WO2006015865A1 - Fungicidal compositions - Google Patents

Fungicidal compositions Download PDF

Info

Publication number
WO2006015865A1
WO2006015865A1 PCT/EP2005/008748 EP2005008748W WO2006015865A1 WO 2006015865 A1 WO2006015865 A1 WO 2006015865A1 EP 2005008748 W EP2005008748 W EP 2005008748W WO 2006015865 A1 WO2006015865 A1 WO 2006015865A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
methyl
spp
name
Prior art date
Application number
PCT/EP2005/008748
Other languages
French (fr)
Inventor
Harald Walter
Urs Neuenschwander
Ronald Zeun
Josef Ehrenfreund
Hans Tobler
Camilla Corsi
Clemens Lamberth
Original Assignee
Syngenta Participations Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33017438&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006015865(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US11/573,277 priority Critical patent/US8536089B2/en
Priority to DK05791052.3T priority patent/DK1778013T3/en
Priority to EP05791052A priority patent/EP1778013B1/en
Priority to BRPI0513464-1A priority patent/BRPI0513464B1/en
Priority to AU2005270319A priority patent/AU2005270319B2/en
Priority to PL05791052T priority patent/PL1778013T3/en
Priority to CA2573661A priority patent/CA2573661C/en
Priority to KR1020077003104A priority patent/KR101225464B1/en
Priority to SI200531269T priority patent/SI1778013T1/en
Priority to AT05791052T priority patent/ATE496535T1/en
Priority to MX2007000785A priority patent/MX2007000785A/en
Priority to JP2007525257A priority patent/JP4988571B2/en
Priority to NZ552659A priority patent/NZ552659A/en
Priority to EA200700382A priority patent/EA010842B1/en
Application filed by Syngenta Participations Ag filed Critical Syngenta Participations Ag
Priority to DE602005026126T priority patent/DE602005026126D1/en
Publication of WO2006015865A1 publication Critical patent/WO2006015865A1/en
Priority to IL181239A priority patent/IL181239A/en
Priority to NO20070928A priority patent/NO338563B1/en
Priority to HK07109393.7A priority patent/HK1104197A1/en
Priority to US14/017,632 priority patent/US9538755B2/en
Priority to US15/363,501 priority patent/US9949482B2/en
Priority to LTPA2017028C priority patent/LTC1778013I2/en
Priority to NL350084C priority patent/NL350084I2/en
Priority to US15/953,825 priority patent/US10405548B2/en
Priority to US16/564,912 priority patent/US11102977B2/en
Priority to US17/395,021 priority patent/US20210378242A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/7071,2,3- or 1,2,4-triazines; Hydrogenated 1,2,3- or 1,2,4-triazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles

Definitions

  • the present invention relates to novel fungicidal compositions for the treatment of phyto- pathogenic diseases of useful plants, especially phytopathogenic fungi, to a method of controlling phytopathogenic diseases on useful plants and to a method of protecting natural substances of vegetable and/or animal origin and/or their processed forms.
  • o-cyclopropyl-carboxanilide derivatives have biological activity against phytopathogenic fungi, e.g. known from WO 03/074491 where their properties and methods of preparation are described.
  • various fungicidal compounds of different chemical classes are widely known as plant fungicides for application in various crops of cultivated plants.
  • crop tolerance and activity against phytopathogenic plant fungi do not always satisfy the needs of agricultural practice in many incidents and aspects.
  • R 1 is trifluoromethyl or difluoromethyl
  • R 2 is hydrogen or methyl; or a tautomer of such a compound; and component B) is a compound selected from the group consisting of Benomyl (62);
  • Carbendazim (116); Fuberidazole (419); Thiabendazole (790); Thiophanate (1435);
  • methothrin (alternative name) (533); methoxychlor (534); methoxyfenozide (535); methyl bromide (537); methyl isothiocyanate (543); methylchloroform (alternative name) [CCN]; methylene chloride [CCN]; metofluthrin [CCN]; metolcarb (550); metoxadiazone (1288); mevinphos (556); mexacarbate (1290); milbemectin (557); milbemycin oxime (alternative name) [CCN]; mipafox (1293); mirex (1294); monocrotophos (561); morphothion (1300); moxidectin (alternative name) [CCN]; naftalofos (alternative name) [CCN]; naled (567); naphthalene (IUPAC- / Chemical Abstracts-Name) (1303); NC-170 (development code) (1306); NC-170
  • the active ingredient mixture according to the invention not only brings about the additive enhancement of the spectrum of action with respect to the phytopathogen to be controlled that was in principle to be expected but achieves a synergistic effect which extends the range of action of the component (A) and of the component (B) in two ways. Firstly, the rates of application of the component (A) and of the component (B) are lowered whilst the action remains equally good. Secondly, the active ingredient mixture still achieves a high degree of phytopathogen control even where the two individual components have become totally ineffective in such a low application rate range. This allows, on the one hand, a substantial broadening of the spectrum of phytopathogens that can be controlled and, on the other hand, increased safety in use.
  • the pesticidal compositions according to the invention also have further surprising advantageous properties which can also be described, in a wider sense, as synergistic activity.
  • advantageous properties are: a broadening of the spectrum of fungicidal activity to other phytopathogens, for example to resistant strains; a reduction in the rate of application of the active ingredients; synergistic activity against animal pests, such as insects or representatives of the order Acarina; a broadening of the spectrum of pesticidal activity to other animal pests, for example to resistant animal pests; adequate pest control with the aid of the compositions according to the invention, even at a rate of application at which the individual compounds are totally ineffective; advantageous behaviour during formulation and/or upon application, for example upon grinding, sieving, emulsifying, dissolving or dispensing; increased storage stability; improved stability to light; more advantageuos degradability; improved toxicological and/or ecotoxicological behaviour; improved
  • R 1 and R 2 are as defined under formula I.
  • the invention covers all such stereoisomers and mixtures thereof in any ratio.
  • VA (VA) (VB) (VC) as further impurities of compounds of fomula I, wherein R 1 is difluoromethyl and R 2 is hydrogen.
  • R 1 is difluoromethyl
  • R 2 is hydrogen.
  • WO 03/074491 describes on page 20 of the specification a process for the manufacture of amines of formula III
  • a step in said process is the reaction of a compound of formula Vl
  • Preferred compounds of formula VII are compounds, wherein X is chloride or bromide. Said preferred compounds of formula VII can be used advantageously for the production of amines of formula III using methods as described in WO 03/074491.
  • the components (B) are known. Where the components (B) are included in "The Pesticide Manual” [The Pesticide Manual - A World Compendium; Thirteenth Edition; Editor: C. D. S. Tomlin; The British Crop Protection Council], they are described therein under the entry number given in round brackets hereinabove for the particular component (B); for example, the compound "abamectin” is described under entry number (1). Where “[CCN]” is added hereinabove to the particular component (B), the component (B) in question is included in the "Compendium of Pesticide Common Names", which is accessible on the internet [A. Wood; Compendium of Pesticide Common Names, Copyright ⁇ 1995-2004]; for example, the compound "acetoprole” is described under the internet address http://www.alanwood.net/pesticides/acetoprole.ritml.
  • the following components B) are registered under a CAS-Reg. No.: Aldimorph (CAS 91315- 15-0); lodocarb (3-lodo-2-propynyl butyl carbamate) (CAS 55406-53-6); Fentin chloride (CAS 668-34-8); Hymexazole (CAS 10004-44-1); Phosphoric acid (CAS 7664-38-2); Tecloftalam (CAS 76280-91-6); Arsenates (CAS 1327-53-3); Copper Ammoniumcarbonate (CAS 33113-08-5); Copper oleate (CAS 1120-44-1); Mercury (CAS 7487-94-7; 21908-53-2; 7546-30-7); Benthiavalicarb (CAS 413615-35-7); Cadmium chloride (CAS 10108-64-2); Cedar leaf oil (CAS 8007-20-3); Chlorine (CAS 7782-50-5); Cinnamaldehyde (CAS: 104-55- 2); Manganous dimethyldithiocarbamate (
  • the compounds of formulae A-1 , A-2, A-3, A-4, A-5, A-6, A-7, A-8, A-9, A-10, A-11 , A-12, A- 13, A-14, A-15, A-18, A-19, A-20, A-21 and A-22 are described in WO-03/015519.
  • the compound of formula A-15A is described in EP-A-1 006 107.
  • the compounds of formulae A- 16, A-17, A-23, A-24, A-25 and A-26 are described in WO-04/067528.
  • Bacillus pumilus GB34 and Bacillus pumilus strain QST are described at the U.S. Environmental Protection Agency, U.S. EPA PC Code 006493 and U.S. EPA PC Code 006485, respectively (see: http://www.epa.gov/).
  • the compound of formula F-1 is described in WO 01/87822.
  • Compounds of formula F-2A and the compound of formula F-2 are described in WO 98/46607.
  • the compound of formula F-3 is described in WO 99/042447.
  • the compound of formula F-4 is described in WO 96/19442.
  • the compound of formula F-5 is described in WO 99/14187.
  • the compound of formula F-6 is described in US-5,945,423 and WO 94/26722.
  • the compound of formula F-7 is described in EP-0-936-213.
  • the compound of formula F-8 is described in US-6,020,332, CN-1 -167-568, CN-1 -155-977 and EP-0-860-438.
  • the expression “combination” stands for the various combinations of components A) and B), for example in a single “ready-mix” form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a "tank-mix”, and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days.
  • the order of applying the components A) and B) is not essential for working the present invention.
  • the combinations according to the invention may also comprise more than one of the active components B), if, for example, a broadening of the spectrum of phytopathogenic disease control is desired. For instance, it may be advantageous in the agricultural practice to combine two or three components B) with the any of the compounds of formula I, or with any preferred member of the group of compounds of formula I.
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R 1 is difluoromethyl and R 2 is hydrogen, and one component B) as described above.
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R-i is difluoromethyl and R 2 is methyl, and one component B) as described above.
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein Ri is trifluoromethyl and R 2 is hydrogen, and one component B) as described above.
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R-i is trifluoromethyl and R 2 is methyl, and one component B) as described above.
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula Ia (trans)
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula Ib (cis) which represents a compound of formula l m , wherein R 1 is difluoromethyl and R 2 is hydrogen; a compound of formula l ⁇ v , wherein R 1 is difluoromethyl and R 2 is hydrogen or a mixture in any ratio of a compound of formula Im, wherein R 1 is difluoromethyl and R 2 is hydrogen, and a compound of formula I
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ib (cis)
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
  • suitable ratios of racemic compounds of formula Ia which represent a racemic mixture of compounds of formula l
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
  • racemic compounds of formula Ia which represent a racemic mixture of compounds of formula h, wherein R 1 is difluoromethyl and R 2 is hydrogen, and compounds of formula In, wherein R 1 is difluoromethyl and R 2 is hydrogen, is from 65 to 99 % by weight, and one component B) as described above.
  • a “racemic mixture” of two enantiomers or a “racemic compound” means a mixture of two enantiomers in a ratio of substantially 50 : 50 of the two enantiomers.
  • Preferred components B) are selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Manco
  • More preferred components B) are selected from the group consisting of Azoxystrobin; Picoxystrobin; Cyproconazole; Difenoconazole; Propiconazole; Fludioxonil; Cyprodinil; Fenpropimorph; Fenpropidin; a compound of formula F-1 a compound of formula F-2
  • Chlorothalonil Epoxiconazole; Prothioconazole and Thiabendazole.
  • More preferred component B) is Azoxystrobin; Fludioxonil; Difenoconazole; Cyproconazole or Thiabendazole.
  • Most preferred component B) is Azoxystrobin; Fludioxonil or Difenoconazole.
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R 1 is difluoromethyl and R 2 is hydrogen, and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Met
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein Ri is difluoromethyl and R 2 is methyl, and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Met
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R-i is trifluoromethyl and R 2 is methyl, and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula Ia (trans)
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula Ib (cis) which represents a compound of formula Im, wherein Ri is difluoromethyl and R 2 is hydrogen; a compound of formula I
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ib (cis)
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic wherein the content of compounds of formula Ia, which represent a racemic mixture of compounds of formula l
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R 1 is difluoromethyl and R 2 is hydrogen, and one component B) selected from the group consisting of Azoxystrobin; Fludioxonil; Difenoconazole; Cyproconazole or Thiabendazole.
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ia (trans)
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic wherein the ratio of compounds of formula Ia, which represent a racemic mixture of compounds of formula I 1 , wherein R 1 is difluoromethyl and R 2 is hydrogen, and compounds of formula 1», wherein R 1 is difluoromethyl and R 2 is hydrogen, to compounds of formula Ib, which represent a racemic mixture of compounds of formula l m , wherein Ri is difluoromethyl and R 2 is hydrogen, and compounds of formula l
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R 1 is difluoromethyl and R 2 is hydrogen, and one component B) selected from the group consisting of Azoxystrobin; Difenoconazole and Fludioxonil.
  • a preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ia (trans)
  • a further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
  • the active ingredient combinations are effective especially against phytopathogenic fungi belonging to the following classes: Ascomycetes (e.g. Venturia, Podosphaera, Erysiphe, Monilinia, Mycosphaerella, Uncinula); Basidiomycetes (e.g. the genus Hemileia, Rhizoctonia, Puccinia, Ustilago, Tilletia); Fungi imperfecti (also known as Deuteromycetes; e.g.
  • Ascomycetes e.g. Venturia, Podosphaera, Erysiphe, Monilinia, Mycosphaerella, Uncinula
  • Basidiomycetes e.g. the genus Hemileia, Rhizoctonia, Puccinia, Ustilago, Tilletia
  • Fungi imperfecti also known as Deuteromycetes; e.g.
  • Botrytis Helminthosporium, Rhynchosporium, Fusarium, Septoria, Cercospora, Alternaria, Pyricularia and Pseudocercosporella herpotrichoides); Oomycetes (e.g. Phytophthora, Peronospora, Pseudoperonospora, Albugo, Bremia, Pythium, Pseudosclerospora, Plasmopara).
  • Oomycetes e.g. Phytophthora, Peronospora, Pseudoperonospora, Albugo, Bremia, Pythium, Pseudosclerospora, Plasmopara).
  • “useful plants” typically comprise the following species of plants: cereals, such as wheat, barley, rye or oats; beet, such as sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, for example apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries or blackberries; leguminous plants, such as beans, lentils, peas or soybeans; oil plants, such as rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans or groundnuts; cucumber plants, such as marrows, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceae, such as avocados, cinnamon or camphor; maize; tobacco; nuts; coffee
  • useful plants is to be understood as including also useful plants that have been rendered tolerant to herbicides like bromoxynil or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, for example primisulfuron, prosulfuron and trifloxysulfuron, EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors) as a result of conventional methods of breeding or genetic engineering.
  • herbicides like bromoxynil or classes of herbicides
  • ALS inhibitors for example primisulfuron, prosulfuron and trifloxysulfuron
  • EPSPS 5-enol-pyrovyl-shikimate-3-phosphate-synthase
  • GS glutamine synthetase
  • imazamox by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola).
  • crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® , Herculex I ® and Liberty ⁇ nk®.
  • useful plants is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
  • Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popliae; or insecticidal proteins from Bacillus thuringiensis, such as ⁇ -endotoxins, e.g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CrylIA(b), CrylllA, CrylllB(bi ) or Cry9c, or vegetative insecticidal proteins (VIP), e.g. VIP1 , VIP2, VIP3 or VIP3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp.
  • insecticidal proteins for example insecticidal proteins from Bacillus cereus or Bacillus popliae
  • Bacillus thuringiensis such as ⁇ -endotoxins, e.g. CrylA(b), CrylA(c), CrylF, CrylF(
  • Xenorhabdus spp. such as Photorhabdus luminescens, Xenorhabdus nematophilus
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins
  • toxins produced by fungi such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins
  • agglutinins proteinase inhibitors, such as trypsine inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors
  • ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecd
  • ⁇ -endotoxins for example CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bi) or Cry9c, or vegetative insecticidal proteins (VIP), for example VIP1 , VIP2, VIP3 or VIP3A, expressly also hybrid toxins, truncated toxins and modified toxins.
  • Hybrid toxins are produced recombinant ⁇ by a new combination of different domains of those proteins (see, for example, WO 02/15701).
  • a truncated toxin is a truncated CrylA(b), which is expressed in the Bt11 maize from Syngenta Seed SAS, as described below.
  • modified toxins one or more amino acids of the naturally occurring toxin are replaced.
  • non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of CrylllA055, a cathepsin-D- recognition sequence is inserted into a CrylllA toxin (see WO 03/018810)
  • Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-O 374 753, WO 93/07278, WO 95/34656, EP-A-O 427 529, EP-A-451 878 and WO 03/052073.
  • Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-O 367 474, EP-A-O 401 979 and WO 90/13651.
  • the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
  • insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
  • Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylA(b) toxin); YieldGard Rootworm® (maize variety that expresses a CrylllB(bi) toxin); YieldGard Plus® (maize variety that expresses a CrylA(b) and a CrylHB(b1) toxin); Starlink® (maize variety that expresses a Cry9(c) toxin); Herculex I® (maize variety that expresses a CrylF(a2) toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylA(c) toxin); Boll
  • transgenic crops are:
  • MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified CrylllA toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-D-protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
  • MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a CrylllB(bi) toxin and has resistance to certain Coleoptera insects.
  • NK603 x MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a CrylA(b) toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
  • useful plants is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-O 392 225).
  • PRPs pathogenesis-related proteins
  • Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-O 392 225, WO 95/33818, and EP-A-O 353 191.
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1 , KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called "pathogenesis-related proteins" (PRPs; see e.g. EP-A- 0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defence (so-called "plant disease resistance genes", as described in WO 03/000906).
  • Useful plants of elevated interest in connection with present invention are cereals; maize; turf; vines and vegetables, such as tomatoes, potatoes, cucurbits and lettuce.
  • locus of a useful plant as used herein is intended to embrace the place on which the useful plants are growing, where the plant propagation materials of the useful plants are sown or where the plant propagation materials of the useful plants will be placed into the soil.
  • An example for such a locus is a field, on which crop plants are growing.
  • plant propagation material is understood to denote generative parts of the plant, such as seeds, which can be used for the multiplication of the latter, and vegetative material, such as cuttings or tubers, for example potatoes. There may be mentioned for example seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes and parts of plants. Germinated plants and young plants which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion. Preferably "plant propagation material” is understood to denote seeds.
  • the term "storage goods” is understood to denote natural substances of vegetable and/or animal origin and their processed forms, which have been taken from the natural life cycle and for which long-term protection is desired.
  • Storage goods of vegetable origin such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted.
  • timber whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood.
  • Storage goods of animal origin are hides, leather, furs, hairs and the like.
  • the combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold.
  • storage goods is understood to denote natural substances of vegetable origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.
  • a further aspect of the instant invention is a method of protecting natural substances of vegetable and/or animal origin and/or their processed forms, which have been taken from the natural life cycle, which comprises applying to said natural substances of vegetable and/or animal origin or their processed forms a combination of components A) and B) in a synergistically effective amount.
  • a preferred embodiment is a method of protecting natural substances of vegetable origin and/or their processed forms, which have been taken from the natural life cycle, which comprises applying to said natural substances of vegetable origin or their processed forms a combination of components A) and B) in a synergistically effective amount.
  • a further preferred embodiment is a method of protecting fruits, preferably pomes, stone fruits, soft fruits and citrus fruits, and/or their processed forms, which have been taken from the natural life cycle, which comprises applying to said natural substances of vegetable origin or their processed forms a combination of components A) and B) in a synergistically effective amount.
  • the combinations of the present invention may also be used in the field of protecting technical material against attack of fungi.
  • the term "technical material” includes paper; carpets; constructions; cooling and heating systems; wall-boards; ventilation and air conditioning systems and the like.
  • the combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold.
  • storage goods is understood to denote wall-boards.
  • the combinations according to the present invention are particularly effective against seedbome and soilborne diseases, such as Alternaria spp., Ascochyta spp., Aspergillus spp., Penicillium spp., Botrytis cinerea, Cercospora spp., Claviceps purpurea, Cochliobolus sativus, Colletotrichum spp., Diplodia maydis, Epicoccum spp., Fusarium culmorum, Fusarium graminearum, Fusarium moniliforme, Fusarium oxysporum, Fusarium proliferatum, Fusarium solani, Fusarium subglutinans, Gaumannomyces graminis , Helminthosporium spp., Microdochium nivale, Phoma spp., Pyrenophora graminea, Pyricularia oryzae, Rhizoctonia solani, Rhizoct
  • Verticillium spp. in particular against pathogens of cereals, such as wheat, barley, rye or oats; maize; rice; cotton; soybean; turf; sugarbeet; oil seed rape; potatoes; pulse crops, such as peas, lentils or chickpea; and sunflower.
  • the combinations according to the present invention are furthermore particularly effective against rusts; powdery mildews; leafspot species; early blights; molds and post harvest dieseases; especially against Puccinia in cereals; Phakopsora in soybeans; Hemileia in coffee; Phragmidium in roses; Altemaria in potatoes, tomatoes and cucurbits; Sclerotica in vegetables, sunflower and oil seed rape; black rot, red fire, powdery mildew, grey mold and dead arm disease in vine; Botrytis cinerea in fruits; Monilinia spp. in fruits and Penicillium spp. in fruits.
  • the amount of a combination of the invention to be applied will depend on various factors, such as the compound employed; the subject of the treatment, such as, for example plants, soil or seeds; the type of treatment, such as, for example spraying, dusting or seed dressing; the purpose of the treatment, such as, for example prophylactic or therapeutic; the type of fungi to be controlled or the application time.
  • the weight ratio of A):B) is so selected as to give a synergistic activity.
  • the weight ratio of A) : B) is between 2000 : 1 and 1 : 1000, preferably between 100 : 1 and 1 : 100.
  • the synergistic activity of the combination is apparent from the fact that the fungicidal activity of the composition of A) + B) is greater than the sum of the fungicidal activities of A) and B).
  • the method of the invention comprises applying to the useful plants, the locus thereof or propagation material thereof in admixture or separately, a synergistically effective aggregate amount of a compound of formula I and a compound of component B).
  • Some of said combinations according to the invention have a systemic action and can be used as foliar, soil and seed treatment fungicides.
  • the combinations of the present invention are of particular interest for controlling a large number of fungi in various useful plants or their seeds, especially in field crops such as potatoes, tobacco and sugarbeets, and wheat, rye, barley, oats, rice, maize, lawns, cotton, soybeans, oil seed rape, pulse crops, sunflower, coffee, sugarcane, fruit and ornamentals in horticulture and viticulture, in vegetables such as cucumbers, beans and cucurbits.
  • field crops such as potatoes, tobacco and sugarbeets, and wheat, rye, barley, oats, rice, maize, lawns, cotton, soybeans, oil seed rape, pulse crops, sunflower, coffee, sugarcane, fruit and ornamentals in horticulture and viticulture, in vegetables such as cucumbers, beans and cucurbits.
  • the combinations according to the invention are applied by treating the fungi, the useful plants, the locus thereof, the propagation material thereof, storage goods or technical materials threatened by fungus attack with a synergistically effective aggregate amount of a compound of formula I and a compound of component B).
  • the combinations according to the invention may be applied before or after infection of the useful plants, the propagation material thereof, storage goods or technical materials by the fungi.
  • the combinations according to the invention are particularly useful for controlling the following plant diseases:
  • Botrytis cinerea (gray mold) in strawberries, tomatoes, sunflower and grapes,
  • Rhizoctonia species in cotton, soybean, cereals, maize, potatoes, rice and lawns are Rhizoctonia species in cotton, soybean, cereals, maize, potatoes, rice and lawns.
  • the combinations according to the invention are preventively and/or curatively valuable ac ⁇ tive ingredients in the field of pest control, even at low rates of application, which have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants.
  • the active ingredients according to the invention which are partially known for their insecticidal action act against all or individual developmental stages of normally sensitive, but also resistant, animal pests, such as insects or representatives of the order Acarina.
  • the insecticidal or acaricidal activity of the combinations according to the invention can manifest itself directly, i.e.
  • Examples of the abovementioned animal pests are: from the order Acarina, for example, Acarus siro, Aceria sheldoni, Aculus Ulendali, Amblyomma spp., Argas spp., Boophi- lus spp., Brevipalpus spp., Bryobia praetiosa, Calipitrimerus spp., Chorioptes spp., Derma- nyssus gallinae, Eotetranychus carpini, Eriophyes spp., Hyalomma spp., Ixodes spp., Oly- gonychus pratensis, Ornithodoros spp., Panonychus spp., Phyllocoptruta oleivora, Polypha- gotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp
  • Haematopinus spp. Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.; from the order Coleoptera, for example,
  • Curculio spp. Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata, Lissorhoptrus spp., Melolontha spp., Orycaephilus spp., Otiorhynchus spp.,
  • Aedes spp. Antherigona soccata, Bibio hortulanus, Calliphora erythrocephala, Ceratitis spp.,
  • Cimex spp. Distantiella theobroma, Dysdercus spp., Euchistus spp., Eurygaster spp., Lep- tocorisa spp., Nezara spp., Piesma spp., Rhodnius spp., Sahlbergella singularis, Scotino- phara spp. and Triatoma spp.; from the order Homoptera, for example,
  • Aleurothrixus floccosus Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella spp., Aphididae, Aphis spp., Aspi- diotus spp., Bemisia tabaci, Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperidum, Empoasca spp., Eriosoma larigerum, Erythroneura spp.,
  • Myzus spp. Nephotettix spp., Nilaparvata spp., Parlatoria spp., Pemphigus spp., Planococ- cus spp., Pseudaulacaspis spp., Pseudococcus spp., Psylla spp., Pulvinaria aethiopica,
  • Quadraspidiotus spp. Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Trialeurodes vaporariorum, Trioza erytreae and Unaspis citri; from the order Hymenoptera, for example,
  • Vespa spp. from the order Isoptera, for example,
  • Reticulitermes spp. from the order Lepidoptera, for example,
  • Ostrinia nubilalis Pammene spp., Pandemis spp., Panolis flammea, Pectinophora gossypi- ela, Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Scir- pophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Synanthedon spp.,
  • Thaumetopoea spp. Tortrix spp., Trichoplusia ni and Yponomeuta spp.; from the order Mallophaga, for example,
  • Blatta spp. Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Periplaneta spp. and Schistocerca spp.; from the order Psocoptera, for example,
  • Liposcelis spp. from the order Siphonaptera, for example,
  • Thysanura Frankliniella spp., Hercinothrips spp., Scirtothrips aurantii, Taeniothrips spp., Thrips palmi and Thrips tabaci; from the order Thysanura, for example,
  • the combinations according to the invention can be used for controlling, i. e. containing or destroying, animal pests of the abovementioned type which occur on useful plants in agriculture, in horticulture and in forests, or on organs of useful plants, such as fruits, flowers, foliage, stalks, tubers or roots, and in some cases even on organs of useful plants which are formed at a later point in time remain protected against these animal pests.
  • the compound of formula I When applied to the useful plants the compound of formula I is applied at a rate of 5 to 2000 g a.i./ha, particularly 10 to 1000 g a.i./ha, e.g. 50, 75, 100 or 200 g a.i./ha, in association with 1 to 5000 g a.i./ha, particularly 2 to 2000 g a.i./ha, e.g. 100, 250, 500, 800, 1000, 1500 g a.i./ha of a compound of component B), depending on the class of chemical employed as component B).
  • the application rates of the combination according to the invention depend on the type of effect desired, and typically range from 20 to 4000 g of total combination per hectare.
  • rates of 0.001 to 50 g of a compound of formula I per kg of seed, preferably from 0.01 to 10g per kg of seed, and 0.001 to 50 g of a compound of component B), per kg of seed, preferably from 0.01 to 10g per kg of seed, are generally sufficient.
  • the invention also provides fungicidal compositions comprising a compound of formula I and a compound of component B) in a synergistically effective amount.
  • the composition of the invention may be employed in any conventional form, for example in the form of a twin pack, a powder for dry seed treatment (DS), an emulsion for seed treatment (ES), a flowable concentrate for seed treatment (FS), a solution for seed treatment (LS), a water dispersible powder for seed treatment (WS), a capsule suspension for seed treatment (CF), a gel for seed treatment (GF), an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an
  • compositions may be produced in conventional manner, e.g. by mixing the active ingredients with appropriate formulation inerts (diluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects).
  • appropriate formulation inerts diiluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects.
  • conventional slow release formulations may be employed where long lasting efficacy is intended.
  • Particularly formulations to be applied in spraying forms such as water dispersible concentrates (e.g. EC, SC, DC, OD, SE, EW, EO and the like), wettable powders and granules, may contain surfactants such as wetting and dispersing agents and other compounds that provide adjuvancy effects, e.g.
  • a seed dressing formulation is applied in a manner known per se to the seeds employing the combination of the invention and a diluent in suitable seed dressing formulation form, e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds.
  • suitable seed dressing formulation form e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds.
  • seed dressing formulations are known in the art.
  • Seed dressing formulations may contain the single active ingredients or the combination of active ingredients in encapsulated form, e.g. as slow release capsules or microcapsules.
  • the formulations include from 0.01 to 90% by weight of active agent, from 0 to 20% agriculturally acceptable surfactant and 10 to 99.99% solid or liquid formulation inerts and adjuvant(s), the active agent consisting of at least the compound of formula I together with a compound of component B), and optionally other active agents, particularly microbiocides or conservatives or the like.
  • Concentrated forms of compositions generally contain in between about 2 and 80%, preferably between about 5 and 70% by weight of active agent.
  • Application forms of formulation may for example contain from 0.01 to 20% by weight, preferably from 0.01 to 5% by weight of active agent. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ diluted formulations.
  • active ingredient denoting a mixture of compound I and a compound of component B) in a specific mixing ratio.
  • the active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.
  • the active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
  • Emulsifiable concentrate active ingredient (I : comp B) 1 :6) 10 % octylphenol polyethylene glycol ether 3 %
  • Emulsions of any required dilution which can be used in plant protection, can be obtained from this concentrate by dilution with water.
  • Active ingredient [I : comp B) 1 :6(a), 1 :2(b), 1 :10(c)] 5 % 6 % 4 % talcum 95 %
  • Ready-for-use dusts are obtained by mixing the active ingredient with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
  • Active ingredient (I : comp B) 2:1) 15 % sodium lignosulfonate 2 % carboxymethylcellulose 1 %
  • the active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water.
  • the mixture is extruded and then dried in a stream of air.
  • Active ingredient (I :comp B) 1 :10) 8 % polyethylene glycol (mol. wt. 200) 3 %
  • the finely ground active ingredient is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.
  • Suspension concentrate active ingredient (I : connp B) 1 :8) 40 % propylene glycol 10 % nonylphenol polyethylene glycol ether (15 mol of ethylene oxide) 6 %
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • Flowable concentrate for seed treatment active ingredient (I : comp B) 1 :8) 40 % propylene glycol 5 % copolymer butanol PO/EO 2 % tristyrenephenole with 10-20 moles EO 2 %
  • Silicone oil (in the form of a 75 % emulsion in water) 0. .2 %
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • the obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent.
  • the capsule suspension formulation contains 28% of the active ingredients.
  • the medium capsule diameter is 8-15 microns.
  • the resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
  • a synergistic effect exists whenever the action of an active ingredient combination is greater than the sum of the actions of the individual components.
  • the action actually observed (O) is greater than the expected action (E)
  • the action of the combination is super-additive, i.e. there is a synergistic effect.
  • the synergism factor SF corresponds to O/E.
  • an SF of > 1.2 indicates significant improvement over the purely complementary addition of activities (expected activity), while an SF of ⁇ 0.9 in the practical application routine signals a loss of activity compared to the expected activity.
  • Example B-I Activity against Ustilaqo nuda on barley a) Seed application
  • Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24 0 C and the inhibition of growth was determined photometrically after 48 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
  • Example B-2 Activity against Microdochium nivale on wheat a) Seed application
  • Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-we)l format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24 0 C and the inhibition of growth was measured photometrically after 72 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
  • Example B-3 Activity against Pyrenophora qraminea on barley a) Seed application After application of the formulated seed treatment onto P. graminea -infected seeds of winterbarley the seeds are sown in trays filled with field soil. The trays are kept in a growth room for 3 weeks at 4 0 C. After this period the trial is transferred to a greenhouse where a temperature of 12 0 C and a 14 hr light period is provided. The following assessments are made: number of infected plants. The fungicide interactions in the combinations are calculated according to COLBY method.
  • Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24 0 C and the inhibition of growth was measured photometrically after 72 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
  • Example B-4 Activity against Gaumannomvces graminis on wheat a) Seed application
  • Mycelial fragments of a newly grown culture of the fungus were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24°C and the inhibition of growth was measured photometrically after 72 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
  • Example B-5 Activity against Rhizoctonia solani a) Seed application
  • Mycelial fragments of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24 0 C and the inhibition of growth was determined photometrically after 48 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
  • Example B-6 Activity against Septoria tritici
  • Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24 0 C and the inhibition of growth was determined photometrically after 72 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
  • Example B-7 Activity against Fusarium qraminearum
  • Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24 0 C and the inhibition of growth was determined photometrically after 48 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

