WO2006018936A1 - Fm検波回路 - Google Patents

Fm検波回路 Download PDF

Info

Publication number
WO2006018936A1
WO2006018936A1 PCT/JP2005/012307 JP2005012307W WO2006018936A1 WO 2006018936 A1 WO2006018936 A1 WO 2006018936A1 JP 2005012307 W JP2005012307 W JP 2005012307W WO 2006018936 A1 WO2006018936 A1 WO 2006018936A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
diode
detection
unbalanced
Prior art date
Application number
PCT/JP2005/012307
Other languages
English (en)
French (fr)
Inventor
Akira Kato
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to EP05765212A priority Critical patent/EP1780887A4/en
Priority to JP2006531326A priority patent/JP4623008B2/ja
Publication of WO2006018936A1 publication Critical patent/WO2006018936A1/ja
Priority to US11/616,908 priority patent/US7518438B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/26Demodulation of angle-, frequency- or phase- modulated oscillations by means of sloping amplitude/frequency characteristic of tuned or reactive circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/32Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/144Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements
    • H04L27/148Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using filters, including PLL-type filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • H03D2200/0023Balun circuits

Definitions

  • the present invention relates to an FM detection circuit.
  • FM detector circuits include a Foster-one's Shiray method, a ratio method, a PLL method, a slope detection method, a discriminator detection method, and the like.
  • Patent Document 1 discloses a slope detection type FM detection circuit.
  • FM component the signal frequency change
  • AM component the amplitude change
  • envelope detection is performed by the diode.
  • Patent Document 2 discloses a discriminator detection type FM detection circuit. In this circuit, the change in the amplitude of the output signal is rectified by two diodes for AM detection using the change in impedance near the resonance frequency of the piezoelectric resonator.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-195928
  • Patent Document 2 Japanese Patent Laid-Open No. 56-14705
  • a remote 'keyless' entry receiver needs to demodulate the FSK signal. Normally, the RF signal is converted to an IF signal (superheterodyne method), and then the IF signal is detected.
  • the superheterodyne method requires a local oscillator and mixer. The number of parts increases. Therefore, it is possible to adopt a direct detection method that directly detects the RF signal without frequency conversion, but if the RF signal is greatly amplified for detection, the amplification circuit is likely to oscillate. I don't want to increase the rate. For this reason, there is hope that the RF signal is detected at a low level and amplified after detection.
  • the present invention aims to solve the above-described problems, and provides an FM detection circuit with high detection sensitivity.
  • an unbalanced / balanced conversion circuit a first balanced output terminal of which is connected to the first balanced output terminal of the unbalanced / balanced conversion circuit.
  • a diode one end connected to a second balanced output terminal of the unbalanced 'balanced converter circuit, a resonator connected in parallel to the first diode, and a parallel to the second diode
  • a signal combining circuit in which the other end of the first diode and the other end of the second diode are connected to two input terminals, and a low pass connected to the output terminal of the signal combining circuit A filter.
  • the resonance frequency of the resonator is at least more than the frequency deviation amount of the FM signal than the center frequency of the FM signal input to the FM detection circuit. It is characterized by being!
  • FIG. 1 is a block diagram of an FM detection circuit of the present invention.
  • FIG. 2 is a circuit diagram of an embodiment of an FM detection circuit of the present invention.
  • FIG. 3 is a waveform diagram showing a simulation result waveform of a detection output signal of the FM detection circuit of FIG. 2.
  • FIG. 4 is a circuit diagram of another embodiment of the FM detection circuit of the present invention.
  • FIG. 5 is a waveform diagram showing a simulation result waveform of the detection output signal of the FM detection circuit of FIG.
  • FIG. 6 is a circuit diagram of still another embodiment of the FM detection circuit of the present invention.
  • FIG. 1 shows a block diagram of the FM detector circuit of the present invention.
  • the FM detection circuit 1 includes an input terminal IN, an unbalance-balance conversion circuit 2, a diode Dl as a first diode, a diode D2 as a second diode, a resonator XI, and a capacitor Cl as a capacitance element.
  • the input terminal IN is connected to the unbalanced terminal of the unbalanced-balanced conversion circuit 2.
  • the first balanced output terminal of the unbalanced-balanced conversion circuit 2 is connected to one input terminal of the signal synthesis circuit 3 through a parallel circuit composed of the diode D1 and the resonator XI.
  • the second balanced output terminal of the unbalanced-balanced conversion circuit 2 is connected to the other input terminal of the signal synthesis circuit 3 through a parallel circuit composed of a diode D2 and a capacitor C1.
  • the output of the signal synthesis circuit 3 is connected to the output terminal OUT via the low-noise filter 4.
  • Resonator XI is equivalent to a circuit in which a minute resistance component, an inductance component, and a first capacitance component are connected in series with another equivalent capacitance circuit in terms of an equivalent circuit.
  • a minute resistance component, an inductance component, and a first capacitance component are connected in series with another equivalent capacitance circuit in terms of an equivalent circuit.
  • a surface acoustic wave resonator (SAWR) or a crystal resonator is used.
  • the capacitance of the capacitor C1 is selected so as to substantially match the second capacitance component that is the capacitance between the two terminals of the resonator XI.
  • the diode D1 and the diode D2 have the same characteristics, and a predetermined forward current flows therethrough.
  • This current value is the conduction of each diode D1, D2 at that time
  • the resistance is set to be relatively close to the absolute value of the impedance of the capacitor CI near the signal frequency.
  • the resonance frequency of the resonator XI (the series resonance frequency of the inductance component connected in series and the first capacitance component) is slightly less than the center frequency of the input FM signal. It is set to deviate to the extent that it exceeds.
  • the description is continued assuming that the resonance frequency of the resonator XI is set higher than the center frequency of the direction force FM signal, but the reverse is also possible. In that case, the polarity of the output signal only changes.
  • the signal of the anode side force of the diode D1 is input and output from the force sword side.
  • the anode side force signal of the diode D2 is inputted and outputted from the force sword side.
  • the resonator XI functions as a simple capacitance element, and the capacitance of the resonator XI substantially matches the capacitance of the capacitor C1. Therefore, the parallel circuit composed of the diode D1 and the resonator XI shows substantially the same characteristics as the parallel circuit composed of the diode D2 and the capacitor C1.
  • These two parallel circuits are input from the unbalanced-balanced conversion circuit 2 with the same amplitude and opposite phase (180 degree phase inversion), but both have the same characteristics. In addition, even in the output signal, the states of the opposite phases and the same amplitude are maintained. When these two signals are input to the signal synthesis circuit 3, they cancel each other and nothing is output.
  • the two signals that have passed through the two parallel circuits are of opposite phase and greatly different amplitude with respect to the AC component.
  • these two signals are input to the signal synthesis circuit 3, they are output without canceling each other due to the difference in amplitude.
  • the two signals that have passed through the two parallel circuits have a DC component. Therefore, it does not swing to a negative voltage due to the superimposed AC component. Therefore, if this is smoothed by the low-pass filter 4, a signal with some amplitude can be obtained.
  • the frequency characteristic of the impedance of the resonator XI depends on the Q of the resonator. Therefore, in the case of a resonator having a large Q, the slope of the impedance with respect to the frequency increases. Therefore, a large detection output can be obtained even if the deviation (frequency deviation) of the input FM signal is small.
  • FM detection can be performed with a very simple circuit.
  • FIG. 2 shows a circuit diagram of an FM detection circuit according to an embodiment of the present invention, which further illustrates the configuration of the above embodiment.
  • FIG. 2 the same parts as those in FIG.
  • the FM detection circuit 10 shown in FIG. 2 includes an unbalanced / balance conversion circuit 11 using a transistor Q1.
  • the base of the transistor Q1 is connected to the input terminal IN via the coupling capacitor C2, and is connected to the power supply terminal Vcc via the resistor R1, and to the ground via the resistor R2. It is connected to the.
  • the base bias condition of transistor Q1 is set by resistors Rl and R2. Collection of transistor Q1 The resistor is connected to the power supply terminal Vcc via a resistor R3, and the emitter is connected to the ground via a resistor R4.
  • the collector and emitter of transistor Q1 are connected to one end of coupling capacitors C3 and C4, respectively.
  • the other end of the coupling capacitor C3 is connected to the anode of the diode D1, which is the first diode, and the other end of the coupling capacitor C4 is also connected to the anode of the diode D2, which is the second diode.
  • the force sword of the diode D1 and the force sword of the diode D2 are connected and connected to one end of the coupling capacitor C5.
  • the anode of the diode D1 is connected to the power supply terminal Vcc through the resistor R5, and the anode of the diode D2 is also connected to the power supply terminal Vcc through the resistor R6.
  • connection point of diode S1's force sword and diode D2's force sword is connected to ground via resistor R7.
  • the forward bias current flowing through the diodes Dl and D2 is set by the resistors R5, R6, and R7.
  • the connection point between the power sword of diode D1 and the power sword of diode D2 functions substantially as a signal synthesis circuit.
  • the other end of the coupling capacitor C5 is connected to the output terminal OUT via the inductance element L1. Both ends of the inductance element L1 are connected to the ground via capacitors C6 and C7, respectively.
  • a one-pass filter circuit 12 is constituted by the inductance element Ll and the capacitors C6 and C7.
  • the FM detector circuit 10 has a specific configuration of an unbalanced / balance conversion circuit and a low-pass filter. Further, the FM detector circuit 10 has an FM detector except that the circuit configuration for supplying a bias current to the diodes Dl and D2 is specific. It is the same as circuit 1 and demonstrates FM detection function in the same way.
  • FIG. 3 shows the result of simulating the operation of the FM detection circuit 10.
  • This shows the waveform of the signal output from the FM detection circuit 10.
  • the precondition is that the input signal is a 9.95 MHz carrier signal modulated with a modulation signal of 20 kHz with a modulation index of 2, has an amplitude of ⁇ 10 mV, and the deviation is about 40 kHz.
  • the resonator connected in parallel with the diode is connected in parallel with a 10 ⁇ resistor, 0.1263 pF capacitor, and 1.99086 mH inductance element connected in series so that the series resonance frequency is 10 MHz.
  • a capacitive element connected in parallel to the second diode a capacitor of equal U or 2pF is used for the parallel capacitance of the resonator.
  • the detected waveform includes large distortion, and the linearity is not always good.
  • the FM modulation signal is an FSK signal modulated with a binary digital signal
  • the modulation signal can be sufficiently recognized by amplifying and passing through a comparator with an appropriate threshold set. Note that the distortion that exists when the detection signal shifts from the minimum value to the maximum value is considered to be due to non-linearity during phase inversion in the unbalanced / balanced conversion circuit.
  • the direction of the force diodes Dl and D2, which are configured so that a high-frequency signal is input from the anodes of the diodes Dl and D2, is reversed, and the diodes are sequentially forwarded to each diode. Even a configuration in which a directional current flows has the same effect. Alternatively, even if one of the diodes is set so that the high frequency signal is input from the anode and the other diode is set so that the high frequency signal is input from the force sword, a forward current flows to each diode in that state. Even if it is configured to flow, it has the same effect.
  • FIG. 4 shows a circuit diagram of another embodiment of the FM detection circuit of the present invention.
  • the FM detection circuit 20 shown in FIG. 4 is different from the FM detection circuit 10 shown in FIG. 2 only in the unbalanced / balance conversion circuit 21 and there is no difference in other parts. Therefore, the same parts as those in FIG.
  • the base of the transistor Q1 is connected to the power supply terminal Vcc via the resistor R1, and the collector is connected to the power supply terminal Vcc via the resistor R3.
  • the base of transistor Q2 is connected to power supply terminal Vcc via resistor R8.
  • the collector is connected to the power supply terminal Vcc through resistor R9.
  • the emitters of transistors Q1 and Q2 are connected to each other and to the collector of transistor Q3.
  • the base of transistor Q3 is connected to power supply terminal Vcc via resistor R10, and the emitter is connected to ground via resistor R11.
  • the base of the transistor Q1 is connected to the input terminal IN via the coupling capacitor C2, and the collectors of the transistors Ql and Q2 are connected to one ends of the coupling capacitors C3 and C4, respectively.
  • the transistor Q3 operates as a constant current circuit. Therefore, the circuit composed of the transistors Ql, Q2, and Q3 uses the base of the transistor Q1 as a signal input terminal and the collector of the transistors Ql and Q2. Each functions as a differential amplifier circuit that uses as a signal output terminal. The two output signals are inverted in phase. Therefore, as a whole, it functions as an unbalanced / balanced conversion circuit in which the base of the transistor Q1 is an unbalanced signal input terminal and the collectors of the transistors Q1 and Q2 are balanced signal output terminals.
  • the FM detection circuit 20 only the unbalanced / balance conversion circuit 21 is different from the force FM detection circuit 10, and the processing circuit after being converted into a balanced signal is the same. Therefore, it functions in the same way as the FM detection circuit 10.
  • FIG. 5 shows a result of simulating the operation of the FM detection circuit 20. This shows the waveform of the signal output from the FM detector circuit 20. The precondition is the same as in the operation simulation of the FM detection circuit 10 shown in FIG.
  • a 20 kHz repetitive waveform is obtained, and FM detection can be realized.
  • the output level is about 10 times higher than the result of the same simulation performed in the FM detection circuit 10 shown in the second embodiment.
  • the detected waveform contains a large amount of distortion and the linearity is not necessarily good.
  • the FM modulation signal is an FSK signal modulated by a binary digital signal, it will be amplified and not applicable. If a comparator with a threshold value is set, the modulation signal can be sufficiently recognized. Note that the distortion that exists at the time of transition from the maximum value to the minimum value of the detection signal is considered to be due to nonlinearity at the time of phase inversion in the unbalanced / balanced conversion circuit.
  • FIG. 6 shows a circuit diagram of still another embodiment of the FM detection circuit of the present invention.
  • the FM detector circuit 30 shown in Fig. 6 differs from the FM detector circuit 10 shown in Fig. 2 in the unbalanced / balanced conversion circuit 31 and the arrangement of resistors for flowing a DC current through the diodes Dl and D2 is changed accordingly. Power that has been changed There is no difference in other parts. Therefore, the same parts as those in FIG.
  • the unbalanced 'balance conversion circuit 31 is provided with a winding-type nolan transformer T1.
  • the Norrentrans T1 has the first, second, and third windings wound around one core. One end of the first winding is directly connected to the input terminal IN, and the other end is connected to the ground. One end of the second winding is directly connected to the anode of the diode D1, and the other end is grounded at a high frequency by being connected to the ground through a capacitor C8 having a low impedance at the signal frequency. One end of the third winding is connected to the other end of the second winding, and the other end is directly connected to the diode D2 node.
  • the connection point between the other end of the second feeder line and one end of the third feeder line is connected to the power supply terminal Vcc via a resistor R12. Since the resistor R12 is a resistor for flowing a forward bias current to the diodes Dl and D2, the resistors R5 and R6 provided in the FM detection circuit 10 are not provided. Also, because the bias current of diodes Dl and D2 is supplied via balun transformer T1, capacitors C3 and C4 for coupling and DC cut between unbalanced and balanced conversion circuit 31 and diodes Dl and D2 are used. It does not have. Furthermore, a capacitor C2 for coupling between the input terminal IN and the unbalanced / balanced conversion circuit is also provided. As is well known, the balun transformer T1 functions as an unbalanced / balanced variable ⁇ , so the unbalanced / balanced conversion circuit 31 also performs its function.
  • the FM detection circuit 30 configured as described above is basically the same as the FM detection circuit 1 except that the unbalanced 'balance conversion circuit is different, and similarly exhibits the FM detection function.
  • the FM detector circuit 30 uses a balun transformer T1 in the unbalanced / balanced conversion circuit 31, it is possible to supply a noise current to the diode through this, and thereby the bias current.
  • the number of resistors for supply and capacitors for DC cut can be reduced, and downsizing can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 不平衡・平衡変換回路(2)、信号合成回路(3)、不平衡・平衡変換回路(2)の第1の平衡出力端子と信号合成回路(3)の一方の信号入力端子の間に接続された第1のダイオード(D1)及び共振子(X1)からなる並列回路、不平衡・平衡変換回路(2)の第2の平衡出力端子と信号合成回路(3)のもう一方の信号入力端子の間に接続された第2のダイオード(D2)及び容量素子(C1)からなる並列回路、および信号合成回路(3)の出力端子に接続されたローパスフィルタ(4)を備える。

