WO2006009003A1 - 半導体装置の処理液、処理方法および半導体製造装置 - Google Patents

半導体装置の処理液、処理方法および半導体製造装置 Download PDF

Info

Publication number
WO2006009003A1
WO2006009003A1 PCT/JP2005/012784 JP2005012784W WO2006009003A1 WO 2006009003 A1 WO2006009003 A1 WO 2006009003A1 JP 2005012784 W JP2005012784 W JP 2005012784W WO 2006009003 A1 WO2006009003 A1 WO 2006009003A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
alcohols
manufacturing apparatus
ketones
semiconductor manufacturing
Prior art date
Application number
PCT/JP2005/012784
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Akinobu Teramoto
Hirohisa Kikuyama
Keiichi Nii
Masashi Yamamoto
Original Assignee
Tohoku University
Stella Chemifa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University, Stella Chemifa Corporation filed Critical Tohoku University
Priority to EP05757755A priority Critical patent/EP1780778A4/en
Priority to US11/631,671 priority patent/US20070227567A1/en
Priority to CN2005800219709A priority patent/CN1981368B/zh
Priority to JP2006529042A priority patent/JPWO2006009003A1/ja
Publication of WO2006009003A1 publication Critical patent/WO2006009003A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Definitions

  • the present invention relates to a semiconductor device processing liquid, a processing method, and a semiconductor manufacturing apparatus, and more particularly to a semiconductor device processing liquid, a processing method, and a semiconductor manufacturing apparatus capable of producing a clean and flat semiconductor surface. is there.
  • semiconductor surface treatment is performed with an aqueous solution or a non-aqueous solution containing a cleaning composition that also has acid, alkali, and organic strength. Then, after these treatments, water, particularly ultrapure water having a specific resistance value of 18 ⁇ or more has been used for the purpose of rinsing the cleaning composition. The reason is that the cleaning composition adhering to the semiconductor surface is quickly removed, and in some cases, the semiconductor surface is chemically stabilized in a transfer process in a processing atmosphere by terminating hydrogen atoms. . However, this process is for the above purpose and does not contribute to the maintenance and improvement of the surface roughness required for the semiconductor surface.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-297656 (hereinafter referred to as Patent Document 1) proposes a method for manufacturing a semiconductor device, a rinsing liquid, and a semiconductor substrate cleaning liquid.
  • Patent Document 2 proposes a semiconductor device cleaning solution and a method of manufacturing a semiconductor device using the same.
  • Patent Document 1 a mixture of a glycol solvent and water is used for the purpose of selective etching of a different oxide film in cleaning a semiconductor substrate having a silicon oxide insulating film.
  • Patent Document 2 a cleaning liquid containing hydrogen fluoride and alcohols is used for the purpose of removing the sidewall polymer and preventing the corrosion of the metal wiring material.
  • Patent Documents 1 and 2 are not precise techniques such as etching at the atomic layer level on the semiconductor surface. Further, depending on the effect of the additive composition in some cases, the surface of the semiconductor, particularly the acid surface, may be used. It is conceivable to roughen an innocent semiconductor surface without a coating such as a film. Therefore, it is limited as a use and is not a technology applicable to comprehensive semiconductor manufacturing. In particular, there is an urgent need for the development of a cleaning technique that improves the performance of semiconductor devices by realizing a technology that can make the surface of the semiconductor before the formation of the semiconductor oxide film extremely clean and flat.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 297656
  • Patent Document 2 JP-A-11-340183
  • An object of the present invention is to provide a clean and flat semiconductor surface with less elution of the semiconductor substrate force. It is to provide a processing liquid, a processing method, and a semiconductor manufacturing apparatus that can be created.
  • the present invention provides a semiconductor surface treatment solution characterized by treating with an aqueous solution containing at least one of alcohols and ketones, and uses the same.
  • a processing method and a manufacturing apparatus are provided. With the processing liquid of the present application, and the processing method and manufacturing apparatus using the processing liquid, a semiconductor device having a process with little elution from the semiconductor surface and a clean and flat surface can be obtained.
  • the present invention relates to a treatment liquid and a treatment method characterized by using an aqueous solution in which an atomic elution amount from a semiconductor is 15 atomic layers or less in terms of Z24 hours, and in a semiconductor manufacturing apparatus using them, It is characterized by treatment with an aqueous solution containing at least one kind of ketones.
  • atomic layer Z24 time which is the unit of atomic elution from the semiconductor, is the value obtained by dividing the number of dissolved semiconductor atoms for which the measured force is calculated by the area of the semiconductor crystal used for the measurement per unit surface area. It is a numerical value that indicates how many times the number of existing semiconductor atoms.
  • the present invention is characterized in that it is treated with an aqueous solution containing at least one of alcohols or ketones, and the structure of the alcohols is R1R2C (0H) R3 (where R1 is substituted with a halogen and a hydroxyl group).
  • R2 and R3 are the same as or different from R1, and may be a C1-C4 alkyl group having a straight chain and a branch, which may be substituted with a halogen and a hydroxyl group, or
  • R5 is the same as R4)
  • a treatment liquid which is at least one of the following: a linear or branched C1-C4 alkyl group or a hydrogen atom, which may be substituted with a halogen and a hydroxyl group) Physical methods and a semiconductor manufacturing apparatus using them.
  • the water to be used has a specific resistance value of 18 ⁇ or more! /.
  • the average linear roughness (Ra) of the semiconductor surface formed by the treatment liquid, the treatment method and the semiconductor manufacturing apparatus of the present invention is 0.15 nm or less, preferably 0.1 lnm or less, more preferably. Or less than 0.07 nm.
  • the present invention relates to a treatment liquid, a treatment method, and a method, wherein the structure of the alcohols and ketones is at least one of C1-C7 alkyl groups or compounds having an alkyl group containing a halogen or a hetero atom.
  • the alcohols for example, methyl alcohol, ethyl alcohol, 1 propanol, 1-butanol, 2-butanol and the like are preferable. More preferred is 2-propanol. It may also be a polyhydric alcohol having two or more hydroxyl groups! /.
  • the ketones are preferably ethyl methyl ketone, jetyl ketone, and the like, and more preferably acetone. Further, it may be partially substituted with a halogen atom such as fluorine. Also, the alcohols and ketones to be used are not limited to one type, but may be a mixture of two or more types. For example, a combination of one kind from alcohols and one kind from ketones may be used.
  • the relative dielectric constant of alcohols and ketons used in the treatment liquid, treatment method and semiconductor manufacturing apparatus of the present invention is 82 or less, preferably specifically methyl alcohol, ethyl alcohol, jetyl ketone or the like. More preferably, 2-propanol, acetone or the like is used.
  • 2-propanol it is preferable to use 2-propanol as the alcohol of the present invention, and alcohols and ketones may be further mixed.
  • alcohols and ketones Preferable examples include methyl alcohol, ethyl alcohol, jetyl ketone, and acetone.
  • the purity of the alcohols and ketones is 99% by mass or more, and preferably 99.9% by mass or more.
  • the total amount of metal impurities is desirably 0.1 ppm or less, more preferably lppb or less.
  • the concentration of the alcohols and ketones contained in the treatment liquid, the treatment method, and the semiconductor manufacturing apparatus using them is preferably 5% by mass or more. Is 10% by mass or more, more preferably 30% by mass.
  • a processing method characterized by using a semiconductor single crystal as a processing solution, a processing method, and a structure to be processed of a semiconductor manufacturing apparatus of the present invention Specifically, for example, silicon is used as a semiconductor material. It is done.
  • the plane orientation of the single crystal to be processed For example, (100), (111), (110), etc. It should be noted that it is appropriately turned off for those plane orientations It can also be applied to glazed surfaces.
  • the present invention provides a processing method characterized by using a semiconductor polycrystal as a processing solution, a processing method, and a structure to be processed of a semiconductor manufacturing apparatus of the present invention.
  • a polycrystal as a semiconductor polycrystal is used.
  • Silicon is an example.
  • the processing method is characterized in that an amorphous semiconductor is used as the structure to be processed.
  • the processing method is characterized in that a semiconductor compound is used as the structure to be processed, and specifically, for example, gallium arsenide or the like.
  • a feature of the present invention is that a treatment liquid containing at least one of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, hydrofluoric acid, and ammonium fluoride, a treatment method using the same, and semiconductor manufacturing Device.
  • the present invention is characterized in that at least one of nitrogen, hydrogen, oxygen, and ozone is dissolved in water used in the treatment liquid, the treatment method, and the semiconductor manufacturing apparatus.
  • a dissolved hydrogen gas lppb or the like is preferable.
  • the present invention provides a processing method and a semiconductor manufacturing apparatus characterized by having a step of removing alcohols and ketones adhering to a semiconductor surface after a processing step using an aqueous solution containing one or more of them.
  • the semiconductor surface is heated, and more preferably the treatment atmosphere is filled with oxygen gas.
  • the semiconductor structure to be processed is heated to 450 ° C.
  • the temperature and oxygen gas concentration of the semiconductor when heating is not limited and may be higher or lower.
  • the present invention provides a treatment method characterized by having a step of removing alcohols and ketones generated by using plasma excited gas species and adhering to a semiconductor surface, and the same Is a semiconductor manufacturing apparatus using Gas species used for them Force is at least one of argon, krypton and xenon. Two or more of the above gases may be mixed.
  • the gas pressure and the like can be appropriately selected and are not limited.
  • the present invention provides a processing method characterized by using plasma generated by exciting gas species with electromagnetic waves in the plasma generation method, and a semiconductor manufacturing apparatus using the same. If the plasma has energy to excite the above gas species, More specifically, a microwave is preferable.
  • the present invention relates to a treatment method characterized by heating a structure to be treated in a process using plasma for removing attached alcohols and ketones, and a semiconductor using the treatment method. It is a manufacturing device.
  • the semiconductor temperature is preferably 400 ° C, but is not limited to that temperature.
  • the present invention is a processing method characterized in that a part of a structure to be processed is covered with a semiconductor oxide layer, and a semiconductor manufacturing apparatus using the processing method. It is preferable to have a structure in which a part of the semiconductor that is not covered is covered with a semiconductor oxide layer. Specifically, for example, when silicon is used for the semiconductor, it is preferable to cover with a silicon oxide film U, . If the film here is an acid film! / It ’s a good thing!
  • the present invention relates to a processing method and a semiconductor manufacturing apparatus using the processing method, characterized in that the processing liquid used in the processing step is collected and reused after purification.
  • purification is a processing step. As long as it is a process for removing the generated impurities! /, It may be a good one! /, For example, an ion exchange resin.
  • the hydrogen gas concentration is not limited as long as it is 4% or less.
  • the present invention by treating the semiconductor surface with an aqueous solution containing at least one of alcohols and ketones, elution of semiconductor constituent atoms from the semiconductor surface is suppressed to 15 atomic layers Z 24 hours or less. be able to.
  • the surface roughness of the processed semiconductor can be reduced to 0.1 lOnm or less from the surface roughness of about 1 Onm obtained by RCA cleaning, which is a conventional technique. Therefore, the performance improvement of the semiconductor element can be expected.
  • the characteristics of semiconductor elements such as natural oxide films can be obtained by filling the treatment atmosphere with an appropriate gas. There is an effect of suppressing the formation of a film that causes deterioration.
  • the semiconductor surface is treated with an aqueous solution containing at least one kind of alcohols and ketones, there is a step of removing alcohols adhering to the semiconductor surface.
  • an aqueous solution containing at least one kind of alcohols and ketones there is a step of removing alcohols adhering to the semiconductor surface.
  • There is no problem with semiconductor manufacturing technology using alcohols and it does not cause deterioration of characteristics such as lowering of dielectric breakdown electrolysis due to remaining alcohol in the structure laminated on the semiconductor surface.
  • plasma excited by microwaves similar treatment effects can be obtained at a lower temperature than conventional heat removal methods.
  • the amount of alcohol used can be reduced by recovering the processing solution used for treating the semiconductor surface with an aqueous solution containing at least one kind of alcohol and reusing it after purification. Can be reduced.
  • processing liquid, processing method, and semiconductor manufacturing apparatus of the semiconductor device of the present invention there are a processing liquid, a processing method, and a semiconductor manufacturing apparatus that realize a processing with less elution from the semiconductor surface and a clean and flat surface. can get.
  • FIG. 1 is a process diagram of an RCA cleaning method.
  • FIG. 2 is a gate oxide film forming process diagram shown in the first embodiment.
  • FIG. 3 is a cross-sectional view of the semiconductor substrate at the processing stage of the gate oxide film formation step shown in the first embodiment.
  • FIG. 4 is a gate oxide film forming process diagram shown in the second embodiment.
  • FIG. 5 is a cross-sectional view of a semiconductor substrate at a processing stage in a gate oxide film formation step shown in the second embodiment.
  • FIG. 6 is a process diagram having a process liquid recovery and purification mechanism shown in the third embodiment.
  • FIG. 7 is a correlation diagram between the atomic elution amount and the alcohol concentration shown in Example 1 and Comparative Example 1.
  • FIG. 8 is a correlation diagram between average line roughness and alcohol concentration shown in Example 1 and Comparative Example 1.
  • FIG. 9 shows the state of alcohol desorption by the temperature programmed desorption method shown in Example 2 and Comparative Example 2.
  • FIG. 10 is a correlation diagram between the atomic elution amount and the alcohol purity shown in Example 3. Explanation of symbols
  • Embodiment 1 of the present invention provides a processing solution and a processing method by using an aqueous solution in which the amount of elution of atoms from a semiconductor substrate is 15 atomic layers or less in terms of Z24 hours when processing a semiconductor substrate. It is an improvement.
  • these processing liquids, processing methods, and semiconductor manufacturing apparatuses using them will be described for semiconductor device manufacturing.
  • the present invention can be applied to various processing sequences based on the characteristics of various processing solutions currently used in semiconductor manufacturing processes.
  • Figure 1 shows one example of the RCA cleaning method that is a processing step.
  • treatment by water rinsing is used as a rinsing step, and the present invention proposes an improved method of these water rinsing steps. Therefore, the present invention is not limited to a process using a specific water rinse, but can also be applied to pretreatment of gate oxide film formation, cleaning of contact holes, via holes, capacitors, and the like.
  • the present invention is a thermal acid treatment generally adopted as an initial step of semiconductor device manufacturing such as DRAM (Dynamic Random Access Memory) manufacturing, so-called gate oxide film pre-processing. As an example, this will be described. This process is used as a variety of LSI manufacturing processes regardless of DRAM manufacturing.
  • DRAM Dynamic Random Access Memory
  • FIG. 2 shows an example of a gate oxide film forming process
  • FIG. 3 shows a semiconductor substrate of a gate oxide film forming process. Sectional drawing of the processing stage is shown.
  • a semiconductor substrate 1 made of a silicon single crystal shown in a) of Fig. 3 is prepared.
  • silicon oxide film 2 and silicon nitride film 3 in b) of FIG. 3 are formed.
  • the field oxide film 4 in c) of Fig. 3 is formed (step: S-3 in Fig. 2).
  • the silicon nitride film 3 is etched, and the silicon oxide film 2 is also etched using an HF chemical (process: S— in FIG. 2). 4) Then, expose the silicon substrate surface in the gate region. Thereafter, the pre-acid film 5 shown in e) of FIG. 3 is formed (step: S-5 in FIG. 2), and the acid formed using the HF chemical solution as shown in f) of FIG. Etching the film (process: S-6 in Fig. 2). Thereafter, the gate oxide film 6 shown in g) of FIG. 3 is formed (step: S-7 in FIG. 2).
  • the present invention includes cleaning of the semiconductor substrate in the above process (S-1 in FIG. 2), etching of the gate region oxide film by field oxide film etching (S-4 in FIG. 2), It can be used for rinsing processes such as oxide film etching (S-6 in Fig. 2).
  • S-1 in FIG. 2 etching of the gate region oxide film by field oxide film etching
  • S-4 in FIG. 2 It can be used for rinsing processes such as oxide film etching (S-6 in Fig. 2).
  • oxide film etching S-6 in Fig. 2
  • the performance of semiconductor devices can be improved. As shown in the figure, it is known that the improvement of the flatness at the interface between the gate oxide film and the silicon substrate greatly improves the performance of the manufactured semiconductor device.
  • an alcohol or ketone adhering to the semiconductor surface is treated after using an aqueous solution containing at least one of alcohols and ketones. It has the process of removing a kind.
  • a treatment method in which a treatment with a treatment liquid containing at least one kind of alcohols and ketones and a subsequent step of removing the alcohols and ketones are applied, and A form of a semiconductor manufacturing apparatus will be described.
  • alcohols and ketones used methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butyl alcohol 1, pentanol, 2-pentanol, acetone, jetyl ketone, ethyl methyl ketone, and the like.
  • 1,3 fluoro-2-propanol or difluoromethyl ketone may be used as long as it satisfies the following conditions as alcohols and acetones.
  • the following alcohols and ketones can be used as the treatment liquid.
  • the alcohol has a structure of R1R2C (0H) R3.
  • R1 represents a linear or branched C1-C4 alkyl group which may be substituted with a halogen or a hydroxyl group.
  • R2 and R3 are the same as or different from R1, and represent a linear or branched C1-C4 alkyl group or a hydrogen atom which may be substituted with a halogen and a hydroxyl group.
  • R5 is the same as or different from R4 and represents a linear or branched C1-C4 alkyl group or hydrogen atom which may be substituted with a halogen or a hydroxyl group.
  • An aqueous solution containing at least one of these molecular structures is used.
  • the water to be used is preferably V, which has a specific resistance value of 18 ⁇ ⁇ or more, or ultra-pure water!
  • an aqueous solution containing at least one of an alkyl group having a structure of alcohols and ketones having a C1 to C7 alkyl group, a halogen atom, or a hetero atom may be used.
  • the alcohol is preferably, for example, methyl alcohol, ethyl alcohol, 1 propanol, 1-butanol, 2-butanol and the like. More preferred is 2-propanol.
  • it may be a polyhydric alcohol having two or more hydroxyl groups.
  • the ketones are preferably ethylmethyl ketone, jetyl ketone, etc., and more preferably acetone. Alternatively, it may be partially substituted with a halogen atom such as fluorine.
  • the alcohols and ketones used may be a mixture of two or more types, not just one type. For example, a combination of one kind from alcohol and one kind from ketone!
  • the specific dielectric constant of alcohols and ketones used in the treatment liquid, the treatment method and the semiconductor manufacturing apparatus of the present invention is 82 or less, preferably specifically, methyl alcohol, ethyl alcohol, or jetyl ketone. More preferably, 2-propanol, acetone Etc.
  • alcohols of the present invention 2-propanol is preferably used, and alcohols and ketones may be further mixed.
  • Preferable examples include methyl alcohol, ethyl alcohol, jetyl ketone, and acetone.
  • FIG. 4 shows an example of a gate oxide film forming process using the present invention
  • FIG. 5 shows a cross-sectional view of a semiconductor substrate processing stage in the gate oxide film forming process.
  • a silicon semiconductor substrate 1 is prepared, and a field oxide film 4 is already selectively formed on this substrate.
  • the pre-acid film 5 shown in b) of Fig. 5 was formed (step: S-1 in Fig. 4 1) and formed using HF chemical solution as shown in c) of Fig. 5 Etch the oxide film (process: S-12 in Fig. 4).
  • FIG. 5 shows a cross-sectional view of a semiconductor substrate processing stage in the gate oxide film forming process.
  • the removal process in S-13 in FIG. 4 is exemplified by heating in an oxygen gas atmosphere, it is possible to heat only the semiconductor surface, but the treatment atmosphere is preferably filled with oxygen gas. Specifically, for example, the semiconductor structure to be processed is heated to 450 ° C.
  • the temperature and oxygen gas concentration of the semiconductor when heating is not limited, and may be higher or lower.
  • the plasma treatment is particularly limited to a parallel plate type or the like depending on the plasma generation method, and the substrate surface can be uniformly irradiated by exciting the gas species with electromagnetic waves. .
  • the plasma has energy for exciting the above gas species.
  • the plasma is preferably microwave.
  • the temperature of the semiconductor device is preferably 400 ° C. U, 1S It is not limited to that temperature.
  • the gas species for exciting the plasma is a rare gas, preferably Xenon, krypton, argon and the like.
  • the gas type damage to the semiconductor substrate can be reduced by using a gas type with a large collision cross section.
  • xenon is preferred. Two or more of the above gases may be mixed.
  • the gas pressure and the like can be appropriately selected and are not limited.
  • the semiconductor device to be treated which are not irradiated with plasma, specifically, for example, the back surface of a silicon substrate, and the like. It is preferable to cover the film by previously forming a silicon oxide film.
  • the film here may be any film as long as it is an acid film.
  • the extent of the plasma caused by the excited gas! / ⁇ The structure in which a part of the semiconductor is covered with a semiconductor oxide layer facilitates the removal of alcohols and ketones. Can be suppressed
  • Embodiment 3 the removal of alcohols and ketones can reduce organic impurities at the interface between the gate oxide film and the silicon substrate, and can suppress the deterioration of the performance of the manufactured semiconductor device.
  • Embodiment 3 is a processing method characterized in that the processing liquid used in the processing step is collected and reused after purification, and the semiconductor manufacturing process is accompanied by a mechanism for them. Explain the state.
  • FIG. 6 shows a schematic diagram of a processing step having the above processing liquid recovery and purification mechanism.
  • Figures 1 to 4 show part of the semiconductor manufacturing process.
  • the processing solution used in 3 in FIG. 6 is recovered to the purification step 6 in FIG. After the recovery, the composition is adjusted to a composition suitable for the next step in the rinsing solution adjusting step 5 in FIG. 6 and reused.
  • the purpose of purification is to remove impurities, and for particulate impurities, ultrafiltration, reverse permeable membranes, or the like can be used. Metal impurities can be removed by using an appropriate ion exchange resin. It is possible to collect and reuse from multiple rinsing steps in a series of semiconductor manufacturing processes that are not limited to the collection source and the reuse process. Distillation is appropriate for the purification of alcohols and ketones.
  • Embodiment 4 of the present invention is a processing method and a semiconductor manufacturing apparatus characterized by suppressing the oxygen gas concentration in the atmosphere of the semiconductor processing step, and the embodiment will be described.
  • the semiconductor manufacturing process it is preferable to perform from the substrate cleaning to the completion of the semiconductor element in an atmosphere in which the oxygen gas concentration is suppressed.
  • the oxygen gas concentration is 20 ppm or less, more preferably 5 ppm or less
  • the main gas species occupying the other part is nitrogen.
  • the main gas species may be a mixture of nitrogen and hydrogen, and the hydrogen gas concentration is not limited as long as it is 4% or less.
  • a manufacturing method of the semiconductor device in the semiconductor manufacturing apparatus there is no particular limitation other than a manufacturing method that deviates from the idea in semiconductor manufacturing, and it is limited to a processing method such as a batch type or a single wafer type. It ’s not something. It is preferable to use a semiconductor manufacturing apparatus capable of single-wafer processing with superior processing uniformity.
  • Example 1 is an example in which a solution obtained by adding 10 to 60% by mass of isopropanol to ultrapure water was used as a treatment liquid.
  • isopropanol is used as the alcohol and ketone, but it goes without saying that the alcohol and ketone can be arbitrarily selected from the alcohols and ketones within the range shown in the above-described embodiment.
  • the semiconductor substrate used for processing was RCA-cleaned in advance. The cleaned semiconductor substrate is immersed in a nitrogen atmosphere for 24 hours, after which the semiconductor substrate is taken out and the amount of semiconductor atoms dissolved in the processing solution and the surface roughness are measured.
  • ICP-AES Inductively coupled plasma atomic emission spectrometry
  • Ra Average line roughness
  • the semiconductor substrate used for the treatment was previously cleaned.
  • the cleaned semiconductor substrate is immersed in a nitrogen atmosphere for 24 hours, then the semiconductor substrate is taken out, and the amount of semiconductor atoms dissolved is investigated by using inductively coupled plasma emission spectrometry (ICP-AES). More dissolved amounts were compared using units of atomic layer Z24hr.
  • the surface roughness was evaluated using an atomic force microscope manufactured by Seiko Insurumen, and Ra was calculated from the observation results.
  • FIG. 7 shows the amount of semiconductor atoms dissolved in the treated liquid after treatment
  • Figure 8 shows the surface roughness measurement results.
  • the alcohol concentration of 0% by mass in each figure corresponds to the result of Comparative Example 1. From these figures, the effect is obtained by setting the alcohols and ketones to 5% by mass or more, preferably 10% by mass or more, and more preferably 30% by mass.
  • the atomic elution amount is 15 atomic weights Z24 hours or less
  • the surface roughness is a semiconductor average line roughness (Ra) of 0.15 or less.
  • the semiconductor average line roughness (Ra) is preferably 0.1 nm or less, more preferably 0.07 nm or less.
  • a semiconductor single crystal specifically, for example, silicon can be given as a semiconductor material.
  • Examples of crystal dependence in silicon include plane orientations (100) and (110). These are almost the same results, and there are no restrictions on the plane orientation of the single crystals to be processed, such as (100), (111), (110), etc.
  • the present invention can also be applied to surfaces that are appropriately turned off with respect to their plane orientations.
  • a semiconductor polycrystal specifically, for example, a semiconductor polycrystal
  • the present invention can be applied to amorphous semiconductors and semiconductor compounds.
  • the semiconductor compound is, for example, gallium arsenide.
  • Example 2 is an example in which a solution obtained by adding 30% by mass of 2-propanol to ultrapure water was used as a treatment liquid, and an alcohol removal step was further performed.
  • 2-pronool is used as the alcohol and ketone.
  • the semiconductor substrate used for processing was RCA cleaned in advance. The cleaned semiconductor substrate was immersed in the cleaning solution for 10 minutes, and then the substrate was treated under conditions where plasma was generated by xenon gas to remove the attached alcohol. Evaluation after treatment was performed by temperature-programmed desorption analysis, and desorption was deduced using atmospheric pressure ionization mass spectrometry.
  • Comparative Example 2 a solution obtained by adding 30% by mass of 2-propanol to ultrapure water was used as a treatment liquid.
  • the semiconductor substrate used for processing was RCA cleaned in advance.
  • the cleaned semiconductor substrate was immersed in the cleaning solution for 10 minutes.
  • the post-treatment evaluation was performed by temperature-programmed desorption spectroscopy, and the desorption was analyzed using atmospheric pressure ionization mass spectrometry.
  • Comparative Example 2 is a sample that does not perform the plasma treatment that is the alcohol removal step in Example 2.
  • Example 2 The results of Example 2 and Comparative Example 2 are shown in FIG.
  • the vertical axis represents the relative strength of the mass analyzer, and the horizontal axis represents the substrate temperature.
  • mass number 43 in mass spectrometry is predominantly recognized as a signal caused by the alcohol, so Fig. 9 shows the intensity of the mass number 43 signal.
  • Fig. 9 shows the intensity of the mass number 43 signal.
  • a signal due to 2-propanol appeared from 250 ° C to 500 ° C, whereas the plasma treatment of Example 2 was performed.
  • these signals are not observed and are therefore according to the invention.
  • the attached alcohols can be removed by treatment using plasma.
  • Example 3 is an example carried out using a solution obtained by adding 30% by mass of 2-propanol in ultrapure water as a treatment liquid and using different purity.
  • the semiconductor substrate used for processing was pre-cleaned.
  • the cleaned semiconductor substrate was immersed in a nitrogen atmosphere for 24 hours, and then the semiconductor substrate was taken out, and the amount of semiconductor atoms dissolved in the processing solution and the surface roughness were measured.
  • ICP-AES Inductively coupled plasma atomic emission spectrometry
  • FIG. 10 shows the relationship between the purity of 2-propanol and the elution amount of semiconductor atoms.
  • the amount of elution increased due to the decrease in purity.
  • a catalytic effect due to impurities can be considered, and the treatment with a small amount of semiconductor atom elution in the present invention can be achieved by increasing the purity of the alcohol used. Therefore, the purity of alcohols and ketones is 99% by mass or more, and preferably 99.9% by mass or more.
  • the total amount of metal impurities is preferably 0.1 lppm or less, more preferably lppb or less.
  • Example 4 a solution obtained by adding 30% by mass of 2-propanol to ultrapure water was used as the treatment liquid, and the treatment atmosphere gas was filled with normal air and nitrogen gas, and the oxygen gas concentration was 5 ppm or less. This is an embodiment performed under the control.
  • the semiconductor substrate used for the treatment was previously cleaned. The cleaned semiconductor substrate was immersed in a nitrogen atmosphere for 24 hours, the latter half of the conductor substrate was taken out, and the amount of semiconductor atoms dissolved in the processing solution was measured.
  • ICP-AES Inductively coupled plasma atomic emission spectrometry
  • Table 1 shows the relationship between the type of processing atmosphere and the elution amount of semiconductor atoms.
  • the number of atoms to be eluted can be further reduced by reducing the oxygen gas concentration in the processing atmosphere.
  • an aqueous solution containing at least one of alcohols and ketones in an environment filled with nitrogen gas, etc., it is possible to reduce the number of elution atoms, which leads to improved semiconductor performance. is there.
  • the treatment solution of the present application is an aqueous solution containing alcohols and ketones, but contains at least one of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, hydrofluoric acid, and ammonium fluoride. It can also be used as a treatment liquid. Furthermore, one or more of nitrogen, hydrogen, oxygen, and ozone can be dissolved in the water used for the treatment liquid. For example, dissolved hydrogen gas lppb and the like are dissolved.
  • a device is obtained. Problems with semiconductor devices due to the roughness of the semiconductor surface, which are not currently evident, are expected to become apparent as devices become smaller in the future. In the future, it can be used for the realization of highly reliable and high performance semiconductor devices in the manufacture of semiconductor devices with further miniaturized devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

本発明の目的は、半導体表面の原子溶出が少なく、清浄かつ平坦な半導体表面を作成できる処理液、処理方法および半導体製造装置を提供することにある。本発明はアルコール類またはケトン類のうち少なくとも1種類を含む水溶液を用いることにより、半導体表面からの溶出の少ない処理および清浄かつ平坦な表面を実現する処理液、処理方法および半導体製造装置が得られる。

Description

明 細 書
半導体装置の処理液、処理方法および半導体製造装置
技術分野
[0001] 本発明は、半導体装置の処理液、処理方法および半導体製造装置に係り、特に清 浄かつ平坦な半導体表面を作成できる半導体装置の処理液、処理方法および半導 体製造装置に関するものである。
背景技術
[0002] 半導体表面または半導体酸ィ匕膜 Z半導体界面の表面ラフネスが、 MOSデバイス 等の電子素子の特性劣化の原因になることが指摘されている。比較的大きな寸法の デバイス製造にぉ 、て、それら特性への影響が顕在化しな力つた表面ラフネスは、 近年のデバイスの微細化に伴う MOSFETのゲート酸ィ匕膜の薄膜ィ匕等により無視で きなくなってきている。
[0003] 半導体表面の処理方法としては、従来から 20近くの工程を含む RCA洗浄が知ら れており、 30年前に開発された当時は特に問題を生じなかった。しかし、この洗浄方 法によると半導体の表面ラフネスが上昇するため、膜厚 100A以下のシリコン酸ィ匕膜 を形成する必要がある現在の半導体集積回路装置を製造する場合には問題を生じ るよつになった。
[0004] また、半導体の洗浄方法として、酸、アルカリおよび有機物力もなる洗浄用組成物 を含有した水溶液または非水系溶液によって半導体表面処理が行われて 、る。そし て、それらの処理の後、洗浄用組成物をリンスする目的で水、特に 18Μ Ω以上の比 抵抗値を持つ超純水が使用されてきた。その理由は、半導体表面上に付着した洗浄 用組成物を速やかに除去し、場合によっては半導体表面を水素原子終端することに よって処理雰囲気中の搬送過程等において化学的に安定にすることである。しかし、 この工程は上記目的のためであり、半導体表面に求められる表面ラフネスの維持改 善について何ら寄与するものではなぐむしろ水中で半導体表面と水との化学反応 により表面ラフネスは悪ィ匕する。この点につ!、ては現状では問題になって!/ヽな 、が、 今後半導体素子の更なる微細化が進むことは明らかであり、その際に問題となってく ることは確実である。
[0005] そのために、ゲート酸化等の半導体表面上に化合物膜を形成する場合に、その下 地となる半導体の表面をきわめて清浄にし、かつ平坦にすることを可能とし、高信頼 性、高性能の半導体素子の製造に寄与する処理が必要とされる。
[0006] 半導体の洗浄方法に関わる提案はこれまで多くなされている。例えば特開平 11— 297656 (以下、特許文献 1と呼ぶ)には半導体装置の製造方法、リンス液及び半導 体基板洗浄液についての提案がなされている。また特開平 11— 340183 (以下、特 許文献 2と呼ぶ)には半導体装置用洗浄液及びそれを用いた半導体装置の製造方 法が提案されている。特許文献 1においては、酸化シリコン系絶縁膜の有する半導 体基板の洗浄における異種酸ィ匕膜の選択エッチングを目的としてグリコール系溶剤 と水の混合物を使用したものである。さらに、特許文献 2においては、サイドウォール ポリマーの除去と金属配線素材の腐食防止を目的としフッ化水素とアルコール類を 含む洗浄液を使用したものである。
[0007] これらの特許文献 1, 2に開示された技術は半導体表面における原子層レベルのェ ツチング等の精密なものではなぐさらに、場合によっては添加組成物の効果より、半 導体表面、とくに酸ィ匕膜等の被覆のな 、無垢な半導体表面を粗らすことが考えられ る。したがって、用途として限定されたものであり、包括的な半導体製造に適用できる 技術ではない。特に半導体酸ィ匕膜形成前の半導体の表面をきわめて清浄かつ平坦 なものになしうる技術ではなぐそれらを実現し半導体素子の性能を向上させる洗浄 技術の開発が切望されている。
[0008] 特許文献 1 :特開平 11 297656
特許文献 2:特開平 11― 340183
発明の開示
発明が解決しょうとする課題
[0009] 上記したようにデバイスの微細化に伴い、さらに半導体素子の性能を向上させるた め、半導体の表面をきわめて清浄かつ平坦なものになしうる洗浄技術の開発が切望 されている。
[0010] 本発明の目的は、半導体基板力 の溶出が少なぐ清浄かつ平坦な半導体表面を 作成できる処理液、処理方法および半導体製造装置を提供することである。
課題を解決するための手段
[0011] 上記課題を解決し目的を達成するため、本発明はアルコール類またはケトン類のう ち少なくとも 1種類を含む水溶液で処理することを特徴とする半導体表面の処理液、 およびそれを使用した処理方法および製造装置を提供するものである。本願の処理 液、およびそれを使用した処理方法および製造装置により、半導体表面からの溶出 の少ない処理および清浄かつ平坦な表面を有する半導体装置が得られる。
[0012] 本発明は、半導体からの原子溶出量が 15原子層 Z24時間換算以下となる水溶液 を使用することを特徴とする処理液および処理方法およびそれらを使用した半導体 製造装置において、アルコール類またはケトン類のうち少なくとも 1種類を含む水溶 液で処理することを特徴とする。ここで、半導体からの原子溶出量の単位である原子 層 Z24時間とは、計測値力も算出される溶出した半導体原子数を計測に使用した 半導体結晶の面積で除した数値が、単位表面積当たりに存在する半導体原子数の 何倍かであるかを示す数値である。
[0013] 本発明は、アルコール類またはケトン類のうち少なくとも 1種類を含む水溶液で処理 することを特徴とし、前記アルコール類の構造が R1R2C(0H)R3 (R1はハロゲン及び ヒドロキシル基で置換されてもよい直鎖および分岐を有する C1〜C4アルキル基を示 す。 R2および R3は R1と同一又は異なって、ハロゲン及びヒドロキシル基で置換され てもよい直鎖及び分岐を有する C1〜C4アルキル基又は水素原子を示す。)、そして 前記ケトン類の構造が R4C=OR5 (R4はハロゲン及びヒドロキシル基で置換されてもよ い直鎖および分岐を有する C1〜C4アルキル基を示す。 R5は R4と同一又は異なつ て、ハロゲン及びヒドロキシル基で置換されてもょ 、直鎖及び分岐を有する C1〜C4 アルキル基又は水素原子を示す。)で表されるうちの少なくとも 1種である処理液、処 理方法およびそれらを使用した半導体製造装置である。なお、使用する水としては、 18Μ Ω以上の比抵抗値をもつ!/、わゆる超純水であることが好まし!/、。
[0014] 本発明の処理液、処理方法および半導体製造装置によって形成される半導体表 面の平均線粗さ(Ra)が 0. 15nm以下であり、好ましくは 0. lnm以下であり、さらに好 ましくは 0. 07nm以下である。 [0015] 本発明は、アルコール類およびケトン類の構造が C1〜C7のアルキル基あるいは ハロゲンまたはへテロ原子を含むアルキル基力 なる化合物のうち少なくとも 1種であ る処理液、処理方法、およびそれらを使用した半導体製造装置であり、アルコール類 としては、好ましくは例えばメチルアルコール、エチルアルコール、 1 プロパノール、 1—ブタノール、 2—ブタノール等である。さらに好ましくは、 2—プロパノールである。 また、ヒドロキシル基を 2個以上有する多価アルコールであってもよ!/、。
[0016] 上記ケトン類としては、好ましくは例えばェチルメチルケトン、ジェチルケトン等であ り、さらに好ましくはアセトンである。また、部分的にフッ素等のハロゲン原子で置換さ れたものでもよい。また、使用するアルコール類、及びケトン類は 1種類のものではな ぐ 2種類以上を混合したものでもよい。例えば組み合わせとしてアルコール類より 1 種類、ケトン類より 1種類混合したものでもよい。
[0017] 本発明の処理液、処理方法および半導体製造装置に使用するアルコール類、ケト ン類の比誘電率が 82以下であり、好ましくは具体的に、メチルアルコール、ェチルァ ルコール、ジェチルケトン等であり、さらに好ましくは、 2—プロパノール、アセトン等が ある。
[0018] 本発明のアルコール類として、 2 プロパノールを使用することが好適であり、さらに アルコール類、ケトン類を混合してもよい。好ましくは具体的に、メチルアルコール、 エチルアルコール、ジェチルケトン、アセトン等がある。
[0019] 前記アルコール類およびケトン類の純度は 99質量%以上であり、好ましくは 99. 9 質量%以上である。金属不純物の総量は 0. Ippm以下であることが望ましぐさらに 好ましくは lppb以下である。
[0020] 本発明にお 、て、処理液、処理方法およびそれらを使用した半導体製造装置に含 まれるアルコール類、およびケトン類の濃度が 5質量%以上であることを特徴とし、好 ましくは 10質量%以上、さらに好ましくは 30質量%である。
[0021] 本発明の処理液、処理方法および半導体製造装置の被処理構造物として、半導 体単結晶を使用することを特徴とする処理方法であり、具体的に例えば半導体材料 としてシリコンがあげられる。また、それら処理される単結晶の面方位に制限はなぐ 例えば(100)、 (111)、 (110)等である。なお、それらの面方位に対して適宜オフさ せた面にも適用できる。
[0022] 本発明の処理液、処理方法および半導体製造装置の被処理構造物として、半導 体多結晶を使用することを特徴とする処理方法であり、具体的に例えば半導体多結 晶としてポリシリコンがあげられる。また、上記被処理構造物として、アモルファス半導 体を使用することを特徴とする処理方法である。また、上記被処理構造物として、半 導体化合物を使用することを特徴とする処理方法であり、具体的に例えば、ガリウム 砒素等である。
[0023] 本発明の特徴は、塩化水素酸、硝酸、硫酸、酢酸、フッ化水素酸、フッ化アンモニ ゥムのうち少なくともひとつ以上を含有する処理液およびそれを使用した処理方法お よび半導体製造装置である。
[0024] 本発明は、処理液および処理方法および半導体製造装置に使用する水に、窒素、 水素、酸素、オゾンのうち 1種類以上を溶解させたことを特徴とする。例えば好ましく は水素ガス溶存量 lppb等を溶解させたものである。
[0025] 本発明は、半導体表面に付着したアルコール類、及びケトン類を除去する工程を、 それらを 1種類以上含んだ水溶液による処理工程の後に有することを特徴とする処理 方法および半導体製造装置であり、好ましくは半導体表面を加熱し、さらに好ましく は処理の雰囲気を酸素ガスで充満させる。具体的に例えば、被処理半導体構造物 を 450°Cに加熱する。加熱する場合の半導体の温度および酸素ガス濃度は、限定さ れるものではなくこれ以上であっても、以下であってもよい。
[0026] 本発明は、プラズマを励起されたガス種を使用することによって発生し、半導体表 面に付着したアルコール類、およびケトン類を除去する工程を有することを特徴とす る処理方法およびそれを使用した半導体製造装置である。それらに使用するガス種 力 アルゴン、クリプトン、キセノンのうち少なくとも 1つであることを特徴とする。なお、 上記ガスの 2つ以上を混合してもよい。ガスの圧力等は適宜選択が可能であり限定さ れるものではない。
[0027] 本発明は、上記プラズマ発生の方法において、電磁波でガス種を励起することによ り発生したプラズマを使用することを特徴とする処理方法およびそれを使用した半導 体製造装置であり、ここでプラズマは、上記ガス種を励起させるエネルギーがあれば よぐ具体的にはマイクロ波であることが好ましい。
[0028] 本発明は付着したアルコール類およびケトン類を除去するためのプラズマを使用す る工程にお!ヽて、被処理構造物を加熱することを特徴とする処理方法およびそれを 使用した半導体製造装置である。加熱する場合、半導体温度は 400°Cであることが 好ましいが、その温度に限定されるものではない。
[0029] 本発明は、被処理構造物の一部を半導体酸化層で覆われた構造とすることを特徴 とする処理方法およびそれを使用した半導体製造装置であり、励起されたガスによる プラズマの及ばない半導体の一部分を半導体酸ィ匕層で覆われた構造とすることが好 ましい、具体的に例えば、半導体にシリコンを使用している場合シリコン酸ィ匕膜で覆う のが好ま U、。ここでの膜は酸ィ匕膜であれば!/、かなるものでもよ!/、。
[0030] 本発明は、処理工程に使用した処理液を回収し、精製の後再使用することを特徴 とする処理方法およびそれを使用した半導体製造装置であり、ここで精製とは処理 過程で発生した不純物を除去する工程であれば!/、かなるものでもよ!/、、例えばイオン 交換榭脂等としてもよい。
[0031] 半導体処理工程の雰囲気の酸素ガス濃度を抑制し、主たるガス種が窒素であるこ とを特徴とする処理方法およびそれを使用した半導体製造装置であり、好ましくは酸 素濃度を 20ppm以下に、さらに好ましくは 5ppm以下にすることが好ましい。
[0032] 半導体処理工程の雰囲気の酸素ガス濃度を抑制し、主たるガス種が窒素と水素の 混合物であることを特徴とする処理方法およびそれを使用した半導体製造装置であ り、好ましくは酸素濃度を 20ppm以下に、さらに好ましくは 5ppm以下にすることが好 ましい。また、水素ガス濃度は 4%以下であれば、限定されるものではない。
発明の効果
[0033] 本発明によれば半導体表面をアルコール類、ケトン類の少なくとも 1種類を含む水 溶液で処理することにより、半導体表面からの半導体構成原子の溶出を 15原子層 Z 24時間以下に抑制することができる。また処理後の半導体の表面粗度を従来の技 術である RCA洗浄によって得られる 1. Onm程度の表面ラフネスから 0. lOnm以下と することができる。したがって、半導体素子の性能向上が期待できる。なお、処理の 雰囲気を適当なガスで充満させることによって、自然酸化膜等の半導体素子の特性 劣化の原因となる膜の形成を抑える効果がある。
[0034] また、本発明によれば、半導体表面をアルコール類、ケトン類の少なくとも 1種類を 含む水溶液で処理の後、半導体表面に付着したアルコール類の除去工程を有する こと〖こよって、従来のアルコール類を使用した半導体製造技術で問題となっている、 付着したアルコール類が原因となり、半導体表面に積層される構造内に残存すること による絶縁破壊電解の低下等の特性劣化を引き起こすことはない。また、マイクロ波 で励起されたプラズマを使用することによって、従来の熱による除去方法よりも低温 で同様の処理の効果がある。
[0035] さらに本発明によれば、半導体表面をアルコール類の少なくとも 1種類を含む水溶 液での処理に使用した処理液を回収し、精製の後再使用することにより、アルコール 類の使用量を低減することができる。
[0036] 本願発明の半導体装置の処理液、処理方法および半導体製造装置によれば、半 導体表面からの溶出の少ない処理および清浄かつ平坦な表面を実現する処理液、 処理方法および半導体製造装置が得られる。
図面の簡単な説明
[0037] [図 1]RC A洗浄法の工程図である。
[図 2]実施の形態 1に示す、ゲート酸ィ匕膜形成工程図である。
[図 3]実施の形態 1に示す、ゲート酸化膜形成工程の処理段階の半導体基板断面図 である。
[図 4]実施の形態 2に示す、ゲート酸ィ匕膜形成工程図である。
[図 5]実施の形態 2に示す、ゲート酸化膜形成工程の処理段階の半導体基板断面図 である。
[図 6]実施の形態 3に示す、処理液の回収、精製機構を有する処理工程図である。
[図 7]実施例 1、比較例 1に示す、原子溶出量のアルコール濃度との相関図である。
[図 8]実施例 1、比較例 1に示す、平均線粗さとアルコール濃度との相関図である。
[図 9]実施例 2、比較例 2に示す、昇温脱離法によるアルコールの脱離の状態を示す 図である。
[図 10]実施例 3に示す、原子溶出量のアルコール純度との相関図である。 符号の説明
[0038] 1 半導体基板
2 シリコン酸ィ匕膜
3 シリコン窒化膜
4 フィールド酸化膜
5 プレ酸化膜
6 ゲート酸化膜
7 付着物
発明を実施するための最良の形態
[0039] 以下、本発明の半導体装置の処理液、処理方法および半導体製造装置につ!、て 、図を参照して説明する。
実施の形態 1
[0040] 本発明の実施の形態 1は、半導体基板を処理する場合に、半導体基板からの原子 溶出量が 15原子層 Z24時間換算以下となる水溶液を使用することにより、処理液 および処理方法を改良したものである。実施の形態 1では、半導体デバイス製造に、 これらの処理液、処理方法及びそれらを使用した半導体製造装置について説明する
[0041] 本発明は、現在半導体製造工程で使用されている各種処理液の特長を元にした 様々な処理シーケンスに適用可能である。処理工程である RCA洗浄法の例の一つを 図 1に示す。各種処理シーケンスにはリンス工程として水リンスによる処理が使用され ており、本発明はそれら水リンス工程の改良方法を提案するものである。したがって 特定の水リンスを使用する工程に適用を限定したものではなぐゲート酸ィ匕膜形成前 処理、コンタクトホール、ビアホール、キャパシタなどの洗浄にも適用が可能である。
[0042] ここでは、本発明を DRAM (Dynamic Random Access Memory)の製造等半導体デ バイス製造の初期工程として一般的に取り入れられている熱酸ィ匕処理、いわゆるゲ ート酸化膜形成の前処理として適用した例を使用して説明する。本工程は DRAM製 造に関わらず多種多様な LSI製造の工程として使用されている。
[0043] 図 2にゲート酸ィ匕膜形成工程の例と、図 3にゲート酸ィ匕膜形成工程の半導体基板 の処理段階の断面図を示す。 図 3の a)に示すシリコン単結晶からなる半導体基板 1 を用意する。半導体基板を洗浄の後(工程:図 2中の S— 1)、図 3の b)中のシリコン酸 化膜 2およびシリコン窒化膜 3を形成する。フォトリソグラフによりパターン形成後(ェ 程:図 2中の S— 2)、図 3の c)中のフィールド酸ィ匕膜 4を形成する(工程:図 2中の S— 3)。
[0044] その後、図 3中の d)に示すように、シリコン窒化膜 3をエッチングし、 HF系薬液を使 用して、シリコン酸ィ匕膜 2もエッチング(工程:図 2中の S— 4)し、ゲート領域にシリコン 基板表面を露出させる。その後、図 3の e)中に示すプレ酸ィ匕膜 5を形成し (工程:図 2 中の S— 5)、図 3の f)に示すように HF系薬液を用いて形成された酸ィ匕膜をエツチン グ(工程:図 2中の S— 6)する。その後、図 3中の g)に示すゲート酸化膜 6を形成する (工程:図 2中の S— 7)。
[0045] 本発明は、上記工程中の半導体基板の洗浄(図 2中の S— l)、フィールド酸ィ匕膜ェ ツチングによるゲート領域酸化膜のエッチング(図 2中の S—4)、プレ酸化膜のエッチ ング(図 2中の S— 6)等のリンス工程に使用できる。本発明をゲート酸ィ匕前の各工程 に使用することによって、半導体基板力もの原子溶出を抑制でき、形成されるゲート 酸化膜と半導体基板界面の表面ラフネスを抑制することができ、製造される半導体 デバイスの性能向上が可能となる。図に示すようにゲート酸ィ匕膜、シリコン基板界面 の平坦性の改善が、製造される半導体デバイスの性能を大きく向上させることは、公 知である。
実施の形態 2
[0046] 本発明実施の形態 2は、半導体基板を処理する場合に、アルコール類、ケトン類の 少なくとも 1種類以上を含む水溶液を使用して処理した後、半導体表面に付着したァ ルコール類、ケトン類を除去する工程を有することを特徴とするものである。実施の形 態 2では、半導体デバイス製造時に、アルコール類、ケトン類の少なくとも 1種類以上 を含む処理液での処理と、その後のアルコール類、ケトン類の除去工程が適用され る場合の処理方法および半導体製造装置の形態を説明する。
[0047] 使用されるアルコール類、およびケトン類として、メタノール、エタノール、 1 プロパ ノール、 2—プロパノール、 1ーブタノール、 2—ブタノール、 tert ブチルアルコール 、 1 ペンタノール、 2—ペンタノール、アセトン、ジェチルケトン、ェチルメチルケトン 等を例としてあげることができる。アルコール類、アセトン類として下記記載の条件を 満足するものであれば、例えば 1, 3 フルオロー 2 プロパノール、ジフルォロメチ ルケトンでもよい。
[0048] 処理液として下記のアルコール類、ケトン類が使用できる。アルコール類の構造とし ては、 R1R2C(0H)R3の構造を有する。ここで、 R1はハロゲン及びヒドロキシル基で 置換されてもょ 、直鎖および分岐を有する C1〜C4アルキル基を示す。 R2および R 3は R1と同一又は異なって、ハロゲン及びヒドロキシル基で置換されてもよい直鎖及 び分岐を有する C1〜C4アルキル基又は水素原子を示している。また、ケトン類は R4 C=OR5の構造を有し、 R4はハロゲン及びヒドロキシル基で置換されてもよ!、直鎖およ び分岐を有する C1〜C4アルキル基を示す。 R5は R4と同一又は異なって、ハロゲン 及びヒドロキシル基で置換されてもよい直鎖及び分岐を有する C1〜C4アルキル基 又は水素原子を示している。これらの分子構造で表されるうちの少なくとも 1種を含有 する水溶液が使用される。なお、使用する水としては、 18Μ Ω以上の比抵抗値をもつ V、わゆる超純水であることが好まし!/、。
[0049] また、アルコール類およびケトン類の構造が C1〜C7のアルキル基あるいはハロゲ ンまたはへテロ原子を含むアルキル基力 なる化合物のうち少なくとも 1種を含有す る水溶液とすることもできる。アルコール類としては、好ましくは例えばメチルアルコー ル、エチルアルコール、 1 プロパノール、 1ーブタノール、 2—ブタノール等である。 さらに好ましくは、 2—プロパノールである。また、ヒドロキシル基を 2個以上有する多 価アルコールであってもよい。上記ケトン類としては、好ましくは例えばェチルメチル ケトン、ジェチルケトン等であり、さらに好ましくはアセトンである。また、部分的にフッ 素等のハロゲン原子で置換されたものでもよい。また、使用するアルコール類、及び ケトン類は 1種類のものではなぐ 2種類以上を混合したものでもよい。例えば組み合 わせとしてアルコール類より 1種類、ケトン類より 1種類混合したものでもよ!/、。
[0050] また、本発明の処理液、処理方法および半導体製造装置に使用するアルコール類 、ケトン類の比誘電率が 82以下であり、好ましくは具体的に、メチルアルコール、ェチ ルアルコール、ジェチルケトン等であり、さらに好ましくは、 2—プロパノール、アセトン 等がある。
[0051] 本発明のアルコール類として、 2—プロパノールを使用することが好適であり、さらに アルコール類、ケトン類を混合してもよい。好ましくは具体的に、メチルアルコール、 エチルアルコール、ジェチルケトン、アセトン等がある。
[0052] 図 4に本発明を使用したゲート酸ィ匕膜形成工程の例と、図 5にゲート酸ィ匕膜形成ェ 程の半導体基板の処理段階の断面図を示す。図 5の a)に示すようにシリコン半導体 基板 1を用意する、この基板には既にフィールド酸ィ匕膜 4が選択的に形成された状態 となっている。その後、図 5の b)中に示すプレ酸ィ匕膜 5を形成し(工程:図 4中の S—1 1)、図 5の c)に示すように HF系薬液を用いて形成された酸ィ匕膜をエッチング(工程: 図 4中の S— 12)する。その後、図 5の d)に示すように、半導体基板のゲート領域に付 着したアルコール類およびケトン類(図 5の d)中の 7)を除去するために酸素ガス雰囲 気で加熱処理をする(工程:図 4中の S— 13)。その後、図 5の e)中に示すゲート酸ィ匕 膜 6を形成する(工程:図 4中の S— 14)。
[0053] 図 4中の S— 13における除去処理については、酸素ガス雰囲気中で加熱すること を例示したが、半導体表面の加熱のみでもよいが、好ましくは処理の雰囲気を酸素 ガスで充満させる。具体的に例えば、被処理半導体構造物を 450°Cに加熱する。加 熱する場合の半導体の温度および酸素ガス濃度は、限定されるものではなくこれ以 上であっても、以下であってもよい。さらに、プラズマを使用してアルコール類、ケトン 類の除去を行うのが好適である。プラズマを使用したアルコール類、ケトン類の除去 等について説明する。
[0054] プラズマ処理につ 、ては、プラズマの発生方法にっ 、て並行平板型等、特に制限 であり、電磁波でガス種を励起することにより基板表面に均一にプラズマを照射する ことができる。ここでプラズマは、上記ガス種を励起させるエネルギーがあればよぐ 具体的に好ましくはマイクロ波であることが好ましい。プラズマを使用し、被処理半導 体装置 (構造物)を加熱する場合、半導体装置の温度は 400°Cであることが好ま U、 1S その温度に限定されるものではない。
[0055] プラズマを使用した場合、プラズマを励起するためのガス種として、希ガス、好ましく は、キセノン、クリプトン、アルゴン等があげられる。ガス種については衝突断面積の 大きいガス種を使用することで半導体基板へのダメージを少なくすることができるため
、上記希ガスのうちキセノンが好適である。なお、上記ガスの 2つ以上を混合してもよ い。ガスの圧力等は適宜選択が可能であり限定されるものではない。
[0056] 上記アルコール類、ケトン類のプラズマを使用した除去方法にっ ヽては、被処理半 導体装置でプラズマの照射されない部分、具体的に例えばシリコン基板の裏面等が 挙げられ、それらの部分にシリコン酸ィ匕膜を予め成膜することによって覆うことが好ま しい。ここでの膜は酸ィ匕膜であればいかなるものでもよい。励起されたガスによるブラ ズマの及ばな!/ヽ半導体の一部分を半導体酸化層で覆われた構造とすることで、アル コール類、ケトン類の除去が促進されるため、さらに有機溶媒の付着量を抑制できる
[0057] したがって、アルコール類、ケトン類の除去によりゲート酸ィ匕膜、シリコン基板界面 の有機不純物が低減でき、製造される半導体デバイスの性能の劣化が抑制できる。 実施の形態 3
[0058] 実施の形態 3は、処理工程に使用した処理液を回収し、精製の後再使用することを 特徴とする処理方法であり、半導体製造工程にそれらのための機構を付随させた形 態について説明する。
[0059] 図 6に上記処理液回収、精製機構を有する処理工程の概略図を示す。図 6の 1乃 至 4に半導体製造工程の一部を抜粋して示す。本発明は、図 6中の 3で使用した処 理液を、図 6中の 6の精製工程へ回収する。そして回収の後、図 6中の 5のリンス液調 整工程で次なる工程に適当な組成に調製した後、再利用する。
[0060] 精製の目的は、不純物の除去であり、粒子状不純物に対しては、限外濾過、逆浸 透膜等が使用できる。金属不純物に対しては適当なイオン交換榭脂を採用すること 等で除去できる。回収元、再使用する工程に限定はなぐ一連の半導体製造工程の 複数のリンス工程等から回収およびそれらへの再使用が可能である。アルコール類、 ケトン類の精製には蒸留等が適当である。
[0061] したがって、本発明の処理方法、半導体製造装置により半導体の処理に使用する水 、アルコール類、ケトン類を低減することができる。 実施の形態 4
[0062] 本発明の実施の形態 4は、半導体処理工程の雰囲気の酸素ガス濃度を抑制するこ とを特徴とする処理方法、半導体製造装置であり、その実施の形態を説明する。
[0063] 半導体製造工程においては、基板の洗浄より半導体素子の完成までを、酸素ガス 濃度の抑制された雰囲気で行うことが好ましい。具体的には酸素ガス濃度が 20ppm 以下、さらに好ましくは 5ppm以下とし、その他の部分を占める主たるガス種を窒素と することが好ましい。また、主たるガス種が窒素と水素の混合物であってもよぐまた、 水素ガス濃度は 4%以下であれば、限定されるものではない。これら雰囲気ガスの制 御によって、半導体製造において半導体素子の性能劣化の原因となる自然酸ィ匕膜 の形成が抑制できる。上記雰囲気の実現について、半導体製造における思想を逸 脱するような適用方法以外は、特に限定することは無ぐ半導体製造装置にそれらガ ス種の導入口、流量制御機構を設置することで実現できる。
[0064] 半導体製造装置における半導体装置の製造方式としては、半導体製造における思 想を逸脱するような製造方式以外は、特に限定することは無ぐバッチ式、枚葉式等 処理方法に制限されるものではな 、。処理の均一性に優位性がある枚葉式処理が 可能な半導体製造装置とすることが好まし 、。
実施例 1
[0065] 以下、本発明の実施例について図面を参照し、詳細に説明する。実施例 1は、超 純水にイソプロパノールを 10乃至 60質量%添カ卩した溶液を処理液として行った実施 例である。本実施例 1では、アルコール、ケトン類としてはイソプロパノールを用いて いるが、上記した実施の形態に示された範囲内のアルコール、ケトン類から任意に選 択することができることは勿論である。処理に使用する半導体基板は、予め RCA洗浄 を施したものを使用した。洗浄後の半導体基板を 24時間、窒素雰囲気中で浸漬し、 その後半導体基板を取り出し、半導体原子の処理液への溶解量と表面ラフネスを測 し 7こ。
[0066] 半導体原子の処理液への溶解量を評価するため、誘導結合プラズマ発光分析法( ICP-AES)を使用した。溶解量を原子層 Z24hrの単位を使用して比較した。半導体 力 の原子溶出量の単位である原子層 Z24hrとは、計測値力も算出される溶出した 半導体原子数を計測に使用した半導体結晶の面積で除した数値が、単位面積当た りに存在する半導体原子数の何倍かであるかを示す数値である。
[0067] 表面ラフネスはセイコーインスツルメンッ社の原子間力顕微鏡を使用して評価した 。単位として平均線粗さ(Ra)を使用した。 Raは、断面曲線力 その中心線の方向に 測定長さ 1の部分を抜き取り、この抜き取り部分の中心線を X軸、縦倍率の方向を Y軸 、断面曲線^ y = f (X)で表したとき、次の式によって求められる値をいい、下記数式 1 によって計算される。
[0068] [数 1]
Figure imgf000016_0001
[0069] 処理に使用する半導体基板は、予め洗浄を施したものを使用した。洗浄後の半導 体基板を 24時間、窒素雰囲気中で浸潰し、その後半導体基板を取り出し、半導体原 子の溶解量調査は、誘導結合プラズマ発光分析法 (ICP-AES)を使用し、分析結果 より溶解量を原子層 Z24hrの単位を使用して比較した。表面ラフネスはセイコーイン スツルメンッ社の原子間力顕微鏡を使用して評価し、観察結果より Raを算出した。
[0070] アルコール類を添加した超純水を使用した処理と、比較例 1として超純水のみによ る処理を行った。処理後の処理液への半導体原子の溶解量について図 7に、表面ラ フネス測定結果について図 8に示す。各図のアルコール濃度 0質量%が比較例 1の 結果に相当する。これらの図からアルコール類、ケトン類を 5質量%以上とすることで 効果が得られ、好ましくは 10質量%以上、さらに好ましくは 30質量%である。このとき 、原子溶出量として 15原子量 Z24時間以下、表面ラフネスとして半導体平均線粗さ (Ra)として 0. 15應以下が得られる。また半導体平均線粗さ (Ra)としては、好ましく は 0. lnm以下であり、さらに好ましくは 0. 07nm以下である。
[0071] また被処理構造物として、半導体単結晶、具体的に例えば半導体材料としてシリコ ンがあげられる。シリコンにおける結晶依存性として、面方位(100)、 (110)を例示し ている。これらはほぼ同様の結果であり、それら処理される単結晶の面方位に制限は なぐ例えば(100)、 (111)、 (110)等である。なお、それらの面方位に対して適宜 オフさせた面にも適用できる。また、半導体多結晶、具体的に例えば半導体多結晶と してポリシリコンに適用できる。さらに、アモルファス半導体や、半導体化合物にも適 用でき、具体的に半導体ィ匕合物としては例えば、ガリウム砒素等である。
[0072] 本実施例において、図 7に示すようにアルコール類を添カ卩した薬液による処理によ り、処理液への半導体原子の溶解量が抑制できることがわ力つた。また図 8によると、 本発明に基づく処理により、表面ラフネスの小さい表面が得られることがわかる。本発 明の処理液、処理方法および半導体製造装置によって形成される半導体表面は、 処理液への半導体原子の溶解量が抑制され、表面ラフネスを小さくできる。
実施例 2
[0073] 実施例 2は、超純水に 2—プロパノールを 30質量%添カ卩した溶液を処理液とし、さ らにアルコール除去工程を行った実施例である。この実施例 2は、アルコール、ケトン 類としては 2—プロノ V—ルを用いた例である。処理に使用する半導体基板は、予め RCA洗浄を施したものを使用した。洗浄後の半導体基板を上記洗浄液に 10分間浸 漬し、その後、キセノンガスによりプラズマを発生させた条件下で当基板を処理し、付 着したアルコール除去した。処理後の評価は昇温脱離分析により行い、脱離物の分 祈には、大気圧イオン化質量分析法を使用して行った。
[0074] 比較例 2として超純水に 2—プロパノールを 30質量%添加した溶液を処理液として 行った。処理に使用する半導体基板は、予め RCA洗浄を施したものを使用した。洗 浄後の半導体基板を上記洗浄液に 10分間浸漬した。処理後の評価は昇温脱離分 祈により行い、脱離物の分析には、大気圧イオン化質量分析法を使用して行った。 比較例 2は実施例 2におけるアルコール除去工程であるプラズマ処理を行わないサ ンプルである。
[0075] 上記、実施例 2、比較例 2の結果を図 9に示す。図は縦軸に上記質量分析器の相 対強度、横軸に基板温度をとるものである。 2—プロパノールの検出には、質量分析 におけるマスナンバー 43を、当アルコール起因のシグナルとして認められることが分 力つているため、図 9にマスナンバー 43のシグナルの強度を示した。図 9によると比 較例 2のプラズマ処理を施していない例の場合には 250°Cから 500°Cにかけて 2— プロパノールに起因するシグナルがあらわれていることに対し、実施例 2のプラズマ 処理を施した例については、それらシグナルは認められない、したがって本発明によ るプラズマを使用した処理によって付着したアルコール類が除去できる。 実施例 3
[0076] 実施例 3は、超純水に 2—プロパノールを 30質量%添カ卩した溶液を処理液とし、純 度の異なるものを使用して行った実施例である。処理に使用する半導体基板は、予 め洗浄を施したものを使用した。洗浄後の半導体基板を 24時間、窒素雰囲気中で 浸漬し、その後半導体基板を取り出し、半導体原子の処理液への溶解量と表面ラフ ネスを測定した。
[0077] 半導体原子の処理液への溶解量を評価するため、誘導結合プラズマ発光分析法( ICP-AES)を使用した。溶解量を原子層 Z24hrの単位を使用して比較した。半導体 力 の原子溶出量の単位である原子層 Z24hrとは、計測値力も算出される溶出した 半導体原子数を計測に使用した半導体結晶の面積で除した数値が、単位面積当た りに存在する半導体原子数の何倍かであるかを示す数値である。
[0078] 図 10に 2—プロパノールの純度と半導体原子溶出量との関係を示す。図 10に示す とおり 99質量%以上の純度で溶解量の抑制効果がみられる力 純度の低下により溶 出量が増加した。不純物による触媒効果などが考えられ、使用するアルコールの純 度を高純度にすることで本発明における半導体原子溶出量の少ない処理が可能と なる。従って、アルコール類およびケトン類の純度は 99質量%以上であり、好ましく は 99. 9質量%以上である。金属不純物の総量は 0. lppm以下であることが望ましく 、さらに好ましくは lppb以下である。
実施例 4
[0079] 実施例 4は、超純水に 2—プロパノールを 30質量%添カ卩した溶液を処理液とし、処 理雰囲気ガスを通常の大気雰囲気と窒素ガスを充満させ酸素ガス濃度を 5ppm以下 に制御して行った実施例である。処理に使用する半導体基板は、予め洗浄を施した ものを使用した。洗浄後の半導体基板を 24時間、窒素雰囲気中で浸潰し、その後半 導体基板を取り出し、半導体原子の処理液への溶解量を測定した。
[0080] 半導体原子の処理液への溶解量を評価するため、誘導結合プラズマ発光分析法( ICP-AES)を使用した。溶解量を原子層 Z24hrの単位を使用して比較した。半導体 力 の原子溶出量の単位である原子層 Z24hrとは、計測値力も算出される溶出した 半導体原子数を計測に使用した半導体結晶の面積で除した数値が、単位面積当た りに存在する半導体原子数の何倍かであるかを示す数値である。
[0081] 表 1に処理雰囲気の種別と半導体原子溶出量との関係を示す。
[0082] [表 1]
Figure imgf000019_0001
[0083] 表 1からもわ力るように処理雰囲気の酸素ガス濃度の低減によって、さらに溶出する 原子数を少なくすることができる。アルコール類、ケトン類のうち少なくとも 1種類以上 を含む水溶液の処理を、窒素ガス等で満たした環境で処理することによる、溶出原 子数の低減が可能となり、ひいては半導体性能の向上につながるものである。
[0084] 本願の処理液としてはアルコール類、ケトン類を含んだ水溶液としたが塩ィ匕水素酸 、硝酸、硫酸、酢酸、フッ化水素酸、フッ化アンモニゥムのうち少なくとも一つ以上を 含有する処理液として使用することもできる。さらに、処理液に使用する水に、窒素、 水素、酸素、オゾンのうち 1種類以上を溶解させることもできる。例えば、水素ガス溶 存量 lppb等を溶解させたものである。
[0085] 以上、本願発明を実施の形態及び実施例に基づき説明したが、本願発明は前記 実施例に限定されるものではなぐその要旨を逸脱しない範囲で種々変更可能であ ることはいうまでもない。
産業上の利用可能性
[0086] 本発明に係る処理液、処理方法および半導体製造装置によれば、半導体表面から の溶出原子数を低減し、半導体表面のラフネスを 0. lnm以下とする清浄かつ平坦 な表面を有する半導体装置が得られる。現在は顕在化していない半導体表面のラフ ネスによる半導体装置の問題点も、今後のデバイスの微細化に伴って顕在化するこ とが予想される。今後、さらなるデバイスの微細化が進展した半導体装置の製造にお いて、高信頼性、高性能化の半導体装置の実現のために利用できる。

Claims

請求の範囲
[1] 半導体からの原子溶出量が 15原子層 Z24時間換算以下となる水溶液を使用する ことを特徴とする処理液。
[2] アルコール類、またはケトン類のうち少なくとも 1種類を含む水溶液であることを特徴 とする処理液。
[3] 前記アルコール類の構造が R1R2C(0H)R3 (Rlはハロゲン及びヒドロキシル基で置 換されてもょ 、直鎖および分岐を有する C1〜C4アルキル基を示す。 R2および R3 は R1と同一又は異なって、ハロゲン及びヒドロキシル基で置換されてもよい直鎖及び 分岐を有する C1〜C4アルキル基又は水素原子を示す。)、または前記ケトン類の構 造が R4C=OR5 (R4はハロゲン及びヒドロキシル基で置換されてもよ!、直鎖および分 岐を有する C1〜C4アルキル基を示す。 R5は R4と同一又は異なって、ハロゲン及び ヒドロキシル基で置換されてもよい直鎖及び分岐を有する C1〜C4アルキル基又は 水素原子を示す。 )で表されるうちの少なくとも 1種を含有する水溶液であることを特 徴とする請求項 2に記載の処理液。
[4] 前記アルコール類およびケトン類の構造が C1〜C7のアルキル基あるいはハロゲン またはへテロ原子を含むアルキル基力 なる化合物のうち少なくとも 1種を含有する 水溶液であることを特徴とする請求項 2に記載の処理液。
[5] 前記アルコール類およびケトン類の比誘電率が 82以下である化合物のうち少なくと も 1種を含有する水溶液であることを特徴とする請求項 2に記載の処理液。
[6] 前記アルコール類のうち、 1種類が 2—プロパノールであることを特徴とする請求項 2 に記載の処理液。
[7] 前記アルコール類およびケトン類の純度が 99質量%以上であり、含有する金属不 純物総量が 0. lppm以下であることを特徴とする請求項 2に記載の処理液。
[8] 前記アルコール類およびケトン類の純度が 99質量%以上であり、含有する金属不 純物総量が 0. lppm以下であることを特徴とする請求項 3に記載の処理液。
[9] 前記アルコール類およびケトン類の純度が 99質量%以上であり、含有する金属不 純物総量が 0. lppm以下であることを特徴とする請求項 4に記載の処理液。
[10] 前記アルコール類およびケトン類の濃度が 5質量%以上であることを特徴とする請 求項 2に記載の処理液。
[11] 前記アルコール類およびケトン類の濃度が 5質量%以上であることを特徴とする請 求項 3に記載の処理液。
[12] 前記アルコール類およびケトン類の濃度が 5質量%以上であることを特徴とする請 求項 4に記載の処理液。
[13] 塩化水素酸、硝酸、硫酸、酢酸、フッ化水素酸、フッ化アンモニゥムのうち少なくとも 一つ以上を含有することを特徴とする請求項 2に記載の処理液。
[14] 塩化水素酸、硝酸、硫酸、酢酸、フッ化水素酸、フッ化アンモニゥムのうち少なくとも 一つ以上を含有することを特徴とする請求項 3に記載の処理液。
[15] 塩化水素酸、硝酸、硫酸、酢酸、フッ化水素酸、フッ化アンモニゥムのうち少なくとも 一つ以上を含有することを特徴とする請求項 4に記載の処理液。
[16] 処理液に使用する水に、窒素、水素、酸素、オゾンのうち 1種類以上を溶解させたこ とを特徴とする請求項 2に記載の処理液。
[17] 処理液に使用する水に、窒素、水素、酸素、オゾンのうち 1種類以上を溶解させたこ とを特徴とする請求項 3に記載の処理液。
[18] 処理液に使用する水に、窒素、水素、酸素、オゾンのうち 1種類以上を溶解させたこ とを特徴とする請求項 4に記載の処理液。
[19] 請求項 1乃至請求項 18のいずれかに記載の処理液を使って、被処理構造物を処 理することを特徴とする処理方法。
[20] 前記処理方法によって形成される半導体表面の平均線粗さ(Ra)が O.lnm以下であ ることを特徴とする請求項 19に記載の処理方法。
[21] 前記被処理構造物として、半導体単結晶またはそれらをオフした面を使用すること を特徴とする請求項 19に記載の処理方法。
[22] 前記被処理構造物となる半導体単結晶として、シリコン半導体を使用することを特 徴とする請求項 19に記載の処理方法。
[23] 前記被処理構造物として、半導体多結晶を使用することを特徴とする請求項 19に 記載の処理方法。
[24] 前記被処理構造物として、アモルファス半導体を使用することを特徴とする請求項 19に記載の処理方法。
[25] 前記被処理構造物として、化合物半導体を使用することを特徴とする請求項 19〖こ 記載の処理方法。
[26] 前記被処理構造物に付着したアルコール類およびケトン類を除去する除去工程を さらに有することを特徴とする請求項 19に記載の処理方法。
[27] 前記除去工程は、熱及び酸素ガスを使用することにより付着したアルコール類およ びケトン類を除去することを特徴とする請求項 26に記載の処理方法。
[28] 前記除去工程は、励起ガス種によりプラズマを発生させることにより付着したアルコ ール類およびケトン類を除去することを特徴とする請求項 26に記載の処理方法。
[29] 前記プラズマを発生させるために励起されるガス種がアルゴン ·クリプトン ·キセノン のうちの少なくとも 1つであることを特徴とする請求項 28に記載の処理方法。
[30] 前記プラズマはガス種を電磁波で励起し発生したもの使用することにより付着した アルコール類およびケトン類を除去することを特徴とする請求項 28に記載の処理方 法。
[31] 前記除去工程において、処理される半導体装置は、プラズマに励起されたィヒ学種 にさらされない部分を半導体酸化層で覆われた構造とすることを特徴とする請求項 2 8に記載の処理方法。
[32] 前記除去工程は、被処理構造物を加熱することにより付着したアルコール類および ケトン類を除去することを特徴とする請求項 26に記載の処理方法。
[33] 請求項 1乃至請求項 18のいずれかに記載の処理液を使って、半導体装置を処理 し、これらの処理工程に使用した処理液を回収し、精製の後再使用することを特徴と する処理方法。
[34] 請求項 1乃至請求項 18のいずれかに記載の処理液を使って、半導体装置を処理 する処理工程の雰囲気の酸素ガス濃度を抑制することを特徴とする処理方法。
[35] 前記酸素ガス濃度を抑制する主たるガス種が窒素であることを特徴とする請求項 3 4に記載の処理方法。
[36] 前記酸素ガス濃度を抑制する主たるガス種が窒素と水素の混合物であることを特 徴とする請求項 34に記載の処理方法。
[37] 半導体力もの原子溶出量が 15原子層 Z24時間換算以下となる水溶液により半導 体装置を処理することを特徴とする半導体製造装置。
[38] アルコール類、またはケトン類のうち少なくとも 1種類を含む水溶液により半導体装 置を処理することを特徴とする半導体製造装置。
[39] 前記アルコール類の構造が R1R2C(0H)R3 (Rlはハロゲン及びヒドロキシル基で置 換されてもょ 、直鎖および分岐を有する C1〜C4アルキル基を示す。 R2および R3 は R1と同一又は異なって、ハロゲン及びヒドロキシル基で置換されてもよい直鎖及び 分岐を有する C1〜C4アルキル基又は水素原子を示す。)、または前記ケトン類の構 造が R4C=OR5 (R4はハロゲン及びヒドロキシル基で置換されてもよ!、直鎖および分 岐を有する C1〜C4アルキル基を示す。 R5は R4と同一又は異なって、ハロゲン及び ヒドロキシル基で置換されてもよい直鎖及び分岐を有する C1〜C4アルキル基又は 水素原子を示す。 )で表されるうちの少なくとも 1種を含有する水溶液であることを特 徴とする請求項 38に記載の半導体製造装置。
[40] 前記アルコール類およびケトン類の構造が C1〜C7のアルキル基あるいはハロゲン またはへテロ原子を含むアルキル基力 なる化合物のうち少なくとも 1種を含有する 水溶液であることを特徴とする請求項 38に記載の半導体製造装置。
[41] 前記アルコール類、およびケトン類の比誘電率が 82以下である化合物のうち少なく とも 1種を含有する水溶液であることを特徴とする請求項 38に記載の半導体製造装 置。
[42] 前記アルコール類のうち、 1種類が 2-プロパノールであることを特徴とする請求項 3
8に記載の半導体製造装置。
[43] 前記アルコール類およびケトン類の純度が 99質量%以上であり、含有する金属不 純物総量が 0. lppm以下であることを特徴とする請求項 38に記載の半導体製造装 置。
[44] 前記アルコール類およびケトン類の濃度が 5質量%以上であることを特徴とする請 求項 38に記載の半導体製造装置。
[45] 前記半導体装置として、半導体単結晶またはそれらをオフした面を使用することを 特徴とする請求項 38乃至請求項 44のいずれかに記載の半導体製造装置。
[46] 前記半導体装置として、シリコン半導体を使用することを特徴とする請求項 38乃至 請求項 44の ヽずれかに記載の半導体製造装置。
[47] 前記半導体装置として、半導体多結晶を使用することを特徴とする請求項 38乃至 請求項 44の ヽずれかに記載の半導体製造装置。
[48] 前記半導体装置として、アモルファス半導体を使用することを特徴とする請求項 38 乃至請求項 44の ヽずれかに記載の半導体製造装置。
[49] 前記半導体装置として、化合物半導体を使用することを特徴とする請求項 38乃至 請求項 44の ヽずれかに記載の半導体製造装置。
[50] 塩化水素酸、硝酸、硫酸、酢酸、フッ化水素酸、フッ化アンモニゥムのうち少なくとも 一つ以上を含有することを特徴とする請求項 38乃至請求項 44のいずれかに記載の 半導体製造装置。
[51] 処理液に使用する水に、窒素、水素、酸素、オゾンのうち 1種類以上を溶解させたこ とを特徴とする請求項 38乃至請求項 44のいずれかに記載の半導体製造装置。
[52] 付着したアルコール類およびケトン類を除去することを特徴とする請求項 38乃至請 求項 44の ヽずれかに記載の半導体製造装置。
[53] 熱及び酸素ガスを使用することにより付着したアルコール類およびケトン類を除去 することを特徴とする請求項 52に記載の半導体製造装置。
[54] 励起ガス種によりプラズマを発生させることにより付着したアルコール類およびケト ン類を除去することを特徴とする請求項 52に記載の半導体製造装置。
[55] 前記プラズマを発生させるために励起されるガス種がアルゴン ·クリプトン ·キセノン のうちの少なくとも 1つであることを特徴とする請求項 54に記載の半導体製造装置。
[56] 前記プラズマはガス種を電磁波で励起し発生したもの使用することにより付着した アルコール類およびケトン類を除去することを特徴とする請求項 54に記載の半導体 製造装置。
[57] 付着したアルコール類およびケトン類を除去するために、前記半導体装置を加熱 することを特徴とする請求項 53に記載の半導体製造装置。
[58] 前記半導体装置において、プラズマに励起された化学種にさらされない部分を半 導体酸化層で覆われた構造とすることを特徴とする請求項 54に記載の半導体製造 装置。
[59] 半導体処理工程に使用した処理液を回収し、精製の後再使用することを特徴とす る請求項 38乃至請求項 44のいずれかに記載の半導体製造装置。
[60] 半導体処理工程の雰囲気の酸素ガス濃度を抑制することを特徴とする請求項 38 乃至請求項 44の ヽずれかに記載の半導体製造装置。
[61] 半導体処理工程の雰囲気の酸素ガス濃度を抑制するための主たるガス種として、 窒素を使用することを特徴とする請求項 60に記載の半導体製造装置。
[62] 半導体処理工程の雰囲気の酸素ガス濃度を抑制するための主たるガス種として、 窒素と水素の混合物を使用することを特徴とする請求項 60に記載の半導体製造装 置。
PCT/JP2005/012784 2004-07-16 2005-07-11 半導体装置の処理液、処理方法および半導体製造装置 WO2006009003A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05757755A EP1780778A4 (en) 2004-07-16 2005-07-11 DEVELOPER FLUID FOR A SEMICONDUCTOR COMPONENT, DEVELOPMENT METHOD AND DEVICE FOR PRODUCING SEMICONDUCTORS
US11/631,671 US20070227567A1 (en) 2004-07-16 2005-07-11 Processing Liquid and Processing Method for Semiconductor Device, and Semiconductor Manufacturing Apparatus
CN2005800219709A CN1981368B (zh) 2004-07-16 2005-07-11 半导体装置的处理液及处理方法
JP2006529042A JPWO2006009003A1 (ja) 2004-07-16 2005-07-11 半導体装置の処理液、処理方法および半導体製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-210807 2004-07-16
JP2004210807 2004-07-16

Publications (1)

Publication Number Publication Date
WO2006009003A1 true WO2006009003A1 (ja) 2006-01-26

Family

ID=35785119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012784 WO2006009003A1 (ja) 2004-07-16 2005-07-11 半導体装置の処理液、処理方法および半導体製造装置

Country Status (7)

Country Link
US (1) US20070227567A1 (ja)
EP (1) EP1780778A4 (ja)
JP (1) JPWO2006009003A1 (ja)
KR (1) KR100882167B1 (ja)
CN (1) CN1981368B (ja)
TW (1) TWI322467B (ja)
WO (1) WO2006009003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128392A1 (ja) 2008-04-17 2009-10-22 国立大学法人東北大学 半導体装置の製造方法および半導体基板の洗浄方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326387B2 (ja) * 2015-03-19 2018-05-16 東京エレクトロン株式会社 基板液処理装置及び基板液処理方法並びに基板液処理プログラムを記憶したコンピュータ読み取り可能な記憶媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116809A (ja) * 1996-10-11 1998-05-06 Tadahiro Omi 洗浄方法及び洗浄システム
JP2000237705A (ja) * 1999-02-23 2000-09-05 Ebara Corp 基板洗浄方法及び装置
JP2002282807A (ja) * 2001-03-28 2002-10-02 Toray Ind Inc 基板の洗浄方法および洗浄装置
JP2003115479A (ja) * 2001-10-03 2003-04-18 Toshiba Corp 半導体装置の製造方法およびウエット処理装置
JP2003174006A (ja) * 2001-12-04 2003-06-20 Ebara Corp 基板処理装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187109B2 (ja) * 1992-01-31 2001-07-11 キヤノン株式会社 半導体部材およびその製造方法
JP3690619B2 (ja) * 1996-01-12 2005-08-31 忠弘 大見 洗浄方法及び洗浄装置
KR0182416B1 (ko) * 1996-08-26 1999-04-15 구자홍 유리기판 에칭용 에천트
US6514875B1 (en) * 1997-04-28 2003-02-04 The Regents Of The University Of California Chemical method for producing smooth surfaces on silicon wafers
JP4001662B2 (ja) * 1997-06-27 2007-10-31 株式会社半導体エネルギー研究所 シリコンの洗浄方法および多結晶シリコンの作製方法
JP3036478B2 (ja) * 1997-08-08 2000-04-24 日本電気株式会社 ウェハの洗浄及び乾燥方法
JPH11323394A (ja) * 1998-05-14 1999-11-26 Texas Instr Japan Ltd 半導体素子製造用洗浄剤及びそれを用いた半導体素子の製造方法
US6117796A (en) * 1998-08-13 2000-09-12 International Business Machines Corporation Removal of silicon oxide
US6177334B1 (en) * 1998-12-01 2001-01-23 United Microelectronics Corp. Manufacturing method capable of preventing corrosion of metal oxide semiconductor
US6831048B2 (en) * 2000-04-26 2004-12-14 Daikin Industries, Ltd. Detergent composition
JP2002016034A (ja) * 2000-06-30 2002-01-18 Mitsubishi Electric Corp 半導体装置の製造方法、及び半導体装置
US7479205B2 (en) * 2000-09-22 2009-01-20 Dainippon Screen Mfg. Co., Ltd. Substrate processing apparatus
EP1389496A1 (en) * 2001-05-22 2004-02-18 Mitsubishi Chemical Corporation Method for cleaning surface of substrate
JP4349606B2 (ja) * 2002-03-25 2009-10-21 大日本スクリーン製造株式会社 基板洗浄方法
AU2003262236A1 (en) * 2002-08-23 2004-03-11 Jsr Corporation Composition for forming silicon film and method for forming silicon film
CN1178282C (zh) * 2002-10-18 2004-12-01 中国科学院微电子中心 一种氮化氧化膜的制备方法
US20050006310A1 (en) * 2003-07-10 2005-01-13 Rajat Agrawal Purification and recovery of fluids in processing applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116809A (ja) * 1996-10-11 1998-05-06 Tadahiro Omi 洗浄方法及び洗浄システム
JP2000237705A (ja) * 1999-02-23 2000-09-05 Ebara Corp 基板洗浄方法及び装置
JP2002282807A (ja) * 2001-03-28 2002-10-02 Toray Ind Inc 基板の洗浄方法および洗浄装置
JP2003115479A (ja) * 2001-10-03 2003-04-18 Toshiba Corp 半導体装置の製造方法およびウエット処理装置
JP2003174006A (ja) * 2001-12-04 2003-06-20 Ebara Corp 基板処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128392A1 (ja) 2008-04-17 2009-10-22 国立大学法人東北大学 半導体装置の製造方法および半導体基板の洗浄方法
KR20110000581A (ko) 2008-04-17 2011-01-03 고쿠리츠 다이가쿠 호진 도호쿠 다이가쿠 반도체 장치의 제조 방법 및 반도체 기판의 세정 방법
US7994063B2 (en) 2008-04-17 2011-08-09 National University Corporation Tohoku University Method for manufacturing semiconductor device and method for cleaning semiconductor substrate

Also Published As

Publication number Publication date
KR20070013360A (ko) 2007-01-30
EP1780778A4 (en) 2009-06-03
CN1981368B (zh) 2011-08-17
JPWO2006009003A1 (ja) 2008-05-01
TWI322467B (en) 2010-03-21
US20070227567A1 (en) 2007-10-04
CN1981368A (zh) 2007-06-13
EP1780778A1 (en) 2007-05-02
TW200610047A (en) 2006-03-16
KR100882167B1 (ko) 2009-02-06

Similar Documents

Publication Publication Date Title
CN106796878B (zh) 抑制了包含钨的材料的损伤的半导体元件的清洗液、及使用其的半导体元件的清洗方法
CN106601598B (zh) 半导体元件的清洗用液体组合物、半导体元件的清洗方法及半导体元件的制造方法
JP2001319918A (ja) 基板表面の処理方法、半導体素子向け基板表面の処理方法
US7816313B2 (en) Photoresist residue remover composition and semiconductor circuit element production process employing the same
WO2008050785A1 (fr) Composition liquide pour éliminer un résidu de photorésine et un résidu de polymère
KR100685735B1 (ko) 폴리실리콘 제거용 조성물, 이를 이용한 폴리실리콘 제거방법 및 반도체 장치의 제조 방법
JP5037442B2 (ja) 窒化チタン除去液、窒化チタン被膜の除去方法、及び窒化チタン除去液の製造方法
CN107078043B (zh) 抑制了包含钽的材料的损伤的半导体元件的清洗液、及使用其的清洗方法
JP2006011297A (ja) フォトレジスト残渣及びポリマー残渣除去組成物
CN110233101B (zh) 半导体工艺用组合物及半导体工艺
CN111225965B (zh) 蚀刻组合物
JP2003280219A (ja) フォトレジスト残渣除去液組成物
JP2003098691A (ja) レジスト除去用組成物及びこれを利用したレジスト除去方法
JP3679216B2 (ja) 半導体基板の洗浄液及びこれを使用する洗浄方法
EP2284873B1 (en) Method for manufacturing semiconductor device and method for cleaning semiconductor substrate
WO2006009003A1 (ja) 半導体装置の処理液、処理方法および半導体製造装置
CN106952803B (zh) 半导体元件的清洗用液体组合物及半导体元件的清洗方法、以及半导体元件的制造方法
JP3820545B2 (ja) レジスト剥離用組成物及びそれを用いた半導体装置の製造方法
JP4758187B2 (ja) フォトレジスト残渣及びポリマー残渣除去液
EP3850123B1 (en) Etching compositions
JP2002217414A (ja) 半導体装置およびその製造方法
CN101853807B (zh) 用于导线间电介质材料除去的方法
JP3834004B2 (ja) エッチング後処理方法
JP2002289612A (ja) 半導体基板表面の酸化膜の形成方法及び半導体装置の製造方法
JP2007208010A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006529042

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580021970.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11631671

Country of ref document: US

Ref document number: 2007227567

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077000401

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005757755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005757755

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020077000401

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005757755

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11631671

Country of ref document: US