The invention relates to fungicidal compositions comprising as active ingredient a combination of components A) and B) as defined in the patent claims, to a method of controlling phytopathogenic diseases on crop plants using such a compositions and to a method of protecting natural substances of vegetable and/or animal origin and/or their processed forms using such a composition.

Description

FUNGICIDAL COMPOSITIONS
The present invention relates to novel fungicidal compositions for the treatment of phyto- pathogenic diseases of useful plants, especially phytopathogenic fungi, to a method of controlling phytopathogenic diseases on useful plants and to a method of protecting natural substances of vegetable and/or animal origin and/or their processed forms.
It is known that certain o-cyclopropyl-carboxanilide derivatives have biological activity against phytopathogenic fungi, e.g. known from WO 03/074491 where their properties and methods of preparation are described. On the other hand various fungicidal compounds of different chemical classes are widely known as plant fungicides for application in various crops of cultivated plants. However, crop tolerance and activity against phytopathogenic plant fungi do not always satisfy the needs of agricultural practice in many incidents and aspects.
There is therefore proposed in accordance with the present invention a method of controlling phytopathogenic diseases on useful plants or on propagation material thereof, which comprises applying to the useful plants, the locus thereof or propagation material thereof a combination of components A) and B) in a synergistically effective amount, wherein component A) is a compound of formula I
Figure imgf000002_0001
wherein
R1 is trifluoromethyl or difluoromethyl and
R2 is hydrogen or methyl; or a tautomer of such a compound; and component B) is a compound selected from the group consisting of Benomyl (62);
Carbendazim (116); Fuberidazole (419); Thiabendazole (790); Thiophanate (1435);
Thiophanate-methyl (802); Chlozolinate (149); lprodione (470); Procymidone (660);
Vinclozolin (849); Azaconazole (40); Bitertanol (84); Bromuconazole (96); Cyproconazole
(207); Difenoconazole (247); Diniconazole (267); Diniconazole-M (267); Epoxiconazole (298); Fenarimol (327); Fenbuconazole (329); Fluquinconazole (385); Flusilazole (393); Flutriafol (397); Hexaconazole (435); Imazalil (449); lmibenconazole (457); Ipconazole (468); Metconazole (525); Myclobutanil (564); Nuarimol (587); Oxpoconazole (607); Pefurazoate (618); Penconazole (619); Prochloraz (659); Propiconazole (675); Prothioconazole (685); Pyrifenox (703); Simeconazole (731); Tebuconazole (761); Tetraconazole (778); Triadimefon (814); Triadimenol (815); Triflumizole (834); Triforine (838); Triticonazole (842); Benalaxyl (56); Furalaxyl (410); Metalaxyl (516); Mefenoxam (Metalaxyl-M) (517); Ofurace (592); Oxadixyl (601); Aldimorph; Dodemorph (288); Fenpropimorph (344); Fenpropidin (343); Spiroxamine (740); Tridemorph (830); Edifenphos (290); lprobenfos (IBP) (469); lsoprothiolane (474); Pyrazophos (693); Benodanil (896); Carboxin (120); Fenfuram (333); Flutolanil (396); Furametpyr (411); Mepronil (510); Oxycarboxin (608); Thifluzamide (796); Bupirimate (98); Dimethirimol (1082); Ethirimol (1133); Cyprodinil (208); Mepanipyrim (508); Pyrimethanil (705); Diethofencarb (245); Azoxystrobin (47); Famoxadone (322); Fenamidone (325); Kresoxim-methyl (485); Metominostrobin (551); Picoxystrobin (647); Pyraclostrobin (690); Trifloxystrobin (832); Fenpiclonil (341); Fludioxonil (368); Quinoxyfen (715); Biphenyl (81); Chloroneb (139); Dicloran (240); Etridiazole (321 ); Quintozene (PCNB) (716); Tecnazene (TCNB) (767); Tolclofos-methyl (808); Dimethomorph (263); Carpropamid (122); Diclocymet (237); Fenoxanil (338); Fthalide (643); Pyroquilon (710); Tricyclazole (828); Fenhexamid (334); Polyoxin (654); Pencycuron (620); Cyazofamid (185); Zoxamide (857); Blasticidin-S (85); Kasugamycin (483); Streptomycin (744); Validamycin (846); Cymoxanil (200); lodocarb (3-lodo-2-propynyl butyl carbamate); Propamocarb (668); Prothiocarb (1361); Dinocap (270); Fluazinam (363); Fentin acetate (347); Fentin chloride; Fentin hydroxide (347); Oxolinic acid (606); Hymexazole; Octhilinone (590); Fosetyl-Aluminium (407); Phosphoric acid; Tecloftalam; Triazoxide (821 ); Flusulfamide (394); Ferimzone (351); Diclomezine (239); Anilazine (878); Arsenates; Captafol (113); Captan (114); Chlorothalonil (142); Copper (diverse salts); Copper Ammoniumcarbonate; Copper octanoate (170); Copper oleate; Copper sulphate (87; 172; 173); Copper hydroxide (169); Dichlofluanid (230); Dithianon (279); Dodine (289); Ferbam (350); Folpet (400); Guazatine (422); lminoctadine (459); Mancozeb (496); Maneb (497); Mercury; Metiram (546); Propineb (676); Sulphur (754); Thiram (804); Tolylfluanid (810); Zineb (855); Ziram (856); Acibenzolar-S-methyl (6); Probenazole (658); Benthiavalicarb; Benthiavalicarb-isopropyl (68); Iprovalicarb (471 ); Diflumetorim (253); Ethaboxam (304); Flusulfamide (394); Methasulfocarb (528); Silthiofam (729); Bacillus pumilus GB34; Bacillus pumilus strain QST 2808; Bacillus subtilis (50); Bacilus subtilis + PCNB + Metalaxyl (50; 716; 516); Cadmium chloride; Carbon disulfide (945); Bordeaux mixture (87); Cedar leaf oil; Chlorine; Cinnamaldehyde; Cycloheximide (1022); Fenaminosulf (1144); Fenamiphos (326); Dichloropropene (233); Dichlone (1052); Formaldehyde (404); Gliocladium virens GL-21 (417); Glyodin (1205); Hexachlorobenzene (434); Iprovalicarb (471); Manganous dimethyldithiocarbamate; Mercuric chloride (511); Nabam (566); Neem oil (hydrophobic extract); Oxytetracycline (611 ); Chinomethionat (126); Paraformaldehyde; Pentachloronitrobenzene (716); Pentachlorophenol (623); paraffin oil (628); Polyoxin D zinc salt (654); Sodium bicarbonate; Potassium bicarbonate; Sodium diacetate; Sodium propionate;TCMTB; Benalaxyl -M; Boscalid (88); Fluoxastrobin (382); Hexaconazole (435); Metrafenone; Oxine Copper (605); Penthiopyrad; Perfurazoate; Tolyfluanid; Trichoderma harzianum (825); Triphenyltin hydroxide (347); Xanthomonas campestris (852); Paclobutrazol (612); 1 ,1-bis(4-chlorophenyl)-2-ethoxyethanol (IUPAC- Name) (910); 2,4-dichlorophenyl benzenesulfonate (IUPAC- / Chemical Abstracts-Name) (1059); 2-fluoro-Λ/-methyl-A/-1-naphthylacetamide (lUPAC-Name) (1295); 4-chlorophenyl phenyl sulfone (lUPAC-Name) (981); abamectin (1); acequinocyl (3); acetoprole [CCN]; acrinathrin (9); aldicarb (16); aldoxycarb (863); alpha-cypermethrin (202); amidithion (870); amidoflumet [CCN]; amidothioate (872); amiton (875); amiton hydrogen oxalate (875); amitraz (24); aramite (881); arsenous oxide (882); AVI 382 (compound code); AZ 60541 (compound code); azinphos-ethyl (44); azinphos-methyl (45); azobenzene (lUPAC-Name) (888); azocyclotin (46); azothoate (889); benomyl (62); benoxafos (alternative name) [CCN]; benzoximate (71); benzyl benzoate (lUPAC-Name) [CCN]; bifenazate (74); bifenthrin (76); binapacryl (907); brofenvalerate (alternative name); bromocyclen (918); bromophos (920); bromophos-ethyl (921); bromopropylate (94); buprofezin (99); butocarboxim (103); butoxycarboxim (104); butylpyridaben (alternative name); calcium polysulfide (IUPAC- Name) (111); camphechlor (941); carbanolate (943); carbaryl (115); carbofuran (118); carbophenothion (947); CGA 50'439 (development code) (125); chinomethionat (126); chlorbenside (959); chlordimeform (964); chlordimeform hydrochloride (964); chlorfenapyr (130); chlorfenethol (968); chlorfenson (970); chlorfensulphide (971); chlorfenvinphos (131); chlorobenzilate (975); chloromebuform (977); chloromethiuron (978); chloropropylate (983); chlorpyrifos (145); chlorpyrifos-methyl (146); chlorthiophos (994); cinerin I (696); cinerin Il (696); cinerins (696); clofentezine (158); closantel (alternative name) [CCN]; coumaphos (174); crotamiton (alternative name) [CCN]; crotoxyphos (1010); cufraneb (1013); cyanthoate (1020); cyhalothrin (196); cyhexatin (199); cypermethrin (201); DCPM (1032); DDT (219); demephion (1037); demephion-0 (1037); demephion-S (1037); demeton (1038); demeton-methyl (224); demeton-0 (1038); demeton-O-methyl (224); demeton-S (1038); - A -
demeton-S-methyl (224); demeton-S-methylsulphon (1039); diafenthiuron (226); dialifos (1042); diazinon (227); dichlofluanid (230); dichlorvos (236); dicliphos (alternative name); dicofol (242); dicrotophos (243); dienochlor (1071 ); dimefox (1081 ); dimethoate (262); dinactin (alternative name) (653); dinex (1089); dinex-diclexine (1089); dinobuton (269); dinocap (270); dinocap-4 [CCN]; dinocap-6 [CCN]; dinocton (1090); dinopenton (1092); dinosulfon (1097); dinoterbon (1098); dioxathion (1102); diphenyl suifone (lUPAC-Name) (1103); disulfiram (alternative name) [CCN]; disulfoton (278); DNOC (282); dofenapyn (1113); doramectin (alternative name) [CCN]; endosulfan (294); endothion (1121); EPN (297); eprinomectin (alternative name) [CCN]; ethion (309); ethoate-methyl (1134); etoxazole (320); etrimfos (1142); fenazaflor (1147); fenazaquin (328); fenbutatin oxide (330); fenothiocarb (337); fenpropathrin (342); fenpyrad (alternative name); fenpyroximate (345); fenson (1157); fentrifanil (1161); fenvalerate (349); fipronil (354); fluacrypyrim (360); fluazuron (1166); flubenzimine (1167); flucycloxuron (366); flucythrinate (367); fluenetil (1169); flufenoxuron (370); flumethrin (372); fluorbenside (1174); fiuvalinate (1184); FMC 1137 (development code) (1185); formetanate (405); formetanate hydrochloride (405); formothion (1192); formparanate (1 193); gamma-HCH (430); glyodin (1205); halfenprox (424); heptenophos (432); hexadecyl cyclopropanecarboxylate (IUPAC- / Chemical Abstracts-Name) (1216); hexythiazox (441); iodomethane (lUPAC-Name) (542); isocarbo- phos (alternative name) (473); isopropyl O-(methoxyaminothiophosphoryl)salicylate (lUPAC-Name) (473); ivermectin (alternative name) [CCN]; jasmolin I (696); jasmolin Il (696); jodfenphos (1248); lindane (430); lufenuron (490); malathion (492); malonoben (1254); mecarbam (502); mephosfolan (1261); mesulfen (alternative name) [CCN]; meth- acrifos (1266); methamidophos (527); methidathion (529); methiocarb (530); methomyl (531 ); methyl bromide (537); metolcarb (550); mevinphos (556); mexacarbate (1290); milbemectin (557); milbemycin oxime (alternative name) [CCN]; mipafox (1293); monocro- tophos (561); morphothion (1300); moxidectin (alternative name) [CCN]; naled (567); NC- 184 (compound code); nifluridide (1309); nikkomycins (alternative name) [CCN]; nitrilacarb (1313); nitrilacarb 1 :1 zinc chloride complex (1313); NNI-0101 (compound code); NNI-0250 (compound code); omethoate (594); oxamyl (602); oxydeprofos (1324); oxydisulfoton (1325); pp'-DDT (219); parathion (615); permethrin (626); petroleum oils (alternative name) (628); phenkapton (1330); phenthoate (631); phorate (636); phosalone (637); phosfolan (1338); phosmet (638); phosphamidon (639); phoxim (642); pirimiphos-methyl (652); polychloro- terpenes (traditional name) (1347); polynactins (alternative name) (653); proclonol (1350); profenofos (662); promacyl (1354); propargite (671); propetamphos (673); propoxur (678); prothidathion (1360); prothoate (1362); pyrethrin I (696); pyrethrin Il (696); pyrethrins (696); pyridaben (699); pyridaphenthion (701); pyrimidifen (706); pyrimitate (1370); quinalphos (711); quintiofos (1381); R-1492 (development code) (1382); RA-17 (development code) (1383); rotenone (722); schradan (1389); sebufos (alternative name); selamectin (alternative name) [CCN]; SI-0009 (compound code); sophamide (1402); spirodiclofen (738); spiromesifen (739); SSI-121 (development code) (1404); sulfiram (alternative name) [CCN]; sulfluramid (750); sulfotep (753); sulfur (754); SZI-121 (development code) (757); tau-fluvalinate (398); tebufenpyrad (763); TEPP (1417); terbam (alternative name); tetrachlorvinphos (777); tetradifon (786); tetranactin (alternative name) (653); tetrasul (1425); thiafenox (alternative name); thiocarboxime (1431 ); thiofanox (800); thiometon (801 ); thioquinox (1436); thuringiensin (alternative name) [CCN]; triamiphos (1441 ); triarathene (1443); triazophos (820); triazuron (alternative name); trichlorfon (824); trifenofos (1455); trinactin (alternative name) (653); vamidothion (847); vaniliprole [CCN]; YI-5302 (compound code); bethoxazin [CCN]; copper dioctanoate (lUPAC-Name) (170);copper sulfate (172); cybutryne [CCN]; dichlone (1052); dichlorophen (232); endothal (295); fentin (347); hydrated lime [CCN]; nabam (566); quinoclamine (714); quinonamid (1379); simazine (730); triphenyltin acetate (lUPAC-Name) (347); triphenyltin hydroxide (lUPAC-Name) (347); abamectin (1); crufomate (1011 ); doramectin (alternative name) [CCN]; emamectin (291); emamectin benzoate (291); eprinomectin (alternative name) [CCN]; ivermectin (alternative name) [CCN]; milbemycin oxime (alternative name) [CCN]; moxidectin (alternative name) [CCN]; piperazine [CCN]; selamectin (alternative name) [CCN]; spinosad (737); thiophanate (1435); chloralose (127); endrin (1122); fenthion (346); pyridin-4-amine (lUPAC-Name) (23); strychnine (745);1 -hydroxy-1f/-pyridine-2-thione (lUPAC-Name) (1222); 4-(quinoxalin-2-ylamino)benzenesulfonamide (lUPAC-Name) (748); 8-hydroxyquinoline sulfate (446); bronopol (97); copper dioctanoate (lUPAC-Name) (170); copper hydroxide (lUPAC-Name) (169); cresol [CCN]; dichlorophen (232); dipyrithione (1105); dodicin (1112); fenaminosulf (1144); formaldehyde (404); hydrargaphen (alternative name) [CCN]; kasugamycin (483); kasugamycin hydrochloride hydrate (483); nickel bis(dimethyldithiocarbamate) (lUPAC-Name) (1308); nitrapyrin (580); octhilinone (590); oxolinic acid (606); oxytetracycline (611 ); potassium hydroxyquinoline sulfate (446); probenazole (658); streptomycin (744); streptomycin sesquisulfate (744); tecloftalam (766); thiomersal (alternative name) [CCN]; iodomethane (lUPAC-Name) (542); methyl bromide (537); apholate [CCN]; bisazir (alternative name) [CCN]; busulfan (alternative name) [CCN]; diflubenzuron (250); dimatif (alternative name) [CCN]; hemel [CCN]; hempa [CCN]; metepa [CCN]; methiotepa [CCN]; methyl apholate [CCN]; morzid [CCN]; penfluron (alternative name) [CCN]; tepa [CCN]; thiohempa (alternative name) [CCN]; thiotepa (alternative name) [CCN]; tretamine (alternative name) [CCN]; uredepa (alternative name) [CCN]; (E)-dec-5-en-1 -yl acetate with (E)-dec-5-en-1 -ol (lUPAC-Name) (222); (E)- tridec-4-en-1 -yl acetate (lUPAC-Name) (829); (E)-6-methylhept-2-en-4-ol (lUPAC-Name) (541); (E,Z)-tetradeca-4,10-dien-1-yl acetate (lUPAC-Name) (779); (Z)-dodec-7-en-1 -yl acetate (lUPAC-Name) (285); (Z)-hexadec-11 -enal (lUPAC-Name) (436); (Z)-hexadec-11 - en-1-yl acetate (lUPAC-Name) (437); (Z)-hexadec-13-en-11-yn-1-yl acetate (lUPAC-Name) (438); (Z)-icos-13-en-10-one (lUPAC-Name) (448); (Z)-tetradec-7-en-1 -al (lUPAC-Name) (782); (Z)-tetradec-9-en-1 -ol (lUPAC-Name) (783); (Z)-tetradec-9-en-1-yl acetate (IUPAC- Name) (784); (7E,9Z)-dodeca-7,9-dien-1-yl acetate (lUPAC-Name) (283); (9Z.11 E)- tetradeca-9,11 -dien-1 -yl acetate (lUPAC-Name) (780); (92,12£)-tetradeca-9,12-dien-1 -yl acetate (lUPAC-Name) (781 ); 14-methyloctadec-1 -ene (lUPAC-Name) (545); 4- methylnonan-5-ol with 4-methylnonan-5-one (lUPAC-Name) (544); alpha-multistriatin (alternative name) [CCN]; brevicomin (alternative name) [CCN]; codlelure (alternative name) [CCN]; codlemone (alternative name) (167); cuelure (alternative name) (179); disparlure (277); dodec-8-en-1 -yl acetate (lUPAC-Name) (286); dodec-9-en-1-yl acetate (lUPAC-Name) (287); dodeca-8,10-dien-1-yl acetate (lUPAC-Name) (284); dominicalure (alternative name) [CCN]; ethyl 4-methyloctanoate (lUPAC-Name) (317); eugenol (alternative name) [CCN]; frontalin (alternative name) [CCN]; gossyplure (alternative name) (420); grandlure (421 ); grandlure I (alternative name) (421); grandlure Il (alternative name) (421); grandlure III (alternative name) (421); grandlure IV (alternative name) (421); hexalure [CCN]; ipsdienol (alternative name) [CCN]; ipsenol (alternative name) [CCN]; japonilure (alternative name) (481); lineatin (alternative name) [CCN]; litlure (alternative name) [CCN]; looplure (alternative name) [CCN]; medlure [CCN]; megatomoic acid (alternative name) [CCN]; methyl eugenol (alternative name) (540); muscalure (563); octadeca-2,13-dien-1-yl acetate (lUPAC-Name) (588); octadeca-3,13-dien-1 -yl acetate (lUPAC-Name) (589); orfralure (alternative name) [CCN]; oryctalure (alternative name) (317); ostramone (alternative name) [CCN]; siglure [CCN]; sordidin (alternative name) (736); sulcatol (alternative name) [CCN]; tetradec-11 -en-1 -yl acetate (lUPAC-Name) (785); trimedlure (839); trimedlure A (alternative name) (839); trimedlure B1 (alternative name) (839); trimedlure B2 (alternative name) (839); trimedlure C (alternative name) (839); trunc- call (alternative name) [CCN]; 2-(octylthio)ethanol (lUPAC-Name) (591 ); butopyronoxyl (933); butoxy(polypropylene glycol) (936); dibutyl adipate (lUPAC-Name) (1046); dibutyl phthalatθ (1047); dibutyl succinate (lUPAC-Name) (1048); diethyltoluamide [CCN]; dimethyl carbate [CCN]; dimethyl phthalate [CCN]; ethyl hexanediol (1137); hexamide [CCN]; methoquin-butyl (1276); methylneodecanamide [CCN]; oxamate [CCN]; picaridin [CCN]; 1 ,1 - dichloro-1-nitroethane (IUPAC- / Chemical Abstracts-Name) (1058); 1 ,1 -dichloro-2,2-bis(4- ethyiphenyl)ethane (lUPAC-Name) (1056); 1 ,2-dichloropropane (IUPAC- / Chemical Ab¬ stracts-Name) (1062); 1 ,2-dichloropropane with 1 ,3-dichloropropene (lUPAC-Name) (1063); 1 -bromo-2-chloroethane (IUPAC- / Chemical Abstracts-Name) (916); 2,2,2-trichloro-1-(3,4- dichlorophenyl)ethyl acetate (lUPAC-Name) (1451); 2,2-dichlorovinyl 2-ethylsulfinylethyI methyl phosphate (lUPAC-Name) (1066); 2-(1 ,3-dithiolan-2-yl)phenyl dimethylcarbamate (IUPAC- / Chemical Abstracts-Name) (1109); 2-(2-butoxyethoxy)ethyl thiocyanate (IUPAC- / Chemical Abstracts-Name) (935); 2-(4,5-dimethyl-1 ,3-dioxolan-2-yl)phenyl methylcarbamate (IUPAC- / Chemical Abstracts-Name) (1084); 2-(4-chloro-3,5-xylyloxy)ethanol (IUPAC- Name) (986); 2-chlorovinyl diethyl phosphate (lUPAC-Name) (984); 2-imidazolidone (IUPAC- Name) (1225); 2-isovalerylindan-1 ,3-dione (lUPAC-Name) (1246); 2-methyl(prop-2-ynyl)ami- nophenyl methylcarbamate (lUPAC-Name) (1284); 2-thiocyanatoethyl laurate (IUPAC- Name) (1433); 3-bromo-1 -chloroprop-1 -ene (lUPAC-Name) (917); 3-methyl-1-phenylpyrazol- 5-yl dimethylcarbamate (lUPAC-Name) (1283); 4-methyl(prop-2-ynyl)amino-3,5-xylyl methyl¬ carbamate (lUPAC-Name) (1285); 5,5-dimethyl-3-oxocyclohex-1-enyl dimethylcarbamate (lUPAC-Name) (1085); abamectin (1); acephate (2); acetamiprid (4); acethion (alternative name) [CCN]; acetoprole [CCN]; acrinathrin (9); acrylonitrile (lUPAC-Name) (861 ); alanycarb (15); aldicarb (16); aldoxycarb (863); aldrin (864); allethrin (17); allosamidin (alternative name) [CCN]; allyxycarb (866); alpha-cypermethrin (202); alpha-ecdysone (alternative name) [CCN]; aluminium phosphide (640); amidithion (870); amidothioate (872); aminocarb (873); amiton (875); amiton hydrogen oxalate (875); amitraz (24); anabasine (877); athidathion (883); AVI 382 (compound code); AZ 60541 (compound code); azadirachtin (alternative name) (41 ); azamethiphos (42); azinphos-ethyl (44); azinphos-methyl (45); azothoate (889); Bacillus thuringiensis delta endotoxins (alternative name) (52); barium hexafluorosilicate (alternative name) [CCN]; barium polysulfide (IUPAC- / Chemical Abstracts-Name) (892); barthrin [CCN]; BAS 320 I (compound code); Bayer 22/190 (development code) (893); Bayer 22408 (development code) (894); bendiocarb (58); benfuracarb (60); bensultap (66); beta-cyfluthrin (194); beta-cypermethrin (203); bifenthrin (76); bioallethrin (78); bioallethrin S-cyclopentenyl isomer (alternative name) (79); bioethanomethrin [CCN]; biopermethrin (908); bioresmethrin (80); bis(2-chloroethyl) ether (lUPAC-Name) (909); bistrifluron (83); borax (86); brofenvalerate (alternative name); bromfenvinfos (914); bromocyclen (918); bromo-DDT (alternative name) [CCN]; bromophos (920); bromophos-ethyl (921); bufencarb (924); buprofezin (99); butacarb (926); butathiofos (927); butocarboxim (103); butonate (932); butoxycarboxim (104); butylpyridaben (alternative name); cadusafos (109); calcium arsenate [CCN]; calcium cyanide (444); calcium polysulfide (lUPAC-Name) (111 ); camphechlor (941 ); carbanolate (943); carbaryl (115); carbofuran (1 18); carbon disulfide (IUPAC- / Chemical Abstracts-Name) (945); carbon tetrachloride (lUPAC-Name) (946); carbophenothion (947); carbosulfan (119); cartap (123); cartap hydrochloride (123); cevadine (alternative name) (725); chlorbicyclen (960); chlordane (128); chlordecone (963); chlordimeform (964); chlordimeform hydrochloride (964); chlorethoxyfos (129); chlorfenapyr (130); chlorfenvinphos (131 ); chlorfluazuron (132); chlormephos (136); chloroform [CCN]; chloropicrin (141); chlorphoxim (989); chlorprazophos (990); chlorpyrifos (145); chlorpyrifos-methyl (146); chlorthiophos (994); chromafenozide (150); cinerin I (696); cinerin Il (696); cinerins (696); cis-resmethrin (alternative name); cismethrin (80); clocythrin (alternative name); cloethocarb (999); closantel (alternative name) [CCN]; clothianidin (165); copper acetoarsenite [CCN]; copper arsenate [CCN]; copper oleate [CCN]; coumaphos (174); coumithoate (1006); crotamiton (alternative name) [CCN]; crotoxyphos (1010); crufomate (1011 ); cryolite (alternative name) (177); CS 708 (development code) (1012); cyanofenphos (1019); cyanophos (184); cyanthoate (1020); cyclethrin [CCN]; cycloprothrin (188); cyfluthrin (193); cyhalothrin (196); cypermethrin (201); cyphenothrin (206); cyromazine (209); cythioate (alternative name) [CCN]; d-limonene (alternative name) [CCN]; cttetramethrin (alternative name) (788); DAEP (1031); dazomet (216); DDT (219); decarbofuran (1034); deltamethrin (223); demephion (1037); demephion- O (1037); demephion-S (1037); demeton (1038); demeton-methyl (224); demeton-0 (1038); demeton-O-methyl (224); demeton-S (1038); demeton-S-methyl (224); demeton-S- methylsulphon (1039); diafenthiuron (226); dialifos (1042); diamidafos (1044); diazinon (227); dicapthon (1050); dichlofenthion (1051 ); dichlorvos (236); dicliphos (alternative name); dicresyl (alternative name) [CCN]; dicrotophos (243); dicyclanil (244); dieldrin (1070); diethyl 5-methylpyrazol-3-yl phosphate (lUPAC-Name) (1076); diflubenzuron (250); dilor (alternative name) [CCN]; dimefluthrin [CCN]; dimefox (1081 ); dimetan (1085); dimethoate (262); dimethrin (1083); dimethylvinphos (265); dimetilan (1086); dinex (1089); dinex-diclexine (1089); dinoprop (1093); dinosam (1094); dinoseb (1095); dinotefuran (271); diofenolan (1099); dioxabenzofos (1 100); dioxacarb (1101 ); dioxathion (1102); disulfoton (278); dithicrofos (1108); DNOC (282); doramectin (alternative name) [CCN]; DSP (11 15); ecdysterone (alternative name) [CCN]; El 1642 (development code) (1118); emamectin (291 ); emamectin benzoate (291); EMPC (1120); empenthrin (292); endosulfan (294); endothion (1121); endrin (1122); EPBP (1123); EPN (297); epofenonane (1124); epri- nomectin (alternative name) [CCN]; esfenvalerate (302); etaphos (alternative name) [CCN]; ethiofencarb (308); ethion (309); ethiprole (310); ethoate-methyl (1 134); ethoprophos (312); ethyl formate (lUPAC-Name) [CCN]; ethyl-DDD (alternative name) (1056); ethylene dibromide (316); ethylene dichloride (chemical name) (1136); ethylene oxide [CCN]; etofen- prox (319); etrimfos (1142); EXD (1143); famphur (323); fenamiphos (326); fenazaflor (1 147); fenchlorphos (1148); fenethacarb (1 149); fenfluthrin (1150); fenitrothion (335); feno- bucarb (336); fenoxacrim (1153); fenoxycarb (340); fenpirithrin (1155); fenpropathrin (342); fenpyrad (alternative name); fensulfothion (1158); fenthion (346); fenthion-ethyl [CCN]; fen- valerate (349); fipronil (354); flonicamid (358); flucofuron (1168); flucycloxuron (366); flu- cythrinate (367); fluenetil (1 169); flufenerim [CCN]; flufenoxuron (370); flufenprox (1171 ); flumethrin (372); fluvalinate (1184); FMC 1137 (development code) (1185); fonofos (1191 ); formetanate (405); formetanate hydrochloride (405); formothion (1192); formparanate (1193); fosmethilan (1194); fospirate (1195); fosthiazate (408); fosthietan (1196); furathio- carb (412); furethrin (1200); gamma-cyhalothrin (197); gamma-HCH (430); guazatine (422); guazatine acetates (422); GY-81 (development code) (423); halfenprox (424); halofenozide (425); HCH (430); HEOD (1070); heptachlor (1211); heptenophos (432); heterophos [CCN]; hexaflumuron (439); HHDN (864); hydramethylnon (443); hydrogen cyanide (444); hydro- prene (445); hyquincarb (1223); imidacloprid (458); imiprothrin (460); indoxacarb (465); iodo- methane (lUPAC-Name) (542); IPSP (1229); isazofos (1231); isobenzan (1232); isocarbo- phos (alternative name) (473); isodrin (1235); isofenphos (1236); isolane (1237); isoprocarb (472); isopropyl O-(methoxyaminothiophosphoryl)salicylate (lUPAC-Name) (473); isoprothiolane (474); isothioate (1244); isoxathion (480); ivermectin (alternative name) [CCN]; jasmolin I (696); jasmolin Il (696); jodfenphos (1248); juvenile hormone I (alternative name) [CCN]; juvenile hormone Il (alternative name) [CCN]; juvenile hormone III (alternative name) [CCN]; kelevan (1249); kinoprene (484); lambda-cyhalothrin (198); lead arsenate [CCN]; leptophos (1250); lindane (430); lirimfos (1251); lufenuron (490); lythidathion (1253); /n-cumenyl methylcarbamate (lUPAC-Name) (1014); magnesium phosphide (lUPAC-Name) (640); malathion (492); malonoben (1254); mazidox (1255); mecarbam (502); mecarphon (1258); menazon (1260); mephosfolan (1261 ); mercurous chloride (513); mesulfenfos (1263); metam (519); metam-potassium (alternative name) (519); metam-sodium (519); methacrifos (1266); methamidophos (527); methanesulfonyl fluoride (IUPAC- / Chemical Abstracts-Name) (1268); methidathion (529); methiocarb (530); methocrotophos (1273); methomyl (531); methoprene (532); methoquin-buty! (1276); methothrin (alternative name) (533); methoxychlor (534); methoxyfenozide (535); methyl bromide (537); methyl isothiocyanate (543); methylchloroform (alternative name) [CCN]; methylene chloride [CCN]; metofluthrin [CCN]; metolcarb (550); metoxadiazone (1288); mevinphos (556); mexacarbate (1290); milbemectin (557); milbemycin oxime (alternative name) [CCN]; mipafox (1293); mirex (1294); monocrotophos (561); morphothion (1300); moxidectin (alternative name) [CCN]; naftalofos (alternative name) [CCN]; naled (567); naphthalene (IUPAC- / Chemical Abstracts-Name) (1303); NC-170 (development code) (1306); NC-184 (compound code); nicotine (578); nicotine sulfate (578); nifluridide (1309); nitenpyram (579); nithiazine (1311); nitrilacarb (1313); nitrilacarb 1 :1 zinc chloride complex (1313); NNI-0101 (compound code); NNI-0250 (compound code); nornicotine (traditional name) (1319); novaluron (585); novifiumuron (586); O-2,5-dichloro-4-iodophenyl O-ethyl ethylphosphonothioate (lUPAC-Name) (1057); O,O-diethyl O-4-methyl-2-oxo-2/-/-chromen-7- yl phosphorothioate (lUPAC-Name) (1074); 0,0-diethyl O-6-methy!