Description

明 細 書
FM検波回路
技術分野
[0001] 本発明は、 FM検波回路に関する。
背景技術
[0002] FM検波回路としては、フォスタ一'シーレー方式、レシオ方式、 PLL方式、スロー プ検波方式、ディスクリミネータ検波方式などがある。例えば特許文献 1にはスロープ 検波方式の FM検波回路が開示されている。特許文献 1においては、共振器のイン ピーダンスが共振周波数付近で変化することを利用して、信号の周波数変化 (FM成 分)を振幅変化 (AM成分)に変え、さらにダイオードで包絡線検波を行うことによって FM検波を実現している。
[0003] また、特許文献 2にはディスクリミネータ検波方式の FM検波回路が開示されている 。この回路では、圧電共振子の共振周波数付近でのインピーダンス変化を利用し、 出力された信号の振幅の変化を 2つのダイオードで整流して AM検波している。 特許文献 1:特開平 11— 195928号公報
特許文献 2:特開昭 56 - 14705号公報
発明の開示
発明が解決しょうとする課題
[0004] 例えばリモート 'キーレス'エントリー用の受信機では FSK信号を復調する必要があ る。通常は RF信号をー且 IF信号に周波数変換し (スーパーヘテロダイン方式)、そ の後で IF信号を検波する方式が用いられるが、スーパーヘテロダイン方式の場合は 局部発振器やミキサが必要になるために部品点数が多くなる。そこで、周波数変換を 行わずに RF信号を直接検波するダイレクト検波方式を採用することもできるが、検波 のために RF信号を大きく増幅しょうとすると増幅回路が発振する可能性が高ぐあま り増幅率を大きくしたくない。そのため、 RF信号を低いレベルで検波し、検波後に増 幅を行 、た 、と 、う希望がある。
[0005] ところが、特許文献 1や特許文献 2の FM検波回路においては、検波感度が低ぐ R F信号レベルが低 、時に検波出力が小さ!/ヽと 、う問題がある。
[0006] 本発明は上記の問題点を解決することを目的とするもので、検波感度の高い FM検 波回路を提供する。
課題を解決するための手段
[0007] 上記目的を達成するために、本発明の FM検波回路においては、不平衡'平衡変 換回路、該不平衡 ·平衡変換回路の第 1の平衡出力端子に一端が接続された第 1の ダイオード、前記不平衡'平衡変換回路の第 2の平衡出力端子に一端が接続された 第 2のダイオード、前記第 1のダイオードに並列に接続された共振子、前記第 2のダイ オードに並列に接続された容量素子、 2つの入力端子に前記第 1のダイオードの他 端と前記第 2のダイオードの他端が接続された信号合成回路、および前記信号合成 回路の出力端子に接続されたローパスフィルタ、を備えることを特徴とする。
[0008] また、本願発明の FM検波回路においては、前記共振子の共振周波数が、当該 F M検波回路に入力される FM信号の中心周波数よりも、少なくとも該 FM信号の周波 数偏位量以上離れて!/ヽることを特徴とする。
発明の効果
[0009] 本発明の FM検波回路においては、非常に簡単な回路で、高い検波感度を実現 することができる。
図面の簡単な説明
[0010] [図 1]本発明の FM検波回路のブロック図である。
[図 2]本発明の FM検波回路の一実施形態の回路図である。
[図 3]図 2の FM検波回路の検波出力信号のシミュレーション結果の波形を示す波形 図である。
[図 4]本発明の FM検波回路の別の実施形態の回路図である。
[図 5]図 4の FM検波回路の検波出力信号のシミュレーション結果の波形を示す波形 図である。
[図 6]本発明の FM検波回路のさらに別の実施形態の回路図である。
符号の説明 [0011] 1, 10, 20, 30"'FM検波回路
2, 11, 21, 31· ··不平衡'平衡変換回路
3…信号合成回路
4· ··ローパスフィルタ
D1…第 1のダイオード
D2…第 2のダイオード
XI…共振子
C1…コンデンサ (容量素子)
発明を実施するための最良の形態
[0012] (第 1の実施形態)
図 1に、本発明の FM検波回路のブロック図を示す。図 1において、 FM検波回路 1 は、入力端子 IN、不平衡ー平衡変換回路 2、第 1のダイオードであるダイオード Dl、 第 2のダイオードであるダイオード D2、共振子 XI、容量素子であるコンデンサ Cl、 信号合成回路 3、ローパスフィルタ 4、および出力端子 OUTを含んで構成されている
[0013] ここで、入力端子 INは不平衡—平衡変換回路 2の不平衡端子に接続される。不平 衡—平衡変換回路 2の第 1の平衡出力端子は、ダイオード D1と共振子 XIからなる 並列回路を介して信号合成回路 3の一方の入力端子に接続されている。不平衡ー 平衡変換回路 2の第 2の平衡出力端子は、ダイオード D2とコンデンサ C1からなる並 列回路を介して信号合成回路 3のもう一方の入力端子に接続されている。信号合成 回路 3の出力はローノ スフィルタ 4を介して出力端子 OUTに接続されて 、る。
[0014] 共振子 XIは等価回路的には微小な抵抗成分、インダクタンス成分および第 1の容 量成分が直列接続されたものに並列に別の第 2の容量成分が接続されたようなもの となる。例えば弾性表面波共振子(SAWR)や水晶振動子が用いられる。そして、コ ンデンサ C1の容量は共振子 XIの 2つの端子間の容量である第 2の容量成分に略一 致するものが選ばれて 、る。
[0015] ダイオード D1およびダイオード D2は同じ特性のものが望ましぐそれぞれ所定の 順方向電流が流されている。この電流値は、そのときの各ダイオード Dl、 D2の導通 抵抗が信号周波数近傍におけるコンデンサ CIのインピーダンスの絶対値に比較的 近 、値になるように設定されて 、る。
[0016] さらに、共振子 XIの共振周波数 (直列接続されたインダクタンス成分と第 1の容量 成分による直列共振周波数)は、入力される FM信号の中心周波数に対して、その 最大周波数変位量を少し超える程度ずれるように設定されている。ここでは、共振子 XIの共振周波数の方力FM信号の中心周波数より高く設定されているものとして説 明を続けるが、逆でももちろん構わない。その場合には出力信号の極性が変わるだ けである。
[0017] 次に、この回路の動作について説明する。
まず、ダイオード D1と共振子 XIからなる並列回路には、例えばダイオード D1のァ ノード側力も信号が入力され、力ソード側から出力される。ダイオード D2とコンデンサ C1からなる並列回路に関しても同様に、例えばダイオード D2のアノード側力 信号 が入力され、力ソード側から出力される。各ダイオードに順方向電流が流れるようにな つている限り、アノード、力ソードのどちらが信号入力側になりどちらが信号出力側に なっていても構わない。
