WO2006009241A1 - Lrp4/Corinドーパミン産生ニューロン前駆細胞マーカー - Google Patents

Lrp4/Corinドーパミン産生ニューロン前駆細胞マーカー Download PDF

Info

Publication number
WO2006009241A1
WO2006009241A1 PCT/JP2005/013453 JP2005013453W WO2006009241A1 WO 2006009241 A1 WO2006009241 A1 WO 2006009241A1 JP 2005013453 W JP2005013453 W JP 2005013453W WO 2006009241 A1 WO2006009241 A1 WO 2006009241A1
Authority
WO
WIPO (PCT)
Prior art keywords
euron
cells
producing
dopamine
cell
Prior art date
Application number
PCT/JP2005/013453
Other languages
English (en)
French (fr)
Inventor
Yoshimasa Sakamoto
Yuichi Ono
Toshio Imai
Yasuko Nakagawa
Original Assignee
Eisai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020077004164A priority Critical patent/KR101375603B1/ko
Priority to CA2574177A priority patent/CA2574177C/en
Priority to US10/552,485 priority patent/US20080199437A1/en
Priority to CN2005800319143A priority patent/CN101027390B/zh
Priority to EP05766437.7A priority patent/EP1666590B1/en
Priority to ES05766437.7T priority patent/ES2557157T3/es
Priority to AU2005264579A priority patent/AU2005264579B2/en
Priority to JP2006524554A priority patent/JP3996627B2/ja
Application filed by Eisai Co., Ltd. filed Critical Eisai Co., Ltd.
Publication of WO2006009241A1 publication Critical patent/WO2006009241A1/ja
Priority to IL180782A priority patent/IL180782A0/en
Priority to IL205194A priority patent/IL205194A/en
Priority to IL205193A priority patent/IL205193A/en
Priority to IL205195A priority patent/IL205195A0/en
Priority to US14/703,000 priority patent/US9994816B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/286Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against neuromediator receptors, e.g. serotonin receptor, dopamine receptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5023Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2835Movement disorders, e.g. Parkinson, Huntington, Tourette

Definitions

  • the present invention relates to polynucleotide probes and antibodies for detecting and selecting dominin-producing neuron progenitor cells, dopamine production using them, a method for detecting and selecting euron precursor cells, and dopamine production-
  • the present invention relates to a kit and a treatment method for treating neurodegenerative diseases such as Parkinson's disease using Euron progenitor cells.
  • Parkinson's disease is an extrapyramidal neurodegenerative disease caused by specific loss of midbrain substantia nigra dopaminergic neurons (HARRISON'S PRINCIPLES OF INTERNAL MEDICINE 2nd edition, 23rd edition, Isselbacher et al. Ed., McGraw-Hill Inc., NY (1994) pp.2275- 7).
  • L-DOPA 3,4-dihydroxyphenyl-lanalanin
  • Patent Document 1 In the treatment of Parkinson's disease, to compensate for the recently lost dopamine production-euron, the treatment of transplanting the midbrain ventral region of 6-9 week old aborted fetuses containing donomin production-euron progenitor cells Have also been attempted (Patent Document 1; Non-Patent Documents 1 to 6). At present, however, this method has problems in cell supply and ethics (Rosenstain (1995) Exp. Neurol. 33: 106; Turner et al. (1993) Neurosurg. 33: 1031-7). , Risk of infection contamination, immunological transplant rejection (Lopez-Lozano et al. (1997) Transp. Proc.
  • Patent Documents 5 to 6 and Non-Patent Document 7 MHC-matched relatives, others' bone marrow, bone marrow bank, and cord blood bank etc. It is possible to obtain transplanted cells, but if the patient's own cells can be used, it will be rejected without unnecessary manipulation and effort The problem of reaction can be solved.
  • the treatment of nerve tissue damage requires remodeling of the brain function, and is not separated into mature cells in order to form appropriate links with surrounding cells (network formation)-in vitro
  • transplant cells that can be culled.
  • the progenitor cells may be divided into heterogeneous cell populations. For example, in the treatment of Parkinson's disease, it is necessary to selectively transplant the strength techolamine-containing-euron, among the euron.
  • transplanted cells that have been proposed for use in the treatment of Parkinson's disease include, for example, striatum (Non-patent Documents 3 and 9), immortalized cell lines derived from human fetal nerves (Patent Documents 9 to 9).
  • NT2Z cell post-mitotic human neurons Patent Document 10
  • neuronal progenitor cells Patent Document 11
  • cells transfected with foreign genes to produce catecholamines such as doomine, bone marrow stromal cells
  • Patent References 12 to 13 genetically modified ES cells
  • donomin formed by contacting neural progenitor cells derived from fetal midbrain tissue with FGF-8 and Shh It has also been proposed to use production-euron (patent document 14) and cells that have expressed tyrosine hydroxylase by treating NT2 neurons with retinoic acid (patent document 15). However, none of them contains only cells that divide into dopaminergic-euron or dorminogenic neurons.
  • Dopaminergic production-selective enrichment / separation of euron is a method of tyrosine, idroxylase (hereinafter referred to as "TH") expressed in dopaminergic production-euron.
  • TH tyrosine, idroxylase
  • Dopaminergic production-Euron is isolated by introducing a reporter gene that expresses a fluorescent protein into each cell of the cell population under the control of the promoter Z.
  • Patent Document 16 A method of concentrating and separating or identifying by visualization as it is (Patent Document 16) has been proposed. This method requires a complicated process of introducing a foreign gene, and the presence of a reporter gene is problematic from the viewpoint of toxicity and immunogenicity when it is intended for gene therapy.
  • Patent Document 1 US Pat. No. 5,690,927
  • Patent Document 2 Japanese Patent Publication No. 10-508487
  • Patent Document 3 Japanese Patent Publication No. 10-508488
  • Patent Document 4 Japanese Patent Publication No. 10-509034
  • Patent Document 5 Japanese Patent Publication No. 11-509170
  • Patent Document 6 Japanese Patent Publication No. 11-501818
  • Patent Document 7 JP-T 8-509215
  • Patent Document 8 Japanese Patent Publication No. 11-506930
  • Patent Document 9 Special Table 2002-522070
  • Patent Document 10 Japanese Patent Publication No. 9-5050554
  • Patent Document 11 Japanese Patent Publication No. 11-509729
  • Patent Document 12 Special Table 2002-504503
  • Patent Document 13 Special Publication 2002-513545
  • Patent Document 14 US Pat. No. 6277820
  • Patent Document 15 International Publication No. 00/06700
  • Patent Document 16 Japanese Patent Application Laid-Open No. 2002-51775
  • Non-Patent Document 1 Spencer et al. (1992) N. Engl. J. Med. 327: 1541-8
  • Non-Patent Document 2 Freed et al. (1992) N. Engl. J. Med. 327: 1549-55
  • Non-Patent Document 3 Widner et al. (1992) N. Engl. J. Med. 327: 1556-63
  • Non-Patent Document 4 Kordower et al. (1995) N. Engl. J. Med. 332: 1118-24
  • Non-Patent Document 5 Defer et al. (1996) Brain 119: 41-50
  • Non-Patent Document 6 Lopez-Lozano et al. (1997) Transp. Proc. 29: 977-80
  • Non-Patent Document 7 Selawry and Cameron (1993) Cell Transplant 2: 123-9
  • Non-Patent Document 8 Kim et al (2002) Nature 418: 50-56
  • Non-Patent Document 9 Lindvall et al. (1989) Arch. Neurol. 46: 615-31
  • Parkinson's disease transplantation treatment is a variety of both the midbrain ventral region of aborted fetuses and the in vitro-induced domino-producing-euron progenitor cells. It is a point that is a mixture of cells. Considering the safety in neural circuit formation, it is desirable to use only force by separating only the target cell type. Considering the risk of tumor formation, it is recommended to isolate and use the neurons after mitotic arrest. Furthermore, considering the survival of the cells in the brain to which they are transplanted and the ability to form a correct network, it is expected that the therapeutic effect can be increased by separating earlier donomin-producing euron progenitor cells.
  • Lrp4 mRNA is specifically expressed in the ventral center, and its expression region coincides with the region where dopaminergic proliferative progenitor cells are present. Furthermore, when compared with the expression of TH, which is a marker for Lrp4 and dopamine producing rhone, the signals of both do not overlap, although the positions in the dorsoventral direction coincide (Figs. 4 and 5). This showed that Lrp4 mRNA was not expressed in the progenitor cells that stopped cell division and migrated to the outer layer of the neural tube. Therefore, by using Lrp4 mRNA as an indicator, it is possible to specifically detect and select a dopaminergic progenitor-lon progenitor cell.
  • the present invention provides a domino-producing proliferative progenitor cell marker polynucleotide probe capable of specifically detecting Lrp4 mRNA, and a method for selecting dopamine producing pro-long proliferating progenitor cells using the probe. Is to provide. Furthermore, the present invention provides a dominogenic progenitor progenitor cell prior to mitosis selected using such a nucleotide probe (hereinafter sometimes simply referred to as “dopamine progenitor-lon proliferative progenitor cell”).
  • the present invention relates to a screening method using maturation of a compound that induces differentiation or proliferation as an index.
  • the proliferative progenitor cells selected using the nucleotide probe of the present invention can be cultured to obtain dormin-producing lon-lineage cells including dopamine-producing lon progenitor cells after mitotic arrest.
  • domin producing-long cells refer to dopamine producing-uron proliferative progenitor cells, dopamine producing-lon progenitor cells after mitotic arrest and / or domin producing-lon.
  • Dominogenic-Ron cells are also indexed by methods of isolating genes specific for each maturation stage into dopaminergic neurons and the maturation of compounds that induce differentiation or proliferation of the progenitor cells. It can be used for screening methods.
  • the present invention provides a method for culturing dopaminergic-Lon proliferative progenitor cells selected using the nucleotide probe of the present invention to obtain dopaminergic-Lon lineage cells, the cells thus obtained,
  • the present invention relates to a method for isolating a gene specific to each maturation stage into dopamine-producing neurons using the method, and a screening method using maturation of a compound that induces differentiation or proliferation of the cell as an index.
  • anti-Lrp4 antibodies were prepared and examined for the expression of Lrp4 protein. First, when the expression in the tissue was confirmed (Fig. 8), it was confirmed that it was expressed in the same manner as Lrp4 mRNA.
  • the Lrp4 protein signal was detected even in the TH expression region, but the proliferative progenitor cells extended the process toward the outermost layer of the neural tube, so this signal detected the protein on the process. However, it was impossible to distinguish whether TH-expressing cells also expressed Lrp4 protein.
  • an anti-Lrp4 antibody whether or not the Lrp4 protein was expressed on the cell surface was analyzed by flow cytometry. The sample used was a cell in which the expression of Lr p4 mRNA was confirmed, and ES cells were induced in vitro (SDIA method) from ES cells to donomin-producing neuron progenitor cells.
  • Lrp4 protein was indeed expressed on the cell surface in the cells (Fig. 9). It is particularly desirable to use such a protein expressed on the cell surface as a separation marker, since it can be selected in a state where cells are born (see FIG. 15).
  • ES cells were induced to differentiate into dopaminergic-euron progenitor cells in vitro by the 5-stage method, and the expression of Lrp4 was confirmed by RT-PCR and flow cytometry using an anti-Lrp4 monoclonal antibody. As a result, Lrp4 was clearly expressed in dopaminergic-euron progenitor cells differentiated by the 5-stage method (FIGS. 17A and B).
  • Lrp4-positive cells were separated using a cell sorter from cells induced to differentiate (SDIA method) and ventral cells of mouse fetal midbrain using an anti-Lrp4 antibody.
  • the isolated cells were analyzed for gene expression by RT-PCR, and the expression of Nestin, a neuronal proliferative progenitor cell marker, was observed. It became clear that some cells were expressed (Fig. 10). In addition, it was expressed at higher levels in the Nurrl and TH-forced Lrp4 positive cell populations, which are the dormamine production-euron progenitor cell markers after mitotic arrest, compared to the negative cell population.
  • dopaminergic-euron progenitor cells including dormin-producing neuron progenitor cells after mitotic arrest are treated as single cells. Can be separated.
  • donoromin production-euron progenitor cell refers to donomin production—euron proliferative progenitor cells and dopamine production-euron progenitor cells after mitotic arrest.
  • SDIA method We analyzed the expression of Eras and Nanog specifically expressed in ES cells of cells isolated from ES cells using ro using the anti-Lrp4 antibody.
  • Lrp4-positive cells were isolated from a group of cells containing dopamine-producing euron precursor cells induced in vitro from ES cells by the 5-stage method.
  • TH protein-positive donomin production-euron was induced (Fig. 17C). 0 From this, Lrp4-positive cells induced by the 5-stage method Is a dopamine-producing euron progenitor cell, which has become apparently capable of maturation in vitro.
  • the present invention provides an antibody that specifically detects Lrp4 protein, and a method for selecting dopaminergic neuron progenitor cells using the antibody. Furthermore, the present invention provides a dopaminergic-euron progenitor cell selected using such an antibody, a dopaminergic neuron progenitor cell-specific gene using the progenitor cell, and a dopaminergic neuron derived from the progenitor cell.
  • the present invention relates to a method for isolating a gene specific for each stage of maturation and a screening method using as an index maturation of a compound that induces differentiation or proliferation of the progenitor cells.
  • the progenitor cells selected using the antibody of the present invention can be cultured to obtain other sort of dopaminergic-euron-line cells. Such cells can also be used for isolation of genes specific for each stage of maturation into dopamine production-euron, and screening methods that target maturation of compounds that induce differentiation or proliferation of the progenitor cells. Can be used.
  • the present invention provides a method for culturing dominomin-producing euron progenitor cells selected using the antibody of the present invention to obtain donomin producing-euron series cells, the cells thus obtained, the cells
  • the present invention also relates to a method for isolating a gene specific for each maturation stage into dopaminergic neurons using the above and a screening method using maturation of a compound that induces differentiation or proliferation of the cell as an index.
  • the present inventors transplanted Lrp4-expressing cells isolated using an anti-Lrp4 monoclonal antibody into Parkinson's disease model mouse linear bodies.
  • transplanted mice linear Since EGFP-positive cells were observed in the body (Table 1), the transplanted Lrp4 protein-positive cells are considered to be engrafted in the linear bodies of Parkinson's disease model mice.
  • most of the engrafted cells were positive for MAP2 which is a marker for mature rhone, and EGFP-positive axons were observed to extend long into the linear body (Table 1 and Fig. 16). ).
  • the transplanted Lrp4 protein-positive cells were neural progenitor cells, whereas most of the engrafted cells were separated and matured into mature neurons, and about 20% of these engrafted cells were TH-positive. This strongly suggested that at least some of the transplanted Lrp4 protein-positive cells were separated into dopamine-producing cells. Therefore, the domin-producing progenitor progenitor cells isolated according to the present invention can be differentiated into dopamine-producing neurons by transplanting into the brain, and are considered effective for the treatment of Parkinson's disease.
  • the present invention provides a kit for treating a neurodegenerative disease, preferably Parkinson's disease, comprising the domin producing Ron progenitor cell isolated according to the present invention, and the dopamine producing Ron progenitor cell in a patient's brain.
  • the present invention also relates to a method for treating a neurodegenerative disease, preferably Parkinson's disease, characterized by being transplanted into the inside.
  • the isolated dopaminergic-euron progenitor cells can be transplanted as they are or after they are grown in vitro.
  • the dopaminergic neuron progenitor cells of the present invention can be matured in an optimal region in the brain or can proliferate further in vivo, and a long-term therapeutic effect can be expected.
  • Lrp4-expressing cells are differentiated and matured in vitro and then transplanted, a therapeutic effect can be expected even if dopamine production and euron are not separated for some reason in vivo.
  • Lrp4-expressing cells proliferated in vitro were induced, and then the dopamine production-euron progenitor cell marker after mitotic arrest such as 65B 13 (WO2004 / 038018 pamphlet) Higher and safer can be expected by transplanting the separated cells.
  • Lrp4-expressing cells are isolated and used for transplantation treatment, so that only the target cell type is isolated, so it is safer, and the earliest dopaminergic progenitor-euron precursor cells should be used.
  • the progenitor cells isolated by the marker of the present invention can be matured by culturing in vitro or the like. This makes it possible to prepare materials with the optimum separation stage (Fig. 6).
  • dopaminergic neuron progenitor cells are also effective for target discovery of Parkinson's disease treatment, such as isolation of genes specific to dopaminergic neurons.
  • dopaminergic-euron proliferative progenitor cells can be used to study the maturation process of dopaminergic-euron, screening for drugs that proliferate the progenitor cells in vitro or in vivo using only a screening system based on maturation, and It is also useful for screening for agents that induce differentiation from the progenitor cells in vivo (regenerative therapeutic agents in vivo).
  • FIG. 1 is a diagram schematically showing the structure of Lrp4.
  • TM transmembrane domain
  • FRI frizzeled domain
  • LDLa LDL receptor domain
  • SR scavenger receptor domain
  • Protease serine protease domain.
  • FIG. 2 is a photograph showing the results of analyzing the expression of Lrp4 and Shh mRNA in the ventral and spinal cord of the E12.5 mouse by the in situ and hybridization methods.
  • FIG. 3 is a photograph showing the results of analyzing the expression of Lrp4, Shh, tyrosine hydroxylase (TH), and NCAM mRNA in the ventral side of the E12.5 mouse by the in situ hybridization method.
  • FIG. 4 A diagram schematically showing the expression pattern of Lrp4 in the midbrain and the expression of Lrp4, tyrosine hydroxylase (TH), Sim-1 and NCAM mRNA in the ventral side of the midbrain of E12.5 mice. It is a photograph which shows the result analyzed by the situ noisy hybridization method.
  • VZ ventr lcular zone
  • ML mantle layer G
  • FIG. 5 is a photograph showing the result of analyzing the expression of Lrp4 mRNA in the central nervous system of E12.5 mice by the in situ hybridization method.
  • A Sagittal plane;
  • B Enlarged photo of the part inside the frame of A;
  • C Cross section at the red line position of A.
  • D Expression of mRNA of Lrp4, Shh and tyrosine hydroxylase (TH) in the ventral side of the midbrain of E12.5 mice.
  • FIG. 6 is a diagram schematically showing the expression time of Lrp4, NCAM, TH and DAT mRNA during the period from dopamine production to euron development to maturation.
  • FIG. 7 The above is a diagram and a photograph schematically showing donomin production from ES cells by the SDIA method-induction of europium into sperm.
  • the photo below shows the results of inducing differentiation of donomin-producing euron from ES cells using the SDIA method, and examining the expression of Lrp4 mRNA by RT-PCR over time.
  • FIG. 8 is a photograph showing the expression of Lrp4 protein in the midbrain of E12.5 mice.
  • FIG. 10 is a photograph showing the results of RT-PCR in which the expression of various donomin production-euron markers in Lrp4-positive cells is expressed.
  • FIG. 11 is a diagram schematically showing the expression time of Lrp4 mRNA and protein, and TH mRNA from donomin production to euron development to maturity. This shows that both Lrp4-expressing cells contain dopaminergic progenitors-euron proliferative progenitor cells and mitotic progenitor cells.
  • FIG. 13 is a photograph showing the results of growing Lrp4-positive cells in vitro.
  • FIG. 14 is a photograph showing that Lrp4-positive cells are divided into dopaminergic neurons.
  • FIG. 15 is a schematic diagram showing a method for separating and utilizing a donomin producing-euron progenitor cell using an anti-Lrp4 antibody.
  • FIG. 16 is a photograph showing in vivo sorting of transplanted Lrp4-positive cells.
  • FIG. 17 is a diagram and a photograph showing the expression of Lrp4 in 5-stage cells and the separation of Lrp4-positive cells into dopamine-producing neurons.
  • the arrows indicate TH protein-positive dopaminergic neurons.
  • FIG. 18 is a photograph showing RT-PCR results obtained by analyzing the expression of ES cell-specific genes (ERas and Nanog) in Lrp4-positive cells and Lrp4-negative cells.
  • the dopamine production-euron proliferative progenitor cell marker polynucleotide probe of the present invention is used as a single and a Z or reagent for selecting and / or detecting a donomin production-euron proliferative progenitor cell.
  • the polynucleotide used as the probe comprises a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: or 2, which is detected in donomin-producing euron proliferative progenitor cells.
  • SEQ ID NO: 1 is the base sequence of mouse Lrp4 cDNA
  • SEQ ID NO: 2 is the base sequence of human Lrp4 cDNA, each of which is registered in GenBank (mouse: Accession No. NM_016869; human: Accession No. XM — 035037).
  • marker polynucleotide probe refers to a plurality of bases such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), as long as it can detect Lrp4 expression, particularly transcribed mRNA. Or the polymer which consists of a base pair is pointed out. It is known that double-stranded cDNA can also be used as a probe in tissue in situ hybridization. One includes such double-stranded cDNA.
  • a marker polynucleotide probe that is particularly preferred as a V-probe for detecting RNA in tissues includes an RNA probe (riboprobe).
  • the marker polynucleotide probe of the present invention is a base other than natural, such as 4-acetylcytidine, 5- (carboxyhydroxymethyl) uridine, 2′-0-methylcytidine, 5-carboxymethylaminomethyl-2.
  • -Thiouridine 5-carboxymethylaminomethyluridine, dihydrouridine, 2'-0-methyl pseudouridine, 13-D-galactosylquieosin, 2 and 0-methylguanosine, inosine, N6-isopentyl Denosine, 1-Methyladenosine, 1-Methyl pseudouridine, 1-Methylguanosine, 1-Methyllinosine, 2,2-Dimethylguanosine, 2-Methyladenosine, 2-Methylguanosine, 3-Methylcytidine, 5-Methyl Cytidine, N6-methyladenosine, 7-methylguanosine, 5-methylaminomethyluridine, 5-methoxyaminomethyl-2-thio Lysine, ⁇ -D-mannosylkyuecin, 5-methoxycarboromethyl-2-thiouridine, 5-methoxycarboromethyluridine, 5-methoxyuridine, 2-methylthio-6-
  • the marker polynucleotide probe of the present invention comprises a base sequence complementary to the base sequence encoding the amino acid sequence set forth in SEQ ID NO: 3 or 4.
  • the base sequence encoding the amino acid sequence described in SEQ ID NO: 3 or 4 includes the base sequence described in SEQ ID NO: 1 or 2, and the sequence described in SEQ ID NO: 1 or 2 due to the degeneracy of the genetic code. It contains a different base sequence.
  • the marker polynucleotide probe of the present invention also includes those comprising a sequence complementary to the base sequence encoding the sequence lacking the transmembrane region in addition to the amino acid sequence set forth in SEQ ID NO: 3 or 4. .
  • the term "complementary to the base sequence” means not only when the base sequence is perfectly paired with the saddle type, but also at least 70%, preferably 80% of them. More preferably, 90%, more preferably 95% or more (eg, 97% or 99%) is included. Paired means that T in the nucleotide sequence of the polynucleotide in the cage type (U in the case of RNA), A for T or U, G for C, and C for G Correspondingly, a chain is formed! /. The homology at the nucleotide sequence level between certain polynucleotides is determined by the BLAST algorithm (Altschul (1990) Proc. Natl. Acad. Sci.
  • the marker polynucleotide probe of the present invention includes a polynucleotide comprising a nucleotide sequence that is noblyzed under stringent conditions with respect to a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or 2.
  • the Lrp4 is known to have the nucleotide sequence shown in SEQ ID NO: 1 or 2. Its alternative isoforms and allelic variants may exist, and such isomers may be Those having a sequence complementary to the mutant can also be used as the marker polynucleotide of the present invention.
  • Such isoforms and allelic variants are known hybridisations such as colony hybridization, plaque hybridization, Southern blot, etc., using a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or 2 as a probe.
  • cDNA library and genome library of animals such as human, mouse, rat, rabbit, nomstar, chicken, pig, rabbit, goat, and hidge can be obtained.
  • cDNA A library "Molecular Cloning, A Laboratory Manual 2 nd ed. "(Cold Spring Harbor Press (1989).
  • Commercially available cDNA libraries and genomic libraries may also be used.
  • guanidine ultracentrifugation (Chirwin et al. (1979) Biochemistry 18: 5294-9) is performed on cells, organs, tissues, etc. that express Lrp4.
  • Total RNA is prepared by a known method such as the AGPC method (Chomczynski and Sacchi (1987) Anal. Biochem. 162: 156-9), and the mRNA is purified using an mRNA Purification Kit (Pharmacia) or the like.
  • a kit for directly preparing mRNA such as QuickPrep mRNA Purification Kit (Pharmacia), may be used.
  • cDNA is synthesized from the obtained mRNA using reverse transcriptase.
  • Kits for cDNA synthesis such as AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (Seikagaku Kogyo) are also commercially available.
  • cDNA is a 5'-RACE method using PCR (Frohman et al. (1988) Proc. Natl. Acad. Sci. USA 85: 8998-9002; Belyavsky et al. (1989) Nucleic Acids Res 17: 2919-32) may be synthesized and amplified.
  • a known method such as an oligo cap method (Maruyama and Sugano (1994) Gene 138: 171-4; Suzuki (1997) Gene 200: 149-56) is used. It can also be adopted.
  • the cDNA obtained as described above can be incorporated into an appropriate vector.
  • the stringent hybridization conditions in the present invention include, for example, “2 X SSC S0.1% SDS ⁇ 50.C”, “2 X SSC, 0.1% SDS ⁇ 42.C”, “1 X SSC ⁇ 0.1% SDS ⁇ 37 ° C '', more stringent conditions include, for example, ⁇ 2 X SSC, 0.1% SDS, 65 ° C '', ⁇ 0.5 X SSC, 0.1% SDS, 42 ° C '', ⁇ 0.2 X SSC, 0.1% SDS, 65 ° C. ”.
  • prehybridization is performed at 68 ° C for 30 minutes or more, and then the probe is added for 1 hour or more at 68 ° C. C and hybridize, then 3 x 20 min washes in 2 X SSC, 0.1% SDS at room temperature, 3 x 20 min washes in 1 X SSC, 0.1% SDS at 37 ° C, Finally, two 20 minute washes at 50 ° C in 1 X SSC, 0.1% SDS may be considered.
  • prehybridize at 55 ° C for 30 minutes or more, add the labeled probe, and incubate at 37-55 ° C for 1 hour or more.
  • the temperature of the prehybridization and the hybridization can be 60 ° C, and the stringent condition can be 68 ° C.
  • the conditions such as salt concentration and temperature of the buffer, considers other conditions such as probe concentration, probe length, reaction time, etc. Conditions for obtaining allelic mutants and corresponding genes from other species can be set.
  • the polynucleotide to be hybridized is at least 50% or more, preferably 70%, more preferably 80%, even more preferably 90% (e.g. 95%) with respect to the nucleotide sequence comprising the base of SEQ ID NO: 1 or 2.
  • a polynucleotide containing a nucleotide sequence having 99% identity is mentioned. Such identity is similar to the homology determination described above (Blt algorithm (Altschul (1990) Proc. Natl. Acad. Sci. USA 87: 2264-8; Karlin and Altsc hul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-7).
  • BLASTN Altschul et al. (1990) J. Mol
  • BLASTX Altschul et al. (1990) J. Mol
  • Biol. 215: 403-10 has been developed and is available. For specific analysis methods, you can refer to http: ⁇ www.ncbi.nlm.nih.gov.
  • Lrp4 has a structure and function similar to Lrp4, such as Lrp4 lysoform mutants, by means of gene amplification technology (PCRXCurrent Protocols in Molecular Biology, John Wiley & Sons (1987) Section 6.1-6.4).
  • the gene is extracted from a cDNA library and a genome library of animals such as human, mouse, rat, rabbit, hamster, -bird, pig, rabbit, goat, and hidge. Use primers designed based on sequence You can get it.
  • the base sequence of the polynucleotide can be confirmed by sequencing by a conventional method. For example, it can be confirmed by the dideoxynucleotide chain termination method (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74: 5463). It is also possible to analyze the sequence using an appropriate DNA sequencer.
  • the marker polynucleotide probe of the present invention encodes the above (1) a sequence complementary to the nucleotide sequence of SEQ ID NO: 1 or 2 and (2) the amino acid sequence described in SEQ ID NO: 3 or 4 (3) a sequence complementary to a base sequence encoding a sequence lacking the transmembrane region in the amino acid sequence described in SEQ ID NO: 3 or 4, and (4) SEQ ID NO: 1 or
  • a polynucleotide comprising a base sequence comprising at least 15 consecutive bases in each base sequence of a sequence that is noisy under a stringent condition with respect to a polynucleotide having a base sequence ability of 2 is included.
  • Such a polynucleotide consisting of a base sequence containing at least 15 consecutive bases can be used as a probe for detecting the expression of Lrp4 mRNA and as a primer for amplification and detection.
  • a probe it is desired to be composed of 15 to 100, preferably 15 to 35 bases.
  • a primer at least 15, preferably 30 bases are used. It is desirable that it is configured.
  • a primer it may be designed in a form in which a restriction enzyme recognition sequence, a tag, etc. are added to the sequence complementary to the target sequence in the 3 'end region and the 5' end side. it can.
  • Such a polynucleotide comprising a base sequence containing at least 15 consecutive bases can be hybridized to an Lrp4 polynucleotide.
  • the marker polynucleotide probe of the present invention includes (1) a nucleotide sequence described in SEQ ID NO: 1 or 2, and (2) a polypeptide having an amino acid sequence ability described in SEQ ID NO: 3 or 4. (3) a nucleotide sequence consisting of a polynucleotide encoding a polypeptide having a sequencing ability lacking the transmembrane region in the amino acid sequence described in SEQ ID NO: 3 or 4, and (4) SEQ ID NO: 1 or 2 Base sequence consisting of a polynucleotide that hybridizes under stringent conditions to the polynucleotide having the base sequence ability described in 1 or 2 The first polynucleotide having the base sequence ability described in any one of A second polynucleotide that is hybridized under stringent conditions.
  • the second polynucleotide is preferably a polynucleotide comprising a base sequence comprising at least 15 consecutive bases.
  • the marker polynucleotide probe of the present invention can be prepared from cells expressing Lrp4 by the above-described hybridization method, PCR method or the like. Moreover, based on the known sequence information of Lrp4, the marker polynucleotide probe of the present invention can also be produced by chemical synthesis. Riboprobes, which are particularly preferred for detecting RNA in tissues, can be obtained, for example, by inserting the Lrp4 gene cloned in the plasmid vector pSP64 or a part thereof in the reverse direction and performing run-off transcription of the inserted sequence portion. it can.
  • pSP 64 contains SP6 promoter
  • a method for preparing a riboprobe by combining phage T3, ⁇ 7 promoter and RNA polymerase is also known.
  • the marker polynucleotide probe of the present invention may be used as a reagent for identifying dominamine-producing euron proliferative progenitor cells.
  • the marker polynucleotide probe may be, for example, sterile water, Saline, vegetable oils, surfactants, lipids, solubilizers, buffers, stabilizers, preservatives, and the like may be mixed as necessary.
  • a dopaminergic neuron progenitor cell marker antibody (hereinafter sometimes referred to as “the antibody of the present invention”) that can be used to select dopaminergic neuron progenitor cells from brain tissue or cultured cells.
  • the antibody of the present invention Unlike Lrp4 mRNA, Lrp4 polypeptide is expressed not only in dopamine production before mitotic arrest-Euron proliferative progenitor cells, but also in dopamine production-Euron progenitor cells after mitotic arrest. Can be used to select and Z or obtain dopamine producing-euron progenitor cells before and after mitotic arrest.
  • the antibodies of the present invention include polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies (scFV) (Huston et la. (1988) Proc. Natl. Acad. Sci. USA 85: 5879-83; The Pharmacology of Monoclonal Antibody, vol.113, Rosenburg and Moore ed., Springer Verl ag (1994) pp.269-315), humanized antibody, multispecific antibody (LeDoussal et al. (1992) Int. J. Cancer Suppl. 7 : 58—62; Paulus (1985) Behring Inst. Mitt.
  • antibody fragments such as Fab, Fab ′, F (ab ′) 2, and Fv are included.
  • the antibody of the present invention may be modified with PEG or the like, if necessary.
  • the antibody of the present invention may be detected without using a secondary antibody by producing it as a fusion protein with j8-galactosidase, maltose binding protein, GST, green fluorescent protein (GFP) and the like.
  • the antibody of the present invention may be modified so that the antibody is recovered and obtained using avidin, streptavidin or the like by labeling the antibody with piotin or the like.
  • the antibody of the present invention comprises (1) a polypeptide encoded by the nucleotide sequence of SEQ ID NO: 1 or 2, (2) a polypeptide having an amino acid sequence ability described in SEQ ID NO: 3 or 4, and (3) a sequence A polypeptide comprising an amino acid sequence lacking a transmembrane region in the amino acid sequence described in No. 3 or 4; (4) one or more amino acids are deleted, inserted or substituted in the amino acid sequence described in SEQ ID No.
  • polypeptide that also has an added amino acid sequence ability (5) a polypeptide encoded by a nucleotide sequence that is hybridized under stringent conditions to a sequence complementary to the nucleotide sequence of SEQ ID NO: 1 or 2; And (6) a fragment of the polypeptide of (1) to (5) above, which is an antibody specific to any of the polypeptides having at least 8 amino acid residues.
  • the antibody of the present invention may be an antibody that binds to a polypeptide comprising the amino acid sequence described in any one of (1) to (4) below or a partial sequence thereof.
  • An amino acid sequence comprising a polypeptide encoded by a polynucleotide that is hybridized under stringent conditions with respect to a polynucleotide that also has a sequence ability complementary to the nucleotide sequence.
  • the polypeptide having the partial sequence is preferably a polypeptide having at least 6 consecutive amino acid residues (for example, 8, 10, 12, or 15 amino acid residues or more).
  • amino acid sequence represented by SEQ ID NO: 3 one or more amino acids are deleted or replaced.
  • amino acid sequence that has been changed or added, or mutated by a combination thereof include, for example, 1 to 9 (for example, 1 to 5, preferably 1 in the amino acid sequence represented by SEQ ID NO: 3).
  • amino acid sequence in which 1 to 9 (eg, 1 to 5, preferably 1 to 3, more preferably 1 to 2, more preferably 1) amino acids are substituted with other amino acids ( iv) Examples of the amino acid sequence mutated by the combination of (i) to (iii) above.
  • amino acid sequence represented by SEQ ID NO: 4 one or more amino acids are deleted, substituted or added, or mutated by a combination thereof, for example, (0 represented by SEQ ID NO: 4 Amino acid sequence in which 1 to 9 amino acids in the amino acid sequence to be deleted (eg, 1 to 5, preferably 1 to 3, more preferably 1 to 2, more preferably 1) are deleted.
  • 1 to 9 amino acids for example, 1 to 5, preferably 1 to 3, more preferably 1 to 2, more preferably 1 Added amino acid sequence, (iii) 1 to 9 (for example, 1 to 5, preferably 1 to 3, more preferably 1 to 2) in the amino acid sequence represented by SEQ ID NO: 4. , More preferably 1) amino acid sequence substituted with other amino acid, (iv) above (i) to Examples of the amino acid sequence mutated by the combination (iii).
  • amino acid deletion means a mutation in which one or more of the amino acid residues in the sequence has been deleted. The amino acid residues in the middle of the sequence are deleted.
  • an amino acid means a mutation in which one or more amino acid residues are added to the sequence, and the addition includes those in which an amino acid residue is added to the end of the amino acid sequence and the amino acid sequence. Those with amino acid residues added in the middle are included.
  • amino acid substitution means a mutation in which one or more amino acid residues in a sequence are changed to amino acid residues of different types. When the amino acid sequence is modified by such substitution, it is preferable to perform conservative substitution. Conservative substitution refers to the amino acid before substitution. To change the sequence to encode amino acids of similar nature.
  • amino acids are, for example, nonpolar amino acids (Ala, lie, Leu, Met, Phe, Pro, Trp, Val), uncharged amino acids (Asn, Cys, Gin, Gly, Ser, Thr, Tyr), acidic amino acids (Asp, Glu), basic amino acids (Arg, His, Lys), neutral amino acids (Ala, Asn, Cys, Gin, Gly, He, Leu, Met, Phe, Pro, Ser, Thr, Tr p, Tyr , Val), aliphatic amino acids (Ala, Gly), branched amino acids (lie, Leu, Val), hydroxyamino acids (Ser, Thr), amide-type amino acids (Gin, Asn), sulfur-containing amino acids (Cys, Met) ), Aromatic amino acids (His, Phe, Trp, Tyr), heterocyclic amino acids (His, Trp), imino acids (Pro, 4Hyp), and the like.
  • nonpolar amino acids Alphatic amino acids
  • nonpolar amino acids or with non-charged amino acids.
  • substitution between Ala, Val, Leu and lie, between Ser and Thr, between Asp and Glu, between Asn and Gin, between Lys and Arg, and between Phe and Tyr preserves the properties of the protein.
  • the number and position of amino acids to be mutated are not particularly limited.
  • Particularly preferred antibodies of the present invention include the two anti-Lrp4 antibodies used in Example 4 and variants containing fragments thereof.
  • the two types of antibodies can be deposited internationally under the following accession numbers.
  • the antibody of the present invention uses Lrp4 polypeptide or a fragment thereof, or a cell expressing them as a sensitizing antigen. Can be manufactured.
  • a short fragment of Lrp4 polypeptide may be used as an immunogen in a form bound to a carrier such as ushi serum albumin, keyhole limpet hemocyanin, egg white albumin and the like.
  • known adjuvants such as aluminum adjuvant, complete (or incomplete) Freund's adjuvant, and Bordetella pertussis adjuvant may be used together with the Lrp4 polypeptide or a fragment thereof to enhance the immune response to the antigen.
  • the “Lrp4 polypeptide” in the present invention is a peptide polymer, and a protein having the amino acid sequence set forth in SEQ ID NO: 3 or 4 can be mentioned as a preferred example.
  • the amino acid residues constituting the Lrp4 polypeptide may be naturally occurring or may be modified.
  • Lrp4 polypeptides include proteins lacking the transmembrane region and fusion proteins modified with other peptide sequences.
  • the Lrp4 polypeptide only needs to have the antigenicity of the Lrp4 polypeptide.
  • the amino acid sequence of SEQ ID NO: 3 or 4 one or more amino acids are deleted or inserted.
  • Including a polypeptide having a substituted or added amino acid sequence It is known that mutated polypeptides that have the ability to align amino acids with one or more amino acids deleted, inserted, substituted, or added and maintain the same biological activity as the original polypeptide (Mark et al. al. (1984) Proc. Natl. Acad. Sci. USA 81: 5662—6; Zoller and Smith (1982) Nuclei c Acids Res. 10: 6487—500; Wang et al.
  • a polypeptide that maintains the antigenicity of Lrp4 having an amino acid sequence in which one or more amino acids are deleted, inserted, substituted, or added in the amino acid sequence of SEQ ID NO: 3 or 4 is Polynucleotides encoding peptides are known from Molecular Cloning, A Labora tory Manual 2 "ed. (Cold Spring Harbor Press (1989), Current Protocols in Molecular Biology JQohn Wiley & Sons (1987-1997); especially Section 8. 1-8.5), Hashimoto-Got o et al.
  • the Lrp4 polypeptide fragment is identical to a part of the above Lrp4 polypeptide, preferably at least 6 amino acid residues (for example, 8, 10, 12, or 15 amino acid residues).
  • a polypeptide fragment. Particularly preferred fragments include polypeptide fragments lacking the amino end, carboxyl end, and transmembrane domain. alpha helix And oc helix forming region, a amphiphilic region, ⁇ sheet and ⁇ sheet forming region, ⁇ amphoteric region, substrate binding region, high antigen index region, coil and coil forming region, hydrophilic region, hydrophobic region, Fragments including turns and turn-forming regions, and surface-forming regions are included in the polypeptide fragment of Lrp4.
  • the polypeptide fragment of Lrp4 in the present invention may be any fragment as long as it has the antigenicity of Lrp4 polypeptide.
  • the antigenic determinant of the polypeptide is a method of analyzing hydrophobic Z hydrophilicity on the amino acid sequence of the protein (Kyte-Doolittle (1982) J. Mol. Biol. 157: 105-22), analyzing the secondary structure Method (Chou- Fas man (1978) Ann. Rev. Biochem 47: 251-76) and further computer program (Anal. Biochem. 151: 540-6 (1985)) or a short peptide synthesized with its antigen. It can be confirmed by the PEPSCAN method (Japanese Patent Publication No. 60-500684).
  • Lrp4 polypeptides and polypeptide fragments can be isolated on the basis of their physical properties and the like, starting from cells or tissues that express Lrp4. Further, it can also be produced by a known gene recombination technique or by a chemical synthesis method. For example, when Lrp4 polypeptide is produced in vitro, it can be produced in vitro in a cell-free system according to methods such as in vitro translation (Dasso and Jackson (1989) Nucleic Acids Res. 17: 3129-44). Peptides can be produced.
  • a polynucleotide encoding the desired polypeptide is incorporated into an appropriate vector, an appropriate host cell is selected, and transformation is performed using the vector.
  • a desired polypeptide can be obtained by culturing the transformed cells.
  • Suitable vectors include various vectors such as plasmids, cosmids, viruses, butteriophages, cloning vectors and expression vectors (Molecular Cloning, A Laboratory Manual 2 "ed., Cold Spring). Harbor Protocol (1989); Current Protocols in Molecular Biology, John Wiley & Sons (1987)
  • the vector has a regulatory sequence so that the desired polynucleotide is expressed in the introduced host cell.
  • control sequence includes a promoter, a ribosome binding site, and a terminator if the host cell is prokaryotic, or a promoter and Terminator, possibly transactivator, transcription factor, poly A signal that stabilizes transcripts, splicing and polyaddition Nirui Pass Signals etc. are included.
  • control sequences include all components necessary for the expression of the polynucleotide linked thereto.
  • the vector may contain a selectable selection.
  • a signal peptide required for transferring the polypeptide expressed in the cell into the lumen of the endoplasmic reticulum or into the periplasm or the outside of the cell when a gram-negative bacterium is used as a host is added to the target polypeptide. In this way, it can be incorporated into the expression vector.
  • a signal peptide a signal peptide derived from a heterologous protein can be used.
  • a linker may be added and a start codon (ATG) or a stop codon (TAA, TAG or TGA) may be inserted as necessary.
  • a vector that enables expression of a polypeptide in vitro is pBEST (Promega).
  • various vectors suitable for expression in prokaryotic hosts are known (see “Basic Course of Microbiology 8 Genetic Engineering” (Kyoritsu Shuppan) etc.).
  • a vector suitable for the selected host and a method for introducing the vector into the host can be appropriately selected.
  • fungi such as yeast, higher plants, insects, fish, amphibians, reptiles, birds, mammals, various cultured cells (COS, Hela, C 127, 3 ⁇ 3, ⁇ ⁇ ⁇ 293, Bowes melanoma cells), myeloma, Vero, Namalwa ⁇ Nam alwa KJM-1, HBT5637 (Japanese Patent Laid-Open No. 63-299, etc.) can also be used as hosts for expressing Lrp4 polypeptide and antigenic fragments thereof, and is a vector system suitable for each cell.
  • a method for introducing a betater into a host cell is also known.
  • the insertion of DNA into the vector should be performed by a ligase reaction using a restriction enzyme site (Surrent Protocols in Molecular Biology, John Wiley & Sons (1987 Section 11.4-11.11; Molecular Cloning, A Laboratory Manual 2 ed., Cold Spring Harbor Press (1989) Section 5.61-5.63)
  • a nucleotide sequence with high expression efficiency is selected in consideration of the codon usage frequency of the host to be used to express Lrp4 polypeptide coding.
  • Vectors can be designed (Grantham et al. (1981) Nucleic Acids Res.
  • Hosts that produce Lrp4 polypeptides need a polynucleotide that encodes the Lrp4 polypeptide. Forces that are contained within the cell The polynucleotide may be under the control of its own promoter that is not in a naturally occurring position on the genome of the host cell, or it may be integrated into the genome, It is retained as an extrachromosomal structure!
  • Transduction of a vector into a host cell can be performed using a conventionally known method.
  • Host cells are cultured by a known method suitable for the selected cells. For example, when animal cells are selected, DMEM (Virology 8: 396 (1959), MEM (Science 122: 501 (195 2), RPMI16400. Am. Med. Assoc. 199: 519 (1967), 199 ( Proc. Soc. Biol. Med. 73: 1 (1950)), using medium such as IMDM, and adding serum such as urinary fetal serum (FCS) as necessary, pH about 6-8, 30-40 ° Cultivation can be carried out for about 15 to 200 hours in C. In addition, medium can be exchanged, aeration and agitation can be performed if necessary.
  • DMEM Virology 8: 396 (1959)
  • MEM Science 122: 501 (195 2)
  • RPMI16400 Am. Med. Assoc. 199: 519 (1967), 199 ( Proc. Soc. Biol. Med. 73: 1 (1950)
  • FCS urinary
  • an Lrp4 polypeptide produced by a gene recombination technique first contains a medium when the polypeptide is secreted extracellularly, a body fluid or the like particularly in the case of a transgenic organism, In the case of production, the cells can be lysed and the lysate can be recovered.
  • the protein purification methods known as salting-out, distillation, various chromatography, gel electrophoresis, gel filtration, ultrafiltration, recrystallization, acid extraction, dialysis, immunoprecipitation, solvent precipitation, dissolution
  • the desired polypeptide can be purified by an appropriate combination of solvent extraction, ammonium sulfate, ethanol precipitation, or the like.
  • ion exchange such as ion or cation exchange, affinity, reverse phase, adsorption, gel filtration, hydrophobicity, hydroxyapatite, phosphocellulose, lectin chromatography, etc.
  • a purification method using a glutathione column in the case of a protein and a nickel ram for a fusion protein to which a histidine tag has been added can also be used. If necessary, unnecessary portions can be cleaved using thrombin or factor Xa after purification.
  • Naturally-derived polypeptides may be purified and obtained! For example, it can be purified by affinity chromatography using an antibody against Lrp4 polypeptide (and urrent Protocols in Molecular Biology, John Wiley & 3 ⁇ 4ons (1987) section 16.1-1.6.19). Furthermore, the purified polypeptide can be modified with an enzyme such as chymotrypsin, darcosidase, trypsin, protein kinase, lysyl endopeptidase, if necessary.
  • an enzyme such as chymotrypsin, darcosidase, trypsin, protein kinase, lysyl endopeptidase, if necessary.
  • a polypeptide fragment of Lrp4 is produced by cleaving the Lrp4 polypeptide using an appropriate enzyme such as peptidase, in the same manner as the above-mentioned synthesis and genetic engineering techniques of Lrp4 polypeptide. You can also.
  • a polyclonal antibody for selecting a donomin-producing euron progenitor cell can be obtained by immunizing a mammal with an Lrp4 polypeptide purified as described above or a fragment thereof together with an adjuvant, if desired. Serum can be obtained from the treated animals. Mammals used here are not particularly limited, but rodents, maggots, and primates are common. Examples include rodents such as mice, rats and hamsters, maggots such as magpies, primates such as monkeys such as power quizzes, monkeys, baboons and chimpanzees.
  • the sensitizing antigen is appropriately diluted and suspended in Phosphate-Buffered Saline (PBS) or physiological saline, etc., mixed with an adjuvant as necessary, emulsified, and then injected intraperitoneally or subcutaneously into the animal. Done. Then, preferably Freund's incomplete Ajban Administer the sensitizing antigen mixed with the test several times every 4 to 21 days. Antibody production can be confirmed by measuring the desired antibody level in the serum by a conventional method.
  • the serum itself may be used as a polyclonal antibody or may be further purified.
  • a specific method for example, “Current Protocols in Molecular Biology Joohn Wiley & Sons (1987) Section 11.12-11.13) can be referred to.
  • spleen is removed from the animal immunized as described above, immune cells are separated from the spleen, and appropriate myeloma cells and polyethylene glycol (PEG) are isolated. ) Etc. to create a high-pridoma.
  • Cell fusion can be carried out according to Milstein's method (Galfre and Milstein (1981) Methods Enzymol. 73: 3-46).
  • suitable myeloma cells include, in particular, cells that make it possible to select fused cells with drugs.
  • the fused hyperidoma can be selected by culturing in a culture solution (HAT culture solution) containing hypoxanthine, aminobuterin, and thymidine that die other than the fused cells.
  • a clone that produces an antibody that binds to the polypeptide of the present invention or a fragment thereof can be selected from the prepared hybridomas and hybridomas.
  • the selected clone can be transplanted into the abdominal cavity of a mouse or the like, and ascites can be collected to obtain a monoclonal antibody.
  • human and ibridoma sensitized human lymphocytes initially infected with EB virus with an immunogen in vitro, and fused the sensitized lymphocytes with human-derived myeloma cells (such as U266). It can also be obtained by a method for obtaining a hyperidoma that produces human antibodies (Japanese Patent Laid-Open No. 63-17688). Human antibodies can also be obtained using antibody-producing cells produced by sensitizing a transgenic animal having a repertoire of human antibody genes (WO92 / 0391 8; WO93-02227; WO94 / 02602; W094). W096 / 33735; WO96 / 34096; Mend ez et al. (1997) Nat. Genet. 15: 146-56 etc.).
  • An example of using no hyperidoma is a method of immortalizing cancer cells by introducing an oncogene into immune cells such as lymphocytes that produce antibodies. It is done.
  • the antibody of the present invention can also be produced by a gene recombination technique (see Borrebaeck and Larnck (1990) Therapeutic Monoclonal Antibodies, MacMillan Publishers LTD., UK). For this purpose, first, the gene encoding the antibody is cloned into a hyperidoma or antibody-producing cell (such as sensitized lymphocyte). An antibody can be produced by incorporating the obtained gene into an appropriate vector, introducing the vector into a host, and culturing the host. Such recombinant antibodies are also included in the antibodies of the present invention.
  • Typical recombinant antibodies include chimeric antibodies composed of non-human antibody-derived variable regions and human antibody-derived constant regions, non-human antibody-derived complementarity determining regions (CDRs), and human antibody-derived framework regions. (FR) and the human IgA antibody that is potent with the constant region (Jones et al. (19 86) Nature 321: 522-5; Reichmann et al. (1988) Nature 332: 323-9; Presta (1992) C Op. Struct. Biol. 2: 593-6; Methods Enzymol. 203: 99-121 (1991).
  • the antibody fragment can be produced by treating the above-mentioned polyclonal or monoclonal antibody with an enzyme such as papain or pepsin.
  • an enzyme such as papain or pepsin.
  • it can be produced by genetic engineering using a gene encoding an antibody fragment (Co et al, (1994) J. Immu nol. 152: 2968-76; Better and Horwitz (1989) Methods Enzymol. 178: 476-96; Pluc kthun and Skerra (1989) Methods Enzymol. 178: 497-515; Lamoyi (1986) Methods Enzymol. 121: 652-63; Rousseaux et al. (1986) 121: 663-9; Bird and Walker (1991) Trends Biotechnol. 9: 132-7).
  • Multispecific antibodies include bispecific antibodies (BsAb), diabodies (Db), and the like.
  • Multispecific antibodies consist of (1) a method in which antibodies of different specificities are chemically coupled with a heterobifunctional linker (Paulus (1985) Behring Inst. Mill. 78: 118-32), (2) Methods for fusing hybridomas that secrete different monoclonal antibodies (Millstein and Cuello (1983) Nature 3 05: 537-9), (3) light and heavy chain genes (4 types of DNA) of different monoclonal antibodies for mouse myeloma Transfection of eukaryotic expression systems such as cells and isolation of bispecific monovalent moieties (Zimmermann (1986) Rev. Physio. Biochem. Pharmacol.
  • Db also has the strength of two divalent polypeptide chains that can be constructed by gene fusion.
  • a dimer antibody fragment that can be produced by known methods (see Holliger et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6444-8; EP404097; W093 / 11161).
  • the recovery and purification of antibodies and antibody fragments can be performed by using the protein purification techniques described above in the same manner as in the production of polypeptides other than antibodies (Antibodies: A Laboratory Manual, Ed Harlow and David Lane, Cold bp Harbor Harbor Laboratory (1988)).
  • a protein A column such as Hyper D, POROS, Sepharose F.F. (Pharmacia) can be used.
  • the concentration of the obtained antibody can be determined by measuring its absorbance or by enzyme-linked immunosorbent assay (ELISA) or the like.
  • the antigen-binding activity of an antibody can be measured by absorbance measurement, fluorescent antibody method, enzyme immunoassay (EIA), radioimmunoassay (RIA), ELISA, or the like.
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • ELISA ELISA
  • the antibody of the present invention is immobilized on a carrier such as a plate, and then the Lrp4 polypeptide is added, and then a sample containing the target antibody is added.
  • the antibody-containing sample may be a culture supernatant of antibody-producing cells, a purified antibody, or the like. Subsequently, a secondary antibody that recognizes the antibody of the present invention is added, and the plate is incubated.
  • the plate is then washed and the label attached to the secondary antibody is detected. That is, when the secondary antibody is labeled with alkaline phosphatase, the antigen binding activity can be measured by adding an enzyme substrate such as trophenylphosphate and measuring the absorbance.
  • an enzyme substrate such as trophenylphosphate
  • a commercially available system such as BIAcore (Pharmacia) can also be used for antibody activity evaluation.
  • the present invention relates to a reagent for identifying dopaminergic neuron progenitor cells comprising an anti-Lrp4 antibody as an active ingredient.
  • a reagent for identifying dopaminergic neuron progenitor cells comprising an anti-Lrp4 antibody as an active ingredient.
  • the antibody of the present invention which is an active ingredient
  • BSA protein stabilizer
  • a preservative or the like may be mixed as necessary.
  • the present invention provides a method for selectively selecting dopaminergic-euron proliferative progenitor cells as a homogeneous population.
  • Dopaminergic-Euron proliferative progenitor cells The marker polynucleotide probe can be used for selection.
  • the present invention also provides a method for selectively selecting dopaminergic neuron progenitor cells as a uniform population. Dopaminergic-euron progenitor cells can be suitably selected using the antibody of the present invention. In this way, by using the polynucleotide probe or antibody of the present invention, cells of the dopaminergic neuron lineage that finally produce dominine-separate into euron are specifically selected.
  • the term "selection” includes both detecting the presence of cells that express a marker in a sample and detecting and further separating or isolating the presence.
  • the present invention provides a method for selecting donomin production-euron proliferative progenitor cells, comprising the step of contacting the marker polynucleotide probe of the present invention with a cell sample containing dopamine production-euron proliferative progenitor cells.
  • the marker polynucleotide probe is preferably labeled with a radioisotope or non-radioactive compound.
  • radioisotopes for labeling include 35 S, 3 H, and the like.
  • RNA binding to the marker can be detected by detecting silver particles by emulsion radiography.
  • non-radioactive isotopes for labeling a marker polynucleotide probe include piotin and digoxigenin.
  • the detection of the marker for piotine can be performed using, for example, fluorescence or avidin labeled with an enzyme such as alkaline phosphatase or horse radish peroxidase.
  • an anti-digoxigenin antibody labeled with an enzyme such as fluorescence or alkaline phosphatase or horse radish peroxidase
  • detection can be performed by incubating with an enzyme substrate and depositing a stable dye at the marker position.
  • an in situ hybridization method (FISH) using fluorescence is simple and particularly preferable.
  • a dopaminergic neuron progenitor cell comprising the step of contacting an antibody for selecting the dopaminergic neuron progenitor cell of the present invention and a cell sample containing the dopaminergic-euron progenitor cell is selected.
  • a method is provided. That is, a cell sample predicted to contain dopaminergic-euron progenitor cells and the antibody of the present invention And dopaminergic neuron progenitor cells can be obtained by selecting cells that bind to the antibody (see Fig. 13). Prior to contact with the cell sample, the antibody of the present invention may be immobilized on an appropriate carrier and used.
  • purification by antibody affinity can be performed to selectively recover cells bound to the antibody.
  • the antibody of the present invention when the antibody of the present invention is bound to piotin, it can be purified by adding it to a plate or column bound with avidin or streptavidin.
  • cells in which magnetic particles are bound to an antibody and Lrp4 bound to the antibody and the antibody are expressed on the cell surface can be collected using a magnet.
  • a cell sorter and an anti-Lrp4 antibody labeled with fluorescence or the like it is also possible to select dominamine-producing euron precursor cells that express Lrp4 by flow cytometry.
  • the thus obtained donomin producing-euron progenitor cell population contains, for example, 40% or more, preferably 50% or more, more preferably 60% or more, particularly preferably 70% or more dopamine producing-euron progenitor cells.
  • dopaminergic neuron progenitor cells after mitotic arrest are selected and Z or produced by culturing selected dopaminergic neuron progenitor cells using the marker polynucleotide probe or antibody of the present invention.
  • a method is provided.
  • the marker polynucleotide probe or antibody of the present invention is contacted with a cell sample containing dopaminergic neuron progenitor cells, dopaminergic neuron progenitor cells are selected, and the selected cells are cultured.
  • the dopaminergic neuron progenitor cells selected using the marker polynucleotide probe or antibody of the present invention are cultured, and further selected using the dormamine-producing euron progenitor cell marker after mitotic arrest.
  • z or screening can also provide post-mitotic dopaminergic neuron progenitors that are particularly suitable for transplantation therapy with a low risk of tumor formation.
  • dopaminergic neuron progenitor cell markers after mitotic arrest include 65B13, Nurrl, TH and the like (WO2004 / 038018; Kawasaki et al. (2000) Neuron 28: 31-40; Wallen et al. ( 1 999) Exp. Cell Res. 253: 737-46).
  • a dopamine producing-Lon progenitor obtained by contacting a marker polynucleotide probe or antibody of the present invention with a cell sample containing dopamine producing Ron progenitor cells, selecting dopaminergic neuron progenitor cells, and further culturing if necessary.
  • a dopamine producing-Lon progenitor obtained by contacting a marker polynucleotide probe or antibody of the present invention with a cell sample containing dopamine producing Ron progenitor cells, selecting dopaminergic neuron progenitor cells, and further culturing if necessary.
  • dopaminergic neuron progenitor cells By selecting cells expressing 65B13 polypeptide by contacting the cells with an antibody against 65B13 polypeptide, dopaminergic neuron progenitor cells immediately after mitosis can be selected and Z or produced.
  • the present invention there is provided a method for selecting and z-producing or producing dominin-producing neurons by culturing selected dopaminergic neuron progenitor cells using the marker polynucleotide probe or antibody of the present invention. Is done. Further, according to the present invention, the marker polynucleotide probe or antibody of the present invention is contacted with a cell sample containing domin-producing Ron progenitor cells, dopamine-producing neuron progenitor cells are selected, and the selected cells are cultured. This provides a method for selecting and Z or producing dominogenic rhone.
  • a dopaminergic neuron progenitor cell selected using the marker polynucleotide probe or antibody of the present invention is cultured, and further selected and z or screened using a dopaminergic neuron marker, thereby producing a tumor. It is also possible to obtain dominogenic rhone that is particularly suitable for transplantation treatment with a low risk. Examples of the dopamine-producing long marker include DAT (Development. 2004. 131 (5): 1145-55.).
  • the marker polynucleotide probe or antibody of the present invention is contacted with a cell sample containing dopamine-producing neuron progenitor cells, dopamine-producing neuron progenitor cells are selected, and further cultured dopamine-producing neuron progenitor cells, against DAT
  • Dopamine-producing rhone can be selected and / or produced by contacting the antibody and selecting cells expressing DAT.
  • the present invention is contacted with a cell sample containing dopamine producing-euron progenitor cells, dopamine producing-euron progenitor cells are selected, and the selected cells are cultured or not cultured, and further, dopamine production after mitotic arrest-euron precursors Removing the cells provides a method for selecting and Z or producing dopamine producing-euron proliferative progenitor cells capable of culture growth.
  • Dominine production after mitotic arrest-removal of euron progenitor cells is achieved by selection and Z or removal using the dopamine production-euron progenitor cell marker after mitotic arrest.
  • dopamine-producing euron proliferative progenitor cells that can be grown in culture.
  • Examples of the donomin production-euron progenitor cell marker after mitotic arrest include 65B13, Nurrl, TH and the like (WO2004 / 038018; Kawasaki et al. (2000) Neuron 28: 3 1-40; Wallen et al (1999) Exp. Cell Res. 253: 737-46).
  • a dopaminergic neuron progenitor cell that has been contacted with an antibody of the present invention and a cell sample containing a dominaminergic neuron progenitor cell, selected for the dormamine-producing neuron progenitor cell, and cultured as necessary.
  • donomin producing-euron proliferative progenitor cells can be selected and Z or produced.
  • Selection and / or screening of Lrp4-expressing donomin producing-euron progenitor cells can also be performed using a promoter for Lrp4 (see, for example, JP 2002-51775 A).
  • a promoter for Lrp4 see, for example, JP 2002-51775 A.
  • a vector containing a construct in which a gene encoding a detectable marker such as GFP is linked to a promoter portion obtained by analysis of the expression control region of Lrp4 described later can be transfected into cells.
  • a gene encoding a marker can be knocked into the Lrp4 locus. In either case, the expression of the marker gene is detected specifically for dopaminergic neuron progenitor cells, and specific cells can be selected.
  • the cell sample to be used is preferably a cell in the ventral region of the midbrain, or a cultured cell containing dopaminergic neuron progenitor cells that have been induced to differentiate in vitro.
  • Dopamine production in vitro-Euron's fractional induction is based on known ES cells, bone marrow stromal cells, and nerve-derived immortal cell lines (Japanese translations of PCT publication No. 8-509215; Japanese translations of publication 11-506930) Gazette; Special Table 2002-522070) and neuronal progenitor cells (Japanese Patent Publication No. 11-509729) can be used as a starting material and can be performed by known methods.
  • dopamine production-euron can be differentiated from sputum by co-culturing the tissue obtained from the brain dopamine production-euron region force with a support cell layer derived from nerve tissue.
  • a method for inducing doomine-producing euron from normal non-donomin-producing nerve tissues such as the striatum and cortex is also known (Japanese Patent Publication No. 10-509319).
  • cells containing more dopamine-producing neurons can be obtained by culturing under hypoxic conditions (Japanese Patent Publication No. 2002-530068). 3; Dopamine production from ES cells (CCE) by 5-stage method (Lee et. Al. (2000) Nat. Biotech.
  • the cell sample used for the selection of the donomin producing-euron progenitor cells of the present invention may be a group of cells separated or cultured by any method including them.
  • the carrier for immobilizing the antibody of the present invention is preferably harmless to cells.
  • the carrier include synthetic or natural organic polymer compounds, inorganic materials such as glass beads, silica gel, alumina and activated carbon, and those whose surfaces are coated with polysaccharides, synthetic polymers and the like.
  • the shape of the carrier is not particularly limited, but a membrane or fiber.
  • Granular shape, hollow fiber shape, non-woven fabric shape, porous shape, Herkam shape, etc., and the contact area can be controlled by changing the thickness, surface area, thickness, length, shape, size, etc. it can.
  • ⁇ Dopamine production-kit for treating neurodegenerative diseases including euron progenitor cells and method for treating neurodegenerative diseases using dopaminergic neuron progenitor cells Acquired Lrp4 mRNA expression as an index using a polynucleotide probe
  • the cells obtained are dopamine-producing euron proliferative progenitor cells, and the cells obtained using the antibody as an indicator of Lrp4 polypeptide expression are dopamine-producing euron progenitor cells, indicating either mRNA or polypeptide. Even in this case, a cell population of the donomin production-euron series can be obtained.
  • the progenitor cells obtained by the method of the present invention have a posture, reflex, exercise, and safety in terms of safety, survival rate, and network-forming ability, compared with conventional mixed cell populations or dopamine-producing euron introduced with foreign genes. And reward-related behavior (reward- It is preferable for transplantation treatment of diseases related to associated behaviors, particularly neurodegenerative diseases such as Parkinson's disease, schizophrenia, and drug addiction (Hynes et al. (1995) Cell 80: 95-101).
  • Cells obtained using Lrp4 expression as an indicator can be used for transplantation as is or after in vitro growth ( Figure 13). Such cells are expected to have a therapeutic effect because they may be differentiated and matured at an optimal location in the brain.
  • the present invention relates to a dopaminergic progenitor-proliferating progenitor cell selected and produced using the marker polynucleotide probe or antibody of the present invention, a dopaminergic progenitor cell after mitotic arrest-
  • kit of the present invention containing domin-producing rhone, and transplanting the cells into the brain of a patient, Also provided are methods of treating neurodegenerative diseases.
  • dopaminergic progenitor cells that have been selected and Z or manufactured using the marker polynucleotide probes or antibodies of the present invention to produce kits for treating neurodegenerative diseases, post-mitotic division, Also provided is the use of dopaminergic neuron progenitor cells and Z or dominin producing neurons.
  • the neurodegenerative disease is preferably Parkinson's disease.
  • the kit of the present invention may contain a pharmaceutically acceptable carrier in addition to the cells.
  • the carrier examples include physiological saline, phosphate buffer, culture solution, serum, biological fluid, carboxymethylcellulose solution, and a solid that serves as a scaffold for cells (for example, cytodex3 (Amersham Bioscience, 17-0 485-01) Etc.), extracellular matrix components (for example, collagen, fibronectin, vitronectin, laminin, heparan sulfate, proteodalycan, glycosaminodarlican, chondroitin sulfate, hyaluron, elastin or a combination of two or more thereof) or gel-like For example, a support.
  • physiological saline for example, cytodex3 (Amersham Bioscience, 17-0 485-01) Etc.
  • extracellular matrix components for example, collagen, fibronectin, vitronectin, laminin, heparan sulfate, proteodalycan, glycosaminodarlican, chondroitin sulfate, hy
  • kit of the present invention can contain a pH adjuster, a buffer, a stabilizer, a preservative and the like.
  • the kit of the present invention may be used for single inoculation or multiple inoculations.
  • the dose can be appropriately selected depending on the body weight, age, administration method, etc. of the inoculated human or animal.
  • Dopaminergic progenitor cells selected using Lrp4 expression as an index may proliferate further in vivo, and thus a longer-term therapeutic effect is expected. Furthermore, dopaminergic progenitor cells selected using Lrp4 expression as an indicator By selecting conditions such as culture medium in vitro, it is possible to disperse it to an appropriate stage, which is preferable as a material for various nerve transplantation treatments. For example, as described above, for dopaminergic-euron progenitor cells selected using Lrp4 expression as an indicator, the dopaminergic neuron progenitor cell markers after cell division arrest (for example, 65B13, Nurrl, TH, etc.) By selecting as described above, it is possible to obtain cells that are safer in terms of transplantation.
  • the present invention relates to a method for culturing the above progenitor cells in vitro and propagating them in vitro. Dopaminergic production-Euron progenitor cells may be progenitor cells after mitotic arrest.
  • the dominine-producing neuron progenitor cells obtained by the method of the present invention are, for example, 1 X 10 2 to 1 X 10 8 cells, preferably 1 X 10 3 to 1 X 10 6 cells, Preferably 5-6 ⁇ 10 4 cells can be transplanted.
  • the first method is fixed brain transplantation, in which cell suspension is transplanted into the brain, stereotaxic surgery Noka 21 .
  • the cells may be transplanted by a black hand tr (microsurgery).
  • the transplantation method of neuronal tissue Backlund et al. (Backlund et al. (1985) J. Neurosurg. 62: 169-73), Lindvall et al. (Lindvall et al. (1987) An n. Neurol. 22: 457-68 ), Madrazo et al. (Madrazo et al. (1987) New Engl. J. Med. 316: 8 31-4).
  • the cells of the present invention can be used to isolate dopamine-producing euron proliferative progenitor cell-specific genes and genes specific for each maturation stage from proliferative progenitor cells to dopamine-producing neurons, and to search for targets for treating Parkinson's disease. It can also be used for elucidating the maturation process of dopaminergic neurons and for screening using maturation as an index.
  • the dopamine-producing urinary progenitor cells obtained using the polynucleotide probe or antibody of the present invention should be used as a material for isolating genes that are specifically expressed in the cells. Can do. Furthermore, genes that are specifically expressed in cells in which the dopaminergic neuron progenitor cells of the present invention are separated, induced, or proliferated can be examined and isolated. In addition, by examining genes that have different expression levels in differentiated Z-induced Z-proliferated cells and the original progenitor cells, the genes required for the differentiation of dominamine production in the living body of euron are examined. You can also Such genes are dopami It is very useful to determine and isolate the gene because it can be a candidate for treatment of a disease caused by any deficiency in euron.
  • SAGE serial analysis of gene expression
  • subtractive hybridizatio n, 3 ⁇ 4 differential feature ⁇ r representation difference analysis
  • RDA Liitsyn (1995) Trends Genet. 11: 303-7) etc.
  • RNA transcripts can also be captured visually in situ using quantitative fluorescence in situ hybridization (FISH) and digital image microscopy (Femino et al. (1998) Science 280: 585-90), which can be used in the present invention.
  • FISH quantitative fluorescence in situ hybridization
  • Femino et al. 1998 Science 280: 585-90
  • reverse transcription PCR When reverse transcription PCR is used in gene expression analysis, the expression of a specific gene can be roughly quantified. In this method, it is also possible to detect and analyze various isoforms of one RNA transcript.
  • reverse transcription PCR first, reverse transcription PCR using an exon-specific primer is performed, and if amplification products other than the expected product are detected, analysis of them results in analysis of mRNA isoforms generated by alternative splicing. Can be identified.
  • the method described in Pykett et al. (1994) Hum. Mol. Genet. 3: 5 59-64 can be referred to.
  • the present method using the PCR of the present invention is desirable in terms of speed, sensitivity, and simplicity.
  • the DNA chip is a small array in which oligonucleotides or DNA clones are fixed at a high density on the surface of a carrier such as glass.
  • a cDNA clone for each target gene or an oligonucleotide specific to the gene is immobilized on a chip to prepare a microarray.
  • RNA is prepared from the dopaminergic-euron progenitor cells of the present invention or differentiated Z-induced Z-grown cells from the progenitor cells, and subjected to reverse transcriptase treatment to obtain cDNA.
  • the obtained cDNA sample is labeled with a tag such as a fluorescent tag, and hybridization to the microarray is performed.
  • a tag such as a fluorescent tag
  • the percentage of genes that are actively expressed in the cell is high in the total labeled cDNA, and the percentage of genes that are not very expressed is low.
  • the intensity of the fluorescent signal that indicates the hybridization between the labeled cDNA and the cDNA clone or oligonucleotide on the chip indicates the degree of expression of each sequence in the labeled cDNA, making it possible to quantify gene expression. .
  • mRNA differential display that performs reverse transcription PCR using degenerate PCR primers, many genes of dopaminergic neuron progenitor cells of the present invention or differentiated Z-induced Z-proliferated cells from the progenitor cells are expressed. Expression can be analyzed simultaneously. First, a modified oligo dT primer in which one or two bases at the 3 ′ end are changed in the polyA tail of a specific mRNA is prepared, and the dopamine producing-euron progenitor cell of the present invention or a cell that has been differentiated and proliferated from the progenitor cell. A reverse transcriptase reaction is performed on total RNA isolated from the control cells to be compared for expression (Liang et al.
  • SAGE analysis is one of the preferred analysis methods in that it can simultaneously detect the expression of a large number of transcripts and does not require a special device for detection.
  • polyA + RNA is extracted from the dopaminergic-euron progenitor cells of the present invention or the progenitor cell potentiometer Z induced Z-proliferated cells by a conventional method.
  • the RNA is converted to cDNA using a pyotin oligo dT primer and treated with a 4-base recognition restriction enzyme (anchoring enzyme; AE).
  • AE anchoring enzyme
  • the linker one (1) single-stranded protrusion having a sequence complementary to that of the protruding portion caused by the action of the anchoring enzyme, (2) tags enzyme; IIS type which becomes (tagging e nZ yme TE) It consists of a 5 'base recognition sequence of restriction enzyme (cleaves at a fixed position 20 bp or less from the recognition site), and (3) an additional sequence sufficient to construct a specific primer for PCR.
  • the linker-ligated cDNA by cleaving the linker-ligated cDNA with a tag enzyme, only the cDNA sequence portion becomes a short sequence tag in a linker-binding state.
  • two different pools with different linkers are linked together and PCR amplified using primers specific to linkers A and B.
  • the amplification product is obtained as a mixture of various sequences including two adjacent sequence tags (ditags) bound to linkers A and B. Therefore, the amplified product is treated with an anchoring enzyme, and the released ditag portion is linked in a chain by a normal ligation reaction, which is then cloned.
  • the subtractive hybridization is a method often used for cloning genes whose expression is different between various tissues or cells.
  • the dopaminergic-progenitor progenitor cell of the present invention or the progenitor cell of the present invention From differentiation Z induction Z can also be used to clone genes that are specifically expressed in Z-proliferated cells.
  • test DNA a DNA sample of cells to be tested among the dopaminergic-euron progenitor cells of the present invention.
  • driver DNA the DNA of the cells to be compared
  • Test DNA and driver DNA can be used in reverse. In any case, the presence of a gene present in the test DNA but not in the driver DNA is detected.
  • the prepared test DNA and a large excess amount of driver DNA are mixed, denatured into single-stranded DNA, and then annealed.
  • a specific sequence that does not exist in a single driver DNA can be isolated as a double-stranded DNA consisting only of DNA derived from the test DNA.
  • the RDA method is a method that makes it possible to selectively amplify a sequence in a test DNA that does not exist in the driver DNA using PCR, and is used in the present invention in the same manner as the other methods described above. be able to.
  • Dopaminergic neuron progenitor cells detected and isolated as described above, or genes specific for cells obtained by differentiating, inducing or proliferating the precursor cells, are obtained by various known methods as described above. And can be sequenced and analyzed for expression.
  • a screening method comprising the steps of contacting the test substance with the dominine-producing euron progenitor cells of the present invention, and detecting the differentiation or proliferation of the progenitor cells due to the contact. Since the compound screened by this method exhibits a function of regulating donomin production-euron differentiation, proliferation, etc., it becomes a candidate for treatment of a disease caused by any defect in dopamine producing neurons, It is considered useful.
  • Examples of the dopaminergic-euron precursor cells of the present invention include cells selected using the polynucleotide probe or antibody of the present invention, and cells obtained by proliferating and inducing Z or differentiation of these cells. It is done.
  • test substance may be any compound! /, for example, an expression product of a gene library, a synthetic low molecular compound library, a synthetic peptide library, an antibody , Bacterial release material, cell (microorganism, plant cell, animal cell) extract, cell (microorganism, plant cell, animal cell) culture supernatant, purified or partially purified polypeptide, marine organism, plant or animal extract And soil, random phage peptide display libraries.
  • the differentiation and proliferation of the cells can be detected by comparing with the state of the cells without contact with the test substance!
  • Cell proliferation can be carried out by morphological observation under a microscope, or by detecting and quantifying substances such as dopamine produced in the cells.
  • the Lrp4 expression control region can be cloned from genomic DNA by a known method using the Lrp4 gene sequence.
  • the transcription start point identification method such as the S1 mapping method (Cell Engineering Supplement 8 New Cell Engineering Experiment Protocol, Department of Cancer Research, University of Tokyo, Shujunsha (1993) pp.362-374)
  • the gene expression control region can be cloned by screening a genomic DNA library using 15 to 100 bp, preferably 30 to 50 bp, as the probe DNA at the 5 ′ end of the gene. (In the present invention, all or part of the bases of SEQ ID NO: 1 or 2).
  • the clone obtained in this manner contains a 5 'untranslated region of lOkbp or more, it is then treated with exonuclease or the like to be shortened or fragmented. Finally, a reporter gene is used to evaluate the presence / absence, strength, control, etc. of the sequence portion containing the shortened expression control region candidate to maintain the activity of the Lrp4 expression control region. The minimum required unit can be determined.
  • the gene expression control region is a program such as Neural Network (http: ⁇ www.fruitfly.org.
  • the Lrp4 gene expression control region isolated as described above is produced in vivo by dopamine production. It can also be used to produce the desired protein specifically for live-euron proliferative progenitor cells.
  • Lrp4 polypeptide Since Lrp4 polypeptide has a transmembrane domain, it is considered that Lrp4 polypeptide exists in a state of being embedded in a cell membrane in nature. Since Lrp4 is expressed in dopaminergic-euron precursor cells, it is considered that Lrp4 is involved in growth control of dopaminergic-euron precursor cells and differentiation and maturation of uron. Thus, ligands that may exhibit functions such as antagonists to Lrp4 may be used to control the in vivo, ex vivo and in vitro differentiation of dopamine production-euron. . In identifying a ligand for an Lrp4 polypeptide, first, the Lrp4 polypeptide is brought into contact with a candidate compound and tested for binding.
  • the Lrp4 polypeptide can be used by immobilizing it on a carrier or expressing it in a state embedded in a cell membrane.
  • candidate compounds gene library expression products, natural components derived from marine organisms, extracts from various cells, known compounds and peptides, natural components derived from plants, biological tissue extracts, microbial extracts The culture supernatant and a group of peptides (J. Mol. Biol. 222: 301-10 (1991)) produced randomly by the phage display method and the like are included.
  • the candidate compound may be labeled to facilitate detection of the bond.
  • the present invention revealed that Lrp4 mRNA is transiently expressed in dominine-producing euron proliferative progenitor cells. Therefore, Lrp4 is involved in the control of progenitor cell proliferation and in the differentiation and maturation of euron. It was thought that. Thus, those that inhibit Lrp4 gene expression may be used to control the in vivo, ex vivo and in vitro differentiation of dopamine production-euron. Examples that can inhibit gene expression include antisense, ribozyme, and small interfering RNA (siRNA). Accordingly, the present invention provides such antisense, ribozyme and double stranded RNA.
  • the mechanism by which antisense suppresses the expression of the target gene includes (1) inhibition of transcription initiation by triple-strand formation, and (2) a local open loop structure site formed by RNA polymerase. (3) Inhibition of transcription by the formation of RNA, (3) Inhibition of transcription by RNA formation, (4) Inhibition of splicing by hybridization at the intron-exon junction, (5) Inhibition of spliceosome formation site Splicing suppression by hybridization, (6) Suppression of mRNA translocation to the cytoplasm by hybridization with mRNA, (7) Splicing suppression by hybridization with cabbing site or poly A addition site, (8) Translation initiation factor Suppression of translation initiation by hybridization with a binding site, (9) Suppression of translation by formation of a hybrid with a ribosome binding site, (10) Suppression of elongation of a peptidyl chain by formation of a hybrid with an mRNA translation region or polysome binding site, and (11) Genes by hybridization between nucleic
  • the Lrp4 antisense nucleic acid of the present invention may be a nucleic acid that suppresses gene expression by any of the mechanisms (1) to (11) described above, that is, the translation region of the target gene that inhibits expression. Of course, it may contain an antisense sequence for the sequence of the untranslated region.
  • the DNA encoding the antisense nucleic acid can be used by ligating under an appropriate control sequence that allows its expression.
  • the antisense nucleic acid may be any nucleic acid that effectively inhibits the expression of the gene without needing to be completely complementary to the translated or untranslated region of the target gene.
  • Such an antisense nucleic acid has a chain length of at least 15 bp or more, preferably lOObp or more, more preferably 500 bp or more, usually within 3000 bp, preferably within 2000 bp, more preferably within lOOObp, and the target gene. It is preferably 90% or more, more preferably 95% or more identical to the complementary strand of the transcription product.
  • Such an antisense nucleic acid can be prepared by phosphorothioate method (Stein (1988) Nucleic Acids Res. 16: 3209-21) based on the Lrp4 polynucleotide.
  • Ribozyme is a general term for catalysts having RNA as a component, and is broadly classified into large ribozyme and small liboyme.
  • Large ribozyme is an enzyme that cleaves the phosphate ester bond of nucleic acid and leaves a 5'-phosphate and 3'-hydroxyl group at the reaction site after the reaction.
  • Large ribozymes are further divided into (1) group I intron RNA that undergoes transesterification at the 5'-splice site with guanosine, and (2) self-splicing.
  • RNA component of ribonuclease P that cleaves the tRNA precursor by 5′-side hydrolysis.
  • a small ribozyme is a relatively small structural unit (about 40 bp) that cleaves RNA to form a hydroxyl group and a 3 ′ cyclic phosphate.
  • Small ribozymes include hammerhead type (Koizumi et al. (1988) FEBS Lett. 228: 225), hairpin type (Buzayan (1986) Nature 323: 349; Kikuchi and Sasaki (1992) Nucleic Acids Res.
  • ribozymes are easy to modify and synthesize, a variety of improved methods are known.For example, by designing the ribozyme substrate binding part to be complementary to the RNA sequence near the target site, A hammerhead ribozyme that recognizes and cleaves UC, UU or UA can be made (Koizumi et al. (1988) FEBS Lett. 228: 225; Makoto Koizumi and Eiko Otsuka (1990) Enzyme 35: 2191; Koizumi et al. (1989) Nucleic Acids Res. 17: 7059). Hairpin ribozymes can also be designed and manufactured according to known methods (Kikuchi and Sasaki (1992) Nucleic Acids Res. 19: 6751; Hiroshi Kikuchi (1992) Chemistry and Biology 30: 112).
  • the antisense nucleic acid and ribozyme of the present invention is a non-wino that utilizes a virus-derived vector such as a retrovirus, an adenovirus, and an adeno-associated virus, a ribosome, etc. in order to control the expression of a gene in a cell. It can also be used in gene therapy by ex-vivo method or in vivo method as a less vector or naked DNA.
  • a virus-derived vector such as a retrovirus, an adenovirus, and an adeno-associated virus, a ribosome, etc.
  • RNA interference is a phenomenon in which RNA having the same base sequence is degraded by introducing double-stranded artificial RNA into a cell (Fire et al. (1998) Nature 391: 806-11). ).
  • the siRNA of the present invention is not particularly limited as long as it inhibits the transcription of Lrp4 mRNA.
  • siRNA is a combination of a sense strand and an antisense strand against the sequence of the target mRNA, and at least 10 forces have the same number of nucleotides as the target mRNA.
  • the length is preferably 15 to 75, more preferably 18 to 50, and still more preferably 20 to 25 nucleotides.
  • siRNA can be introduced into cells by a known method. For example, a DNA that codes two RNA strands constituting siRNA on a single strand is designed, the DNA is incorporated into an expression vector, a cell is transformed with the expression vector, and siRNA is It can be expressed in cells as a double-stranded RNA having a hairpin structure. Plasmid expression vectors that produce siRNA continuously by transfection have also been designed (eg, RNAi-Ready pSIREN Vector ⁇ RNAi-Ready pSIREN-RetroQ Vector (BD Biosciences Clont6ch)).
  • Plasmid expression vectors that produce siRNA continuously by transfection have also been designed (eg, RNAi-Ready pSIREN Vector ⁇ RNAi-Ready pSIREN-RetroQ Vector (BD Biosciences Clont6ch)).
  • the base sequence of siRNA can be designed, for example, using a computer program of Ambion website (http://www.ambion.com/techlib/misc/siRNA_finder.html). Kits for screening functional siRNA (for example, BD Knockout RNAi System (BD Biosciences Clontech)) are also commercially available.
  • Example 1 Isolation and sequence analysis of dopaminergic neuron progenitor cell-specific gene
  • the ventral region of the E12.5 mouse midbrain was In the ventral direction, it was further divided into two regions, and a gene that was specifically expressed in the most ventral region including donomin-producing duron was identified by the subtraction (N-RDA) method.
  • One of the isolated fragments was a cDNA fragment encoding Lrp4 / Corin. Lrp4 encodes a type II transmembrane protein ( Figure 1).
  • oligonucleotides were annealed and prepared to 100M.
  • ad2S cagctccacaacctacatcattccgt (Self number: 5)
  • ad2A acggaatgatgt (SEQ ID NO: 6)
  • ad3S gtccatcttctctctgagactctggt (eyes column number: 7)
  • ad3A accagagtctca (Self column number: 8)
  • ad4S ctgatgggtgtcttctgtgagtgtgt (SEQ ID NO: 9)
  • ad4A acacactcacag (eyes ii column number: 10)
  • ad5S ccagcatcgagaatcagtgtgacagt (Self column number: 11)
  • adl3A acgatcgacagt (SEQ ID NO: 14)
  • RNA was prepared using RNeasy mini kit (Qiagen), and double-stranded cDNA was synthesized using cDNA synthesis kit (TAKARA). After digestion with the restriction enzyme Rsal, ad2 was added and cDNA was amplified by PCR for 15 cycles using ad2S as a primer.
  • the amplification conditions are as follows: Incubate for 5 minutes at 72 ° C, then perform 15 cycles of 94 ° C for 30 seconds, 65 ° C for 30 seconds, and 72 ° C for 2 minutes, and finally 72 ° C for 2 minutes. Incubated. All N-RDA PCRs were performed using the following reaction solution composition.
  • the cDNA amplified with ad2S was further amplified with 5 cycles of PCR. Amplification was performed at 94 ° C for 2 minutes, followed by 5 cycles of 94 ° C for 30 seconds, 65 ° C for 30 seconds, and 72 ° C for 2 minutes, and finally 72 ° C for 2 minutes. did.
  • CDNA was purified and digested with Rsal using Qiaquick PCR purification kit (Qiagen). 3 g was used for each subtraction.
  • the cDNA amplified with ad2S was further amplified with 5 cycles of PCR. Amplification was performed at 94 ° C for 2 minutes, followed by 5 cycles of 94 ° C for 30 seconds, 65 ° C for 30 seconds, and 72 ° C for 2 minutes, and finally 72 ° C for 2 minutes. did.
  • CDNA was purified and digested with Rsal using Qiaquick PCR purification kit (Qiagen).
  • Ad3 was added to 60 ng of Rsal-deleted cDNA. [0103] (l) -5. 1st subtraction
  • Tester and Driver prepared in 3 and 4 above were mixed, ethanol precipitated, and then dissolved in ⁇ CR buffer 1 ⁇ 1. After 5 minutes at 98 ° C., IxPCR buffer + lM NaCl 1 ⁇ 1 was added. After 98 minutes at 98 ° C, hybridization was performed at 68 ° C for 16 hours.
  • Hybridized cDNA was amplified by ad3S as a primer with 10 cycles of PCR (incubated at 72 ° C for 5 minutes, then 94 ° C for 30 seconds, 65 ° C for 30 seconds, and 72 ° C Ten cycles of 2 minutes of reaction were performed), digested with Mung Bean Nuclease (TAKARA), and purified with Qiaquick PCR purification kit. Amplification was performed with 13 cycles of PCR. Amplification was performed at 94 ° C for 2 minutes, followed by 13 cycles of 94 ° C for 30 seconds, 65 ° C for 30 seconds, and 72 ° C for 2 minutes, and finally 72 ° C for 2 minutes. Incubated.
  • Subtraction 1x 1 of 2xPCR buffer was added to 8ng of cDNA amplified in the first round. After 5 minutes at 98 ° C, IxPCR buffer + 1M NaCl 2 ⁇ 1 was added. After 5 minutes at 98 ° C, hybridization was performed at 68 ° C for 16 hours.
  • the hybridized cDNA was digested with Rsal and purified with the Qiaquick PCR purification kit. This was amplified by 11 cycles of PCR using ad3S as a primer (incubated at 94 ° C for 2 minutes, then reacted at 94 ° C for 30 seconds, 65 ° C for 30 seconds, and 72 ° C for 2 minutes) Eleven cycles were performed, and finally it was incubated at 72 ° C for 2 minutes. Digestion with Rsal was performed and ad4 was added.
  • mice 12.5 day embryos were embedded in OCT, and fresh frozen sections with a thickness of 16 m were prepared. After drying on a slide glass, it was fixed with 4% PFA for 30 minutes at room temperature. After washing with PBS, hybridization (1 ⁇ g / ml DIGized RNA probe, 50% formamide, 5xSSC, 1% SDS, 50 ⁇ g / ml yeast RNA, 50 ⁇ g / ml Heparin) at 65 degrees For 40 hours. Thereafter, washing (50% formamide, 5 ⁇ SSC, 1% SDS) was performed at 65 ° C., and RNase treatment (5 ⁇ g / ml RNase) was performed at room temperature for 5 minutes.
  • Lrp4 mRNA is specific to the ventral center from midbrain to hindbrain and spinal cord at E12.5, when dopamine production-euron occurs It was shown that From the hindbrain to the spinal cord, it showed an expression pattern similar to that of Shh mRNA, and was found to be specific to the organizer region, the floor plate ( Figures 2 and 5). In the midbrain, expression was observed only in the central part of the Shh mRNA expression region (Figs. 3 and 5).
  • Lrp4 TAGTCTACCACTGCTCGACTGTAACG (SEQ ID NO: 15) / CAGAGTGAACC
  • the marker polynucleotide probe of the present invention is useful not only for dopaminergic neuron proliferative progenitor cells derived from fetal mesencephalon but also as a marker for isolating dopaminergic progenitor cells that are induced to differentiate from ES cells in vitro. It is.
  • an anti-Lrp4 antibody was prepared by the following protocol, and expression analysis was performed by immunohistochemical staining.
  • a slice having a thickness of 12 awakes was prepared, attached to a glass slide, dried at room temperature for 30 minutes, and re-wetted with PBS (-). Thereafter, blocking (10% normal donkey serum, 10% normal goat serum / Block Ace) was performed at room temperature for 20 minutes, and the prepared anti-Lrp4 monoclonal antibodies (FERM BP-10315 and FERM BP-103 16 were mixed and used) (1/4 dilution of culture supernatant, 10% normal donkey serum, 10% normal goat serum, 2.5% Block Ace / PBS)) and anti-TH antibody (Chemicon, 0.7 ⁇ g / mU 10% normal donkey serum, 10% normal goat serum (2.5% Block Ace / PBS) was allowed to react at room temperature for 1 hour, followed by further 4 ° C reaction.
  • Lrp4-expressing cells were detected by flow cytometry.
  • a cell group containing dopamine-producing urolone progenitor cells that were induced from ES cells in vitro by the SDIA method was dispersed using a cell dispersion buffer (Invitrogen), and then fixed. Without permeabilization, anti-Lrp4 monoclonal antibody (FERM BP-10315 and FERM BP-10316 were mixed and used (1/4 dilution of culture supernatant, 1% sushi fetal serum, ImM EDTA / SDIA). Stained with sputum medium)) at 4 ° C for 20 minutes. Then, wash 3 times at 4 ° C for 3 minutes with 1% urine fetal serum and ImM E DTA / SDIA pre-cultured medium.
  • FERM BP-10315 and FERM BP-10316 were mixed and used (1/4 dilution of culture supernatant, 1% sushi fetal serum, ImM EDTA / SDIA). Stained with sputum medium)
  • Piotin-labeled anti-hamster Ig G antibody Jackson, 10 ⁇ g / ml, 1% ⁇ shea calf serum, after staining 4 ° C, 20 min at ImM EDTA / SDIA differentiation medium), and washed in the same manner, PE-labeled streptavidin (Pharmingen, 20 ⁇ ⁇ / ml , 1% ⁇ shea calf serum, ImM EDTA / SDIA min-medium medium), stained at 4 ° C for 20 minutes, and washed in the same manner. After staining, Lrp4-expressing cells were detected with a flow cytometer.
  • Lrp4 protein-expressing cells As a result of detection of Lrp4-expressing cells by flow cytometry using the prepared anti-Lrp4 monoclonal antibody, a population expressing Lrp4 protein was detected (Fig. 9). Lrp4 protein-expressing cells can be detected without fixation and permeabilization, so it was considered possible to separate Lrp4 protein-expressing cells in the state of living cells by using a flow cytometer with a cell sorter. . Since Lrp4 protein is thought to be expressed in dopaminergic neuron progenitor cells, anti-Lrp4 antibody was considered useful for isolating dopaminergic neuron progenitor cells.
  • the cDNA was synthesized and amplified in the same manner as in Example 1 and used for the RT-PCR cage. PCR was carried out in the following reaction system using 4 ng, 0.4 ng, and 0.04 ng of cDNA corresponding to the amplified cDNA in a vertical form.
  • Lrp4 TAGTCTACCACTGCTCGACTGTAACG (SEQ ID NO: 15) / CAGAGTGAACC CAGTGGACATATCTG (SEQ ID NO: 16)
  • MAP2 CCATGATCTTTCCCCTCTGGCTTCTG (SEQ ID NO: 25) / TTTGGCTGGA AAGGGTGACTCTGAGG (SEQ ID NO: 26)
  • Lrp4 positive cells are definitely precursors of dormamine-producing neuronal lineages. It was also confirmed to be a cell (Fig. 10).
  • the attached cells were fixed with 4% PFA / PBS at 4 ° C for 20 minutes, and washed twice with PBS at 4 ° C for 10 minutes. Thereafter, permeabilization was performed with 0.3% Triton X-100 / PBS at room temperature for 15 minutes, and blocking was performed with 10% normal donkey serum / Block Ace at room temperature for 20 minutes.
  • ⁇ nestin antibody (Cnemicon, 2 ⁇ g / ml, 10% normal donkey serum ⁇ 2.5% floc ace, 0.1% Triton X-100 / PBS), anti-j8 III-tubulin antibody (BABCO, 1/2000, 0.5 ⁇ g / m 1, 10% normal donkey serum, 2.5% Block Ace, 0.1% Triton X-100 / PBS), and reacted at room temperature for 1 hour, followed by 4 ° C. reaction.
  • the isolated cells were similarly seeded on a glass slide and supplemented with BrdU (Roche, 5-Bromo-2'-deoxy-uridine Labeling and Detection Kit II, lx) in the above medium. Incubate at 37 ° C for 18 hours, and continue until blocking, react with 2N HC1 at 37 ° C for 20 minutes, wash 3 times with PBS, anti-BrdU antibody, DNase (Roche, 5- Bromo-2 '-deoxy-uridin e Labeling and Detection Kit II, 1 x cone, in incubation buffei at 37 ° for 30 minutes [ ⁇ ).
  • BrdU Roche, 5-Bromo-2'-deoxy-uridine Labeling and Detection Kit II, lx
  • Anti-BrdU antibody (Sigma ⁇ 44 ⁇ g / ml, 10% normal donkey serum, 2.5% block ace, 0.1% Triton X-100 / PBS) at room temperature for 1 hour, followed by 4 ° C, C Reacted. The next day, after washing with 0.1% Triton X-100 / PBS three times at room temperature for 5 minutes,
  • FITC-labeled anti-mouse IgG antibody Jackson, 10 ⁇ g / ml, 10% normal donkey serum, 2.
  • Dissociated cells are plated on glass slides coated with poly-L-ornithine (Sigma, 0.002% in PBS), laminin (Invitrogen, 5 ⁇ g / ml in PBS), fibronectin (Sigma, 5 ⁇ g / ml in PBS) , N2 (Invitrogen ⁇ lx), B27 (Invitrogen, lx), Ascorbic acid (Sigma ⁇ 200uM) BDNF (ln vitrogen, 20ng / ml), bFGF (R & D, 10ng / ml) / SDIA differentiation medium at 37 ° C Incubated for 24 hours.
  • poly-L-ornithine Poly-L-ornithine
  • laminin Invitrogen, 5 ⁇ g / ml in PBS
  • fibronectin Sigma, 5 ⁇ g / ml in PBS
  • N2 Invitrogen ⁇ lx
  • B27 Invitrogen,
  • the cells were further cultured for 6 days in a medium obtained by removing bFGF from the above medium.
  • the cultured cells were fixed with 4% PFA / PBS at 4 ° C for 20 minutes, and washed twice with PBS at 4 ° C for 10 minutes.
  • permeabilization treatment was performed with 0.3% Triton X-100 / PBS at room temperature for 15 minutes, and blocking was performed with 10% normal donkey serum / Block Ace for 20 minutes at room temperature.
  • anti-TH antibody Cemicon ⁇ 0.3 ⁇ g / ml, 10% normal donkey serum, 2.5% block ace, 0.1% Triton X-100 / PBS
  • anti-j8 III-tubulin antibody BABCO, 1/2000 , 0.5 ⁇ g / ml, 10% normal donkey serum, 2.5% Block Ace, 0.1% Triton X-100 / PBS
  • Lrp4-expressing cells were isolated by flow cytometry, and the cells were transplanted into a Parkinson's disease model mouse linear body.
  • a cell group containing dopamine-producing urolone progenitor cells that were induced in vitro from ES cells by the SDIA method was dispersed using a cell dispersion buffer (Invitrogen), and then fixed. Without permeabilization, the anti-Lrp4 monoclonal antibody prepared in Example 4 (FER M BP-10315 and FERM BP-10316 was mixed and used (1/4 dilution of culture supernatant, 1% sushi fetal serum) Stained with ImM EDTA / SDIA medium)) at 4 ° C for 20 minutes.
  • the separated Lrp4 protein-positive cells were transplanted into a Parkinson's disease model mouse linear body, and the properties of the Lrp4 protein-positive cells in the brain were analyzed.
  • 6-OHDA (sigma, 2 ⁇ ⁇ / ⁇ ⁇ ) is injected into a medial forebrain bundle on one side of a 12-week-old mouse (sic), and the donomin production is projected from the midbrain to the linear body.
  • -Parkinson's disease model mice were created by killing Euron.
  • 6-OHDA was injected 3Xl0 4 cells per animal the Lrp4 protein positive cells in linear body side porting.
  • Transplanted Lrp4 protein-positive cells can be obtained in vitro by SDIA method using ES cells transfected with EGFP gene under the control of CAG promoter (Niwa et al. (1991) Gene. 108: 193-200)!
  • a cell group containing dopaminergic-euron progenitor cells induced to differentiate was stained with an anti-Lrp4 antibody in the same manner as in Example 4 and separated by a cell sorter.
  • 10% Urethan in saline, 500 ⁇ 1 was administered intraperitoneally and anesthetized. After intoxication, the chest was opened and saline was released from the left ventricle (Otsuka). 30 After infusion of ml, the perfusion was fixed with 30 ml of 4% PFA / PBS ( ⁇ ). After fixation, the brain was taken out and further fixed by immersion in 4% PFA / PBS ( ⁇ ) for 8 hours.
  • proking (10% normal donkey serum / Block Ace) is performed at room temperature for 20 minutes, anti-GFP antibody (Molecular probes, 20 ⁇ g / ml, 10% normal donkey serum ⁇ 10% Block Ace / PBS), Anti-MAP2 antibody (Sigma, mouse ascites, 100-fold dilution, 10% normal donkey serum, 10% block ace / PBS) or anti-TH antibody (Chemicon ⁇ 1 ⁇ g / ml, 10% normal donkey serum, 10% block ace) (PBS) was allowed to react at room temperature for 1 hour, followed by further 4 ° C reaction. Thereafter, washing was performed 4 times with 0.1% Triton X-100 / PBS (-) at room temperature for 10 minutes.
  • anti-GFP antibody Molecular probes, 20 ⁇ g / ml, 10% normal donkey serum ⁇ 10% Block Ace / PBS
  • Anti-MAP2 antibody Sigma, mouse ascites, 100-fold dilution, 10% normal donkey serum, 10% block ace / P
  • Alexa Fluor488 labeled anti-rabbit IgG antibody (Molecular probes, 4 ⁇ g / mU 10% normal donkey serum, 10% Block Ace / PBS), Cy3-labeled anti-mouse IgG antibody (Jackson, 10 ⁇ g / ml, 10 % normal donkey serum, 10% block ace / PBS) or Cy5-labeled anti-hidge IgG antibody (Jackson ⁇ 10 ⁇ g / ml, 10% normal donkey serum, 10% block ace / PBS) was allowed to react at room temperature for 1 hour. Thereafter, the cells were washed in the same manner, washed with PBS (-) at room temperature for 10 minutes, and sealed.
  • PBS PBS
  • mice show Lrp4 protein-positive cells 2 weeks after dopamine production by 6-OHDA-euron destruction. And was perfused 3 weeks after transplantation.
  • the transplanted Lrp4 protein-positive cells were neural progenitor cells, whereas most of the engrafted cells were mature neurons. He was shown to be mature and mature a + [-. In addition, approximately 20% of these engrafted cells were TH-positive, which strongly suggests that at least some of the transplanted Lrp4 protein-positive cells were separated into donomin producing-euron. It was.
  • the dopaminergic-euron progenitor cells isolated according to the present invention can be separated into dopaminergic-euron by transplanting into the brain. Production-Euron progenitor cells are considered therapeutically effective.
  • Lrp4 TAGTCTACCACTGCTCGACTGTAACG (SEQ ID NO: 15) / CAGAGTGAACC CAGTGGACATATCTG (SEQ ID NO: 16)
  • Lrp4 is expressed in stag el, which is an undifferentiated state of ES cells, but a dormamine-producing neuron progenitor cell is generated. It was revealed that expression was induced in stag e4 (FIG. 17A).
  • Lrp4-expressing cells were detected by flow cytometry using an anti-Lrp4 monoclonal antibody when ES cells were induced to differentiate into dopamine production-euron in vitro by the 5-stage method.
  • stage 4 a group of cells containing dopamine-producing euron progenitor cells (stage 4, days 7) differentiated from ES cells in vitro using the 5-stage method was added to the cell dispersion solution Accumax (Innovat ive Cell Technologies, Inc.), and after mixing with anti-Lrp4 monoclonal antibodies (FERM BP-10315 and FERM BP-10316) without using fixed and permeabilization (culture supernatant 1 / (2 dilutions) for 20 minutes at 4 ° C, then 1% urine fetal serum, 1 mM EGTA, 4.5 mg / ml glucose, 40 ng / ml DNase I / Hanks' Balanced Salt Solution Ca-Mg free Wash 3 times at 4 ° C for 3 minutes with (HBSS-), PE-labeled anti-NORMSTAR IgG antibody (8 g / ml (BD Bioscience), 1% urine fetal serum, 1 mM EGTA, 4.5 mg / mll
  • Lrp4 expression cells were analyzed by flow cytometry using anti-Lrp4 monoclonal antibody.
  • a group of cells containing dopamine-producing europone progenitor cells differentiated from ES cells in vitro by the 5-stage method was stained with an anti-Lrp4 antibody in the same manner as in Example 4, and using a cell sorter. Lrp4-positive cells were isolated.
  • the isolated cells were seeded on a glass slide coated with poly-L-ornithine (Sigma, 0.002% in PBS) and fibronectin (Sigma, 5 ⁇ g / ml in PBS), and N2 (Invitrogen ⁇ lx), ascorbic acid ( Sigma® 200 uM) was incubated in BDNF (R & D Systems® 20 ng / ml) / DMEM / F12 at 37 ° C. for 7 days. The cultured cells were then fixed with 2% PFA, 0.15% picric acid / PBS for 20 minutes at 4 ° C, and washed twice with PBS at 4 ° C for 10 minutes.
  • Lrp4-positive cells are dopaminergic neuron progenitor cells and were found to be able to mature in vitro. Lrp4 is also expressed in dopaminergic neuron progenitor cells induced by two different methods (SDIA method, 5-stage method), and is also expressed using anti-Lrp4 antibody. In addition, it was also possible to isolate a miscellaneous donomin-producing euron progenitor cell.
  • Lrp4 is useful as a dopaminergic-euron progenitor cell marker regardless of cell origin.
  • the 5-stage method is a method that can induce the differentiation of dopaminergic neuron progenitor cells without contact with animal-derived cells and components, and is expected to be clinically applied. Since Lrp4 is useful as a cell separation marker in this method, it is highly likely that it can be applied to transplantation therapy for neurodegenerative diseases including Parkinson's disease.
  • the most important safety factor is to remove undifferentiated ES cells that cause teratomas. Since Lrp4 is not expressed in undifferentiated ES cells (Example 3), it is expected that unseparated ES cells can be removed by separation using Lrp4 as a marker. In order to confirm this, RT-PCR was performed to determine whether undifferentiated ES cells were contained in the cells isolated using the Lrp4 antibody from cells induced to differentiate from ES cells in vitro using the SDIA method. By examining the expression of ES cells-specific genes ERas (Nature. 2003 423 (6939): 541-5) and Nanog (Cell. 2003 113 (5): 631-42.).
  • Example 5 Lrp4-positive cells and negative cells were separated by a cell sorter containing dominine-producing euron progenitor cells differentiated from ES cells in vitro by the SDIA method. Cell strength immediately after separation Total RNA was recovered and amplified cDNA was prepared. Of these, 4 ng, 0.4 ng, and 0.04 ng of cDNA were used in a vertical form and PCR was performed in the following reaction system.
  • ERas TGCTCTCACCATCCAGATGACTCACC (SEQ ID NO: 27) / TGGACCATAT CTGCTGCAACTGGTCC (SEQ ID NO: 28)
  • Lrp4 was identified as a gene that is specific and transiently expressed in dopaminergic-euron proliferative progenitor cells.
  • Lrp4 mRNA was specifically expressed in donomin-producing euron proliferative progenitor cells, and Lrp4 protein was specifically expressed in dopaminergic neuron progenitor cells including cells before and after mitotic arrest.
  • Lrp4 mRNA or Lrp4 polypeptide in cells as an indicator, dopamine production suitable for transplantation treatment for neurodegenerative diseases including Parkinson's disease in terms of safety, survival rate and network formation ability- It became possible to select cells of the uron series.
  • Lrp4 as a marker as in the present invention, even if they are used for treatments that require mature cells, they can be easily separated to an optimal state in vitro. You can make it.
  • genes specifically expressed in the cells can be isolated from the dopaminergic neuron progenitor cells obtained by the method of the present invention.
  • the cell may be Parkinson's disease It is also useful in developing medicines for neurodegenerative diseases such as
  • the early progenitor cells of dopamine production-euron proliferative progenitor cells obtained using Lrp4 mRNA as an indicator further reveals the maturation process of neurons, that is, various factors involved in the maturation process. To help. The elucidation of such factors is expected to greatly contribute to the treatment of neurodegenerative diseases.
  • it can also be used for screening for substances that regulate (inhibit or promote) the process using maturation of the cells as an index.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Neurosurgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Virology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

 本発明は、ドーパミン産生ニューロン前駆細胞を効率的に分離することを可能にする、Lrp4/Corinドーパミン産生ニューロン前駆細胞マーカーを検出するためのポリヌクレオチドプローブ及び抗体、並びに、それらを用いた前駆細胞の選択方法に関する。細胞における該Lrp4の発現を指標とすることにより、安全面、生存率及びネットワーク形成能の面でもパーキンソン病を含む神経変性疾患に対する移植治療に適した細胞を選択することが可能となる。

Description

明 細 書
Lrp4/Corinドーパミン産生ニューロン前駆細胞マーカー
技術分野
[0001] 本発明は、ドーノ ミン産生ニューロン前駆細胞を検出および選択するためのポリヌ クレオチドプローブ及び抗体、並びに、それらを用いたドーパミン産生-ユーロン前 駆細胞の検出および選択方法、並びに、ドーパミン産生-ユーロン前駆細胞等を用 いたパーキンソン病等の神経変性疾患を治療するためのキットおよび治療方法に関 する。
背景技術
[0002] ドーパミン系は、哺乳動物の脳において重要な運動調節、ホルモン分泌調節、情 動調節等に関与する非常に重要な系である。従って、ドーパミン作動性神経伝達に おける異常は、様々な神経系の障害を引き起こす。例えば、パーキンソン病は、中脳 黒質のドーパミン産生ニューロンの特異的な脱落が原因で起こる錐体外路系の神経 変性疾患である (HARRISON'S PRINCIPLES OF INTERNAL MEDICINE第 2卷第 23 版, Isselbacher et al.編, McGraw-Hill Inc., NY (1994) pp.2275- 7)。パーキンソン病 の治療法としては、産生されるドーノミン量の低下を補うために L-DOPA(3,4-ジヒドロ キシフエ-ルァラニン)を経口投与する方法が主に採られて 、るが、効果の持続性が 良くな 、ことが知られて 、る。
[0003] パーキンソン病治療において、最近では失われたドーパミン産生-ユーロンを補う ために、ドーノ ミン産生-ユーロン前駆細胞を含む 6〜9週齢の中絶胎児の中脳腹側 領域を移植する治療法も試みられている (特許文献 1;非特許文献 1〜6)。しかし、現 在のところ、この方法では細胞の供給面、倫理面 (Rosenstain (1995) Exp. Neurol. 33: 106; Turner et al. (1993) Neurosurg. 33: 1031-7)で問題があると共に、感染汚染の 危険性、免疫学的な移植片拒絶 (Lopez-Lozano et al. (1997) Transp. Proc. 29: 977 -80; Widner and Brudin (1988) Brain Res. Rev. 13: 287-324)、胎児組織が糖分解よ りも脂質代謝に主に依存しているための生存率の低さ (Rosenstein (1995) Exp. Neuro 1. 33: 106)等の様々な面で問題が指摘されている。 [0004] 倫理面や供給不足の問題を解決するために、例えば、ブタ由来の皮質、線条、及 び中脳細胞を用いる方法等も提案されている (例えば、特許文献 2〜4参照)。これら の方法においては、拒絶反応を抑制するため、細胞表面上の抗原 (MHCクラス I抗原) を改変するという煩雑な操作が必要とされる。移植片拒絶を解消する方法としては、 例えば、セルトーリ細胞を同時に移植することにより、局在的に免疫抑制する方法も 提案されている (特許文献 5〜6、及び非特許文献 7)。 MHCがマッチする血縁者、他 人の骨髄、骨髄バンク、及び臍帯血バンク等力 移植細胞を得ることも可能であるが 、患者自身の細胞を用いることができれば、余計な操作や手間なしに拒絶反応の問 題ち解決することができる。
[0005] そこで、中絶胎児由来の細胞に代えて、胚性幹細胞 (ES細胞)、骨髄間質細胞など の非神経系細胞からの in vitroにおけるドーパミン産生-ユーロンの分化系の移植材 料としての利用が有望視されている。実際、ラットパーキンソン病モデルの病変線条 への ES細胞移植により機能的なドーパミン産生ニューロンが形成されたとの報告もあ る(非特許文献 8)。将来的には ES細胞若しくは患者本人の持つ神経幹細胞からの 再生治療の重要性が増してくるものと思われる。
[0006] 神経組織の損傷の治療においては脳機能の再構築が必要となり、周囲の細胞と適 切なリンクを形成する(ネットワーク形成)ために成熟した細胞ではなく-ユーロンへと i n vivoにおいて分ィ匕し得る細胞を移植する必要がある。ニューロン前駆細胞の移植 にお 、て上述した供給面以外で問題となるのは、該前駆細胞が不均一な細胞集団 へと分ィ匕する可能性がある点である。例えば、パーキンソン病の治療においては、力 テコールァミン含有-ユーロンの中でもドーノ ミン産生-ユーロンを選択的に移植す ることが必要である。これまで、パーキンソン病の治療に用いることが提案されている 移植細胞としては、例えば、線条体 (非特許文献 3及び 9)、ヒト胎児神経由来の不死 化セルライン (特許文献?〜 9)、 NT2Z細胞の有糸分裂後ヒトニューロン (特許文献 10)、 ニューロン始原細胞 (特許文献 11)、ドーノ ミン等のカテコールアミンを産生するように 外来遺伝子によりトランスフエタトされた細胞、骨髄ストローマ細胞 (特許文献 12〜13) 、遺伝子改変された ES細胞 (非特許文献 8)等が挙げられる。その他、胎児中脳組織 由来の神経前駆細胞を FGF-8及び Shhに接触させることにより形成されたドーノ ミン 産生-ユーロン (特許文献 14)、及び NT2神経細胞をレチノイン酸で処理することによ りチロシン水酸化酵素を発現するようになった細胞 (特許文献 15)を用いることも提案 されている。し力しながら、いずれも、ドーパミン産生-ユーロンまたはドーノ ミン産生 ニューロンへと分ィ匕する細胞のみを含むものではない。
[0007] 未分ィ匕な細胞集団力 ドーパミン産生-ユーロンを選択的に濃縮 ·分離する方法と しては、ドーパミン産生-ユーロンで発現するチロシンノ、イドロキシラーゼ (以下、「TH 」と称する場合がある)等の遺伝子のプロモーター Zェンノヽンサ一の制御下で蛍光蛋 白質を発現するレポーター遺伝子を細胞集団の各細胞に導入し、蛍光を発する細 胞を分離することにより、ドーパミン産生-ユーロンを生きたまま可視化して濃縮'分 離、または同定する方法 (特許文献 16)が提案されている。この方法は、外来遺伝子 の導入という煩雑な工程を不可欠とするものであり、さらに、遺伝子治療に用いること を目的とする場合、レポーター遺伝子の存在は毒性、免疫原性の面からも問題であ る。
[0008] 特許文献 1:米国特許第 5690927号
特許文献 2:特表平 10-508487号公報
特許文献 3:特表平 10-508488号公報
特許文献 4:特表平 10-509034号公報
特許文献 5 :特表平 11-509170号公報
特許文献 6:特表平 11-501818号公報
特許文献 7:特表平 8-509215号公報
特許文献 8:特表平 11-506930号公報
特許文献 9:特表 2002-522070号公報
特許文献 10:特表平 9-5050554号公報
特許文献 11:特表平 11-509729号公報
特許文献 12:特表 2002-504503号公報
特許文献 13:特表 2002-513545号公報
特許文献 14:米国特許第 6277820号
特許文献 15:国際公開第 00/06700号 特許文献 16:特開 2002-51775号公報
非特許文献 1 : Spencer et al. (1992) N. Engl. J. Med. 327: 1541-8
非特許文献 2 : Freed et al. (1992) N. Engl. J. Med. 327: 1549-55
非特許文献 3 :Widner et al. (1992) N. Engl. J. Med. 327: 1556-63
非特許文献 4 : Kordower et al. (1995) N. Engl. J. Med. 332: 1118-24
非特許文献 5 : Defer et al. (1996) Brain 119: 41-50
非特許文献 6 : Lopez-Lozano et al. (1997) Transp. Proc. 29: 977-80
非特許文献 7 : Selawry and Cameron (1993) Cell Transplant 2: 123-9
非特許文献 8 : Kim et al (2002) Nature 418: 50-56
非特許文献 9 : Lindvall et al. (1989) Arch. Neurol. 46: 615-31
発明の開示
発明が解決しょうとする課題
[0009] 現時点でのパーキンソン病移植治療における大きな問題の一つは、中絶胎児の中 脳腹側領域、及び、 in vitroで分ィ匕誘導したドーノ ミン産生-ユーロン前駆細胞のい ずれもが多種の細胞の混合物である点である。神経回路形成における安全性を考え ると、目的の細胞種のみを分離して力も用いるのが望ましい。また、腫瘍形成の危険 性を考慮すれば、分裂停止後の神経細胞を分離して力 使用することが良いと考え られる。さらに、細胞の移植先の脳内での生存、及び正しくネットワーク形成する能力 を考えると、より早期のドーノミン産生-ユーロン前駆細胞を分離することにより治療 効果を増大させ得ると期待される。
課題を解決するための手段
[0010] そこで、ドーパミン産生-ユーロン前駆細胞特異的な遺伝子を単離するために、 E1 2.5マウス中脳腹側領域を背腹方向にさらに 2つの領域に切り分けて、ドーパミン産生 ニューロンを含む最も腹側の領域に特異的に発現する遺伝子をサブトラクシヨン法 (N — RDA;representational difference analysis法; RDA(Listsyn NA (1995) Trends Genet. 11 :303-7)の改良(「DNA断片の量の均一化方法及びサブトラクシヨン法」(WO2002/ 103007パンフレット))により同定した。その結果、本発明者らは、 Lrp4/Corinの単離に 成功した。 Lrp4は、 II型膜貫通蛋白質をコードしていた (図 1)。 [0011] Lrp4 mRNAは、中脳では腹側中心部に特異的に発現し、その発現領域は、ドーパ ミン産生- ロン増殖前駆細胞の存在する領域と一致する。さらに、 Lrp4とドーパミ ン産生- ロンのマーカーである THの発現と比較すると、両者のシグナルは背腹 方向の位置は一致するものの、重ならない (図 4及び 5)。これにより、細胞分裂を停止 し、神経管外層に移動した該前駆細胞では Lrp4 mRNAは発現していないことが示さ れた。従って、 Lrp4 mRNAを指標とすることにより、ドーパミン産生- ロン増殖前 駆細胞を特異的に検出および選択することができる。
[0012] そこで、本発明は、 Lrp4 mRNAを特異的に検出できるドー ミン産生- ロン増 殖前駆細胞マーカーポリヌクレオチドプローブ、及び、該プローブを利用したドーパミ ン産生- ロン増殖前駆細胞を選択する方法を提供するものである。さらに、本発 明は、このようなヌクレオチドプローブを用いて選択された分裂停止前のドー ミン産 生- ロン増殖前駆細胞 (以下、単に「ドーパミン産生- ロン増殖前駆細胞」と 称する場合がある)、並びに、該増殖前駆細胞を利用した、ドーパミン産生- ロン 増殖前駆細胞特異的遺伝子及び該前駆細胞からのドーパミン産生ニューロンへの 各成熟段階に特異的な遺伝子の単離方法、及び該前駆細胞の分化または増殖を 誘導する化合物の成熟を指標としたスクリーニング方法に関する。また、本発明のヌ クレオチドプローブを用いて選択された該増殖前駆細胞を培養し、分裂停止後のド ーパミン産生- ロン前駆細胞を含むドー ミン産生- ロン系列の細胞を得る こともできる。ここで、ドー ミン産生- ロン系列の細胞とは、ドーパミン産生-ュ ロン増殖前駆細胞、分裂停止後のドーパミン産生- ロン前駆細胞及び/また はドー ミン産生- ロンをいう。ドー ミン産生- ロン系列の細胞もまた、ドー パミン産生ニューロンへの各成熟段階に特異的な遺伝子の単離方法、及び該前駆 細胞の分ィ匕または増殖を誘導する化合物の成熟を指標としたスクリーニング方法に 利用することができる。よって、本発明は、本発明のヌクレオチドプローブを用いて選 択されたドーパミン産生- ロン増殖前駆細胞を培養しドーパミン産生- ロン 系列の細胞を得る方法、このようにして得られた細胞、該細胞を用いたドーパミン産 生ニューロンへの各成熟段階に特異的な遺伝子の単離方法、及び該細胞の分化ま たは増殖を誘導する化合物の成熟を指標としたスクリーニング方法に関する。 [0013] さらに、抗 Lrp4抗体を作製し、 Lrp4蛋白質の発現にっ 、て調べた。まず、組織内で の発現について確認したところ(図 8)、 Lrp4 mRNAと同様に発現していることが確認 された。この実験では、 TH発現領域でも Lrp4蛋白質のシグナルが検出されたが、増 殖前駆細胞は神経管最外層に向けて突起を伸展して 、るため、このシグナルが突起 上の蛋白質を検出した結果であるの力、または TH発現細胞も Lrp4蛋白質を発現して いるのかを区別することができな力つた。次に、抗 Lrp4抗体を用い、 Lrp4蛋白質が細 胞表面に発現している力否かをフローサイトメトリーにより解析した。サンプルには、 Lr p4 mRNAの発現が確認された細胞である、 in vitroにおいて ES細胞をドーノミン産生 ニューロン前駆細胞に分ィ匕誘導 (SDIA法)させた細胞を用いた。その結果、当該細胞 において Lrp4蛋白質が確かに細胞表面に発現していることが確認された (図 9)。この ような細胞表面に発現している蛋白質を分離マーカーとして利用すれば、細胞を生 きた状態で選択することができるため、特に望ましい (図 15参照)。また、 5- stage法によ り in vitroにおいて ES細胞をドーパミン産生-ユーロン前駆細胞に分化誘導させ、 RT - PCRおよび抗 Lrp4モノクローナル抗体を用いたフローサイトメトリーにより Lrp4の発 現を確認した。その結果、 5-stage法により分化されたドーパミン産生-ユーロン前駆 細胞においても、 Lrp4が発現していることが明ら力となった(図 17A,B)。
[0014] 次に、分化誘導 (SDIA法)させた細胞及びマウス胎児中脳腹側細胞より、抗 Lrp4抗 体を用いてセルソーターによる Lrp4陽性細胞の分離を行った。分離された細胞につ いて、 RT-PCR法による遺伝子発現の解析を行ったところ、ニューロン増殖前駆細胞 マーカーである Nestinの発現が認められた力 さらに分裂停止後の-ユーロンマーカ 一である MAP2を発現する細胞も含まれることが明ら力となった (図 10)。また、分裂停 止後のドーノ ミン産生-ユーロン前駆細胞マーカーである Nurrl及び TH力 Lrp4陽 性細胞集団において陰性細胞集団と比べて高レベルに発現されていた。従って、 Lr p4蛋白質を指標として抗体を用いて細胞の選択を行った場合、 Lrp4 mRNAを指標と する場合と異なり、分裂停止後のドーノミン産生ニューロン前駆細胞を含むドーパミ ン産生-ユーロン前駆細胞を単離することができる。以下、本明細書において、「ドー ノミン産生-ユーロン前駆細胞」とは、ドーノミン産生-ユーロン増殖前駆細胞および 分裂停止後のドーパミン産生-ユーロン前駆細胞をいう。また、 SDIA法を用いて in vit roで ES細胞より分化誘導した細胞から抗 Lrp4抗体を用いて分離した細胞につ ヽて、 ES細胞に特異的に発現する Erasおよび Nanogの発現解析を行った。その結果、 Lrp4 陽性細胞では発現が認められず、 Lrp4陰性細胞では双方の遺伝子の発現が確認さ れた(図 18)。従って、抗 Lrp4抗体を用いて細胞の選択を行うことにより、分化誘導を 行った後も未分ィ匕である ES細胞を選択'除去することが可能となる。さらに、 5-stage 法により in vitroにおいて ES細胞より分ィ匕誘導させたドーパミン産生-ユーロン前駆細 胞を含む細胞群から、 Lrp4陽性細胞を分離した。次に、分離した Lrp4陽性細胞を in vitroで培養した結果、 TH蛋白質陽性のドーノ ミン産生-ユーロンが誘導された(図 1 7C) 0このことより、 5- stage法によって誘導された Lrp4陽性細胞は、ドーパミン産生- ユーロン前駆細胞であり、 in vitroで成熟可能であることが明ら力となった。
[0015] よって、本発明は、 Lrp4蛋白質を特異的に検出する抗体、及び、該抗体を利用した ドーパミン産生ニューロン前駆細胞を選択する方法を提供するものである。さらに、本 発明は、このような抗体を用いて選択されたドーパミン産生-ユーロン前駆細胞、並 びに、該前駆細胞を利用した、ドーパミン産生ニューロン前駆細胞特異的遺伝子及 び該前駆細胞からドーパミン産生ニューロンへの各成熟段階に特異的な遺伝子の 単離方法、及び該前駆細胞の分化または増殖を誘導する化合物の成熟を指標とし たスクリーニング方法に関する。また、本発明の抗体を用いて選択された該前駆細胞 を培養し、その他の分ィ匕段階のドーパミン産生-ユーロン系列の細胞を得ることもで きる。このような細胞もまた、ドーパミン産生-ユーロンへの各成熟段階に特異的な遺 伝子の単離方法、及び該前駆細胞の分化または増殖を誘導する化合物の成熟を指 標としたスクリーニング方法に利用することができる。よって、本発明は、本発明の抗 体を用いて選択されたドーノ ミン産生-ユーロン前駆細胞を培養しドーノ ミン産生- ユーロン系列の細胞を得る方法、このようにして得られた細胞、該細胞を用いたドー パミン産生ニューロンへの各成熟段階に特異的な遺伝子の単離方法、及び該細胞 の分ィ匕または増殖を誘導する化合物の成熟を指標としたスクリーニング方法にも関 する。
[0016] さらに本発明者らは、抗 Lrp4モノクローナル抗体を用いて分離した Lrp4発現細胞を 、パーキンソン病モデルマウス線状体に移植した。その結果、移植したマウスの線状 体内に EGFP陽性細胞が認められたことから(表 1)、移植した Lrp4タンパク質陽性細 胞は、パーキンソン病モデルマウスの線状体において、生着しているものと考えられ る。また、生着したほとんどの細胞は、成熟した- ロンのマーカーである MAP2陽 性であり、 EGFP陽性の軸索が線状体内に長く伸展している様子も認められた (表 1 および図 16)。移植した Lrp4タンパク質陽性細胞が神経前駆細胞であつたのに対し 、生着したほとんどの細胞が成熟した神経細胞へと分ィ匕および成熟したこと、これら 生着した細胞の約 20 %は TH陽性であったことから、移植した Lrp4タンパク質陽性細 胞の少なくとも一部は、ドーパミン産生- ロンへと分ィ匕したことが強く示唆された。 したがって、本発明により分離されたドー ミン産生- ロン前駆細胞は、脳内に 移植することによってドーパミン産生ニューロンへの分化が可能であり、パーキンソン 病の治療に有効であると考えられる。すなわち、本発明は、本発明により分離された ドー ミン産生- ロン前駆細胞を含む、神経変性疾患、好ましくはパーキンソン 病を治療するためのキット、および、該ドーパミン産生- ロン前駆細胞を患者の 脳内に移植することを特徴とする、神経変性疾患、好ましくはパーキンソン病の治療 方法にも関する。
発明の効果
これまでに、ドーパミン産生- ロン増殖前駆細胞で特異的に発現する膜蛋白 質をコードする遺伝子は報告されていない。細胞膜表面に発現する Lrp4蛋白質に対 する抗体は、ドーパミン産生ニューロン前駆細胞の分離に非常に効果的であると考 えられる。例えば、抗 Lrp4抗体を用いて、中脳腹側領域または in vitroで分化誘導し たドーパミン産生- ロン前駆細胞を含む培養細胞から、 Lrp4発現細胞を分離す ることで、純粋なドーパミン産生- ロン前駆細胞を得ることができる(図 15)。また、 二つの異なる分化方法 (SDIA法または 5-stage法)により誘導された 、ずれのドーパミ ン産生ニューロン前駆細胞においても Lrp4の発現が確認されたことから、 Lrp4は、細 胞の由来を問わず、ドーパミン産生ニューロン前駆細胞マーカーとして有用である。 さらに、 Lrp4陽性細胞には ES細胞に特異的に発現する Erasおよび Nanogの発現が確 認されないことから、 Lrp4の発現を指標として、未分化の ES細胞を選別することが出 来る。 [0018] さらに、本発明において、分離したドーパミン産生-ユーロン前駆細胞をそのまま、 または in vitroで増殖させた後に移植することも可能である。本発明のドーパミン産生 ニューロン前駆細胞は、脳内の最適な領域で分ィ匕成熟していく可能性や in vivoでさ らに増殖する可能性もあり、長期的な治療効果が期待できる。また、 Lrp4発現細胞を i n vitroで分化、成熟させた後に移植を行えば、 in vivoで何らかの理由でドーパミン産 生-ユーロンへの分ィ匕が行われない場合にも、治療効果が期待できる。腫瘍化等の 危険性を考慮すれば、 in vitroで増殖させた Lrp4発現細胞を分ィ匕誘導した後に、 65B 13 (WO2004/038018パンフレット)等の分裂停止後のドーパミン産生-ユーロン前駆 細胞マーカーを用いて分離した細胞を移植すれば、より高 、安全性が期待できる。 いずれの方法でも、 Lrp4発現細胞を分離して移植治療に用いることで、目的の細胞 種のみを分離しているので安全性が高ぐまた、最も初期のドーパミン産生-ユーロ ン前駆細胞を用いることができるため、生存率やネットワーク形成能等の面でも高 ヽ 治療効果が期待される。分離直後の初期の該前駆細胞で最高の治療効果が得られ ない場合があつたとしても、本発明のマーカーにより分離される該前駆細胞は in vitro で培養する等して成熟させることもできるため、最適な分ィ匕段階の材料を調製するこ とを可能にするものである(図 6)。
[0019] 一方、純粋なドーパミン産生ニューロン前駆細胞は、ドーパミン産生ニューロンに特 異的な遺伝子の単離等、パーキンソン病治療のターゲット探索にも有効である。特に 、ドーパミン産生-ユーロン増殖前駆細胞は、ドーパミン産生-ユーロンの成熟過程 の研究や、成熟を指標にしたスクリーニング系だけでなぐ該前駆細胞を in vitroまた は in vivoで増殖させる薬剤のスクリーニング、及び、 in vivoで該前駆細胞から分化を 誘導する薬剤 (in vivoでの再生治療薬剤)のスクリーニング等にも有用である。
図面の簡単な説明
[0020] [図 l]Lrp4の構造を模式的に示す図である。 TM:膜貫通ドメイン、 FRI:frizzeledドメイン 、 LDLa:LDLレセプタードメイン、 SR:スカベンジャーレセプタードメイン、 Protease:セリ ンプロテアーゼドメイン。
[図 2]Lrp4及び Shhの mRNAの E12.5マウス後脳腹側及び脊髄における発現を in situ ノ、イブリダィゼーシヨン法により解析した結果を示す写真である。 [図 3]Lrp4、 Shh、チロシンヒドロキシラーゼ (TH)、及び NCAMの mRNAの E12.5マウス 中脳腹側における発現を in situハイブリダィゼーシヨン法により解析した結果を示す 写真である。
[図 4]Lrp4の中脳における発現パターンを模式的に示す図、並びに、 Lrp4、チロシン ヒドロキシラーゼ (TH)、 Sim-1及び NCAMの mRNAの E12.5マウス中脳腹側における発 現を in situノヽイブリダィゼーシヨン法により解析した結果を示す写真である。 VZ: ventr lcular zone、 ML: mantle layerG
[図 5]Lrp4の mRNAの E12.5マウス中枢神経系における発現を in situハイブリダィゼー シヨン法により解析した結果を示す写真である。 A:矢状面; B:Aの枠内部分の拡大写 真; C:Aの赤線位置での断面。 D:Lrp4、 Shh及びチロシンヒドロキシラーゼ (TH)の mRN Aの E12.5マウス中脳腹側における発現を示す。
[図 6]ドーパミン産生-ユーロンの発生から成熟までの間における Lrp4、 NCAM, TH 及び DATの mRNAの発現時期を模式的に示す図である。
[図 7]上は、 SDIA法による ES細胞からのドーノミン産生-ユーロンへの分ィ匕誘導を模 式的に示す図及び写真である。下の写真は、 SDIA法により ES細胞よりドーノ ミン産 生-ユーロンを分化誘導し、時間を追って Lrp4 mRNAの発現を RT-PCR法で調べた 結果を示す。
[図 8]E12.5マウス中脳における Lrp4蛋白質の発現を示す写真である。
[図 9]SDIA分ィ匕細胞における Lrp4蛋白質の細胞表面での発現を、抗 Lrp4抗体を用
V、てフローサイトメトリー解析した結果を示す図である。
[図 10]Lrp4陽性細胞における、各種ドーノ ミン産生-ユーロンマーカーの発現を分 祈した RT-PCRの結果を示す写真である。
[図 11]ドーノミン産生-ユーロンの発生から成熟までの間における Lrp4の mRNA及び 蛋白質、並びに、 TH mRNAの発現時期を模式的に示す図である。 Lrp4発現細胞の 中にドーパミン産生-ユーロンの増殖可能な前駆細胞と分裂停止した前駆細胞の両 方が存在することを示す。
圆 12]Lrp4陽性細胞の分化段階を調べた結果を示す写真である。
[図 13]Lrp4陽性細胞を in vitroにお ヽて増殖させた結果を示す写真である。 [図 14]Lrp4陽性細胞がドーパミン産生ニューロンへ分ィ匕することを示す写真である。
[図 15]抗 Lrp4抗体を用いたドーノ ミン産生-ユーロン前駆細胞の分離及び活用法を 示す模式図である。
[図 16]移植された Lrp4陽性細胞の in vivoにおける分ィ匕を示す写真である。
[図 17]5-stage法分ィ匕細胞における Lrp4の発現と Lrp4陽性細胞のドーパミン産生ニュ 一ロンへの分ィ匕を示す図および写真である。写真 Cにおいて、矢印は TH蛋白質陽 性のドーパミン産生ニューロンを示す。
[図 18]Lrp4陽性細胞および Lrp4陰性細胞における、 ES細胞特異的な遺伝子 (ERas および Nanog)の発現を分析した RT-PCRの結果を示す写真である。
発明を実施するための最良の形態
[0021] 以下に本発明の実施の形態について説明する。以下の実施の形態は、本発明を 説明するための例示であり、本発明をこの実施の形態にのみ限定する趣旨ではない 。本発明は、その要旨を逸脱しない限り、さまざまな形態で実施をすることができる。 なお、本明細書において引用した文献、および公開公報、特許公報その他の特許 文献は、参照として本明細書に組み込むものとする。
[0022] <マーカーポリヌクレオチドプローブ >
本発明のドーパミン産生-ユーロン増殖前駆細胞マーカーポリヌクレオチドプロ一 ブは、ドーノ ミン産生-ユーロン増殖前駆細胞を選択及び/または検出するためのマ 一力一および Zまたは試薬として使用されるものである。該プローブとして使用される ポリヌクレオチドは、ドーノ ミン産生-ユーロン増殖前駆細胞において検出される、配 列番号:ほたは 2の塩基配列に相補的な塩基配列を含むものである。配列番号: 1は マウス Lrp4 cDNAの塩基配列、そして配列番号: 2はヒト Lrp4 cDNAの塩基配列であり 、それぞれ GenBankに登録された配列である(マウス: Accession No. NM_016869;ヒト: Accession No. XM— 035037)。
[0023] ここで、「マーカーポリヌクレオチドプローブ」とは、 Lrp4の発現、特に転写された mR NAを検出することができればよぐ複数のデォキシリボ核酸 (DNA)またはリボ核酸 (RN A)等の塩基または塩基対からなる重合体を指す。二本鎖 cDNAも組織 in situハイプリ ダイゼーシヨンでプローブとして利用可能であることが知られており、本発明のマーカ 一にはそのような二本鎖 cDNAも含まれる。組織中の RNAの検出にぉ 、て特に好まし Vヽプローブとなるマーカーポリヌクレオチドプローブとしては、 RNAプローブ (リボプロ ーブ)を挙げることができる。また、本発明のマーカーポリヌクレオチドプローブは、天 然以外の塩基、例えば、 4-ァセチルシチジン、 5- (カルボキシヒドロキシメチル)ゥリジ ン、 2'-0-メチルシチジン、 5-カルボキシメチルァミノメチル -2-チォゥリジン、 5-カル ボキシメチルアミノメチルゥリジン、ジヒドロウリジン、 2'-0-メチルプソィドウリジン、 13 - D-ガラクトシルキユエオシン、 2し0-メチルグアノシン、イノシン、 N6-イソペンテ-ルァ デノシン、 1-メチルアデノシン、 1-メチルプソィドウリジン、 1-メチルグアノシン、 1-メチ ルイノシン、 2,2-ジメチルグアノシン、 2-メチルアデノシン、 2-メチルグアノシン、 3-メチ ルシチジン、 5-メチルシチジン、 N6-メチルアデノシン、 7-メチルグアノシン、 5-メチル アミノメチルゥリジン、 5-メトキシァミノメチル -2-チォゥリジン、 β -D-マンノシルキユエ ォシン、 5-メトキシカルボ-ルメチル- 2-チォゥリジン、 5-メトキシカルボ-ルメチルゥリ ジン、 5-メトキシゥリジン、 2-メチルチオ- Ν6-イソペンテ-ルアデノシン、 Ν-((9- β - D- リボフラノシル- 2-メチルリオプリン- 6-ィル)力ルバモイル)トレオニン、 N- ((9- β - D-リ ボフラノシルプリン- 6-ィル) Ν-メチルカルバモイル)トレオニン、ゥリジン- 5-ォキシ酢酸 -メチルエステル、ゥリジン- 5ォキシ酢酸、ワイブトキソシン、プソィドウリジン、キユエォ シン、 2-チオシチジン、 5-メチル -2-チォゥリジン、 2-チォゥリジン、 4-チォゥリジン、 5 -メチルゥリジン、 Ν- ((9- β -D-リボフラノシルプリン- 6-ィル)力ルバモイル)トレオ-ン、 2'- 0-メチル -5-メチルゥリジン、 2'- 0-メチルゥリジン、ワイブトシン、 3- (3-ァミノ- 3-力 ルポキシプロピル)ゥリジン等を必要に応じて含んで 、てもよ 、。
さらに、本発明のマーカーポリヌクレオチドプローブは、配列番号: 3または 4記載の アミノ酸配列をコードする塩基配列に相補的な塩基配列を含む。配列番号: 3または 4 記載のアミノ酸配列をコードする塩基配列は、配列番号: 1または 2に記載された塩基 配列に加えて、遺伝子暗号の縮重により配列番号: 1または 2記載の配列とは異なる 塩基配列を含むものである。本発明のマーカーポリヌクレオチドプローブはまた、配 列番号: 3または 4記載のアミノ酸配列にぉ 、て、膜貫通領域を欠く配列をコードする 塩基配列に対して相補的な配列を含むものを包含する。配列番号: 3または 4記載の アミノ酸配列中、シグナル配列は存在せず、マウス Lrp4(配列番号: 3)では 113-135ァ ミノ酸残基、ヒト Lrp4(配列番号 :4)では 46-68アミノ酸残基の部分が膜貫通領域を形成 している。なお、配列番号: 3及び 4に記載の配列も各々 GenBankに登録されている(ヒ ト: XP— 035037、マウス: NP— 058565)。
[0025] ここで、或る「塩基配列に対して相補的」とは、塩基配列が铸型に対して完全に対 になっている場合のみならず、そのうちの少なくとも 70%、好ましくは 80%、より好まし くは 90%、さらに好ましくは 95%以上 (例えば、 97%または 99%)が対になっているもの も含む。対になっているとは、铸型となるポリヌクレオチドの塩基配列中の Aに対し T(R NAの場合は U)、 Tまたは Uに対し A、 Cに対し G、そして Gに対し Cが対応して鎖が形 成されて!/、ることを意味する。そして或るポリヌクレオチド同士の塩基配列レベルでの 相同性は、 BLASTアルゴリズム (Altschul (1990) Proc. Natl. Acad. Sci. USA 87: 2264 -8; Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873— 7)によって決定 することができる。このアルゴリズムに基づ 、た塩基配列につ 、てのプログラムとして 、 BLASTN(Altschul et al. (1990) J. Mol. Biol. 215: 403- 10)が開発されており、マー カーポリヌクレオチドプローブ配列の相同性の決定に使用することができる。具体的 な解析方法については、例えば、 http:〃 www. ncbi.nlm.nih.gov.等を参照することが できる。
[0026] さらに、本発明のマーカーポリヌクレオチドプローブには、配列番号: 1または 2の塩 基配列からなるポリヌクレオチドに対してストリンジヱントな条件下でノヽイブリダィズす る塩基配列を含むポリヌクレオチドが包含される。 Lrp4については配列番号: 1または 2で示される塩基配列を有するものが公知である力 そのアルタナティブァイソフォー ム、及びァレリック変異体が存在する可能性があり、そのようなァイソフォームゃァレリ ック変異体に相補的な配列を有するものも本発明のマーカーポリヌクレオチドとして 利用することができる。このようなァイソフォーム及びァレリック変異体は、配列番号: 1 または 2の塩基配列を含むポリヌクレオチドをプローブとして、コロニーハイブリダィゼ ーシヨン、プラークハイブリダィゼーシヨン、サザンブロット等の公知のハイブリダィゼ ーシヨン法により、ヒト、マウス、ラット、ゥサギ、ノヽムスター、ニヮトリ、ブタ、ゥシ、ャギ、 ヒッジ等の動物の cDNAライブラリー及びゲノムライブラリ一力も得ることができる。 cDN Aライブラリーの作成方法については、『Molecular Cloning, A Laboratory Manual 2nd ed.』(Cold Spring Harbor Press (1989》を参照することができる。また、市販の cDNA ライブラリー及びゲノムライブラリーを利用してもよい。
[0027] より具体的に、 cDNAライブラリーの作製においては、まず、 Lrp4を発現する細胞、 臓器、組織等からグァ-ジン超遠心法 (Chirwin et al. (1979) Biochemistry 18: 5294- 9)、 AGPC法 (Chomczynski and Sacchi (1987) Anal. Biochem. 162: 156- 9)等の公知 の手法により全 RNAを調製し、 mRNA Purification Kit(Pharmacia)等を用いて mRNAを 精製する。 QuickPrep mRNA Purification Kit (Pharmacia)のような、直接 mRNAを調製 するためのキットを利用してもよい。次に得られた mRNAから逆転写酵素を用いて cD NAを合成する。 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生ィ匕 学工業)のような cDNA合成のためのキットも市販されている。その他の方法として、 cD NAは PCRを利用した 5'- RACE法 (Frohman et al. (1988) Proc. Natl. Acad. Sci. USA 85: 8998-9002; Belyavsky et al. (1989) Nucleic Acids Res. 17: 2919- 32)により合成 、及び増幅させてもよい。また、全長率の高い cDNAライブラリーを作製するために、 オリゴキャップ法 (Maruyama and Sugano (1994) Gene 138: 171-4; Suzuki (1997) Gen e 200: 149-56)等の公知の手法を採用することもできる。上述のようにして得られた cD NAは、適当なベクター中に組み込むことができる。
[0028] 本発明におけるストリンジェントなハイブリダィゼーシヨン条件としては、例えば「2 X SSCゝ 0.1%SDSゝ 50。C」、「2 X SSC、 0.1%SDSゝ 42。C」、「1 X SSCゝ 0.1%SDSゝ 37°C」、 よりストリンジェントな条件としては、例えば「2 X SSC、 0.1%SDS、 65°C」、「0.5 X SSC、 0.1%SDS、 42°C」、「0.2 X SSC、 0.1%SDS、 65°C」等の条件を挙げることができる。より 詳細には、 Rapid- hyb buffer(Amersham Life Science)を用いた方法として、 68°Cで 30 分以上プレハイブリダィゼーシヨンを行った後、プローブを添カ卩して 1時間以上 68°C に保ってハイブリッド形成させ、その後、 2 X SSC、 0.1%SDS中、室温で 20分の洗浄を 3回、 1 X SSC、 0.1%SDS中、 37°Cで 20分の洗浄を 3回、最後に、 1 X SSC、 0.1%SDS 中、 50°Cで 20分の洗浄を 2回行うことも考えられる。その他、例えば Expresshyb Hybri dization Solution (CLONTECH)中、 55°Cで 30分以上プレハイブリダィゼーシヨンを行 い、標識プローブを添カ卩し、 37〜55°Cで 1時間以上インキュベートし、 2 X SSC、 0.1% SDS中、室温で 20分の洗浄を 3回、 1 X SSC、 0.1%SDS中、 37°Cで 20分の洗浄を 1回 行うこともできる。ここで、例えば、プレハイブリダィゼーシヨン、ハイブリダィゼーシヨン や 2度目の洗浄の際の温度を上げることにより、よりストリンジェントな条件とすることが できる。例えば、プレハイブリダィゼーシヨン及びハイブリダィゼーシヨンの温度を 60°C 、さらにストリンジヱントな条件としては 68°Cとすることができる。当業者であれば、この ようなバッファーの塩濃度、温度等の条件に加えて、その他のプローブ濃度、プロ一 ブの長さ、反応時間等の諸条件を加味し、 Lrp4のァイソフォーム、ァレリック変異体、 及び対応する他種生物由来の遺伝子を得るための条件を設定することができる。
[0029] ハイブリダィゼーシヨン法の詳細な手順にっ 、ては、『Molecular Cloning, A Labora tory Manual 2nd ed.J(Cold Spring Harbor Press (1989);特に Section9.47- 9.58)、『Cur rent Protocols in Molecular BiologyJOohn Wiley & Sons (1987— 1997);特に Section6. 3-6.4)、『DNA Cloning 1: Core Techniques, A Practical Approach 2nd ed.』(Oxford U niversity (1995);条件については特に Section2.10)等を参照することができる。ハイブ リダィズするポリヌクレオチドとしては、配列番号: 1または 2の塩基を含む塩基配列に 対して少なくとも 50%以上、好ましくは 70%、さらに好ましくは 80%、より一層好ましく は 90% (例えば、 95%以上、さらには 99%)の同一性を有する塩基配列を含むポリヌク レオチドが挙げられる。このような同一性は、上述の相同性の決定と同様に BLASTァ ルゴリズム (Altschul (1990) Proc. Natl. Acad. Sci. USA 87: 2264-8; Karlin and Altsc hul (1993) Proc. Natl. Acad. Sci. USA 90: 5873- 7)によって決定することができる。上 述の塩基配列につ!、てのプログラム BLASTNの他に、このアルゴリズムに基づ 、たァ ミノ酸配列についての同一性を決定するプログラムとして BLASTX(Altschul et al. (19 90) J. Mol. Biol. 215: 403-10)等が開発されており、利用可能である。具体的な解析 方法については先に挙げたように、 http:〃 www. ncbi.nlm.nih.gov.等を参照することが できる。
[0030] その他、遺伝子増幅技術 (PCRXCurrent Protocols in Molecular Biology, John Wile y & Sons (1987) Section 6.1- 6.4)により、 Lrp4のァイソフォームゃァレリック変異体等、 Lrp4と類似した構造及び機能を有する遺伝子を、ヒト、マウス、ラット、ゥサギ、ハムス ター、 -ヮトリ、ブタ、ゥシ、ャギ、ヒッジ等の動物の cDNAライブラリー及びゲノムライブ ラリーから、配列番号:ほたは 2に記載の塩基配列を基に設計したプライマーを利用 して得ることがでさる。
[0031] ポリヌクレオチドの塩基配列は、慣用の方法により配列決定して確認することができ る。例えば、ジデォキシヌクレオチドチェーンターミネーシヨン法 (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74: 5463)等による確認が可能である。また、適当な DNA シークェンサ一を利用して配列を解析することも可能である。
[0032] また、本発明のマーカーポリヌクレオチドプローブには、上記 (1)配列番号: 1または 2の塩基配列に相補的な配列、(2)配列番号: 3または 4記載のアミノ酸配列をコードす る塩基配列に相補的な配列、(3)配列番号 :3または 4記載のアミノ酸配列において膜 貫通領域部分を欠く配列をコードする塩基配列に相補的な配列、及び (4)配列番号: 1または 2の塩基配列力もなるポリヌクレオチドに対してストリンジヱントな条件下でノヽィ ブリダィズする配列の各塩基配列中の少なくとも連続した 15塩基を含む塩基配列か らなるポリヌクレオチドが含まれる。このような少なくとも連続した 15塩基を含む塩基配 列からなるポリヌクレオチドは、 Lrp4 mRNAの発現を検出するためのプローブ、増幅 して検出を行うためのプライマーとして利用することができる。通常、プローブとして使 用する場合には 15〜100、好ましくは 15〜35個の塩基より構成されていることが望まし ぐプライマーとして使用する場合には、少なくとも 15、好ましくは 30個の塩基より構成 されていることが望ましい。プライマーの場合には、 3'末端側の領域を標的とする配 列に対して相補的な配列に、 5'末端側には制限酵素認識配列、タグ等を付加した形 態に設計することができる。このような少なくとも連続した 15塩基を含む塩基配列から なるポリヌクレオチドは、 Lrp4ポリヌクレオチドに対してハイブリダィズすることができる
[0033] さらに、本発明のマーカーポリヌクレオチドプローブには、 (1)配列番号: 1または 2 に記載の塩基配列、(2)配列番号: 3または 4に記載のアミノ酸配列力 なるポリべプチ ドをコードするポリヌクレオチド力 なる塩基配列、(3)配列番号: 3または 4記載のァミノ 酸配列において膜貫通領域部分を欠く配列力 なるポリペプチドをコードするポリヌ クレオチドからなる塩基配列、及び (4)配列番号: 1または 2に記載の塩基配列力 なる ポリヌクレオチドに対してストリンジヱントな条件下でハイブリダィズするポリヌクレオチ ドからなる塩基配列、の 、ずれかに記載の塩基配列力 なる第一のポリヌクレオチド に対してストリンジェントな条件下でノヽイブリダィズする第二のポリヌクレオチドが含ま れる。第二のポリヌクレオチドは、好ましくは少なくとも連続した 15塩基を含む塩基配 列からなるポリヌクレオチドがあげられる。
[0034] 本発明のマーカーポリヌクレオチドプローブは、 Lrp4を発現する細胞より上述のハ イブリダィゼーシヨン法、 PCR法等により調製することができる。また、 Lrp4の公知の配 列情報に基づいて、本発明のマーカーポリヌクレオチドプローブは、化学合成により 製造することもできる。特に組織中の RNAの検出に好ましいとされるリボプローブは、 例えば、プラスミドベクター pSP64にクローユングした Lrp4遺伝子またはその一部を逆 方向に挿入し、挿入した配列部分をランオフ転写することにより得ることができる。 pSP 64は SP6プロモーターを含むものである力 その他、ファージ T3、 Τ7プロモーター及 び RNAポリメラーゼを組合せてリボプローブを作成する方法も公知である。本発明の マーカーポリヌクレオチドプローブは、ドーノ ミン産生-ユーロン増殖前駆細胞を識 別するための試薬として用いてもよぐ上記の試薬においては、有効成分であるポリ ヌクレオチド以外に、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶 解補助剤、緩衝剤、安定剤、保存剤等が必要に応じて混合されていてもよい。
[0035] <抗体 >
本発明により、ドーパミン産生ニューロン前駆細胞を脳組織、または培養細胞より選 択するために利用することができる、ドーパミン産生-ユーロン前駆細胞マーカー抗 体 (以下、「本発明の抗体」と称する場合がある)が提供される。 Lrp4 mRNAと異なり、 Lrp4ポリペプチドは、分裂停止前のドーパミン産生-ユーロン増殖前駆細胞のみなら ず、分裂停止後のドーパミン産生-ユーロン前駆細胞にも発現していることから、該 ポリペプチドに対する本発明の抗体を用いることにより、分裂停止前後のドーパミン 産生-ユーロン前駆細胞を選択および Zまたは取得するために利用することができ る。本発明の抗体にはポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖 抗体 (scFV)(Huston et la. (1988) Proc. Natl. Acad. Sci. USA 85: 5879-83; The Phar macology of Monoclonal Antibody, vol.113, Rosenburg and Moore ed., Springer Verl ag (1994) pp.269- 315)、ヒト化抗体、多特異性抗体 (LeDoussal et al. (1992) Int. J. Ca ncer Suppl. 7: 58—62; Paulus (1985) Behring Inst. Mitt. 78: 118—32; Millstein and C uello (1983) Nature 305: 537-9; Zimmermann (1986) Rev. Physiol. Biochem. Pharma col. 105: 176-260; Van Dijk et al. (1989) Int. J. Cancer 43: 944-9)、並びに、 Fab、 F ab'、 F(ab')2、 Fv等の抗体断片が含まれる。さらに、本発明の抗体は、必要に応じ、 P EG等により修飾されていてもよい。その他、本発明の抗体は、 j8 -ガラクトシダーゼ、 マルトース結合蛋白質、 GST、緑色蛍光蛋白質 (GFP)等との融合蛋白質として製造 することにより二次抗体を用いずに検出できるようにしてもよい。また、本発明の抗体 は、ピオチン等により抗体を標識することによりアビジン、ストレプトアビジン等を用い て抗体の回収を行 、得るように改変してもよ 、。
[0036] 本発明の抗体は、(1)配列番号: 1または 2の塩基配列によりコードされるポリペプチド 、(2)配列番号: 3または 4記載のアミノ酸配列力 なるポリペプチド、(3)配列番号: 3また は 4記載のアミノ酸配列において膜貫通領域を欠くアミノ酸配列からなるポリペプチド 、 (4)配列番号: 3または 4記載のアミノ酸配列において 1若しくは複数個のアミノ酸が欠 失、挿入、置換または付加されたアミノ酸配列力もなるポリペプチド、 (5)配列番号 :1 または 2の塩基配列に相補的な配列に対してストリンジェントな条件下でノヽイブリダィ ズする塩基配列によりコードされるポリペプチド、並びに (6)前記 (1)〜(5)のポリべプチ ドの断片であり、少なくとも 8アミノ酸残基を有するポリペプチドのいずれかに対して特 異的な抗体である。
また、本発明の抗体は、次の (1)〜(4)のいずれかに記載のアミノ酸配列またはその 一部配列からなるポリペプチドと結合する抗体であってもよ 、。(1)配列番号: 3または 4に記載のアミノ酸配列、(2)配列番号: 3または 4に記載のアミノ酸配列にぉ 、て膜貫 通領域を欠くアミノ酸配列、(3)配列番号: 3または 4に記載のアミノ酸配列にぉ 、て 1 若しくは複数個のアミノ酸が欠失、置換もしくは付加され、またはそれらの組合せによ り変異されたアミノ酸配列、及び (4)配列番号 : 1または 2に記載の塩基配列に相補的 な配列力もなるポリヌクレオチドに対してストリンジェントな条件下でノヽイブリダィズす るポリヌクレオチドによりコードされるポリペプチドからなるアミノ酸配列。上記の一部 配列からなるポリペプチドは、好ましくは少なくとも連続した 6アミノ酸残基 (例えば、 8 、 10、 12、または 15アミノ酸残基以上)を有するポリペプチドがあげられる。
[0037] 配列番号: 3で表されるアミノ酸配列において 1若しくは複数個のアミノ酸が欠失、置 換もしくは付加され、またはそれらの組合せにより変異されたアミノ酸配列としては、 例えば、 (0配列番号: 3で表されるアミノ酸配列中の 1〜9個(例えば、 1〜5個、好ま しくは 1〜3個、さらに好ましくは 1〜2個、より好ましくは 1個)のアミノ酸が欠失したアミ ノ酸配列、 GO配列番号: 3で表されるアミノ酸配列に 1〜9個(例えば、 1〜5個、好ま しくは 1〜3個、さらに好ましくは 1〜2個、より好ましくは 1個)のアミノ酸が付加したアミ ノ酸配列、 (iii)配列番号: 3で表されるアミノ酸配列中の 1〜9個(例えば、 1〜5個、好 ましくは 1〜3個、さらに好ましくは 1〜2個、より好ましくは 1個)のアミノ酸が他のアミノ 酸で置換されたアミノ酸配列、 (iv)上記 (i)〜(iii)の組合せにより変異されたアミノ酸配 列があげられる。
配列番号: 4で表されるアミノ酸配列において 1若しくは複数個のアミノ酸が欠失、置 換もしくは付加され、またはそれらの組合せにより変異されたアミノ酸配列としては、 例えば、 (0配列番号: 4で表されるアミノ酸配列中の 1〜9個(例えば、 1〜5個、好ま しくは 1〜3個、さらに好ましくは 1〜2個、より好ましくは 1個)のアミノ酸が欠失したアミ ノ酸配列、 GO配列番号: 4で表されるアミノ酸配列に 1〜9個(例えば、 1〜5個、好ま しくは 1〜3個、さらに好ましくは 1〜2個、より好ましくは 1個)のアミノ酸が付加したアミ ノ酸配列、 (iii)配列番号: 4で表されるアミノ酸配列中の 1〜9個(例えば、 1〜5個、好 ましくは 1〜3個、さらに好ましくは 1〜2個、より好ましくは 1個)のアミノ酸が他のアミノ 酸で置換されたアミノ酸配列、 (iv)上記 (i)〜(iii)の組合せにより変異されたアミノ酸配 列があげられる。
ここで、アミノ酸の欠失とは、配列中のアミノ酸残基の一つ以上が欠失した変異を意 味し、欠失には、アミノ酸配列の端力 アミノ酸残基が欠失したもの及びアミノ酸配列 の途中のアミノ酸残基が欠失したものが含まれる。
ここで、アミノ酸の付加とは、配列中にアミノ酸残基の一つ以上が付加された変異を 意味し、付加には、アミノ酸配列の端にアミノ酸残基が付加されたもの及びアミノ酸配 列の途中にアミノ酸残基を付加されたものが含まれる。
ここで、アミノ酸の置換とは、配列中のアミノ酸残基の一つ以上力 異なる種類のァ ミノ酸残基に変えられた変異を意味する。このような置換によりアミノ酸配列を改変す る場合、保存的な置換を行うことが好ましい。保存的な置換とは、置換前のアミノ酸と 似た性質のアミノ酸をコードするように配列を変化させることである。アミノ酸の性質は 、例えば、非極性アミノ酸 (Ala, lie, Leu, Met, Phe, Pro, Trp, Val)、非荷電性アミノ酸 ( Asn, Cys, Gin, Gly, Ser, Thr, Tyr)、酸性アミノ酸 (Asp, Glu)、塩基性アミノ酸 (Arg, Hi s, Lys)、中性アミノ酸 (Ala, Asn, Cys, Gin, Gly, He, Leu, Met, Phe, Pro, Ser, Thr, Tr p, Tyr, Val)、脂肪族アミノ酸 (Ala, Gly),分枝アミノ酸 (lie, Leu, Val)、ヒドロキシァミノ 酸 (Ser, Thr),アミド型アミノ酸 (Gin, Asn),含硫アミノ酸 (Cys, Met),芳香族アミノ酸 (Hi s, Phe, Trp, Tyr),複素環式アミノ酸 (His, Trp),イミノ酸 (Pro, 4Hyp)等に分類すること ができる。
従って、非極性アミノ酸同士、あるいは非荷電性アミノ酸同士で置換させることが好 ましい。中でも、 Ala、 Val、 Leu及び lieの間、 Ser及び Thrの間、 Asp及び Gluの間、 Asn 及び Ginの間、 Lys及び Argの間、 Phe及び Tyrの間の置換は、タンパク質の性質を保 持する置換として好まし 、。変異されるアミノ酸の数及び部位は特に制限な 、。
[0039] 特に好ましい本発明の抗体として、実施例 4において使用された 2種の抗 Lrp4抗体 及びその断片を含む改変体を挙げることができる。該 2種の抗体は、下記の各受託 番号で国際寄託されて ヽる。
(1)寄託機関の名称'あて名
名称:独立行政法人 産業技術総合研究所 特許生物寄託センター
あて名:日本国茨城県つくば巿東 1丁目 1番地 1 中央第 6(郵便番号 305-8566)
(2)受託日: 2004年 7月 14日
(3)受託番号: FERM BP- 10315及び FERM BP- 10316
(日本国において国内寄託された FERM P-20120及び FERM P-20121より移管) [0040] 本発明の抗体は、 Lrp4ポリペプチド若しくはその断片、またはそれらを発現する細 胞を感作抗原として利用することにより製造することができる。また、 Lrp4ポリペプチド の短い断片は、ゥシ血清アルブミン、キーホールリンペットへモシァニン、卵白アルブ ミン等のキャリアに結合した形で免疫原として用いてもよい。また、 Lrp4のポリべプチ ドまたはその断片と共に、アルミニウムアジュバント、完全 (または不完全)フロイントァ ジュバント、百日咳菌アジュバント等の公知のアジュバントを抗原に対する免疫応答 を強化するために用いてもょ 、。 [0041] 本発明における「Lrp4ポリペプチド」は、ペプチド重合体であり、配列番号: 3または 4 記載のアミノ酸配列を有する蛋白質を好ましい例として挙げることができる。 Lrp4ポリ ペプチドを構成するアミノ酸残基は天然に存在するものでも、また修飾されたもので あっても良い。さらに、 Lrp4ポリペプチドには膜貫通領域部分を欠く蛋白質、及びそ の他のペプチド配列により修飾された融合蛋白質が含まれる。
[0042] 本発明にお!/、て、 Lrp4ポリペプチドは、 Lrp4ポリペプチドの抗原性を有すればよぐ 配列番号: 3または 4のアミノ酸配列において 1若しくは複数個のアミノ酸が欠失、挿入 、置換または付加されたアミノ酸配列を有するポリペプチドを包含する。 1若しくは複 数個のアミノ酸が欠失、挿入、置換または付加されたアミノ酸配列力もなる変異ポリべ プチドで、元のポリペプチドと同じ生物学的活性が維持されることは公知である (Mark et al. (1984) Proc. Natl. Acad. Sci. USA 81: 5662—6; Zoller and Smith (1982) Nuclei c Acids Res. 10: 6487—500; Wang et al. (1984) Science 224: 1431—3; Dalbadie— McF arland et al. (1982) Proc. Natl. Acad. Sci. USA 79: 6409-13)。そして、このような配 列番号: 3または 4のアミノ酸配列において 1若しくは複数個のアミノ酸が欠失、挿入、 置換または付加されたアミノ酸配列を有する Lrp4の抗原性を維持したポリペプチドは 、該ポリペプチドをコードするポリヌクレオチドを公知の『Molecular Cloning, A Labora tory Manual 2" ed.』(Cold Spring Harbor Press (1989》、『Current Protocols in Molec ular BiologyJQohn Wiley & Sons (1987- 1997);特に Section8.1-8.5)、 Hashimoto-Got o et al. (1995) Gene 152: 271—5、 Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488 —92、 Kramer and Fritz (1987) Method. Enzymol. 154: 350—67、 Kunkel (1988) Metho d. Enzymol. 85: 2763-6等に記載の部位特異的変異誘発法等の方法に従って調製 し、適宜発現させることにより得ることができる。また、上記の部位特異的変異誘発の 他にも、遺伝子を変異源で処理する方法及び遺伝子を選択的に開裂し、次に選択さ れたヌクレオチドを除去、付加または置換し、次いで連結することもできる。
[0043] Lrp4ポリペプチド断片は、上記 Lrp4ポリペプチドの一部と同一であり、好ましくは少 なくとも連続した 6アミノ酸残基以上 (例えば、 8、 10、 12、または 15アミノ酸残基以上)か らなるポリペプチド断片である。特に好ましい断片としては、ァミノ末端、カルボキシル 末端、膜貫通ドメインを欠失したポリペプチド断片を挙げることができる。 αヘリックス 及び ocヘリックス形成領域、 a両親媒性領域、 βシート及び βシート形成領域、 β両 親媒性領域、基質結合領域、高抗原指数領域、コイル及びコイル形成領域、親水性 領域、疎水性領域、ターン及びターン形成領域、並びに表面形成領域を含む断片 が Lrp4のポリペプチド断片に含まれる。本発明における Lrp4のポリペプチド断片は、 Lrp4ポリペプチドの抗原性さえ有すればどのような断片であってもよ 、。ポリペプチド の抗原決定部位は、蛋白質のアミノ酸配列上の疎水性 Z親水性を解析する方法 (Ky te-Doolittle (1982) J. Mol. Biol. 157: 105-22)、二次構造を解析する方法 (Chou- Fas man (1978) Ann. Rev. Biochem47: 251- 76)により推定し、さらにコンピュータープログ ラム (Anal. Biochem. 151 : 540-6 (1985))、または短いペプチドを合成しその抗原性を 確認する PEPSCAN法 (特表昭 60-500684号公報)等により確認することができる。
[0044] Lrp4ポリペプチド、及びポリペプチド断片は、 Lrp4を発現する細胞 ·組織等を原料と して、その物理的性質等に基づいて単離することができる。また、公知の遺伝子組換 え技術により、またィ匕学的な合成法により製造することもできる。例えば、 Lrp4ポリべ プチドを in vitroで製造する場合、 in vitroトランスレーション (Dasso and Jackson (1989 ) Nucleic Acids Res. 17: 3129-44)等の方法に従って、細胞を含まない試験管内の系 でポリペプチドを製造することができる。それに対して、細胞を用いてポリペプチドを 製造する場合、まず所望のポリペプチドをコードするポリヌクレオチドを適当なベクタ 一に組み込み、適当な宿主細胞を選択し該ベクターによる形質転換を行い、形質転 換された細胞を培養することにより所望のポリペプチドを得ることができる。
[0045] 適当なベクターとして、プラスミド、コスミド、ウィルス、バタテリオファージ、クローニン グ用ベクター、発現ベクター等の種々のベクターを挙げることができる (Molecular Clo ning, A Laboratory Manual 2" ed. , Cold Spring Harbor Press (1989); Current Proto cols in Molecular Biology, John Wiley & Sons (1987》。ベクターは、導入された宿主 細胞内で所望のポリヌクレオチドが発現されるように制御配列を有し、ポリヌクレオチ ドは該制御配列下に結合される。ここで「制御配列」とは、宿主細胞が原核生物であ ればプロモーター、リボソーム結合部位、及びターミネータ一を含み、真核生物の場 合は、プロモーター及びターミネータ一であり、場合によってトランスァクチべ一ター、 転写因子、転写物を安定ィ匕するポリ Aシグナル、スプライシング及びポリアデニルイ匕 シグナル等が含まれる。このような制御配列は、それに連結されたポリヌクレオチドの 発現に必要とされるすべての構成成分を含むものである。ベクターは、選択可能なマ 一力一を含んでいてもよい。さらに、細胞内で発現されたポリペプチドを小胞体内腔 、グラム陰性菌を宿主とする場合ペリブラズム内、または細胞外へと移行させるため に必要とされるシグナルペプチドを目的のポリペプチドに付加するようにして発現べ クタ一へ組み込むこともできる。このようなシグナルペプチドとして、異種蛋白質由来 のシグナルペプチドを利用することができる。さらに、必要に応じリンカ一の付加、開 始コドン (ATG)、終止コドン (TAA、 TAGまたは TGA)の挿入を行ってもよい。
[0046] in vitroにおけるポリペプチドの発現を可能にするベクターとしては、 pBEST(Promeg a)を例示することができる。また、原核細胞宿主における発現に適した種々のべクタ 一が公知であり(『微生物学基礎講座 8遺伝子工学』 (共立出版)等参照)、原核細胞 を宿主として選択した場合、当業者であれば選択した宿主に適したベクター、ベクタ 一の宿主への導入方法を適宜選ぶことができる。その他、酵母等の真菌類、高等植 物、昆虫、魚類、両生類、爬虫類、鳥類、哺乳類、種々の培養系細胞 (COS、 Hela、 C 127、 3Τ3、 ΒΗΚゝ ΗΕΚ293、 Bowesメラノーマ細胞)、ミエローマ、 Vero、 Namalwaゝ Nam alwa KJM-1、 HBT5637(特開昭 63-299号公報)等)も Lrp4ポリペプチド及びその抗原 性断片を発現させる宿主として利用することができ、各細胞に適したベクター系、ベタ ターの宿主細胞への導入手法も公知である。さらに、動物の生体内(Susumu (1985) Nature 315: 592-4; Lubon (1998) Biotechnol. Annu. Rev. 4: 1-54等参照)、及び植 物体において外来蛋白質を発現させる方法も公知であり Lrp4ポリヌクレオチドを発現 させるために利用することができる。
[0047] ベクターへの DNAの挿入は、制限酵素サイトを利用したリガーゼ反応により行うこと 力 eさる (し urrent Protocols in Molecular Biology, John Wiley & Sons (1987 Section 11.4-11.11; Molecular Cloning, A Laboratory Manual 2 ed., Cold Spring Harbor Pr ess (1989) Section 5.61-5.63)。また必要に応じ、使用する宿主のコドン使用頻度を 考慮して、発現効率の高い塩基配列を選択し、 Lrp4ポリペプチドコード発現ベクター を設計することができる (Grantham et al. (1981) Nucleic Acids Res. 9: r43- 74)。 Lrp4 ポリペプチドを産生する宿主は、 Lrp4ポリペプチドをコードするポリヌクレオチドを細 胞内に含むものである力 該ポリヌクレオチドは、宿主細胞のゲノム上の天然に存在 する位置になければよぐ該ポリヌクレオチド自身のプロモーター支配下にあっても、 ゲノム中に組み込まれて 、ても、染色体外の構造として保持されて!、ても良!、。
ベクターの宿主細胞への導入形質 (転換 (形質移入))は従来公知の方法を用いて 行うことができる。
例えば、細菌 . coli, Bacillus subtilis等)の場合は、例えば Cohenらの方法(Proc. Natl. Acad. Sci. USA, 69, 2110 (1972) )、プロトプラスト法(Mol. Gen. Genet. , 168, 111 (1979) )やコンビテント法 (J. Mol. Biol. , 56, 209 (1971) )によって、 Saccharomyc es cerevisiaeの場合は、例えば Hinnenらの方法(Proc. Natl. Acad. Sci. USA, 75, 19 27 (1978) )やリチウム法 (J. Bacteriol. , 153, 163 (1983) )によって、植物細胞の場合 は、例えばリーフディスク法(Science,227, 129 (1985))、エレクト口ポレーシヨン法(Nat ure, 319, 791 (1986))、ァグロバタテリゥム法(Horsch et al" Science, 227, 129(1985) 、 Hiei et al., Plant J., 6, 271-282(1994))によって、動物細胞の場合は、例えば Graha mの方法 (Virology, 52, 456 (1973) )、昆虫細胞の場合は、例えば Summersらの方法 (Mol. Cell. Biol. , 3, 2156-2165 (1983) )によってそれぞれ形質転換することができ る。
[0048] 宿主細胞の培養は、選択した細胞に適した公知の方法により行う。例えば、動物細 胞を選択した場合には、 DMEM(Virology 8: 396 (1959)、 MEM(Science 122: 501 (195 2》、 RPMI16400. Am. Med. Assoc. 199: 519 (1967》、 199(Proc. Soc. Biol. Med. 73: 1 (1950))、 IMDM等の培地を用い、必要に応じゥシ胎児血清 (FCS)等の血清を添加し 、 pH約 6〜8、 30〜40°Cにおいて 15〜200時間前後の培養を行うことができる。その他 、必要に応じ途中で培地の交換を行ったり、通気及び攪拌を行ったりすることができ る。
[0049] 通常、遺伝子組換え技術により製造された Lrp4ポリペプチドは、まず、ポリペプチド が細胞外に分泌される場合には培地を、特にトランスジエニック生物の場合には体液 等を、細胞内に産生される場合には細胞を溶解して溶解物の回収を行うことができる 。そして、蛋白質の精製方法として公知の塩析、蒸留、各種クロマトグラフィー、ゲル 電気泳動、ゲル濾過、限外濾過、再結晶、酸抽出、透析、免疫沈降、溶媒沈澱、溶 媒抽出、硫安またはエタノール沈澱等を適宜組合せることにより所望のポリペプチド を精製することができる。クロマトグラフィーとしては、ァ-オンまたはカチオン交換等 のイオン交換、ァフィユティー、逆相、吸着、ゲル濾過、疎水性、ヒドロキシアパタイト、 ホスホセルロース、レクチンクロマトグラフィー等が公知である (Strategies for Protein P urification and Cnaractenzation: A Laboratory Course Manual, Marshak et al. ed., Cold Spring Harbor Laboratory Press (1996》。 HPLC、 FPLC等の液相クロマトグラフ ィーを用いて行うことができる。また、例えば、 GSTとの融合蛋白質とした場合にはグ ルタチオンカラムを、ヒスチジンタグを付加した融合蛋白質とした場合にはニッケル力 ラムを用いた精製法も利用できる。 Lrp4ポリペプチドを融合蛋白質として製造した場 合には、必要に応じて精製後にトロンビンまたはファクター Xa等を使用して不要な部 分を切断することもできる。
[0050] また、天然由来のポリペプチドを精製して取得してもよ!/、。例えば、 Lrp4ポリべプチ ドに対する抗体を利用して、ァフィユティークロマトグラフィーにより精製することもでき る (し urrent Protocols in Molecular Biology, John Wiley & ¾ons (1987) section 16.1—1 6.19)。さらに、精製したポリペプチドを必要に応じキモトリブシン、ダルコシダーゼ、ト リプシン、プロテインキナーゼ、リシルエンドべプチダーゼ等の酵素を用いて修飾する ことも可能である。一方、 Lrp4のポリペプチド断片は、上述の Lrp4ポリペプチドと同じ ような合成及び遺伝子工学的な手法にカ卩えて、ぺプチダーゼのような適当な酵素を 用いて Lrp4ポリペプチドを切断して製造することもできる。
[0051] ドーノ ミン産生-ユーロン前駆細胞を選択するためのポリクローナル抗体は、例え ば、上述のようにして精製された Lrp4のポリペプチドまたはその断片を所望によりアジ ュバントと共に哺乳動物に免疫し、免疫した動物より血清を得ることができる。ここで 用いる哺乳動物は、特に限定されないが、ゲッ歯目、ゥサギ目、霊長目の動物が一 般的である。マウス、ラット、ハムスター等のゲッ歯目、ゥサギ等のゥサギ目、力二クイ ザル、ァカゲザル、マントヒヒ、チンパンジー等のサル等の霊長目の動物が挙げられ る。動物の免疫化は、感作抗原を Phosphate-Buffered Saline(PBS)または生理食塩水 等で適宜希釈、懸濁し、必要に応じアジュバントを混合して乳化した後、動物の腹腔 内または皮下に注射して行われる。その後、好ましくは、フロイント不完全アジュバン トに混合した感作抗原を 4〜21日毎に数回投与する。抗体の産生は、血清中の所望 の抗体レベルを慣用の方法により測定することにより確認することができる。最終的に
、血清そのものをポリクローナル抗体として用いても良いし、さらに精製して用いても よい。具体的な方法として、例えば、『Current Protocols in Molecular BiologyJOohn Wiley & Sons (1987) Section 11.12- 11.13)を参照することができる。
[0052] また、モノクローナル抗体を産生するためには、まず、上述のようにして免疫化した 動物より脾臓を摘出し、該脾臓より免疫細胞を分離し、適当なミエローマ細胞とポリエ チレングリコール (PEG)等を用いて融合してハイプリドーマを作成することができる。 細胞の融合は、 Milsteinの方法 (Galfre and Milstein (1981) Methods Enzymol. 73: 3- 46)に準じて行うことができる。ここで、適当なミエローマ細胞として特に、融合細胞を 薬剤により選択することを可能にする細胞を挙げられる。このようなミエローマを用い た場合、融合されたハイプリドーマは、融合された細胞以外は死滅するヒポキサンチ ン、アミノブテリン及びチミジンを含む培養液 (HAT培養液)で培養して選択することが できる。次に、作成されたノ、イブリドーマの中から、本発明のポリペプチドまたはその 断片に対して結合する抗体を産生するクローンを選択することができる。その後、選 択したクローンをマウス等の腹腔内に移植し、腹水を回収してモノクローナル抗体を 得ることができる。また、具体的な方法として、『Current Protocols in Molecular Biolog yJOohn Wiley & Sons (1987) Section 11.4- 11.11)を参照することもできる。本発明の ハイプリドーマとしては、好ましくは FERM BP- 10315または FERM BP- 10316を挙げる ことができる。
[0053] ノ、イブリドーマは、その他、最初に EBウィルスに感染させたヒトリンパ球を in vitroで 免疫原を用いて感作し、感作リンパ球をヒト由来のミエローマ細胞 (U266等)と融合し、 ヒト抗体を産生するハイプリドーマを得る方法 (特開昭 63-17688号公報)によっても得 ることができる。また、ヒト抗体遺伝子のレパートリーを有するトランスジエニック動物を 感作して製造した抗体産生細胞を用いても、ヒト抗体を得ることができる (WO92/0391 8; WO93-02227; WO94/02602; W094/25585; W096/33735; WO96/34096; Mend ez et al. (1997) Nat. Genet. 15: 146- 56等)。ハイプリドーマを用いない例としては、抗 体を産生するリンパ球等の免疫細胞に癌遺伝子を導入して不死化する方法が挙げ られる。
[0054] また、本発明の抗体は、遺伝子組換え技術により製造することもできる (Borrebaeck and Larnck (1990) Therapeutic Monoclonal Antibodies, MacMillan Publishers LTD., UK参照)。そのためには、まず、抗体をコードする遺伝子をハイプリドーマまたは抗 体産生細胞 (感作リンパ球等)力 クローユングする。得られた遺伝子を適当なベクタ 一に組み込み、宿主に該ベクターを導入し、宿主を培養することにより抗体を産生さ せることができる。このような組換え型の抗体も本発明の抗体に含まれる。代表的な 組換え型の抗体として、非ヒト抗体由来可変領域及びヒト抗体由来定常領域とからな るキメラ抗体、並びに非ヒト抗体由来相補性決定領域 (CDR)、及び、ヒト抗体由来フレ ームワーク領域 (FR)及び定常領域と力 なるヒトイ匕抗体が挙げられる (Jones et al. (19 86) Nature 321: 522—5; Reichmann et al. (1988) Nature 332: 323—9; Presta (1992) C urr. Op. Struct. Biol. 2: 593-6; Methods Enzymol. 203: 99-121 (1991》。
[0055] 抗体断片は、上述のポリクローナルまたはモノクローナル抗体をパパイン、ペプシン 等の酵素で処理することにより製造することができる。または、抗体断片をコードする 遺伝子を用いて遺伝子工学的に製造することも可能である (Co et al, (1994) J. Immu nol. 152: 2968-76; Better and Horwitz (1989) Methods Enzymol. 178: 476-96; Pluc kthun and Skerra (1989) Methods Enzymol. 178: 497-515; Lamoyi (1986) Methods Enzymol. 121: 652-63; Rousseaux et al. (1986) 121: 663-9; Bird and Walker (1991) Trends Biotechnol. 9: 132- 7参照)。
[0056] 多特異性抗体には、二特異性抗体 (BsAb)、ダイァボディ (Db)等が含まれる。多特異 性抗体は、(1)異なる特異性の抗体を異種二機能性リンカ一により化学的にカップリン グする方法 (Paulus (1985) Behring Inst. Mill. 78: 118-32)、(2)異なるモノクローナル 抗体を分泌するハイブリドーマを融合する方法 (Millstein and Cuello (1983) Nature 3 05: 537-9)、(3)異なるモノクローナル抗体の軽鎖及び重鎖遺伝子 (4種の DNA)により マウス骨髄腫細胞等の真核細胞発現系をトランスフエクシヨンした後、二特異性の一 価部分を単離する方法 (Zimmermann (1986) Rev. Physio. Biochem. Pharmacol. 105: 176-260; Van Dijk et al. (1989) Int. J. Cancer 43: 944- 9)等により作製することがで きる。一方、 Dbは遺伝子融合により構築され得る二価の 2本のポリペプチド鎖力も構 成されるダイマーの抗体断片であり、公知の手法により作製することができる (Holliger et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6444—8; EP404097; W093/11161参照
)。
[0057] 抗体及び抗体断片の回収及び精製は、プロテイン A及び Gを用いて行うほか、抗体 以外のポリペプチドの製造の場合と同様に上記した蛋白質精製技術によっても行うこ と力できる (Antibodies: A Laboratory Manual, Ed Harlow and David Lane, Cold bpnn g Harbor Laboratory (1988))。例えば、本発明の抗体の精製にプロテイン Aを利用す る場合、 Hyper D、 POROS、 Sepharose F.F.(Pharmacia)等のプロテイン Aカラムを使用 することができる。得られた抗体の濃度は、その吸光度を測定することにより、または 酵素結合免疫吸着検定法 (ELISA)等により決定することができる。
[0058] 抗体の抗原結合活性は、吸光度測定、蛍光抗体法、酵素免疫測定法 (EIA)、放射 免疫測定法 (RIA)、 ELISA等により測定することができる。例えば、 ELISA法により測定 する場合、本発明の抗体をプレート等の担体に固相化し、次いで Lrp4ポリペプチドを 添加した後、目的とする抗体を含む試料を添加する。ここで、抗体を含む試料として は、抗体産生細胞の培養上清、精製抗体等が考えられる。続いて、本発明の抗体を 認識する二次抗体を添カ卩し、プレートのインキュベーションを行う。その後、プレート を洗浄し、二次抗体に付加された標識を検出する。即ち、二次抗体がアルカリホスフ ァターゼで標識されて 、る場合には、 トロフエ二ルリン酸等の酵素基質を添加し て吸光度を測定することで、抗原結合活性を測定することができる。また、抗体の活 性評価に、 BIAcore(Pharmacia)等の市販の系を使用することもできる。
本発明は、抗 Lrp4抗体を有効成分とする、ドーパミン産生ニューロン前駆細胞を識 別するための試薬に関する。上記の試薬においては、有効成分である本発明の抗体 以外に、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、 緩衝剤、タンパク質安定剤 (BSAやゼラチンなど)、保存剤等が必要に応じて混合さ れていてもよい。
[0059] <ドーパミン産生ニューロン前駆細胞の選択方法等 >
本発明により、ドーパミン産生-ユーロン増殖前駆細胞を選択的に均一な集団とし て選択する方法が提供された。ドーパミン産生-ユーロン増殖前駆細胞は、本発明 のマーカーポリヌクレオチドプローブを用いることにより選択することができる。また、 本発明により、ドーパミン産生ニューロン前駆細胞を選択的に均一な集団として選択 される方法が提供された。ドーパミン産生-ユーロン前駆細胞は、本発明の抗体を用 いて好適に選択することができる。このように本発明のポリヌクレオチドプローブまた は抗体を用いることにより、最終的にドーノ ミンを産生する-ユーロンへと分ィ匕するド ーパミン産生ニューロン系列の細胞が特異的に選択される。
[0060] ここで、「選択」という用語は、或る試料中のマーカーを発現する細胞の存在を検出 すること、及び、存在を検出しさらに分離または単離することの両方を含むものである 。本発明は、本発明のマーカーポリヌクレオチドプローブとドーパミン産生-ユーロン 増殖前駆細胞を含む細胞試料とを接触させる工程を含むドーノ ミン産生-ユーロン 増殖前駆細胞を選択する方法を提供するものである。該方法においては、マーカー ポリヌクレオチドプローブを好ましくは放射性同位体または非放射性ィ匕合物で標識し ておく。例えば、標識するための放射性同位体としては、 35S、 3H等を挙げることができ る。放射標識したマーカーポリヌクレオチドプローブを用いた場合、エマルシヨンォー トラジオグラフィーにより銀粒子を検出することによりマーカーと結合する RNAを検出 することができる。また、マーカーポリヌクレオチドプローブ標識のための非放射性同 位体としては、ピオチン、ジゴキシゲニン等が例示される。ピオチン標識マーカーの 検出は、例えば、蛍光、または、アルカリ性ホスファターゼ若しくは西洋ヮサビペルォ キシダーゼ等の酵素を標識したアビジンを用いて行うことができる。一方、ジゴキシゲ ニン標識マーカーの検出には、例えば、蛍光、または、アルカリ性ホスファターゼ若し くは西洋ヮサビペルォキシダーゼ等の酵素を標識した抗ジゴキシゲニン抗体を使用 することができる。酵素標識を使用する場合には、酵素の基質と共にインキュベートし 、安定な色素をマーカー位置に沈着させることで検出を行うことができる。特に蛍光 を利用した、 in situハイブリッド形成法 (FISH)が簡便であり、特に好ましいものである。
[0061] また、本発明により、本発明のドーパミン産生ニューロン前駆細胞を選択するため の抗体およびドーパミン産生-ユーロン前駆細胞を含む細胞試料とを接触させるェ 程を含む、ドーパミン産生ニューロン前駆細胞を選択する方法が提供される。即ち、 ドーパミン産生-ユーロン前駆細胞を含むことが予測される細胞試料と本発明の抗体 とを接触させ、抗体に結合する細胞を選択することでドーパミン産生ニューロン前駆 細胞を取得できる (図 13参照)。細胞試料との接触前に、本発明の抗体を適当な担体 に固定ィ匕して用いることも可能である。また、細胞試料と本発明の抗体とを接触させ、 結合させた後、抗体のァフィ二ティーによる精製を行うことで、該抗体と結合した細胞 を選択的に回収することもできる。例えば、本発明の抗体がピオチンと結合されてい る場合には、アビジンやストレプトアビジンを結合したプレートやカラムに対して添カロ することにより精製を行うことができる。その他、例えば、磁性粒子を抗体に結合し、 該抗体及び抗体に結合した Lrp4を細胞表面上に発現して ヽる細胞を、磁石を利用 して回収することもできる。また、セルソーター、及び蛍光等により標識した抗 Lrp4抗 体を使用して、フローサイトメトリーにより Lrp4を発現するドーノ ミン産生-ユーロン前 駆細胞を選択することもできる。
このようにして得られたドーノミン産生-ユーロン前駆細胞集団は、例えば、 40% 以上、好ましくは 50%以上、より好ましくは 60%以上、特に好ましくは 70%以上のド ーパミン産生-ユーロン前駆細胞を含有する細胞集団である。
本発明により、本発明のマーカーポリヌクレオチドプローブまたは抗体を使用して選 択されたドーパミン産生ニューロン前駆細胞を培養することにより、分裂停止後のドー パミン産生-ユーロン前駆細胞を選択および Zまたは製造する方法が提供される。ま た、本発明により、本発明のマーカーポリヌクレオチドプローブまたは抗体とドーパミ ン産生ニューロン前駆細胞を含む細胞試料とを接触させ、ドーパミン産生ニューロン 前駆細胞を選択し、前記選択された細胞を培養することにより、分裂停止後のドーパ ミン産生-ユーロン前駆細胞を選択および Zまたは製造する方法が提供される。 さらに、本発明により、本発明のマーカーポリヌクレオチドプローブまたは抗体を使 用して選択されたドーパミン産生ニューロン前駆細胞を培養し、さらに分裂停止後の ドーノ ミン産生-ユーロン前駆細胞マーカーを用いて選択および zまたはスクリー- ングすることにより、腫瘍化する危険性の低い移植治療に特に適した分裂停止後の ドーパミン産生ニューロン前駆細胞を得ることもできる。分裂停止後のドーパミン産生 ニューロン前駆細胞マーカーとしては、例えば、 65B13、 Nurrl、 TH等を挙げることが できる(WO2004/038018; Kawasaki et al. (2000) Neuron 28: 31-40; Wallen et al. (1 999) Exp. Cell Res. 253: 737-46)。例えば、本発明のマーカーポリヌクレオチドプロ ーブまたは抗体とドーパミン産生- ロン前駆細胞を含む細胞試料とを接触させ、 ドーパミン産生ニューロン前駆細胞を選択し、さらに必要に応じて培養したドーパミン 産生- ロン前駆細胞と 65B13ポリペプチドに対する抗体とを接触させて 65B13ポリ ペプチドを発現している細胞を選択することにより、分裂停止直後のドーパミン産生 ニューロン前駆細胞を選択および Zまたは製造することができる。
[0063] 本発明により、本発明のマーカーポリヌクレオチドプローブまたは抗体を使用して選 択されたドーパミン産生ニューロン前駆細胞を培養することにより、ドー ミン産生二 ロンを選択および zまたは製造する方法が提供される。また、本発明により、本 発明のマーカーポリヌクレオチドプローブまたは抗体とドー ミン産生- ロン前駆 細胞を含む細胞試料とを接触させ、ドーパミン産生ニューロン前駆細胞を選択し、前 記選択された細胞を培養することにより、ドー ミン産生- ロンを選択および Zま たは製造する方法が提供される。
また、本発明により、本発明のマーカーポリヌクレオチドプローブまたは抗体を使用 して選択されたドーパミン産生ニューロン前駆細胞を培養し、さらにドーパミン産生二 ユーロンマーカーを用いて選択および zまたはスクリーニングすることにより、腫瘍ィ匕 する危険性の低い移植治療に特に適したドー ミン産生- ロンを得ることもでき る。ドーパミン産生- ロンマーカーとしては、例えば、 DAT等を挙げることができる (Development. 2004. 131(5):1145- 55.)。例えば、本発明のマーカーポリヌクレオチド プローブまたは抗体とドーパミン産生- ロン前駆細胞を含む細胞試料とを接触さ せ、ドーパミン産生ニューロン前駆細胞を選択し、さらに培養したドーパミン産生ニュ ロン前駆細胞と、 DATに対する抗体とを接触させて、 DATを発現している細胞を選 択することにより、ドーパミン産生- ロンを選択および/または製造することがで きる。
[0064] 本発明により、本発明の抗体を使用して選択されたドーパミン産生- ロン前駆 細胞を培養し若しくは培養無しで、さらに分裂停止後のドーパミン産生- ロン前 駆細胞を除去することにより、培養増殖可能なドーパミン産生ニューロン増殖前駆細 胞を選択および Zまたは製造する方法が提供される。また、本発明により、本発明の 抗体とドーパミン産生-ユーロン前駆細胞を含む細胞試料とを接触させ、ドーパミン 産生-ユーロン前駆細胞を選択し、前記選択された細胞を培養し若しくは培養無し で、さらに分裂停止後のドーパミン産生-ユーロン前駆細胞を除去することにより、培 養増殖可能なドーパミン産生-ユーロン増殖前駆細胞を選択および Zまたは製造す る方法が提供される。
分裂停止後のドーノ ミン産生-ユーロン前駆細胞の除去は、分裂停止後のドーパミ ン産生-ユーロン前駆細胞マーカーを用いて選択および Zまたは除去することにより
、培養増殖可能なドーパミン産生-ユーロン増殖前駆細胞を得ることもできる。分裂 停止後のドーノ ミン産生-ユーロン前駆細胞マーカーとしては、例えば 65B13、 Nurrl 、 TH等を挙げることができる(WO2004/038018; Kawasaki et al. (2000) Neuron 28: 3 1-40; Wallen et al. (1999) Exp. Cell Res. 253: 737-46)。例えば、本発明の抗体とド ーノ ミン産生ニューロン前駆細胞を含む細胞試料とを接触させ、ドーノ ミン産生ニュ 一ロン前駆細胞を選択し、さらに必要に応じて培養したドーパミン産生ニューロン前 駆細胞と 65B13ポリペプチドに対する抗体とを接触させて 65B13ポリペプチドを発現し ていない細胞を選択することにより、ドーノ ミン産生-ユーロン増殖前駆細胞を選択 および Zまたは製造することができる。
[0065] Lrp4発現ドーノミン産生-ユーロン前駆細胞の選択及び/またはスクリーニングは、 Lrp4に対するプロモーターを利用して行うこともできる (例えば、特開 2002-51775号公 報参照)。例えば、後述する Lrp4の発現制御領域解析により得られるプロモーター部 分に対し、 GFP等の検出可能なマーカーをコードする遺伝子を連結した構築物を含 むベクターを細胞に対してトランスフエクシヨンすることができる。その他、 Lrp4遺伝子 座へマーカーをコードする遺伝子をノックインすることができる。どちらの場合にも、ド ーパミン産生ニューロン前駆細胞特異的にマーカー遺伝子の発現が検出されること となり、特異的な細胞の選択が可能となる。
[0066] ここで、使用する細胞試料は、好ましくは中脳腹側領域の細胞、または in vitroで分 化誘導されたドーパミン産生ニューロン前駆細胞を含む培養細胞である。 in vitroに おけるドーパミン産生-ユーロンの分ィ匕誘導は、公知の ES細胞、骨髄間質細胞、神 経由来の不死化セルライン (特表平 8-509215号公報;特表平 11-506930号公報;特 表 2002-522070号公報)、ニューロン始原細胞 (特表平 11-509729号公報)等の細胞を 出発材料として、公知の方法により行うことができる。通常、ドーパミン産生-ユーロン は、脳のドーパミン産生-ユーロン領域力 得た組織を神経組織由来の支持細胞層 と共培養すること〖こより分化させることができる。さらに、線条体及び皮質等の通常非 ドーノ ミン産生神経組織からドーノ ミン産生-ユーロンを誘導する方法も知られてい る (特表平 10-509319号公報)。また、低酸素条件下での培養により、より多くドーパミ ン産生ニューロンを含む細胞が得られるとの報告もある (特表 2002-530068号公報)。 3;た、 5- stage法 (Lee et. al. (2000) Nat. Biotech. 18: 0 /5-679、 mouse dopaminergic n euron differentiation kit (R&D Systems))により ES細胞(CCE)よりドーパミン産生-ュ 一ロンへの分化誘導を行ってもよい。本発明のドーノミン産生-ユーロン前駆細胞の 選択に用いる細胞試料は、これらを含む如何なる方法により分離または培養された 細胞群であってもよい。
[0067] また、本発明の抗体を固定する担体は、細胞に対して無害なものであることが好ま しい。担体は、例えば、合成または天然の有機高分子化合物、ガラスビーズ、シリカ ゲル、アルミナ、活性炭等の無機材料、及びこれらの表面に多糖類、合成高分子等 をコーティングしたものがあげられる。担体の形状は、特に制限はなぐ膜状、繊維状
、顆粒状、中空糸状、不織布状、多孔形状、ハ-カム形状等が挙げられ、その厚さ、 表面積、太さ、長さ、形状、大きさを種々変えることにより接触面積を制御することが できる。
[0068] <ドーパミン産生-ユーロン前駆細胞を含む神経変性疾患を治療するためのキット およびドーパミン産生ニューロン前駆細胞を用いた神経変性疾患の治療方法 > ポリヌクレオチドプローブを用い Lrp4 mRNAの発現を指標として獲得された細胞は 、ドーパミン産生-ユーロン増殖前駆細胞であり、抗体を用い Lrp4ポリペプチドの発 現を指標として獲得された細胞は、ドーパミン産生-ユーロン前駆細胞であり、 mRNA またはポリペプチドのどちらを指標とした場合であっても、ドーノミン産生-ユーロン 系列の細胞集団が得られる。本発明の方法により取得された前駆細胞は、従来の雑 多な細胞集団または外来遺伝子を導入したドーパミン産生-ユーロンと比べて、安全 性、生存率、ネットワーク形成能の面で姿勢反射、運動、及び報酬関連行動 (reward- associated behaviors)に関わる疾患、特に、パーキンソン病等の神経変性疾患、精神 分裂病、及び薬物嗜癖 (Hynes et al. (1995) Cell 80: 95-101)の移植治療に好ましい ものである。 Lrp4の発現を指標として獲得された細胞は、そのまま、または in vitroで 増殖させた後に移植に使用することができる (図 13)。このような細胞は、脳内の最適 な場所で分化成熟して 、く可能性があることから治療効果が期待される。すなわち、 本発明は、本発明のマーカーポリヌクレオチドプローブまたは抗体を使用して選択な らびに Zまたは製造されたドーパミン産生- ロン増殖前駆細胞、分裂停止後のド ーパミン産生- ロン前駆細胞および Zもしくはドー ミン産生- ロンを含む、 神経変性疾患を治療するためのキット(以下、「本発明のキット」と称する場合がある) ならびに、該細胞を患者の脳内に移植することを特徴とする、神経変性疾患の治療 方法をも提供する。さらに、神経変性疾患を治療するためのキットを製造するための 本発明のマーカーポリヌクレオチドプローブまたは抗体を使用して選択ならびに Zま たは製造されたドーパミン産生- ロン増殖前駆細胞、分裂停止後のドーパミン産 生ニューロン前駆細胞および Zもしくはドー ミン産生ニューロンの使用も提供する。 本発明において神経変性疾患は、好ましくはパーキンソン病が挙げられる。本発明 のキットは、細胞以外に薬学的に許容される担体を含んでいてもよい。担体としては 、例えば、生理食塩水、リン酸緩衝液、培養液、血清、生体液、カルボキシメチルセ ルロース液、細胞の足場となる固体(例えば、 cytodex3 (Amersham Bioscience, 17-0 485-01)等)、細胞外基質成分 (例えば、コラーゲン、フイブロネクチン、ビトロネクチン 、ラミニン、へパラン硫酸、プロテオダリカン、グリコサミノダリカン、コンドロイチン硫酸 、ヒアルロン、エラスチンまたはこれら 2種以上の組み合わせ等)またはゲル状の支持 体などがあげられる。また、本発明のキットは、 pH調製剤、緩衝剤、安定化剤、保存 剤等を添加することができる。本発明のキットは、一回接種用でも複数回接種用でも 良い。また、投与量は、接種されるヒトまたは動物の体重、年齢、投与方法などにより 適宜選択することが可能である。
Lrp4の発現を指標として選択されるドーパミン産生- ロン前駆細胞は、 in vivo においてさらに増殖する可能性があることから、より長期的な治療効果が期待される 。さらに、 Lrp4の発現を指標とて選択されるドーパミン産生- ロン前駆細胞は、 in vitroにおいて培地等の条件を選択することにより適当な段階まで分ィ匕させることも可 能であり、種々の神経移植治療の材料としても好ましいものである。例えば、前述した ように、 Lrp4の発現を指標として選択されたドーパミン産生-ユーロン前駆細胞につ いて、さらに細胞分裂停止後のドーパミン産生ニューロン前駆細胞マーカー (例えば 、 65B13、 Nurrl、 TH等)を指標とした選択を行うことにより、より移植の上では安全性 の高い細胞を得ることもできる。本発明は、上記の前駆細胞を in vitroで培養し、分ィ匕 増殖させる方法に関する。培養を行うドーパミン産生-ユーロン前駆細胞は分裂停止 後の前駆細胞であってもよ 、。
[0070] 本発明の方法により得られたドーノ ミン産生ニューロン前駆細胞は、例えば、 1 X 10 2〜1 X 108個の細胞、好ましくは 1 X 103〜1 X 106個の細胞、より好ましくは 5〜6 X 104 個の細胞を移植することができる。第 1の方法としては、細胞の懸濁液を脳に移植す る定 1 脳固疋術、 stereotaxic surgeryノカ 21 げりれ 。また、 クロ手 t r(microsurgery) により細胞を移植しても良い。ニューロン組織の移植方法については、 Backlund等 (B acklund et al. (1985) J. Neurosurg. 62: 169—73)、 Lindvall等 (Lindvall et al. (1987) An n. Neurol. 22: 457-68)、 Madrazo等 (Madrazo et al. (1987) New Engl. J. Med. 316: 8 31-4)の方法を参照することができる。
[0071] さらに、本発明の細胞は、ドーパミン産生-ユーロン増殖前駆細胞特異的遺伝子及 び増殖前駆細胞からドーパミン産生ニューロンへの各成熟段階に特異的な遺伝子 の単離、パーキンソン病治療のターゲット探索、ドーパミン産生ニューロンの成熟過 程の解明、並びに成熟を指標としたスクリーニング等にも利用することができる。
[0072] <遺伝子発現レベルの比較 >
本発明のポリヌクレオチドプローブまたは抗体を用いて得られるドーパミン産生-ュ 一ロン前駆細胞は、該細胞にお 、て特異的に発現して 1、る遺伝子を単離する材料と して使用することができる。さらに、本発明のドーパミン産生ニューロン前駆細胞を分 ィ匕、誘導、または増殖させた細胞に特異的に発現している遺伝子を調べ、単離する こともできる。また、分化 Z誘導 Z増殖させた細胞と元の該前駆細胞とにおいて発現 レベルに差違のある遺伝子を調べることによりドーノ ミン産生-ユーロンの生体内に おける分ィ匕に必要とされる遺伝子を調べることもできる。このような遺伝子はドーパミ ン産生-ユーロンにおける何等かの欠陥が病因となっている疾病の治療対象候補と なり得るので、当該遺伝子を決定し、単離することは非常に有用である。
[0073] 本発明のドーパミン産生ニューロン前駆細胞と該前駆細胞から分化 Z誘導 Z増殖 された細胞若しくはその他の細胞、または該分化 Z誘導 Z増殖された細胞とその他 の細胞との間での遺伝子の発現レベルの比較は、慣用の細胞 in situノヽイブリダィゼ ーシヨン、ノーザンブロットハイブリダィゼーシヨン、 RNAドットブロットハイブリダィゼー シヨン、逆転写 PCR、 RNase保護アツセィ、 DNAマイクロアレイハイブリダィゼーシヨン、 遺 1ZS十 の連 解析 (SAGE;seriai analysis of gene expression)(Velculescu et al. ( 1995) Science 270: 484-7)、差し引きハイブリダィゼーシヨン (subtractive hybridizatio n)、代 ¾:差趣分 ^r representation difference analysis; RDA (Lisitsyn (1995) Trends Genet. 11: 303- 7)等により行うことができる。
[0074] 細胞 in situハイブリダィゼーシヨンでは、特定の RNA配列に特異的な標識プローブ を用い細胞から調製した総 RNAまたは polyA+RNAに対してハイブリダィゼーシヨンを 行うことにより、個々の細胞における RNAのプロセッシング、輸送、細胞質への局在化 が起こる場所等を調べることができる。また、 RNAの大きさをゲル電気泳動等によりサ ィズ分画して決定することもできる。また、定量的な蛍光 in situノヽイブリダィゼーシヨン (FISH)及びデジタル画像顕微鏡を用いれば、 RNA転写産物を in situで視覚的に捉 えることも可能であり (Femino et al. (1998) Science 280: 585-90)、本発明において利 用することができる。
[0075] 遺伝子発現の解析で逆転写 PCRを用いた場合、特定遺伝子の発現を大まかに定 量することができる。本方法では、 1つの RNA転写産物の種々のァイソフォームを検 出及び解析することも可能である。逆転写 PCRにおいてはまず、ェキソン特異性ブラ イマ一を用いた逆転写 PCRを行い、予想された産物以外の増幅産物が検出された場 合、それらを解析することにより選択的スプライシングにより生じる mRNAァイソフォー ムを同定することが可能である。例えば、 Pykett et al. (1994) Hum. Mol. Genet. 3: 5 59-64等に記載の方法を参照することができる。特に大まかな発現パターンを迅速に 解析することが求められる場合、本発明の PCRを利用した本方法は、その速さ、感度 の高さ、簡便さの点力もも望ましいものである。 [0076] DNAチップを使用することにより、遺伝子発現スクリーニングの能率を向上させるこ とができる。ここで、 DNAチップとは、ガラス等の担体表面上にオリゴヌクレオチドまた は DNAクローン等を高密度に固定した小型のアレイである。例えば、多重発現スクリ 一ユングを行うためには、各目的遺伝子に対する cDNAクローンまたは該遺伝子特異 的なオリゴヌクレオチドをチップに対して固定ィ匕し、マイクロアレイを作製する。次に本 発明のドーパミン産生-ユーロン前駆細胞、または該前駆細胞より分化 Z誘導 Z増 殖された細胞より RNAを調製し、逆転写酵素処理を行い、 cDNAを得る。次に、得られ た cDNA試料を蛍光タグ等のタグにより標識し、マイクロアレイに対するハイブリダィゼ ーシヨンを行う。その結果、総標識 cDNA中、細胞内で活発に発現している遺伝子の 割合が高くなり、あまり発現されていない遺伝子の割合は低くなる。即ち、標識 cDNA とチップ上の cDNAクローンまたはオリゴヌクレオチドとのハイブリッド形成を表す蛍光 シグナルの強度は、標識 cDNA内での各配列の発現の度合いを示すことなり、遺伝 子発現の定量を可能成らしめる。
[0077] また、縮重 PCRプライマーを用いた逆転写 PCRを行う mRNAディファレンシャルディ スプレイにより、本発明のドーパミン産生ニューロン前駆細胞、または該前駆細胞から 分化 Z誘導 Z増殖された細胞について多数の遺伝子の発現を同時に解析すること もできる。まず、特定の mRNAの polyA尾部に 3'末端の 1または 2つの塩基を変更した 修飾オリゴ dTプライマーを準備し、本発明のドーパミン産生-ユーロン前駆細胞また は該前駆細胞から分化 Z増殖された細胞、及び、発現を比較する対照細胞から単 離した総 RNAに対して逆転写酵素反応を行う (Liang et al. (1993) Nucleic Acids Res. 21: 3269-75)。変更した塩基が「G」であれば、 polyA尾部の直前に Cを持つ mRNAを 選択的に増幅することができ、また「CA」であれば、 TGを直前に持つ mRNAを増幅す ることができる。次に、第 2のプライマーとして、 10塩基程度の長さの任意の配列を有 するものを用意し、修飾オリゴ dTプライマー及び第 2のプライマーを使用して PCR増 幅反応を行う。増幅産物を泳動距離の長 、ポリアクリルアミドゲルを用いて電気泳動 し、サイズ分画する。このような方法により、本発明の細胞と対照細胞とで各細胞に特 異的に発現している mRNA由来の cDNAは、一方の試料を泳動した場合にのみ検出 されるバンドとして検出することができる。この方法では、同定されていない遺伝子の 発現につ ヽても解析することができる。
[0078] SAGE分析は、多数の転写産物の発現を同時に検出することができ、また検出に特 殊な装置を必要としない点で好ましい分析方法の一つである。まず、本発明のドーパ ミン産生-ユーロン前駆細胞または該前駆細胞力 分ィ匕 Z誘導 Z増殖された細胞よ り polyA+RNAを慣用の方法により抽出する。次に、ピオチンィ匕オリゴ dTプライマーを用 い、前記 RNAを cDNAに変換し、 4塩基認識制限酵素 (アンカー用酵素; AE)で処理す る。これにより、 AE処理断片はその 3'末端にピオチン基を含んだ形となる。次に、 AE 処理断片をストレプトアビジンに結合させる、結合された cDNAを 2画分に分け、それ ぞれの画分を別々の 2本鎖オリゴヌクレオチドアダプター (リンカ一) A及び Bに連結す る。このリンカ一は、(1)アンカー用酵素の作用で生じる突出部の配列と相補的な配列 を有する 1本鎖突出部、(2)タグ用酵素 (tagging enZyme;TE)となる IIS型制限酵素 (認識 部位より 20bp以下の離れた定位置の切断を行う)の 5'塩基認識配列、及び (3)PCR用 特異的プライマーを構成するのに十分な追加配列より構成される。ここで、リンカ一を 連結した cDNAをタグ用酵素で切断することにより、リンカ一結合型の状態で cDNA配 列部分のみが短鎖配列タグとなる。次に、リンカ一の異なる 2種類のプールを互いに 連結し、リンカ一 A及び Bに特異的プライマーを使用して PCR増幅する。その結果、増 幅産物はリンカ一 A及び Bに結合した 2つの隣接配列タグ (ダイタグ; ditag)を含む多様 な配列の混在物として得られる。そこで、増幅産物をアンカー用酵素により処理し、 遊離したダイタグ部分を通常の連結反応により鎖状に連結し、クローユングを行う。ク ローニングにより得られたクローンの塩基配列を決定することにより、一定長の連続ダ ィタグの読み出しを得ることができる。このようにしてクローンの塩基配列を決定し、配 列タグの情報が得られれば、それぞれのタグに該当する mRNAの存在を同定すること ができる。
[0079] 差し引きハイブリダィゼーシヨンは、種々の組織または細胞間で発現の差違のある 遺伝子のクローユングによく用いられる方法である力 本発明のドーパミン産生-ュ 一ロン前駆細胞、または該前駆細胞から分化 Z誘導 Z増殖された細胞にぉ 、て特 異的に発現している遺伝子をクローユングするのにも使用することができる。まず、本 発明のドーパミン産生-ユーロン前駆細胞のうち試験する細胞の DNA試料を調製す る (以下、テスト DNAと呼ぶ)。次に、比較する細胞の DNA (以下、ドライバー DNAと呼 ぶ)を調製する。テスト DNAとドライバー DNAとを逆に用いることもできる。いずれにせ よ、テスト DNAに存在し、ドライバー DNAに存在しない遺伝子の存在が検出される。 次に、調製したテスト DNA及び大過剰量のドライバー DNAを混合し、変性させ一本鎖 DNAとした後にアニーリングさせる。アニーリング条件を調節することにより、ドライバ 一 DNA中には存在しない特異的な配列をテスト DNA由来の DNAのみからなる二本 鎖 DNAとして単離することができる。より詳細な方法については、 Swaroop et al. (199 1) Nucleic Acids Res. 19: 1954及び Yasunaga et al. (1999) Nature Genet. 21: 363—9 等を参照することができる。
[0080] RDA法は、 PCRを利用した、ドライバー DNAに存在しないテスト DNA中の配列を選 択的に増幅することを可能とする方法であり、上述のその他の方法と同様に本発明 において用いることができる。より詳細な手順については、 Lisitsyn (1995) Trends G enet. 11: 303— 7及び Schutte et al. (1995) Proc. Natl. Acad. Sci. USA 92: 5950— 4を 参照することができる。
[0081] 以上のようにして検出、単離されたドーパミン産生ニューロン前駆細胞、または該前 駆細胞を分化、誘導、または増殖させた細胞に特異的な遺伝子を上述の各種公知 の方法によりベクター等に挿入し、配列決定、発現解析を行うこともできる。
[0082] <ドーノミン産生-ユーロン前駆細胞の成熟を指標としたスクリーニング >
本発明により、本発明のドーノ ミン産生-ユーロン前駆細胞に対し、被験物質を接 触させる工程、及び接触による該前駆細胞の分化または増殖を検出する工程を含む 、スクリーニング方法が提供される。本方法によりスクリーニングされる化合物は、ドー ノ ミン産生-ユーロンの分化、増殖等を調節する機能を示すことから、ドーパミン産生 ニューロンにおける何等かの欠陥が病因となっている疾病の治療対象候補となり、有 用と考えられる。本発明のドーパミン産生-ユーロン前駆細胞としては、本発明のポリ ヌクレオチドプローブまたは抗体を用いて選択される細胞、及び、これらの細胞を増 殖および Zまたは分ィ匕誘導して得られる細胞が挙げられる。
[0083] ここで、「被験物質」とはどのような化合物であってもよ!/、が、例えば、遺伝子ライブ ラリーの発現産物、合成低分子化合物ライブラリー、合成ペプチドライブラリー、抗体 、細菌放出物質、細胞 (微生物、植物細胞、動物細胞)抽出液、細胞 (微生物、植物細 胞、動物細胞)培養上清、精製または部分精製ポリペプチド、海洋生物、植物または 動物等由来の抽出物、土壌、ランダムファージペプチドディスプレイライブラリーが挙 げられる。
[0084] 細胞の分化や増殖は、被験物質と接触させな!/、場合における細胞の状態と比較す ることにより検出することができる。細胞の分ィ匕ゃ増殖は、顕微鏡下において形態学 的な観察を行うことができ、また、細胞で産生されるドーパミン等の物質を検出、定量 して検出して行うことができる。
[0085] < Lrp4の発現制御領域解析 >
Lrp4の発現制御領域は、 Lrp4の遺伝子配列を利用してゲノム DNAから公知の方法 によってクローユングすることができる。例えば、 S1マッピング法のような転写開始点 の特定方法 (細胞工学別冊 8新細胞工学実験プロトコール,東京大学医科学研究 所制癌研究部編,秀潤社(1993) pp.362-374)が公知であり、利用できる。一般に、遺 伝子の発現制御領域は、遺伝子の 5'末端の 15〜100bp、好ましくは 30〜50bpをプロ ーブ DNAとして利用して、ゲノム DNAライブラリーをスクリーニングすることによりクロー ユングすることができる (本発明においては、配列番号: 1または 2の塩基全部またはそ の 1部)。このようにして得られるクローンは、 lOkbp以上の 5'非翻訳領域を含むもので あるので、次にェキソヌクレアーゼ等により処理し短縮ィ匕または断片化する。最後に、 短縮された発現制御領域の候補を含む配列部分をレポーター遺伝子を利用して、そ の発現の有無、強さ、制御等について評価し、 Lrp4の発現制御領域の活性維持のた めの最小必要単位を決定することができる。
[0086] 遺伝子の発現制御領域は、 Neural Network等のプログラム (http:〃 www.fruitfly.org.
/ seq_tools/ promoter.html; Reese et al., Biocomputing: Proceedings of the 1996 Paci fic Symposium, Hunter and Klein ed., World Scientific Publishing Co., Singapore, (1 996》を用いて予測することもできる。さらに、発現制御領域の活性最小単位を予測す るフ—ロクフム (http:/ /biosci.cbs.umn.edu./ software/ proscan/ promoters can . htm ; Prest ridge (1995) J. Mol. Biol. 249: 923-32)も公知であり、用いることができる。
[0087] このようにして単離された、 Lrp4遺伝子の発現制御領域は、 in vivoでドーパミン産 生-ユーロン増殖前駆細胞特異的に所望の蛋白質を産生するのに利用することもで きる。
[0088] < Lrp4に対するリガンド>
Lrp4ポリペプチドは、膜貫通ドメインを有することから、天然において細胞膜中に埋 め込まれた状態で存在すると考えられる。 Lrp4は、ドーパミン産生-ユーロン前駆細 胞で発現されて 、ることから、ドーパミン産生-ユーロン前駆細胞の増殖制御や-ュ 一ロンの分化、成熟に関与していることが考えられる。従って、 Lrp4に対するァゴニス トゃアンタゴ-スト等の機能を示す可能性があるリガンドは、ドーパミン産生-ユーロ ンの in vivo, ex vivo及び in vitroにおける分化を制御するのに利用できる可能性があ る。 Lrp4ポリペプチドに対するリガンドの同定においては、まず、 Lrp4ポリペプチドと 候補化合物とを接触させ、結合の有無を検定する。この際、 Lrp4ポリペプチドを担体 に固定したり、細胞膜に埋めこまれた状態に発現させたりして用いることもできる。候 補ィ匕合物としては特に制限はなぐ遺伝子ライブラリーの発現産物、海洋生物由来の 天然成分、各種細胞の抽出物、公知化合物及びペプチド、植物由来の天然成分、 生体組織抽出物、微生物の培養上清、並びにファージディスプレイ法等によりランダ ムに製造されたペプチド群 (J. Mol. Biol. 222: 301-10 (1991))等が含まれる。また、結 合の検出を容易にするために、候補ィ匕合物は標識しても良い。
[0089] < Lrp4の発現抑制 >
本発明により、 Lrp4 mRNAがドーノ ミン産生-ユーロン増殖前駆細胞で一過性に発 現されることが明らかにされたことから、 Lrp4が前駆細胞の増殖制御や-ユーロンの 分化、成熟に関与していることが考えられた。従って、 Lrp4遺伝子の発現を阻害する ものは、ドーパミン産生-ユーロンの in vivo, ex vivo及び in vitroにおける分化を制御 するのに利用できる可能性がある。遺伝子の発現を阻害し得るものとして、例えば、 アンチセンス、リボザィム及び 2本鎖 RNA(small interfering RNA; siRNA)が挙げられる 。従って、本発明はこのようなアンチセンス、リボザィム及び 2本鎖 RNAを提供するも のである。
[0090] アンチセンスが標的遺伝子の発現を抑制する機構としては、(1)3重鎖形成による転 写開始阻害、(2)RNAポリメラーゼにより形成される局所的開状ループ構造部位との ノ、イブリツド形成による転写抑制、(3)合成中の RNAとのノ、イブリツド形成による転写阻 害、(4)イントロン-ェキソン接合点におけるハイブリッド形成によるスプライシング抑制 、(5)スプライソソーム形成部位とのハイブリッド形成によるスプライシング抑制、(6)mR NAとのハイブリッド形成による、 mRNAの細胞質への移行抑制、(7)キヤッビング部位 またはポリ A付加部位とのハイブリッド形成によるスプライシング抑制、(8)翻訳開始因 子結合部位とのハイブリッド形成による翻訳開始抑制、(9)リボソーム結合部位とのハ イブリツド形成による翻訳抑制、(10)mRNA翻訳領域またはポリソーム結合部位とのハ イブリツド形成によるぺプペプチド鎖の伸長抑制、並びに (11)核酸と蛋白質の相互作 用部位とのハイブリッド形成による遺伝子発現抑制が挙げられる (平島及び井上『新 生化学実験講座 2 核酸 IV 遺伝子の複製と発現』日本生化学会編、東京化学同人 、 pp.319-347 (1993))。
[0091] 本発明の Lrp4アンチセンス核酸は、上述の (1)〜(11)のどの機構により遺伝子発現 を抑制する核酸であってもよぐ即ち、発現を阻害する目的の遺伝子の翻訳領域の みならず、非翻訳領域の配列に対するアンチセンス配列を含むものであってもよ 、。 アンチセンス核酸をコードする DNAは、その発現を可能とする適当な制御配列下に 連結して使用することができる。アンチセンス核酸は、標的とする遺伝子の翻訳領域 または非翻訳領域に対して完全に相補的である必要はなぐ効果的に該遺伝子の 発現を阻害するものであればよい。このようなアンチセンス核酸は、少なくとも 15bp以 上、好ましくは lOObp以上、さらに好ましくは 500bp以上であり通常 3000bp以内、好まし くは 2000bp以内、より好ましくは lOOObp以内の鎖長を有し、標的遺伝子の転写産物 の相補鎖に対して好ましくは 90%以上、より好ましくは 95%以上同一である。このよう なアンチセンス核酸は、 Lrp4ポリヌクレオチドを基に、ホスホロチォネート法 (Stein (19 88) Nucleic Acids Res. 16: 3209- 21)等により調製することができる。
[0092] リボザィムとは、 RNAを構成成分とする触媒の総称であり、大きくラージリボザィム (la rge ribozyme)及びスモールリボザィム (small liboyme)に分類される。ラージリボザィム は、核酸のリン酸エステル結合を切断し、反応後に 5'-リン酸と 3'-ヒドロキシル基を反 応部位に残す酵素である。ラージリボザィムは、さらに (1)グアノシンによる 5'-スプライ ス部位でのトランスエステル化反応を行うグループ Iイントロン RNA、(2)自己スプライシ ングをラリアット構造を経る二段階反応で行うグループ IIイントロン RNA、及び (3)加水 分解反応による tRNA前駆体を 5'側で切断するリボヌクレアーゼ Pの RNA成分に分類 される。それに対して、スモールリボザィムは、比較的小さな構造単位 (40bp程度)で あり、 RNAを切断して、 5しヒドロキシル基と 2し3'環状リン酸を生じさせる。スモールリボ ザィムには、ハンマーヘッド型 (Koizumi et al. (1988) FEBS Lett. 228: 225)、ヘアピン 型 (Buzayan (1986) Nature 323: 349; Kikuchi and Sasaki (1992) Nucleic Acids Res. 1 9: 6751;菊地洋 (1992)化学と生物 30: 112)等のリボザィムが含まれる。リボザィムは、 改変及び合成が容易になため多様な改良方法が公知であり、例えば、リボザィムの 基質結合部を標的部位の近くの RNA配列と相補的となるように設計することにより、 標的 RNA中の塩基配列 UC、 UUまたは UAを認識して切断するハンマーヘッド型リボ ザィムを作ることができる (Koizumi et al. (1988) FEBS Lett. 228: 225;小泉誠及び大 塚栄子 (1990)蛋白質核酸酵素 35: 2191; Koizumi et al. (1989) Nucleic Acids Res. 17 : 7059)。ヘアピン型のリボザィムについても、公知の方法に従って設計、製造が可能 である (Kikuchi and Sasaki (1992) Nucleic Acids Res. 19: 6751;菊地洋 (1992)化学と 生物 30: 112)。
[0093] 本発明のアンチセンス核酸及びリボザィムは、細胞内における遺伝子の発現を制 御するために、レトロウイルス、アデノウイルス、アデノ随伴ウィルス等のウィルス由来 のベクター、リボソーム等を利用した非ゥイノレスベクター、または naked DNAとして ex v ivo法または in vivo法により遺伝子治療に用いることもできる。
[0094] RNA干渉とは、二本鎖の人工 RNAを細胞に導入することにより、同じ塩基配列を有 する RNAが分解される現象である(Fire et al. (1998) Nature 391: 806-11)。本発明 の siRNAは、 Lrp4の mRNAの転写を阻害する限り、特に限定されない。通常、 siRNA は、標的 mRNAの配列に対するセンス鎖及びアンチセンス鎖の組合せであり、少なく とも 10個力も標的 mRNAと同じ個数までのヌクレオチド長を有する。好ましくは、 15〜7 5個、より好ましくは 18〜50個、さらに好ましくは 20〜25個のヌクレオチド長である。
[0095] Lrp4発現を抑制するために、 siRNAは公知の方法により細胞に導入することができ る。例えば、 siRNAを構成する二本の RNA鎖を、一本鎖上にコードする DNAを設計し 、該 DNAを発現ベクターに組み込み、細胞を該発現ベクターで形質転換し、 siRNAを ヘアピン構造を有する二本鎖 RNAとして細胞内で発現させることができる。トランスフ ェクシヨンにより持続的に siRNAを産生するプラスミド発現ベクターも設計されている( 例えば、 RNAi-Ready pSIREN Vectorゝ RNAi-Ready pSIREN- RetroQ Vector (BD Bio sciences Clont6ch))。
[0096] siRNAの塩基配列は、例えば、 Ambion website(http://www.ambion.com/techlib/mi sc/siRNA_finder.html)のコンピュータープログラムを用いて設計することができる。機 能的 siRNAをスクリーニングするためのキット(例えば、 BD Knockout RNAi System(B D Biosciences Clontech))等も市販されており利用可能である。
実施例
[0097] 以下、本発明を実施例によりさらに詳細に説明するが、これらの実施例は本発明を
V、かなる意味でも限定するものではな!/、。
[0098] [実施例 1]ドーパミン産生ニューロン前駆細胞特異的遺伝子の単離及び配列解析 ドーパミン産生ニューロン前駆細胞特異的な遺伝子を単離するために、 E12.5マウ ス中脳腹側領域を背腹方向にさらに二つの領域に切り分けて、ドーノ ミン産生-ュ 一ロンを含む最も腹側の領域に特異的に発現する遺伝子をサブトラクシヨン (N-RDA) 法により同定した。単離した断片の一つは Lrp4/Corinをコードする cDNA断片であつ た。 Lrp4は II型膜貫通蛋白質をコードしている (図 1)。
[0099] (l)N-RDA法
(1)-1.アダプターの調製
下記のオリゴヌクレオチドをアニーリングさせ、 100 Mに調製した。
(ad2: ad2S+ad2A、 ad3: ad3S+ad3A、 ad4: ad4S+ad4A、 ad5: ad5S+ad5Aゝ adl3: adl3S
+adl3A)
ad2S: cagctccacaacctacatcattccgt (酉己列番号: 5)
ad2A: acggaatgatgt (配列番号: 6)
ad3S: gtccatcttctctctgagactctggt (目 ΰ列番号: 7)
ad3A: accagagtctca (酉己列番号: 8)
ad4S: ctgatgggtgtcttctgtgagtgtgt (配列番号: 9)
ad4A: acacactcacag (目 ii列番号: 10) ad5S: ccagcatcgagaatcagtgtgacagt (酉己列番号: 11)
ad5A: actgtcacactg (配列番号: 12)
adl3S: gtcgatgaacttcgactgtcgatcgt (目列 ¾·号: 13)
adl3A: acgatcgacagt (配列番号: 14)
[0100] (1)-2. cDNA合成
日本 SLCより入手したマウス 12.5日胚より中脳腹側を切り出し、さらに背腹方向に 2 つの領域に切り分けた。 RNeasy mini kit (Qiagen)を用いて全 RNAを調製し、 cDNA sy nthesis kit (TAKARA)を用いて二本鎖 cDNAを合成した。制限酵素 Rsalで消化したの ち、 ad2を付カ卩し、 ad2Sをプライマーとして、 15サイクルの PCRで cDNAを増幅した。増 幅条件は 72°Cで 5分インキュベートした後、 94°Cで 30秒、 65°Cで 30秒、及び 72°Cで 2 分の反応を 15サイクル行い、最後に 72°Cで 2分インキュベートした。 N- RDAの PCRは すべて以下の反応液組成で行った。
lO X ExTaq 5 ^ 1
2.5mM dNTP 4 ^ 1
ExTaq 0.25 μ 1
100 μ Μ primer 0.5 μ 1
cDNA 2 μ 1
蒸留水 38.25 1
[0101] (1)-3. Driverの作製
ad2Sで増幅した cDNAをさらに 5サイクルの PCRで増幅した。増幅条件は 94°Cで 2分 インキュベートした後、 94°Cで 30秒、 65°Cで 30秒、及び 72°Cで 2分の反応を 5サイクル 行い、最後に 72°Cで 2分インキュベートした。 Qiaquick PCR purification kit (Qiagen) を用いて cDNAを精製し、 Rsal消化した。 1回のサブトラクシヨンに 3 gずつ使用した。
[0102] (1)-4. Testerの作製
ad2Sで増幅した cDNAをさらに 5サイクルの PCRで増幅した。増幅条件は 94°Cで 2分 インキュベートした後、 94°Cで 30秒、 65°Cで 30秒、及び 72°Cで 2分の反応を 5サイクル 行い、最後に 72°Cで 2分インキュベートした。 Qiaquick PCR purification kit (Qiagen) を用いて cDNAを精製し、 Rsal消化した。 60ngの Rsal消ィ匕 cDNAに ad3を付カ卩した。 [0103] (l)-5.サブトラクシヨン 1回目
上記 3及び 4で作製した Testerおよび Driverを混合し、エタノール沈殿した後に、 ΙχΡ CR buffer 1 μ 1に溶解した。 98°C5分の後、 IxPCR buffer+lM NaCl 1 μ 1を加えた。さら に 98°C5分の後、 68°Cで 16時間ハイブリダィズさせた。
[0104] ハイブリダィズさせた cDNAを ad3Sをプライマーとして 10サイクルの PCRで増幅した 後(72°Cで 5分インキュベートした後、 94°Cで 30秒、 65°Cで 30秒、及び 72°Cで 2分の反 応を 10サイクル行った)、 Mung Bean Nuclease (TAKARA)で消化し、 Qiaquick PCR p urification kitで精製した。さらに 13サイクルの PCRで増幅した。増幅条件は 94°Cで 2 分インキュベートした後、 94°Cで 30秒、 65°Cで 30秒、及び 72°Cで 2分の反応を 13サイ クル行い、最後に 72°Cで 2分インキュベートした。
[0105] (1)-6.均一化
サブトラクシヨン 1回目で増幅した cDNA 8ngに 2xPCR buffer 1 μ 1をカ卩えた。 98°C5分 の後、 IxPCR buffer+lM NaCl 2 μ 1をカ卩えた。さらに 98°C5分の後、 68°Cで 16時間ハイ ブリダィズさせた。
[0106] ハイブリダィズさせた cDNAを Rsalで消化し、 Qiaquick PCR purification kitで精製し た。これを ad3Sをプライマーとして 11サイクルの PCRで増幅した後(94°Cで 2分インキュ ペートした後、 94°Cで 30秒、 65°Cで 30秒、及び 72°Cで 2分の反応を 11サイクル行い、 最後に 72°Cで 2分インキュベートした) Rsalで消化し、 ad4を付カ卩した。
[0107] (1)-7.サブトラクシヨン 2回目
上記 6で ad4を付カ卩した cDNA 20ngを Testerとして、上記 3の Driverと混合し、さらに、 上記 5と同様の方法でサブトラクシヨンを行った。最終的に Rsal消化した cDNAに ad5を 付加した。
[0108] (1)-8.サブトラクシヨン 3回目
上記 7で ad5を付カ卩した cDNA 2ngを Testerとして、上記 3の Driverと混合し、さらに、 上記 5と同様の方法でサブトラクシヨンを行った。最終的に Rsal消化した cDNAに adl3 を付加した。
[0109] (1)-9.サブトラクシヨン 4回目
上記 8で adl3を付カ卩した cDNA 2ngを Testerとして、上記 3の Driverと混合し、以下、 上記 5と同様の方法でサブトラクシヨンを行った。増幅した cDNAを pCRII (Invitrogen) にクロー-ングし、 ABI3100シーケンスアナライザーを用いて塩基配列を解析した。
[0110] [実施例 2] Lrp4遺伝子の発現解析
次に、 Lrp4遺伝子を用いて以下のプロトコールにより in situハイブリダィゼーシヨン による発現解析を行った。
[0111] まず、マウス 12.5日胚を OCTで包埋し、厚さ 16 mの新鮮凍結切片を作製した。ス ライドガラス上で乾燥させた後に 4%PFAで室温 30分間固定した。 PBSで洗浄した後、 ハイブリダィゼーシヨン(1 μ g/mlDIG化 RNAプローブ、 50%ホルムアミド、 5xSSC, 1%SD S, 50 μ g/ml yeast RNA, 50 μ g/ml Heparin)を 65度で 40時間行った。その後、洗浄( 50%ホルムアミド、 5xSSC, 1%SDS)を 65度で行い、 RNase処理(5 μ g/ml RNase)を室温 5分間行った。 0.2xSSCで 65度の洗浄、 IxTBSTで室温の洗浄ののち、ブロッキングお locking reagent: Roche)を行った。アルカリホスファターゼ標識抗 DIG抗体(DAKO)を 反応させ、洗浄(lxTBST、 2mM Levamisole)の後、 NBT/BCIP (DAKO)を基質として 発色させた。
[0112] in situハイブリダィゼーシヨンによる発現解析の結果、ドーパミン産生-ユーロンの 発生する時期である E12.5で、 Lrp4 mRNAは中脳から後脳、脊髄にかけての腹側中 心部に特異的発現していることが示された。後脳から脊髄にかけては、 Shh mRNAと 同様の発現パターンを示し、オーガナイザー領域である底板 (floor plate)に特異的で あることが明らかになった (図 2及び 5)。中脳では Shh mRNA発現領域の中でもより中 心部にのみ発現が見られた (図 3及び 5)。
[0113] ニューロンの成熟マーカーである NCAM mRNAと比較した結果、 Lrp4 mRNA発現 細胞は NCAM mRNA陰性の脳室領域 (Ventricular Zone (VZ))内の増殖前駆細胞で あった。さらにドーパミン産生-ユーロンのマーカーである TH mRNAの発現と比較す ると、 TH mRNAは外套層 (mantle layer(ML))にのみ発現しているので、同一の細胞で 両者の発現が認められることはないものの、背-腹軸方向での発現領域は完全に一 致していた (図 3及び 5)。一般に神経管 (neural tube)内の神経細胞は、まず VZ内で増 殖し、分化開始とともに分裂を停止し、その後すぐ外側の MLに移動したのちに成熟 することが知られている。従って、ドーノ ミン産生-ユーロン増殖前駆細胞は、 TH発 現領域のすぐ内側の VZ内で増殖し、分裂停止後に外側に移動して力も TH mRNAを 発現すると考えられる。即ち、 Lrp4 mRNAは、中脳ではドーノ ミン産生-ユーロン増 殖前駆細胞に特異的に発現すると考えられる (図 4及び 6)。
[0114] [実施例 3] ES細胞より分ィ匕誘導したドーノ ミン産生-ユーロンにおける Lrp4の発現 次に ES細胞を in vitroでドーノ ミン産生-ユーロンに分ィ匕誘導させた場合に Lrp4が 発現するかどうか検討した。
[0115] まず、 SDIA法(Kawasaki et. al. (2000) Neuron 28(1): 31-40)により ES細胞よりドー ノミン産生-ユーロンへの分ィ匕誘導を行った(図 7上参照)。誘導後 4、 6、 8、 10、 12日 後にそれぞれ細胞を回収し、 RNeasy mini kit (Qiagen)を用いて total RNAを回収し、 RT- PCRを行った。 RT- PCRにおいては、最初に 1 μ gの total RNAに対して、 RNA PC R kit(TaKaRa)を用いて cDNA合成を行った。このうち 10ng、 lng、 O. lng相当分の cDN Aを铸型に用いて以下の反応系で PCRを行った。
lO X ExTaq 2 μ \
2.5mM dNTP 1.6 ^ 1
Ex Taq 0.1 ^ 1
100 μ Mプライマー 各 0.2 μ 1
cDNA 1 μ 1
蒸留水 14.9 1
[0116] 94°Cで 2分インキュベートした後、 94°Cで 30秒、 65°Cで 30秒、及び 72°Cで 2分の反応 を 35サイクル行 、、最後に 72°Cで 2分インキュベートした。
以下の配列のプライマーを使用した。
[0117] Lrp4: TAGTCTACCACTGCTCGACTGTAACG (配列番号: 15)/CAGAGTGAACC
CAGTGGACATATCTG (配列番号: 16)
TH: GTTCCCAAGGAAAGTGTCAGAGTTGG (配列番号: 17)/GAAGCTGGAAAG
CCTCCAGGTGTTCC (配列番号: 18)
DAT: CTCCGAGCAGACACCATGACCTTAGC (配列番号: 19)/AGGAGTAGGGC
TTGTCTCCCAACCTG (配列番号: 20)
[0118] そして、 RT-PCRによる発現解析の結果、 Lrp4は、 ES細胞(CCE)およびストローマ 細胞 (PA6)には発現していないが、分化誘導の結果、 THと同様に 4日目から発現が 誘導されることが明らかになった(図 8)。従って、本発明のマーカーポリヌクレオチド プローブは、胎児中脳由来のドーパミン産生ニューロン増殖前駆細胞だけでなぐ in vitroで ES細胞より分化誘導したドーパミン産生-ユーロン増殖前駆細胞を分離する 際にもマーカーとして有用である。
[0119] [実施例 4]Lrp4タンパク質の発現解析
次に、 Lrp4遺伝子のうち、細胞外領域をコードする遺伝子配列を用いて、以下のプ ロトコールにより抗 Lrp4抗体を作製し、免疫組織染色による発現解析を行った。
[0120] まず、 Lrp4遺伝子のうち、細胞外領域 (161-502アミノ酸)をコードする遺伝子配列を 293E細胞に遺伝子導入して、 Lrp4タンパク質の細胞外領域を発現させて回収した。 回収したタンパク質をノヽムスターに免疫したのち、リンパ球細胞を取り出してミエロー マ細胞とフュージョンさせた。フュージョンさせた細胞を培養し、その培養上清を得た 。次にマウス 12.5日胚を 4%PFA/PBS (-)で 4°C、 2時間固定したのち、 20%ショ糖/ PBS (- )で 4°C、一晩置換し、 OCTで包埋した。厚さ 12醒の切片を作製し、スライドガラスに貼 り付けた後、室温で 30分乾燥させ、 PBS (-)で再び湿潤させた。その後、ブロッキング( 10% normal donkey serum、 10% normal goat serum/ブロックエース)を室温、 20分間 行い、作製した抗 Lrp4モノクローナル抗体(FERM BP-10315、および FERM BP-103 16を混合して用いた(培養上清 1/4希釈ずつ、 10% normal donkey serum, 10% normal goat serum, 2.5%ブロックエース/ PBS) )および抗 TH抗体(Chemicon、 0.7 μ g/mU 10 % normal donkey serum、 10% normal goat serum、 2.5%ブロックエース/ PBS)を室温、 1 時間反応させた後、さらに 4°C、ー晚反応させた。 0.1%Triton X-100/PBS (-)で、室温 、 10分間の洗浄を 4回行った。 Cy3標識抗ノヽムスター IgG抗体、 FITC標識抗マウス IgG 饥体、 (Jackson、 10 μ g/ml、 10% normal donkey serum ^ 10% normal goat serum ^ 2.5% ブロックエース/ PBS)を室温、 1時間反応させ、同様に洗浄を行った後、 PBS (-)によつ て室温、 10分間洗浄し、封入した。
[0121] そして、作製した抗 Lrp4モノクローナル抗体を用いた免疫組織染色による発現解析 の結果、 in situノヽイブリダィゼーシヨンによる発現解析の結果と同様に、ドーパミン産 生-ユーロンの発生する時期である E12.5で、中脳腹側に発現が認められた(図 8)。 ドーノ ミン産生-ユーロンのマーカーである THタンパク質の発現と比較すると、 Lrp4 タンパク質は、 THタンパク質が発現する中脳最腹側の VZ側に発現していることから、 Lrp4タンパク質は、ドーノミン産生-ユーロン前駆細胞に発現して 、ると考えられた。
[0122] 次に、抗 Lrp4モノクローナル抗体を用いて、フローサイトメトリーによる Lrp4発現細 胞の検出を行った。
[0123] まず、 SDIA法により in vitroにおいて ES細胞より分ィ匕誘導させたドーパミン産生-ュ 一ロン前駆細胞を含む細胞群を、細胞分散バッファー (Invitrogen)を用いて分散させ た後、固定'透過処理せずに、抗 Lrp4モノクローナル抗体(FERM BP-10315、および FERM BP-10316を混合して用いた (培養上清 1/4希釈ずつ、 1%ゥシ胎児血清、 ImM EDTA/SDIA分ィ匕培地))で 4°C、 20分間染色した。その後、 1%ゥシ胎児血清、 ImM E DTA/ SDIA分ィ匕培地で 4°C、 3分間の洗浄を 3回行い、ピオチン標識抗ハムスター Ig G抗体 (Jackson、 10 μ g/ml, 1%ゥシ胎児血清、 ImM EDTA/ SDIA分化培地)で 4°C、 20分間染色し、同様に洗浄したのち、 PE標識ストレプトアビジン(Pharmingen、 20 μ §/ ml、 1%ゥシ胎児血清、 ImM EDTA/ SDIA分ィ匕培地)で 4°C、 20分間染色し、同様に洗 浄した。染色後、フローサイトメーターにて Lrp4発現細胞を検出した。
[0124] そして、作製した抗 Lrp4モノクローナル抗体を用いたフローサイトメトリーによる Lrp4 発現細胞の検出の結果、 Lrp4タンパク質を発現する集団を検出した(図 9)。固定'透 過処理することなぐ Lrp4タンパク質発現細胞を検出できることから、セルソーターを 付属したフローサイトメーターを用いることにより、 Lrp4タンパク質発現細胞を生細胞 の状態で分離することが可能であると考えられた。 Lrp4タンパク質は、ドーパミン産生 ニューロン前駆細胞に発現していると考えられることから、抗 Lrp4抗体は、ドーパミン 産生ニューロン前駆細胞の分離に有用であると考えられた。
[0125] [実施例 5]抗体による Lrp4発現細胞の分離
次に抗 Lrp4抗体を用いて分離した Lrp4タンパク質陽性細胞の性状を解析した。
[0126] まず、 E12.5マウス胎児中脳腹側領域、および SDIA法により in vitroにおいて ES細胞 より分ィ匕誘導させたドーパミン産生-ユーロン前駆細胞を含む細胞群を、実施例 4と 同様の方法で抗 Lrp4抗体で染色し、セルソーターにより Lrp4陽性細胞および陰性細 胞を分離した。分離直後の細胞から RNeasy mini kit (Qiagen)を用いて total RNAを回 収、 cDNAを合成し、実施例 1と同様の方法で cDNAを増幅して、 RT-PCRの铸型に用 いた。増幅 cDNA 4ng、 0.4ng、 0.04ng相当分の cDNAを铸型に用いて以下の反応系 で PCRを行った。
lO X ExTaq 1 1
2.5mM dNTP 0.8 ^ 1
iixTaq 0.05 ^ 1
100 プライマー 各。 1
cDNA 1 1
蒸留水 6.95 ^ 1
[0127] 94°Cで 2分インキュベートした後、 94°Cで 30秒、 65°Cで 30秒、及び 72°Cで 2分の反応 を 26サイクル行 、、最後に 72°Cで 2分インキュベートした。
以下の配列のプライマーを使用した。
[0128] Lrp4: TAGTCTACCACTGCTCGACTGTAACG (配列番号: 15)/CAGAGTGAACC CAGTGGACATATCTG (配列番号: 16)
TH: GTTCCCAAGGAAAGTGTCAGAGTTGG (配列番号: 17)/ GAAGCTGGAAA GCCTCCAGGTGTTCC (配列番号: 18)
Nurrl: CACTCCTGTGTCTAGCTGCCAGATGC (配列番号: 21)/AGTGCGAACA CCGTAGTGCTGACAGG (配列番: 22)
Nestin: GATGAAGAAGAAGGAGCAGAGTCAGG (配列番号: 23)/ATTCACTTGC TCTGACTCCAGGTTGG (配列番号: 24)
MAP2: CCATGATCTTTCCCCTCTGGCTTCTG (配列番号: 25)/TTTGGCTGGA AAGGGTGACTCTGAGG (配列番号: 26)
[0129] そして、 RT-PCRによる発現解析の結果、予想通り、増殖前駆細胞マーカーである Nestinの発現が認められた力 Lrp4タンパク質陽性細胞集団中に、分裂停止後のマ 一力一である MAP2を発現する細胞も含まれることが明らかになった(図 10)。したがつ て、 Lrp4タンパク質の発現は、 mRNAの発現停止後にも維持されており、 Lrp4タンパ ク質は、ドーパミン産生-ユーロン増殖前駆細胞だけでなぐ分裂停止後のドーパミ ン産生-ユーロン前駆細胞を分離するためのマーカーとしても有用であることが明ら かになつた(図 11)。さらに、分裂停止後のドーパミン産生-ユーロン前駆細胞マーカ 一である Nurrlや TH力 Lrp4陰性集団に比べて高レベルに発現していたことから、確 かに Lrp4陽性細胞がドーノ ミン産生ニューロン系列の前駆細胞であることも確認され た(図 10)。
[0130] 次に、 Lrp4抗体で分離した Lrp4タンパク質陽性細胞集団中にどの程度の割合で増 殖前駆細胞と分裂停止後前駆細胞が含まれるのかを検討した。
[0131] 分離した細胞を poly- L- ornithine (Sigma, 0.002% in PBS)、 laminin (Invitrogen、 5 ^ g /ml in PBS)、 fibronectin (Sigma, 5 μ g/ml in PBS)コートしたスライドガラス上に播き、 40分間、 37。C、 N2 (Invitrogen, lx)、 B27 (Invitrogen、 lx)、ァスコルビン酸(Sigma、 20 0uM) BDNF (Invitrogen、 20ng/ml) / SDIA分化培地培地中でインキュベートして付着 させた。付着した細胞を 4%PFA/PBSで 4°C、 20分間固定し、 PBSで 4°C、 10分間の洗 浄を 2回行った。その後、 0.3% Triton X-100/PBSで室温、 15分間の透過処理を行い 、 10% normal donkey serum/ブロックエースで室温、 20分間のブロッキングを行った。 腕 ヽて、饥 nestin抗体 (Cnemicon、 2 μ g/ml、 10% normal donkey serum ^ 2.5%フロック エース、 0.1% Triton X- 100/PBS)、抗 j8 III- tubulin抗体(BABCO、 1/2000、 0.5 μ g/m 1、 10% normal donkey serum, 2.5%ブロックエース、 0.1% Triton X- 100/PBS)で、室温 、 1時間反応させ、引き続き、 4°C、ー晚反応させた。翌日、 0.1% Triton X-100/PBSで 、室温、 5分間の洗浄を 3回行った後、 FITC標識した抗マウス IgG抗体、 Cy5標識した 抗ラビット IgG抗体 (いずれも Jacksonゝ 10 μ g/ml、 10% normal donkey serum ^ 2.5%ブロ ックエース、 0.1% Triton X-100/PBS)で室温、 30分間反応させた。その後、同様に洗 浄し、 PBSで室温、 5分間洗浄し、封入して観察した。
[0132] また、分離した細胞を同様にスライドガラス上に播き、上記の培地に BrdU (Roche, 5 —Bromo— 2 '—deoxy— uridine Labeling and Detection Kit II、 lx)を添カ卩した培地中で、 3 7°C、 18時間培養した後、同様にブロッキングまで行い、 2N HC1で 37°C、 20分間反応 させた後、 PBSで 3回洗浄し、抗 BrdU抗体、 DNase (Roche、 5- Bromo- 2 '-deoxy- uridin e Labeling and Detection Kit II、 1 x cone, in incubation buffei で 37°し、 30分 [^反心 させた。さらに、抗 BrdU抗体(Sigmaゝ 44 μ g/ml, 10% normal donkey serum, 2.5%ブロ ックエース、 0.1% Triton X- 100/PBS)で室温、 1時間反応させ、引き続き、 4°C、ー晚 反応させた。翌日、 0.1% Triton X-100/PBSで、室温、 5分間の洗浄を 3回行った後、
FITC標識した抗マウス IgG抗体、(Jackson、 10 μ g/ml、 10% normal donkey serum, 2.
5%ブロックエース、 0.1% Triton Χ-100/PBS)で室温、 30分間反応させた。その後、同 様に洗浄し、封入して観察した。
[0133] そして、マーカー染色の結果、 Lrp4陽性細胞の多くは、 Nestin陽性の増殖前駆細 胞であり、一部が分裂停止後マーカー β Ill-tubulin陽性であることが明らかになった( 図 12)。また、分離した細胞は、高頻度に BrdUを取り込み、実際に in vitroで増殖する ことが確認された(図 13)。
[0134] 次に、分離した Lrp4陽性細胞がドーノミン産生-ユーロンに分ィ匕することを確認し た。
分離した細胞を poly- L- ornithine (Sigma、 0.002% in PBS)、 laminin (Invitrogen、 5 ^ g /ml in PBS)、 fibronectin (Sigma, 5 μ g/ml in PBS)コートしたスライドガラス上に播き、 N2 (Invitrogenゝ lx)、 B27 (Invitrogen、 lx)、ァスコルビン酸(Sigmaゝ 200uM) BDNF (ln vitrogen、 20ng/ml)、 bFGF (R&D、 10ng/ml) / SDIA分化培地中で、 37°C、 24時間イン キュペートした。その後、上記の培地より bFGFを除いた培地でさらに 6日間培養した。 培養した細胞を 4%PFA/PBSで 4°C、 20分間固定し、 PBSで 4°C、 10分間の洗浄を 2回 行った。その後、 0.3% Triton X-100/PBSで室温、 15分間の透過処理を行い、 10% no rmal donkey serum/ブロックエースで室温、 20分間のブロッキングを行った。続いて、 抗 TH抗体(Chemiconゝ 0.3 μ g/ml、 10% normal donkey serum, 2.5%ブロックエース、 0. 1% Triton X- 100/PBS)、抗 j8 III- tubulin抗体(BABCO、 1/2000、 0.5 μ g/ml, 10% nor mal donkey serum, 2.5%ブロックエース、 0.1% Triton X- 100/PBS)で、室温、 1時間反 応させ、引き続き、 4°C、ー晚反応させた。翌日、 0.1% Triton X-100/PBSで、室温、 5 分間の洗浄を 3回行った後、 FITC標識した抗マウス IgG抗体、 Cy5標識した抗ラビット I gG抗体 (いずれも Jacksonゝ 10 μ g/ml、 10% normal donkey serum、 2.5%ブロックエース 、 0.1% Triton X-100/PBS)で室温、 30分間反応させた。その後、同様に洗浄し、 PBS で室温、 5分間洗浄し、封入して観察した。
[0135] そして、分離した細胞を in vitroで培養した結果、対照である分離して!/ヽな ヽ細胞に 比べて明らかに多くの THタンパク質陽性ドーノミン産生-ユーロンが誘導された。し たがって、 Lrp4陽性細胞は、確かにドーノ ミン産生ニューロン系列の前駆細胞であり 、 in vitroで成熟可能であることが明らかになった(図 14)。
[0136] [実施例 6]分離した Lrp4タンパク質陽性細胞のパーキンソン病モデルマウス線状体 への移植
抗 Lrp4モノクローナル抗体を用いて、フローサイトメトリーにより Lrp4発現細胞の分 離を行 ヽ、当該細胞をパーキンソン病モデルマウス線状体へ移植した。
[0137] まず、 SDIA法により in vitroにおいて ES細胞より分ィ匕誘導させたドーパミン産生-ュ 一ロン前駆細胞を含む細胞群を、細胞分散バッファー (Invitrogen)を用いて分散させ た後、固定'透過処理せずに、実施例 4で作製した抗 Lrp4モノクローナル抗体 (FER M BP-10315、および FERM BP-10316を混合して用いた(培養上清 1/4希釈ずつ、 1%ゥシ胎児血清、 ImM EDTA/SDIA分ィ匕培地))で 4°C、 20分間染色した。その後、 1% ゥシ胎児血清、 ImM EDTA/ SDIA分化培地で 4°C、 3分間の洗浄を 3回行い、ビォチ ン標識抗ハムスター IgG抗体 (Jackson、 10 μ g/ml, 1%ゥシ胎児血清、 ImM EDTA/ S DIA分ィ匕培地)で 4°C、 20分間染色し、同様に洗浄したのち、 PE標識ストレブトァビジ ン(Pharmingen、 20 μ g/ml, 1%ゥシ胎児血清、 ImM EDTA/ SDIA分化培地)で 4°C、 2 0分間染色し、同様に洗浄した。染色後、フローサイトメーターにて Lrp4発現細胞を 分離した。
[0138] 次に、分離した Lrp4タンパク質陽性細胞をパーキンソン病モデルマウス線状体へ移 植し、脳内での Lrp4タンパク質陽性細胞の性状を解析した。
まず、 12週齢のマウス(sic)の片側の medial forebrain bundleに 6- OHDA(sigma、 2 μ §/ μ \)を 1.25 μ 1注入して、中脳から線状体へ投射するドーノ ミン産生-ユーロンを 死滅させることにより、パーキンソン病モデルマウスを作製した。モデルマウス作製後 2週間目に、 6-OHDAを注入した側の線状体に Lrp4タンパク質陽性細胞を 1匹あたり 3xl04個移植した。移植した Lrp4タンパク質陽性細胞は、 CAGプロモーター(Niwa et al. (1991) Gene. 108: 193-200)制御下で EGFP遺伝子を発現するように遺伝子導入 した ES細胞を SDIA法により in vitroにお!/、て分化誘導させたドーパミン産生-ユーロ ン前駆細胞を含む細胞群を、実施例 4と同様の方法で抗 Lrp4抗体を用いて染色し、 セルソーターにより分離して得た。 [0139] 移植後 3週間目に 10 % Urethan in saline, 500 μ 1を腹腔内投与して麻酔をかけ、麻 酔が効いた後、開胸して、左心室より生理食塩水(大塚) 30 mlを注入して灌流した後 、 4% PFA/PBS(-)30 mlで灌流固定した。固定後、脳を取り出して、更に 8時間、 4 % P FA/PBS (-)中で浸漬固定を行った。その後、 2 mm厚にスライスし、 20-40 %ショ糖/ PB S (-)中で一晩置換し、 OCT中に包埋した。厚さ 10-12 /z mの切片を作製し、スライドガ ラスに貼り付けた後、室温で 30分乾燥させ、 PBS (-)で再び湿潤させた。その後、プロ ッキング(10 % normal donkey serum/ブロックエース)を室温、 20分間行い、抗 GFP抗 体 (Molecular probes、 20 μ g/ml、 10% normal donkey serum ^ 10 %ブロックエース/ PB S)、抗 MAP2抗体(Sigma、マウス腹水、 100倍希釈、 10 % normal donkey serum, 10 % ブロックエース/ PBS)または抗 TH抗体(Chemiconゝ 1 μ g/ml、 10 % normal donkey ser um、 10 %ブロックエース/ PBS)を室温、 1時間反応させた後、さらに 4°C、ー晚反応さ せた。その後、 0.1 % Triton X-100/PBS (-)で、室温、 10分間の洗浄を 4回行った。次 に、 Alexa Fluor488標識抗ゥサギ IgG抗体 (Molecular probes、 4 μ g/mU 10 % normal donkey serum, 10 %ブロックエース/ PBS)、 Cy3標識抗マウス IgG抗体、(Jackson、 10 μ g/ml、 10% normal donkey serum, 10%ブロックエース/ PBS)または Cy5標識抗ヒッジ IgG抗体、(Jacksonゝ 10 μ g/ml、 10% normal donkey serum, 10%ブロックエース/ PBS) を室温、 1時間反応させた後、同様に洗浄を行い、 PBS (-)によって室温、 10分間洗浄 し、封入した。
そして、免疫組織染色による各種マーカー発現解析を行った。
[0140] その結果、まず、移植したマウスの線状体内に EGFP陽性細胞が認められた (表 1) 。このこと力ら、移植した Lrp4タンパク質陽性細胞は、パーキンソン病モデルマウスの 線状体において、生着しているものと考えられる。
また、生着したほとんどの細胞は、成熟した-ユーロンのマーカーである MAP2陽性 であり、 EGFP陽性の軸索が線状体内に長く伸展している様子も認められた (表 1およ び図 16)。
[0141] [表 1] TH+
#6 sec.No.20 95 19 20%
#7 sec. No.12 131 21 16%
(表 1は、移植した Lrp4陽性細胞の TH陽性細胞への in vivoにおける分化を示す。 #6マウスおよび #7マウスは、 6- OHDAによるドーパミン産生-ユーロンの破壊後 2 週間後に Lrp4タンパク質陽性細胞を移植され、移植後 3週間目に灌流された。) [0142] このことから、移植した Lrp4タンパク質陽性細胞が神経前駆細胞であつたのに対し 、生着したほとんどの細胞が成熟した神経細胞へと分ィ匕および成熟したことが示され a + [- た。また、これら生着した細胞の約 20%は、 TH陽性であったことから、移植した Lrp4タ ンパク質陽性細胞の少なくとも一部は、ドーノミン産生-ユーロンへと分ィ匕したことが 強く示唆された。
[0143] したがって、本発明により分離されたドーパミン産生-ユーロン前駆細胞は、脳内に 移植することによって、ドーパミン産生-ユーロンへの分ィ匕が可能であり、本発明によ り分離されたドーパミン産生-ユーロン前駆細胞は、治療に有効であると考えられる。
[0144] [実施例 7] 5-stage法を用いて ES細胞を分ィ匕誘導したドーパミン産生-ユーロンにお ける Lrp4の発現
5-stage法を用いて in vitroにおいて ES細胞をドーパミン産生-ユーロンに分化誘 導させた場合に Lrp4が発現するかどうか検討した。
[0145] まず、 5— stage法(Lee et. al. (2000) Nat.Biotech. 18: 675—679、 mouse dopaminergic neuron differentiation kit (R&D Systems))により ES細胞(CCE)よりドーパミン産生- ユーロンへの分化誘導を行った。 Stagelの 2日目、 stage2の 4日目、 stage3の 6日目、 st age4の 4、 6日目、 stage5の 4、 7日目にそれぞれ細胞を回収し、 RNeasy mini kit (Qiag en)を用いて total RNAを回収し、 RT- PCRを行った。 RT- PCRにおいては、最初に 1 μ gの total RNAに対して、 RNA PCR kit(TaKaRa)を用いて cDNA合成を行った。このうち 10 ng、 1 ng、 0.1 ng相当分の cDNAを铸型に用いて以下の反応系で PCRを行った。 lO X ExTaq 2 μ \
2.5mM dNTP 1.6 ^ 1 ExTaq 0.1 ^ 1
100 μ Mプライマー 各 0.2 μ 1
cDNA 1 μ 1
蒸留水 14.9 1
[0146] 94°Cで 2分インキュベートした後、 94°Cで 30秒、 65°Cで 30秒、及び 72°Cで 2分の反応 を 32サイクル行 、、最後に 72°Cで 2分インキュベートした。
以下の配列のプライマーを使用した。
[0147] Lrp4: TAGTCTACCACTGCTCGACTGTAACG (配列番号: 15)/CAGAGTGAACC CAGTGGACATATCTG (配列番号: 16)
TH: GTTCCCAAGGAAAGTGTCAGAGTTGG (配列番号: 17)/GAAGCTGGAAAG CCTCCAGGTGTTCC (配列番号: 18)
[0148] そして、 RT-PCRによる発現解析の結果、 Lrp4は、未分化な ES細胞の状態である stag elにお 、ては発現して 、な 、が、ドーノ ミン産生ニューロン前駆細胞が発生する stag e4において、発現が誘導されることが明らかになった(図 17A)。
[0149] 次に、 5- stage法により、 in vitroにおいて ES細胞をドーパミン産生-ユーロンに分化 誘導させた場合における、抗 Lrp4モノクローナル抗体を用いたフローサイトメトリーに よる Lrp4発現細胞の検出を行った。
[0150] まず、 5- stage法により in vitroにお!/、て ES細胞より分化誘導させたドーパミン産生- ユーロン前駆細胞を含む細胞群(stage4、 7日目)を、細胞分散溶液 Accumax (Innovat ive Cell Technologies, Inc.)を用いて分散させた後、固定'透過処理せずに、抗 Lrp4 モノクローナル抗体(FERM BP- 10315、および FERM BP- 10316を混合して用いた( 培養上清 1/2希釈ずつ)で 4°C、 20分間染色した。その後、 1%ゥシ胎児血清、 1 mM EGTA、 4.5 mg/mlグルコース、 40 ng/ml DNase I/Hanks 'Balanced Salt Solution Ca- Mg不含 (HBSS-)で 4°C、 3分間の洗浄を 3回行い、 PE標識抗ノヽムスター IgG抗体 (8 g/ml (BD Bioscience), 1%ゥシ胎児血清、 1 mM EGTA、 4.5 mg/mlグルコース、 40 ng /ml DNase I/Hanks 'Balanced Salt Solution Ca'Mg不含(HBSS- ) )で 4°C、 30分間染 色し、同様に洗浄した。染色後、フローサイトメーターにて Lrp4発現細胞を検出した。
[0151] そして、抗 Lrp4モノクローナル抗体を用いたフローサイトメトリーによる Lrp4発現細 胞の検出の結果、 5-stage法により in vitroにおいて ES細胞より分ィ匕誘導させたドーパ ミン産生-ユーロン前駆細胞を含む細胞群中に Lrp4タンパク質を発現する集団を検 出した(図 17B)。したがって、 SDIA法だけでなぐ 5-stage法によって ES細胞より分化 誘導したドーパミン産生ニューロン前駆細胞でも Lrp4が発現し、細胞分離のマーカ 一として有用であると考えられた。
[0152] [実施例 8]抗体により分離した Lrp4発現細胞の in vitroにおける分化成熟
抗 Lrp4抗体を用いて分離した Lrp4タンパク質陽性細胞が in vitroにお ヽてドーパミ ン産生ニューロンに分ィ匕するか否かを検討した。
[0153] 5- stage法により in vitroにおいて ES細胞より分化誘導させたドーパミン産生-ユーロ ン前駆細胞を含む細胞群を、実施例 4と同様の方法で抗 Lrp4抗体を用いて染色し、 セルソーターにより Lrp4陽性細胞を分離した。分離した細胞を poly-L-ornithine (Sigm a、 0.002% in PBS)、 fibronectin (Sigma、 5 μ g/ml in PBS)でコートしたスライドガラス上 に播き、 N2 (Invitrogenゝ lx)、ァスコルビン酸(Sigmaゝ 200uM) BDNF (R&D Systemsゝ 2 0ng/ml) /DMEM/F12中で、 37°C、 7日間インキュベートした。その後、培養した細胞 を 2% PFA、 0.15%ピクリン酸/ PBSで 4°C、 20分間固定し、 PBSで 4°C、 10分間の洗浄を 2 回行った。その後、 0.3% Triton X-100/PBSで室温、 30分間の透過処理を行い、 10% normal donkey serum ^ 10% normal goat serum/ブロックェ ~~スで室温、 20分間のブロ ッキングを行った。続いて、抗 TH抗体(Chemiconゝ 0.4 μ g/ml, 10% normal donkey se rum、 10% normal goat serum、 2.5%ブロックエース、 0.1% Triton X— 100/PBS)、抗 MA P2抗体 (Sigma、腹水 1/200、 10% normal donkey serum ^ 10% normal goat serum、 2.5 %ブロックエース、 0.1% Triton X-100/PBS)で、室温、 1時間反応させ、引き続き、 4°C 、ー晚反応させた。翌日、 0.1% Triton X-100/PBSで、室温、 10分間の洗浄を 4回行つ た後、 FITC標識した抗マウス IgG抗体、 Cy3標識した抗ラビット IgG抗体 (いずれも Jack son、 10 μ g/ml、 10% normal donkey serum ^ 10% normal goat serum、 2.5%ブロッグェ ース、 0.1% Triton X-100/PBS)で室温、 30分間反応させた。その後、同様に洗浄し、 PBSで室温、 5分間洗浄し、封入して観察した。
[0154] そして、分離した Lrp4陽性細胞を in vitroで培養した結果、 THタンパク質陽性の多 くのドーパミン産生-ユーロンが誘導された(図 17C)。したがって、 5-stage法によって 誘導された Lrp4陽性細胞は、ドーパミン産生ニューロン前駆細胞であり、 in vitroで成 熟可能であることが明らかになった。 Lrp4は、 2つの異なる分ィ匕方法 (SDIA法、 5-stag e法)により誘導されたドーパミン産生ニューロン前駆細胞の!/、ずれにぉ 、ても発現し ており、抗 Lrp4抗体を用いて 、ずれのドーノミン産生-ユーロン前駆細胞も分離でき た。これらのことから、 Lrp4は、細胞の由来を問わず、ドーパミン産生-ユーロン前駆 細胞マーカーとして有用であると考えられた。また、 5-stage法は、動物由来細胞およ び成分との接触を行わずにドーパミン産生ニューロン前駆細胞を分化誘導できる方 法であり、臨床応用が期待されている。 Lrp4は、当該方法において細胞分離マーカ 一として有用であることから、パーキンソン病を含む神経変性疾患に対する移植治療 に応用できる可能性が高 、と考えられる。
[0155] [実施例 9]抗 Lrp4抗体を用いたドーパミン産生-ユーロン前駆細胞分離による未分 化 ES細胞の除去
ES細胞に由来する移植細胞を調製する際に、安全性の上で最も重要なことは奇形 腫の原因となる未分化な ES細胞を除去することである。 Lrp4は、未分化な ES細胞に は発現していないことから(実施例 3)、 Lrp4をマーカーに用いて分離することで、未 分ィ匕 ES細胞を除去できることが期待される。これを確認するために、 SDIA法を用いて in vitroで ES細胞より分化誘導した細胞から Lrp4抗体を用いて分離した細胞中に未 分ィ匕な ES細胞が含まれるかどうかを、 RT-PCRにより、 ES細胞特異的な遺伝子である ERas (Nature. 2003 423(6939):541- 5.)および Nanog (Cell. 2003 113(5):631- 42.)の 発現を調べることで検討した。
[0156] まず、実施例 5と同様の方法で、 SDIA法により in vitroにおいて ES細胞より分化誘導 させたドーノミン産生-ユーロン前駆細胞を含む細胞群力 セルソーターにより Lrp4 陽性細胞および陰性細胞を分離した。分離直後の細胞力 全 RNAを回収し、増幅 c DNAを作製した。このうち 4 ng、 0.4 ng、 0.04 ng相当分の cDNAを铸型に用いて以下 の反応系で PCRを行った。
lO X ExTaq 1 ^ 1
2.5mM dNTP 0.8 μ 1
ExTaq 0.05 μ 1 100 /z Mプライマー 各 0.1 1
cDNA 1 μ 1
蒸留水 6.95 1
[0157] 94°Cで 2分インキュベートした後、 94°Cで 30秒、 65°Cで 30秒、及び 72°Cで 2分の反応 を 26サイクル(Lrp4, Nestin)または 30サイクル(Eras, Nanog)行い、最後に 72°Cで 2分 インキュベートした。
以下の配列のプライマーを使用した (Lrp4と Nestinは実施例 5に記載)。
[0158] ERas: TGCTCTCACCATCCAGATGACTCACC (配列番号: 27)/ TGGACCATAT CTGCTGCAACTGGTCC (配列番号: 28)
Nanog: TCCAGCAGATGCAAGAACTCTCCTCC (酉己歹 IJ番号: 29)/ TTATGGAGC GGAGCAGCATTCCAAGG (配列番号: 30)
[0159] その結果、 Lrp4陽性細胞集団では、 ES細胞に特異的に発現する ERasおよび Nanog の発現は認められず、一方、 Lrp4陰性集団では、 ERasおよび Nanogの発現が検出さ れた(図 18)。このことから、 Lrp4を用いた細胞分離により、 SDIA法で分ィ匕誘導した細 胞中に含まれる未分ィ匕な ES細胞を除去できることが明らかになった。
産業上の利用可能性
[0160] 本発明により、ドーパミン産生-ユーロン増殖前駆細胞に特異的、且つ一過性に発 現する遺伝子として、 Lrp4が同定された。より詳細にその発現について調べた結果、 Lrp4 mRNAは、ドーノ ミン産生-ユーロン増殖前駆細胞に、 Lrp4蛋白質は、分裂停 止前後の細胞を含むドーパミン産生ニューロン前駆細胞に、それぞれ特異的に発現 していることが確認された。そこで、細胞における該 Lrp4 mRNAまたは Lrp4ポリぺプ チドの発現を指標とすることにより、安全面、生存率及びネットワーク形成能の面でも パーキンソン病を含む神経変性疾患に対する移植治療に適したドーパミン産生-ュ 一ロン系列の細胞を選択することが可能となった。本発明のように Lrp4をマーカーと して細胞を得た場合には、成熟した細胞の求められる治療等にぉ ヽて使用する場合 であっても、 in vitroで最適な状態へと容易に分ィ匕させることができる。さらに、本発明 の方法により得られるドーパミン産生ニューロン前駆細胞により、該細胞に特異的に 発現している遺伝子を単離することが可能である。さらに、該細胞は、パーキンソン病 等の神経変性疾患に対する医薬を開発する上でも有用と考えられる。特に、 Lrp4 m RNAを指標として得られるドーパミン産生-ユーロン増殖前駆細胞という、ニューロン 形成における初期の前駆細胞は、さらに、ニューロンの成熟過程、即ち、成熟過程に 関与する種々の因子を明らかにするのに役立つ。このような因子の解明は、神経変 性疾患の治療に大きく貢献することが予期される。さらに、該細胞の成熟を指標とし て、その過程を調節 (阻害または促進)するような物質のスクリーニングに用いることも できる。

Claims

請求の範囲
[1] 以下の (1)〜(5)の塩基配列から選択される配列を含むドーパミン産生-ユーロン増殖 前駆細胞マーカーポリヌクレオチドプローブ。
(1)配列番号: 1または 2の塩基配列に相補的な塩基配列
(2)配列番号 :3または 4記載のアミノ酸配列をコードする塩基配列に相補的な塩基配 列
(3)配列番号 :3または 4記載のアミノ酸配列において膜貫通領域を欠く配列をコードす る塩基配列に相補的な塩基配列
(4)配列番号: 1または 2の塩基配列力 なるポリヌクレオチドに対してストリンジ ントな 条件下でノ、イブリダィズする塩基配列
(5)上記 (1)〜(4)の配列中の少なくとも連続した 15塩基を含む塩基配列
[2] ドーパミン産生-ユーロン増殖前駆細胞を選択する方法であって、請求項 1記載のポ リヌクレオチドプローブとドーノ ミン産生-ユーロン増殖前駆細胞を含むと考えられる 細胞試料とを接触させる工程を含む方法。
[3] 以下の工程を含むドーパミン産生ニューロン系列の細胞を選択する方法。
(1)請求項 2記載のドーパミン産生-ユーロン増殖前駆細胞を選択する方法によりドー パミン産生-ユーロン増殖前駆細胞を選択する工程
(2)上記 (1)において選択された増殖前駆細胞を培養する工程
(3)上記 (2)において培養された細胞を、分裂停止後のドーノ ミン産生ニューロンマー カーを利用してスクリーニングする工程
[4] 請求項 2の方法により選択されたドーノ ミン産生-ユーロン増殖前駆細胞。
[5] ドーパミン産生ニューロン増殖前駆細胞特異的遺伝子及び増殖前駆細胞からドーパ ミン産生ニューロンへの各成熟段階に特異的な遺伝子の単離方法であって、請求項 4記載の増殖前駆細胞、または該増殖前駆細胞から分化、誘導若しくは増殖された 細胞を用い、該細胞において特異的に発現している遺伝子を検出、単離する工程を 含む方法。
[6] 成熟を指標としたドーパミン産生-ユーロン系列の細胞の増殖及び/または分ィ匕を調 節する化合物のスクリーニング方法であり、請求項 4記載の増殖前駆細胞、または該 増殖前駆細胞から分化、誘導若しくは増殖された細胞に対し、被験物質を接触させ る工程、及び接触による増殖前駆細胞若しくは前駆細胞の変化を検出する工程を含 む方法。
[7] 以下の (1)〜(6)力 選択されるポリペプチドに対する抗体。
(1)配列番号: 1または 2の塩基配列力もなるポリヌクレオチドによりコードされるポリぺプ チド
(2)配列番号: 3または 4記載のアミノ酸配列力 なるポリペプチド
(3)配列番号: 3または 4記載のアミノ酸配列において膜貫通領域を欠くアミノ酸配列か らなるポリペプチド
(4)配列番号: 3または 4記載のアミノ酸配列において 1若しくは複数個のアミノ酸が欠 失、挿入、置換または付加されたアミノ酸配列力もなるポリペプチド
(5)配列番号: 1または 2の塩基配列に相補的な配列力 なるポリヌクレオチドに対して ストリンジヱントな条件下でノヽイブリダィズするポリヌクレオチドによりコードされるポリ ペプチド
(6)上記 (1)〜(5)のポリペプチドの断片であり、少なくとも 8アミノ酸残基を有するポリべ プチド
[8] ハイプリドーマ (FERM BP-10315または FERM BP-10316)により産生される、請求項 7 記載の抗体。
[9] 請求項 7または 8記載の抗体力もなる、ドーパミン産生-ユーロン前駆細胞マーカー 抗体。
[10] ドーパミン産生ニューロン前駆細胞を選択する方法であって、請求項 7〜9のいずれ か一項に記載の抗体とドーパミン産生ニューロン前駆細胞を含むと考えられる細胞 試料とを接触させる工程を含む方法。
[11] 以下の工程を含むドーパミン産生ニューロン系列の細胞を選択する方法。
(1)請求項 10記載の方法によりドーパミン産生-ユーロン前駆細胞を選択する工程
(2)上記 (1)において選択された前駆細胞を培養する工程
(3)上記 (2)において培養された前駆細胞を、分裂停止後のドーノミン産生ニューロン マーカーを用いてスクリーニングする工程 [12] 請求項 10記載の方法により選択されたドーパミン産生-ユーロン前駆細胞。
[13] ドーパミン産生ニューロン前駆細胞特異的遺伝子及び前駆細胞からドーパミン産生 ニューロンへの各成熟段階に特異的な遺伝子の単離方法であって、請求項 12記載 の前駆細胞または該前駆細胞から分化、誘導若しくは増殖された細胞を用い、該細 胞において特異的に発現している遺伝子を検出、単離する工程を含む方法。
[14] 成熟を指標としたドーパミン産生-ユーロン系列の細胞の増殖及び/または分ィ匕を調 節する化合物のスクリーニング方法であり、請求項 12記載の前駆細胞または該前駆 細胞から分化、誘導若しくは増殖された細胞に対し、被験物質を接触させる工程、及 び接触による前駆細胞の分化または増殖を検出する工程を含む方法。
[15] 請求項 4記載のドーパミン産生ニューロン増殖前駆細胞または請求項 12記載のドー ノ ミン産生-ユーロン前駆細胞を含む、パーキンソン病を治療するためのキット。
[16] 請求項 4記載のドーパミン産生ニューロン増殖前駆細胞または請求項 12記載のドー ノ ミン産生-ユーロン前駆細胞を患者の脳内に移植することを特徴とする、パーキン ソン病の治療方法。
[17] パーキンソン病を治療するためのキットを製造するための請求項 4記載のドーパミン 産生-ユーロン増殖前駆細胞または請求項 12記載のドーパミン産生-ユーロン前駆 細胞の使用。
[18] ドーパミン産生-ユーロン増殖前駆細胞を検出または選択する方法であって、以下 の(1)〜 (4)のいずれかに記載の塩基配列力もなる第一のポリヌクレオチドに対して ストリンジェントな条件下でノヽイブリダィズする第二のポリヌクレオチドを、ドーノミン産 生-ユーロン増殖前駆細胞を含む細胞試料に接触させる工程を含む方法。
(1)配列番号: 1または 2に記載の塩基配列
(2)配列番号: 3または 4に記載のアミノ酸配列力 なるポリペプチドをコードするポリ ヌクレオチドからなる塩基配列
(3)配列番号 :3または 4に記載のアミノ酸配列において膜貫通領域を欠く配列力 な るポリペプチドをコードするポリヌクレオチド力もなる塩基配列
(4)配列番号: 1または 2に記載の塩基配列力 なるポリヌクレオチドに対してストリン ジェントな条件下でハイブリダィズするポリヌクレオチド力 なる塩基配列 [19] 第二のポリヌクレオチドが、少なくとも 15塩基長を有する、請求項 18記載の方法。
[20] 請求項 18または 19に記載の方法により選択されたドーパミン産生- ロン増殖前 駆細胞集団。
[21] 以下の(1) (4)の 、ずれかに記載の塩基配列からなる第一のポリヌクレオチドに対 してストリンジェントな条件下で イブリダィズする第二のポリヌクレオチドを有効成分 として含有する、ドーパミン産生- ロン増殖前駆細胞を識別するための試薬。
(1)配列番号: 1または 2に記載の塩基配列
(2)配列番号: 3または 4に記載のアミノ酸配列力 なるポリペプチドをコードするポリ ヌクレオチドからなる塩基配列
(3)配列番号 :3または 4に記載のアミノ酸配列において膜貫通領域を欠く配列力 な るポリペプチドをコードするポリヌクレオチド力もなる塩基配列
(4)配列番号: 1または 2に記載の塩基配列力 なるポリヌクレオチドに対してストリン ジェントな条件下でハイブリダィズするポリヌクレオチド力 なる塩基配列
[22] 第二のポリヌクレオチドが、少なくとも 15塩基長を有する、請求項 21記載の試薬。
[23] 以下の(1) (3)の工程を含む、分裂停止後のドー ミン産生- ロン前駆細胞 を製造する方法。
(1)請求項 18または 19に記載の方法によりドーパミン産生- ロン増殖前駆細胞 を選択する工程、
(2)工程(1)において選択された細胞を培養する工程、
(3)工程 (2)において培養された細胞力 分裂停止後のドー ミン産生- ロン前 駆細胞を選択する工程
[24] 以下の(1) (2)の工程を含む、ドーパミン産生- ロンを製造する方法。
(1)請求項 18または 19に記載の方法によりドーパミン産生- ロン増殖前駆細胞 を選択する工程、
(2)工程(1)において選択された細胞を培養する工程
[25] (3)工程 (2)にお 、て培養された細胞からドーパミン産生- ロンを選択する工程 をさらに含む、請求項 24に記載の方法。
[26] ドーパミン産生- ロン前駆細胞を検出または選択する方法であって、以下の(1) 〜 (4)の 、ずれかに記載のアミノ酸配列またはその一部配列からなるポリペプチドと 結合する抗体を、ドーパミン産生-ユーロン前駆細胞を含む細胞試料に接触させる 工程を含む方法。
(1)配列番号: 3または 4に記載のアミノ酸配列
(2)配列番号: 3または 4に記載のアミノ酸配列において膜貫通領域を欠くアミノ酸配 列
(3)配列番号: 3または 4に記載のアミノ酸配列において 1若しくは複数個のアミノ酸が 欠失、置換もしくは付加され、またはそれらの組合せにより変異されたアミノ酸配列
(4)配列番号: 1または 2に記載の塩基配列に相補的な配列からなるポリヌクレオチド に対してストリンジヱントな条件下でノヽイブリダィズするポリヌクレオチドによりコードさ れるポリペプチド力 なるアミノ酸配列
[27] 一部配列からなるポリペプチドが、少なくとも連続した 6アミノ酸残基を有する、請求 項 26に記載の方法。
[28] 請求項 26または 27に記載の方法により選択されたドーノ ミン産生-ユーロン前駆細 胞集団。
[29] 細胞全体のうち、ドーパミン産生-ユーロン前駆細胞を 40%以上含むことを特徴とす る、請求項 28に記載の細胞集団。
[30] 以下の(1)〜 (4)のいずれかに記載のアミノ酸配列またはその一部配列力もなるポリ ペプチドと結合する抗体を有効成分として含有する、ドーノ ミン産生-ユーロン前駆 細胞を識別するための試薬。
(1)配列番号: 3または 4に記載のアミノ酸配列
(2)配列番号: 3または 4に記載のアミノ酸配列において膜貫通領域を欠くアミノ酸配 列
(3)配列番号: 3または 4に記載のアミノ酸配列において 1若しくは複数個のアミノ酸が 欠失、置換もしくは付加され、またはそれらの組合せにより変異されたアミノ酸配列
(4)配列番号: 1または 2に記載の塩基配列に相補的な配列からなるポリヌクレオチド に対してストリンジヱントな条件下でノヽイブリダィズするポリヌクレオチドによりコードさ れるポリペプチド力 なるアミノ酸配列 [31] 一部配列からなるポリペプチドが、少なくとも連続した 6アミノ酸残基を有する、請求 項 30に記載の試薬。
[32] 抗体が、ハイプリドーマ (FERM BP-10315または FERM BP-10316)により産生される抗 体である、請求項 30に記載の試薬。
[33] ハイプリドーマ (FERM BP-10315または FERM BP-10316)により産生される抗体。
[34] 以下の(1)〜(2)の工程を含む、ドーパミン産生-ユーロン増殖前駆細胞を製造する 方法。
(1)請求項 26または 27に記載の方法によりドーパミン産生-ユーロン前駆細胞を選 択する工程、
(2)分裂停止後のドーパミン産生-ユーロン前駆細胞を除去して、ドーパミン産生- ユーロン増殖前駆細胞を選択する工程
[35] 以下の(1)〜(2)の工程を含む、分裂停止後のドーノ ミン産生-ユーロン前駆細胞 を製造する方法。
(1)請求項 26または 27に記載の方法によりドーパミン産生-ユーロン前駆細胞を選 択する工程、
(2)工程(1)において選択された細胞を培養する工程
[36] (3)工程 (2)にお 、て培養された細胞力も分裂停止後のドーパミン産生-ユーロン前 駆細胞を選択する工程
をさらに含む、請求項 35に記載の方法。
[37] 以下の(1)〜(2)の工程を含む、ドーパミン産生-ユーロンを製造する方法。
(1)請求項 26または 27に記載の方法によりドーパミン産生-ユーロン前駆細胞を選 択する工程、
(2)工程(1)において選択された細胞を培養する工程、
[38] (3)工程 (2)にお 、て培養された細胞からドーパミン産生-ユーロンを選択する工程 をさらに含む、請求項 37に記載の方法。
[39] 以下の細胞力 なる群力 選択される少なくとも一つの細胞を含む、神経変性疾患を 治療するためのキット。
(1)請求項 20に記載のドーパミン産生-ユーロン増殖前駆細胞集団 (2)請求項 23に記載の方法により製造された分裂停止後のドーパミン産生-ユーロ ン前駆細胞
(3)請求項 24に記載の方法により製造されたドーパミン産生-ユーロン
(4)請求項 25に記載の方法により製造されたドーパミン産生-ユーロン
(5)請求項 28に記載のドーパミン産生-ユーロン前駆細胞集団
(6)請求項 29に記載のドーパミン産生-ユーロン前駆細胞集団
(7)請求項 34に記載の方法により製造されたドーパミン産生-ユーロン増殖前駆細 胞
(8)請求項 35に記載の方法により製造された分裂停止後のドーパミン産生-ユーロ ン前駆細胞
(9)請求項 36に記載の方法により製造された分裂停止後のドーパミン産生-ユーロ ン前駆細胞
(10)請求項 37に記載の方法により製造されたドーパミン産生-ユーロン
(11)請求項 38に記載の方法により製造されたドーパミン産生-ユーロン 神経変性疾患が、パーキンソン病である、請求項 39に記載のキット。
以下の細胞力 なる群力 選択される少なくとも一つの細胞を患者の脳内に移植す ることを特徴とする、神経変性疾患の治療方法。
(1)請求項 20に記載のドーパミン産生-ユーロン増殖前駆細胞集団
(2)請求項 23に記載の方法により製造された分裂停止後のドーパミン産生-ユーロ ン前駆細胞
(3)請求項 24に記載の方法により製造されたドーパミン産生-ユーロン
(4)請求項 25に記載の方法により製造されたドーパミン産生-ユーロン
(5)請求項 28に記載のドーパミン産生-ユーロン前駆細胞集団
(6)請求項 29に記載のドーパミン産生-ユーロン前駆細胞集団
(7)請求項 34に記載の方法により製造されたドーパミン産生-ユーロン増殖前駆細 胞
(8)請求項 35に記載の方法により製造された分裂停止後のドーパミン産生-ユーロ ン前駆細胞 (9)請求項 36に記載の方法により製造された分裂停止後のドーパミン産生-ユーロ ン前駆細胞
(10)請求項 37に記載の方法により製造されたドーパミン産生-ユーロン
(11)請求項 38に記載の方法により製造されたドーパミン産生-ユーロン
[42] 神経変性疾患が、パーキンソン病である、請求項 41に記載の方法。
[43] 神経変性疾患を治療するためのキットを製造するための以下の細胞力 なる群から 選択される少なくとも一つの細胞の使用。
(1)請求項 20に記載のドーパミン産生-ユーロン増殖前駆細胞集団
(2)請求項 23に記載の方法により製造された分裂停止後のドーパミン産生-ユーロ ン前駆細胞
(3)請求項 24に記載の方法により製造されたドーパミン産生-ユーロン
(4)請求項 25に記載の方法により製造されたドーパミン産生-ユーロン
(5)請求項 28に記載のドーパミン産生-ユーロン前駆細胞集団
(6)請求項 29に記載のドーパミン産生-ユーロン前駆細胞集団
(7)請求項 34に記載の方法により製造されたドーパミン産生ニューロン増殖前駆細 胞
(8)請求項 35に記載の方法により製造された分裂停止後のドーパミン産生-ユーロ ン前駆細胞
(9)請求項 36に記載の方法により製造された分裂停止後のドーパミン産生-ユーロ ン前駆細胞
(10)請求項 37に記載の方法により製造されたドーパミン産生-ユーロン
(11)請求項 38に記載の方法により製造されたドーパミン産生-ユーロン
[44] 神経変性疾患が、パーキンソン病である、請求項 43に記載の使用。
PCT/JP2005/013453 2004-07-22 2005-07-22 Lrp4/Corinドーパミン産生ニューロン前駆細胞マーカー WO2006009241A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
AU2005264579A AU2005264579B2 (en) 2004-07-22 2005-07-22 Lrp4/Corin dopaminergic neuron progenitor cell markers
US10/552,485 US20080199437A1 (en) 2004-07-22 2005-07-22 Lrp4/Corin Dopaminergic Neuron Progenitor Cell Markers
CN2005800319143A CN101027390B (zh) 2004-07-22 2005-07-22 Lrp4/Corin多巴胺能神经元祖细胞标志物
EP05766437.7A EP1666590B1 (en) 2004-07-22 2005-07-22 Lrp4/corin dopamine-producing neuron precursor cell marker
ES05766437.7T ES2557157T3 (es) 2004-07-22 2005-07-22 Marcador de célula precursora de neurona que produce la dopamina Lrp4/Corina
KR1020077004164A KR101375603B1 (ko) 2004-07-22 2005-07-22 Lrp4/Corin 도파민 생산 뉴런 전구 세포 마커
JP2006524554A JP3996627B2 (ja) 2004-07-22 2005-07-22 Lrp4/Corinドーパミン産生ニューロン前駆細胞マーカー
CA2574177A CA2574177C (en) 2004-07-22 2005-07-22 Lrp4/corin dopaminergic neuron progenitor cell markers
IL180782A IL180782A0 (en) 2004-07-22 2007-01-18 Lrp4/CORIN DOPAMINERGIC NEURON PROGENITOR CELL MARKERS
IL205194A IL205194A (en) 2004-07-22 2010-04-19 Markers for dopaminergic neuronal progenitors corin / 4 lrp
IL205193A IL205193A (en) 2004-07-22 2010-04-19 Methods for Identifying, Sorting, or Producing Dopamine Strain Neurone Neurons, Dopamine Strain Neurone Cell Populations, Identification Reagent and Kit
IL205195A IL205195A0 (en) 2004-07-22 2010-04-19 Lrp4/CORIN DOPAMINERGIC NEURON PROGENITOR CELL MARKERS
US14/703,000 US9994816B2 (en) 2004-07-22 2015-05-04 Lrp4/corin dopamine-producing neuron precursor cell marker

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-213743 2004-07-22
JP2004213743 2004-07-22
JP2004315060 2004-10-29
JP2004-315060 2004-10-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/552,485 A-371-Of-International US20080199437A1 (en) 2004-07-22 2005-07-22 Lrp4/Corin Dopaminergic Neuron Progenitor Cell Markers
US14/703,000 Division US9994816B2 (en) 2004-07-22 2015-05-04 Lrp4/corin dopamine-producing neuron precursor cell marker

Publications (1)

Publication Number Publication Date
WO2006009241A1 true WO2006009241A1 (ja) 2006-01-26

Family

ID=35785348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013453 WO2006009241A1 (ja) 2004-07-22 2005-07-22 Lrp4/Corinドーパミン産生ニューロン前駆細胞マーカー

Country Status (10)

Country Link
US (2) US20080199437A1 (ja)
EP (1) EP1666590B1 (ja)
JP (1) JP3996627B2 (ja)
KR (1) KR101375603B1 (ja)
CN (1) CN101027390B (ja)
AU (1) AU2005264579B2 (ja)
CA (1) CA2574177C (ja)
ES (1) ES2557157T3 (ja)
IL (4) IL180782A0 (ja)
WO (1) WO2006009241A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119759A1 (ja) * 2006-04-11 2007-10-25 Eisai R & D Management Co., Ltd. ドーパミン産生ニューロン前駆細胞マーカー187a5
JP2014523734A (ja) * 2011-07-27 2014-09-18 国立大学法人京都大学 新規ドーパミン産生神経前駆細胞マーカー
WO2015034012A1 (ja) 2013-09-05 2015-03-12 国立大学法人京都大学 新規ドーパミン産生神経前駆細胞の誘導方法
WO2017183736A1 (ja) 2016-04-22 2017-10-26 国立大学法人京都大学 ドーパミン産生神経前駆細胞の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060240432A1 (en) * 2003-01-24 2006-10-26 Eisai Co., Ltd. Lrp4/corin dopamine-producing neuron proliferation precursor cell marker
US20100028335A1 (en) * 2007-02-02 2010-02-04 Novartis Ag Compositions and Methods to Treat Bone Related Disorders
EP2980209B1 (en) 2011-05-20 2018-01-10 The McLean Hospital Corporation Neuronal progenitor cells and uses
WO2016026438A1 (en) * 2014-08-19 2016-02-25 Tongji University Methods and compositions for selective generation of dopaminergic precursors
US10333713B2 (en) 2016-10-11 2019-06-25 International Business Machines Corporation Validating internet of things device firmware using a peer-to-peer registry
US10326749B2 (en) 2016-10-11 2019-06-18 International Business Machines Corporation Validating internet of things device firmware
WO2024174707A1 (en) * 2023-02-21 2024-08-29 Center For Excellence In Brain Science And Intelligence Technology, Chinese Academy Of Sciences METHOD FOR IDENTIFYING AN mDA PROGENITOR CELL

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500684A (ja) 1983-03-08 1985-05-09 コモンウエルス セラム ラボラトリ−ズ コミツシヨン 抗原活性アミノ酸連鎖の決定方法
JPS63299A (ja) 1986-04-22 1988-01-05 イミユネツクス・コ−ポレ−シヨン ヒトg−csfタンパク質の発現
JPS6317688A (ja) 1986-03-28 1988-01-25 Kimiyoshi Tsuji ヒト―ヒトハイブリドーマの製造法
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993002227A1 (en) 1991-07-15 1993-02-04 Eco-Tec Limited Process and apparatus for treating fluoride containing acid solutions
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
JPH08509215A (ja) 1993-04-13 1996-10-01 アメリカ合衆国 移植治療のための神経由来胎児セルラインの使用
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
JPH09505054A (ja) 1993-11-09 1997-05-20 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア 均質なニューロン細胞移植片としての組成物とこれらの移植片の製造及び使用方法
JPH1058487A (ja) 1996-08-15 1998-03-03 Japan Steel Works Ltd:The 中空成形品の射出成形方法および射出成形用金型
JPH10508488A (ja) 1994-11-08 1998-08-25 ダイアクリン・インコーポレーテツド ブタ線条細胞、および神経変性疾患による神経的欠乏の処置におけるその使用
JPH10509034A (ja) 1994-11-08 1998-09-08 ダイアクリン・インコーポレーテツド ブタ皮質細胞、および神経変性疾患による神経的欠乏の処置におけるその使用
JPH10509319A (ja) 1994-11-14 1998-09-14 ニューロスフィアーズ ホウルディングス リミテッド ドーパミン作動性細胞のインビトロ誘導
JPH11501818A (ja) 1995-03-13 1999-02-16 ユニヴァーシティ オブ サウス フロリダ 神経変性疾患用の神経回復誘発細胞としてのセルトーリ細胞
JPH11506930A (ja) 1995-06-06 1999-06-22 アメリカ合衆国 移植治療のための神経由来胎児細胞系列
JPH11509170A (ja) 1995-03-13 1999-08-17 ユニヴァーシティ オブ サウス フロリダ 細胞移植用の移植促進剤としてのセルトーリ細胞
JPH11509729A (ja) 1995-07-06 1999-08-31 エモリー ユニバーシティ ニューロン始原細胞およびその使用
WO2000006700A1 (en) 1998-07-29 2000-02-10 Layton Bioscience, Inc. Production and use of dopaminergic cells to treat dopaminergic deficiencies
US6277820B1 (en) 1998-04-09 2001-08-21 Genentech, Inc. Method of dopaminergic and serotonergic neuron formation from neuroprogenitor cells
JP2002504503A (ja) 1998-02-24 2002-02-12 エムシーピー・ハーネマン・ユニバーシテイ 中枢神経系の疾病の処置における使用のための単離されたストロマ細胞
JP2002051775A (ja) 2000-06-01 2002-02-19 Japan Science & Technology Corp ドーパミン作動性ニューロンの濃縮・分離方法
JP2002513545A (ja) 1998-05-07 2002-05-14 ザ ユニヴァーシティー オブ サウス フロリダ 脳および脊髄修復のためのニューロン源としての骨髄細胞
JP2002522070A (ja) 1998-08-12 2002-07-23 シグナル ファーマシューティカルズ, インコーポレイテッド ヒト中脳細胞系およびその使用方法
JP2002530068A (ja) 1998-11-18 2002-09-17 カリフォルニア・インスティテュート・オブ・テクノロジー 中枢神経系前駆細胞の低酸素培養
WO2002074906A2 (en) * 2001-03-16 2002-09-26 Eli Lilly And Company Lp mammalian proteins; related reagents
WO2002103007A1 (fr) 2001-06-19 2002-12-27 Eisai C0. Ltd. Methode d'uniformisation des contenus de fragments d'adn et methode de soustraction
WO2004038018A1 (ja) 2002-10-22 2004-05-06 Eisai Co., Ltd. 分裂停止後のドーパミン産生ニューロン前駆細胞に特異的に発現している遺伝子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277372B1 (en) 1994-11-08 2001-08-21 Diacrin, Inc. Porcine neural cells and their use in treatment of neurological deficits due to neurodegenerative diseases
EP0814819B1 (en) 1995-03-13 2004-07-14 University Of South Florida Sertoli cells as transplantation facilitator for cell transplantation
US5702700A (en) 1995-03-13 1997-12-30 University Of South Florida Sertoli cells as neurorecovery inducing cells for Parkinson's disease
DE69938830D1 (de) * 1998-06-05 2008-07-10 Bayer Schering Pharma Ag Corin, eine serinprotease
AU2001233262A1 (en) 2000-02-03 2001-08-14 Dendreon Corporation Nucleic acid molecules encoding transmembrane serine proteases, the encoded proteins and methods based thereon
WO2001083715A2 (en) * 2000-05-01 2001-11-08 THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by the Secretary, Derivation of midbrain dopaminergic neurons from embryonic stem cells
WO2003106657A2 (en) 2002-06-14 2003-12-24 Stowers Institute For Medical Research Wise/sost nucleic acid sequences and amino acid sequences
US20060240432A1 (en) * 2003-01-24 2006-10-26 Eisai Co., Ltd. Lrp4/corin dopamine-producing neuron proliferation precursor cell marker
AU2004219851B2 (en) * 2003-03-12 2009-12-17 Reliance Life Sciences Pvt. Ltd. Derivation of terminally differentiated dopaminergic neurons from human embryonic stem cells
EP1712638B1 (en) 2003-11-26 2009-06-10 Eisai R&D Management Co., Ltd. Specific marker Lmx1a on dopaminergic neurons

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500684A (ja) 1983-03-08 1985-05-09 コモンウエルス セラム ラボラトリ−ズ コミツシヨン 抗原活性アミノ酸連鎖の決定方法
JPS6317688A (ja) 1986-03-28 1988-01-25 Kimiyoshi Tsuji ヒト―ヒトハイブリドーマの製造法
JPS63299A (ja) 1986-04-22 1988-01-05 イミユネツクス・コ−ポレ−シヨン ヒトg−csfタンパク質の発現
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993002227A1 (en) 1991-07-15 1993-02-04 Eco-Tec Limited Process and apparatus for treating fluoride containing acid solutions
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
JPH08509215A (ja) 1993-04-13 1996-10-01 アメリカ合衆国 移植治療のための神経由来胎児セルラインの使用
US5690927A (en) 1993-04-13 1997-11-25 The United States Of America As Represented By The Department Of Health And Human Services Use of neuro-glial fetal cell lines for transplantation therapy
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
JPH09505054A (ja) 1993-11-09 1997-05-20 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア 均質なニューロン細胞移植片としての組成物とこれらの移植片の製造及び使用方法
JPH10509034A (ja) 1994-11-08 1998-09-08 ダイアクリン・インコーポレーテツド ブタ皮質細胞、および神経変性疾患による神経的欠乏の処置におけるその使用
JPH10508488A (ja) 1994-11-08 1998-08-25 ダイアクリン・インコーポレーテツド ブタ線条細胞、および神経変性疾患による神経的欠乏の処置におけるその使用
JPH10509319A (ja) 1994-11-14 1998-09-14 ニューロスフィアーズ ホウルディングス リミテッド ドーパミン作動性細胞のインビトロ誘導
JPH11509170A (ja) 1995-03-13 1999-08-17 ユニヴァーシティ オブ サウス フロリダ 細胞移植用の移植促進剤としてのセルトーリ細胞
JPH11501818A (ja) 1995-03-13 1999-02-16 ユニヴァーシティ オブ サウス フロリダ 神経変性疾患用の神経回復誘発細胞としてのセルトーリ細胞
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
JPH11506930A (ja) 1995-06-06 1999-06-22 アメリカ合衆国 移植治療のための神経由来胎児細胞系列
JPH11509729A (ja) 1995-07-06 1999-08-31 エモリー ユニバーシティ ニューロン始原細胞およびその使用
JPH1058487A (ja) 1996-08-15 1998-03-03 Japan Steel Works Ltd:The 中空成形品の射出成形方法および射出成形用金型
JP2002504503A (ja) 1998-02-24 2002-02-12 エムシーピー・ハーネマン・ユニバーシテイ 中枢神経系の疾病の処置における使用のための単離されたストロマ細胞
US6277820B1 (en) 1998-04-09 2001-08-21 Genentech, Inc. Method of dopaminergic and serotonergic neuron formation from neuroprogenitor cells
JP2002513545A (ja) 1998-05-07 2002-05-14 ザ ユニヴァーシティー オブ サウス フロリダ 脳および脊髄修復のためのニューロン源としての骨髄細胞
WO2000006700A1 (en) 1998-07-29 2000-02-10 Layton Bioscience, Inc. Production and use of dopaminergic cells to treat dopaminergic deficiencies
JP2002522070A (ja) 1998-08-12 2002-07-23 シグナル ファーマシューティカルズ, インコーポレイテッド ヒト中脳細胞系およびその使用方法
JP2002530068A (ja) 1998-11-18 2002-09-17 カリフォルニア・インスティテュート・オブ・テクノロジー 中枢神経系前駆細胞の低酸素培養
JP2002051775A (ja) 2000-06-01 2002-02-19 Japan Science & Technology Corp ドーパミン作動性ニューロンの濃縮・分離方法
WO2002074906A2 (en) * 2001-03-16 2002-09-26 Eli Lilly And Company Lp mammalian proteins; related reagents
WO2002103007A1 (fr) 2001-06-19 2002-12-27 Eisai C0. Ltd. Methode d'uniformisation des contenus de fragments d'adn et methode de soustraction
WO2004038018A1 (ja) 2002-10-22 2004-05-06 Eisai Co., Ltd. 分裂停止後のドーパミン産生ニューロン前駆細胞に特異的に発現している遺伝子

Non-Patent Citations (121)

* Cited by examiner, † Cited by third party
Title
"Basic Microbiology Course 8 - Genetic Engineering", KYORITSU PUBLISHING
"Cell Engineering, Supplement 8, New Cell Engineering Experiment Protocol", 1993, SHUJUNSHA PUBLISHING, pages: 362 - 374
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS
"DNA Cloning 1: Core Techniques, A Practical Approach, 2nd ed.", 1995, OXFORD UNIVERSITY
"Molecular Cloning, A Laboratory Manual, 2nd ed.", 1989, COLD SPRING HARBOR PRESS
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 8
ANAL. BIOCHEM., vol. 151, 1985, pages 540 - 6
BACKLUND ET AL., J. NEUROSURG., vol. 62, 1985, pages 169 - 73
BELYAVSKY ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 2919 - 32
BETTER; HORWITZ, METHODS ENZYMOL., vol. 178, 1989, pages 476 - 96
BIRD; WALKER, TRENDS BIOTECHNOL., vol. 9, 1991, pages 132 - 7
BORREBAECK; LARRICK: "Therapeutic Monoclonal Antibodies", 1990, MACMILLAN PUBLISHERS LTD.
BUZAYAN, NATURE, vol. 323, 1986, pages 349
CELL, vol. 113, no. 5, 2003, pages 631 - 42
CHIRWIN ET AL., BIOCHEMISTRY, vol. 18, 1979, pages 5294 - 5299
CHOMCZYNSKI; SACCHI, ANAL. BIOCHEM., vol. 162, 1987, pages 156 - 159
CHOU-FASMAN, ANN. REV. BIOCHEM., vol. 47, 1978, pages 251 - 76
CO ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 76
COHEN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 2110
DALBADIE-MCFARLAND ET AL., PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409 - 13
DASSO; JACKSON, NUCLEIC ACIDS RES., vol. 17, 1989, pages 3129 - 44
DEFER ET AL., BRAIN, vol. 119, 1996, pages 41 - 50
DEVELOPMENT, vol. 131, no. 5, 2004, pages 1145 - 55
ED HARLOW; DAVID LANE: "Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
FEMINO ET AL., SCIENCE, vol. 280, 1998, pages 585 - 90
FIRE ET AL., NATURE, vol. 391, 1998, pages 806 - 11
FREED ET AL., N. ENGL. J. MED., vol. 327, 1992, pages 1549 - 55
FROHMAN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 8998 - 9002
GALFRE; MILSTEIN, METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46
GRAHAM, VIROLOGY, vol. 52, 1973, pages 456
GRANTHAM ET AL., NUCLEIC ACIDS RES., vol. 9, 1981, pages R43 - 74
HASHIMOTO-GOTO ET AL., GENE, vol. 152, 1995, pages 271 - 5
HIEI, PLANT J., vol. 6, 1994, pages 271 - 282
HINNEN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 1927
HIRASHIMA; INOUE: "New Biochemistry Experiment Course 2, Nucleic Acids IV, Gene Replication and Expression", 1993, TOKYO KAGAKU DOZIN PUBLISHING, pages: 319 - 347
HOLLIGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 8
HORSCH ET AL., SCIENCE, vol. 227, 1985, pages 129
HUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 83
HYNES, CELL, vol. 80, 1995, pages 95 - 101
ISSELBACHER ET AL.: "Harrison's Principles of Internal Medicine, 23rd ed.", vol. 2, 1994, MCGRAW-HILL INC., pages: 2275 - 7
J. AM. MED. ASSOC., vol. 199, 1967, pages 519
J. BACTERIOL., vol. 153, 1983, pages 163
J. MOL. BIOL., vol. 222, 1991, pages 301 - 10
J. MOL. BIOL., vol. 56, 1971, pages 209
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 5
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 7
KAWASAKI ET AL., NEURON, vol. 28, 2000, pages 31 - 40
KAWASAKI ET AL., NEURON, vol. 28, no. 1, 2000, pages 31 - 40
KIKUCHI, CHEMISTRY AND BIOLOGY, vol. 30, 1992, pages 112
KIKUCHI; SASAKI, NUCLEIC ACIDS RES., vol. 19, 1992, pages 6751
KIM ET AL., NATURE, vol. 418, 2002, pages 50 - 56
KOIZUMI ET AL., FEBS LETT., vol. 228, 1988, pages 225
KOIZUMI ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 7059
KORDOWER ET AL., N. ENGL. J. MED., vol. 332, 1995, pages 1118 - 24
KRAMER; FRITZ, METHOD. ENZYMOL., vol. 154, 1987, pages 350 - 67
KUNKEL, METHOD. ENZYMOL., vol. 85, 1988, pages 2763 - 6
KUNKEL, PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488 - 92
KYTE-DOOLITTLE, J. MOL. BIOL., vol. 157, 1982, pages 105 - 22
LAMOYI, METHODS ENZYMOL., vol. 121, 1986, pages 652 - 63
LEDOUSSAL ET AL., INT. J. CANCER, 1992, pages 58 - 62
LEE ET AL., NAT. BIOTECH., vol. 18, 2000, pages 675 - 679
LIANG ET AL., NUCLEIC ACIDS RES., vol. 21, 1993, pages 3269 - 3275
LINDVALL ET AL., ANN. NEUROL., vol. 22, 1987, pages 457 - 68
LINDVALL ET AL., ARCH. NEUROL., vol. 46, 1989, pages 615 - 31
LISITSYN, TRENDS GENET., vol. 11, 1995, pages 303 - 307
LISITSYN, TRENDS GENET., vol. 11, 1995, pages 303 - 7
LISTSYN N.A., TRENDS GENET., vol. 11, 1995, pages 303 - 7
LOPEZ-LOZANO ET AL., TRANSP. PROC., vol. 29, 1997, pages 977 - 80
LOPEZ-LOZANO ET AL., TRANSP. PROC., vol. 29, 1997, pages 977 - 980
LUBON, BIOTECHNOL. ANNU. REV, vol. 4, 1998, pages 1 - 54
M. KOIZUMI; E. OHTSUKA, PROTEIN, NUCLEIC ACID AND ENZYME, vol. 35, 1990, pages 2191
MADRAZO ET AL., NEW ENGL. J. MED., vol. 316, 1987, pages 831 - 4
MARK ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 5662 - 6
MARSHAK ET AL.: "Strategies for Protein Purification and Characterization: A Laboratory Course Manual", 1996, COLD SPRING HARBOR LABORATORY PRESS
MARUYAMA; SUGANO, GENE, vol. 138, 1994, pages 171 - 4
MENDEZ ET AL., NAT. GENET., vol. 15, 1997, pages 146 - 156
METHODS ENZYMOL., vol. 203, 1991, pages 99 - 121
MILLSTEIN; CUELLO, NATURE, vol. 305, 1983, pages 537 - 9
MOL. GEN. GENET., vol. 168, 1979, pages 111
NATURE, vol. 319, 1986, pages 791
NATURE, vol. 423, no. 6939, 2003, pages 541 - 5
NIWA ET AL., GENE, vol. 108, 1991, pages 193 - 200
PAULUS, BEHRING INST. MILL., vol. 78, 1985, pages 118 - 32
PAULUS, BEHRING INST. MITT., vol. 78, 1985, pages 118 - 32
PLUCKTHUN; SKERRA, METHODS ENZYMOL., vol. 178, 1989, pages 497 - 515
PRESTA, CURR. OP. STRUCT. BIOL., vol. 2, 1992, pages 593 - 6
PRESTRIDGE, J. MOL. BIOL., vol. 249, 1995, pages 923 - 932
PROC. SOC. BIOL. MED., vol. 73, 1950, pages 1
PYKETT ET AL., HUM. MOL. GENET., vol. 3, 1994, pages 559 - 64
REESE ET AL.: "Biocomputing: Proceedings of the 1996 Pacific Symposium", 1996, WORLD SCIENTIFIC PUBLISHING CO.
REICHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 9
ROSENBURG AND MOORE: "The Pharmacology of Monoclonal Antibody", vol. 113, 1994, SPRINGER VERLAG, pages: 269 - 315
ROSENSTAIN, EXP. NEUROL., vol. 33, 1995, pages 106
ROSENSTEIN, EXP. NEUROL., vol. 33, 1995, pages 106
ROUSSEAUX ET AL., METHODS ENZYMOL., vol. 121, 1986, pages 663 - 9
SAKAMOTO YOSHIMASA ET AL: "Saibomaku Hyomen Maker o Mochiita Dopamine Sansei Neuron Zenku Saibo no Bunri.", ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN PROGRAM. KOEN YOSHISHU., vol. 27, 25 November 2004 (2004-11-25), pages 762, XP002998865 *
SANGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 74, 1977, pages 5463
SCHUTTE ET AL., PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 5950 - 4
SCIENCE, vol. 122, 1952, pages 501
SCIENCE, vol. 227, 1985, pages 129
SELAWRY; CAMERON, CELL TRANSPLANT, vol. 2, 1993, pages 123 - 9
SPENCER ET AL., N. ENGL. J. MED, vol. 327, 1992, pages 1541 - 8
STEIN, NUCLEIC ACIDS RES., vol. 16, 1988, pages 3209 - 21
SUMMERS ET AL., MOL. CELL BIOL., vol. 3, 1983, pages 2156 - 2165
SUSUMU, NATURE, vol. 315, 1985, pages 592 - 4
SUZUKI, GENE, vol. 200, 1997, pages 149 - 56
SWAROOP ET AL., NUCLEIC ACIDS RES., vol. 19, 1991, pages 1954
TURNER ET AL., NEUROSURG., vol. 33, 1993, pages 1031 - 7
VAN DIJK ET AL., INT. J. CANCER, vol. 43, 1989, pages 944 - 9
VELCULESCU ET AL., SCIENCE, vol. 270, 1995, pages 484 - 487
VIROLOGY, vol. 8, 1959, pages 396
WALLEN ET AL., EXP. CELL RES., vol. 253, 1999, pages 737 - 46
WANG ET AL., SCIENCE, vol. 224, 1984, pages 1431 - 3
WIDNER ET AL., N. ENGL. J. MED., vol. 327, 1992, pages 1556 - 63
WIDNER; BRUDIN, BRAIN RES. REV., vol. 13, 1988, pages 287 - 324
YASUNAGA ET AL., NATURE GENET, vol. 21, 1999, pages 363 - 9
ZIMMERMANN, REV. PHYSIO. BIOCHEM. PHARMACOL., vol. 105, 1986, pages 176 - 260
ZIMMERMANN, REV. PHYSIOL. BIOCHEM. PHARMACOL., vol. 105, 1986, pages 176 - 260
ZOLLER; SMITH, NUCLEIC ACIDS RES., vol. 10, 1982, pages 6487 - 500

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119759A1 (ja) * 2006-04-11 2007-10-25 Eisai R & D Management Co., Ltd. ドーパミン産生ニューロン前駆細胞マーカー187a5
US8198081B2 (en) 2006-04-11 2012-06-12 Eisai R&D Management Co., Ltd. Dopaminergic neuron progenitor cell marker 187A5
US8604173B2 (en) 2006-04-11 2013-12-10 Eisai R&D Management Co., Ltd. Dopaminergic neuron progenitor cell marker 187A5
JP2014523734A (ja) * 2011-07-27 2014-09-18 国立大学法人京都大学 新規ドーパミン産生神経前駆細胞マーカー
US9453840B2 (en) 2011-07-27 2016-09-27 Kyoto University Markers for dopaminergic neuron progenitor cells
WO2015034012A1 (ja) 2013-09-05 2015-03-12 国立大学法人京都大学 新規ドーパミン産生神経前駆細胞の誘導方法
KR20160053936A (ko) 2013-09-05 2016-05-13 고쿠리츠 다이가쿠 호진 교토 다이가쿠 신규 도파민 생산 신경 전구 세포의 유도 방법
US11473058B2 (en) 2013-09-05 2022-10-18 Kyoto University Method for inducing dopaminergic neuron progenitor cells
WO2017183736A1 (ja) 2016-04-22 2017-10-26 国立大学法人京都大学 ドーパミン産生神経前駆細胞の製造方法
US11898163B2 (en) 2016-04-22 2024-02-13 Kyoto University Method for producing dopaminergic neuron progenitor cell

Also Published As

Publication number Publication date
IL205193A (en) 2015-05-31
IL205194A0 (en) 2011-07-31
JPWO2006009241A1 (ja) 2008-05-01
IL205194A (en) 2014-07-31
IL205195A0 (en) 2011-07-31
EP1666590A1 (en) 2006-06-07
EP1666590A4 (en) 2007-01-03
IL205193A0 (en) 2011-07-31
US9994816B2 (en) 2018-06-12
KR101375603B1 (ko) 2014-04-01
KR20070049645A (ko) 2007-05-11
CN101027390A (zh) 2007-08-29
CA2574177A1 (en) 2006-01-26
US20150299654A1 (en) 2015-10-22
CN101027390B (zh) 2012-12-12
JP3996627B2 (ja) 2007-10-24
IL180782A0 (en) 2007-06-03
AU2005264579B2 (en) 2010-06-10
EP1666590A8 (en) 2006-11-29
AU2005264579A1 (en) 2006-01-26
EP1666590B1 (en) 2015-11-04
ES2557157T3 (es) 2016-01-22
CA2574177C (en) 2019-01-08
US20080199437A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US9994816B2 (en) Lrp4/corin dopamine-producing neuron precursor cell marker
US8580523B2 (en) Specific marker Lmx1a on dopaminergic neurons
JP4118877B2 (ja) 分裂停止後のドーパミン産生ニューロン前駆細胞に特異的に発現している遺伝子
US7807371B2 (en) Methods of selecting dopaminergic neuron proliferative progenitor cells using Lrp4/Corin markers
CA2677996C (en) Gaba neuron progenitor cell marker 65b13
JP4618736B2 (ja) Lrp4/Corinドーパミン産生ニューロン前駆細胞マーカー
JP4717797B2 (ja) Lrp4/Corinドーパミン産生ニューロン前駆細胞マーカー
JP4731487B2 (ja) Corl1遺伝子を標的とした脊髄神経細胞の種類を識別する方法
JP4085117B2 (ja) 分裂停止後のドーパミン産生ニューロン前駆細胞に特異的に発現している遺伝子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006524554

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005766437

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 2005766437

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2574177

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 180782

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 744/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005264579

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077004089

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020077004164

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020077004089

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005264579

Country of ref document: AU

Date of ref document: 20050722

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005264579

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580031914.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10552485

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 205193

Country of ref document: IL

Ref document number: 205195

Country of ref document: IL

Ref document number: 205194

Country of ref document: IL