続されている IDT4a , 4c, 5a, 5cの狭ピッチ電極指部 Nの電極指ピッチ P2とが異なっていることにある。 すなわち、 IDT4a〜4c, 5a〜5cの狭ピッチ電極指部 N以外の主たる電極指部の電 極指ピッチで定まる波長を λ ΐとしたときに、第 2の IDT4b, 5bの狭ピッチ電極指部 N の電極旨ピッチ P1は 0. 454 λ ΐとされており、第 1,第 3の IDT4a, 4c, 5a, 5cの狭 ピッチ電極指部のピッチ P2は、 0. 438 λ ΐとされている。従って、平衡出力端子 7, 9 に接続されている IDT4a, 4c, 5a, 5cにおける狭ピッチ電極指部の電極指ピッチ P2 よりも、不平衡入力端子 3に接続されている IDT4b, 5bの狭ピッチ電極指部 Nの電 極指ピッチ P1が大きくされている。
[0076] 比較のために、狭ピッチ電極指部 Nの電極指ピッチを全て 0. 447 λ Iと等しくしたこ とを除いては、上記実施形態のバランス型弾性表面波フィルタ 1と同様に構成された バランス型弾性表面波フィルタのフィルタ特性を図 5〜図 7に示す。図 5は、比較のた めに用意した上記弾性表面波フィルタの減衰量周波数特性を示し、図 6は、 VSWR 特性を示す。図 7 (a)及び (b)は、反射特性 Sl l, S22をそれぞれ示す。
[0077] なお、 DCS受信用フィルタの通過帯域は 1805〜1880MHzである。図 2及び図 3 と、図 5,図 6とを比較すれば明らかなように、比較のために用意した弾性表面波フィ ルタでは、上記通過帯域内における最大挿入損失が 2. 16dBであり、 VSWRの最 大値が 2. 00であったのに対し、上記実施形態の弾性表面波フィルタ 1では、通過帯 域内における最大挿入損失は 2. 13dBと小さくなり、通過帯域内における VSWRの 最大値も 1. 83と小さくなることがわかる。従って、本実施形態によれば、通過帯域内 における最大挿入損失を約 0. 15dBに改善することができ、 VSWRについても約 0. 20改善し得ることがわかる。 [0078] 本実施形態において、上記のように通過帯域内における挿入損失及び VSWRを 改善し得る理由を、図 8〜図 13を参照して説明する。まず、図 1に示した電極構造に おいて、不平衡入力端子 3のインピーダンスを 50 Ω、平衡出力端子 7, 9のインピー ダンスを 150 Ωとなるように弾性表面波フィルタを設計した場合の反射特性 SI 1及び S22を図 8 (a)及び (b)に示す。このときの設計パラメータは以下の通りである。
弾性表面波フィルタ部の電極指交叉幅 =41. 7 λ Ι0
IDT4aの電極指の本数: 20本(3本)、 IDT4bの電極指の本数:(3本) 33本(3本) 、 IDT4cの電極指の本数(3本) 20本。
[0079] 反射器の電極指の本数: 85本。
メタライゼーシヨンレシオ : 0. 72 (狭ピッチ電極指部のメタライゼーシヨンレシオは 0. 68)。
電極膜厚: 0. 092 λ Ι0
狭ピッチ電極指部 Νの電極指ピッチ: 0. 444 λ I。
図 9 (a)及び (b)は、上記のようにして設計された弾性表面波フィルタの反射特性を 、不平衡入力端子のインピーダンスを 50 Ω、平衡出力端子のインピーダンスを 100 Ωとして見た場合の反射特性 S 11, S22を示す。図 9から明らかなように、 S22側のィ ンピーダンスは、整合点である 100 Ω力 大きくずれることとなる。
[0080] 次に、 S22側のインピーダンスを 100 Ωとするために、第 1,第 2の縦結合共振子型 弾性表面波フィルタ部 4, 5の電極指交叉幅を 41. 7 λ ΐカゝら 751. Ο λ Ιに変更した場 合の特性を図 10 (a)及び(b)に示す。このとき、 S22側のインピーダンスを約 100 Ω となる。しかしながら、 S11側のインピーダンスは整合点である 50 Ω力も大きくずれる こととなる。
[0081] 次に、 S 11側のインピーダンスを高くし、かつ S22側のインピーダンスを低くするた めに、 IDT4b, 5bの電極指の本数を少なくし、 IDT4a, 4c, 5a, 5cの電極指の本数 を多くした。すなわち、 20 (3) / (3) 33 (3) / (3) 20の構成から 22 (3) / (3) 31 (3) Z (3) 22と変更した。このようにして変更された弾性表面波フィルタの反射特性を図 11 (a)及び (b)に示す。図 11から明らかなように、この場合には、縦結合共振子型弹 性表面波フィルタの通過帯域を形成して 、る 3つの共振 A〜Cのうち、共振 Aのイン ピーダンスは SI 1側で所望の通り高くなつており、 S22側で低くなつている。しかしな がら、共振 B及び共振 Cのインピーダンスはほとんど変化して ヽな 、ことがわかる。
[0082] なお、上記共振 A〜Cとは、図 14及び図 15に示すように、縦結合共振子型弾性表 面波フィルタ部の通過帯域を構成する 3つの共振 A〜Cを ヽぅものとする。ここでは、 周波数の低い順力も共振 A、共振 B及び共振 Cが現われ、図 15から明らかなように、 共振 Aは 2次モードの共振であり、共振 Bは 0次モードの共振である。
[0083] 次に、図 11 (a)及び (b)に示した反射特性 Sl l, S22を得た構成から、 IDT4a, 4c , 5a, 5cの狭ピッチ電極指部 Nの電極指ピッチを 0. 438 λ ΐに変更した場合の特性 を図 12 (a)及び (b)に示す。すなわち、狭ピッチ電極指部の電極指ピッチを 0. 444 ぇ1だカも0. 438 λ ΐに変更した。その結果、図 12 (a)力も明らかなように、 S11側の 共振 A〜Cの集中度、すなわちインピーダンスの集中度が向上していることがわかる 。し力しながら、同時に、 S 11側における共振 Bのインピーダンスが容量性となりすぎ 、さらに S22側の共振 Cが誘導性になりすぎていることがわかる。
[0084] 次に、図 11に示した特性を得た構成から、 IDT4b, 5bの狭ピッチ電極指部 Nの電 極指ピッチを、 0. 454 λ ΐに変更した場合の特性を図 13 (a)及び (b)に示す。すなわ ち、狭ピッチ電極指部 Nの電極指ピッチを 0. 444ぇ1カら0. 454 λ ΐに変更した場合 の特性を図 13 (a)及び(b)に示す。この場合には、 IDT4a, 4c, 5a、 5cの狭ピッチ 電極指部の電極指ピッチ P2を小さくした場合とは逆に、 S 11側のインピーダンス集 中度は悪化するものの、 S 11側における共振 Bのインピーダンスが誘導性になり、 S2 2側の共振 Cが容量性となるように変化しているすなわち、平衡出力端子 7, 9に接続 されている IDT4a, 4c, 5a, 5cの狭ピッチ電極指部 Nの電極指ピッチ P2を小さくす ると、 IDT4b, 5bの狭ピッチ電極指部 Nの電極指ピッチ PIを大きくすることにより、そ れぞれのデメリットをカバーし得ることがわかる。従って、このような構成を有するため 、上記実施形態のバランス型弾性表面波フィルタ 1では、図 4 (a)及び (b)に示されて いるように、平衡入力端子 3のインピーダンスと平衡出力端子 7, 9のインピーダンス 比を調整しつつ、フィルタ特性の悪ィ匕を抑制し得ることがわかる。
[0085] 次に、 P1 >P2となるように構成した弾性表面波フィルタ 1において、不平衡入力端 子 3と、平衡出力端子 7, 9のインピーダンス比が約 1 : 2とされている場合に、良好な 電気的特性が得られる IDTの電極指の対数及び交叉幅を調べた。結果を図 16に示 す。
[0086] すなわち、狭ピッチ電極指部の電極指を除 ヽた IDTの電極指の本数、例えば上記 実施形態の IDT4a〜4cでは、 22/31/22である。この狭ピッチ電極指部の電極指 を除いた IDT4a〜4cの電極指の本数を変化させ、さらに電極指交叉幅を変化させ、 種々の弾性表面波フィルタ 1を作製し、 VSWRを測定した。なお、 IDT5a〜5cは、 I DT4a〜4cと同様とされて!/、る。
[0087] 図 16から明らかなように、従来のバランス型弾性表面波フィルタにおける VSWRの 値 2. 0よりも VSWRが小さくなり、改善される範囲は、以下の範囲であることがわかる 。なお、以下において、 K1は、中央の第 2の IDT4b, 5bにおいて狭ピッチ電極指部 Nの電極指を除いた残りの電極指部の電極指の本数であり、 K2は、第 1,第 3の IDT 4a, 4c, 5a, 5cにおいて、狭ピッチ電極指部 Nの電極指を除いた残りの電極指部の 電極指の本数である。
[0088] IDT本数 K1/K2 交叉幅 W範囲
26/29/26 1. 12 46. 0〜54. Ο λ Ι
24/29/24 1. 21 46. 5〜54. 5 X 1
22/31/22 1. 41 48. 5〜54. 5 X 1
20/33/20 1. 65 48. 5〜53. 5 X 1
すなわち、 Ρ1 >Ρ2力つ 1. 12≤Κ1/Κ2≤1. 65、さらに電極旨交叉幅を 48. 5 1 I≤W≤53. 5 λ Ιとすれば、良好なフィルタ特性の得られることがわ力る。
[0089] もっとも、公知のように、メタライゼーシヨンレシオを変化させた場合、容量が変化す るため、電極指交叉幅の最適値が変化することが知られている。従って電極指交叉 幅 Wの値は、狭ピッチ電極指部 Ν以外の電極指のメタライゼーシヨンレシオ dとした場 合、 67. 41 I≤W/d≤74. 3 λ ΐとすることが望ましい。このようにして不平衡入カ端 子 3のインピーダンスを 50 Ωとし、平衡出力端子 7, 9のインピーダンスを確実に 100 Ωとすることができ、入力インピーダンスが 100 Ωの ICに接続される、良好なフィルタ 特性を有するバランス型弾性表面波フィルタ 1を容易に提供することが可能となる。
[0090] 特に、上記実施形態では、電極指の対数すなわち電極指の本数だけでなぐ狭ピ ツチ電極指部の電極指ピッチ PI, P2を変更するため、不平衡入力端子 3のインピー ダンスと、平衡出力端子 7, 9のインピーダンスとの比を正確に 1 : 2に設定することが できる。
[0091] なお、本実施形態では、 Kln=K2nとされていたが、不平衡信号端子に接続され ている第 2の IDT4b, 5bの狭ピッチ電極指部の電極指の本数 Kinは、平衡信号端 子に接続されている第 1,第 2の IDT4a, 4c, 5a, 5cの狭ピッチ電極指部の電極指 の本数 K2nと等しい必要は必ずしもない。もっとも、上記のように Kln=K2nとするこ とにより、 IDTの設計が容易となり、かつ IDTが隣り合つている部分の不連続性を緩 和する狭ピッチ電極指部の効果をより一層高めることができ、好ましい。
[0092] (第 2の実施形態)
第 1の実施形態のバランス型弾性表面波フィルタ 1と同様の電極構造を有するバラ ンス型弾性表面波フィルタを作製した。なお、電極構造は第 1の実施形態と同様であ るため、以下においては、第 2の実施形態の弾性表面波フィルタの各部分の参照番 号は、第 1の弾性表面波フィルタ 1の場合と同様とし、図 1を援用することとする。
[0093] 第 2の実施形態の弾性表面波フィルタの構成が、第 1の実施形態の弾性表面波フ ィルタと異なるところは以下の 3点であり、その他の点は同一である。
[0094] (l) IDT4a〜4c, 5a〜5cの電極指の対数: 22 (5) Z (3) 31 (3) Z (5) 22、但し、 カツコ内の電極指の本数は 1つの狭ピッチ電極指部の電極指の本数であり、カツコ外 の電極指の本数は、狭ピッチ電極指部を除いた IDTの電極指の本数である。 IDT5a 〜5cの電極指の本数は、 IDT4a〜4cと等しくした。
[0095] (2)第 2の IDT4b, 5bの狭ピッチ電極指部 Nのピッチ PI =0. 437 λ ΐ
(3)第 1,第 3の IDT4a, 4c, 5a, 5cの狭ピッチ電極指部 Nの電極指ピッチ P2 = 0 . 462 λ ΐ
すなわち、不平衡入力端子 3に接続されている IDT4b, 5bの狭ピッチ電極指部 N の電極指の本数 N1よりも、平衡出力端子 7, 9に接続されている IDT4a, 4c, 5a, 5c の狭ピッチ電極指部 Nの電極指の本数 N2を多くし、かつ電極指ピッチ P1よりも電極 指ピッチ P2を大きくしている。
[0096] 図 17及び図 18は、第 2の実施形態の弾性表面波フィルタの減衰量周波数特性及 び VSWR特性を示し、図 19 (a)及び (b)は、 S 11側の反射特性及び S22側の反射 特性を示すスミスチャートである。
[0097] 図 5〜図 7と、図 17〜図 19とを比較すれば明らかなように、第 2の実施形態では D CS受信フィルタの通過帯域内における最大挿入損失は 1. 96dBであり、 VSWRの 最大値は 1. 90である。従って、図 5〜図 7に示した特性の比較例に比べて、第 2の 実施形態によれば、通過帯域内における最大挿入損失を約 0. 20dBに低減すること ができ、 VSWRについても約 0. 10低減し得ることがわ力る。
[0098] 第 2の実施形態において、上記のように比較例に比べてフィルタ特性が改善される 理由は以下の通りである。前述した以下の実施形態の原理を説明するのに用いた図 11 (a)及び (b)の反射特性から明らかなように、 S 11側のインピーダンスを高くし、 S2 2側のインピーダンスを低くするには、 IDTの電極指の本数を変更すればよい。この 図 11に示した反射特性から平衡出力端子 7, 9に接続されて!ヽる狭ピッチ電極指部 Nの電極指の本数を 3本から 5本に増加させた場合の S 11側及び S22側の反射特性 を図 20 (a)及び (b)に示す。図 20から明らかなように、変更により、 S11側及び S22 側の双方の反射特性にぉ 、て共振 B力 Sインピーダンス整合点に近づ 、て 、ることが わかる。すなわち、 IDTの電極指の本数だけでは調整できなかった共振 Bのインピー ダンスを、平衡出力端子 7, 9に接続されている IDT4a, 4c, 5a, 5cの狭ピッチ電極 指部 Nの電極指の本数を変更することにより調整することができた。そして、最終的に 不平衡入力端子 3及び平衡出力端子 7, 9にそれぞれ接続されている IDT4a〜4c, 5a〜5cの狭ピッチ電極指部 Nの電極指の本数を最適化することにより、上述した第 2の実施形態の特性が得られて 、る。