[0018] ここで、入力される FM信号の周波数が低くて共振子 XIの共振周波数に対しても 十分低い場合を考える。この場合、共振子 XIはたんなる容量素子として機能し、しか もその容量がコンデンサ C1の容量とほぼ一致する。そのため、ダイオード D1と共振 子 XIからなる並列回路は、実質的にダイオード D2とコンデンサ C1からなる並列回 路と同じ特性を示すことになる。この 2つの並列回路には不平衡—平衡変換回路 2か ら出力された互 ヽに逆相( 180度位相反転)で同振幅の信号が入力されるが、いず れも同じ特性を示すために、出力される信号においても互いに逆相で同振幅の状態 は維持される。この 2つの信号を信号合成回路 3に入力すると互いに打ち消し合って 出力には何も出ない。
[0019] 逆に、入力信号の周波数が高くて共振子 XIの共振周波数に対してわずかだけ低 い場合を考える。この場合、共振子 XIにとつては共振周波数よりわずかに低いだけ の信号が通過するため、その信号にとっては共振子 XIのインピーダンスはかなり低く なる。一方、コンデンサ C1のインピーダンスは信号の周波数が大きく変わらない限り ほぼ一定である。 FM信号の周波数偏位程度の周波数変化ではほぼ一定と考えて 良い。そのため、ダイオード D1と共振子 XIの並列回路の方を通る信号の方力 ダイ オード D2とコンデンサ C2の並列回路を通る信号より大きくなる。両者に位相の変化 はほとんど生じないため、 2つの並列回路を通過した 2つの信号は、交流成分に関し ては互いに位相が逆相で振幅が大きく異なるものになる。この 2つの信号を信号合成 回路 3に入力すると、振幅の違いの分だけ打ち消し合わないで出てくる。また、 2つの 並列回路を通過した 2つの信号は直流成分を有する。そのため、重畳されている交 流成分によって負電圧までスイングすることはない。そのため、これをローパスフィル タ 4で平滑すると何らかの振幅の信号が得られる。
[0020] 上記の 2通りの信号の中間の周波数の信号が入力された場合には、共振子 XIを 通って出てくる信号の振幅がその中間になるので、当然ながらその中間の振幅の信 号が出力端子 OUTに得られる。これは入力信号の周波数の違いが出力信号の振 幅の違いとして現れたことを意味する。すなわち F—V変 能が実現されていること を意味し、まさに FM検波の動作そのものである。
[0021] 共振子 XIのインピーダンスの周波数特性は共振子の Qに依存する。したがって、 Qの大きな共振子の場合には周波数に対するインピーダンスの傾斜が大きくなる。そ のため、入力される FM信号のデビエーシヨン (周波数偏位量)が小さくても大きな検 波出力を得ることができる。
[0022] このように、本発明の FM検波回路においては、非常に簡単な回路で FM検波を行 うことができる。
(第 2の実施形態)
次に、図 2に、上記の実施形態の構成をさらに具体ィ匕した本発明の一実施形態の FM検波回路の回路図を示す。図 2において、図 1と同じ部分には同じ記号を付す。
[0023] 図 2に示した FM検波回路 10は、トランジスタ Q1を用いた不平衡'平衡変換回路 1 1を備える。不平衡'平衡変換回路 11において、トランジスタ Q1のベースは結合用の コンデンサ C2を介して入力端子 INに接続されているとともに、抵抗 R1を介して電源 端子 Vccに接続され、抵抗 R2を介してグランドに接続されている。抵抗 Rl、 R2によ つてトランジスタ Q1のベースバイアス条件が設定されている。トランジスタ Q1のコレク タは抵抗 R3を介して電源端子 Vccに接続され、ェミッタは抵抗 R4を介してグランドに 接続されている。そして、トランジスタ Q1のコレクタおよびェミッタはそれぞれ結合用 のコンデンサ C3、 C4の一端に接続されている。このように構成された不平衡 '平衡 変換回路 11においては、トランジスタ Q 1のベースに入力された信号と同相の信号が ェミッタからコンデンサ C4を介して出力され、逆相の信号がコレクタ力もコンデンサ C 3を介して出力される。なお、この構成の不平衡'平衡変換回路は特開昭 61— 2858 13号公報などにも開示されて ヽるように公知である。
[0024] 結合用のコンデンサ C3の他端は第 1のダイオードであるダイオード D1のアノードに 接続され、同じく結合用のコンデンサ C4の他端は第 2のダイオードであるダイオード D2のアノードに接続されている。ダイオード D1の力ソードとダイオード D2の力ソード が接続され、結合用のコンデンサ C5の一端に接続されている。ダイオード D1のァノ ードは抵抗 R5を介して電源端子 Vccに接続され、ダイオード D2のアノードも抵抗 R6 を介して電源端子 Vccに接続されて 、る。ダイオード D1の力ソードとダイオード D2の 力ソードの接続点は抵抗 R7を介してグランドに接続されている。抵抗 R5、 R6、 R7に よってダイオード Dl、 D2に流れる順バイアス電流が設定されている。さらに、ダイォ ード D1の力ソードとダイオード D2の力ソードの接続点は、実質的に信号合成回路と して機能する。
[0025] 結合用のコンデンサ C5の他端はインダクタンス素子 L1を介して出力端子 OUTに 接続されている。インダクタンス素子 L1の両端はそれぞれコンデンサ C6、 C7を介し てグランドに接続されている。インダクタンス素子 Ll、コンデンサ C6、 C7によって口 一パスフィルタ回路 12が構成されている。
[0026] FM検波回路 10においては、不平衡'平衡変換回路、ローパスフィルタの構成が具 体的になり、さらにダイオード Dl、 D2にバイアス電流を流す回路構成が具体的にな つた以外は FM検波回路 1と同じであり、同様に FM検波機能を発揮する。
[0027] ここで、図 3に、 FM検波回路 10の動作をシミュレーションした結果を示す。これは F M検波回路 10から出力される信号の波形を示すものである。前提条件としては、入 力信号としては 9. 95MHzの搬送波信号を 20kHzの変調信号で変調指数 2で変調 したもので、 ± 10mVの振幅を有し、デビエーシヨンは約 40kHzとなっている。第 1の ダイオードに並列接続される共振子としては、直列共振周波数が 10MHzとなるよう に、 10 Ωの抵抗、 0. 13263pFのコンデンサ、 1. 90986mHのインダクタンス素子を 直列接続したものに 2pFのコンデンサを並列接続したものを用いている。第 2のダイ オードに並列接続される容量素子としては、共振子の並列容量に等 U、2pFのコン デンサを用いている。
[0028] 図 3に示すように、 20kHzの繰り返し波形が得られており、 FM検波が実現できてい る。そして、特許文献 2に示された回路において同様のシミュレーションを行った結果 との比較で数倍の感度となった。
[0029] 検波波形は大きな歪みを含んでおり、線形性は必ずしも良くな 、。ただ、 FM変調 信号が 2値のデジタル信号で変調された FSK信号であるならば、増幅し、適当なしき い値を設定した比較器を通せば十分に変調信号の認識は可能である。なお、検波 信号の最小値から最大値への移行時に存在する歪みは不平衡'平衡変換回路にお ける位相反転の際の非線形性によるものと考えられる。
[0030] なお、 FM検波回路 10においては、高周波信号がダイオード Dl、 D2のアノードか ら入力されるように構成されている力 ダイオード Dl、 D2の向きを逆にし、その状態 で各ダイオードに順方向電流が流れるように構成したものでも同様の作用効果を奏 する。あるいは、いずれか一方のダイオードを高周波信号がアノードから入力される ようにし、他方のダイオードを高周波信号が力ソードから入力されるように設定したも のでも、その状態で各ダイオードに順方向電流が流れるように構成したものでも同様 の作用効果を奏する。
[0031] (第 3の実施形態)
図 4に、本発明の FM検波回路の別の実施形態の回路図を示す。図 4に示した FM 検波回路 20は、不平衡'平衡変換回路 21のみが図 2に示した FM検波回路 10と異 なり、他の部分に違いはない。よって、図 2と同一の部分には同じ記号を付し、その説 明を省略する。
[0032] 不平衡変換回路 21において、トランジスタ Q1はベースが抵抗 R1を介して電源端 子 Vccに接続されており、コレクタが抵抗 R3を介して電源端子 Vccに接続されている 。また、トランジスタ Q2はベースが抵抗 R8を介して電源端子 Vccに接続されており、 コレクタが抵抗 R9を介して電源端子 Vccに接続されている。トランジスタ Q1と Q2の ェミッタは互いに接続されるとともにトランジスタ Q3のコレクタに接続されている。トラ ンジスタ Q3は、ベースが抵抗 R10を介して電源端子 Vccに接続されており、ェミッタ が抵抗 R11を介してグランドに接続されている。そして、トランジスタ Q1のベースは結 合用のコンデンサ C2を介して入力端子 INに接続されており、トランジスタ Ql、 Q2の コレクタはそれぞれ結合用のコンデンサ C3、C4の一端に接続されている。
[0033] このように構成された回路において、トランジスタ Q3は定電流回路として動作する ので、トランジスタ Ql、 Q2、 Q3からなる回路は、トランジスタ Q1のベースを信号入力 端子とし、トランジスタ Ql、 Q2のコレクタをそれぞれ信号出力端子とする差動増幅回 路として機能する。そして、 2つの出力信号は互いに位相が反転したものとなる。した がって、全体としてトランジスタ Q1のベースを不平衡信号入力端子とし、トランジスタ Q1、Q2のコレクタをそれぞれ平衡信号出力端子とする不平衡'平衡変換回路として 機能する。
[0034] FM検波回路 20においては、不平衡'平衡変換回路 21のみ力FM検波回路 10と 異なっており、平衡信号に変換された後の処理回路については同じである。そのた め、 FM検波回路 10と同様に機能する。
[0035] ここで、図 5に、 FM検波回路 20の動作をシミュレーションした結果を示す。これは F M検波回路 20から出力される信号の波形を示すものである。前提条件としては、図 3 に示した FM検波回路 10の動作シミュレーションの時と同じにしている。
[0036] 図 5に示すように、 20kHzの繰り返し波形が得られており、 FM検波が実現できてい る。そして、第 2の実施形態で示した FM検波回路 10において同様のシミュレーショ ンを行った結果に比べて、出力レベルは約 10倍になった。
[0037] この場合も検波波形は大きな歪みを含んでおり、線形性は必ずしも良くないが、 F M変調信号が 2値のデジタル信号で変調された FSK信号であるならば、増幅し、適 当なしきい値を設定した比較器を通せば十分に変調信号の認識は可能である。なお 、検波信号の最大値から最小値への移行時に存在する歪みは不平衡'平衡変換回 路における位相反転の際の非線形性によるものと考えられる。
[0038] (第 4の実施形態) 図 6に、本発明の FM検波回路のさらに別の実施形態の回路図を示す。図 6に示し た FM検波回路 30は、不平衡 ·平衡変換回路 31が図 2に示した FM検波回路 10と 異なり、それに応じてダイオード Dl、 D2に直流電流を流すための抵抗の配置が変 更されている力 他の部分に違いはない。よって、図 2と同一の部分には同じ記号を 付し、その説明を省略する。
[0039] 不平衡 '平衡変換回路 31は卷線型のノ レントランス T1を備えている。ノ レントラン ス T1は 1つのコアに第 1、第 2、第 3の卷線が巻かれている。第 1の卷線の一端は入 力端子 INに直接接続され、他端はグランドに接続されている。第 2の卷線の一端は ダイオード D1のアノードに直接接続され、他端は信号周波数でインピーダンスの小 さいコンデンサ C8を介してグランドに接続されることによって高周波的に接地されて いる。第 3の卷線の一端は第 2の卷線の他端に接続され、他端はダイオード D2のァ ノードに直接接続されている。第 2の卷線の他端と第 3の卷線の一端との接続点は抵 抗 R 12を介して電源端子 Vccに接続されている。抵抗 R12がダイオード Dl、 D2に 順バイアス電流を流すための抵抗になるため、 FM検波回路 10で備えていた抵抗 R 5、 R6は備えていない。また、バルントランス T1を介してダイオード Dl、 D2のバイァ ス電流を供給する構成のため、不平衡'平衡変換回路 31とダイオード Dl、 D2との間 の結合用兼 DCカット用のコンデンサ C3、 C4も備えていない。さらには、入力端子 IN と不平衡 ·平衡変換回路との間の結合用のコンデンサ C2も備えて 、な 、。周知のよ うにバルントランス T1は不平衡 ·平衡変^^として機能するので、不平衡 ·平衡変換 回路 31もその機能を発揮する。
[0040] このように構成された FM検波回路 30においても、不平衡'平衡変換回路が異なる 以外は基本的に FM検波回路 1と同じであり、同様に FM検波機能を発揮する。
[0041] また、 FM検波回路 30においては、不平衡'平衡変換回路 31にバルントランス T1 を使用しているため、これを介してダイオードへのノィァス電流供給が可能であり、そ れによってバイアス電流供給用の抵抗や DCカット用のコンデンサの数を削減するこ とができ、小型化を実現することができる。

Claims

請求の範囲
[1] 不平衡,平衡変換回路、
該不平衡'平衡変換回路の第 1の平衡出力端子に一端が接続された第 1のダイォ ード、
前記不平衡'平衡変換回路の第 2の平衡出力端子に一端が接続された第 2のダイ オード、
前記第 1のダイオードに並列に接続された共振子、
前記第 2のダイオードに並列に接続された容量素子、
2つの入力端子に前記第 1のダイオードの他端と前記第 2のダイオードの他端が接 続された信号合成回路、
および前記信号合成回路の出力端子に接続されたローパスフィルタ、 を備えることを特徴とする FM検波回路。
[2] 前記共振子の共振周波数が、当該 FM検波回路に入力される FM信号の中心周 波数よりも、少なくとも該 FM信号の周波数偏位量以上離れていることを特徴とする、 請求項 1に記載の FM検波回路。
PCT/JP2005/012307 2004-08-20 2005-07-04 Fm検波回路 WO2006018936A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05765212A EP1780887A4 (en) 2004-08-20 2005-07-04 FM DETECTION CIRCUIT
JP2006531326A JP4623008B2 (ja) 2004-08-20 2005-07-04 Fm検波回路
US11/616,908 US7518438B2 (en) 2004-08-20 2006-12-28 FM detector circuit with unbalanced/balanced conversion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004240379 2004-08-20
JP2004-240379 2004-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/616,908 Continuation US7518438B2 (en) 2004-08-20 2006-12-28 FM detector circuit with unbalanced/balanced conversion

Publications (1)

Publication Number Publication Date
WO2006018936A1 true WO2006018936A1 (ja) 2006-02-23

Family

ID=35907328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012307 WO2006018936A1 (ja) 2004-08-20 2005-07-04 Fm検波回路

Country Status (4)

Country Link
US (1) US7518438B2 (ja)
EP (1) EP1780887A4 (ja)
JP (1) JP4623008B2 (ja)
WO (1) WO2006018936A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261372B2 (ja) * 2006-03-29 2013-08-14 トムソン ライセンシング 周波数変換モジュールの周波数制限増幅器
US8026758B2 (en) 2008-09-12 2011-09-27 Sennheiser Electronic Gmbh & Co. Kg FM demodulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228708A (ja) * 1985-04-02 1986-10-11 Tokyo Keiki Co Ltd 周波数弁別回路
JPH0385947A (ja) * 1989-08-30 1991-04-11 Keitaro Sekine Fsk信号復調器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE542318A (ja) * 1954-10-26
US3160822A (en) * 1960-10-31 1964-12-08 Edgar L Dix Quartz crystal discriminating circuit
US3155913A (en) * 1960-11-21 1964-11-03 Pacific Ind Inc Crystal discriminator
US3170121A (en) * 1962-11-05 1965-02-16 Hughes Aircraft Co Frequency discriminator with center frequency control
US3573643A (en) * 1969-12-15 1971-04-06 Motorola Inc Frequency discriminator circuit including piezoelectric resonator providing coupled resonant circuit
JPS5249712B2 (ja) * 1971-10-21 1977-12-19
US3934207A (en) * 1974-10-21 1976-01-20 Gte Sylvania Incorporated Frequency discriminator utilizing surface wave devices
US3936764A (en) * 1974-10-21 1976-02-03 Gte Sylvania Incorporated Frequency discriminator utilizing surface wave devices
US4027268A (en) * 1975-06-12 1977-05-31 Motorola, Inc. Demodulator for PM or FM signals
JPS5614705A (en) 1979-07-17 1981-02-13 Noto Denshi Kogyo Kk Balanced type intermediate-frequency amplifying circuit for discriminator
JPS61285813A (ja) 1985-06-12 1986-12-16 Toshiba Corp 位相分割回路
IT1231388B (it) * 1989-08-25 1991-12-02 Sgs Thomson Microelectronics Convertitore di segnali elettrici analogici sbilanciati in segnali tutto-differenziali
JPH11195928A (ja) 1998-01-06 1999-07-21 Sony Corp 周波数変調信号復調回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228708A (ja) * 1985-04-02 1986-10-11 Tokyo Keiki Co Ltd 周波数弁別回路
JPH0385947A (ja) * 1989-08-30 1991-04-11 Keitaro Sekine Fsk信号復調器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1780887A4 *

Also Published As

Publication number Publication date
EP1780887A4 (en) 2012-02-22
US20070109041A1 (en) 2007-05-17
EP1780887A1 (en) 2007-05-02
US7518438B2 (en) 2009-04-14
JPWO2006018936A1 (ja) 2008-05-08
JP4623008B2 (ja) 2011-02-02

Similar Documents

Publication Publication Date Title
KR100243489B1 (ko) 주파수 변환기 및 이를 이용한 무선 수신기
US4058771A (en) Double-balanced frequency converter
US7567142B2 (en) Quasi-balun
WO2006018936A1 (ja) Fm検波回路
JPS61251313A (ja) 電子同調式fm受信機
JP3877825B2 (ja) 多モード無線電話
JPS6126351A (ja) 無線周波数変復調装置及び方法
KR100371876B1 (ko) 주파수 변환회로
US4100500A (en) Angle-modulation detector having push-pull input applied through high-pass filters
JPH0221709A (ja) 周波数変調器
JP3204565B2 (ja) 位相シフト回路
JPH0344685B2 (ja)
US4339726A (en) Demodulator of angle modulated signal operable by low power voltage
US20040017273A1 (en) Tuning circuit
US4264867A (en) Demodulator circuit for frequency-modulated signal
JP4260367B2 (ja) 復調器回路
US6897734B2 (en) Integral mixer and oscillator device
WO2002005417A1 (fr) Melangeur d'harmoniques uniforme
JP3880129B2 (ja) インダクタ回路及びフィルタ
JP2006229427A (ja) 受信装置
JPH0758549A (ja) 周波数変調回路
JPS6143323Y2 (ja)
JPH0241961Y2 (ja)
JPH05160644A (ja) 位相差発振回路
JPS5846592Y2 (ja) Am−fmラジオ受信機のバンド切換回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531326

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005765212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11616908

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005765212

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11616908

Country of ref document: US