-2-propylpyrimidin-4-yl phosphorothioate (lUPAC-Name) (1075); O,O,O',O'-tetrapropyl dithiopyrophosphate (lUPAC-Name) (1424); oleic acid (lUPAC-Name) (593); omethoate (594); oxamyl (602); oxydemeton-methyl (609); oxydeprofos (1324); oxydisulfoton (1325); pp'-DDT (219); para- dichlorobenzene [CCN]; parathion (615); parathion-methyl (616); penfluron (alternative name) [CCN]; pentachlorophenol (623); pentachlorophenyl laurate (lUPAC-Name) (623); permethrin (626); petroleum oils (alternative name) (628); PH 60-38 (development code) (1328); phenkapton (1330); phenothrin (630); phenthoate (631); phorate (636); phosalone (637); phosfolan (1338); phosmet (638); phosnichlor (1339); phosphamidon (639); phosphine (lUPAC-Name) (640); phoxim (642); phoxim-methyl (1340); pirimetaphos (1344); pirimicarb (651); pirimiphos-ethyl (1345); pirimiphos-methyl (652); polychlorodicyclopentadiene isomers (lUPAC-Name) (1346); polychloroterpenes (traditional name) (1347); potassium arsenite [CCN]; potassium thiocyanate [CCN]; prallethrin (655); precocene I (alternative name) [CCN]; precocene Il (alternative name) [CCN]; precocene III (alternative name) [CCN]; primidophos (1349); profenofos (662); profluthrin [CCN]; promacyl (1354); promecarb (1355); propaphos (1356); propetamphos (673); propoxur (678); prothidathion (1360); prothiofos (686); prothoate (1362); protrifenbute [CCN]; pymetrozine (688); pyraclofos (689); pyrazophos (693); pyresmethrin (1367); pyrethrin I (696); pyrethrin Il (696); pyrethrins (696); pyridaben (699); pyridalyl (700); pyridaphenthion (701); pyrimidifen (706); pyrimitate (1370); pyriproxyfen (708); quassia (alternative name) [CCN]; quinalphos (711); quinalphos-methyl (1376); quinothion (1380); quintiofos (1381); R- 1492 (development code) (1382); rafoxanide (alternative name) [CCN]; resmethrin (719); rotenone (722); RU 15525 (development code) (723); RU 25475 (development code) (1386); ryania (alternative name) (1387); ryanodine (traditional name) (1387); sabadilla (alternative name) (725); schradan (1389); sebufos (alternative name); selamectin (alternative name) [CCN]; SI-0009 (compound code); silafluofen (728); SN 72129 (development code) (1397); sodium arsenite [CCN]; sodium cyanide (444); sodium fluoride (IUPAC- / Chemical Abstracts-Name) (1399); sodium hexafluorosilicate (1400); sodium pentachlorophenoxide (623); sodium selenate (lUPAC-Name) (1401); sodium thiocyanate [CCN]; sophamide (1402); spinosad (737); spiromesifen (739); sulcofuron (746); sulcofuron-sodium (746); sulfluramid (750); sulfotep (753); sulfuryl fluoride (756); sulprofos (1408); tar oils (alternative name) (758); tau-fluvalinate (398); tazimcarb (1412); TDE (1414); tebufenozide (762); tebufenpyrad (763); tebupirimfos (764); teflubenzuron (768); tefluthrin (769); temephos (770); TEPP (1417); terallethrin (1418); terbam (alternative name); terbufos (773); tetrachloroethane [CCN]; tetrachlorvinphos (777); tetramethrin (787); theta-cypermethrin (204); thiacloprid (791); thiafenox (alternative name); thiamethoxam (792); thicrofos (1428); thiocarboxime (1431); thiocyclam (798); thiocyclam hydrogen oxalate (798); thiodicarb (799); thiofanox (800); thiometon (801); thionazin (1434); thiosultap (803); thiosultap-sodium (803); thuringiensin (alternative name) [CCN]; tolfenpyrad (809); tralomethrin (812); transfluthrin (813); transpermethrin (1440); triamiphos (1441 ); triazamate (818); triazophos (820); triazuron (alternative name); trichlorfon (824); trichlormetaphos-3 (alternative name) [CCN]; trichloronat (1452); trifenofos (1455); triflumuron (835); trimethacarb (840); triprene (1459); vamidothion (847); vaniliprole [CCN]; veratridine (alternative name) (725); veratrine (alternative name) (725); XMC (853); xylylcarb (854); YI-5302 (compound code); zeta- cypermethrin (205); zetamethrin (alternative name); zinc phosphide (640); zolaprofos (1469) und ZXI 8901 (development code) (858); a compound of formula A-1
Figure imgf000012_0001
(A-1); a compound of formula A-2
a compound of formula A-
a compound of formula A-
Figure imgf000013_0001
a compound of formula A-5 a compound of formula A-
a compound of formula A-
a compound of formula A-
Figure imgf000014_0001
H CH,
(A-8); a compound of formula A-9
Figure imgf000015_0001
(A-9); a compound of formula A-10
a compound of formula
Figure imgf000015_0002
a compound of formula A-12 a compound of formula
a compound of formula
a compound of formula
Figure imgf000016_0001
a compound of formula A-15A
Figure imgf000017_0001
a compound of formula (A-16)
Figure imgf000017_0002
a compound of formula (A-17)
Figure imgf000017_0003
a compound of formula (A-18)
Figure imgf000018_0001
a compound of formula (A-19)
Figure imgf000018_0002
a compound of formula (A-20)
Figure imgf000018_0003
a compound of formula (A-21 )
Figure imgf000019_0001
a compound of formula (A-22)
Figure imgf000019_0002
a compound of formula (A-23)
Figure imgf000019_0003
a compound of formula (A-24)
Figure imgf000020_0001
a compound of formula (A-25)
Figure imgf000020_0002
a compound of formula (A-26)
Figure imgf000020_0003
bis(tributyltin) oxide (lUPAC-Name) (913); bromoacetamide [CCN]; calcium arsenate [CCN]; cloethocarb (999); copper acetoarsenite [CCN]; copper sulfate (172); fentin (347); ferric phosphate (lUPAC-Name) (352); metaldehyde (518); methiocarb (530); niclosamide (576); niclosamide-olamine (576); pentachlorophenol (623); sodium pentachlorophenoxide (623); tazimcarb (1412); thiodicarb (799); tributyltin oxide (913); trifenmorph (1454); trimethacarb (840); triphenyltin acetate (lUPAC-Name) (347); triphenyltin hydroxide (lUPAC-Name) (347); 1 ,2-dibromo-3-chloropropane (IUPAC- / Chemical Abstracts-Name) (1045); 1 ,2- dichloropropane (IUPAC- / Chemical Abstracts-Name) (1062); 1 ,2-dichloropropane with 1 ,3- dichloropropene (lUPAC-Name) (1063); 1 ,3-dichloropropene (233); 3,4-dichlorotetrahydro- thiophene 1 ,1 -dioxide (IUPAC- / Chemical Abstracts-Name) (1065); 3-(4-chlorophenyl)-5- methylrhodanine (lUPAC-Name) (980); 5-methyl-6-thioxo-1 ,3,5-thiadiazinan-3-ylacetic acid (lUPAC-Name) (1286); 6-isopentenylaminopurine (alternative name) (210); abamectin (1 ); acetoprole [CCN]; alanycarb (15); aldicarb (16); aldoxycarb (863); AZ 60541 (compound code); benclothiaz [CCN]; benomyl (62); butylpyridaben (alternative name); cadusafos (109); carbofuran (118); carbon disulfide (945); carbosulfan (119); chloropicrin (141); chlorpyrifos (145); cloethocarb (999); cytokinins (alternative name) (210); dazomet (216); DBCP (1045); DCIP (218); diamidafos (1044); dichlofenthion (1051 ); dicliphos (alternative name); dimethoate (262); doramectin (alternative name) [CCN]; emamectin (291); emamectin benzoate (291); eprinomectin (alternative name) [CCN]; ethoprophos (312); ethylene dibromide (316); fenamiphos (326); fenpyrad (alternative name); fensulfothion (1 158); fosthiazate (408); fosthietan (1196); furfural (alternative name) [CCN]; GY-81 (development code) (423); heterophos [CCN]; iodomethane (lUPAC-Name) (542); isamidofos (1230); isazofos (1231 ); ivermectin (alternative name) [CCN]; kinetin (alternative name) (210); mecarphon (1258); metam (519); metam-potassium (alternative name) (519); metam-sodium (519); methyl bromide (537); methyl isothiocyanate (543); milbemycin oxime (alternative name) [CCN]; moxidectin (alternative name) [CCN]; Myrothecium verrucaria composition (alternative name) (565); NC-184 (compound code); oxamyl (602); phorate (636); phosphamidon (639); phosphocarb [CCN]; sebufos (alternative name); selamectin (alternative name) [CCN]; spinosad (737); terbam (alternative name); terbufos (773); tetrachlorothiophene (IUPAC- / Chemical Abstracts-Name) (1422); thiafenox (alternative name); thionazin (1434); triazophos (820); triazuron (alternative name); xylenols [CCN]; Yl- 5302 (compound code); zeatin (alternative name) (210); potassium ethylxanthate [CCN]; nitrapyrin (580); acibenzolar (6); acibenzolar-S-methyl (6); probenazole (658); Reynoutria sachalinensis extract (alternative name) (720); 2-isovalerylindan-1 ,3-dione (lUPAC-Name) (1246); 4-(quinoxalin-2-ylamino)benzenesulfonamide (lUPAC-Name) (748); alpha- chlorohydrin [CCN]; aluminium phosphide (640); antu (880); arsenous oxide (882); barium carbonate (891 ); bisthiosemi (912); brodifacoum (89); bromadiolone (91); bromethalin (92); calcium cyanide (444); chloralose (127); chlorophacinone (140); cholecalciferol (alternative name) (850); coumachlor (1004); coumafuryl (1005); coumatetralyl (175); crimidine (1009); difenacoum (246); difethialone (249); diphacinone (273); ergocalciferol (301 ); flocoumafen (357); fluoroacetamide (379); flupropadine (1183); flupropadine hydrochloride (1183); gamma-HCH (430); HCH (430); hydrogen cyanide (444); iodomethane (lUPAC-Name) (542); lindane (430); magnesium phosphide (lUPAC-Name) (640); methyl bromide (537); norbormide (1318); phosacetim (1336); phosphine (lUPAC-Name) (640); phosphorus [CCN]; pindone (1341); potassium arsenite [CCN]; pyrinuron (1371 ); scilliroside (1390); sodium arsenite [CCN]; sodium cyanide (444); sodium fluoroacetate (735); strychnine (745); thallium sulfate [CCN]; warfarin (851); zinc phosphide (640); 2-(2-butoxyethoxy)ethyl piperonylate (lUPAC-Name) (934); 5-(1 ,3-benzodioxol-5-yl)-3-hexylcyclohex-2-enone (lUPAC-Name) (903); famesol with nerolidol (alternative name) (324); MB-599 (development code) (498); MGK 264 (development code) (296); piperonyl butoxide (649); piprotal (1343); propyl isome (1358); S421 (development code) (724); sesamex (1393); sesasmolin (1394); sulfoxide (1406); anthraquinone (32); chloralose (127); copper naphthenate [CCN]; copper oxychloride (171 ); diazinon (227); dicyclopentadiene (chemical name) (1069); guazatine (422); guazatine acetates (422); methiocarb (530); pyridin-4-amine (lUPAC-Name) (23); thiram (804); trimethacarb (840); zinc naphthenate [CCN]; ziram (856); imanin (alternative name) [CCN]; ribavirin (alternative name) [CCN]; mercuric oxide (512); octhilinone (590); thiophanate- methyl (802); a compound of formula F- 1
Figure imgf000022_0001
a compound of formula F-2A
Figure imgf000023_0001
wherein R' is hydrogen, C1-4alkyl or Ci_4haloalkyl; a compound of formula F-3
Figure imgf000023_0002
a compound of formula F-4
Figure imgf000023_0003
a compound of formula F-5
Figure imgf000024_0001
a compound of formula F-6
Figure imgf000024_0002
a compound of formula F-7
Figure imgf000024_0003
and a compound of formula F-8
Figure imgf000025_0001
It has now been found, surprisingly, that the active ingredient mixture according to the invention not only brings about the additive enhancement of the spectrum of action with respect to the phytopathogen to be controlled that was in principle to be expected but achieves a synergistic effect which extends the range of action of the component (A) and of the component (B) in two ways. Firstly, the rates of application of the component (A) and of the component (B) are lowered whilst the action remains equally good. Secondly, the active ingredient mixture still achieves a high degree of phytopathogen control even where the two individual components have become totally ineffective in such a low application rate range. This allows, on the one hand, a substantial broadening of the spectrum of phytopathogens that can be controlled and, on the other hand, increased safety in use.
However, besides the actual synergistic action with respect to fungicidal activity, the pesticidal compositions according to the invention also have further surprising advantageous properties which can also be described, in a wider sense, as synergistic activity. Examples of such advantageous properties that may be mentioned are: a broadening of the spectrum of fungicidal activity to other phytopathogens, for example to resistant strains; a reduction in the rate of application of the active ingredients; synergistic activity against animal pests, such as insects or representatives of the order Acarina; a broadening of the spectrum of pesticidal activity to other animal pests, for example to resistant animal pests; adequate pest control with the aid of the compositions according to the invention, even at a rate of application at which the individual compounds are totally ineffective; advantageous behaviour during formulation and/or upon application, for example upon grinding, sieving, emulsifying, dissolving or dispensing; increased storage stability; improved stability to light; more advantageuos degradability; improved toxicological and/or ecotoxicological behaviour; improved characteristics of the useful plants including: emergence, crop yields, more developed root system, tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, less fertilizers nedded, less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, improved plant vigor, and early germination; or any other advantages familiar to a person skilled in the art.
The compounds of formula I occur in different stereoisomeric forms, which are described in formulae l|, In, Im and I|V:
Figure imgf000026_0001
1III 1IV
wherein R1 and R2 are as defined under formula I. The invention covers all such stereoisomers and mixtures thereof in any ratio.
The compounds of formula I and their manufacturing processes starting from known and commercially available compounds are described in WO 03/074491. In particular it is described in WO 03/074491 that a compound of formula I
Figure imgf000027_0001
wherein R1 is difluoromethyl and R2 is hydrogen can be prepared by reacting an acid chloride of formula Il
Figure imgf000027_0002
with an amine of formula III
Figure imgf000027_0003
Acids of formula IV
Figure imgf000027_0004
are used for the production of the acid chlorides of formula II, via reaction steps as described in WO 03/074491. When producing the acids of the formula IV using said methology impurities of formula IVA, IVB and/or IVC may be formed:
Figure imgf000028_0001
When applying the described manufacturing processes for compounds of formula I some/all of those impurities may be carried through different steps of said manufacturing processes. This then can lead to the formation of the corresponding acid chlorides (UA, UB and/or HC)
Figure imgf000028_0002
(HA) (HB) (HC) and to the formation of the corresponding amides (VA, VB and/or VC)
Figure imgf000028_0003
(VA) (VB) (VC) as further impurities of compounds of fomula I, wherein R1 is difluoromethyl and R2 is hydrogen. The presence/amount of said impurities in preparations of said compounds of formula I varies dependent on purification steps used.
WO 03/074491 describes on page 20 of the specification a process for the manufacture of amines of formula III
starting from known and commercially available compounds. A step in said process is the reaction of a compound of formula Vl
Figure imgf000029_0001
wherein X is halogen, with hydrazine hydrate in a solvent. During this step a compound of formula VII
Figure imgf000029_0002
wherein X is halogen, is formed. Preferred compounds of formula VII are compounds, wherein X is chloride or bromide. Said preferred compounds of formula VII can be used advantageously for the production of amines of formula III using methods as described in WO 03/074491.
Using said processes described in WO 03/074491 for the manufacture of the amines of formula 111, the following impurities of formula VIIIA, VIIIB, VIIIC and/or VIIID may be formed:
Figure imgf000029_0003
(VIIIB)
Figure imgf000029_0004
Figure imgf000029_0005
(VIIIC) (VIIID) When applying the described manufacturing processes for compounds of formula I some/all of those impurities may be carried through different steps of said manufacturing processes. This then can lead to the formation of the corresponding amides (IXA, IXB, IXC, IXD, IXE, IXF, IXG, IXH, IXI, IXJ, IXK and/or IXL)
Figure imgf000030_0001
as further impurities of compounds of fomula I, wherein R1 is difluoromethyl and R2 is hydrogen. The presence/amount of said impurities in preparations of said compounds of formula I varies dependent on purification steps used.
The components (B) are known. Where the components (B) are included in "The Pesticide Manual" [The Pesticide Manual - A World Compendium; Thirteenth Edition; Editor: C. D. S. Tomlin; The British Crop Protection Council], they are described therein under the entry number given in round brackets hereinabove for the particular component (B); for example, the compound "abamectin" is described under entry number (1). Where "[CCN]" is added hereinabove to the particular component (B), the component (B) in question is included in the "Compendium of Pesticide Common Names", which is accessible on the internet [A. Wood; Compendium of Pesticide Common Names, Copyright © 1995-2004]; for example, the compound "acetoprole" is described under the internet address http://www.alanwood.net/pesticides/acetoprole.ritml.
Most of the components (B) are referred to hereinabove by a so-called "common name", the relevant "ISO common name" or another "common name" being used in individual cases. If the designation is not a "common name", the nature of the designation used instead is given in round brackets for the particular component (B); in that case, the IUPAC name, the lUPAC/Chemical Abstracts name, a "chemical name", a "traditional name", a "compound name" or a "develoment code" is used or, if neither one of those designations nor a "common name" is used, an "alternative name" is employed.
The following components B) are registered under a CAS-Reg. No.: Aldimorph (CAS 91315- 15-0); lodocarb (3-lodo-2-propynyl butyl carbamate) (CAS 55406-53-6); Fentin chloride (CAS 668-34-8); Hymexazole (CAS 10004-44-1); Phosphoric acid (CAS 7664-38-2); Tecloftalam (CAS 76280-91-6); Arsenates (CAS 1327-53-3); Copper Ammoniumcarbonate (CAS 33113-08-5); Copper oleate (CAS 1120-44-1); Mercury (CAS 7487-94-7; 21908-53-2; 7546-30-7); Benthiavalicarb (CAS 413615-35-7); Cadmium chloride (CAS 10108-64-2); Cedar leaf oil (CAS 8007-20-3); Chlorine (CAS 7782-50-5); Cinnamaldehyde (CAS: 104-55- 2); Manganous dimethyldithiocarbamate (CAS 15339-36-3); Neem oil (hydrophobic extract) (CAS 8002-65-1); Paraformaldehyde (CAS 30525-89-4); Sodium bicarbonate (CAS 144-55- 8); Potassium bicarbonate (CAS 298-14-6); Sodium diacetate (CAS 127-09-3); Sodium propionate (CAS 137-40-6);TCMTB (CAS 21564-17-0); Benalaxyl -M (CAS 98243-83-5); Metrafenone (CAS 220899-03-6); Penthiopyrad (CAS 183675-82-3) and Tolyfluanid (CAS 731-27-1 ).
The compounds of formulae A-1 , A-2, A-3, A-4, A-5, A-6, A-7, A-8, A-9, A-10, A-11 , A-12, A- 13, A-14, A-15, A-18, A-19, A-20, A-21 and A-22 are described in WO-03/015519. The compound of formula A-15A is described in EP-A-1 006 107. The compounds of formulae A- 16, A-17, A-23, A-24, A-25 and A-26 are described in WO-04/067528. Bacillus pumilus GB34 and Bacillus pumilus strain QST are described at the U.S. Environmental Protection Agency, U.S. EPA PC Code 006493 and U.S. EPA PC Code 006485, respectively (see: http://www.epa.gov/).
The compound of formula F-1 is described in WO 01/87822. Compounds of formula F-2A and the compound of formula F-2 are described in WO 98/46607. The compound of formula F-3 is described in WO 99/042447. The compound of formula F-4 is described in WO 96/19442. The compound of formula F-5 is described in WO 99/14187. The compound of formula F-6 is described in US-5,945,423 and WO 94/26722. The compound of formula F-7 is described in EP-0-936-213. The compound of formula F-8 is described in US-6,020,332, CN-1 -167-568, CN-1 -155-977 and EP-0-860-438.
Throughout this document the expression "combination" stands for the various combinations of components A) and B), for example in a single "ready-mix" form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a "tank-mix", and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days. The order of applying the components A) and B) is not essential for working the present invention.
The combinations according to the invention may also comprise more than one of the active components B), if, for example, a broadening of the spectrum of phytopathogenic disease control is desired. For instance, it may be advantageous in the agricultural practice to combine two or three components B) with the any of the compounds of formula I, or with any preferred member of the group of compounds of formula I.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R1 is difluoromethyl and R2 is hydrogen, and one component B) as described above.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R-i is difluoromethyl and R2 is methyl, and one component B) as described above.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein Ri is trifluoromethyl and R2 is hydrogen, and one component B) as described above. A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R-i is trifluoromethyl and R2 is methyl, and one component B) as described above.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula Ia (trans)
Figure imgf000033_0001
which represents a compound of formula lι, wherein R1 is difluoromethyl and R2 is hydrogen; a compound of formula In, wherein Ri is difluoromethyl and R2 is hydrogen or a mixture in any ratio of a compound of formula h, wherein R1 is difluoromethyl and R2 is hydrogen, and a compound of formula In, wherein R1 is difluoromethyl and R2 is hydrogen; and one component B) as described above.
Among this embodiment of the invention preference is given to those combinations which comprise as component A) a racemic compound of the formula Ia (trans)
Figure imgf000033_0002
which represents a racemic mixture of a compound of formula l|, wherein R1 is difluoromethyl and R2 is hydrogen, and a compound of formula In, wherein R1 is difluoromethyl and R2 is hydrogen; and one component B) as described above.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula Ib (cis)
Figure imgf000034_0001
which represents a compound of formula lm, wherein R1 is difluoromethyl and R2 is hydrogen; a compound of formula lιv, wherein R1 is difluoromethyl and R2 is hydrogen or a mixture in any ratio of a compound of formula Im, wherein R1 is difluoromethyl and R2 is hydrogen, and a compound of formula I|V, wherein R1 is difluoromethyl and R2 is hydrogen; and one component B) as described above.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ib (cis)
Figure imgf000034_0002
which represents a racemic mixture of a compound of formula Im, wherein R-i is difluoromethyl and R2 is hydrogen, and a compound of formula I|V, wherein R1 is difluoromethyl and R2 is hydrogen; and one component B) as described above.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
(Ic),
Figure imgf000034_0003
wherein the ratio of racemic compounds of formula Ia, which represent a racemic mixture of compounds of formula lt, wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula In, wherein R1 is difluoromethyl and R2 is hydrogen, to racemic compounds of formula Ib, which represent a racemic mixture of compounds of formula Im, wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula I|V, wherein R1 is difluoromethyl and R2 is hydrogen, is from 1 : 1 to 100 : 1 , and one component B) as described above.
Within said embodiment suitable ratios of racemic compounds of formula Ia, which represent a racemic mixture of compounds of formula l|, wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula In, wherein R1 is difluoromethyl and R2 is hydrogen, to racemic compounds of formula Ib, which represent a racemic mixture of compounds of formula Im, wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula hv, wherein R1 is difluoromethyl and R2 is hydrogen, are ratios such as 1 :1 , 2:1 , 3:1 , 4:1 , 5:1 , 6:1 , 7:1 , 8:1 , 9:1 , 10:1 , 20:1 , 50:1 or 100 : 1. Preference is given to ratios from 2:1 to 100:1 , more preferably 4:1 to 10:1.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
Figure imgf000035_0001
wherein the content of racemic compounds of formula Ia, which represent a racemic mixture of compounds of formula h, wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula In, wherein R1 is difluoromethyl and R2 is hydrogen, is from 65 to 99 % by weight, and one component B) as described above.
According to the instant invention, a "racemic mixture" of two enantiomers or a "racemic compound" means a mixture of two enantiomers in a ratio of substantially 50 : 50 of the two enantiomers. Preferred components B) are selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazole; Pyraclostrobin; Pyrimethanil; Pyroquilon; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F-1
Figure imgf000036_0001
a compound of formula F-2
Figure imgf000036_0002
and Epoxiconazole.
More preferred components B) are selected from the group consisting of Azoxystrobin; Picoxystrobin; Cyproconazole; Difenoconazole; Propiconazole; Fludioxonil; Cyprodinil; Fenpropimorph; Fenpropidin; a compound of formula F-1
Figure imgf000037_0001
a compound of formula F-2
Figure imgf000037_0002
Chlorothalonil; Epoxiconazole; Prothioconazole and Thiabendazole.
More preferred component B) is Azoxystrobin; Fludioxonil; Difenoconazole; Cyproconazole or Thiabendazole.
Most preferred component B) is Azoxystrobin; Fludioxonil or Difenoconazole.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R1 is difluoromethyl and R2 is hydrogen, and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazole; Pyraclostrobin; Pyrimethanil; Pyroquilon; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F- 1
Figure imgf000038_0001
a compound of formula F-2
Figure imgf000038_0002
and Epoxiconazole.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein Ri is difluoromethyl and R2 is methyl, and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazole; Pyraclostrobin; Pyrimethanil; Pyroquiion; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F-1
Figure imgf000039_0001
a compound of formula F-2
Figure imgf000039_0002
and Epoxiconazole.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R-i is trifluoromethyl and R2 is methyl, and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazole; Pyraclostrobin; Pyrimethanil; Pyroquilon; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F-1
Figure imgf000040_0001
a compound of formula F-2
Figure imgf000040_0002
and Epoxiconazole.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula Ia (trans)
Figure imgf000040_0003
which represents a compound of formula l|, wherein Ri is difluoromethyl and R2 is hydrogen; a compound of formula In, wherein R1 is difluoromethyl and R2 is hydrogen or a mixture in any ratio of a compound of formula l|, wherein R1 is difluoromethyl and R2 is hydrogen, and a compound of formula In, wherein R-i is difluoromethyl and R2 is hydrogen; and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazole; Pyraclostrobin; Pyrimethanil; Pyroquilon; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F- 1
Figure imgf000041_0001
a compound of formula F-2
Figure imgf000041_0002
and Epoxiconazole.
Among this embodiment preference is given to those combinations which comprise as component A) a racemic compound of the formula Ia (trans)
Figure imgf000041_0003
which represents a racemic mixture of a compound of formula l|, wherein R-i is difluoromethyl and R2 is hydrogen, and a compound of formula Iu, wherein R1 is difluoromethyl and R2 is hydrogen; and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazole; Pyraclostrobin; Pyrimethanil; Pyroquilon; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F- 1
Figure imgf000042_0001
a compound of formula F-2
Figure imgf000042_0002
and Epoxiconazole.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula Ib (cis)
Figure imgf000043_0001
which represents a compound of formula Im, wherein Ri is difluoromethyl and R2 is hydrogen; a compound of formula I|V, wherein R-i is difluoromethyl and R2 is hydrogen or a mixture in any ratio of a compound of formula Im, wherein R1 is difluoromethyl and R2 is hydrogen, and a compound of formula I|V, wherein R1 is difluoromethyl and R2 is hydrogen; and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazole; Pyraclostrobin; Pyrimethanil; Pyroquilon; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F- 1
Figure imgf000043_0002
a compound of formula F-2
Figure imgf000044_0001
and Epoxiconazole.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ib (cis)
Figure imgf000044_0002
which represents a racemic mixture of a compound of formula Im, wherein R1 is difluoromethyl and R2 is hydrogen, and a compound of formula l|V, wherein R1 is difluoromethyl and R2 is hydrogen; and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazole; Pyraclostrobin; Pyrimethanil; Pyroquilon; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F-1
Figure imgf000045_0001
a compound of formula F-2
Figure imgf000045_0002
and Epoxiconazole.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
Figure imgf000045_0003
wherein the ratio of compounds of formula Ia, which represent a racemic mixture of compounds of formula I1, wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula In, wherein R1 is difluoromethyl and R2 is hydrogen, to compounds of formula Ib, which represent a racemic mixture of compounds of formula Im, wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula I|V, wherein R1 is difluoromethyl and R2 is hydrogen, is from 2 : 1 to 100 : 1 , and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazolθ; Pyraclostrobin; Pyrimethanil; Pyroquilon; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F- 1
Figure imgf000046_0001
a compound of formula F-2
Figure imgf000046_0002
and Epoxiconazole.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
Figure imgf000047_0001
wherein the content of compounds of formula Ia, which represent a racemic mixture of compounds of formula l|, wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula 1«, wherein R-i is difluoromethyl and R2 is hydrogen, is from 65 to 99 % by weight, and one component B) selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; lprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazole; Pyraclostrobin; Pyrimethanil; Pyroquilon; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F- 1
Figure imgf000047_0002
a compound of formula F-2
Figure imgf000048_0001
and Epoxiconazole.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R1 is difluoromethyl and R2 is hydrogen, and one component B) selected from the group consisting of Azoxystrobin; Fludioxonil; Difenoconazole; Cyproconazole or Thiabendazole.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ia (trans)
Figure imgf000048_0002
which represents a racemic mixture of a compound of formula \it wherein R1 is difluoromethyl and R2 is hydrogen, and a compound of formula 1», wherein Ri is difluoromethyl and R2 is hydrogen; and one component B) selected from the group consisting of Azoxystrobin; Fludioxonil; Difenoconazole; Cyproconazole or Thiabendazole.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
Figure imgf000049_0001
wherein the ratio of compounds of formula Ia, which represent a racemic mixture of compounds of formula I1, wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula 1», wherein R1 is difluoromethyl and R2 is hydrogen, to compounds of formula Ib, which represent a racemic mixture of compounds of formula lm, wherein Ri is difluoromethyl and R2 is hydrogen, and compounds of formula l|V, wherein R1 is difluoromethyl and R2 is hydrogen, is from 2 : 1 to 100 : 1 , and one component B) selected from the group consisting of Azoxystrobin; Fludioxonil; Difenoconazole; Cyproconazole or Thiabendazole.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
Figure imgf000049_0002
wherein the content of compounds of formula Ia, which represent a racemic mixture of compounds of formula \h wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula In, wherein R1 is difluoromethyl and R2 is hydrogen, is from 65 to 99 % by weight, and one component B) selected from the group consisting of Azoxystrobin; Fludioxonil; Difenoconazole; Cyproconazole or Thiabendazole.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a compound of the formula I, wherein R1 is difluoromethyl and R2 is hydrogen, and one component B) selected from the group consisting of Azoxystrobin; Difenoconazole and Fludioxonil.
A preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ia (trans)
Figure imgf000050_0001
which represents a racemic mixture of a compound of formula l|, wherein R1 is difluoromethyl and R2 is hydrogen, and a compound of formula In, wherein R1 is difluoromethyl and R2 is hydrogen; and one component B) selected from the group consisting of Azoxystrobin; Difenoconazole and Fludioxonil.
A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
Figure imgf000050_0002
wherein the ratio of compounds of formula Ia, which represent a racemic mixture of compounds of formula I), wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula In, wherein R1 is difluoromethyl and R2 is hydrogen, to compounds of formula Ib, which represent a racemic mixture of compounds of formula Im, wherein R1 is difluoromethyl and R2 is hydrogen, and compounds of formula I|V, wherein R1 is difluoromethyl and R2 is hydrogen, is from 2 : 1 to 100 : 1 , and one component B) selected from the group consisting of Azoxystrobin; Difenoconazole and Fludioxonil. A further preferred embodiment of the present invention is represented by those combinations which comprise as component A) a racemic compound of the formula Ic
Figure imgf000051_0001
wherein the content of compounds of formula Ia, which represent a racemic mixture of compounds of formula I,, wherein R-i is difluoromethyl and R2 is hydrogen, and compounds of formula In, wherein R1 is difluoromethyl and R2 is hydrogen, is from 65 to 99 % by weight, and one component B) selected from the group consisting of Azoxystrobin; Difenoconazole and Fludioxonil.
The active ingredient combinations are effective especially against phytopathogenic fungi belonging to the following classes: Ascomycetes (e.g. Venturia, Podosphaera, Erysiphe, Monilinia, Mycosphaerella, Uncinula); Basidiomycetes (e.g. the genus Hemileia, Rhizoctonia, Puccinia, Ustilago, Tilletia); Fungi imperfecti (also known as Deuteromycetes; e.g. Botrytis, Helminthosporium, Rhynchosporium, Fusarium, Septoria, Cercospora, Alternaria, Pyricularia and Pseudocercosporella herpotrichoides); Oomycetes (e.g. Phytophthora, Peronospora, Pseudoperonospora, Albugo, Bremia, Pythium, Pseudosclerospora, Plasmopara).
According to the invention "useful plants" typically comprise the following species of plants: cereals, such as wheat, barley, rye or oats; beet, such as sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, for example apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries or blackberries; leguminous plants, such as beans, lentils, peas or soybeans; oil plants, such as rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans or groundnuts; cucumber plants, such as marrows, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceae, such as avocados, cinnamon or camphor; maize; tobacco; nuts; coffee; sugar cane; tea; vines; hops; durian; bananas; natural rubber plants; turf or ornamentals, such as flowers, shrubs, broad-leaved trees or evergreens, for example conifers. This list does not represent any limitation.
The term "useful plants" is to be understood as including also useful plants that have been rendered tolerant to herbicides like bromoxynil or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, for example primisulfuron, prosulfuron and trifloxysulfuron, EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors) as a result of conventional methods of breeding or genetic engineering. An example of a crop that has been rendered tolerant to imidazolinones, e.g. imazamox, by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola). Examples of crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® , Herculex I ® and Libertyϋnk®.
The term "useful plants" is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popliae; or insecticidal proteins from Bacillus thuringiensis, such as δ-endotoxins, e.g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CrylIA(b), CrylllA, CrylllB(bi ) or Cry9c, or vegetative insecticidal proteins (VIP), e.g. VIP1 , VIP2, VIP3 or VIP3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. or Xenorhabdus spp., such as Photorhabdus luminescens, Xenorhabdus nematophilus; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsine inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.
In the context of the present invention there are to be understood by δ-endotoxins, for example CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bi) or Cry9c, or vegetative insecticidal proteins (VIP), for example VIP1 , VIP2, VIP3 or VIP3A, expressly also hybrid toxins, truncated toxins and modified toxins. Hybrid toxins are produced recombinant^ by a new combination of different domains of those proteins (see, for example, WO 02/15701). An example for a truncated toxin is a truncated CrylA(b), which is expressed in the Bt11 maize from Syngenta Seed SAS, as described below. In the case of modified toxins, one or more amino acids of the naturally occurring toxin are replaced. In such amino acid replacements, preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of CrylllA055, a cathepsin-D- recognition sequence is inserted into a CrylllA toxin (see WO 03/018810)
Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-O 374 753, WO 93/07278, WO 95/34656, EP-A-O 427 529, EP-A-451 878 and WO 03/052073.
The processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-O 367 474, EP-A-O 401 979 and WO 90/13651.
The toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects. Such insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylA(b) toxin); YieldGard Rootworm® (maize variety that expresses a CrylllB(bi) toxin); YieldGard Plus® (maize variety that expresses a CrylA(b) and a CrylHB(b1) toxin); Starlink® (maize variety that expresses a Cry9(c) toxin); Herculex I® (maize variety that expresses a CrylF(a2) toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylA(c) toxin); Bollgard I® (cotton variety that expresses a CrylA(c) toxin); Bollgard II® (cotton variety that expresses a CrylA(c) and a CryllA(b) toxin); VIPCOT® (cotton variety that expresses a VIP toxin); NewLeaf® (potato variety that expresses a CrylllA toxin); Nature- Gard® and Protecta®.
Further examples of such transgenic crops are:
1. Bt11 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer {Ostrinia nubilalis and Sesamia nonagήoides) by transgenic expression of a truncated CrylA(b) toxin. Bt11 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
2. Bt176 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer {Ostrinia nubilalis and Sesamia nonaghoides) by transgenic expression of a CrylA(b) toxin. Bt176 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
3. MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified CrylllA toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-D-protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
4. MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a CrylllB(bi) toxin and has resistance to certain Coleoptera insects.
5. IPC 531 Cotton from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/ES/96/02.
6. 1507 Maize from Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1160 Brussels, Belgium, registration number C/NL/00/10. Genetically modified maize for the expression of the protein Cry1 F for achieving resistance to certain Lepidoptera insects and of the PAT protein for achieving tolerance to the herbicide glufosinate ammonium. 7. NK603 * MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810. NK603 x MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a CrylA(b) toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
Transgenic crops of insect-resistant plants are also described in BATS (Zentrum fϋr Biosicherheit und Nachhaltigkeit, Zentrum BATS, Clarastrasse 13, 4058 Basel, Switzerland) Report 2003, (http://bats.ch).
The term "useful plants" is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-O 392 225). Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-O 392 225, WO 95/33818, and EP-A-O 353 191. The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1 , KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called "pathogenesis-related proteins" (PRPs; see e.g. EP-A- 0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defence (so-called "plant disease resistance genes", as described in WO 03/000906). Useful plants of elevated interest in connection with present invention are cereals; maize; turf; vines and vegetables, such as tomatoes, potatoes, cucurbits and lettuce.
The term "locus" of a useful plant as used herein is intended to embrace the place on which the useful plants are growing, where the plant propagation materials of the useful plants are sown or where the plant propagation materials of the useful plants will be placed into the soil. An example for such a locus is a field, on which crop plants are growing.
The term "plant propagation material" is understood to denote generative parts of the plant, such as seeds, which can be used for the multiplication of the latter, and vegetative material, such as cuttings or tubers, for example potatoes. There may be mentioned for example seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes and parts of plants. Germinated plants and young plants which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion. Preferably "plant propagation material" is understood to denote seeds.
The combinations of the present invention may also be used in the field of protecting storage goods against attack of fungi. According to the instant invention, the term "storage goods" is understood to denote natural substances of vegetable and/or animal origin and their processed forms, which have been taken from the natural life cycle and for which long-term protection is desired. Storage goods of vegetable origin, such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted. Also falling under the definition of storage goods is timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood. Storage goods of animal origin are hides, leather, furs, hairs and the like. The combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold. Preferably "storage goods" is understood to denote natural substances of vegetable origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.
In another preferred embodiment of the invention "storage goods" is understood to denote wood. Therefore a further aspect of the instant invention is a method of protecting natural substances of vegetable and/or animal origin and/or their processed forms, which have been taken from the natural life cycle, which comprises applying to said natural substances of vegetable and/or animal origin or their processed forms a combination of components A) and B) in a synergistically effective amount.
A preferred embodiment is a method of protecting natural substances of vegetable origin and/or their processed forms, which have been taken from the natural life cycle, which comprises applying to said natural substances of vegetable origin or their processed forms a combination of components A) and B) in a synergistically effective amount.
A further preferred embodiment is a method of protecting fruits, preferably pomes, stone fruits, soft fruits and citrus fruits, and/or their processed forms, which have been taken from the natural life cycle, which comprises applying to said natural substances of vegetable origin or their processed forms a combination of components A) and B) in a synergistically effective amount.
The combinations of the present invention may also be used in the field of protecting technical material against attack of fungi. According to the instant invention, the term "technical material" includes paper; carpets; constructions; cooling and heating systems; wall-boards; ventilation and air conditioning systems and the like. The combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold. Preferably "storage goods" is understood to denote wall-boards.
The combinations according to the present invention are particularly effective against seedbome and soilborne diseases, such as Alternaria spp., Ascochyta spp., Aspergillus spp., Penicillium spp., Botrytis cinerea, Cercospora spp., Claviceps purpurea, Cochliobolus sativus, Colletotrichum spp., Diplodia maydis, Epicoccum spp., Fusarium culmorum, Fusarium graminearum, Fusarium moniliforme, Fusarium oxysporum, Fusarium proliferatum, Fusarium solani, Fusarium subglutinans, Gaumannomyces graminis , Helminthosporium spp., Microdochium nivale, Phoma spp., Pyrenophora graminea, Pyricularia oryzae, Rhizoctonia solani, Rhizoctonia cerealis, Sclerotica spp., Septoria spp., Sphacelotheca reilliana, Tilletia spp., Typhula incarnata, Urocystis occulta, Ustilago spp. or Verticillium spp.; in particular against pathogens of cereals, such as wheat, barley, rye or oats; maize; rice; cotton; soybean; turf; sugarbeet; oil seed rape; potatoes; pulse crops, such as peas, lentils or chickpea; and sunflower. The combinations according to the present invention are furthermore particularly effective against rusts; powdery mildews; leafspot species; early blights; molds and post harvest dieseases; especially against Puccinia in cereals; Phakopsora in soybeans; Hemileia in coffee; Phragmidium in roses; Altemaria in potatoes, tomatoes and cucurbits; Sclerotica in vegetables, sunflower and oil seed rape; black rot, red fire, powdery mildew, grey mold and dead arm disease in vine; Botrytis cinerea in fruits; Monilinia spp. in fruits and Penicillium spp. in fruits.
The amount of a combination of the invention to be applied, will depend on various factors, such as the compound employed; the subject of the treatment, such as, for example plants, soil or seeds; the type of treatment, such as, for example spraying, dusting or seed dressing; the purpose of the treatment, such as, for example prophylactic or therapeutic; the type of fungi to be controlled or the application time.
It has been found that the use of components B) in combination with the compound of formula I surprisingly and substantially enhance the effectiveness of the latter against fungi, and vice versa. Additionally, the method of the invention is effective against a wider spectrum of such fungi that can be combated with the active ingredients of this method, when used solely.
The weight ratio of A):B) is so selected as to give a synergistic activity. In general the weight ratio of A) : B) is between 2000 : 1 and 1 : 1000, preferably between 100 : 1 and 1 : 100.
The synergistic activity of the combination is apparent from the fact that the fungicidal activity of the composition of A) + B) is greater than the sum of the fungicidal activities of A) and B).
The method of the invention comprises applying to the useful plants, the locus thereof or propagation material thereof in admixture or separately, a synergistically effective aggregate amount of a compound of formula I and a compound of component B). Some of said combinations according to the invention have a systemic action and can be used as foliar, soil and seed treatment fungicides.
The combinations of the present invention are of particular interest for controlling a large number of fungi in various useful plants or their seeds, especially in field crops such as potatoes, tobacco and sugarbeets, and wheat, rye, barley, oats, rice, maize, lawns, cotton, soybeans, oil seed rape, pulse crops, sunflower, coffee, sugarcane, fruit and ornamentals in horticulture and viticulture, in vegetables such as cucumbers, beans and cucurbits.
The combinations according to the invention are applied by treating the fungi, the useful plants, the locus thereof, the propagation material thereof, storage goods or technical materials threatened by fungus attack with a synergistically effective aggregate amount of a compound of formula I and a compound of component B).
The combinations according to the invention may be applied before or after infection of the useful plants, the propagation material thereof, storage goods or technical materials by the fungi.
The combinations according to the invention are particularly useful for controlling the following plant diseases:
Altemaria species in fruit and vegetables,
Ascochyta species in pulse crops,
Botrytis cinerea (gray mold) in strawberries, tomatoes, sunflower and grapes,
Cercospora arachidicola in groundnuts,
Cochliobolus sativus in cereals,
Colletotrichum species in pulse crops,
Erysiphe cichoracearum and Sphaerotheca fuliginea in cucurbits,
Fusarium graminearum in cereals and maize,
Gaumannomyces graminis in cereals and lawns,
Helminthosporium maydis in maize,
Helminthosporium oryzae in rice,
Helminthosporium solani on potatoes,
Hemileia vastatrix on coffee,
Microdochium nivale in wheat and rye, Phakopsora pachyrhizi in soybean,
Puccinia species in cereals,
Phragmidium mucronatum in roses,
Pyrenophora graminea in barley,
Pyricularia oryzae in rice,
Rhizoctonia species in cotton, soybean, cereals, maize, potatoes, rice and lawns,
Sclerotinia homeocarpa in lawns,
Sphacelotheca reilliana in maize,
Tilletia species in cereals,
Typhula incarnata in barley,
Uncinula necator, Guignardia bidwellii and Phomopsis viticola in vines,
Urocystis occulta in rye,
Ustilago species in cereals and maize,
Monilinia fructicola on stone fruits,
Monilinia fructigena on fruits,
Monilinia laxa on stone fruits,
Penicillium digitatum on citrus,
Penicillium expansum on apples, and
Penicillium italicum on citrus,
The combinations according to the invention are preventively and/or curatively valuable ac¬ tive ingredients in the field of pest control, even at low rates of application, which have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants. The active ingredients according to the invention which are partially known for their insecticidal action act against all or individual developmental stages of normally sensitive, but also resistant, animal pests, such as insects or representatives of the order Acarina. The insecticidal or acaricidal activity of the combinations according to the invention can manifest itself directly, i.e. in destruction of the pests, which takes place either immediately or only after some time has elapsed, for example during ecdysis, or indirectly, for example in a reduced oviposition and/or hatching rate, a good activity corresponding to a destruction rate (mortality) of at least 50 to 60%.
Examples of the abovementioned animal pests are: from the order Acarina, for example, Acarus siro, Aceria sheldoni, Aculus schlechtendali, Amblyomma spp., Argas spp., Boophi- lus spp., Brevipalpus spp., Bryobia praetiosa, Calipitrimerus spp., Chorioptes spp., Derma- nyssus gallinae, Eotetranychus carpini, Eriophyes spp., Hyalomma spp., Ixodes spp., Oly- gonychus pratensis, Ornithodoros spp., Panonychus spp., Phyllocoptruta oleivora, Polypha- gotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Tarsonemus spp. and Tetranychus spp.; from the order Anoplura, for example,
Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.; from the order Coleoptera, for example,
Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibialis, Cosmopolites spp.,
Curculio spp., Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata, Lissorhoptrus spp., Melolontha spp., Orycaephilus spp., Otiorhynchus spp.,
Phlyctinus spp., Popillia spp., Psylliodes spp., Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Tenebrio spp., Tribolium spp. and Trogoderma spp.; from the order Diptera, for example,
Aedes spp., Antherigona soccata, Bibio hortulanus, Calliphora erythrocephala, Ceratitis spp.,
Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Drosophila melanogaster, Fannia spp., Gastrophilus spp., Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp.,
Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella frit,
Pegomyia hyoscyami, Phorbia spp., Rhagoletis pomonella, Sciara spp., Stomoxys spp.,
Tabanus spp., Tannia spp. and Tipula spp.; from the order Heteroptera, for example,
Cimex spp., Distantiella theobroma, Dysdercus spp., Euchistus spp., Eurygaster spp., Lep- tocorisa spp., Nezara spp., Piesma spp., Rhodnius spp., Sahlbergella singularis, Scotino- phara spp. and Triatoma spp.; from the order Homoptera, for example,
Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella spp., Aphididae, Aphis spp., Aspi- diotus spp., Bemisia tabaci, Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperidum, Empoasca spp., Eriosoma larigerum, Erythroneura spp.,
Gascardia spp., Laodelphax spp., Lecanium corni, Lepidosaphes spp., Macrosiphus spp.,
Myzus spp., Nephotettix spp., Nilaparvata spp., Parlatoria spp., Pemphigus spp., Planococ- cus spp., Pseudaulacaspis spp., Pseudococcus spp., Psylla spp., Pulvinaria aethiopica,
Quadraspidiotus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Trialeurodes vaporariorum, Trioza erytreae and Unaspis citri; from the order Hymenoptera, for example,
Acromyrmex, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplo- campa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Solenopsis spp. and
Vespa spp.; from the order Isoptera, for example,
Reticulitermes spp.; from the order Lepidoptera, for example,
Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyrotaenia spp., Autographa spp., Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Clysia ambi- guella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Crocidolomia binotalis, Cryptophlebia leucotreta, Cydia spp., Diatraea spp., Diparopsis castanea, Earias spp., Ephestia spp., Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Gra- pholita spp., Hedya nubiferana, Heliothis spp., HeIIuIa undalis, Hyphantria cunea, Keiferia lycopersicella, Leucoptera scitella, Lithocollethis spp., Lobesia botrana, Lymantria spp., Ly- onetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Operophtera spp.,
Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Pectinophora gossypi- ela, Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Scir- pophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Synanthedon spp.,
Thaumetopoea spp., Tortrix spp., Trichoplusia ni and Yponomeuta spp.; from the order Mallophaga, for example,
Damalinea spp. and Trichodectes spp.; from the order Orthoptera, for example,
Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Periplaneta spp. and Schistocerca spp.; from the order Psocoptera, for example,
Liposcelis spp.; from the order Siphonaptera, for example,
Ceratophyllus spp., Ctenocephalides spp. and Xenopsylla cheopis; from the order Thysanoptera, for example,
Frankliniella spp., Hercinothrips spp., Scirtothrips aurantii, Taeniothrips spp., Thrips palmi and Thrips tabaci; from the order Thysanura, for example,
Lepisma saccharina; nematodes, for example root knot nematodes, stem eelworms and foliar nematodes; especially Heterodera spp., for example Heterodera schachtii, Heterodora avenae and Heterodora trifolii; Globodera spp., for example Globodera rostochiensis; Meloidogyne spp., for example Meloidogyne incoginita and Meloidogyne javanica; Radopholus spp., for example Radopholus similis; Pratylenchus, for example Pratylenchus neglectans and Pratylenchus penetrans; Tylenchulus, for example Tylenchulus semipenetrans; Longidorus, Trichodorus, Xiphinema, Ditylenchus, Aphelenchoides and Anguina; crucifer flea beetles (Phyllotreta spp.); root maggots (Delia spp.) and cabbage seedpod weevil (Ceutorhynchus spp.).
The combinations according to the invention can be used for controlling, i. e. containing or destroying, animal pests of the abovementioned type which occur on useful plants in agriculture, in horticulture and in forests, or on organs of useful plants, such as fruits, flowers, foliage, stalks, tubers or roots, and in some cases even on organs of useful plants which are formed at a later point in time remain protected against these animal pests.
When applied to the useful plants the compound of formula I is applied at a rate of 5 to 2000 g a.i./ha, particularly 10 to 1000 g a.i./ha, e.g. 50, 75, 100 or 200 g a.i./ha, in association with 1 to 5000 g a.i./ha, particularly 2 to 2000 g a.i./ha, e.g. 100, 250, 500, 800, 1000, 1500 g a.i./ha of a compound of component B), depending on the class of chemical employed as component B).
In agricultural practice the application rates of the combination according to the invention depend on the type of effect desired, and typically range from 20 to 4000 g of total combination per hectare.
When the combinations of the present invention are used for treating seed, rates of 0.001 to 50 g of a compound of formula I per kg of seed, preferably from 0.01 to 10g per kg of seed, and 0.001 to 50 g of a compound of component B), per kg of seed, preferably from 0.01 to 10g per kg of seed, are generally sufficient.
The invention also provides fungicidal compositions comprising a compound of formula I and a compound of component B) in a synergistically effective amount. The composition of the invention may be employed in any conventional form, for example in the form of a twin pack, a powder for dry seed treatment (DS), an emulsion for seed treatment (ES), a flowable concentrate for seed treatment (FS), a solution for seed treatment (LS), a water dispersible powder for seed treatment (WS), a capsule suspension for seed treatment (CF), a gel for seed treatment (GF), an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK), a dispersible concentrate (DC), a wettable powder (WP) or any technically feasible formulation in combination with agriculturally acceptable adjuvants.
Such compositions may be produced in conventional manner, e.g. by mixing the active ingredients with appropriate formulation inerts (diluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects). Also conventional slow release formulations may be employed where long lasting efficacy is intended. Particularly formulations to be applied in spraying forms, such as water dispersible concentrates (e.g. EC, SC, DC, OD, SE, EW, EO and the like), wettable powders and granules, may contain surfactants such as wetting and dispersing agents and other compounds that provide adjuvancy effects, e.g. the condensation product of formaldehyde with naphthalene sulphonate, an alkylarylsulphonate, a lignin sulphonate, a fatty alkyl sulphate, and ethoxylated alkylphenol and an ethoxylated fatty alcohol.
A seed dressing formulation is applied in a manner known per se to the seeds employing the combination of the invention and a diluent in suitable seed dressing formulation form, e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds. Such seed dressing formulations are known in the art. Seed dressing formulations may contain the single active ingredients or the combination of active ingredients in encapsulated form, e.g. as slow release capsules or microcapsules. In general, the formulations include from 0.01 to 90% by weight of active agent, from 0 to 20% agriculturally acceptable surfactant and 10 to 99.99% solid or liquid formulation inerts and adjuvant(s), the active agent consisting of at least the compound of formula I together with a compound of component B), and optionally other active agents, particularly microbiocides or conservatives or the like. Concentrated forms of compositions generally contain in between about 2 and 80%, preferably between about 5 and 70% by weight of active agent. Application forms of formulation may for example contain from 0.01 to 20% by weight, preferably from 0.01 to 5% by weight of active agent. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ diluted formulations.
The Examples which follow serve to illustrate the invention, "active ingredient" denoting a mixture of compound I and a compound of component B) in a specific mixing ratio.
Formulation Examples
Wettable powders a) b) c) active ingredient [I : comp B) = 1 :3(a), 1 :2(b), 1 :1 (c)] 25 % 50 % 75 % sodium lignosulfonate 5 % 5 % sodium lauryl sulfate 3 % - 5 % sodium diisobutylnaphthalenesulfonate - 6 % 10 % phenol polyethylene glycol ether - 2 %
(7-8 mol of ethylene oxide) highly dispersed silicic acid 5 % 10 % 10 %
Kaolin 62 % 27 %
The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.
Powders for dry seed treatment a) b) c) active ingredient [I : comp B) = 1 :3(a), 1 :2(b), 1 :1 (c)] 25 % 50 % 75 % light mineral oil 5 % 5 % 5 % highly dispersed silicic acid 5 % 5 % -
Kaolin 65 % 40 % Talcum - 20
The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
Emulsifiable concentrate active ingredient (I : comp B) = 1 :6) 10 % octylphenol polyethylene glycol ether 3 %
(4-5 mol of ethylene oxide) calcium dodecylbenzenesulfonate 3 % castor oil polyglycol ether (35 mol of ethylene oxide) 4 o/
Cyclohexanone 30 xylene mixture 50
Emulsions of any required dilution, which can be used in plant protection, can be obtained from this concentrate by dilution with water.
Dusts a) b) c)
Active ingredient [I : comp B) = 1 :6(a), 1 :2(b), 1 :10(c)] 5 % 6 % 4 % talcum 95 %
Kaolin - 94 % mineral filler - - 96 %
Ready-for-use dusts are obtained by mixing the active ingredient with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
Extruder granules
Active ingredient (I : comp B) = 2:1) 15 % sodium lignosulfonate 2 % carboxymethylcellulose 1 %
Kaolin 82 %
The active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water. The mixture is extruded and then dried in a stream of air.
Coated granules
Active ingredient (I :comp B) = 1 :10) 8 % polyethylene glycol (mol. wt. 200) 3 %
Kaolin 89 %
The finely ground active ingredient is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.
Suspension concentrate active ingredient (I : connp B) = 1 :8) 40 % propylene glycol 10 % nonylphenol polyethylene glycol ether (15 mol of ethylene oxide) 6 %
Sodium lignosulfonate 10 % carboxymethylceliulose 1 % silicone oil (in the form of a 75 % emulsion in water) 1 %
Water 32 %
The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
Flowable concentrate for seed treatment active ingredient (I : comp B) = 1 :8) 40 % propylene glycol 5 % copolymer butanol PO/EO 2 % tristyrenephenole with 10-20 moles EO 2 %
1 ,2-benzisothiazolin-3-one (in the form of a 20% solution in 0 .5 % water) monoazo-pigment calcium salt 5 %
Silicone oil (in the form of a 75 % emulsion in water) 0. .2 %
Water 45, .3 %
The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion. Slow Release Capsule Suspension
28 parts of a combination of the compound of formula I and a compound of component B), or of each of these compounds separately, are mixed with 2 parts of an aromatic solvent and
7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8:1 ). This mixture is emulsified in a mixture of 1.2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51.6 parts of water until the desired particle size is achieved. To this emulsion a mixture of 2.8 parts 1 ,6-diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed.
The obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent. The capsule suspension formulation contains 28% of the active ingredients. The medium capsule diameter is 8-15 microns.
The resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
Biological Examples
A synergistic effect exists whenever the action of an active ingredient combination is greater than the sum of the actions of the individual components.
The action to be expected E for a given active ingredient combination obeys the so-called COLBY formula and can be calculated as follows (COLBY, S. R. "Calculating synergistic and antagonistic responses of herbicide combination". Weeds, Vol. 15, pages 20-22; 1967): ppm = milligrams of active ingredient (= a.i.) per liter of spray mixture X = % action by active ingredient A) using p ppm of active ingredient Y = % action by active ingredient B) using q ppm of active ingredient.
According to COLBY, the expected (additive) action of active ingredients A)+B) using
X • Y p+q ppm of active ingredient is E = X + Y
If the action actually observed (O) is greater than the expected action (E), then the action of the combination is super-additive, i.e. there is a synergistic effect. In mathematical terms the synergism factor SF corresponds to O/E. In the agricultural practice an SF of > 1.2 indicates significant improvement over the purely complementary addition of activities (expected activity), while an SF of ≤ 0.9 in the practical application routine signals a loss of activity compared to the expected activity.
Example B-I : Activity against Ustilaqo nuda on barley a) Seed application
After application of the formulated seed treatment onto U. nucfa-infected seeds of winterbarley the seeds are sown in trays filled with field soil. The trays are transferred to a growth room and kept there for 2 days at 2O0C and then for 2 weeks at 20C. After this period the trial is transferred to a greenhouse where a temperature of 150C and a 14 hr light period is provided until flowering. The following assessments are made: number of infected heads. The fungicide interactions in the combinations are calculated according to COLBY method.
b) Fungal growth assay
Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 240C and the inhibition of growth was determined photometrically after 48 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000070_0002
Example B-2: Activity against Microdochium nivale on wheat a) Seed application
After application of the formulated seed treatment onto M. nivale -infected seeds of winterwheat the seeds are sown in trays filled with planting soil. The trial is kept for 4 weeks in a growth room at 40 C and darkness. Then the temperature is increased to 150C and a 12 hr light period is provided. After development of the primary leaf plants are kept at 1O0C and high humidity until the trial is finished. The following assessments are made: number of infected plants. The fungicide interactions in the combinations are calculated according to COLBY method.
b) Fungal growth assay
Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-we)l format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 240C and the inhibition of growth was measured photometrically after 72 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
Figure imgf000071_0001
Figure imgf000071_0002
Figure imgf000072_0001
Figure imgf000072_0002
Example B-3: Activity against Pyrenophora qraminea on barley a) Seed application After application of the formulated seed treatment onto P. graminea -infected seeds of winterbarley the seeds are sown in trays filled with field soil. The trays are kept in a growth room for 3 weeks at 40C. After this period the trial is transferred to a greenhouse where a temperature of 120C and a 14 hr light period is provided. The following assessments are made: number of infected plants. The fungicide interactions in the combinations are calculated according to COLBY method.
b) Fungal growth assay
Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 240C and the inhibition of growth was measured photometrically after 72 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
Figure imgf000073_0001
Figure imgf000073_0002
Figure imgf000074_0001
Figure imgf000074_0002
Figure imgf000075_0001
Figure imgf000075_0002
Example B-4: Activity against Gaumannomvces graminis on wheat a) Seed application
After application of the formulated seed treatment onto seeds of winterwheat the seeds are sown in trays filled with field soil. The field soil has been inoculated artificially before sowing with Gaumannomyces graminis by thouroughly mixing mycelium and soil. The trial is kept in a growth room for 5 weeks at 170C and a 14hr light period. The following assessments are made: disease severity on roots of infected plants. The fungicide interactions in the combinations are calculated according to COLBY method.
b) Fungal growth assay
Mycelial fragments of a newly grown culture of the fungus, were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 24°C and the inhibition of growth was measured photometrically after 72 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
Figure imgf000076_0001
Example B-5: Activity against Rhizoctonia solani a) Seed application
After application of the formulated seed treatment onto seeds of cotton the seeds are sown in trays filled with soil. The soil has been inoculated artificially before sowing with Rhizoctonia solani by thouroughly mixing mycelium and soil. The trial is kept in a growthroom for 2 weeks at 190C and then is transferred to a greenhouse at 230C. A 14hr light period is provided from the onset of germination. The following assessments are made: number of infected plants. The fungicide interactions in the combinations are calculated according to COLBY method. b) Fungal growth assay
Mycelial fragments of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 240C and the inhibition of growth was determined photometrically after 48 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
Figure imgf000077_0001
Figure imgf000077_0002
Figure imgf000078_0001
Example B-6: Activity against Septoria tritici
Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 240C and the inhibition of growth was determined photometrically after 72 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
Figure imgf000078_0002
Figure imgf000079_0001
Figure imgf000079_0002
Example B-7: Activity against Fusarium qraminearum
Conidia of the fungus from cryogenic storage were directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of the test compounds into a microtiter plate (96-well format) the nutrient broth containing the fungal spores was added. The test plates were incubated at 240C and the inhibition of growth was determined photometrically after 48 hrs. The fungicide interactions in the combinations are calculated according to COLBY method.
Figure imgf000080_0001
Figure imgf000080_0002
Figure imgf000081_0001
Figure imgf000081_0002
The combinations according to the invention exhibit good activity in all of the above examples, where no individually specified data are reported.

Claims

WHAT IS CLAIMED IS:
1. A method of controlling phytopathogenic diseases on useful plants or on propagation material thereof, which comprises applying to the useful plants, the locus thereof or propagation material thereof a combination of components A) and B) in a synergistically effective amount, wherein component A) is a compound of formula I
Figure imgf000082_0001
wherein
R1 is trifluoromethyl or difluoromethyl and
R2 is hydrogen or methyl; or a tautomer of such a compound; and component B) is a compound selected from the group consisting of
Benomyl; Carbendazim; Fuberidazole; Thiabendazole; Thiophanate; Thiophanate-methyl;
Chlozolinate; Iprodione; Procymidone; Vinclozolin; Azaconazole; Bitertanol; Bromuconazole;
Cyproconazole; Difenoconazole; Diniconazole; Epoxiconazole; Fenarimol; Fenbuconazole;
Fluquinconazole; Flusilazole; Flutriafol; Hexaconazole; Imazalil; Imibenconazole; Ipconazole;
Metconazole; Myclobutanil; Nuarimol; Oxpoconazole; Pefurazoate; Penconazole; Prochloraz;
Propiconazole; Prothioconazole; Pyrifenox; Simeconazole; Tebuconazole; Tetraconazole;
Triadimefon; Triadimenol; Triflumizole; Triforine; Triticonazole; Benalaxyl; Furalaxyl;
Metalaxyl; Mefenoxam (Metalaxyl-M); Ofurace; Oxadixyl; Aldimorph; Dodemorph
Fenpropimorph; Fenpropidin; Spiroxamine; Tridemorph; Edifenphos; lprobenfos (IBP);
Isoprothiolane; Pyrazophos; Benodanil; Carboxin; Fenfuram; Flutolanil; Furametpyr;
Mepronil; Oxycarboxin; Thifluzamide; Bupirimate; Dimethirimol; Ethirimol; Cyprodinil;
Mepanipyrim; Pyrimethanil; Diethofencarb; Azoxystrobin; Famoxadone; Fenamidone;
Kresoxim-methyl; Metominostrobin; Picoxystrobin; Pyraclostrobin; Trifloxystrobin;
Fenpiclonil; Fludioxonil; Quinoxyfen; Biphenyl; Chloroneb; Dicloran; Etridiazole; Quintozene
(PCNB); Tecnazene (TCNB); Tolclofos-methyl; Dimethomorph; Carpropamid; Diclocymet; Fenoxanil; Fthalide; Pyroquilon; Tricyclazole; Fenhexamid; Polyoxin; Pencycuron; Cyazofamid; Zoxamide; Blasticidin-S; Kasugamycin; Streptomycin; Validamycin; Cymoxanil; Iodocarb; Propamocarb; Prothiocarb; Dinocap; Fluazinam; Fentin acetate; Fentin chloride; Fentin hydroxide; Oxolinic acid; Hymexazole; Octhilinone; Fosetyl-Aluminium; Phosphorsaure; Teclofthaiam (Bactericid); Triazoxide; Flusulfamide; Ferimzone; Diclomezine; Anilazine; Arsenates; Captafol; Captan; Chlorothalonil; Copper (diverse salts); Copper Ammoniumcarbonate; Copper octanoate; Copper oleate; Copper sulphate; Copper hydroxide; Dichlofluanid; Dithianon; Dodine; Ferbam; Folpet; Guazatine; Iminoctadine; Mancozeb; Maneb; Mercury; Metiram; Propineb; Sulphur; Thiram; Tolylfluanid; Zineb; Ziram; Acibenzolar-S-methyl; Probenazole; Benthiavalicarb; Iprovalicarb; Diflumetorim; Ethaboxam; Flusulfamide; Methasulfocarb; Silthiofam; Bacillus pumilus GB34; Bacillus pumilus strain QST 2808; Bacillus subtilis; Bacilus subtilis + PCNB + Metalaxyl; Cadmiumchlorid; Carbondisulfid; Bordeaux mixture; Cedar; Chlorine; Cinnamaldehyde; Cycloheximide; Fenaminosulf; Fenamiphos; Dichloropropene; Dichlone; Formaldehyde; Gliocladium virens GL-21 ; Glyodin; Hexachlorobenzene; Iprovalicarb; Manganous dimethyldithiocarbamate; Mercuric chloride; Nabam; Neem oil (hydrophobic extract); Oxytetracycline; Oxythioquinox; Paraformaldehyde; Pentachloronitrobenzene; Pentachlorophenol; paraffin oil; Polyoxin D zinc salt; sodiumbicarbonat; potassiumbicarbonate; sodiumdiacetat; sodiumpropionat; TCMTB; Benalaxyl-M; Boscalid; Fluoxastrobin; Hexaconazole; Metrafenone; Oxine Copper; Penthiopyrad; Perfurazoate; Tolyfluanid; Terramycin; Trichoderma; Trichoderma harzianum; Triphenyltin hydroxide and Xanthomonas campestris subsp. Vesicatoria; Paclobutrazol; 1 ,1- bis(4-chlorophenyl)-2-ethoxyethanol; 2,4-dichlorophenyl benzenesulfonate; 2-fluoro-Λ/- methyl-Λ/-1 -naphthylacetamide; 4-chlorophenyl phenyl sulfone; abamectin; acequinocyl; acetoprole; acrinathrin; aldicarb; aldoxycarb; alpha-cypermethrin; amidithion; amidoflumet; amidothioate; amiton; amiton hydrogen oxalate; amitraz; aramite; arsenous oxide; AVI 382; AZ 60541 ; azinphos-ethyl; azinphos-methyl; azobenzene; azocyclotin; azothoate; benomyl; benoxafos; benzoximate; benzyl benzoate; bifenazate; bifenthrin; binapacryl; brof en valerate; bromocyclen; bromophos; bromophos-ethyl; bromopropylate; buprofezin; butocarboxim; butoxycarboxim; butylpyridaben; calcium polysulfide; camphechlor; carbanolate; carbaryl; carbofuran; carbophenothion; CGA 50'439; chinomethionat; chlorbenside; chlordimeform; chlordimeform hydrochloride; chlorfenapyr; chlorfenethol; chlorfenson; chlorfensulphide; chlorfenvinphos; chlorobenzilate; chloromebuform; chloromethiuron; chloropropylate; chlorpyrifos; chlorpyrifos-methyl; chlorthiophos; cinerin I; cinerin II; cinerins; clofentezine; closantel; coumaphos; crotamiton; crotoxyphos; cufraneb; cyanthoate; cyhalothrin; cyhexatin; cypermethrin; DCPM; DDT; demephion; demephion-O; demephion-S; demeton; demeton-methyl; demeton-O; demeton-O-methyl; demeton-S; demeton-S-methyl; demeton- S-methylsulphon; diafenthiuron; dialifos; diazinon; dichlofluanid; dichlorvos; dicliphos; dicofol; dicrotophos; dienochlor; dimefox; dimethoate; dinactin; dinex; dinex-diclexine; dinobuton; dinocap; dinocap-4; dinocap-6; dinocton; dinopenton; dinosulfon; dinoterbon; dioxathion; diphenyl sulfone; disulfiram; disulfoton; DNOC; dofenapyn; doramectin; endosulfan; endothion; EPN; eprinomectin; ethion; ethoate-methyl; etoxazole; etrimfos; fenazaflor; fenazaquin; fenbutatin oxide; fenothiocarb; fenpropathrin; fenpyrad; fenpyroximate; fenson; fentrifanil; fenvalerate; fipronil; fluacrypyrim; fluazuron; flubenzimine; flucycloxuron; flucythrinate; fluenetil; flufenoxuron; flumethrin; fiuorbenside; fluvalinate; FMC 1137; formetanate; formetanate hydrochloride; formothion; formparanate; gamma-HCH; glyodin; halfenprox; heptenophos; hexadecy) cyclopropanecarboxylate; hexythiazox; iodomethane; isocarbophos; isopropyl O-(methoxyaminothiophosphoryl)salicylate; ivermectin; jasmolin I; jasmolin II; jodfenphos; lindane; lufenuron; malathion; malonoben; mecarbam; mephosfolan; mesulfen; methacrifos; methamidophos; methidathion; methiocarb; methomyl; methyl bromide; metolcarb; mevinphos; mexacarbate; milbemectin; milbemycin oxime; mipafox; monocrotophos; morphothion; moxidectin; naled; NC-184; nifluridide; nikkomycins; nitrilacarb; nitrilacarb 1 :1 zinc chloride complex; NN1-0101 ; NNI-0250; omethoate; oxamyl; oxydeprofos; oxydisulfoton; pp'-DDT; parathion; permethrin; petroleum oils; phenkapton; phenthoate; phorate; phosalone; phosfolan; phosmet; phosphamidon; phoxim; pirimiphos- methyl; polychloroterpenes; polynactins; proclonol; profenofos; promacyl; propargite; propetamphos; propoxur; prothidathion; prothoate; pyrethrin I; pyrethrin II; pyrethrins; pyridaben; pyridaphenthion; pyrimidifen; pyrimitate; quinalphos; quintiofos; R-1492; RA-17; rotenone; schradan; sebufos; selamectin; SI-0009; sophamide; spirodiclofen; spiromesifen; SS1-121 ; sulfiram; sulfluramid; sulfotep; sulfur; SZI-121 ; tau-fluvalinate; tebufenpyrad; TEPP; terbam; tetrachlorvinphos; tetradifon; tetranectin; tetrasul; thiafenox; thiocarboxime; thiofanox; thiometon; thioquinox; thuringiensin; triamiphos; triarathene; triazophos; triazuron; trichlorfon; trifenofos; trinactin; vamidothion; vaniliprole; YI-5302; bethoxazin; copper dioctanoate; copper sulfate; cybutryne; dichlone; dichlorophen; endothal; fentin; hydrated lime; nabam; quinoclamine; quinonamid; simazine; triphenyltin acetate; triphenyltin hydroxide; abamectin; crufomate; doramectin; emamectin; emamectin benzoate; eprinomectin; ivermectin; milbemycin oxime; moxidectin; piperazine; selamectin; spinosad; thiophanate; chloralose; endrin; fenthion; pyridin-4-amine; strychnine; 1-hydroxy-1 f/-pyridine- 2-thione; 4-(quinoxalin-2-ylamino)benzenesulfonamide; 8-hydroxyquinoline sulfate; bronopol copper dioctanoate; copper hydroxide; cresol; dichlorophen; dipyrithione; dodicin; fenaminosulf; formaldehyde; hydrargaphen; kasugamycin; kasugamycin hydrochloride hydrate; nickel bis(dimethyldithiocarbamate); nitrapyrin; octhilinone; oxolinic acid; oxytetracycline; potassium hydroxyquinoline sulfate; probenazole; streptomycin; streptomycin sesquisulfate; tecloftalam; thiomersal; iodomethane; methyl bromide; apholate; bisazir; busulfan; diflubenzuron; dimatif; hemel; hempa; metepa; methiotepa; methyl apholate; morzid; penfluron; tepa; thiohempa; thiotepa; tretamine; uredepa; (£)-dec-5-en-1 -yl acetate with (£)-dec-5-en-1-ol; (£)-tridec-4-en-1 -yl acetate; (£)-6-methylhept-2-en-4-ol; (E,Z)-tetradeca-4,10-dien-1-yl acetate; (Z)-dodec-7-en-1-yl acetate; (Z)-hexadec-11-enal; (Z)-hexadec-11 -en-1 -yl acetate; (Z)-hexadec-13-en-11-yn-1-yl acetate; (Z)-icos-13-en-10- one; (Z)-tetradec-7-en-1 -al; fZ)-tetradec-9-en-1 -ol; (Z)-tetradec-9-en-1 -yl acetate; (7E,9Z)- dodeca-7,9-dien-1-yl acetate; (9Z,11 E)-tetradeca-9,11-dien-1 -yl acetate; (9Z, 12E)-tetradeca- 9,12-dien-1-yl acetate; 14-methy!octadec-1 -ene; 4-methylnonan-5-ol with 4-methylnonan-5- one; alpha-multistriatin; brevicomin; codlelure; codlemone; cuelure; disparlure; dodec-8-en- 1-yl acetate; dodec-9-en-1 -yl acetate; dodeca-8,10-dien-1-yl acetate; dominicalure; ethyl 4- methyloctanoate; eugenol; frontalin; gossyplure; grandlure; grandlure I; grandlure II; grandlure III; grandlure IV; hexalure; ipsdienol; ipsenol; japonilure; lineatin; litlure; looplure; medlure; megatomoic acid; methyl eugenol; muscalure; octadeca-2,13-dien-1-yl acetate; octadeca-3,13-dien-1 -yl acetate; orfralure; oryctalure; ostramone; siglure; sordidin; sulcatol; tetradec-11 -en-1 -yl acetate; trimedlure; trimedlure A; trimedlure B1; trimedlure B2; trimedlure C; trunc-call; 2-(octylthio)ethanol; butopyronoxyl; butoxy(polypropylene glycol); dibutyl adipate; dibutyl phthalate; dibutyl succinate; diethyltoluamide; dimethyl carbate; dimethyl phthalate; ethyl hexanediol; hexamide; methoquin-butyl; methylneodecanamide; oxamate; picaridin; 1 ,1-dichloro-i-nitroethane; 1 ,1-dichloro-2,2-bis(4-ethylphenyl)ethane; 1 ,2- dichloropropane; 1 ,2-dichloropropane with 1 ,3-dichloropropene; 1 -bromo-2-chloroethane; 2,2,2-trichloro-1 -(3,4-dichlorophenyl)ethyl acetate; 2,2-dichlorovinyl 2-ethylsulfinylethyl methyl phosphate; 2-(1 ,3-dithiolan-2-yl)phenyl dimethylcarbamate; 2-(2-butoxyethoxy)ethyl thiocyanate; 2-(4,5-dimethyl-1 ,3-dioxolan-2-yl)phenyl methylcarbamate; 2-(4-chloro-3,5- xylyloxy)ethanol; 2-chlorovinyl diethyl phosphate; 2-imidazolidone; 2-isovalerylindan-1 ,3- dione; 2-methyl(prop-2-ynyl)aminophenyl methylcarbamate; 2-thiocyanatoethyl laurate; 3- bromo-1-chloroprop-1 -ene; 3-methyl-1 -phenylpyrazol-5-yl dimethylcarbamate; 4- methyl(prop-2-ynyl)amino-3,5-xylyl methylcarbamate; 5,5-dimethyl-3-oxocyclohex-1 -enyl dimethylcarbamate; abamectin; acephate; acetamiprid; acethion; acetoprole; acrinathrin; acrylonitrile; alanycarb; aldicarb; aldoxycarb; aldrin; allethrin; allosamidin; allyxycarb; alpha- cypermethrin; alpha-ecdysone; aluminium phosphide; amidithion; amidothioate; aminocarb; amiton; amiton hydrogen oxalate; amitraz; anabasine; athidathion; AVI 382; AZ 60541 ; azadirachtin; azamethiphos; azinphos-ethyl; azinphos-methyl; azothoate; Bacillus thuringiensis delta endotoxins; barium hexafluorosilicate; barium polysulfide; barthrin; BAS 320 I; Bayer 22/190; Bayer 22408; bendiocarb; benfuracarb; bensultap; beta-cyfluthrin; beta- cypermethrin; bifenthrin; bioallethrin; bioallethrin S-cyclopentenyl isomer; bioethanomethrin; biopermethrin; bioresmethrin; bis(2-chloroethyl) ether; bistrifluron; borax; brofenvalerate; bromfenvinfos; bromocyclen; bromo-DDT; bromophos; bromophos-ethyl; bufencarb; buprofezin; butacarb; butathiofos; butocarboxim; butonate; butoxycarboxim; butylpyridaben; cadusafos; calcium arsenate; calcium cyanide; calcium polysulfide; camphechlor; carbanolate; carbaryl; carbofuran; carbon disulfide; carbon tetrachloride; carbophenothion; carbosulfan; cartap; cartap hydrochloride; cevadine; chlorbicyclen; chlordane; chlordecone; chlordimeform; chlordimeform hydrochloride; chlorethoxyfos; chlorfenapyr; chlorfenvinphos; chlorfluazuron; chlormephos; chloroform; chloropicrin; chlorphoxim; chlorprazophos; chlorpyrifos; chlorpyrifos-methyl; chlorthiophos; chromafenozide; cinerin I; cinerin II; cinerins; cis-resmethrin; cismethrin; clocythrin; cloethocarb; closantel; clothianidin; copper acetoarsenite; copper arsenate; copper oleate; coumaphos; coumithoate; crotamiton; crotoxyphos; crufomate; cryolite; CS 708; cyanofenphos; cyanophos; cyanthoate; cyclethrin; cycloprothrin; cyfluthrin; cyhalothrin; cypermethrin; cyphenothrin; cyromazine; cythioate; d- limonene; d-tetramethrin; DAEP; dazomet; DDT; decarbofuran; deltamethrin; demephion; demephion-O; demephion-S; demeton; demeton-methyl; demeton-O; demeton-O-methyl; demeton-S; demeton-S-methyl; demeton-S-methylsulphon; diafenthiuron; dialifos; diami- dafos; diazinon; dicapthon; dichlofenthion; dichlorvos; dicliphos; dicresyl; dicrotophos; dicyclanil; dieldrin; diethyl 5-methylpyrazol-3-yl phosphate; diflubenzuron; dilor; dimefluthrin; dimefox; dimetan; dimethoate; dimethrin; dimethylvinphos; dimetilan; dinex; dinex-diclexine; dinoprop; dinosam; dinoseb; dinotefuran; diofenolan; dioxabenzofos; dioxacarb; dioxathion; disulfoton; dithicrofos; DNOC; doramectin; DSP; ecdysterone; El 1642; emamectin; emamectin benzoate; EMPC; empenthrin; endosulfan; endothion; endrin; EPBP; EPN; epofenonane; eprinomectin; esfenvalerate; etaphos; ethiofencarb; ethion; ethiprole; ethoate- methyl; ethoprophos; ethyl formate; ethyl-DDD; ethylene dibromide; ethylene dichloride; ethylene oxide; etofenprox; etrimfos; EXD; famphur; fenamiphos; fenazaflor; fenchlorphos; fenethacarb; fenfluthrin; fenitrothion; fenobucarb; fenoxacrim; fenoxycarb; fenpirithrin; fenpropathrin; fenpyrad; fensulfothion; fenthion; fenthion-ethyl; fenvalerate; fipronil; flonicamid; flucofuron; flucycloxuron; flucythrinate; fluenetil; flufenerim; flufenoxuron; flufenprox; flumethrin; fluvalinate; FMC 1137; fonofos; formetanate; formetanate hydrochloride; formothion; formparanate; fosmethilan; fospirate; fosthiazate; fosthietan; furathiocarb; furethrin; gamma-cyhalothrin; gamma-HCH; guazatine; guazatine acetates; GY-81 ; halfenprox; halofenozide; HCH; HEOD; heptachlor; heptenophos; heterophos; hexaflumuron; HHDN; hydramethylnon; hydrogen cyanide; hydroprene; hyquincarb; imidacloprid; imiprothrin; indoxacarb; iodomethane; IPSP; isazofos; isobenzan; isocarbo- phos; isodrin; isofenphos; isolane; isoprocarb; isopropyl O-(methoxyaminothiophosphoryl)- salicylate; isoprothiolane; isothioate; isoxathion; ivermectin; jasmolin I; jasmolin II; jodfenphos; juvenile hormone I; juvenile hormone II; juvenile hormone III kelevan; kinoprene; lambda-cyhalothrin; lead arsenate; leptophos; lindane; lirimfos; lufenuron; lythidathion; m- cumenyl methylcarbamate; magnesium phosphide; malathion; malonoben; mazidox; mecarbam; mecarphon; menazon; mephosfolan; mercurous chloride; mesulfenfos; metam; metam-potassium; metam-sodium; methacrifos; methamidophos; methanesulfonyl fluoride; methidathion; methiocarb; methocrotophos; methomyl; methoprene; methoquin-butyl; methothrin; methoxychlor; methoxyfenozide; methyl bromide; methyl isothiocyanate; methylchloroform; methylene chloride; metofluthrin; metolcarb; metoxadiazone; mevinphos; mexacarbate; milbemectin; milbemycin oxime; mipafox; mirex; monocrotophos; morphothion; moxidectin; naftalofos; naled; naphthalene; NC-170; NC-184; nicotine; nicotine sulfate; nifluridide; nitenpyram; nithiazine; nitrilacarb; nitrilacarb 1 :1 zinc chloride complex; NNI-0101 ; NNI-0250; nornicotine; novaluron; noviflumuron; O-2,5-dichloro-4-iodophenyl O-ethyl ethylphosphonothioate; O, O-diethyl O-4-methyl-2-oxo-2H-chromen-7-yl phosphorothioate; O,O-diethyl O-6-methyl-2-propylpyrimidin-4-yl phosphorothioate; O,O,O',O'-tetrapropyl dithiopyrophosphate; oleic acid; omethoate; oxamyl; oxydemeton-methyl; oxydeprofos; oxydisulfoton; pp'-DDT; para-dichlorobenzene; parathion; parathion-methyl; penfluron; pentachlorophenol; pentachlorophenyl laurate; permethrin; petroleum oil; PH 60-38; phenkapton; phenothrin; phenthoate; phorate; phosalone; phosfolan; phosmet; phosnichlor; phosphamidon; phosphine; phoxim; phoxim-methyl; pirimetaphos; pirimicarb; pirimiphos- ethyl; pirimiphos-methyl; polychlorodicyclopentadiene isomers; polychloroterpenes; potassium arsenite; potassium thiocyanate; prallethrin; precocene I; precocene II; precocene III; primidophos; profenofos; profluthrin; promacyl; promecarb; propaphos; propetamphos; propoxur; prothidathion; prothiofos; prothoate; protrifenbute; pymetrozine; pyraclofos; pyrazophos; pyresmethrin; pyrethrin I; pyrethrin II; pyrethrins; pyridaben; pyridalyl; pyridaphenthion; pyrimidifen; pyrimitate; pyriproxyfen; quassia; quinalphos; quinalphos- methyl; quinothion; quintiofos; R-1492; rafoxanide; resmethrin; rotenone; RU 15525; RU 25475; ryania; ryanodine; sabadilla; schradan; sebufos; selamectin; SI-0009; silafluofen; SN 72129; sodium arsenite; sodium cyanide; sodium fluoride; sodium hexafluorosilicate; sodium pentachlorophenoxide; sodium selenate; sodium thiocyanate; sophamide; spinosad; spiromesifen; sulcofuron; sulcofuron-sodium; sulfluramid; sulfotep; sulfuryl fluoride; sulprofos; tar oils; tau-fluvalinate; tazimcarb; TDE; tebufenozide; tebufenpyrad; tebupirimfos; teflubenzuron; tefluthrin; temephos; TEPP; terallethrin; terbam; terbufos; tetrachloroethane; tetrachlorvinphos; tetramethrin; theta-cypermethrin; thiacloprid; thiafenox; thiamethoxam; thicrofos; thiocarboxime; thiocyclam; thiocyclam hydrogen oxalate; thiodicarb; thiofanox; thiometon; thionazin; thiosultap; thiosultap-sodium; thuringiensin; tolfenpyrad; tralomethrin; transfluthrin; transpermethrin; triamiphos; triazamate; triazophos; triazuron; trichlorfon; trichlormetaphos-3; trichloronat; trifenofos; triflumuron; trimethacarb; triprene; vamidothion; vaniliprole; veratridine; veratrine; XMC; xylylcarb; YI-5302; zeta-cypermethrin; zetamethrin; zinc phosphide; zolaprofos und ZXI 8901 ; a compound of formula A-1
a compound of formula A-
Figure imgf000088_0001
a compound of formula A-3
a compound of formula A-
Figure imgf000089_0001
H CH0
(A-4); a compound of formula A-5
a compound of formula A-
Figure imgf000089_0002
(A-6); a compound of formula A-7
Figure imgf000090_0001
(A-7); a compound of formula A-8
a compound of formula A-
Figure imgf000090_0002
(A-9); a compound of formula A-10 a compound of formula A
a compound of formula A-
Figure imgf000091_0001
a compound of formula A-13
Figure imgf000091_0002
(A-13); a compound of formula A-14
a compound of formula
a compound of formula
Figure imgf000092_0001
a compound of formula (A-16)
Figure imgf000093_0001
a compound of formula (A-17)
Figure imgf000093_0002
a compound of formula (A-18)
Figure imgf000093_0003
a compound of formula (A-19)
Figure imgf000094_0001
a compound of formula (A-20)
Figure imgf000094_0002
a compound of formula (A-21 )
Figure imgf000094_0003
a compound of formula (A-22)
Figure imgf000095_0001
H CH3 a compound of formula (A-23)
Figure imgf000095_0002
a compound of formula (A-24)
Figure imgf000095_0003
a compound of formula (A-25)
Figure imgf000096_0001
a compound of formula (A-26)
Figure imgf000096_0002
bis(tributyltin) oxide; bromoacetamide; calcium arsenate; cloethocarb; copper acetoarsenite; copper sulfate; fentin; ferric phosphate; metaldehyde; methiocarb; niclosamide; niclosamide- olamine; pentachlorophenol; sodium pentachlorophenoxide; tazimcarb; thiodicarb; tributyltin oxide; trifenmorph; trimethacarb; triphenyltin acetate; triphenyltin hydroxide; 1 ,2-dibromo-3- chloropropane; 1 ,2-dichloropropane; 1 ,2-dichloropropane with 1 ,3-dichloropropene; 1 ,3- dichloropropene; 3,4-dichlorotetrahydrothiophene 1 ,1 -dioxide; 3-(4-chlorophenyl)-5- methylrhodanine; 5-methyl-6-thioxo-1 ,3,5-thiadiazinan-3-ylacetic acid; 6- isopentenylaminopurine; abamectin; acetoprole; alanycarb; aldicarb; aldoxycarb; AZ 60541 ; benclothiaz; benomyl; butylpyridaben; cadusafos; carbofuran; carbon disulfide; carbosulfan; chloropicrin; chlorpyrifos; cloethocarb; cytokinins; dazomet; DBCP; DCIP; diamidafos; dichlofenthion; dicliphos; dimethoate; doramectin; emamectin; emamectin benzoate; eprinomectin; ethoprophos; ethylene dibromide; fenamiphos; fenpyrad; fensulfothion; fosthiazate; fosthietan; furfural; GY-81; heterophos; iodomethane; isamidofos; isazofos; iver¬ mectin; kinetin; mecarphon; metam; metam-potassium; metam-sodium; methyl bromide; methyl isothiocyanate; milbemycin oxime; moxidectin; Myrothecium verrucaria composition; NC-184; oxamyl; phorate; phosphamidon; phosphocarb; sebufos; selamectin; spinosad; terbam; terbufos; tetrachlorothiophene; thiafenox; thionazin; triazophos; triazuron; xylenols; YI-5302; zeatin; potassium ethylxanthate; nitrapyrin; acibenzolar; acibenzolar-S-methyl; probenazole; Reynoutria sachalinensis extract; 2-isovalerylindan-1 ,3-dione; 4-(quinoxalin-2- ylamino)benzenesulfonamide; alpha-chlorohydrin; aluminium phosphide; antu; arsenous oxide; barium carbonate; bisthiosemi; brodifacoum; bromadiolone; bromethalin; calcium cyanide; chloralose; chlorophacinone; cholecalciferol; coumachlor; coumafuryl; coumatetralyl; crimidine; difenacoum; difethialone; diphacinone; ergocalciferol; flocoumafen; fluoroacetamide; flupropadine; flupropadine hydrochloride; gamma-HCH; HCH; hydrogen cyanide; iodomethane; lindane; magnesium phosphide; methyl bromide; norbormide; phosacetim; phosphine; phosphorus; pindone; potassium arsenite; pyrinuron; scilliroside; sodium arsenite; sodium cyanide; sodium fluoroacetate; strychnine; thallium sulfate; warfarin; zinc phosphide; 2-(2-butoxyethoxy)ethyl piperonylate; 5-(1 ,3-benzodioxol-5-yl)-3- hexylcyclohex-2-enone farnesol with nerolidol; MB-599; MGK 264; piperonyl butoxide; piprotal; propyl isome; S421 ; sesamex; sesasmolin; sulfoxide; anthraquinone; chloralose; copper naphthenate; copper oxychloride; diazinon; dicyclopentadiene; guazatine; guazatine acetates; methiocarb; pyridin-4-amine; thiram; trimethacarb; zinc naphthenate; ziram; imanin; ribavirin; mercuric oxide; octhilinone; thiophanate-methyl; a compound of formula F- 1
Figure imgf000097_0001
a compound of formula F-2A
Figure imgf000097_0002
wherein R' is hydrogen, Ci-4alkyl or C1-4haloalkyl; a compound of formula F-3
Figure imgf000098_0001
a compound of formula F-4
Figure imgf000098_0002
a compound of formula F-5
Figure imgf000098_0003
a compound of formula F-6
Figure imgf000099_0001
a compound of formula F-7
Figure imgf000099_0002
and a compound of formula F-8
Figure imgf000099_0003
2. A method according to claim 1 , wherein component A) is a compound of formula I, wherein R-, is difluoromethyl and R2 is hydrogen.
3. A method according to claim 1 , wherein component A) is a racemic compound of formula Ia (trans)
Figure imgf000100_0001
4. A method according to claim 1 , wherein component A) is a racemic compound of the formula Ic
Figure imgf000100_0002
wherein the content of racemic compounds of formula Ia (trans)
Figure imgf000100_0003
is from 65 to 99 % by weight.
5. A method according to claim 1 , wherein component B) is selected from the group consisting of Azoxystrobin; Benalaxyl; Benalaxyl-M; Bitertanol; Boscalid; Carboxin; Carpropamid; Chlorothalonil; Copper; Cyazofamid; Cymoxanil; Cyproconazole; Cyprodinil; Difenoconazole; Famoxadone; Fenamidone; Fenhexamide; Fenpiclonil; Fluazinam; Fludioxonil; Fluquinconazole; Fluoxastrobin; Flutolanil; Flutriafol; Guazatine; Hexaconazole; Hymexazole; Imazalil; Ipconazole; Iprodione; Mancozeb; Metalaxyl; Mefenoxam; Metconazole; Metrafenone; Nuarimol; Oxpoconazole; Paclobutrazol; Pencycuron; Penthiopyrad; Picoxystrobin; Prochloraz; Procymidone; Prothioconazole; Pyraclostrobin; Pyrimethanil; Pyroquilon; Silthiofam; Tebuconazole; Tetraconazole; Thiabendazole; Thiram; Triadimenol; Triazoxide; Trifloxystrobin; Triticonazole; Thiamethoxam; Tefluthrin; Abamectin; Propiconazole; Fenpropimorph; Fenpropidin; a compound of formula F- 1
Figure imgf000101_0001
a compound of formula F-2
Figure imgf000101_0002
and Epoxiconazole.
6. A method according to claim 1 , wherein component B) is selected from the group consisting of Azoxystrobin; Fludioxonil; Difenoconazole; Cyproconazole or Thiabendazole.
7. A method according to claim 1 , wherein component B) is selected from the group consisting of Azoxystrobin; Difenoconazole and Fludioxonil.
8. A fungicidal composition comprising a combination of components A) and B) according to claim 1 in a synergistically effective amount, together with an agriculturally acceptable carrier, and optionally a surfactant.
9. A fungicidal composition comprising a combination of components A) and B) according to claim 1 together with an agriculturally acceptable carrier, and optionally a surfactant, wherein the weight ratio of A) to B) is between 2000 : 1 and 1 : 1000.
10. A method of protecting natural substances of vegetable and/or animal origin and/or their processed forms, which have been taken from the natural life cycle, which comprises applying to said natural substances of vegetable and/or animal origin or their processed forms a combination of components A) and B) according to claim 1 in a synergistically effective amount.
PCT/EP2005/008748 2004-08-12 2005-08-11 Fungicidal compositions WO2006015865A1 (en)

Priority Applications (25)

Application Number Priority Date Filing Date Title
DK05791052.3T DK1778013T3 (en) 2004-08-12 2005-08-11 Fungicidal compositions
EA200700382A EA010842B1 (en) 2004-08-12 2005-08-11 Fungicidal compositions
NZ552659A NZ552659A (en) 2004-08-12 2005-08-11 Fungicidal compositions for controlling phytopathogenic diseases on crop plants
BRPI0513464-1A BRPI0513464B1 (en) 2004-08-12 2005-08-11 Methods of controlling plant pathogenic diseases and protecting natural substances of plant and / or animal origin and / or their processed forms and fungicidal composition
AU2005270319A AU2005270319B2 (en) 2004-08-12 2005-08-11 Fungicidal compositions
PL05791052T PL1778013T3 (en) 2004-08-12 2005-08-11 Fungicidal compositions
CA2573661A CA2573661C (en) 2004-08-12 2005-08-11 Fungicidal compositions comprising o-cyclopropyl carboxanilides
KR1020077003104A KR101225464B1 (en) 2004-08-12 2005-08-11 Fungicidal compositions
SI200531269T SI1778013T1 (en) 2004-08-12 2005-08-11 Fungicidal compositions
AT05791052T ATE496535T1 (en) 2004-08-12 2005-08-11 FUNGICIDE COMPOSITIONS
MX2007000785A MX2007000785A (en) 2004-08-12 2005-08-11 Fungicidal compositions.
JP2007525257A JP4988571B2 (en) 2004-08-12 2005-08-11 Fungicidal composition
EP05791052A EP1778013B1 (en) 2004-08-12 2005-08-11 Fungicidal compositions
US11/573,277 US8536089B2 (en) 2004-08-12 2005-08-11 Fungicidal compositions
DE602005026126T DE602005026126D1 (en) 2004-08-12 2005-08-11 FUNGICIDE COMPOSITIONS
IL181239A IL181239A (en) 2004-08-12 2007-02-08 Methods of controlling phytopathogenic diseases on useful plants or on propagation material by applying thereto synergistic fungicidal compositions
NO20070928A NO338563B1 (en) 2004-08-12 2007-02-19 Fungicidal preparations as well as use to control and protect beneficial plants
HK07109393.7A HK1104197A1 (en) 2004-08-12 2007-08-28 Fungicidal compositions
US14/017,632 US9538755B2 (en) 2004-08-12 2013-09-04 Fungicidal compositions
US15/363,501 US9949482B2 (en) 2004-08-12 2016-11-29 Fungicidal compositions
LTPA2017028C LTC1778013I2 (en) 2004-08-12 2017-09-14 Fungicidal compositions
NL350084C NL350084I2 (en) 2004-08-12 2017-12-29 Sedaxane and Fludioxonil
US15/953,825 US10405548B2 (en) 2004-08-12 2018-04-16 Fungicidal compositions
US16/564,912 US11102977B2 (en) 2004-08-12 2019-09-09 Fungicidal compositions
US17/395,021 US20210378242A1 (en) 2004-08-12 2021-08-05 Fungicidal compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0418047.7A GB0418047D0 (en) 2004-08-12 2004-08-12 Fungicidal compositions
GB0418047,7 2004-08-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/573,277 A-371-Of-International US8536089B2 (en) 2004-08-12 2005-08-11 Fungicidal compositions
US14/017,632 Division US9538755B2 (en) 2004-08-12 2013-09-04 Fungicidal compositions

Publications (1)

Publication Number Publication Date
WO2006015865A1 true WO2006015865A1 (en) 2006-02-16

Family

ID=33017438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/008748 WO2006015865A1 (en) 2004-08-12 2005-08-11 Fungicidal compositions

Country Status (33)

Country Link
US (6) US8536089B2 (en)
EP (2) EP2332411B1 (en)
JP (1) JP4988571B2 (en)
KR (1) KR101225464B1 (en)
CN (1) CN100548122C (en)
AR (1) AR050122A1 (en)
AT (1) ATE496535T1 (en)
AU (1) AU2005270319B2 (en)
BR (1) BRPI0513464B1 (en)
CA (1) CA2573661C (en)
CR (1) CR8902A (en)
CY (2) CY1111661T1 (en)
DE (1) DE602005026126D1 (en)
DK (2) DK1778013T3 (en)
EA (1) EA010842B1 (en)
ES (2) ES2360410T3 (en)
GB (1) GB0418047D0 (en)
GT (1) GT200500213A (en)
HK (1) HK1104197A1 (en)
HU (1) HUS1800003I1 (en)
IL (1) IL181239A (en)
LT (1) LTC1778013I2 (en)
MX (1) MX2007000785A (en)
NL (1) NL350084I2 (en)
NO (1) NO338563B1 (en)
NZ (1) NZ552659A (en)
PL (2) PL1778013T3 (en)
PT (2) PT1778013E (en)
SI (2) SI2332411T1 (en)
TW (1) TWI356678B (en)
UA (1) UA86250C2 (en)
WO (1) WO2006015865A1 (en)
ZA (1) ZA200700353B (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068669A1 (en) * 2004-07-26 2006-06-29 E.I. Dupont De Nemours And Company Mixtures of anthranilamide invertebrate pest control agents
WO2006087223A1 (en) * 2005-02-21 2006-08-24 Syngenta Participations Ag Process for the production of 2- (2-aminophenyl)-bicyclopropane derivatives
WO2007003643A1 (en) * 2005-07-06 2007-01-11 Basf Aktiengesellschaft Fungicidal mixtures based on 3,4-disubstituted pyrazolecarboxylic acid biphenylamides
WO2007115766A1 (en) * 2006-04-06 2007-10-18 Syngenta Participations Ag Fungicidal compositions
WO2007131678A1 (en) 2006-05-16 2007-11-22 Bayer Cropscience Ag Fungicidal active substance combinations
WO2008000377A2 (en) * 2006-06-30 2008-01-03 Bayer Cropscience Ag Synergistic insecticide and fungicide mixtures
WO2008003403A2 (en) * 2006-07-03 2008-01-10 Bayer Cropscience Ag Synergistic insecticide and fungicidal mixtures
WO2008098928A2 (en) * 2007-02-14 2008-08-21 Basf Se Method of inducing virus tolerance of plants
WO2008113654A2 (en) * 2007-03-20 2008-09-25 Basf Se Method for protecting soybeans from being infected by fungi
WO2008119439A2 (en) * 2007-03-29 2008-10-09 Syngenta Participations Ag Fungicidal compositions comprising a carboxamide derivative, cyprodinil and an unsaturated fatty acid
EP2064952A1 (en) 2007-11-29 2009-06-03 Bayer CropScience AG Method for reducing mycotoxin contamination in maize
WO2009098218A2 (en) * 2008-02-05 2009-08-13 Basf Se Plant health composition
WO2009098223A2 (en) * 2008-02-05 2009-08-13 Basf Se Plant health composition
WO2009056620A3 (en) * 2007-11-02 2009-09-24 Basf Se Method for protecting cereals from being infected by fungi
EP2132989A2 (en) 2005-06-09 2009-12-16 Bayer CropScience AG Agent combinations
WO2010000790A1 (en) * 2008-07-04 2010-01-07 Basf Se Fungicidal mixtures comprising substituted 1-methylpyrazol-4-ylcarboxanilides
CN101700032A (en) * 2009-11-30 2010-05-05 青岛星牌作物科学有限公司 Bactericidal composition containing thiabendazole and application thereof
WO2010086103A2 (en) 2009-01-30 2010-08-05 Bayer Cropscience Aktiengesellschaft Use of succinate dehydrogenase inhibitors for controlling powdery mildew primary infections
WO2010091803A2 (en) 2009-02-13 2010-08-19 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors for extending shelf life of fruits and vegetables
EP2255649A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2255626A1 (en) 2009-05-27 2010-12-01 Bayer CropScience AG Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress
JP2010539213A (en) * 2007-09-20 2010-12-16 ビーエーエスエフ ソシエタス・ヨーロピア Combinations containing bactericidal strains and active ingredients
CN101919402A (en) * 2009-06-12 2010-12-22 石岩 Bactericide for treating pear scab
WO2011032657A2 (en) 2009-09-16 2011-03-24 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors for increasing the content of desired ingredients in crops
EP2314163A2 (en) 2005-07-21 2011-04-27 Syngenta Participations AG Fungicidal compositions comprising tebuconazole
WO2011078400A1 (en) * 2009-12-25 2011-06-30 Sumitomo Chemical Company, Limited Composition and method for controlling plant diseases
EP2353387A1 (en) 2010-02-05 2011-08-10 Bayer CropScience AG Use of succinate dehydrogenase (SDH) inhibitors in the treatment of plant types in the sweet grass family
WO2011014596A3 (en) * 2009-07-30 2011-09-29 Marrone Bio Innovations, Inc. Plant pathogen inhibitor combinations and methods of use
EP2377397A1 (en) 2010-04-14 2011-10-19 Bayer CropScience AG Use of fungicidal agents for controlling mycoses in palm trees
WO2011154494A2 (en) 2010-06-09 2011-12-15 Syngenta Participations Ag Pesticidal mixtures comprising isoxazoline derivatives
CN101473828B (en) * 2009-02-06 2012-01-25 深圳诺普信农化股份有限公司 Agricultural chemical composition for disinsection and use thereof
WO2012013590A2 (en) 2010-07-26 2012-02-02 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors and/or respiratory chain complex iii inhibitors for improving the ratio of harmful to beneficial microorganisms
CN102388870A (en) * 2011-09-08 2012-03-28 成都理工大学 Preparation method for enhanced modified dodecyltrimethylammonium bromide antibacterial solid paraffin
CN101617658B (en) * 2009-08-01 2012-05-02 深圳诺普信农化股份有限公司 Combination sterilization composition
WO2012055864A1 (en) 2010-10-27 2012-05-03 Solvay Sa Process for the preparation of pyrazole-4-carboxamides
CN101617677B (en) * 2009-07-28 2012-05-23 陕西汤普森生物科技有限公司 Sterilization composite containing tetraconazole and dimethomorph
CN101617673B (en) * 2009-08-12 2012-06-06 深圳诺普信农化股份有限公司 Sterilizing composition containing tetraconazole
WO2012080415A1 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Pesticidal mixtures
WO2012107343A1 (en) 2011-02-09 2012-08-16 Syngenta Participations Ag Method to increase the number of nodules on a plant root
WO2012110464A1 (en) 2011-02-17 2012-08-23 Bayer Cropscience Ag Use of sdhi fungicides on conventionally bred asr-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties
CN101779661B (en) * 2009-12-18 2012-11-07 陕西美邦农资贸易有限公司 Compound insecticide prepared from emamectin benzoate and pyridaphethione
CN101617667B (en) * 2009-07-07 2012-11-07 陕西汤普森生物科技有限公司 Sterilization composition containing flutriafol and kresoxim-methyl
CN101779649B (en) * 2009-12-18 2012-11-07 陕西美邦农资贸易有限公司 Bactericidal composition containing phenol cycloheximide and thiophanate-methyl
CN101617670B (en) * 2009-07-28 2012-11-07 陕西汤普森生物科技有限公司 Sterilization composition containing tetraconazole and tebuconazole
WO2012175511A1 (en) 2011-06-21 2012-12-27 Bayer Intellectual Property Gmbh Method for producing pyrazolylcarboxanilides
CN101697722B (en) * 2009-10-29 2013-04-17 深圳诺普信农化股份有限公司 Famoxadone-containing bactericidal composition
CN101700027B (en) * 2009-11-30 2013-04-17 青岛星牌作物科学有限公司 Synergistic bactericidal composition and application
CN103053588A (en) * 2011-10-20 2013-04-24 南京华洲药业有限公司 Insecticide/bactericide composition containing dinotefuran and prochloraz and application thereof
CN103070175A (en) * 2013-01-30 2013-05-01 浙江省桐庐汇丰生物化工有限公司 Compound pesticide containing boscalid and kasugamycin and application of compound pesticide
CN103070187A (en) * 2012-11-22 2013-05-01 安徽丰乐农化有限责任公司 Corn seed coating agent
US20130137571A1 (en) * 2006-11-10 2013-05-30 Basf Se Crystalline Modification of Fipronil
CN103190437A (en) * 2010-11-30 2013-07-10 陕西美邦农药有限公司 Synergistic fungicidal composition containing cyprodinil
CN103238608A (en) * 2012-02-08 2013-08-14 陕西美邦农药有限公司 Sterilization composition containing fluoxastrobin and antibiotics
CN103348983A (en) * 2013-07-15 2013-10-16 江苏龙灯化学有限公司 Boscalid and kresoxim-methyl-contained suspending agent or suspoemulsion
CN103404534A (en) * 2013-08-16 2013-11-27 陕西绿盾生物制品有限责任公司 Pesticide composition containing tebuconazole and nikkomycins
AU2008226090B2 (en) * 2007-03-09 2013-12-05 Syngenta Participations Ag Ternary fungicidal compositions
CN103493835A (en) * 2013-09-05 2014-01-08 江苏东宝农药化工有限公司 Synergistic bactericide and preparation method thereof
JP2014012709A (en) * 2007-09-12 2014-01-23 Bayer Cropscience Ag Post-harvest treatment
CN103563926A (en) * 2013-10-23 2014-02-12 江苏丰登农药有限公司 Bactericidal composition containing metconazole and dimethomorph and application thereof
US8658567B2 (en) 2010-11-04 2014-02-25 Marrone Bio Innovations, Inc. Compositions containing anthraquinone derivatives as growth promoters and antifungal agents
US8691727B2 (en) 2005-05-03 2014-04-08 Syngenta Crop Protection, Llc Pesticidal compositions
CN103749469A (en) * 2013-12-26 2014-04-30 广东中迅农科股份有限公司 Sterilization composition for preventing wheat powdery mildew
WO2014078849A1 (en) 2012-11-19 2014-05-22 Lonza, Inc. Succinate dehydrogenase inhibitor containing compositions
CN103828813A (en) * 2012-05-10 2014-06-04 永农生物科学有限公司 Compound pesticide bactericidal composition containing trifloxystrobin and preparation
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
US8748342B2 (en) 2009-12-08 2014-06-10 Basf Se Pesticidal mixtures
CN103891731A (en) * 2012-12-31 2014-07-02 江苏丰登农药有限公司 Bactericidal composition containing isopyrazam and propiconazole and application thereof
CN104472525A (en) * 2015-01-09 2015-04-01 姚卫平 Synergism formula and spraying method for field tank mixing pesticide aiming at heading stage diseases such as false smut and neck blast of rice
JP2015205888A (en) * 2006-03-30 2015-11-19 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Active substance combinations having insecticidal properties
WO2015180999A1 (en) * 2014-05-27 2015-12-03 Basf Se Ternary mixtures comprising biopesticides and sdhi fungicides and azole-type fungicides
WO2015180985A1 (en) * 2014-05-27 2015-12-03 Basf Se Ternary mixtures comprising biopesticides and oomycetes fungicides and sdhi fungicides
US9232794B2 (en) 2009-06-02 2016-01-12 Bayer Intellectual Property Gmbh Use of succinate dehydrogenase inhibitors for controlling Sclerotinia ssp
EP2980078A1 (en) 2014-07-29 2016-02-03 Solvay SA Process for the preparation of pyrazole-4-carboxamides
US9380778B2 (en) 2009-10-05 2016-07-05 Marrone Bio Innovations, Inc. Anthroquinone containing derivatives as biochemical agricultural products
US9510594B2 (en) 2011-02-17 2016-12-06 Bayer Intellectual Property Gmbh Use of SDHI fungicides on conventionally bred ASR-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties
WO2018077711A2 (en) 2016-10-26 2018-05-03 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5139295B2 (en) * 2005-08-30 2013-02-06 シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト Method for producing aniline
JP4871959B2 (en) * 2006-11-29 2012-02-08 三井化学アグロ株式会社 Pest control composition and pest damage prevention method
UA103458C2 (en) * 2007-02-06 2013-10-25 Басф Се Pesticidal mixture, pesticidal composition and seeds, comprising thereof, and a method with using thereof (variants)
CN100551241C (en) * 2007-09-10 2009-10-21 浙江省农业科学院 A kind of method that improves effect of chemical agent for preventing and curing lepidopterous pests
CN102204553A (en) * 2007-10-15 2011-10-05 张少武 Antibacterial composition containing epoxiconazole active component
CN101180969B (en) * 2007-12-03 2011-04-20 于建垒 Festhiazate avermectin granular formulation for killing nematode
KR100851626B1 (en) * 2008-01-31 2008-08-13 (주) 대하프리존 Spreading apparatus for a disinfectant and disinfection method the inner part of a sealed box
CN101980601A (en) * 2008-03-27 2011-02-23 拜耳作物科学公司 Use of tetronic acid derivatives for fighting insects and red spider mites by watering on the ground, droplet application or immersion application
US8231887B2 (en) 2008-04-11 2012-07-31 Basf Corporation Pesticidal compositions
CN101385454B (en) * 2008-07-17 2011-07-20 张少武 Insecticidal composition containing spinosad and chlorfluazuron
CN101438703B (en) * 2008-12-18 2011-10-12 山东营养源食品科技有限公司 Sterilizing compositional composition containing eugenol
CA2773871C (en) * 2009-09-29 2018-11-27 Basf Se Pesticidal mixtures
CN101697736B (en) * 2009-11-09 2012-04-25 江苏省农业科学院 Bacillus subtilis and propiconazole compound wettable sterilizing powder and use thereof
CN101700026B (en) * 2009-11-11 2013-02-27 陕西上格之路生物科学有限公司 Bactericidal composition containing cyproconazole
UA107591C2 (en) * 2010-04-27 2015-01-26 PESTICIDIC COMPOSITION AND ITS APPLICATIONS
NZ603839A (en) 2010-04-27 2014-12-24 Sumitomo Chemical Co Pesticidal composition and its use
JP5712504B2 (en) 2010-04-27 2015-05-07 住友化学株式会社 Pest control composition and use thereof
NZ603844A (en) 2010-04-28 2014-08-29 Sumitomo Chemical Co Pesticidal composition and its use
WO2011135835A1 (en) * 2010-04-28 2011-11-03 Sumitomo Chemical Company, Limited Plant disease control composition and its use
JP5724211B2 (en) 2010-04-28 2015-05-27 住友化学株式会社 Plant disease control composition and use thereof
CA2797376C (en) * 2010-04-28 2018-11-20 Sumitomo Chemical Company, Limited Plant disease controlling compositions comprising a carboxamide compound and an azole fungicide
CN101843239A (en) * 2010-05-21 2010-09-29 江苏省农业科学院 New eugenol pesticide preparation and application thereof
CN102265827B (en) * 2010-06-02 2013-11-27 南京华洲药业有限公司 Synergistic acaricidal composition containing spirodiclofen and halfenprox and application thereof
CN103190410B (en) * 2010-11-30 2014-11-12 陕西美邦农药有限公司 Synergistic fungicidal composition containing cyprodinil
CN102150659B (en) * 2010-12-06 2012-12-12 北京颖泰嘉和生物科技有限公司 Bactericide composition, preparation and application thereof
CN102067866A (en) * 2011-01-07 2011-05-25 陕西美邦农药有限公司 Bitertanol-containing antibacterial composition
CN102067876B (en) * 2011-01-20 2014-02-19 陕西美邦农药有限公司 Sterilizing composite containing polyoxin
CN102204538B (en) * 2011-04-27 2013-01-09 成都科利隆生化有限公司 Pesticide composition containing cyprodinil and pyrimethanil
RU2483710C1 (en) * 2012-03-05 2013-06-10 Государственное научное учреждение Всероссийский научно-исследовательский институт экспериментальной ветеринарии им. Я.Р. Коваленко РАСХН (ВИЭВ) Complex medication for treating dogs and cats with cutaneous mycoses, bacterioses and acaroses
EP2848613B1 (en) * 2012-05-07 2016-09-21 Kyung Nong Corporation Diaminoaryl derivatives substituted by carbamate and pesticidal composition containing same
CN102669092B (en) * 2012-05-10 2014-04-09 山东美多包装股份有限公司 Homogeneous and high-efficient water-based pesticide aerosol with low VOC (Volatile Organic Compounds) content
AU2013269659B2 (en) * 2012-05-30 2016-12-15 Bayer Cropscience Ag Compositions comprising a biological control agent and an insecticide
CN102726451B (en) * 2012-06-21 2015-05-20 江苏绿叶农化有限公司 Azoxystrobin-containing bactericidal composition and its application
ES2785070T3 (en) * 2012-11-22 2020-10-05 Basf Corp Pesticide mixtures
AU2013349890B2 (en) * 2012-11-22 2017-04-13 Basf Corporation Pesticidal mixtures
CN102919232A (en) * 2012-11-26 2013-02-13 联保作物科技有限公司 Insecticidal disease-preventing composition and preparations thereof
CN103843806A (en) * 2012-11-28 2014-06-11 浙江新安化工集团股份有限公司 Pesticide composition
CN103891726B (en) * 2012-12-31 2015-06-17 江苏丰登作物保护股份有限公司 Bactericidal composition containing isopyrazam and metominostrobin and application thereof
CN103250738B (en) * 2013-05-16 2015-04-08 湖州厉华妤婕联合纺织有限公司 Novel clothing bactericide
CN103271084A (en) * 2013-06-04 2013-09-04 浙江大学 Chemical bactericide for control of postharvest diseases of oranges
CN103348995A (en) * 2013-07-30 2013-10-16 江苏龙灯化学有限公司 Bactericidal active ingredient composition
CN104719325A (en) * 2013-12-20 2015-06-24 陕西美邦农药有限公司 Sedaxane and neonicotine-containing composition for killing pests and preventing diseases
CN104719328A (en) * 2013-12-20 2015-06-24 陕西美邦农药有限公司 Sedaxane-containing pesticide composition
CN104719332A (en) * 2013-12-20 2015-06-24 陕西美邦农药有限公司 Pesticide composition for killing pests and preventing diseases
CN104719297A (en) * 2013-12-20 2015-06-24 陕西美邦农药有限公司 Sterilization composition containing sedaxane and methoxy acrylate
CN104719305A (en) * 2013-12-20 2015-06-24 陕西美邦农药有限公司 Bactericidal composition containing sedaxane and triazole
CN103828830B (en) * 2014-02-23 2015-02-18 红河蔗保科技有限责任公司 Pesticide containing thiamethoxam and chlorothalonil and production process of pesticide
CN103918659B (en) * 2014-04-11 2016-01-27 柳州市惠农化工有限公司 A kind of composition pesticide containing Tolfenpyrad and fluazinam and its production and use
CN103960283B (en) * 2014-04-28 2016-01-27 福建农林大学 A kind of pesticidal preparations and using method thereof removing outlet pot flowers damage by disease and insect
WO2016044548A1 (en) 2014-09-17 2016-03-24 Bayer Cropscience Lp Compositions comprising recombinant bacillus cells and another biological control agent
AU2015317715B2 (en) * 2014-09-17 2019-10-03 Bayer Cropscience Lp Compositions comprising recombinant Bacillus cells and a fungicide
BR112017005504A2 (en) * 2014-09-17 2018-08-14 Bayer Cropscience Lp compositions comprising recombinant bacillus cells and an insecticide.
CN104255736A (en) * 2014-09-23 2015-01-07 江苏省绿盾植保农药实验有限公司 Composition containing validamycin and sedaxane and application of composition
RU2658980C1 (en) * 2014-11-26 2018-06-26 Монсанто Текнолоджи Ллс Methods and compositions for control of fungal cultured plant pathogens
CN104542656A (en) * 2014-12-16 2015-04-29 常熟市联创化学有限公司 Water soluble pesticide
AR103287A1 (en) 2014-12-29 2017-04-26 Fmc Corp MICROBIAL COMPOSITIONS AND METHODS TO USE TO BENEFIT THE GROWTH OF PLANTS AND TREAT PLANT DISEASE
CN104663671A (en) * 2015-02-13 2015-06-03 安徽省农业科学院植物保护与农产品质量安全研究所 Bactericidal composition containing sedaxane and tebuconazole
CN106135218A (en) * 2015-03-28 2016-11-23 陕西美邦农药有限公司 A kind of composition pesticide of fluorine-containing azoles ring bacterium amine
CN105052955B (en) * 2015-08-28 2016-03-02 肇庆市真格生物科技有限公司 A kind of disinfection and deinsectization composition and suspending agent thereof containing fluoxastrobin
EP3259991A1 (en) * 2016-06-21 2017-12-27 Universität Basel Fungicidal compositions
CN106689185A (en) * 2016-12-28 2017-05-24 山东润博生物科技有限公司 Pesticide composition containing tefluthrin and sedaxane and preparation method and application thereof
CN106937636A (en) * 2017-04-22 2017-07-11 北京科发伟业农药技术中心 The bactericidal composition of fluorine-containing azoles ring bacterium amine
JP6452752B2 (en) * 2017-04-25 2019-01-16 国立研究開発法人理化学研究所 Survival maintenance agent and survival rate maintenance method of seed after priming
CN106889089A (en) * 2017-04-28 2017-06-27 北京科发伟业农药技术中心 The composition of fluorine-containing azoles ring bacterium amine and Tolprocarb
CN107197872A (en) * 2017-08-02 2017-09-26 广东广康生化科技股份有限公司 Composition pesticide and its application comprising folpet and fluorine azoles ring bacterium amine
PT3697217T (en) * 2017-10-18 2021-10-14 Bayer Ag Active compound combinations having insecticidal/acaricidal properties
CN107736380B (en) * 2017-11-10 2020-07-31 郑州师范学院 Composition for preventing and treating sweet potato virus diseases
PE20210368A1 (en) 2018-06-27 2021-02-26 Eth Zuerich NEW PYRIDINE AND PIRAZINE COMPOUNDS AS CANNABINOID RECEPTOR 2 INHIBITORS
CN112638430B (en) 2018-06-27 2023-05-16 豪夫迈·罗氏有限公司 Radiolabeled cannabinoid receptor 2 ligands
CN110651790B (en) * 2019-11-05 2021-08-27 广西壮族自治区亚热带作物研究所(广西亚热带农产品加工研究所) Bactericidal composition for preventing and treating pineapple anthracnose
CN113214333B (en) * 2021-04-19 2022-12-27 河北威远生物化工有限公司 Preparation method of high-purity pleocidin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030036480A1 (en) * 1997-12-18 2003-02-20 Klaus Schelberger Fungicidal mixtures based on amide compounds and pyridine derivatives
WO2003074491A1 (en) * 2002-03-05 2003-09-12 Syngenta Participations Ag O-cyclopropyl-carboxanilides and their use as fungicides

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8600161A (en) 1985-01-18 1986-09-23 Plant Genetic Systems Nv CHEMICAL GENE, HYBRID, INTERMEDIATE PLASMIDIO VECTORS, PROCESS TO CONTROL INSECTS IN AGRICULTURE OR HORTICULTURE, INSECTICIDE COMPOSITION, PROCESS TO TRANSFORM PLANT CELLS TO EXPRESS A PLANTINIDE TOXIN, PRODUCED BY CULTURES, UNITED BY BACILLA
IL78825A0 (en) 1985-06-05 1986-09-30 Uniroyal Ltd Fungicidal compositions containing carboxamidothiazoles and a method for protecting plants utilizing same
DE3782883T2 (en) 1986-08-12 1993-06-09 Mitsubishi Chem Ind PYRIDINE CARBOXAMIDE DERIVATIVES AND THEIR USE AS A FUNGICIDAL AGENT.
CA1340685C (en) 1988-07-29 1999-07-27 Frederick Meins Dna sequences encoding polypeptides having beta-1,3-glucanase activity
US5169629A (en) 1988-11-01 1992-12-08 Mycogen Corporation Process of controlling lepidopteran pests, using bacillus thuringiensis isolate denoted b.t ps81gg
NZ231804A (en) 1988-12-19 1993-03-26 Ciba Geigy Ag Insecticidal toxin from leiurus quinquestriatus hebraeus
DE69034081T2 (en) 1989-03-24 2004-02-12 Syngenta Participations Ag Disease resistant transgenic plant
GB8910624D0 (en) 1989-05-09 1989-06-21 Ici Plc Bacterial strains
CA2015951A1 (en) 1989-05-18 1990-11-18 Mycogen Corporation Novel bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
DK0427529T3 (en) 1989-11-07 1995-06-26 Pioneer Hi Bred Int Larval killing lactins and plant insect resistance based thereon
US5639949A (en) 1990-08-20 1997-06-17 Ciba-Geigy Corporation Genes for the synthesis of antipathogenic substances
UA48104C2 (en) 1991-10-04 2002-08-15 Новартіс Аг Dna fragment including sequence that codes an insecticide protein with optimization for corn, dna fragment providing directed preferable for the stem core expression of the structural gene of the plant related to it, dna fragment providing specific for the pollen expression of related to it structural gene in the plant, recombinant dna molecule, method for obtaining a coding sequence of the insecticide protein optimized for corn, method of corn plants protection at least against one pest insect
JPH08510243A (en) 1993-05-12 1996-10-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Sterilized and fungicidal fused bicyclic pyrimidinones
US5530195A (en) 1994-06-10 1996-06-25 Ciba-Geigy Corporation Bacillus thuringiensis gene encoding a toxin active against insects
KR100242358B1 (en) 1994-12-19 2000-02-01 쓰끼하시 다미까따 Benzamidoxime derivative, process for production thereof, and agrohorticultural bactericide
CN1043720C (en) 1995-08-28 1999-06-23 化学工业部沈阳化工研究院 Fungicide contg. fluorodiphenyl acrylamides
CN1155977A (en) 1995-08-28 1997-08-06 化学工业部沈阳化工研究院 Acrylamide germicide containing fluoro-diphenyl
TW384208B (en) 1995-09-22 2000-03-11 Basf Ag Compositions and methods for controlling harmful fungi
US6020332A (en) 1997-02-20 2000-02-01 Shenyang Research Institute Of Chemical Industry Fluorine-containing diphenyl acrylamide antimicrobial agents
ES2189918T3 (en) 1997-02-21 2003-07-16 Shenyang Res Inst Chemical Ind ANTIMICROBIAL AGENTS OF DIFENYLACRYLAMIDE CONTAINING FLUOR.
TWI252231B (en) 1997-04-14 2006-04-01 American Cyanamid Co Fungicidal trifluorophenyl-triazolopyrimidines
JP2001516740A (en) 1997-09-18 2001-10-02 ビーエーエスエフ アクチェンゲゼルシャフト Novel benzamide oxime derivatives, their intermediates and production methods, and their use as fungicides
GB9720832D0 (en) 1997-10-01 1997-12-03 Agrevo Uk Ltd Fungicide mixtures
DE69906170T2 (en) 1998-02-10 2003-10-23 Dow Agrosciences Llc, Indianapolis Unsaturated oxime ethers and their use as fungicides or insecticides
TW575562B (en) 1998-02-19 2004-02-11 Agrevo Uk Ltd Fungicides
DE19939841A1 (en) 1998-11-20 2000-05-25 Bayer Ag Synergistic fungicide combination for use in plant protection contains 4,6-diphenoxy-5-halo-pyrimidine derivative and e.g. tebuconazole, fenpropimorph, azoxystrobin, carbendazim or folpet
CZ299375B6 (en) 1998-11-30 2008-07-09 Nihon Nohyaku Co., Ltd. Phthalimide derivatives or salts thereof, agricultural- horticultural insecticidal agent and application method thereof
JP2001072508A (en) * 1999-09-03 2001-03-21 Mitsui Chemicals Inc Plant disease-controlling agent composition
JP2001072510A (en) * 1999-09-03 2001-03-21 Mitsui Chemicals Inc Plant disease-controlling agent composition
JP2001072507A (en) * 1999-09-03 2001-03-21 Mitsui Chemicals Inc Plant disease-controlling agent composition
GB0011944D0 (en) 2000-05-17 2000-07-05 Novartis Ag Organic compounds
EP1311162B1 (en) 2000-08-25 2005-06-01 Syngenta Participations AG Bacillus thurigiensis crystal protein hybrids
AU2002345250A1 (en) 2001-06-22 2003-01-08 Syngenta Participations Ag Plant disease resistance genes
DE10136065A1 (en) * 2001-07-25 2003-02-13 Bayer Cropscience Ag pyrazolylcarboxanilides
AR036872A1 (en) 2001-08-13 2004-10-13 Du Pont ANTRANILAMIDE COMPOSITE, COMPOSITION THAT INCLUDES IT AND METHOD FOR CONTROLLING AN INVERTEBRATE PEST
US7230167B2 (en) 2001-08-31 2007-06-12 Syngenta Participations Ag Modified Cry3A toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
DE10250110A1 (en) 2002-10-28 2004-05-13 Bayer Cropscience Ag Thiazole (bi) cycloalkylcarboxanilides
GB0225554D0 (en) 2002-11-01 2002-12-11 Syngenta Participations Ag Chemical compounds
RU2343151C3 (en) 2003-01-28 2019-10-01 ЭфЭмСи Корпорейшн Cyanoanthranilamide insecticides
EP1699763A1 (en) 2003-12-23 2006-09-13 Basf Aktiengesellschaft 3-trifluoromethyl picolinic acid anilides, and use thereof as fungicides
GB0418048D0 (en) * 2004-08-12 2004-09-15 Syngenta Participations Ag Method for protecting useful plants or plant propagation material
UA90209C2 (en) * 2006-02-09 2010-04-12 Синджента Партисипейшнс Аг Fungicidal composition, method for controlling diseases of useful plants and method for protecting goods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030036480A1 (en) * 1997-12-18 2003-02-20 Klaus Schelberger Fungicidal mixtures based on amide compounds and pyridine derivatives
WO2003074491A1 (en) * 2002-03-05 2003-09-12 Syngenta Participations Ag O-cyclopropyl-carboxanilides and their use as fungicides

Cited By (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068669A1 (en) * 2004-07-26 2006-06-29 E.I. Dupont De Nemours And Company Mixtures of anthranilamide invertebrate pest control agents
EA011585B1 (en) * 2004-07-26 2009-04-28 Е.И. Дюпон Де Немур Энд Компани Mixtures of anthranilamide invertebrate pest control agents
US7514584B2 (en) 2005-02-21 2009-04-07 Syngenta Crop Protection, Inc. Process for the production of 2(2-aminophenyl)-bicylopropane derivatives
WO2006087223A1 (en) * 2005-02-21 2006-08-24 Syngenta Participations Ag Process for the production of 2- (2-aminophenyl)-bicyclopropane derivatives
US8691727B2 (en) 2005-05-03 2014-04-08 Syngenta Crop Protection, Llc Pesticidal compositions
EP2269460A1 (en) 2005-06-09 2011-01-05 Bayer CropScience AG Agent combinations
EP2255647A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2272369A1 (en) 2005-06-09 2011-01-12 Bayer CropScience AG Agent combinations
EP2263463A1 (en) 2005-06-09 2010-12-22 Bayer CropScience AG Agent combinations
EP2263462A1 (en) 2005-06-09 2010-12-22 Bayer CropScience AG Agent combinations
EP2260710A1 (en) 2005-06-09 2010-12-15 Bayer CropScience AG Agent combinations
EP2255649A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2260709A1 (en) 2005-06-09 2010-12-15 Bayer CropScience AG Agent combinations
EP2258198A1 (en) 2005-06-09 2010-12-08 Bayer CropScience AG Agent combinations
EP2258196A2 (en) 2005-06-09 2010-12-08 Bayer CropScience AG Combination of active agents
EP2258197A1 (en) 2005-06-09 2010-12-08 Bayer CropScience AG Agent combinations
EP2255655A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2255648A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2279664A1 (en) 2005-06-09 2011-02-02 Bayer CropScience AG Agent combinations
EP2255653A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2255652A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2132989A2 (en) 2005-06-09 2009-12-16 Bayer CropScience AG Agent combinations
EP2255645A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2255650A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2255657A1 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2260711A2 (en) 2005-06-09 2010-12-15 Bayer CropScience AG Agent combinations
EP2255656A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2255654A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2255658A1 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2253213A1 (en) 2005-06-09 2010-11-24 Bayer CropScience AG Agent combinations
EP2253210A1 (en) 2005-06-09 2010-11-24 Bayer CropScience AG Agent combinations
EP2253212A1 (en) 2005-06-09 2010-11-24 Bayer CropScience AG Agent combinations
EP2253211A1 (en) 2005-06-09 2010-11-24 Bayer CropScience AG Agent combinations
EP2255646A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2272368A1 (en) 2005-06-09 2011-01-12 Bayer CropScience AG Agent combinations
EP2255644A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2255651A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
EP2255659A2 (en) 2005-06-09 2010-12-01 Bayer CropScience AG Agent combinations
WO2007003643A1 (en) * 2005-07-06 2007-01-11 Basf Aktiengesellschaft Fungicidal mixtures based on 3,4-disubstituted pyrazolecarboxylic acid biphenylamides
EP2314163A2 (en) 2005-07-21 2011-04-27 Syngenta Participations AG Fungicidal compositions comprising tebuconazole
JP2015205888A (en) * 2006-03-30 2015-11-19 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Active substance combinations having insecticidal properties
WO2007115766A1 (en) * 2006-04-06 2007-10-18 Syngenta Participations Ag Fungicidal compositions
WO2007131678A1 (en) 2006-05-16 2007-11-22 Bayer Cropscience Ag Fungicidal active substance combinations
WO2008000377A3 (en) * 2006-06-30 2008-06-26 Bayer Cropscience Ag Synergistic insecticide and fungicide mixtures
WO2008000377A2 (en) * 2006-06-30 2008-01-03 Bayer Cropscience Ag Synergistic insecticide and fungicide mixtures
WO2008003403A2 (en) * 2006-07-03 2008-01-10 Bayer Cropscience Ag Synergistic insecticide and fungicidal mixtures
WO2008003403A3 (en) * 2006-07-03 2008-07-03 Bayer Cropscience Ag Synergistic insecticide and fungicidal mixtures
US9451772B2 (en) * 2006-11-10 2016-09-27 Basf Se Crystalline modification of fipronil
US20130137571A1 (en) * 2006-11-10 2013-05-30 Basf Se Crystalline Modification of Fipronil
WO2008098928A3 (en) * 2007-02-14 2009-08-27 Basf Se Method of inducing virus tolerance of plants
WO2008098928A2 (en) * 2007-02-14 2008-08-21 Basf Se Method of inducing virus tolerance of plants
AU2008226090B2 (en) * 2007-03-09 2013-12-05 Syngenta Participations Ag Ternary fungicidal compositions
WO2008113654A3 (en) * 2007-03-20 2008-11-20 Basf Se Method for protecting soybeans from being infected by fungi
WO2008113654A2 (en) * 2007-03-20 2008-09-25 Basf Se Method for protecting soybeans from being infected by fungi
CN101674729A (en) * 2007-03-20 2010-03-17 巴斯夫欧洲公司 Method for protecting soybeans from being infected by fungi
WO2008119439A2 (en) * 2007-03-29 2008-10-09 Syngenta Participations Ag Fungicidal compositions comprising a carboxamide derivative, cyprodinil and an unsaturated fatty acid
WO2008119439A3 (en) * 2007-03-29 2009-09-11 Syngenta Participations Ag Fungicidal compositions comprising a carboxamide derivative, cyprodinil and an unsaturated fatty acid
JP2014012709A (en) * 2007-09-12 2014-01-23 Bayer Cropscience Ag Post-harvest treatment
JP2014139223A (en) * 2007-09-20 2014-07-31 Basf Se Combinations comprising fungicidal strain and active compound
EP3381289A1 (en) * 2007-09-20 2018-10-03 Bayer Cropscience LP Combinations comprising a fungicidal strain and an active compound
JP2010539213A (en) * 2007-09-20 2010-12-16 ビーエーエスエフ ソシエタス・ヨーロピア Combinations containing bactericidal strains and active ingredients
US9078447B2 (en) 2007-09-20 2015-07-14 Bayer Cropscience Lp Combinations comprising a fungicidal strain and an active compound
WO2009056620A3 (en) * 2007-11-02 2009-09-24 Basf Se Method for protecting cereals from being infected by fungi
EP2064952A1 (en) 2007-11-29 2009-06-03 Bayer CropScience AG Method for reducing mycotoxin contamination in maize
WO2009098223A2 (en) * 2008-02-05 2009-08-13 Basf Se Plant health composition
EP3586631A3 (en) * 2008-02-05 2020-03-18 Basf Se Plant health composition
EP4410100A3 (en) * 2008-02-05 2024-10-09 Basf Se Plant health composition
EA018987B1 (en) * 2008-02-05 2013-12-30 Басф Се Composition for improving plant health
EP4406412A3 (en) * 2008-02-05 2024-10-09 Basf Se Plant health composition
EA018967B1 (en) * 2008-02-05 2013-12-30 Басф Се Method for increasing yield and/or for enhancing improved vitality of a plant and/or for enhancing a plant's tolerance or resistance to abiotic stress factors and fungicidal mixtures
WO2009098218A3 (en) * 2008-02-05 2010-09-02 Basf Se Plant health composition
TWI457326B (en) * 2008-02-05 2014-10-21 Basf Se Plant health composition
WO2009098223A3 (en) * 2008-02-05 2010-08-12 Basf Se Plant health composition
EP4410099A3 (en) * 2008-02-05 2024-10-09 Basf Se Plant health composition
WO2009098218A2 (en) * 2008-02-05 2009-08-13 Basf Se Plant health composition
US8871679B2 (en) 2008-07-04 2014-10-28 Basf Se Fungicidal mixtures comprising substituted 1-methylpyrazol-4-ylcarboxanilides
WO2010000790A1 (en) * 2008-07-04 2010-01-07 Basf Se Fungicidal mixtures comprising substituted 1-methylpyrazol-4-ylcarboxanilides
AU2009265697B2 (en) * 2008-07-04 2015-02-05 Basf Se Fungicidal mixtures comprising substituted 1-methylpyrazol-4-ylcarboxanilides
CN102083315A (en) * 2008-07-04 2011-06-01 巴斯夫欧洲公司 Fungicidal mixtures comprising substituted 1-methylpyrazol-4-ylcarboxanilides
EA018990B1 (en) * 2008-07-04 2013-12-30 Басф Се Fungicidal mixtures comprising substituted 1-methylpyrazol-4-ylcarboxanilides
US8822506B2 (en) 2009-01-30 2014-09-02 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors for controlling powdery mildew primary infections
WO2010086103A2 (en) 2009-01-30 2010-08-05 Bayer Cropscience Aktiengesellschaft Use of succinate dehydrogenase inhibitors for controlling powdery mildew primary infections
CN101473828B (en) * 2009-02-06 2012-01-25 深圳诺普信农化股份有限公司 Agricultural chemical composition for disinsection and use thereof
WO2010091803A2 (en) 2009-02-13 2010-08-19 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors for extending shelf life of fruits and vegetables
US10548315B2 (en) 2009-02-13 2020-02-04 Bayer Intellectual Property Gmbh Use of succinate dehydrogenase inhibitors for extending shelf life of fruits and vegetables
EP2255626A1 (en) 2009-05-27 2010-12-01 Bayer CropScience AG Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress
US9877482B2 (en) 2009-06-02 2018-01-30 Bayer Intellectual Property Gmbh Use of succinate dehydrogenase inhibitors for controlling Sclerotinia ssp
US9232794B2 (en) 2009-06-02 2016-01-12 Bayer Intellectual Property Gmbh Use of succinate dehydrogenase inhibitors for controlling Sclerotinia ssp
CN101919402A (en) * 2009-06-12 2010-12-22 石岩 Bactericide for treating pear scab
CN101617667B (en) * 2009-07-07 2012-11-07 陕西汤普森生物科技有限公司 Sterilization composition containing flutriafol and kresoxim-methyl
CN101617670B (en) * 2009-07-28 2012-11-07 陕西汤普森生物科技有限公司 Sterilization composition containing tetraconazole and tebuconazole
CN101617677B (en) * 2009-07-28 2012-05-23 陕西汤普森生物科技有限公司 Sterilization composite containing tetraconazole and dimethomorph
WO2011014596A3 (en) * 2009-07-30 2011-09-29 Marrone Bio Innovations, Inc. Plant pathogen inhibitor combinations and methods of use
US8883227B2 (en) 2009-07-30 2014-11-11 Marrone Bio Innovations, Inc. Plant pathogen inhibitor combinations and methods of use
US8889197B2 (en) 2009-07-30 2014-11-18 Marrone Bio Innovations, Inc. Plant pathogen inhibitor combinations and methods of use
CN101617658B (en) * 2009-08-01 2012-05-02 深圳诺普信农化股份有限公司 Combination sterilization composition
CN101617673B (en) * 2009-08-12 2012-06-06 深圳诺普信农化股份有限公司 Sterilizing composition containing tetraconazole
WO2011032657A2 (en) 2009-09-16 2011-03-24 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors for increasing the content of desired ingredients in crops
EP2301350A1 (en) 2009-09-16 2011-03-30 Bayer CropScience AG Use of succinate dehydrogenase inhibitors for increasing the content of desired ingredients in crops
US9380778B2 (en) 2009-10-05 2016-07-05 Marrone Bio Innovations, Inc. Anthroquinone containing derivatives as biochemical agricultural products
US10470466B2 (en) 2009-10-05 2019-11-12 Marrone Bio Innovations, Inc. Anthroquinone containing derivatives as biochemical agricultural products
CN101697722B (en) * 2009-10-29 2013-04-17 深圳诺普信农化股份有限公司 Famoxadone-containing bactericidal composition
CN101700032B (en) * 2009-11-30 2013-06-26 青岛星牌作物科学有限公司 Bactericidal composition containing thiabendazole and application thereof
CN101700027B (en) * 2009-11-30 2013-04-17 青岛星牌作物科学有限公司 Synergistic bactericidal composition and application
CN101700032A (en) * 2009-11-30 2010-05-05 青岛星牌作物科学有限公司 Bactericidal composition containing thiabendazole and application thereof
US8748342B2 (en) 2009-12-08 2014-06-10 Basf Se Pesticidal mixtures
US9585391B2 (en) 2009-12-08 2017-03-07 Basf Se Pesticidal mixtures
US9049859B2 (en) 2009-12-08 2015-06-09 Basf Se Pesticidal mixtures
CN101779649B (en) * 2009-12-18 2012-11-07 陕西美邦农资贸易有限公司 Bactericidal composition containing phenol cycloheximide and thiophanate-methyl
CN101779661B (en) * 2009-12-18 2012-11-07 陕西美邦农资贸易有限公司 Compound insecticide prepared from emamectin benzoate and pyridaphethione
AU2010336174B2 (en) * 2009-12-25 2015-05-28 Sumitomo Chemical Company, Limited Composition and method for controlling plant diseases
WO2011078400A1 (en) * 2009-12-25 2011-06-30 Sumitomo Chemical Company, Limited Composition and method for controlling plant diseases
WO2011095496A2 (en) 2010-02-05 2011-08-11 Bayer Cropscience Ag Use of succinate dehydrogenase (sdh) inhibitors in treating plant species of the family of true grasses
US9215872B2 (en) 2010-02-05 2015-12-22 Bayer Intellectual Property Gmbh Use of succinate dehydrogenase (SDH) inhibitors in the treatment of plant species from the family of the true grasses
EP2353387A1 (en) 2010-02-05 2011-08-10 Bayer CropScience AG Use of succinate dehydrogenase (SDH) inhibitors in the treatment of plant types in the sweet grass family
EP2377397A1 (en) 2010-04-14 2011-10-19 Bayer CropScience AG Use of fungicidal agents for controlling mycoses in palm trees
WO2011128262A2 (en) 2010-04-14 2011-10-20 Bayer Cropscience Ag Use of fungicidal agents for controlling mycoses on palms
WO2011154494A2 (en) 2010-06-09 2011-12-15 Syngenta Participations Ag Pesticidal mixtures comprising isoxazoline derivatives
US9788540B2 (en) 2010-07-26 2017-10-17 Bayer Intellectual Property Gmbh Use of succinate dehydrogenase inhibitors and/or respiratory chain complex III inhibitors for improving the ratio of harmful to beneficial microorganisms
WO2012013590A2 (en) 2010-07-26 2012-02-02 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors and/or respiratory chain complex iii inhibitors for improving the ratio of harmful to beneficial microorganisms
WO2012055864A1 (en) 2010-10-27 2012-05-03 Solvay Sa Process for the preparation of pyrazole-4-carboxamides
US8987470B2 (en) 2010-10-27 2015-03-24 Solvay Sa Process for the preparation of pyrazole-4-carboxamides
US8658567B2 (en) 2010-11-04 2014-02-25 Marrone Bio Innovations, Inc. Compositions containing anthraquinone derivatives as growth promoters and antifungal agents
US10299474B2 (en) 2010-11-04 2019-05-28 Marrone Bio Innovations, Inc. Compositions containing anthraquinone derivatives as growth promoters and antifungal agents
CN103190437A (en) * 2010-11-30 2013-07-10 陕西美邦农药有限公司 Synergistic fungicidal composition containing cyprodinil
CN103190437B (en) * 2010-11-30 2014-11-12 陕西美邦农药有限公司 Synergistic fungicidal composition containing cyprodinil
WO2012080415A1 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Pesticidal mixtures
WO2012107343A1 (en) 2011-02-09 2012-08-16 Syngenta Participations Ag Method to increase the number of nodules on a plant root
US9510594B2 (en) 2011-02-17 2016-12-06 Bayer Intellectual Property Gmbh Use of SDHI fungicides on conventionally bred ASR-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties
WO2012110464A1 (en) 2011-02-17 2012-08-23 Bayer Cropscience Ag Use of sdhi fungicides on conventionally bred asr-tolerant, stem canker resistant and/or frog-eye leaf spot resistant soybean varieties
WO2012175511A1 (en) 2011-06-21 2012-12-27 Bayer Intellectual Property Gmbh Method for producing pyrazolylcarboxanilides
CN102388870B (en) * 2011-09-08 2014-05-14 成都理工大学 Preparation method for enhanced modified dodecyltrimethylammonium bromide antibacterial solid paraffin
CN102388870A (en) * 2011-09-08 2012-03-28 成都理工大学 Preparation method for enhanced modified dodecyltrimethylammonium bromide antibacterial solid paraffin
CN103053588B (en) * 2011-10-20 2014-09-17 南京华洲药业有限公司 Insecticide/bactericide composition containing dinotefuran and prochloraz and application thereof
CN103053588A (en) * 2011-10-20 2013-04-24 南京华洲药业有限公司 Insecticide/bactericide composition containing dinotefuran and prochloraz and application thereof
CN103238608A (en) * 2012-02-08 2013-08-14 陕西美邦农药有限公司 Sterilization composition containing fluoxastrobin and antibiotics
CN103828813B (en) * 2012-05-10 2015-03-04 永农生物科学有限公司 Compound pesticide bactericidal composition containing trifloxystrobin and preparation
CN103828813A (en) * 2012-05-10 2014-06-04 永农生物科学有限公司 Compound pesticide bactericidal composition containing trifloxystrobin and preparation
WO2014078849A1 (en) 2012-11-19 2014-05-22 Lonza, Inc. Succinate dehydrogenase inhibitor containing compositions
EP3042562A1 (en) 2012-11-19 2016-07-13 Arch Wood Protection, Inc. Succinate dehydrogenase inhibitor containing compositions
CN103070187A (en) * 2012-11-22 2013-05-01 安徽丰乐农化有限责任公司 Corn seed coating agent
CN103070187B (en) * 2012-11-22 2014-12-03 安徽丰乐农化有限责任公司 Corn seed coating agent
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
CN103891731B (en) * 2012-12-31 2015-06-17 江苏丰登作物保护股份有限公司 Bactericidal composition containing isopyrazam and propiconazole and application thereof
CN103891731A (en) * 2012-12-31 2014-07-02 江苏丰登农药有限公司 Bactericidal composition containing isopyrazam and propiconazole and application thereof
CN103070175B (en) * 2013-01-30 2014-06-25 浙江省桐庐汇丰生物化工有限公司 Compound pesticide containing boscalid and kasugamycin and application of compound pesticide
CN103070175A (en) * 2013-01-30 2013-05-01 浙江省桐庐汇丰生物化工有限公司 Compound pesticide containing boscalid and kasugamycin and application of compound pesticide
CN103348983A (en) * 2013-07-15 2013-10-16 江苏龙灯化学有限公司 Boscalid and kresoxim-methyl-contained suspending agent or suspoemulsion
CN103404534A (en) * 2013-08-16 2013-11-27 陕西绿盾生物制品有限责任公司 Pesticide composition containing tebuconazole and nikkomycins
CN103493835A (en) * 2013-09-05 2014-01-08 江苏东宝农药化工有限公司 Synergistic bactericide and preparation method thereof
CN103563926A (en) * 2013-10-23 2014-02-12 江苏丰登农药有限公司 Bactericidal composition containing metconazole and dimethomorph and application thereof
CN103563926B (en) * 2013-10-23 2016-05-04 江苏丰登作物保护股份有限公司 A kind of bactericidal composition and application thereof containing metconazole and dimethomorph
CN103749469B (en) * 2013-12-26 2016-08-17 广东中迅农科股份有限公司 A kind of bactericidal composition preventing and treating wheat powdery mildew
CN103749469A (en) * 2013-12-26 2014-04-30 广东中迅农科股份有限公司 Sterilization composition for preventing wheat powdery mildew
WO2015180985A1 (en) * 2014-05-27 2015-12-03 Basf Se Ternary mixtures comprising biopesticides and oomycetes fungicides and sdhi fungicides
WO2015180999A1 (en) * 2014-05-27 2015-12-03 Basf Se Ternary mixtures comprising biopesticides and sdhi fungicides and azole-type fungicides
EP2980078A1 (en) 2014-07-29 2016-02-03 Solvay SA Process for the preparation of pyrazole-4-carboxamides
CN104472525A (en) * 2015-01-09 2015-04-01 姚卫平 Synergism formula and spraying method for field tank mixing pesticide aiming at heading stage diseases such as false smut and neck blast of rice
CN104472525B (en) * 2015-01-09 2016-05-25 姚卫平 The mixed pesticide synergistic formula of a kind of field bucket for the fringe such as rice green smut and panicle blast phase disease and spraying method thereof
WO2018077711A2 (en) 2016-10-26 2018-05-03 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications

Also Published As

Publication number Publication date
IL181239A (en) 2011-07-31
PT2332411E (en) 2012-09-03
EP2332411B1 (en) 2012-07-25
LTC1778013I2 (en) 2018-08-10
GT200500213A (en) 2006-03-29
HK1104197A1 (en) 2008-01-11
KR101225464B1 (en) 2013-01-24
ZA200700353B (en) 2008-05-28
ES2388833T3 (en) 2012-10-19
US20210378242A1 (en) 2021-12-09
NZ552659A (en) 2010-06-25
US20140051736A1 (en) 2014-02-20
NL350084I2 (en) 2018-03-20
PT1778013E (en) 2011-02-28
US9538755B2 (en) 2017-01-10
US11102977B2 (en) 2021-08-31
EA010842B1 (en) 2008-12-30
EP1778013A1 (en) 2007-05-02
PL1778013T3 (en) 2011-06-30
SI2332411T1 (en) 2012-10-30
DK2332411T3 (en) 2012-09-10
EP1778013B1 (en) 2011-01-26
IL181239A0 (en) 2007-07-04
CA2573661A1 (en) 2006-02-16
JP2008509189A (en) 2008-03-27
AU2005270319A1 (en) 2006-02-16
NO338563B1 (en) 2016-09-05
GB0418047D0 (en) 2004-09-15
BRPI0513464A (en) 2008-05-06
KR20070041744A (en) 2007-04-19
PL2332411T3 (en) 2012-11-30
CY1113570T1 (en) 2016-06-22
US20080070785A1 (en) 2008-03-20
ATE496535T1 (en) 2011-02-15
JP4988571B2 (en) 2012-08-01
EA200700382A1 (en) 2007-08-31
US20170071205A1 (en) 2017-03-16
EP2332411A1 (en) 2011-06-15
SI1778013T1 (en) 2011-05-31
US9949482B2 (en) 2018-04-24
CR8902A (en) 2007-08-28
MX2007000785A (en) 2007-03-27
HUS1800003I1 (en) 2018-02-28
CY1111661T1 (en) 2015-10-07
CN100548122C (en) 2009-10-14
CA2573661C (en) 2013-06-25
US10405548B2 (en) 2019-09-10
US8536089B2 (en) 2013-09-17
DE602005026126D1 (en) 2011-03-10
ES2360410T3 (en) 2011-06-03
US20180228157A1 (en) 2018-08-16
TWI356678B (en) 2012-01-21
DK1778013T3 (en) 2011-05-16
AU2005270319B2 (en) 2011-04-07
CN101001527A (en) 2007-07-18
NO20070928L (en) 2007-05-10
TW200616545A (en) 2006-06-01
US20200000092A1 (en) 2020-01-02
LTPA2017028I1 (en) 2017-10-10
BRPI0513464B1 (en) 2014-07-08
UA86250C2 (en) 2009-04-10
AR050122A1 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
US11102977B2 (en) Fungicidal compositions
AU2005291425B2 (en) Fungicidal compositions
US8124566B2 (en) Synergistic fungicidal compositions
WO2006037633A1 (en) Fungicidal compositions
GB2457347A (en) Fungicidal compositions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 12007500091

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2573661

Country of ref document: CA

Ref document number: 317/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007/00353

Country of ref document: ZA

Ref document number: 200700353

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 552659

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/000785

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2005791052

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: CR2007-008902

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 11573277

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 181239

Country of ref document: IL

Ref document number: 1020077003104

Country of ref document: KR

Ref document number: 2007525257

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005270319

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580027381.1

Country of ref document: CN

Ref document number: 07013558

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005270319

Country of ref document: AU

Date of ref document: 20050811

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005270319

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1200700539

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 200700382

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2005791052

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11573277

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0513464

Country of ref document: BR