[0099] 上記のように、第 2の実施形態では、縦結合共振子型弾性表面波フィルタ部 4, 5の 第 2の IDTを不平衡入力端子 3に接続し、両側の IDT4a, 4c, 5a, 5cがそれぞれ第 1,第 2の平衡出力端子 7, 9に接続されており、それによつて平衡ー不平衡変換機 能を有する弾性表面波フィルタにお ヽて、 Nl < N2かつ PI < P2となるように構成す ることにより、不平衡入力端子 3と平衡出力端子 7, 9のインピーダンス比が約 1 : 2で あるだけでなぐ通過帯域内の挿入損失及び VSWRに優れた弾性表面波フィルタを 提供し得ることがわかる。 [0100] なお、本実施形態では、 PK P2とされていた力 P1≠P2とすれば、本実施形態と 同様に、良好なフィルタ特性を確保しつつ、不平衡入力端子 3と平衡出力端子 7, 9 のインピーダンス比を約 1 : 2とすることができる。もっとも、好ましくは、上記のように、 PI < P2とすることにより、通過帯域内の VSWRをより一層小さくすることができる。
[0101] (他の実施形態)
第 1,第 2の実施形態では、インピーダンスを調整するため、不平衡入力端子 3に接 続されている第 2の IDTb, 5bの電極指ピッチ PIと、平衡出力端子 7, 9に接続されて いる IDT4a, 4c, 5a, 5cの狭ピッチ電極指部 Nの電極指ピッチ P2とを異ならせる方 法を用いた力 さらに、 IDTのデューティを IDT毎に異ならせるなどの他のインピーダ ンス調整方法を併用してもょ ヽ。
[0102] また、第 1,第 2の実施形態では、 3個の IDTを有し、中央に位置する第 2の IDT4b , 5bを不平衡入力端子に、左右に位置している IDT4a, 4c, 5a, 5cを平衡出力端 子 7, 9に接続することにより平衡ー不平衡変 能を有する弾性表面波フィルタ 1 が構成されていた。しカゝしながら、本発明は、このような電極構造の平衡一不平衡変 換機能を有する弾性表面波フィルタに限定されない。図 21〜図 23は、本発明の第 3 〜第 5の実施形態の弾性表面波フィルタの電極構造を示す模式的平面図である。
[0103] 図 21に示すように、第 3の実施形態のバランス型弾性表面波フィルタ 31では、不平 衡入力端子 33に、第 1,第 2の縦結合共振子型弾性表面波フィルタ部 34, 35が接 続されている。弾性表面波フィルタ部 34, 35は、第 1の実施形態の弾性表面波フィ ルタ 1の弾性表面波フィルタ部 4, 5と同様に構成されている。もっとも、弾性表面波フ ィルタ部 34では、表面波伝搬方向両側の第 1,第 3の IDT34a, 34cが不平衡入力 端子 33に接続されている。また、中央に位置する第 2の IDT34bが 1ポート型弾性表 面波共振子 36を介して第 1の平衡出力端子 37に電気的に接続されている。 IDT34 a〜34cが設けられている部分の表面波伝搬方向両側には反射器 34d, 34eが配置 されている。 1ポート型弾性表面波共振子 36は、 1ポート型弾性表面波共振子 6と同 様に構成されている。
[0104] 第 2の弾性表面波フィルタ部 35においても、両側の第 1,第 3の IDT35a, 35cが不 平衡入力端子 33に接続されており、第 2の IDT35bが 1ポート型弾性表面波共振子 38を介して第 2の平衡出力端子 39に接続されている。すなわち、弾性表面波フィル タ 31では、表面波伝搬方向の第 1,第 3の IDT34a, 34c, 35a, 35cが不平衡入力 端子 33に、中央の第 2の IDT34b, 35bが第 1,第 2の平衡出力端子 37, 39にそれ ぞれ電気的に接続されて!、る。
[0105] この場合においても、第 1の実施形態と同様に、不平衡入力端子 33に接続されて いる IDT34a, 34c, 35a, 35cの狭ピッチ電極指部の電極指ピッチを PIとし、平衡 出力端子 37, 39に接続されている IDT34b, 35bの狭ピッチ電極指部の電極指のピ ツチを P2とし、不平衡入力端子 33に接続されている IDT34a, 34c, 35a, 35cの狭 ピッチ電極指部以外の電極指部の電極指の本数を Kl、該狭ピッチ電極指部の電極 指の本数を Kin、平衡出力端子 37, 39に接続されている IDT34b, 35bの狭ピッチ 電極指部以外の電極指部の電極指の本数を K2、該狭ピッチ電極指部の電極指の 本数を Κ2ηとしたときに、 Ρ1 >Ρ2、及び 1. 12≤Κ1/Κ2≤1. 65とすることにより、 また、好ましくはさらに Kln=K2nとすることにより、通過帯域内の挿入損失及び VS WRが小さぐフィルタ特性が良好であり、かつ不平衡入力端子と平衡出力端子 37, 39のインピーダンス比が約 1: 2のバランス型弾性表面波フィルタを提供することがで きる。
[0106] なお、第 3の実施形態においても、好ましくは、さらに第 1,第 2の弾性表面波フィル タ部 34, 35におけるメタライゼーシヨンレシオを d、電極指交叉幅を Wとしたとき、 67. 41 I≤W/d≤74. 3 λ Ιとされ、それによつて不平衡入力端子 33側のインピーダン スを 50 Ωとした場合、平衡出力端子 37, 39側の出力インピーダンスを容易に 100 Ω に設定することができる。
[0107] また、第 3の実施形態においても、第 2の実施形態と同様に、 Ρ1≠Ρ2、好ましくは、 ΡΚ Ρ2とし、力っ不平衡入力端子 33に接続されて!/、る IDT34a, 34c, 35a, 35c の狭ピッチ電極指部の電極指の本数を Nl、第 1,第 2の平衡出力端子 37, 39にそ れぞれ接続されている IDTの狭ピッチ電極指部の電極指の本数を N2としたときに、 NKN2とすることにより、複数の共振モードのインピーダンス調整の自由度が高め られる。従って、通過帯域内の挿入損失や VSWRが小さぐ良好なフィルタ特性を有 するだけでなぐ不平衡入力端子 33と、平衡出力端子 37, 39とのインピーダンス比 を 1: 2に設定することが可能となる。
[0108] 図 22は、第 4の実施形態に係る弾性表面波フィルタ 41の電極構造を示す模式的 平面図である。第 4の実施形態のバランス型弾性表面波フィルタ 41では、表面波伝 搬方向に沿って 5個の IDT42a〜42eが配置されて!、る。 IDT42a〜42eが設けられ ている領域の表面波伝搬方向両側に反射器 42f, 42gが配置されている。 IDT42a 〜42eは、 IDT4a〜4cと同様に狭ピッチ電極指部 Nを有する。すなわち、ギャップを 隔てて表面波伝搬方向に隣り合つている一対の IDTは、ギャップに面する電極指を 含む一部の電極指のピッチ力 DTの残りの部分の電極指ピッチよりも小さくされてい る。
[0109] 弾性表面波フィルタ 41では、 IDT42a, 42c, 42eが不平衡入力端子 43に接続さ れている。そして、 IDT42b, 42d力第 1,第 2の平衡出力端子 47, 49にそれぞれ電 気的に接続されている。このような平衡—不平衡変換機能を有する弾性表面波フィ ノレタ 41【こお!ヽても、不平衡人カ端子 43【こ接続されて!ヽる IDT42a, 42c, 42eの狭 ピッチ電極指部 Nの電極指ピッチを PI、該狭ピッチ電極指部 Nの電極指の本数を K ln、該狭ピッチ電極指部以外の電極指の本数を K1とし、平衡出力端子 47, 49に接 続されている IDT42b, 42dの狭ピッチ電極指部 Nの電極指ピッチを P2、該狭ピッチ 電極指部の電極指の本数を K2n、該狭ピッチ電極指部以外の電極指の本数を K2と したとき、 Ρ1 >Ρ2、及び 1. 12≤Κ1/Κ2≤1. 65とすることにより、好ましくは、さら に Kln=K2nとすることにより、通過帯域内の挿入損失及び VSWRの低減を図りつ つ、不平衡入力端子 43と平衡出力端子 47, 49とのインピーダンス比を約 1 : 2とする こと力 Sできる。好ましくは、 134. 8 1 I≤W/d≤148. 6 λ Iとすることにより、不平衡 入力端子 43側のインピーダンスを 50 Ωとした場合、平衡出力端子 47, 49側のイン ピーダンスを 100 Ωに容易に設定することができる。
[0110] 第 4の実施形態においても、第 2の実施形態と同様に、上記とは別に、 Ρ2>Ρ1、か つ Ν2>Ν1とすることによつても、不平衡入力端子と平衡出力端子のインピーダンス 比を約 1 : 2に容易に設定することができ、かつ通過帯域内の挿入損失及び VSWR の低減を果たすことができる。
[0111] 図 23は、第 5の実施形態のバランス型弾性表面波フィルタの電極構造を示す模式 的平面図である。第 5の実施形態の弾性表面波フィルタ 50は、 IDTの数が 3個であ ることを除いては、第 4の実施形態の弾性表面波フィルタ 41と同様に構成されている 。すなわち、第 5の実施形態のバランス型弾性表面波フィルタ 50では、表面波伝搬 方向に沿って 3個の IDT42b〜42dが配置されている。第 1〜第 3の IDT42b〜42d が設けられて ヽる領域の表面波伝搬方向両側に反射器 42f , 42gが設けられて ヽる
[0112] 従って、図 22の IDT42a, 42eが削除されていることを除いて、弾性表面波フィルタ 50は、弾性表面波フィルタ 41と同様に構成されている。よって、同一部分について は、同一の参照番号を付することにより、図 22に示した説明を援用することとする。
[0113] 本実施形態においても、 P1 >P2、及び 1. 12≤KlZK2≤l. 65とすることにより 、好ましくは、さらに Kln=K2nとすることにより、第 4の実施形態の場合と同様に通 過帯域内の挿入損失及び VSWRの低減を図りつつ、不平衡入力端子 43と平衡出 力端子 47, 49とのインピーダンス比を約 1 : 2とすることができる。また、好ましくは、 1 34. 8 1 I≤W/d≤148. 6 λ Iとすることにより、不平衡入力端子 43側のインピーダ ンスを 50 Ωとした場合、平衡出力端子 47, 49側のインピーダンスを 100 Ωに容易に 設定することができる。
[0114] 第 5の実施形態においても、第 2の実施形態と同様に、上記とは別に Ν2>Ν1かつ Ρ2≠Ρ1、好ましくは Ν2>Ν1かつ Ρ2>Ρ1とすることによつても、不平衡入カ端子と 平衡出力端子のインピーダンス比を約 1 : 2に容易に設定することができ、かつ通過 帯域内の挿入損失及び VSWRの低減を果たすことができる。
[0115] 図 24は、第 6の実施形態のバランス型弾性表面波フィルタの電極構造を示す模式 的平面図である。第 6の実施形態のバランス型弾性表面波フィルタ 51では、表面波 伝搬方向に沿って 5個の IDT52a〜52eが配置されている。 IDT52a〜52eは、 IDT 42a〜42eと同様に狭ピッチ電極指部 Nを有する。また、 IDT52a〜52eが設けられ ている領域の表面波伝搬方向両側に反射器 52f, 52gが配置されている。なお、中 央の IDT52cは、表面波伝搬方向に分割された IDT部 52cl, 52c2を有する。
[0116] 本実施形態では、不平衡入力端子 53に、 IDT52b, 52dが電気的に接続されてい る。そして、 IDT52aと、 IDT部 52clとが第 1の平衡出力端子 57に電気的に接続さ れており、 IDT部 52c2と IDT52eとが第 2の平衡出力端子 59に電気的に接続されて おり、それによつて平衡—不平衡変 能が実現されている。
[0117] 本実施形態においても、不平衡信号端子である不平衡入力端子 53に接続されて いる IDT52b, 52dの狭ピッチ電極指部 Nの電極指ピッチを Pl、該狭ピッチ電極指 部 Nの電極指の本数を Kin、該狭ピッチ電極指部以外の電極指部の電極指の本数 を K1とし、平衡出力端子 57, 59に接続されている IDT52a, 52c, 52eの狭ピッチ電 極指部 Nの電極指ピッチを P2、該狭ピッチ電極指部の電極指の本数を K2n、該狭 ピッチ電極指部以外の電極指部の電極指の本数を Κ2としたとき、 Ρ1 >Ρ2、及び 1. 12≤Κ1/Κ2= 1. 65とすることにより、好ましくは、さらに Kln=K2とすることにより 、前述した各実施形態と同様にフィルタ特性を損なうことなぐ不平衡信号端子と平 衡信号端子とのインピーダンス比を約 1 : 2とすることができる。第 6の実施形態におい ても、好ましくは、 134. 8 1 I≤W/d≤148. 6 λ ΐとすることにより、不平衡入カ端子 53側のインピーダンスを 50 Ωとした場合、平衡出力端子 57, 59側のインピーダンス を容易に 100 Ωとすることができる。
[0118] また、第 6の実施形態においても、第 2の実施形態と同様に、 P1≠P2かっN1 <N 2、好ましくは、 ΡΚ Ρ2かつ ΝΚΝ2とした構造とすることにより、第 2の実施形態と 同様に、不平衡入力端子 53と平衡出力端子 57, 59とのインピーダンス比が約 1 : 2 であり、しカゝも通過帯域内の挿入損失及び VSWRが小さい弾性表面波フィルタを提 供することができる。
[0119] 図 25は、第 7の実施形態のバランス型弾性表面波フィルタの電極構造を示す模式 的平面図である。第 7の実施形態の弾性表面波フィルタ 70は、図 24に示した IDT52 a, 52eが省略されていることを除いては、第 6の実施形態の弾性表面波フィルタ 51と ほぼ同様に構成されている。従って、同一部分については、同一の参照番号を付す ることにより、第 6の実施形態において行った説明を援用することとする。
[0120] 本実施形態では、表面波伝搬方向に沿って第 1〜第 3の IDT52b〜52dが配置さ れて ヽる。そして、中央の第 2の IDT52c力 IDT咅 52cl, 52c2を有するように分害 ij されている。本実施形態においても、第 6の実施形態の場合と同様に、 P1 >P2、及 び 1. 12≤K1/K2≤1. 65とすることにより、好ましくは、さらに Kln=K2nとするこ とにより、フィルタ特性を損なうことなぐ不平衡信号端子と平衡信号端子とのインピー ダンス比を約 1 : 2とすることができる。第 7の実施形態においても、好ましくは、 134. 8 1 I≤W/d≤148. 6 λ ΐとすることにより、不平衡入力端子 53側のインピーダンス を 50 Ωとしたとき〖こ、平衡出力端子 57, 59側のインピーダンスを容易に 100 Ωとする ことができる。
[0121] また、第 7の実施形態においても、第 2の実施形態と同様にして、 Ρ1≠Ρ2かつ N1 < Ν2、好ましくは PI < Ρ2かつ Nl < Ν2とした構造とすることにより不平衡入力端子 53と平衡出力端子 57, 59とのインピーダンス比が約 1 : 2であり、し力も通過帯域内 の挿入損失及び VSWRが小さい弾性表面波フィルタを提供することができる。
[0122] なお、第 4,第 6の実施形態に係る弾性表面波フィルタ 41, 51では、 5個の IDT42 a〜42e及び 52a〜52eが設けられていた。このように、本発明に係る弾性表面波フィ ルタでは、第 1〜第 3の IDT力もなる 3個の IDTだけでなぐ 5個以上の IDTが表面波 伝搬方向に配置されて ヽてもよ ヽ。

Claims

請求の範囲
[1] 不平衡端子と、第 1,第 2の平衡端子とに接続される平衡ー不平衡変換機能を有す るバランス型弾性表面波フィルタであって、
圧電基板と、
前記圧電基板上において表面波伝搬方向に沿って配置された第 1〜第 3の IDTを 有し、中央の第 2の IDTまたは両側の第 1,第 3の IDTが不平衡端子に接続されてお り、両側の第 1,第 3の IDTまたは中央の第 2の IDTが第 1の平衡端子に接続されて いる第 1の弾性表面波フィルタ部と、
前記圧電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTを有し、 中央に配置された第 2の IDTまたは両側の第 1,第 3の IDTが前記不平衡端子に接 続されており、両側の第 1,第 3の IDTまたは中央の第 2の IDTが第 2の平衡端子に 接続されており、第 1の弾性表面波フィルタ部とは入力信号に対する出力信号の位 相が 180度異なるように構成されている第 2の弾性表面波フィルタ部とを備え、 前記第 1,第 2の弾性表面波フィルタ部において、表面波伝搬方向にギャップを隔 てて隣り合って 、る一対の IDTにお!/、て、ギャップに面して!/、る電極指を含む一部の 電極指の周期が、 IDTの主たる部分の電極指の周期よりも小さくされている狭ピッチ 電極指部とされており、
第 1,第 2の弾性表面波フィルタ部の前記不平衡端子に接続されている IDTの狭ピ ツチ電極指部の電極指ピッチを Pl、前記平衡端子に接続されて 、る IDTの狭ピッチ 電極指部の電極指ピッチを P2、第 1,第 2の弾性表面波フィルタ部の前記不平衡端 子に接続されている IDTの狭ピッチ電極指部以外の電極指部の電極指の本数を K1 、前記平衡端子に接続されて ヽる IDTの狭ピッチ電極指部以外の電極指部の電極 指の本数を K2としたときに、
P1 >P2
1. 12≤K1/K2≤1. 65
とされて 、ることを特徴とする、ノ《ランス型弾性表面波フィルタ。
[2] 不平衡端子と、第 1,第 2の平衡端子とに接続される平衡ー不平衡変換機能を有す るバランス型弾性表面波フィルタであって、 圧電基板と、
前記圧電基板上において表面波伝搬方向に沿って配置された第 1〜第 3の IDTを 有し、中央の第 2の IDTまたは両側の第 1,第 3の IDTが不平衡端子に接続されてお り、両側の第 1,第 3の IDTまたは中央の第 2の IDTが第 1の平衡端子に接続されて いる第 1の弾性表面波フィルタ部と、
前記圧電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTを有し、 中央に配置された第 2の IDTまたは両側の第 1,第 3の IDTが前記不平衡端子に接 続されており、両側の第 1,第 3の IDTまたは中央の第 2の IDTが第 2の平衡端子に 接続されており、第 1の弾性表面波フィルタ部とは入力信号に対する出力信号の位 相が 180度異なるように構成されている第 2の弾性表面波フィルタ部とを備え、 前記第 1,第 2の弾性表面波フィルタ部において、表面波伝搬方向にギャップを隔 てて隣り合って 、る一対の IDTにお!/、て、ギャップに面して!/、る電極指を含む一部の 電極指の周期が、 IDTの主たる部分の電極指の周期よりも小さくされている狭ピッチ 電極指部とされており、
第 1,第 2の弾性表面波フィルタ部の前記不平衡端子に接続されている IDTの狭ピ ツチ電極指部の電極指ピッチを Pl、前記平衡端子に接続されて 、る IDTの狭ピッチ 電極指部の電極指ピッチを P2、第 1,第 2の弾性表面波フィルタ部の前記不平衡端 子に接続されている IDTの狭ピッチ電極指部以外の電極指部の電極指の本数を K1 、前記平衡端子に接続されて ヽる IDTの狭ピッチ電極指部以外の電極指部の電極 指の本数を K2、前記第 1,第 2の弾性表面波フィルタ部の前記不平衡端子に接続さ れて 、る IDTの狭ピッチ電極指部の電極指の本数を Kln、前記平衡端子に接続さ れて 、る IDTの狭ピッチ電極指部の電極指の本数を Κ2ηとしたときに、
Ρ1 >Ρ2
Kln=K2n
1. 12≤Κ1/Κ2≤1. 65
とされて 、ることを特徴とする、請求項 1に記載のバランス型弾性表面波フィルタ。 第 1,第 2の弾性表面波フィルタ部におけるメタライゼーシヨンレシオを d、電極指交 差幅を Wとしたときに、 67. 41 I≤W/d≤74. 3 λ Ι (但し、 λ Iは IDTの波長)とされ ている、請求項 1または 2に記載のバランス型弾性表面波フィルタ。
[4] 平衡端子と、第 1,第 2の不平衡端子に接続される平衡—不平衡変換機能を有す るバランス型弾性表面波フィルタであって、
圧電基板と、
前記圧電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え 前記第 2の IDTが前記不平衡端子に接続されており、両側の第 1,第 3の IDTが第 1,第 2の平衡端子にそれぞれ接続されており、
前記第 1〜第 3の IDTが隣り合う部分において、各 IDTは狭ピッチ電極指部を有し 、該狭ピッチ電極指部の電極指ピッチは、狭ピッチ電極指が設けられている IDTの 主たる電極指部の電極指ピッチよりも小さくされており、
第 1の IDTの位相が第 3の IDTの位相に 180度反転されており、
前記中央に位置して 、る第 2の IDTの狭ピッチ電極指部の電極指ピッチを Pl、前 記第 1,第 3の IDTの狭ピッチ電極指部の電極指ピッチを P2、第 2の IDTの狭ピッチ 電極指部以外の電極指部の電極指の本数を Kl、第 1,第 3の IDTの狭ピッチ電極 指部以外の電極指部の電極指の本数を Κ2としたときに、
Ρ1 >Ρ2
1. 12≤Κ1/Κ2≤1. 65
とされて 、ることを特徴とする、ノ《ランス型弾性表面波フィルタ。
[5] 平衡端子と、第 1,第 2の不平衡端子に接続される平衡—不平衡変換機能を有す るバランス型弾性表面波フィルタであって、
圧電基板と、
前記圧電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え 前記第 2の IDTが前記不平衡端子に接続されており、両側の第 1,第 3の IDTが第 1,第 2の平衡端子にそれぞれ接続されており、
前記第 1〜第 3の IDTが隣り合う部分において、各 IDTは狭ピッチ電極指部を有し 、該狭ピッチ電極指部の電極指ピッチは、狭ピッチ電極指が設けられている IDTの 主たる電極指部の電極指ピッチよりも小さくされており、
第 1の IDTの位相が第 3の IDTの位相に 180度反転されており、
前記中央に位置して 、る第 2の IDTの狭ピッチ電極指部の電極指ピッチを Pl、前 記第 1,第 3の IDTの狭ピッチ電極指部の電極指ピッチを P2、第 2の IDTの狭ピッチ 電極指部以外の電極指部の電極指の本数を Kl、第 1,第 3の IDTの狭ピッチ電極 指部以外の電極指部の電極指の本数を Κ2、第 2の IDTの狭ピッチ電極指部の電極 指の本数を Kln、第 1,第 3の IDTの狭ピッチ電極指部の電極指の本数を Κ2ηとした ときに、
Ρ1 >Ρ2
Kln=K2n
1. 12≤Κ1/Κ2≤1. 65
とされて 、ることを特徴とする、請求項 4に記載のバランス型弾性表面波フィルタ。
[6] 第 1〜第 3の IDTのメタライゼーシヨンレシオを d、電極指交差幅を Wとしたときに、 1 34. 8 1 I≤W/d≤148. 6 λ Ι (但し、 λ Iは IDTの波長)とされている、請求項 4また は 5に記載のバランス型弾性表面波フィルタ。
[7] 不平衡端子と、第 1,第 2の平衡端子とに接続される平衡ー不平衡変換機能を有す るバランス型弾性表面波フィルタであって、
圧電基板と、
圧電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え、表 面波伝搬方向両側に位置する第 1,第 3の IDTが、前記不平衡端子に接続されてお り、
前記第 2の IDTが、表面波伝搬方向に分割された第 1,第 2の IDT部を有し、第 1, 第 2の IDT部がそれぞれ第 1,第 2の平衡信号端子に電気的に接続されており、不平 衡端子から第 1の平衡信号端子に流れる信号の位相が、不平衡端子から第 2の平衡 信号端子に流れる位相と 180度反転されるように第 1〜第 3の IDTが構成されており 前記第 1〜第 3の IDTがギャップを隔てて表面波伝搬方向において隣り合う部分に おいて、該ギャップ近傍の複数本の電極指が相対的にピッチが狭い狭ピッチ電極指 部とされており、
前記不平衡信号端子に接続されている第 1,第 3の IDTの狭ピッチ電極指部の電 極指ピッチを Pl、第 1,第 2の平衡信号端子に第 1,第 2の IDT部が接続されている 第 2の IDTの狭ピッチ電極指部の電極指ピッチを P2、第 1,第 3の IDTの狭ピッチ電 極指部以外の電極指部の電極指の本数を K1、第 2の IDTの狭ピッチ電極指部以外 の電極指部の電極指の本数を K2としたときに、
P1 >P2
1. 12≤K1/K2≤1. 65
とされて 、ることを特徴とする、ノ《ランス型弾性表面波フィルタ。
不平衡端子と、第 1,第 2の平衡端子とに接続される平衡ー不平衡変換機能を有す るバランス型弾性表面波フィルタであって、
圧電基板と、
圧電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え、表 面波伝搬方向両側に位置する第 1,第 3の IDTが、前記不平衡端子に接続されてお り、
前記第 2の IDTが、表面波伝搬方向に分割された第 1,第 2の IDT部を有し、第 1, 第 2の IDT部がそれぞれ第 1,第 2の平衡信号端子に電気的に接続されており、不平 衡端子から第 1の平衡信号端子に流れる信号の位相が、不平衡端子から第 2の平衡 信号端子に流れる位相と 180度反転されるように第 1〜第 3の IDTが構成されており 前記第 1〜第 3の IDTがギャップを隔てて表面波伝搬方向において隣り合う部分に おいて、該ギャップ近傍の複数本の電極指が相対的にピッチが狭い狭ピッチ電極指 部とされており、
前記不平衡信号端子に接続されている第 1,第 3の IDTの狭ピッチ電極指部の電 極指ピッチを Pl、第 1,第 2の平衡信号端子に第 1,第 2の IDT部が接続されている 第 2の IDTの狭ピッチ電極指部の電極指ピッチを Ρ2、第 1,第 3の IDTの狭ピッチ電 極指部以外の電極指部の電極指の本数を K1、第 2の IDTの狭ピッチ電極指部以外 の電極指部の電極指の本数を Κ2、第 1,第 3の IDTの狭ピッチ電極指部の電極指の 本数を Kln、第 2の IDTの狭ピッチ電極指部の電極指の本数を Κ2ηとしたときに、 Ρ1 >Ρ2
Kln=K2n
1. 12≤Κ1/Κ2≤1. 65
とされて 、ることを特徴とする、請求項 7に記載のバランス型弾性表面波フィルタ。
[9] 第 1〜第 3の IDTのメタライゼーシヨンレシオを d、電極指交差幅を Wとしたときに、 1 34. 8 1 I≤W/d≤148. 6 λ Ι (但し、 λ Iは IDTの波長)とされている、請求項 7また は 8に記載のバランス型弾性表面波フィルタ。
[10] 不平衡端子と、第 1,第 2の平衡端子とに接続される平衡ー不平衡変換機能を有す るバランス型弾性表面波フィルタであって、
圧電基板と、
前記圧電基板上において表面波伝搬方向に沿って配置された第 1〜第 3の IDTを 有し、中央の第 2の IDTまたは両側の第 1,第 3の IDTが不平衡端子に接続されてお り、両側の第 1,第 3の IDTまたは中央の第 2の IDTが第 1の平衡端子に接続されて いる第 1の表面波フィルタ部と、
前記圧電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTを有し、 中央に配置された第 2の IDTまたは両側の第 1,第 3の IDTが前記不平衡端子に接 続されており、両側の第 1,第 3の IDTまたは中央の第 2の IDTが第 2の平衡端子に 接続されており、第 1の弾性表面波フィルタ部とは入力信号に対する出力信号の位 相が 180度異なるように構成されている第 2の弾性表面波フィルタ部とを備え、 前記第 1,第 2の弾性表面波フィルタ部において、表面波伝搬方向にギャップを隔 てて隣り合って 、る一対の IDTにお!/、て、ギャップに面して!/、る電極指を含む一部の 電極指の周期が、 IDTの主たる部分の電極指の周期よりも小さくされている狭ピッチ 電極指部とされており、
第 1,第 2の弾性表面波フィルタ部の前記不平衡端子に接続されている IDTの狭ピ ツチ電極指部の電極指ピッチを Pl、該狭ピッチ電極指部の電極指の本数を Nl、前 記第 1,第 2の平衡端子にそれぞれ接続されている IDTの狭ピッチ電極指部の電極 指ピッチを P2、該狭ピッチ電極指部の電極指の本数を N2としたときに、 P1≠P2
NKN2
とされて 、ることを特徴とする、ノ《ランス型弾性表面波フィルタ。
[11] PK P2とされていることを特徴とする、請求項 10に記載のバランス型弾性表面波 フイノレタ。
[12] 平衡端子と、第 1,第 2の不平衡端子に接続される平衡ー不平衡変換機能を有す るバランス型弾性表面波フィルタであって、
圧電基板と、
前記圧電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え 前記第 2の IDTが前記不平衡端子に接続されており、両側の第 1,第 3の IDTが第 1,第 2の平衡端子にそれぞれ接続されており、
前記第 1〜第 3の IDTが隣り合う部分において、各 IDTは狭ピッチ電極指部を有し 、該狭ピッチ電極指部の電極指ピッチは、狭ピッチ電極指が設けられている IDTの 主たる電極指部の電極指ピッチよりも小さくされており、
第 1の IDTの位相が第 3の IDTの位相に 180度反転されており、
前記不平衡端子に接続されている第 2の IDTの狭ピッチ電極指部の電極指ピッチ を Pl、該狭ピッチ電極指部の電極指の本数を Nl、前記第 1,第 2の平衡端子にそれ ぞれ接続されている前記第 1,第 3の IDTの狭ピッチ電極指部の電極指ピッチを P2、 該狭ピッチ電極指部の電極指の本数を N2としたときに、
P1≠P2
NKN2
とされて 、ることを特徴とする、ノ《ランス型弾性表面波フィルタ。
[13] PK P2とされていることを特徴とする、請求項 12に記載のバランス型弾性表面波 フイノレタ。
[14] 不平衡端子と、第 1,第 2の平衡端子とに接続される平衡ー不平衡変換機能を有す るバランス型弾性表面波フィルタであって、
圧電基板と、 圧電基板上において表面波伝搬方向に配置された第 1〜第 3の IDTとを備え、表 面波伝搬方向両側に位置する第 1,第 3の IDTが、前記不平衡端子に接続されてお り、
前記第 2の IDTが、表面波伝搬方向に分割された第 1,第 2の IDT部を有し、第 1, 第 2の IDT部がそれぞれ第 1,第 2の平衡信号端子に電気的に接続されており、不平 衡端子から第 1の平衡信号端子に流れる信号の位相が、不平衡端子から第 2の平衡 信号端子に流れる位相と 180度反転されるように第 1〜第 3の IDTが構成されており 前記第 1〜第 3の IDTがギャップを隔てて表面波伝搬方向に隣り合つている部分に おいて、第 1〜第 3の IDTがギャップに近接する部分に狭ピッチ電極指部を有し、 不平衡信号端子に接続されている第 1,第 3の IDTの狭ピッチ電極指部の電極指 ピッチを Pl、該狭ピッチ電極指部の電極指の本数を Nl、前記第 1,第 2の平衡信号 端子にそれぞれ第 1,第 2の IDT部が接続されている第 2の IDTの狭ピッチ電極指部 の電極指ピッチを P2、該狭ピッチ電極指部の電極指の本数を N2としたときに、
P1≠P2
NKN2
とされて 、ることを特徴とする、ノ《ランス型弾性表面波フィルタ。
Pl < P2とされて 、ることを特徴とする、請求項 14に記載のバランス型弾性表面波 フイノレタ。
PCT/JP2005/014672 2004-08-23 2005-08-10 バランス型弾性表面波フィルタ WO2006022143A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05770560.0A EP1729415B1 (en) 2004-08-23 2005-08-10 Balanced surface acoustic wave filter
US10/595,383 US7425882B2 (en) 2004-08-23 2005-08-10 Balanced-type surface acoustic wave filter
JP2006531689A JP4315199B2 (ja) 2004-08-23 2005-08-10 バランス型弾性表面波フィルタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-242520 2004-08-23
JP2004242520 2004-08-23

Publications (1)

Publication Number Publication Date
WO2006022143A1 true WO2006022143A1 (ja) 2006-03-02

Family

ID=35967360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014672 WO2006022143A1 (ja) 2004-08-23 2005-08-10 バランス型弾性表面波フィルタ

Country Status (6)

Country Link
US (1) US7425882B2 (ja)
EP (1) EP1729415B1 (ja)
JP (1) JP4315199B2 (ja)
KR (1) KR100680512B1 (ja)
CN (1) CN100499368C (ja)
WO (1) WO2006022143A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038481A1 (fr) * 2006-09-28 2008-04-03 Murata Manufacturing Co., Ltd. Filtre d'onde acoustique
WO2010061925A1 (ja) * 2008-11-28 2010-06-03 京セラ株式会社 弾性表面波フィルタおよびデュプレクサ
JP2013258518A (ja) * 2012-06-12 2013-12-26 Taiyo Yuden Co Ltd フィルタ及びデュプレクサ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436696B2 (en) * 2007-06-28 2013-05-07 Kyocera Corporation Surface acoustic wave device and communication device
CN101540426B (zh) * 2008-03-18 2013-01-09 鸿富锦精密工业(深圳)有限公司 低通滤波器
DE112009002273B4 (de) * 2008-09-22 2015-06-25 Murata Manufacturing Co., Ltd. Filtervorrichtung für elastische Wellen
US8339221B2 (en) * 2008-09-22 2012-12-25 Murata Manufacturing Co., Ltd. Elastic wave filter device having narrow-pitch electrode finger portions
JP2010251964A (ja) * 2009-04-14 2010-11-04 Murata Mfg Co Ltd 弾性波フィルタ及び通信機
JP5170262B2 (ja) * 2009-12-25 2013-03-27 株式会社村田製作所 分波器
CN113508496B (zh) * 2019-03-06 2023-01-06 株式会社村田制作所 滤波器、多工器、高频前端电路以及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111432A (ja) * 2000-07-25 2002-04-12 Murata Mfg Co Ltd 縦結合共振子型弾性表面波フィルタ
JP3419402B2 (ja) * 2001-04-16 2003-06-23 株式会社村田製作所 弾性表面波装置、通信装置
JP2004048675A (ja) * 2002-05-15 2004-02-12 Murata Mfg Co Ltd 弾性表面波装置及びそれを有する通信装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3254779B2 (ja) 1993-01-05 2002-02-12 株式会社村田製作所 多電極形弾性表面波装置
JPH1197966A (ja) 1997-09-22 1999-04-09 Tdk Corp 弾性表面波フィルタ
DE19849782B4 (de) * 1998-10-28 2004-09-30 Epcos Ag Oberflächenwellenanordnung mit zumindest zwei Oberflächenwellen-Strukturen
JP3520413B2 (ja) 2000-02-14 2004-04-19 株式会社村田製作所 弾性表面波フィルタ装置
JP2003179462A (ja) 2000-04-18 2003-06-27 Murata Mfg Co Ltd 縦結合共振子型弾性表面波フィルタ
JP3391346B2 (ja) * 2000-04-18 2003-03-31 株式会社村田製作所 縦結合共振子型弾性表面波フィルタ
JP3435640B2 (ja) * 2000-05-22 2003-08-11 株式会社村田製作所 縦結合共振子型弾性表面波フィルタ
EP1276235A1 (en) * 2001-07-13 2003-01-15 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter and communication device using the filter
JP3638270B2 (ja) 2001-07-13 2005-04-13 松下電器産業株式会社 弾性表面波フィルタ及びそれを用いた通信機器
JP3685102B2 (ja) * 2001-07-27 2005-08-17 株式会社村田製作所 弾性表面波フィルタ、通信装置
JP2003115746A (ja) 2001-10-04 2003-04-18 Toyo Commun Equip Co Ltd 弾性表面波フィルタ
JP4090250B2 (ja) 2001-12-10 2008-05-28 富士通メディアデバイス株式会社 弾性表面波フィルタ
JP3985717B2 (ja) * 2003-04-10 2007-10-03 株式会社村田製作所 弾性表面波装置およびそれを用いた通信装置
JP4270207B2 (ja) * 2003-09-25 2009-05-27 株式会社村田製作所 弾性表面波フィルタ及び通信機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111432A (ja) * 2000-07-25 2002-04-12 Murata Mfg Co Ltd 縦結合共振子型弾性表面波フィルタ
JP3419402B2 (ja) * 2001-04-16 2003-06-23 株式会社村田製作所 弾性表面波装置、通信装置
JP2004048675A (ja) * 2002-05-15 2004-02-12 Murata Mfg Co Ltd 弾性表面波装置及びそれを有する通信装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038481A1 (fr) * 2006-09-28 2008-04-03 Murata Manufacturing Co., Ltd. Filtre d'onde acoustique
JPWO2008038481A1 (ja) * 2006-09-28 2010-01-28 株式会社村田製作所 弾性波フィルタ装置
JP4631972B2 (ja) * 2006-09-28 2011-02-16 株式会社村田製作所 弾性波フィルタ装置
WO2010061925A1 (ja) * 2008-11-28 2010-06-03 京セラ株式会社 弾性表面波フィルタおよびデュプレクサ
JP5153889B2 (ja) * 2008-11-28 2013-02-27 京セラ株式会社 弾性表面波フィルタおよびデュプレクサ
US8791773B2 (en) 2008-11-28 2014-07-29 Kyocera Corporation Surface acoustic wave filter and duplexer
JP2013258518A (ja) * 2012-06-12 2013-12-26 Taiyo Yuden Co Ltd フィルタ及びデュプレクサ

Also Published As

Publication number Publication date
JPWO2006022143A1 (ja) 2008-05-08
KR20060057643A (ko) 2006-05-26
JP4315199B2 (ja) 2009-08-19
US20060208834A1 (en) 2006-09-21
EP1729415A1 (en) 2006-12-06
US7425882B2 (en) 2008-09-16
KR100680512B1 (ko) 2007-02-08
EP1729415A4 (en) 2011-09-07
EP1729415B1 (en) 2014-04-16
CN100499368C (zh) 2009-06-10
CN1860681A (zh) 2006-11-08

Similar Documents

Publication Publication Date Title
WO2006022143A1 (ja) バランス型弾性表面波フィルタ
US7847657B2 (en) Longitudinally coupled resonator-type surface acoustic wave filter
US7378923B2 (en) Balanced SAW filter
US6556100B2 (en) Surface acoustic wave filter with a passband formed by a longitudinally coupled filter and a resonator inductance
EP1168611A2 (en) Surface acoustic wave device
US7868716B2 (en) Acoustic wave filter apparatus
JPWO2008038481A1 (ja) 弾性波フィルタ装置
JPWO2007007475A1 (ja) 弾性波フィルタ装置
WO2010119745A1 (ja) 弾性波フィルタ及び通信機
JPWO2006087875A1 (ja) バランス型弾性波フィルタ装置
JP4412326B2 (ja) バランス型sawフィルタ
JP3826816B2 (ja) 弾性表面波装置
JP4556950B2 (ja) バランス型弾性表面波フィルタ
JP2004343573A (ja) 弾性表面波装置、通信機
US7429905B2 (en) Balanced acoustic wave filter
WO2006030549A1 (ja) バランス型弾性表面波フィルタ
JP2001217680A (ja) 縦結合弾性表面波フィルタ
JP5035430B2 (ja) 弾性波装置及びデュプレクサ
US7800460B2 (en) Elastic wave filter device and duplexer
JP2004048675A (ja) 弾性表面波装置及びそれを有する通信装置
JPWO2008038459A1 (ja) 弾性境界波フィルタ装置
WO2021015187A1 (ja) 弾性波フィルタ
JP4734751B2 (ja) 平衡型弾性表面波フィルタ
JPWO2006048999A1 (ja) バランス型sawフィルタ
WO2021045031A1 (ja) 弾性波フィルタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001181.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006531689

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10595383

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067007810

Country of ref document: KR

Ref document number: 2005770560

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067007810

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 10595383

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005770560

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020067007810

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE