WO2006011274A1 - 光検出器 - Google Patents

光検出器 Download PDF

Info

Publication number
WO2006011274A1
WO2006011274A1 PCT/JP2005/007539 JP2005007539W WO2006011274A1 WO 2006011274 A1 WO2006011274 A1 WO 2006011274A1 JP 2005007539 W JP2005007539 W JP 2005007539W WO 2006011274 A1 WO2006011274 A1 WO 2006011274A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
type region
photodetector
region
light
Prior art date
Application number
PCT/JP2005/007539
Other languages
English (en)
French (fr)
Inventor
Kanako Miyoshi
Hiroshi Yamaguchi
Yasufumi Shirakawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006011274A1 publication Critical patent/WO2006011274A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier

Definitions

  • the present invention relates to a photodetector having a circuit element formed on a semiconductor substrate and outputting a signal corresponding to light incident on a light receiving portion.
  • a photodetector using a semiconductor has a photodetection unit formed by joining a p-type semiconductor and an n-type semiconductor, and the amount of incident light is reduced by a current generated when light enters the photodetection unit. Detection and processing corresponding to this are now being carried out.
  • a detection error or a malfunction of the processing circuit occurs. Therefore, in the conventional photodetector, light is shielded by a light shielding film having a force such as the area around the light detection unit and the area force aluminum wiring layer in which the processing circuit is formed.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-78720
  • the present invention has an object to effectively eliminate the influence of unnecessary light incident on an internal region of a semiconductor substrate and easily prevent detection errors and circuit malfunctions. It is said.
  • the first photodetector of the embodiment of the present invention includes:
  • a photodetector in which a circuit element is formed on a semiconductor substrate and outputs a signal corresponding to light incident on a light receiving unit
  • a charge absorbing portion that absorbs charges generated by incident light is formed in the periphery of the circuit element provided inside the region where charges are incident by incident light from the side of the semiconductor substrate. To do.
  • a first photodetector comprising:
  • the charge absorbing portion is
  • N-type region is formed on P-type substrate
  • a p-type region is formed on the n-type substrate, or
  • a p-type region and an n-type region are formed on a P-type or n-type substrate,
  • a reverse bias voltage is applied to the n-type region and the Z- or P-type region.
  • a first photodetector comprising:
  • the circuit element is a light detection element constituting a light receiving portion.
  • a plurality of the photodetecting elements are provided adjacent to each other, and the charge absorbing portion is formed between the photodetecting elements.
  • a first photodetector comprising:
  • the circuit element is an element that constitutes a signal processing circuit corresponding to light incident on the light receiving unit. It is characterized by being.
  • the charge generated by the incident light on the peripheral portion of the circuit element is absorbed by the charge absorbing portion. That is, for example, negative charges are absorbed by n-type regions and n-type substrates, and positive charges are absorbed by P-type regions and P-type substrates. Therefore, detection errors due to the light detection element, malfunction of the signal processing circuit, and crosstalk are prevented.
  • FIG. 1 is a plan view showing a configuration of a photodetector 100 according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an example of a circuit including a photodiode 200.
  • FIG. 2 is a circuit diagram showing an example of a circuit including a photodiode 200.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a cross-sectional view taken along line BB in FIG.
  • FIG. 5 is a cross-sectional view taken along arrow CC of FIG.
  • FIG. 6 is a perspective view schematically showing a configuration in the vicinity of a cross section taken along the line CC in FIG. 1.
  • FIG. 7 is a circuit diagram showing a modification of the circuit including the photodiode 200.
  • FIG. 8 is a cross-sectional view showing a modified example of the configuration of FIG.
  • FIG. 9 is a cross-sectional view showing a modified example of the configuration in the vicinity of the N-type region 402 in FIG.
  • FIG. 10 is a cross-sectional view showing a modified example of the configuration of FIG.
  • the photodetector 100 includes photodiodes 200 and 300 on a semiconductor substrate.
  • the processing circuit 400 is provided.
  • the photodiodes 200 and 300 are formed so as to become an anode common, for example, as shown in FIG. Specifically, for example, as shown in FIG. 3, a P-type region 112 is formed on a P-type substrate 111, and an N-type region 201 for forming a light receiving portion is further formed thereon. A force sword electrode 211 is formed on three sides around the N-type region 201. In addition, a P-type region 202 and an anode electrode 212 are formed on the three outer peripheral sides of the N-type region 201. In addition, the N-type region 203 and the charge absorption electrode 213 are formed on the outer periphery of the four sides.
  • the anode electrode 212 is grounded, while a bias voltage (power supply voltage) Vcc is applied to the charge absorption electrode 213.
  • the N-type region 201, the P-type region 202, and the N-type region 203 are separated by an insulating film 113 made of a silicon oxide film or a silicon nitride film when formed by an oxide film isolation type process. However, in the case of being formed by a diffusion separation type process, the separation is not necessarily required.
  • the photodiode 300 has the same configuration as that of the photodiode 200 as shown in FIG.
  • N-type regions 203 and 303 and charge absorption electrodes 213 and 313 are arranged in a region sandwiched between the N-type regions 201 and 301. Yes.
  • the N-type regions 203 ⁇ 303 and the charge absorption electrodes 213 ⁇ 313 may be shared.
  • a lateral type PNP transistor is formed. Specifically, an N-type base region 401 is formed in a P-type region 112 on a P-type substrate 111, and an N-type lead base region 421, a P-type collector region 422, and a P-type emitter region 423 are formed therein. Is formed. Electrodes 431 to 433 are connected to each of the above regions, and the electrodes 431 to 433 and the like are connected via a wiring pattern (not shown) to constitute an amplifier circuit and the like. Further, around the processing circuit 400, an N-type region 402 is formed on the N-type region 114, and a bias voltage Vcc is applied via the charge absorption electrode 412.
  • the photodetector 100 configured as described above, for example, as shown in FIG. 3, when light enters the N-type region 201 (light receiving unit) of the photodiode 200 and positive and negative charges are generated.
  • the negative charge moves to the processing circuit 400 or the like via the N-type region 201 and the force sword electrode 211, while the positive charge moves to the ground via the P-type region 202 and the anode electrode 212. That is, photocurrent flows and predetermined signal processing is performed.
  • the power supply power is also a force in which the bias current flows to the ground.
  • the current flowing through the photodiode 200 is not affected. Therefore, even if a light shielding film or the like over a wide range is not provided around the photodiode 200, the detection signal error due to unnecessary light is suppressed or reduced.
  • the N-type region 402 and the charge absorption electrode 412 are formed around the processing circuit 400, the charge generated by the light incident on the outside of the N-type region 402 is also reduced. Then, it moves to the power source of the voltage Vcc through the charge absorption electrode 412. In other words, since the base current flowing through the N-type base region 401 is hardly fluctuated, a malfunction of the circuit due to unnecessary light can be achieved without providing a light shielding film over a wide area around the processing circuit 400. Can be easily suppressed.
  • an example in which a photodiode is used as an anode common may be configured to be used as a force sword common as shown in FIG. That is, for example, as shown in FIG. 8, it is sufficient to form each region so that the P-type and the N-type are reversed compared to FIG.
  • the substrate may be N-type.
  • the force shown in the example in which the N-type region 402 is provided around the processing circuit 400 for example, as shown in FIG. 9, the P-type region 452 grounded to the inner peripheral side or the outer peripheral side and the electric charge An absorption electrode 462 may be provided.
  • the P-type region 452 grounded to the inner peripheral side or the outer peripheral side and the electric charge An absorption electrode 462 may be provided.
  • a P-type region for charge absorption and a charge absorption electrode may be provided outside the photodiodes 200 and 300 and between the photodiodes 200 and 300.
  • the P-type region 202 and the anode electrode 212 are formed on the three outer peripheral sides of the N-type region 201 forming the light receiving portion, and further, the N-type is formed on the four outer peripheral portions.
  • the region 203 and the charge absorption electrode 213 are formed
  • the force sword electrode, the anode electrode, and the charge absorption electrode which are not limited to these shapes and arrangements, are provided around the light receiving unit. Alternatively, it may be provided only in part. These points also apply to the processing circuit 400.
  • various polygons and circles are not limited to squares, and may be used.
  • the transistor formed in the processing circuit 400 is not limited to a PNP transistor, and the same effect can be obtained even when an NPN transistor is formed.
  • a vertical type N PN transistor formed by an N-type collector region 601, a P-type base region 621, an N-type extraction collector region 622, an N-type emitter region 623, and electrodes 631 to 633.
  • a PNP transistor may be formed.
  • the N-type region 402 and the charge absorption electrode 412 are provided.
  • the collector current is mainly affected by the charge due to unnecessary light.
  • the base current is affected, and the amplified current becomes the collector current. A greater effect can be obtained by providing the portion.
  • the photodetector according to the present invention effectively eliminates the influence of unnecessary light incident on the internal region of the semiconductor substrate and has an effect of easily preventing detection errors and circuit malfunctions.
  • a circuit element is formed on a body substrate, which is useful as an optical detector that outputs a signal corresponding to light incident on the light receiving portion.

Abstract

 半導体基板の内部領域に入射する不要光の影響を効果的に排除して、検出誤差や回路の誤動作を防止するため、フォトダイオード200は、P型基板上に形成されたP型領域上に、受光部を形成するN型領域201が形成されて構成される。N型領域201の周囲3方にはカソード電極211、P型領域202、およびアノード電極212が形成され、さらにその4方の外周部に、N型領域203、および電荷吸収電極213が形成されている。上記アノード電極212は接地され、電荷吸収電極213には電源電圧Vccが印加される。フォトダイオード200の外方の領域に光が入射して生じた負電荷は電荷吸収電極213を介して電圧Vccの電源に移動するので、フォトダイオード200を介して流れる電流への影響が生じない。

Description

明 細 書
光検出
技術分野
[0001] 本発明は、半導体基板上に回路素子が形成され、受光部への入射光に応じた信 号を出力する光検出器に関するものである。
背景技術
[0002] 半導体を用いた光検出器は、 p型半導体と n型半導体とが接合されて成る光検出 部を有し、上記光検出部に光が入射したときに生じる電流によって、入射光量の検 出やこれに応じた処理が行われるようになつている。ここで、光検出器における光検 出部以外の pn接合部に不要光が入射すると、検出誤差や処理回路の誤動作が生じ る。そこで、従来の光検出器では、光検出部の周囲や、処理回路の形成された領域 力 アルミニウム配線層など力も成る遮光膜によって遮光されるようになっている。ま た、半導体チップの外周部力 斜め方向に入射する光に対して内部回路が誤動作 することを防止するために、半導体チップの周辺部分に、半導体チップの全周を囲 むようなダミーアイランドを形成する技術が知られている(例えば、特許文献 1参照。 ) 特許文献 1:特開平 8— 78720号公報
発明の開示
発明が解決しょうとする課題
[0003] 光検出器が例えば光ディスク記録再生装置のピックアップなどに用いられる場合に は、所定の受光領域に入射する光だけを正確に検出する必要がある。そのような場 合、上記のように半導体チップの周辺部分にダミーアイランドを形成しても、光検出 部以外の領域に入射する不要光の影響を排除することはできない。
[0004] また、光検出部以外の領域を遮光するために遮光膜を設ける場合、配線層を利用 するとすれば配線レイアウトの自由度が低下する一方、別途遮光膜用の層を設けると すれば、製造コストの増大を招くことになる。さらに、そのような遮光膜を広い範囲に わたって形成することは、寄生容量の増大をもたらす。 [0005] 本発明は、上記の点に鑑み、半導体基板の内部領域に入射する不要光の影響を 効果的に排除して、検出誤差や回路の誤動作を容易に防止できるようにすることを 目的としている。
課題を解決するための手段
[0006] 上記の課題を解決するため、本発明の実施形態の第 1の光検出器は、
半導体基板上に回路素子が形成され、受光部への入射光に応じた信号を出力す る光検出器であって、
上記半導体基板の側部からの入射光による電荷の到達領域よりも内部に設けられ た回路素子の周辺部に、入射光によって生じた電荷を吸収する電荷吸収部が形成 されていることを特徴とする。
[0007] また、本発明の実施形態の第 2の光検出器は、
第 1の光検出器であって、
上記電荷吸収部は、
P型基板上に n型領域が形成されるか、
n型基板上に p型領域が形成されるか、または、
P型もしくは n型基板上に p型領域と n型領域とが形成され、
上記 n型領域および Zまたは P型領域に逆バイアス電圧が印加されるように構成さ れていることを特徴とする。
[0008] また、本発明の実施形態の第 3の光検出器は、
第 1の光検出器であって、
上記回路素子は、受光部を構成する光検出素子であることを特徴とする。
[0009] また、本発明の実施形態の第 4の光検出器は、
第 3の光検出器であって、
複数の上記光検出素子が隣接して設けられ、上記光検出素子の間に、上記電荷 吸収部が形成されて 、ることを特徴とする。
[0010] また、本発明の実施形態の第 5の光検出器は、
第 1の光検出器であって、
上記回路素子は、受光部への入射光に応じた信号の処理回路を構成する素子で あることを特徴とする。
[0011] これらにより、回路素子の周辺部への入射光によって生じた電荷は、電荷吸収部に よって吸収される。すなわち、例えば負電荷は n型領域や n型基板に吸収され、正電 荷は P型領域や P型基板に吸収される。それゆえ、光検出素子による検出誤差や、信 号処理回路の誤動作、クロストークが防止される。
発明の効果
[0012] 本発明によれば、半導体基板の内部領域に入射する不要光の影響を効果的に排 除して、検出誤差や回路の誤動作を容易に防止できる。
図面の簡単な説明
[0013] [図 1]図 1は、本発明の実施形態の光検出器 100の構成を示す平面図である。
[図 2]図 2は、同、フォトダイオード 200を含む回路の例を示す回路図である。
[図 3]図 3は、同、図 1の A— A矢視断面図である。
[図 4]図 4は、同、図 1の B— B矢視断面図である。
[図 5]図 5は、同、図 1の C C矢視断面図である。
[図 6]図 6は、同、図 1の C— C矢視断面付近の構成を模式的に表す斜視図である。
[図 7]図 7は、フォトダイオード 200を含む回路の変形例を示す回路図である。
[図 8]図 8は、図 3の構成の変形例を示す断面図である。
[図 9]図 9は、図 5の N型領域 402付近の構成の変形例を示す断面図である。
[図 10]図 10は、図 5の構成の変形例を示す断面図である。
符号の説明
100 光検出器
111 P型基板
112 P型領域
113 絶縁膜
114 N型領域
200· 300 フォトダイオード
201 · 301 N型領域
202· 302 P型領域 203 · 303 N型領域
211 · 311 力ソード電極
212· 312 アノード電極
213 · 313 電荷吸収電極
400 処理回路
401 N型ベース領域
402 N型領域
412 電荷吸収電極
421 引き出しベース領域
422 p型コレクタ領域
423 p型ェミッタ領域
431' -433 電極
452 P型領域
462 電荷吸収電極
601 N型コレクタ領域
621 p型ベース領域
622 N型引き出しコレクタ領域
623 N型ェミッタ領域
631' -633 電極
発明を実施するための最良の形態
[0015] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0016] 光検出器 100は、図 1に示すように、半導体基板上に、フォトダイオード 200· 300と
、処理回路 400とが設けられて構成されている。
[0017] 上記フォトダイオード 200· 300は、例えば図 2に示すようにアノードコモンになるよう に形成されている。具体的には、例えば図 3に示すように、 P型基板 111上に P型領 域 112が形成され、さらにその上に、受光部を形成する N型領域 201が形成されて いる。上記 N型領域 201の周囲 3方には、力ソード電極 211が形成されている。また、 N型領域 201の 3方の外周側には、 P型領域 202、およびアノード電極 212が形成さ れ、さら〖こ、その 4方の外周部に、 N型領域 203、および電荷吸収電極 213が形成さ れている。上記アノード電極 212は接地される一方、電荷吸収電極 213には、バイァ ス電圧(電源電圧) Vccが印加されるようになっている。上記 N型領域 201、 P型領域 202、および N型領域 203は、酸化膜分離型のプロセスで形成される場合には、シリ コン酸化膜やシリコン窒化膜などから成る絶縁膜 113で分離されるが、拡散分離型 のプロセスで形成される場合などには、必ずしも分離していなくてもよい。また、フォト ダイオード 300は、図 1に上記フォトダイオード 200と対応する符号を付して示すよう に、フォトダイオード 200と同様の構成を有している。
[0018] フォトダイオード 200· 300の間には、図 4に示すように、 N型領域 201 · 301に挟ま れた領域に、 N型領域 203 · 303および電荷吸収電極 213 · 313が配置されている。 なお、 N型領域 203 · 303および電荷吸収電極 213 · 313を共通化するようにしてもよ い。
[0019] 処理回路 400には、例えば、図 5および図 6に示すようにラテラル型の PNPトランジ スタが形成されている。具体的には、 P型基板 111上の P型領域 112に N型ベース領 域 401が形成され、その内部に、 N型引き出しベース領域 421、 P型コレクタ領域 42 2、および P型ェミッタ領域 423が形成されている。上記各領域には、電極 431〜43 3が接続され、図示しない配線パターンを介して各電極 431〜433等が接続されるこ とによって、増幅回路等が構成されている。また、処理回路 400の周囲には、 N型領 域 114上に N型領域 402が形成され、電荷吸収電極 412を介してバイアス電圧 Vcc が印加されるようになって!/、る。
[0020] 上記のように構成された光検出器 100において、例えば前記図 3に示すように、フ オトダイオード 200の N型領域 201 (受光部)に光が入射して正負の電荷が生じると、 負電荷は N型領域 201および力ソード電極 211を介して処理回路 400等に移動する 一方、正電荷は P型領域 202およびアノード電極 212を介してグラウンドに移動する 。すなわち光電流が流れて、所定の信号処理が行われる。
[0021] 一方、フォトダイオード 200の外方の領域に光が入射したとすると、同様に正負の 電荷が生じ、正電荷は上記と同様に P型領域 202およびアノード電極 212を介して( または P型基板 111および図示しな 、ダイパッドを介して)グラウンドに移動するが、 負電荷は N型領域 203および電荷吸収電極 213を介して電圧 Vccの電源に移動す る。すなわち、電源力もグラウンドへはバイアス電流が流れる力 フォトダイオード 200 を介して流れる電流への影響は生じない。したがって、フォトダイオード 200の周囲に 、広い範囲にわたる遮光膜等を設けなくても、不要光による検出信号の誤差は抑制 または低減される。
[0022] また、フォトダイオード 200· 300の間の領域では、前記図 4に示すように、フォトダイ オード 200の N型領域 201を囲む N型領域 203の内側に入射した光によって生じた 負電荷は、 N型領域 203の外側であるフォトダイオード 300の N型領域 301まで移動 することはほとんどなぐ逆にフォトダイオード 300の N型領域 301を囲む N型領域 30 3の内側に入射した光によって生じた負電荷力 フォトダイオード 200の N型領域 20 1まで移動することもない。したがって、フォトダイオード 200· 300間でのクロストーク は抑制または低減される。
[0023] さらに、処理回路 400の周囲に N型領域 402および電荷吸収電極 412が形成され ていることにより、やはり上記 N型領域 402の外方に入射した光によって生じた電荷 は N型領域 402および電荷吸収電極 412を介して電圧 Vccの電源に移動する。すな わち、 N型ベース領域 401を介して流れるベース電流を変動させることはほとんどな いので、処理回路 400の周囲に広い範囲にわたる遮光膜等を設けなくても、不要光 による回路の誤動作を容易に抑制することができる。
[0024] なお、上記の例では、フォトダイオードがアノードコモンとして用いられる例を示した 力 図 7に示すように力ソードコモンとして用いられるように構成してもよい。すなわち、 例えば図 8に示すように、図 3と比べて P型と N型とが逆に成るように各領域を形成す ればよぐこの場合でも同じ効果が得られる。さら〖こ、基板も N型であってもよい。
[0025] また、処理回路 400の周囲に N型領域 402を設けた例を示した力 例えば図 9に示 すように、その内周側または外周側に接地等された P型領域 452および電荷吸収電 極 462を設けてもよい。この場合には、 P型基板 111が接地等されていない場合や、 P型基板 111の厚さが厚い場合などでも、正電荷を確実に吸収することなどが容易に できる。さらに、同様にフォトダイオード 200· 300の外方や、フォトダイオード 200· 30 0の間にも、電荷吸収用の P型領域および電荷吸収電極を設けたりしてもよい。 [0026] なお、上記の例では、受光部を形成する N型領域 201の 3方の外周側に P型領域 2 02およびアノード電極 212が形成され、さらに、その 4方の外周部に N型領域 203お よび電荷吸収電極 213が形成される例を示したが、これらの形状や配置に限るもの ではなぐ力ソード電極や、アノード電極、電荷吸収電極は、受光部の周囲に設けら れても、一部に設けられるだけでもよい。また、これらの点は、処理回路 400に関して も同様である。さらに、受光部等の形状に関しても、方形に限るものではなぐ種々の 多角形や円形などでもよい。
[0027] また、処理回路 400に形成されるトランジスタは PNPトランジスタに限らず、 NPNト ランジスタが形成される場合でも同じ効果は得られる。さらに、例えば図 10に示すよう に、 N型コレクタ領域 601、 P型ベース領域 621、 N型引き出しコレクタ領域 622、 N 型ェミッタ領域 623、および電極 631〜633によって形成されたバーティカル型の N PNトランジスタや、 PNPトランジスタが形成されるようにしてもよい。ただし、図 10のよ うなバーティカル型のトランジスタの場合には、 N型領域 402および電荷吸収電極 41 2が設けられて 、な 、場合に不要光による電荷の影響を受けるのが主としてコレクタ 電流であるのに対し、図 5のようなラテラル型のトランジスタの場合には、ベース電流 が影響を受け、これを増幅したものがコレクタ電流となるので、上記のようなラテラル 型のトランジスタに対して電荷吸収部を設ける方が大きな効果が得られる。
産業上の利用可能性
[0028] 本発明にかかる光検出器は、半導体基板の内部領域に入射する不要光の影響を 効果的に排除して、検出誤差や回路の誤動作を容易に防止できる効果を有し、半導 体基板上に回路素子が形成され、受光部への入射光に応じた信号を出力する光検 出器等として有用である。

Claims

請求の範囲
[1] 半導体基板上に回路素子が形成され、受光部への入射光に応じた信号を出力す る光検出器であって、
上記半導体基板の側部からの入射光による電荷の到達領域よりも内部に設けられ た回路素子の周辺部に、入射光によって生じた電荷を吸収する電荷吸収部が形成 されて 、ることを特徴とする光検出器。
[2] 請求項 1の光検出器であって、
上記電荷吸収部は、
P型基板上に n型領域が形成されるか、
n型基板上に p型領域が形成されるか、または、
P型もしくは n型基板上に p型領域と n型領域とが形成され、
上記 n型領域および Zまたは P型領域に逆バイアス電圧が印加されるように構成さ れていることを特徴とする光検出器。
[3] 請求項 1の光検出器であって、
上記回路素子は、受光部を構成する光検出素子であることを特徴とする光検出器
[4] 請求項 3の光検出器であって、
複数の上記光検出素子が隣接して設けられ、上記光検出素子の間に、上記電荷 吸収部が形成されていることを特徴とする光検出器。
[5] 請求項 1の光検出器であって、
上記回路素子は、受光部への入射光に応じた信号の処理回路を構成する素子で あることを特徴とする光検出器。
PCT/JP2005/007539 2004-07-30 2005-04-20 光検出器 WO2006011274A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-223588 2004-07-30
JP2004223588 2004-07-30

Publications (1)

Publication Number Publication Date
WO2006011274A1 true WO2006011274A1 (ja) 2006-02-02

Family

ID=35786030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007539 WO2006011274A1 (ja) 2004-07-30 2005-04-20 光検出器

Country Status (1)

Country Link
WO (1) WO2006011274A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075577A1 (en) * 2006-12-21 2008-06-26 Hamamatsu Photonics K.K. Semiconductor photodetector and radiation detecting apparatus
JP2010199275A (ja) * 2009-02-25 2010-09-09 Pioneer Electronic Corp 光検出半導体装置、光ピックアップ及び光記録再生装置
US8019488B2 (en) 2005-07-07 2011-09-13 Toyota Jidosha Kabushiki Kaisha Remote operation system, remote operation apparatus and service center

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160270A (ja) * 1986-12-23 1988-07-04 Nikon Corp フオトセンサと信号処理用素子を有する半導体装置
JPH09293847A (ja) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd ホトダイオード内蔵集積回路
JPH1041488A (ja) * 1996-07-19 1998-02-13 Nec Corp 回路内蔵受光素子
JP2002203954A (ja) * 2000-10-31 2002-07-19 Sharp Corp 回路内蔵受光素子
JP2002296485A (ja) * 2001-03-29 2002-10-09 Fuji Electric Co Ltd 光センサ集積回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160270A (ja) * 1986-12-23 1988-07-04 Nikon Corp フオトセンサと信号処理用素子を有する半導体装置
JPH09293847A (ja) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd ホトダイオード内蔵集積回路
JPH1041488A (ja) * 1996-07-19 1998-02-13 Nec Corp 回路内蔵受光素子
JP2002203954A (ja) * 2000-10-31 2002-07-19 Sharp Corp 回路内蔵受光素子
JP2002296485A (ja) * 2001-03-29 2002-10-09 Fuji Electric Co Ltd 光センサ集積回路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8019488B2 (en) 2005-07-07 2011-09-13 Toyota Jidosha Kabushiki Kaisha Remote operation system, remote operation apparatus and service center
WO2008075577A1 (en) * 2006-12-21 2008-06-26 Hamamatsu Photonics K.K. Semiconductor photodetector and radiation detecting apparatus
US8084836B2 (en) 2006-12-21 2011-12-27 Hamamatsu Photonics K.K. Semiconductor photodetector and radiation detecting apparatus
CN102446945A (zh) * 2006-12-21 2012-05-09 浜松光子学株式会社 半导体光电探测器和辐射检测装置
JP2010199275A (ja) * 2009-02-25 2010-09-09 Pioneer Electronic Corp 光検出半導体装置、光ピックアップ及び光記録再生装置

Similar Documents

Publication Publication Date Title
JP4770857B2 (ja) 半導体装置
KR100288367B1 (ko) 회로내장수광소자
JP2009218457A (ja) 光半導体装置
US5466962A (en) Light-receiving semiconductor device with plural buried layers
JP2731115B2 (ja) 分割型受光素子
JP7455520B2 (ja) 光検出装置
WO2006011274A1 (ja) 光検出器
JP2009010288A (ja) 半導体装置
JP2925943B2 (ja) ホトダイオード内蔵半導体装置
US20020036303A1 (en) CMOS image sensor and manufacturing method for the same
JPH07183563A (ja) 半導体装置
JPS63160270A (ja) フオトセンサと信号処理用素子を有する半導体装置
JP2007129024A (ja) 半導体装置
JP7038332B2 (ja) 光検出器
JP3449590B2 (ja) 回路内蔵受光素子
JPH06163977A (ja) フォトカプラ
JP5044319B2 (ja) 半導体装置
JPS59129464A (ja) フオトセンサ−
JP2004119632A (ja) 回路内蔵受光素子およびその検査方法
JP6403369B2 (ja) 光検出装置およびセンサパッケージ
JP2852222B2 (ja) 光半導体集積回路装置
JPH0360073A (ja) 光半導体装置
WO2020121852A1 (ja) 光検出装置
JP3748946B2 (ja) ホトダイオード内蔵半導体装置
JPH0897463A (ja) フォトカプラ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP