WO2006006587A1 - ガス検知方法およびガスセンサ - Google Patents

ガス検知方法およびガスセンサ Download PDF

Info

Publication number
WO2006006587A1
WO2006006587A1 PCT/JP2005/012817 JP2005012817W WO2006006587A1 WO 2006006587 A1 WO2006006587 A1 WO 2006006587A1 JP 2005012817 W JP2005012817 W JP 2005012817W WO 2006006587 A1 WO2006006587 A1 WO 2006006587A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
electrode
detected
electrical characteristics
acoustic wave
Prior art date
Application number
PCT/JP2005/012817
Other languages
English (en)
French (fr)
Inventor
Kazunari Shinbo
Futao Kaneko
Keizo Kato
Yasuo Ohdaira
Takahiro Kawakami
Masahiro Minagawa
Original Assignee
Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University filed Critical Niigata University
Priority to JP2006529055A priority Critical patent/JP4164580B2/ja
Priority to US11/632,243 priority patent/US20080022755A1/en
Publication of WO2006006587A1 publication Critical patent/WO2006006587A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1704Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1708Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids with piezotransducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02863Electric or magnetic parameters

Definitions

  • the present invention relates to a gas detection method and a gas sensor using a crystal resonator.
  • Patent Document 1 As a conventional gas sensor, as disclosed in Patent Document 1, a change in resistivity of a gas-sensitive thin film (comprised of an oxide in Patent Document 1) accompanying the adsorption of a gas to be measured, generation of an electromotive force, Gas sensors that use changes in electrical characteristics such as capacitance are known.
  • a sensor that can detect a small amount of NO gas by using a decrease in the oscillation frequency of the crystal resonator or a decrease in the resistivity of the gas sensitive film is also known.
  • a trace amount of hydrogen gas can be detected by utilizing the light absorption change of the gas sensitive film according to the hydrogen gas adsorbed on the gas sensitive film. Sensors that can do this are also known.
  • Patent Document 4 also proposes a method for producing an element for measuring electrical characteristics on a mass measuring element.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-101763
  • Patent Document 2 JP-A-7-43285
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-329592
  • Patent Document 4 Japanese Patent Publication No. 11-507729
  • Non-patent document 1 “Colloids and Surfaces A: Physicochemical and Engineering Aspects”, (Ohnda), Elsevier Science BV, 2002, No. 198— No. 200, p. 905-909
  • Non-Patent Document 2 “Sensors and Actuators B”, (Netherlands), Elsevier Science BV, 2002, No. 67, p. 312-316
  • Non-Patent Document 3 “Analysis Analytical Chemistry, (USA), American Chemical Society, September 15, 2001, No. 73, No. 18, p. 4441-4449 Disclosure of the Invention
  • Patent Document 1 has a problem in that it is impossible to directly know how much the substance to be detected is adsorbed on the element and causes a change in electrical characteristics.
  • the conventional gas sensor disclosed in Patent Document 2 detects a very small amount of gas adsorbed on the gas-sensitive thin film by utilizing the so-called QCM (Quartz Crystal Microbalance) of the crystal resonator.
  • QCM Quadrat Crystal Microbalance
  • the conventional gas sensor disclosed in Patent Document 3 has a problem that it is impossible to directly know how much the detection target substance is adsorbed on the element and causes a change in light absorption characteristics. It was.
  • the present invention uses a quartz crystal resonator or a surface acoustic wave device to accurately determine the amount of change in the adsorption mass of the gas to be detected and the amount of change in the electrical characteristics or the optical and electrical characteristics associated therewith.
  • An object of the present invention is to provide a gas detection method and a gas sensor that can be detected at the same time.
  • a gas-sensitive film whose electrical characteristics change according to the amount of adsorption of the gas to be detected on the crystal resonator or the surface acoustic wave element, and the electrical characteristics are detected.
  • a gas adsorbing portion formed by laminating a characteristic detection electrode is disposed, and one of the characteristic detection electrodes located in the uppermost layer is configured to allow the gas to be detected to pass therethrough.
  • the adsorption mass is detected by the electrical characteristics between the electrodes and the crystal resonator or the surface elastic wave element.
  • both the electric characteristics of the gas sensitive film and the detected adsorption mass of the crystal resonator or the surface acoustic wave device change as the gas sensitive film adsorbs the gas to be detected.
  • By observing the electrical characteristics between the characteristic detection electrodes and the adsorbed mass by using it is possible to easily detect and identify the gas to be detected.
  • the structure is simplified and steps such as etching are not required. Therefore, it can be manufactured at low cost.
  • by configuring one of the characteristic detection electrodes located in the uppermost layer so that the gas to be detected can pass through it is possible to secure a contact area between the gas sensitive film and the gas to be detected. Even if the electrode is covered with the characteristic detection electrode, the gas to be detected can be detected well.
  • an insulating film that insulates the crystal oscillation electrode and the characteristic detection electrode is provided between the crystal resonator and the gas adsorbing portion.
  • a source electrode, a drain electrode, and a gas-sensitive film formed of a semiconductor material whose electric characteristics change according to the amount of gas to be detected on the crystal resonator or the surface acoustic wave element.
  • a semiconductor element comprising a gate electrode and a gate insulating film that insulates the gate electrode from the source electrode and the drain electrode, and applying a voltage to the gate electrode while applying electrical characteristics between the source and drain.
  • the adsorption mass is detected by the crystal resonator or the surface acoustic wave element.
  • a gas-sensitive film whose electric characteristics change according to the amount of gas to be detected on the quartz resonator or the surface acoustic wave device, and a piezoelectric body of the quartz resonator or the surface acoustic wave device.
  • a gas adsorbing portion composed of a characteristic detecting electrode that abuts and detects the electric characteristic is arranged, and an adsorbing mass is detected by the electric characteristic between the characteristic detecting electrodes and the crystal resonator or the surface acoustic wave element.
  • the characteristic detection electrode is provided so as to come into contact with the piezoelectric body, so that the characteristic detection electrode and one of the crystal oscillation electrodes are located in the same layer and can be thinned.
  • the electrical characteristics of the gas sensitive film can be measured using the characteristic detection electrode. Furthermore, if the gas-sensitive thin film is deformed by gas adsorption, the electromotive force generated by applying stress to the piezoelectric body due to the shape change can be measured.
  • a gas sensitive film whose photoelectric characteristics change according to the amount of adsorption of the gas to be detected, and a characteristic detection electrode for detecting the electrical characteristics are arranged.
  • light absorption / reflection / fluorescence characteristics of the gas-sensitive film, electrical characteristics between the characteristic detection electrodes, and a detected adsorption mass of the crystal resonator or the surface acoustic wave element are observed.
  • the gas-sensitive film adsorbs the gas to be detected, so that the optical and electrical characteristics of the gas-sensitive film and the detected adsorption mass of the crystal resonator or the surface acoustic wave device are as follows. By observing the optical and electrical characteristics between the characteristic detection electrodes and the adsorbed mass by utilizing both of them, it is possible to easily detect and identify the gas to be detected.
  • a gas detection method and a gas sensor according to the present invention includes a gas sensitive film having a characteristic detection electrode on a crystal resonator or a surface acoustic wave device, and the substance is formed by the crystal resonator or the surface acoustic wave device.
  • the amount of adsorption can be detected, and the change in electrical characteristics with respect to the adsorption can be observed with a single element.
  • the above-described method reduces the amount of change in adsorption mass and the amount of change in electrical characteristics. It can be detected accurately.
  • a gas-sensitive thin film having a gap electrode or a sandwich electrode is disposed on a quartz resonator or a surface acoustic wave device, and the oscillation characteristics of the quartz resonator or the surface acoustic wave in the surface acoustic wave device is measured. It observes the propagation characteristics, the electrical characteristics of the gas-sensitive thin film with gap electrodes or sandwich electrodes, and the optical characteristics of the gas-sensitive thin film at the same time.
  • FIG. 1 shows an arrangement example of a gas sensor in the present embodiment.
  • a crystal resonator 10 including a crystal 1 and a pair of crystal oscillation electrodes 2 and 3 and an insulating film on the crystal oscillation electrode 3 are shown. 4 and a gas adsorbing portion 11 including a pair of characteristic detection electrodes 5 and 6 and a gas sensitive thin film 7 disposed on the insulating film 4.
  • the insulating film 4 insulates the crystal oscillation electrode 3 from the characteristic detection electrode 5.
  • the materials of the crystal oscillation electrodes 2 and 3 and the characteristic detection electrodes 5 and 6 may be the same or different. Further, the crystal oscillation electrode 3 and the characteristic detection electrode 5 without the insulating film 4 may be integrated.
  • the gas adsorption unit 11 is provided so that the characteristic detection electrodes 5 and 6 sandwich the gas sensitive thin film 7 from above and below, and is arranged as a so-called sandwich electrode. .
  • the distance between the electrodes can be easily reduced, and the drive voltage can be reduced.
  • the electrode area increases, a large current can be easily passed.
  • the characteristic detection electrode 6 positioned in the uppermost layer needs to be configured so that the gas to be detected can pass, such as a mesh shape. In this way, the contact area between the gas-sensitive thin film 7 and the gas to be detected can be secured. Therefore, even if the upper surface of the gas-sensitive thin film 7 is covered with the characteristic detection electrode 6, the gas to be detected can be detected well. be able to.
  • the gas sensitive thin film 7 is made of, for example, an organic semiconductor such as phthalocyanine or SnO (tin oxide).
  • the electrical characteristics mean various electrical characteristics such as current-voltage characteristics, resistance value, electromotive force, capacitance, etc., and change depending on the material and combination of materials used for the gas sensitive thin film 7.
  • the electrical characteristics to be determined are determined. For example, when SnO is used for the gas sensitive thin film 7, the electric current is applied from the surface of the gas sensitive thin film 7.
  • the resistance value increases, and when the reducing gas that gives electrons to the surface of the gas sensitive thin film 7 is adsorbed, the resistance value decreases.
  • the gas sensitive thin film 7 surface force adsorbs an acidic gas that takes electrons away, and the resistance value decreases, and the gas sensitive thin film 7 has an electron on the surface.
  • the reducing gas that gives is adsorbed, the resistance value increases.
  • an oxide semiconductor or an organic / inorganic composite thin film can be used if strength is obtained.
  • the characteristic detection electrodes 5 and 6 When a current is passed between the characteristic detection electrodes 5 and 6, the current flowing between the characteristic detection electrodes 5 and 6 increases or decreases according to the change in the resistance value of the gas sensitive thin film 7 due to the adsorption of the gas to be detected. Therefore, the current-voltage characteristic of the gas sensitive thin film 7 can be observed by measuring the current value. In addition, by using the characteristic detection electrodes 5 and 6, electric characteristics such as electromotive force, short-circuit current, and capacitance can be observed.
  • Ionized gas molecules can be moved by the applied electric field. That is, if the electrode 6 is positively biased with respect to the electrode 5, the cation can be moved to the electrode 5 side and the anion can be moved to the electrode 6 side. When the polarity of the applied electric field is reversed, the movement of these ions is reversed. This makes it possible to control the distribution of adsorbed gas molecules inside the thin film.
  • adsorption to the surface and movement into the thin film may contribute to the adsorption phenomenon.
  • the movement of adsorbed molecules into the thin film can be controlled.
  • mobile ions existing inside the thin film move by voltage and cause changes in the thin film structure such as expansion and contraction, observe the difference in the gas adsorption phenomenon associated with the change in the thin film structure. You can also.
  • the gas sensor element of the present embodiment is an integral element, both the adsorption mass and the change in the electric characteristics can be reliably monitored.
  • the element is an integrated element, even if the organic semiconductor film is covered with the upper electrode in the sandwich element, the amount of adsorption can be determined more accurately than in the case where the element is manufactured separately.
  • the gas sensor element is exposed to the gas to be detected, and changes in the oscillation frequency of the crystal resonator 10 are observed during that time. At the same time, the current-voltage characteristics or electrical characteristics such as electromotive force, short-circuit current, and capacitance between the electrodes 5 and 6 are observed.
  • the gas to be detected is adsorbed on the element and thus on the surface of the gas sensitive thin film 7, the electric characteristics of the gas sensitive thin film 7 change as described above.
  • the mass of the gas sensor element is increased by the adsorption amount of the gas to be detected.
  • the crystal unit 10 has a specific generation according to the mass of the adhered material adhered to the surface.
  • the vibration frequency has a property (QCM)
  • QCM the frequency decreases as the amount of gas to be detected increases. That is, the resonance frequency of the crystal resonator 10 changes almost in proportion to the mass of the detected gas adsorbed. Since these electrical characteristics and frequency characteristics show specific values according to the amount and type of adsorption of the gas to be detected, the relationship between the adsorption mass and the change in electrical properties observed in advance for several detection target gases. By comparing these, the detected gas is detected and identified. As described above, the detection gas can be detected and identified from the adsorption amount of the detection gas, that is, the change amount of the electrical characteristic corresponding to the frequency change of the crystal resonator 10. Furthermore, it is possible to change the spatial distribution of ions according to the voltage applied between the electrodes 5 and 6 and measure the adsorption response at that time.
  • the gas sensor according to the present invention can detect the adsorption mass of a substance based on the oscillation frequency characteristics of the crystal resonator 10 with one gas sensor element, and can observe the amount of change in electrical characteristics with respect to the adsorption mass. As a result, it is not necessary to use two sensors side by side as in the prior art, and pinpoint and accurate detection is possible with respect to one point (one point) to be detected.
  • the structure is simplified and steps such as etching are not required. Therefore, it can be manufactured at low cost.
  • the gas sensitive thin film 7 can be secured because the gas sensing thin film 7 and the gas to be sensed can be secured by configuring the characteristic detection electrode 6 located on the uppermost layer so that the gas to be sensed can pass through. 7 Even if the upper surface is covered with the characteristic detection electrode 6, the gas to be detected can be detected well.
  • the insulating film 4 that insulates the crystal oscillation electrode 3 from the characteristic detection electrode 5 is provided with a crystal resonator.
  • the uppermost electrode 6 may be made of a material whose electrical characteristics change according to gas adsorption, such as palladium. The operation in this case is the same as described above.
  • the crystal oscillation electrode 3 is partially removed by etching, etc., and the characteristic detection electrodes 5, 6 and gas A structure in which the sensitive thin film 7 is laminated may be used.
  • the quartz crystal resonator 10 that performs mass measurement may be replaced with a surface acoustic wave device as disclosed in JP-A-2002-350445.
  • FIG. 2 shows an arrangement example of gas sensors in the present embodiment. That is, the thin film transistor 20 as a semiconductor element composed of the gate electrode 15, the gate insulating film 8, the source electrode 16, the drain electrode 17, and the gas sensitive thin film 7 includes the crystal 1 and the crystal oscillation electrodes 2 and 3. The structure is arranged on the quartz crystal 10 and the insulating film 4. In this gas sensor element, the crystal oscillation electrode 3 and the gate electrode 15 without the insulating film 4 may be integrated. Also, a structure in which a part of the crystal oscillation electrode 3 is removed by etching or the like and a thin film transistor 20 is formed there may be used.
  • the thin film transistor 20 includes a gate electrode 15, a gate insulating film 8 that insulates the gate electrode 15 from the source electrode 16 and the drain electrode 17, and a gas sensitive film 7 having the source electrode 16 and the drain electrode 17. Are laminated.
  • the characteristic detection electrodes 5 and 6 may be arranged on the lower part of the gas sensitive thin film 7 and the force source electrode 16 and the drain electrode 17 provided on the upper part of the gas sensitive thin film 7.
  • the current between the source and drain becomes a current amplified by the amplifying action of the thin film transistor 20, it is greatly amplified even by a small current change. Therefore, even slight adsorption of the gas to be detected can be detected, and the detection sensitivity is improved. Furthermore, the mobility that is the characteristic value of the transistor, the on / off ratio that is the ratio of the drain current when the gate voltage is not applied and the gate voltage that is applied, the threshold voltage V that is the gate voltage for turning on the transistor, Sub-threshold, which is the amount of change in gate voltage when drain current is increased by an order of magnitude By observing changes in transistor operation associated with gas adsorption, such as threshold voltage V
  • the gate electrode 15, the source electrode 16, and the drain electrode 17 can be used to observe electrical characteristics such as electromotive force generation and capacitance.
  • the ionized gas molecules can be moved by an electric field generated by a gate voltage. That is, when a positive gate voltage is applied, positive ions can be moved to the outside air and negative ions can be moved to the insulating film. When a negative gate voltage is applied, the movement of these ions is reversed. This makes it possible to control the distribution of adsorbed gas molecules inside the thin film. In addition, adsorption to the surface and movement into the thin film may contribute to the adsorption phenomenon. By applying this voltage, the movement of adsorbed molecules into the thin film can be controlled.
  • the difference in transistor characteristics can be observed when gas is adsorbed on the surface of the thin film and when adsorbed gas molecules move into the thin film. Furthermore, when mobile ions existing inside the thin film move due to an electric field and cause changes in the thin film structure such as expansion and contraction, the difference in the gas adsorption response accompanying this change in the thin film structure should be observed. You can also. In these cases, for example, exposure to the gas is performed while applying the gate voltage, and the FET operation is observed after a certain period of time, so that the difference from the case where the gate voltage is impressed is investigated. At this time, if the gas adsorption amount increases, the current value increases, and the capacitance applied voltage characteristics also change due to the charge of the adsorbed gas. In addition, obtain changes in V, V, ⁇ , etc., related to FET operation.
  • the change in the amount of gas adsorbed by QCM can be measured simultaneously, and the effect of applying the gate voltage can be measured.
  • the measurement as described above since it is an integrated element, it is possible to reliably monitor both the adsorption mass and the change in electrical characteristics.
  • the operation of the present embodiment is the same as that of the first embodiment except for the amplification operation of the thin film transistor 20 described above.
  • the current flowing between the source and drain becomes an amplified current due to the amplification action of the thin film transistor 20, so that even a minute current change is greatly amplified.
  • the Rukoto Therefore, even slight adsorption of the gas to be detected can be detected, and the detection sensitivity is improved.
  • the distribution of mobile ions inside the thin film can be controlled by applying a gate voltage.
  • the distribution of ionized adsorbed gas within the thin film can be controlled to measure differences in transistor operation, or the adsorption speed and amount can be controlled by changing the thin film structure accompanying the movement of mobile ions. Can do.
  • the quartz crystal resonator 10 that performs mass measurement may be replaced with the surface acoustic wave device.
  • FIG. 3 shows an example of the arrangement of the gas sensor in the present embodiment.
  • the crystal resonator 10 including the crystal 1 and the pair of crystal oscillation electrodes 2 and 3 and the crystal oscillation electrode 3 in the same layer are shown.
  • the gas adsorbing section 11 is composed of a pair of characteristic detection electrodes 5 and 6 and a gas-sensitive thin film 7 arranged at positions. In this gas sensor element, the electrode 3 and the electrode 5 may be integrated.
  • the crystal oscillation electrode 3 and the characteristic detection electrodes 5, 6 are provided on the same layer. Therefore, in order to form the crystal oscillation electrode 3 and the characteristic detection electrodes 5 and 6, it is only necessary to form one electrode layer and perform etching to form each electrode. In this way, by forming the crystal oscillation electrode 3 and the characteristic detection electrodes 5 and 6 on the same layer, the thickness can be reduced.
  • the current flowing between the characteristic detection electrodes 5 and 6 increases or decreases according to the change in the resistance value of the gas sensitive thin film 7 due to the adsorption of the gas to be detected. Therefore, the current-voltage characteristic of the gas sensitive thin film 7 can be observed by measuring the current value. In addition, electrical characteristics such as electromotive force generation and capacitance can be observed by the characteristic detection electrodes 5 and 6. Furthermore, since a current also flows between the crystal oscillation electrode 3 and the characteristic detection electrode 5, the current between the characteristic detection electrodes 5 and 6, the crystal oscillation electrode 3 and the characteristic detection electrode It is also possible to observe both the current flowing between poles 5.
  • the operation of the invention in this embodiment is the same as that of the first embodiment except for the crystal oscillation electrode 3 and the characteristic detection electrodes 5 and 6 described above.
  • the gas to be detected is placed on the crystal resonator 10 including the crystal 1 that vibrates at a specific frequency and the crystal oscillation electrodes 2 and 3 that apply a voltage to the crystal 1.
  • a gas-sensitive thin film 7 whose electrical characteristics change according to the amount of adsorbed gas and a gas-adsorbing part 11 consisting of characteristic detection electrodes 5 and 6 that contact the crystal 1 and detect the electrical characteristics are arranged to detect the characteristics. The electrical characteristics between the electrodes 5 and 6 and the oscillation characteristics of the quartz crystal 10 are observed.
  • the characteristic detection electrodes 5 and 6 are provided so as to come into contact with the crystal 1 by rubbing in this way, the characteristic detection electrodes 5 and 6 and one of the crystal oscillation electrodes 3 are in the same layer position.
  • the crystal resonator 10 that performs mass measurement may be the surface acoustic wave device.
  • FIG. 4 shows an arrangement example of the gas sensor in the present embodiment.
  • the surface acoustic wave element 24 including the piezoelectric body 21, the comb-shaped excitation electrode 22, and the comb-shaped reception electrode 23, and the same layer as the excitation electrode 22 are shown.
  • the gas adsorbing portion 11 is composed of a pair of characteristic detection electrodes 5 and 6 and a gas sensitive thin film 7 arranged at the position of.
  • the operation of the surface acoustic wave element 24 is substantially the same as that disclosed in Japanese Patent Laid-Open No. 2002-350445. A change in the propagation characteristics of the surface acoustic wave due to the substance adsorption is detected by a signal generated at the comb-shaped receiving electrode 23.
  • an oscillation circuit is configured by connecting an external circuit, and oscillation characteristics are measured.
  • a quartz crystal resonator may be used as the mass measuring means.
  • the gas sensitive thin film 7 is made of a material whose optical characteristics and electrical characteristics (photoelectric characteristics) change with gas adsorption. in this case The light characteristics of the light refers to light absorption, reflection, scattering, or fluorescence characteristics.
  • a transparent or translucent material can be used for the crystal oscillation electrode and the characteristic detection electrodes 5 and 6 constituting the crystal resonator.
  • the current flowing between the characteristic detection electrodes 5 and 6 increases or decreases according to the change in the resistance value of the gas sensitive thin film 7 due to the adsorption of the gas to be detected. Therefore, the current-voltage characteristic of the gas sensitive thin film 7 can be observed by measuring the current value. In addition, electrical characteristics such as electromotive force generation and capacitance can be observed by the characteristic detection electrodes 5 and 6. Furthermore, by installing a photodetector (not shown), light absorption, reflection, scattering, or fluorescence characteristics in the gas-sensitive thin film accompanying adsorption of the gas to be detected can be observed. At the same time, the amount of gas adsorbed is measured by the surface acoustic wave element 24.
  • the light absorption / reflection / scattering or fluorescence characteristics of the gas-sensitive thin film 7 are measured in addition to the change in mass and electrical characteristics. . Since the optical characteristics, electrical characteristics, and mass characteristics of the gas-sensitive thin film 7 show unique values depending on the amount and type of adsorption of the gas to be detected, The gas to be detected is detected and identified by comparing the relationship between the optical property and the change in electrical property.
  • the surface of the surface acoustic wave element 24 is in contact with the piezoelectric body 21 and the gas sensitive thin film 7 whose optical characteristics and electrical characteristics change according to the amount of gas to be detected.
  • a gas adsorbing part 11 composed of characteristic detection electrodes 5 and 6 for detecting the electric characteristics is arranged, and the electric characteristics between the characteristic detection electrodes 5 and 6 and the oscillation characteristics of the surface acoustic wave element 24 are observed. Yes.
  • detection and identification of the gas to be detected can be easily performed from the amount of change in the optical characteristics and electrical characteristics corresponding to the change in the amount of adsorption of the gas to be detected detected by the surface acoustic wave element 24. .
  • the shape of the gas-sensitive thin film 7 is not particularly limited as long as the electric characteristics or the electric characteristics and the optical characteristics change by adsorbing the gas to be detected.
  • gases can be detected by changing the material of the gas-sensitive thin film 7.
  • Also have a gap electrode or sandwich electrode The electrical characteristics of the gas-sensitive thin film 7 and the optical characteristics of the gas-sensitive thin film 7, the oscillation characteristics of the crystal resonator 10, or the surface acoustic wave propagation characteristics of the surface acoustic wave element 24 are alternated or only one or only two You may observe it.
  • an oxidizing gas such as acid and nitrogen
  • a basic gas such as ammonia
  • an organic solvent gas such as carbon monoxide, carbon dioxide, etc.
  • FIG. 1 is a longitudinal sectional view showing a structure of a gas sensor according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing the structure of a gas sensor in a second embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view showing the structure of a gas sensor according to a third embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view showing the structure of a gas sensor according to a fourth embodiment of the present invention.
  • FIG. 5 is a perspective view showing the structure of the gas sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

明 細 書
ガス検知方法およびガスセンサ
技術分野
[0001] 本発明は、水晶振動子を用いたガス検知方法およびガスセンサに関するものであ る。
背景技術
[0002] 従来のガスセンサとして、特許文献 1に開示されるように、被測定ガスの吸着に伴う ガス感応性薄膜 (特許文献 1では酸化物で構成される)の抵抗率変化、起電力発生 、静電容量などの電気特性の変化を利用したガスセンサが知られて ヽる。
[0003] また、特許文献 2に開示されるように、ガス感応性膜に吸着した NOガスに応じて水
2
晶振動子の発振周波数の低下またはガス感応性膜の抵抗率減少を利用することで 、微量な NOガスを検出することができるセンサも知られている。
2
[0004] また、特許文献 3に開示されるように、ガス感応性膜に吸着した水素ガスに応じてガ ス感応性膜の光吸収変化を利用することで、微量な水素ガスを検出することができる センサも知られている。
[0005] その他にも、検知対象のガスを吸着する有機半導体を表面にコートした水晶振動 子微量天秤または SAWデバイスを用いた質量検出形のガスセンサが提案されて ヽ る。
[0006] また有機半導体を用いた電気特性検知形のガスセンサが提案されて!ヽる。このガ スセンサでは、ギャップ電極形 (特許文献 2参照)だけではなぐサンドイッチ形 (非特 許文献 1参照)、薄膜トランジスタの形状 (非特許文献 2参照)も報告されている。
[0007] これら質量測定および電気特性測定の素子を別々に作製し、同時に測定すること で、ガス吸着量に対する電気特性の変化を複合的に測定する方法も提案されている (非特許文献 3参照)。
[0008] 一方で、特許文献 4には、質量測定用素子上に電気特性測定の素子を作製する 方法も提案されている。
特許文献 1:特開平 11― 101763号公報 特許文献 2 :特開平 7— 43285号公報
特許文献 3:特開 2003 - 329592号公報
特許文献 4:特表平 11― 507729号公報
非特許文献 1 :「コロイドと界面化学 A:物理化学と工学の見地(Colloids and Surfaces A: Physicochemical andEngineering Aspects)」, (オフンダ国),エノレゼビア社 (Elsevi er Science B.V.) , 2002年,第 198— 200号, p. 905— 909
非特許文献 2:「センサとァクチユエータ B (Sensors and Actuators B)」, (オランダ国) ,エルゼビア社(Elsevier Science B.V.) , 2002年,第 67号, p. 312— 316 非特許文献 3:「分析化学 (Analytical Chemistry) , (米国),米国化学会(American C hemical Society) , 2001年 9月 15日,第 73卷,第 18号, p. 4441—4449 発明の開示
発明が解決しょうとする課題
[0009] しかし、上記特許文献 1に開示される従来のガスセンサでは、検知対象物質がどの 程度素子に吸着して電気特性の変化をもたらしているかを直接に知ることはできない という問題があった。
[0010] さらに、上記特許文献 2に開示される従来のガスセンサでは、水晶振動子の性質所 謂 QCM (Quartz Crystal Microbalance)を利用することでガス感応性薄膜に吸着し た微量なガスを検知し、また櫛形電極を有するガス感応性薄膜の抵抗率により吸着 した微量なガスを検知可能として 、るが、それぞれの素子だけでは検知対象物質が どの程度素子に吸着して電気特性の変化をもたらしているかを直接に知ることはでき ないという問題があった。
[0011] また、上記特許文献 3に開示される従来のガスセンサでは、検知対象物質がどの程 度素子に吸着して光吸収特性の変化をもたらしているかを直接に知ることはできない という問題があった。
[0012] その他、質量測定および電気特性測定素子を別々に作製した場合では、測定地 点が異なるためにピンポイントでの正確な測定はできない。さらに、全く同じ表面形状 および膜厚の有機薄膜を再現性良く作製することは一般的に容易ではなぐこのた め質量測定素子および電気特性測定素子上の有機膜への吸着量'吸着速度が異 なり、誤差を生じる。また、ガス吸着の応答を制御するようなことはできない。
[0013] さらに、上記特許文献 4に開示される従来のガスセンサでは、単に有機ポリマー薄 膜により橋絡された電極のみについて伝導特性測定だけを行っている。そのため、 移動度などの情報を得ることはできないという問題点があった。また、ギャップ形の素 子としているため高抵抗の半導体を用いる場合には駆動電圧が大きくなるという問題 かあつた。
[0014] そこで本発明は上記問題点に鑑み、水晶振動子または表面弾性波素子を利用し、 被検出ガスの吸着質量の変化量とそれに伴う電気特性または光および電気特性の 変化量とを正確に検出できるガス検知方法およびガスセンサを提供することを目的と する。
課題を解決するための手段
[0015] 本発明におけるガス検知方法及びガスセンサでは、水晶振動子または表面弾性波 素子上に、被検知ガスの吸着量に応じて電気特性が変化するガス感応性膜と、前記 電気特性を検出する特性検出用電極とを積層してなるガス吸着部を配置し、最上層 に位置する一方の前記特性検出用電極は、前記被検知ガスが通過可能に構成され たものであり、前記特性検出用電極間の電気特性と、前記水晶振動子または表面弾 性波素子により吸着質量を検出している。
[0016] このようにすると、ガス感応性膜が被検知ガスを吸着することに伴 ヽ、ガス感応性膜 の電気特性と、水晶振動子または表面弾性波素子の検知吸着質量が共に変化する ことを利用して、特性検出用電極間の電気特性と前記吸着質量とを観測することで、 被検知ガスの検知,識別を容易に行うことができる。また、各構成要素が全て層状に 積層して形成されているため、構造が簡単になり、エッチングなどの工程が不要にな る。従って、安価に製作することができる。さらに、最上層に位置する一方の特性検 出用電極を被検知ガスが通過可能に構成することにより、ガス感応性膜と被検知ガ スとの接触面積を確保できるため、ガス感応性膜上面を特性検出用電極で覆っても 、良好に被検知ガスを検知することができる。
[0017] また、前記水晶発振用電極と前記特性検出用電極とを絶縁する絶縁膜を、前記水 晶振動子と前記ガス吸着部との間に設けて 、る。 [0018] このようにすると、水晶発振用電極と特性検出用電極との間で電流が流れないため 、特性検出用電極間の電気特性と水晶振動子の発振特性とを同時に観測しても相 互に影響を及ぼし合うことがない。
[0019] また、水晶振動子または表面弾性波素子上に、ソース電極と、ドレイン電極と、被検 知ガスの吸着量に応じて電気特性が変化する半導体材料から形成されたガス感応 性膜と、ゲート電極と、前記ゲート電極と前記ソース電極及び前記ドレイン電極とを絶 縁するゲート絶縁膜とからなる半導体素子を配置し、前記ゲート電極に電圧を印加し ながら、当該ソース ドレイン間の電気特性と、前記水晶振動子または表面弾性波 素子により吸着質量を検出している。
[0020] このようにすると、ゲート電極に電圧を印加することにより、当該ソース ドレイン間 を流れる電流は、半導体素子の増幅作用により増幅された電流となるため、微小な 電流変化でも大きく増幅されることとなる。従って、僅かな被検知ガスの吸着をも検出 することができ、検知感度が向上する。
[0021] さらに、水晶振動子または表面弾性波素子上に、被検知ガスの吸着量に応じて電 気特性が変化するガス感応性膜と、前記水晶振動子または表面弾性波素子の圧電 体に当接し前記電気特性を検出する特性検出用電極とからなるガス吸着部を配置し 、前記特性検出用電極間の電気特性と、前記水晶振動子または表面弾性波素子に より吸着質量を検出している。
[0022] このよう〖こすると、圧電体に当接するよう特性検出用電極を設けているため、特性検 出用電極と一方の水晶発振用電極とが同層位置となり薄型化が可能になると共に、 特性検出用電極を利用してガス感応性膜の電気特性を測定できる。さらに、ガス感 応性薄膜がガス吸着により変形すれば、その形状変化により圧電体に応力が加わる ことで生じる起電力を測定することもできる。
[0023] また、水晶振動子または表面弾性波素子上に、被検知ガスの吸着量に応じて光電気特性が変化するガス感応性膜と、前記電気特性を検出する特性検出用電極を 配置し、前記ガス感応性膜の光吸収 ·反射または蛍光特性および前記特性検出用 電極間の電気特性と、前記水晶振動子または表面弾性波素子の検知吸着質量とを 観測している。 [0024] このようにすると、ガス感応性膜が被検知ガスを吸着することに伴 ヽ、ガス感応性膜 の光特性および電気特性と、水晶振動子または表面弾性波素子の検知吸着質量と が共に変化することを利用して、特性検出用電極間の光'電気特性と前記吸着質量 とを観測することで、被検知ガスの検知,識別を容易に行うことができる。
発明の効果
[0025] 本発明のガス検知方法及びガスセンサは、水晶振動子または表面弾性波素子上 に特性検出用電極を有するガス感応性膜を配置するもので、水晶振動子または表 面弾性波素子によって物質の吸着質量を検知でき、また吸着質量に対する電気特 性の変化量を一つの素子で観測できる。
[0026] 水晶振動子または表面弾性波素子と、ガス感応性膜を挟んだ素子を別々に作製し て観測する場合に比べて、上記の方法では吸着質量の変化量と電気特性の変化量 を正確に検出できる。
[0027] また、 、くつかの検知対象ガスにっ 、て吸着質量と感応性材料の電気物性変化の 関係を観測しておくことにより、例えば吸着分子数あたり同じ電気物性の変化を与え る分子量の異なるガスに対して、識別を行うことも可能である。
[0028] さらに、被検知ガスの吸着量に応じて光特性と電気特性が変化するガス感応性膜 を用いれば、素子の光吸収 ·反射または蛍光特性と電気特性、及びガス吸着質量を 同時測定することができ、ガス識別能力を向上できる。
発明を実施するための最良の形態
[0029] 以下、添付図面を参照しながら、本発明におけるガス測定方法およびその測定方 法を用いたガスセンサの好ましい各実施例を説明する。なお、これらの各実施例に おいて、同一箇所には同一符号を付し、共通する部分の説明は重複するため極力 省略する。
[0030] 本発明は、水晶振動子または表面弾性波素子上にギャップ電極またはサンドイツ チ電極を有するガス感応性薄膜を配置し、水晶振動子の発振特性または表面弾性 波素子における表面弾性波の伝搬特性と、ギャップ電極またはサンドイッチ電極を有 するガス感応性薄膜の電気特性、さらにはガス感応性薄膜の光特性を同時に観測 するものである。 実施例 1
[0031] 図 1は、本実施例におけるガスセンサの配置例を示しており、水晶 1と一対の水晶 発振用電極 2, 3とからなる水晶振動子 10と、水晶発振用電極 3上の絶縁膜 4と、絶縁 膜 4の上に配置した一対の特性検出用電極 5, 6とガス感応性薄膜 7とからなるガス 吸着部 11とから構成される。絶縁膜 4は、水晶発振用電極 3と特性検出用電極 5とを 絶縁するものである。なお、このガスセンサ素子において、水晶発振用電極 2, 3及び 特性検出用電極 5, 6の材質は同一であっても異種であっても良い。また、絶縁膜 4 が無ぐ水晶発振用電極 3と特性検出用電極 5は一体であつても良い。
[0032] ガス吸着部 11は、水晶振動子 10と同様に、特性検出用電極 5, 6がガス感応性薄膜 7を上下方向から挟み込むように設けられ、所謂サンドイッチ電極となるよう配置され ている。ガス吸着部 11をサンドイッチ素子とすることにより、電極間の距離を容易に小 さくすることができ、駆動電圧を小さくできる。また、電極面積が大きくなるため大電流 を容易に流すことができる。最上層に位置する特性検出用電極 6は、例えばメッシュ 状など前記被検知ガスが通過可能なように構成する必要がある。このようにすること で、ガス感応性薄膜 7と被検知ガスとの接触面積が確保できるため、ガス感応性薄膜 7上面を特性検出用電極 6で覆っても、良好に被検知ガスを検知することができる。
[0033] ガス感応性薄膜 7は、例えばフタロシアニンなどの有機半導体や SnO (酸化スズ)
2 や ZnO (酸化亜鉛)などの酸化物半導体または有機無機複合薄膜から形成され、ガ スを吸着することでその電気特性が変化する。ここで、電気特性とは、電流電圧特性 ,抵抗値,起電力,静電容量などの種々の電気的な特性を意味し、ガス感応性薄膜 7に使用される材料や材料の組み合わせにより、変化する電気特性が決定される。 例えばガス感応性薄膜 7に SnOを使用した場合では、ガス感応性薄膜 7表面から電
2
子を奪う酸化性ガスを吸着すると、当該抵抗値が大きくなり、ガス感応性薄膜 7表面 に電子を与える還元性ガスを吸着すると、当該抵抗値が小さくなる。また、ガス感応 性薄膜 7にフタロシアニンを使用した場合では、ガス感応性薄膜 7表面力 電子を奪 う酸ィ匕性ガスを吸着すると、当該抵抗値が小さくなり、ガス感応性薄膜 7表面に電子 を与える還元性ガスを吸着すると、当該抵抗値が大きくなる。ガス感応性薄膜 7には 、強度を得た ヽ場合には酸ィ匕物半導体や有機無機複合薄膜などを用いればょ ヽ。 [0034] 特性検出用電極 5, 6間に電流を流すと、被検知ガスの吸着に伴うガス感応性薄膜 7の抵抗値変化に応じて、特性検出用電極 5, 6間に流れる電流が増減するため、当 該電流値を計測することによりガス感応性薄膜 7の電流電圧特性を観測することがで きる。また、特性検出用電極 5, 6により、起電力や短絡電流、静電容量などの電気特 性を観測することもできる。さらに、薄膜に吸着した後にイオンィ匕するガス (例えばポリ アセチレンに対するヨウ素ガスなど、薄膜材料に対して電子供与または電子受容して イオン化するガス分子)の場合は、特性検出用電極 5, 6間に印加する電界でイオン 化したガス分子を移動させることができる。すなわち、電極 5に対して電極 6を正にバ ィァスすれば、陽イオンを電極 5側に、陰イオンを電極 6側に移動させることができる。 印加電界の極性を逆にした場合には、これらのイオンの動きは逆となる。これにより、 吸着ガス分子の薄膜内部での分布を制御することが可能である。また吸着現象には 、表面への吸着と薄膜内部への移動が寄与する場合があるが、この電圧印加によつ て薄膜内部への吸着分子の移動を制御できる。さらに、例えばガスが電極界面付近 に吸着している場合と、吸着ガス分子が薄膜の内部に移動した場合の電気特性の違 いを観測することができる。他にも、薄膜内部に存在する可動イオンが電圧によって 移動し、膨張や収縮など薄膜構造の変化を及ぼすような場合には、この薄膜構造の 変化に伴うガス吸着現象の違 、を観測することもできる。上記のような測定を行うにあ たって、本実施例のガスセンサ素子は一体型の素子であるので確実に吸着質量と電 気特性の変化の双方をモニターすることができる。さらに一体の素子であるために、 サンドイッチ素子において有機半導体膜を上部電極で覆ったとしても、素子を別〖こ 作製する場合に比べて吸着量を正確に求めることができる。
[0035] 次に、本発明の作用について説明する。
[0036] 被検知ガスに本ガスセンサ素子を暴露し、その間水晶振動子 10の発振周波数の変 化を観測する。同時に、電極 5および電極 6の間の例えば電流電圧特性または起電 力、短絡電流、静電容量などの電気特性を観測する。被検知ガスが素子ひいてはガ ス感応性薄膜 7表面に吸着すると、前述したようにガス感応性薄膜 7の電気特性が変 化する。このとき、本ガスセンサ素子の質量は、被検知ガスの吸着量分増加すること となる。水晶振動子 10には、その表面に付着させた付着物の質量に応じて固有の発 振周波数が変化する性質 (QCM)があるため、被検知ガスの吸着量が増加するにつ れて、周波数は減少する。すなわち、吸着した被検知ガスの質量にほぼ比例して水 晶振動子 10の共振周波数が変化する。これらの電気特性及び周波数特性は、被検 知ガスの吸着量や種類に応じて固有の値を示すため、予めいくつかの検知対象ガス について観測しておいた吸着質量と電気物性変化の関係とを比較することにより、被 検知ガスの検出と識別を行う。以上のようにして、被検知ガスの吸着量、すなわち水 晶振動子 10の周波数変化に対応する電気特性の変化量から、被検知ガスの検出と 識別を行うことができる。さら〖こ、電極 5および電極 6の間に印加する電圧によってィ オンの空間的な分布を変化させ、その時の吸着応答を測定することも可能である。
[0037] 本発明におけるガスセンサは、 1つのガスセンサ素子で、水晶振動子 10の発振周 波数特性によって物質の吸着質量を検知でき、吸着質量に対する電気特性の変化 量を観測できる。これにより、従来のように二つのセンサを並べて使用しなくてもよい ので、被検知対象となる一点(一地点)に対してピンポイントかつ正確な検出が可能 である。
[0038] また、各構成要素が全て層状に積層して形成されているため、構造が簡単になり、 エッチングなどの工程が不要になる。従って、安価に製作することができる。さらに、 最上層に位置する一方の特性検出用電極 6を被検知ガスが通過可能に構成するこ とにより、ガス感応性薄膜 7と被検知ガスとの接触面積を確保できるため、ガス感応性 薄膜 7上面を特性検出用電極 6で覆っても、良好に被検知ガスを検知することができ る。
[0039] また、水晶発振用電極 3と特性検出用電極 5とを絶縁する絶縁膜 4を、水晶振動子
10とガス吸着部 11との間に設けている。
[0040] このよう〖こすると、水晶発振用電極 3と特性検出用電極 5との間で電流が流れない ため、特性検出用電極 5, 6間の電気特性と水晶振動子 10の発振特性とを同時に観 測しても相互に影響を及ぼし合うことがな!、。
[0041] なおこれまでの例で、最上部の電極 6にパラジウムなどのガス吸着に応じて電気特 性が変化する材料を用いても良ぐこの場合の作用は上記と同様である。また、水晶 発振用電極 3を一部エッチング等により取り除き、そこに特性検出用電極 5, 6とガス 感応性薄膜 7を積層した構造としても良い。さらに、質量測定を行う水晶振動子 10は 特開 2002— 350445号公報に示されるような表面弾性波素子に代わっても良い。 実施例 2
[0042] 図 2は、本実施例におけるガスセンサの配置例を示している。すなわち、ゲート電極 15と、ゲート絶縁膜 8と、ソース電極 16と、ドレイン電極 17と、ガス感応性薄膜 7とから なる半導体素子としての薄膜トランジスタ 20が、水晶 1と水晶発振用電極 2, 3とからな る水晶振動子 10,絶縁膜 4上に配置された構造である。なお、このガスセンサ素子に おいて、絶縁膜 4が無ぐ水晶発振用電極 3とゲート電極 15とは一体であっても良い。 また、水晶発振用電極 3を一部エッチング等により取り除き、そこに薄膜トランジスタ 2 0を形成した構造としても良 、。
[0043] 薄膜トランジスタ 20は、ゲート電極 15と、ゲート電極 15とソース電極 16及びドレイン電 極 17とを絶縁するゲート絶縁膜 8と、ソース電極 16とドレイン電極 17とを有するガス感 応性膜 7とを積層して形成されている。特性検出用電極 5, 6は、ガス感応性薄膜 7の 上部に設けられている力 ソース電極 16とドレイン電極 17は、ガス感応性薄膜 7の下 部に配置されていても良い。
[0044] ゲート電極 15に電圧を印加すると、ソース電極 16とドレイン電極 17との間すなわち 当該ソース一ドレイン間が導通状態となる。ドレイン電極 17に電圧を印加してドレイン 電流(ドレイン電極 17からソース電極 16へ流れる電流)を流すと、被検知ガスの吸着 に伴うガス感応性薄膜 7の抵抗値変化に応じて、ソース電極 16,ドレイン電極 17間に 流れる電流が増減するため、当該電流値を計測することによりガス感応性薄膜 7の電 流電圧特性を観測することができる。このとき、ゲート電極 15に電圧を印加することで 、当該ソース一ドレイン間に電荷が溜められ、チャネルが形成される。当該ソース一ド レイン間電流は、薄膜トランジスタ 20の増幅作用により増幅された電流となるため、微 小な電流変化でも大きく増幅されることとなる。従って、僅かな被検知ガスの吸着をも 検出することができ、検知感度が向上する。さらに、トランジスタの特性値である移動 度 や、ゲート電圧を印加しない場合とゲート電圧を印加した場合のドレイン電流の 比であるオンオフ比、トランジスタをオンとするためのゲート電圧であるスレツショルド 電圧 V 、ドレイン電流を一桁増加させるときのゲート電圧の変化量であるサブスレツ ショルド電圧 Vなどの、ガス吸着に伴うトランジスタ動作の変化を観測することによつ
S
て、被検知ガスが有機物に及ぼす効果を測定できる。また、ゲート電極 15,ソース電 極 16, ドレイン電極 17により、起電力発生や静電容量などの電気特性を観測すること ちでさる。
[0045] さらに、薄膜に吸着した後にイオンィ匕するガスの場合は、ゲート電圧による電界でィ オンィ匕したガス分子を移動させることができる。すなわち、正のゲート電圧を印加した 場合には、陽イオンを外気側に、陰イオンを絶縁膜側に移動させることができる。負 のゲート電圧を印加した場合には、これらのイオンの動きは逆となる。これにより、吸 着ガス分子の薄膜内部での分布を制御することが可能である。また吸着現象には、 表面への吸着と薄膜内部への移動が寄与する場合があるが、この電圧印加によって 薄膜内部への吸着分子の移動を制御できる。さらに、例えばガスが薄膜の表面に吸 着している場合と、吸着ガス分子が薄膜の内部に移動した場合のトランジスタ特性の 違いを観測することができる。さらに、薄膜内部に存在する可動イオンが電界によつ て移動し、膨張や収縮など薄膜構造の変化を及ぼすような場合には、この薄膜構造 の変化に伴うガス吸着応答の違いを観測することもできる。これらの場合では、例え ばゲート電圧を印加しながらガスに対する曝露を行 、、一定時間後に FET動作の観 測を行うことで、ゲート電圧を印カロしな力つた場合との差分を調べる。この時、ガス吸 着量が増大すれば電流値は増大し、吸着ガスによる電荷のため静電容量 印加電 圧特性も変化する。この他、 FET動作に関する Vや V、 μなどの変化を求めること
T S
ができる。もちろん、 QCMによるガス吸着量変化を同時に計測し、ゲート電圧印加に よる効果を測定できる。上記のような測定を行うにあたって、一体型の素子であるので 確実に吸着質量と電気特性の変化の双方をモニターすることができる。
[0046] 本実施例における発明の作用については、前述した薄膜トランジスタ 20の増幅作 用以外は、第 1実施例と同様である。
[0047] 以上のように本実施例では、固有の周波数で振動する水晶 1と水晶 1に電圧を印 加する水晶発振用電極 2, 3とからなる水晶振動子 10上に、ソース電極 16と、ドレイン 電極 17と、被検知ガスの吸着量に応じて電気特性が変化する半導体材料から形成さ れたガス感応性薄膜 7と、ゲート電極 15と、ゲート電極 15とソース電極 16及びドレイン 電極 17とを絶縁するゲート絶縁膜 8とからなる半導体素子としての薄膜トランジスタ 20 を配置し、ゲート電極 15に電圧を印加しながら、当該ソース—ドレイン間の電気特性 と水晶 1の発振特性とを観測している。
[0048] このようにすると、ゲート電極 15に電圧を印加することにより、当該ソース ドレイン 間を流れる電流は、薄膜トランジスタ 20の増幅作用により増幅された電流となるため、 微小な電流変化でも大きく増幅されることとなる。従って、僅かな被検知ガスの吸着を も検出することができ、検知感度が向上する。また、ゲート電圧印加によって薄膜内 部の可動イオンの分布を制御できる。これによつて、イオン化した吸着ガスの薄膜内 での分布を制御してトランジスタ動作の違 、を測定したり、可動イオンの移動に伴う 薄膜構造変化によって吸着速度や吸着量を制御したりすることができる。なお、質量 測定を行う水晶振動子 10は前記表面弾性波素子に代わっても良い。
実施例 3
[0049] 図 3は、本実施例におけるガスセンサの配置例を示しており、水晶 1と一対の水晶 発振用電極 2, 3とからなる水晶振動子 10と、水晶発振用電極 3と同一層の位置に配 置した一対の特性検出用電極 5, 6とガス感応性薄膜 7とからなるガス吸着部 11とから 構成される。なお、このガスセンサ素子において、電極 3と電極 5は一体であっても良 い。
[0050] ガス感応性薄膜 7の下部には、水晶発振用電極 3と特性検出用電極 5, 6とが同一 層上になるよう設けられている。従って、水晶発振用電極 3と特性検出用電極 5, 6と を形成するには、ー且一つの電極層を形成し、エッチングを行うことで各電極を形成 すればよい。このように、水晶発振用電極 3と特性検出用電極 5, 6とを同一層上に形 成することにより、薄型化が可能となる。
[0051] 特性検出用電極 5, 6間に電流を流すと、被検知ガスの吸着に伴うガス感応性薄膜 7の抵抗値変化に応じて、特性検出用電極 5, 6間に流れる電流が増減するため、当 該電流値を計測することによりガス感応性薄膜 7の電流電圧特性を観測することがで きる。また、特性検出用電極 5, 6により、起電力発生や静電容量などの電気特性を 観測することもできる。さらに、水晶発振用電極 3と特性検出用電極 5との間にも電流 が流れるため、特性検出用電極 5, 6間の電流と、水晶発振用電極 3と特性検出用電 極 5との間に流れる電流との両者を観測することも可能である。
[0052] ところで、水晶 1に圧力を加えると圧電現象により起電力が発生する。被検知ガスが ガス感応性薄膜 7に吸着してガス感応性薄膜 7が膨張または収縮し応力変化が生じ ると、水晶 1に起電力が発生する。本実施例では、水晶 1上に特性検出用電極 5, 6 や水晶発振用電極 2を設けているため、特性検出用電極 5, 6や水晶発振用電極 2を 利用して当該起電力を測定することも可能である。
[0053] 本実施例における発明の作用については、前述した水晶発振用電極 3と特性検出 用電極 5, 6以外は、第 1実施例と同様である。
[0054] 以上のように本実施例では、固有の周波数で振動する水晶 1と、水晶 1に電圧を印 加する水晶発振用電極 2, 3とからなる水晶振動子 10上に、被検知ガスの吸着量に 応じて電気特性が変化するガス感応性薄膜 7と、水晶 1に当接し前記電気特性を検 出する特性検出用電極 5, 6とからなるガス吸着部 11を配置し、特性検出用電極 5, 6 間の電気特性と水晶振動子 10の発振特性とを観測している。
[0055] このよう〖こすると、水晶 1に当接するよう特性検出用電極 5, 6を設けているため、特 性検出用電極 5, 6と一方の水晶発振用電極 3とが同層位置となり薄型化が可能にな ると共に、特性検出用電極 5, 6や水晶発振用電極 2を利用してガス感応性薄膜 7の 電気特性の他に、水晶 1に発生する起電力を測定することもできる。なお、質量測定 を行う水晶振動子 10は前記表面弾性波素子であっても良い。
実施例 4
[0056] 図 4は、本実施例におけるガスセンサの配置例を示しており、圧電体 21と櫛形励振 電極 22と櫛形受信電極 23とからなる表面弾性波素子 24と、励振用電極 22と同一層の 位置に配置した一対の特性検出用電極 5, 6とガス感応性薄膜 7とからなるガス吸着 部 11とから構成される。表面弾性波素子 24の動作については、特開 2002— 35044 5号公報に示されるものとほぼ同様である。物質吸着に基づく表面弾性波の伝搬特 性の変化を、櫛形受信電極 23に生じる信号により検出する。一般には外部回路を接 続して発振回路を構成し、発振特性を測定する。ここで、質量測定手段として表面弾 性波素子 24でなく水晶振動子を用いても良い。ガス感応性薄膜 7には、ガス吸着に 伴って光特性と電気特性の双方 (光 ·電気特性)が変化する材料を用いる。この場合 の光特性とは光吸収、反射、散乱または蛍光特性を指す。前記水晶振動子を構成 する水晶発振用電極や特性検出用電極 5, 6には透明あるいは半透明の材料を用 いることがでさる。
[0057] 特性検出用電極 5, 6間に電流を流すと、被検知ガスの吸着に伴うガス感応性薄膜 7の抵抗値変化に応じて、特性検出用電極 5, 6間に流れる電流が増減するため、当 該電流値を計測することによりガス感応性薄膜 7の電流電圧特性を観測することがで きる。また、特性検出用電極 5, 6により、起電力発生や静電容量などの電気特性を 観測することもできる。さらに、光検出器 (図示せず)を設置することにより被検知ガス の吸着に伴うガス感応性薄膜における光吸収、反射、散乱または蛍光特性を観測で きる。同時に、表面弾性波素子 24によってガス吸着量を測定する。
[0058] この例においては、被検知ガスに本ガスセンサ素子を暴露する間に、質量と電気特 性の変化に加えてガス感応性薄膜 7の光吸収 ·反射 ·散乱または蛍光特性を測定す る。ガス感応性薄膜 7の光特性と電気特性及び質量特性は、被検知ガスの吸着量や 種類に応じて固有の値を示すため、予めいくつかの検知対象ガスについて観測して おいた吸着質量と光物性'電気物性変化の関係とを比較することにより、被検知ガス の検出と識別を行う。
[0059] 以上のように本実施例では、表面弾性波素子 24上に、被検知ガスの吸着量に応じ て光特性および電気特性が変化するガス感応性薄膜 7と、圧電体 21に当接し前記電 気特性を検出する特性検出用電極 5, 6とからなるガス吸着部 11を配置し、特性検出 用電極 5, 6間の電気特性と表面弾性波素子 24の発振特性とを観測している。このよ うにすると、表面弾性波素子 24により検出される被検知ガスの吸着量変化に対応す る光特性と電気特性の変化量から、被検知ガスの検出と識別を容易に行うことができ る。
[0060] なお、本発明は、上記各実施例に限定されるものではなぐ本発明の趣旨を逸脱し ない範囲で変更可能である。ガス感応性薄膜 7には、被検知ガスを吸着することでそ の電気特性、または電気特性と光特性が変化するものであればどのようなものでもよ ぐ形状も特に限定されない。ガス感応性薄膜 7の材質を変更することで、種々のガ スを検知することが可能になる。また、ギャップ電極またはサンドイッチ電極を有する ガス感応性薄膜 7の電気特性と、ガス感応性薄膜 7の光特性、水晶振動子 10の発振 特性または表面弾性波素子 24における表面弾性波の伝搬特性を交互またはいずれ か一つまたは二つのみ観測しても良い。
産業上の利用可能性
[0061] 本発明の活用例として、ガス感応性薄膜 7を選択することにより、酸ィ匕窒素などの酸 化性ガス、アンモニアなどの塩基性ガス、有機溶媒ガス、一酸化炭素や二酸化炭素 などの検出および識別が考えられる。さらに、環境モニターや工程管理などにも利用 でさるちのと考免られる。
図面の簡単な説明
[0062] [図 1]本発明の第 1実施例におけるガスセンサの構造を示す縦断面図である。
[図 2]本発明の第 2実施例におけるガスセンサの構造を示す縦断面図である。
[図 3]本発明の第 3実施例におけるガスセンサの構造を示す縦断面図である。
[図 4]本発明の第 4実施例におけるガスセンサの構造を示す縦断面図である。
[図 5]同上、ガスセンサの構造を示す斜視図である。
符号の説明
[0063] 1 水晶
2, 3 水晶発振用電極
4 絶縁膜
5, 6 特性検出用電極
7 ガス感応性薄膜 (ガス感応性膜)
8 ゲート絶縁膜
10 水晶振動子
11 ガス吸着部
15 ゲート電極
16 ソース電極
17 ドレイン電極
20 薄膜トランジスタ(半導体素子)
21 圧電体 櫛形励振電極 櫛形受信電極 表面弾性波素子

Claims

請求の範囲
[1] 水晶振動子または表面弾性波素子上に、被検知ガスの吸着量に応じて電気特性が 変化するガス感応性膜と、前記電気特性を検出する特性検出用電極とを積層してな るガス吸着部を配置し、最上層に位置する一方の前記特性検出用電極は、前記被 検知ガスが通過可能に構成されたものであり、前記特性検出用電極間の電気特性 測定と、前記水晶振動子または前記表面弾性波素子の吸着質量測定とを行うことを 特徴とするガス検知方法。
[2] 前記水晶振動子を構成する水晶発振用電極と前記特性検出用電極とを絶縁する絶 縁膜を、前記水晶振動子と前記ガス吸着部との間に設けたことを特徴とする請求項 1 記載のガス検知方法。
[3] 水晶振動子または表面弾性波素子上に、ソース電極と、ドレイン電極と、被検知ガス の吸着量に応じて電気特性が変化する半導体材料から形成されたガス感応性膜と、 ゲート電極と、前記ゲート電極と前記ソース電極及び前記ドレイン電極とを絶縁する ゲート絶縁膜とからなる半導体素子を配置し、前記ゲート電極に電圧を印カロしながら 、当該ソース ドレイン間の電気特性測定と、前記水晶振動子または前記表面弾性 波素子の吸着質量測定とを行うことを特徴とするガス検知方法。
[4] 水晶振動子または表面弾性波素子上に、被検知ガスの吸着量に応じて電気特性が 変化するガス感応性膜と、前記水晶振動子または前記表面弾性波素子を構成する 圧電体に当接し前記電気特性を検出する特性検出用電極とからなるガス吸着部を 配置し、前記特性検出用電極間の電気特性測定と、前記水晶振動子または前記表 面弾性波素子の吸着質量測定とを行うことを特徴とするガス検知方法。
[5] 水晶振動子または表面弾性波素子上に、被検知ガスの吸着量に応じて光 ·電気特 性が変化するガス感応性膜と、前記電気特性を検出する特性検出用電極とからなる ガス吸着部を配置し、前記ガス感応性膜の光特性および前記特性検出用電極間の 電気特性と、前記水晶振動子または前記表面弾性波素子の吸着質量測定とを行うこ とを特徴とするガス検知方法。
[6] 水晶振動子または表面弾性波素子上に、被検知ガスの吸着量に応じて電気特性が 変化するガス感応性膜と、前記電気特性を検出する特性検出用電極とを積層してな るガス吸着部を配置し、最上層に位置する一方の前記特性検出用電極は、前記被 検知ガスが通過可能に構成されたものであることを特徴とするガスセンサ。
[7] 前記水晶振動子を構成する水晶発振用電極と前記特性検出用電極とを絶縁する絶 縁膜を、前記水晶振動子と前記ガス吸着部との間に設けたことを特徴とする請求項 6 記載のガスセンサ。
[8] 水晶振動子または表面弾性波素子上に、ソース電極とドレイン電極とを有し、被検知 ガスの吸着量に応じて電気特性が変化する半導体材料から形成されたガス感応性 膜と、ゲート電極と、前記ゲート電極と前記ソース電極及び前記ドレイン電極とを絶縁 するゲート絶縁膜とからなる半導体素子を形成したことを特徴とするガスセンサ。
[9] 水晶振動子または表面弾性波素子上に、被検知ガスの吸着量に応じて電気特性が 変化するガス感応性膜と、前記水晶振動子または前記表面弾性波素子を構成する 圧電体に当接し前記電気特性を検出する特性検出用電極とからなるガス吸着部を 形成したことを特徴とするガスセンサ。
[10] 水晶振動子または表面弾性波素子上に、被検知ガスの吸着量に応じて光,電気特 性が変化するガス感応性膜と、前記電気特性を検出する特性検出用電極とからなる ガス吸着部を配置したことを特徴とするガスセンサ。
PCT/JP2005/012817 2004-07-12 2005-07-12 ガス検知方法およびガスセンサ WO2006006587A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006529055A JP4164580B2 (ja) 2004-07-12 2005-07-12 ガス検知方法およびガスセンサ
US11/632,243 US20080022755A1 (en) 2004-07-12 2005-07-12 Gas Detection Method and Gas Sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004205168 2004-07-12
JP2004-205168 2004-07-12

Publications (1)

Publication Number Publication Date
WO2006006587A1 true WO2006006587A1 (ja) 2006-01-19

Family

ID=35783927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012817 WO2006006587A1 (ja) 2004-07-12 2005-07-12 ガス検知方法およびガスセンサ

Country Status (3)

Country Link
US (1) US20080022755A1 (ja)
JP (1) JP4164580B2 (ja)
WO (1) WO2006006587A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083036A (ja) * 2006-08-28 2008-04-10 Hitachi Chem Co Ltd センサ基板およびこれを用いた複合センサ
JP2009098084A (ja) * 2007-10-19 2009-05-07 Fujitsu Ltd 雰囲気分析装置及び雰囲気分析方法
US7659654B2 (en) 2007-03-22 2010-02-09 Seiko Epson Corporation Piezoelectrics oscillator, sensor, and multi-sensor
JP2011038979A (ja) * 2009-08-18 2011-02-24 Fujitsu Ltd イオンセンサ、イオン分析装置、及びイオン分析方法
KR101355371B1 (ko) * 2012-05-29 2014-01-27 포항공과대학교 산학협력단 전기적 특성과 질량변화를 동시에 측정하는 수정 진동자 미세 저울 센서
JP2017167122A (ja) * 2016-03-11 2017-09-21 セイコーインスツル株式会社 圧電装置、圧電ユニット、測定装置、及び測定方法
CN107290392A (zh) * 2017-07-31 2017-10-24 成都信息工程大学 一种高稳定性低湿度检测的qcm湿度传感器及其制备方法
CN107290241A (zh) * 2017-07-31 2017-10-24 成都信息工程大学 一种qcm湿度传感器及其制备方法
JP2020514687A (ja) * 2017-01-17 2020-05-21 マトリックス センサーズ, インコーポレイテッドMatrix Sensors, Inc. 湿度補正付きガスセンサー
JP2020098113A (ja) * 2018-12-17 2020-06-25 株式会社東芝 分子検出装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714277B2 (en) * 2006-07-20 2010-05-11 Owlstone Nanotech, Inc. Smart FAIMS sensor
WO2015113072A1 (en) * 2014-01-27 2015-07-30 Cornell University Integrated circuits based biosensors
CN104198321B (zh) * 2014-09-03 2017-01-25 电子科技大学 一种具有化学物理吸附效应的qcm甲醛传感器及其制备方法
CN109580553A (zh) * 2018-11-22 2019-04-05 复旦大学 一种基于单晶硅纳米薄膜光电器件的气体与化学物质传感系统的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248057A (ja) * 1990-02-27 1991-11-06 Sanyo Electric Co Ltd ガスセンサー
JPH04236349A (ja) * 1991-01-18 1992-08-25 Ngk Spark Plug Co Ltd 湿度センサ
JPH05281177A (ja) * 1992-04-03 1993-10-29 Nok Corp ガスセンサ
JPH06165933A (ja) * 1992-09-29 1994-06-14 Mitsubishi Electric Corp 窒素酸化物選択吸着材料とその反応制御方法およびそれらを用いたガスの検出、吸着除去および分解装置
JPH11507729A (ja) * 1995-06-09 1999-07-06 アロマスキャン パブリック リミテッド カンパニー 統合センサ
JP2003014723A (ja) * 2001-07-05 2003-01-15 National Institute Of Advanced Industrial & Technology オゾン検知用材料およびオゾン検知方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007309A2 (en) * 2000-07-13 2002-01-24 Rutgers, The State University Of New Jersey Integrated tunable surface acoustic wave technology and sensors provided thereby
US7112860B2 (en) * 2003-03-03 2006-09-26 Cree, Inc. Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248057A (ja) * 1990-02-27 1991-11-06 Sanyo Electric Co Ltd ガスセンサー
JPH04236349A (ja) * 1991-01-18 1992-08-25 Ngk Spark Plug Co Ltd 湿度センサ
JPH05281177A (ja) * 1992-04-03 1993-10-29 Nok Corp ガスセンサ
JPH06165933A (ja) * 1992-09-29 1994-06-14 Mitsubishi Electric Corp 窒素酸化物選択吸着材料とその反応制御方法およびそれらを用いたガスの検出、吸着除去および分解装置
JPH11507729A (ja) * 1995-06-09 1999-07-06 アロマスキャン パブリック リミテッド カンパニー 統合センサ
JP2003014723A (ja) * 2001-07-05 2003-01-15 National Institute Of Advanced Industrial & Technology オゾン検知用材料およびオゾン検知方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083036A (ja) * 2006-08-28 2008-04-10 Hitachi Chem Co Ltd センサ基板およびこれを用いた複合センサ
US7659654B2 (en) 2007-03-22 2010-02-09 Seiko Epson Corporation Piezoelectrics oscillator, sensor, and multi-sensor
JP2009098084A (ja) * 2007-10-19 2009-05-07 Fujitsu Ltd 雰囲気分析装置及び雰囲気分析方法
JP2011038979A (ja) * 2009-08-18 2011-02-24 Fujitsu Ltd イオンセンサ、イオン分析装置、及びイオン分析方法
KR101355371B1 (ko) * 2012-05-29 2014-01-27 포항공과대학교 산학협력단 전기적 특성과 질량변화를 동시에 측정하는 수정 진동자 미세 저울 센서
JP2017167122A (ja) * 2016-03-11 2017-09-21 セイコーインスツル株式会社 圧電装置、圧電ユニット、測定装置、及び測定方法
JP2020514687A (ja) * 2017-01-17 2020-05-21 マトリックス センサーズ, インコーポレイテッドMatrix Sensors, Inc. 湿度補正付きガスセンサー
JP7041680B2 (ja) 2017-01-17 2022-03-24 マトリックス センサーズ,インコーポレイテッド 湿度補正付きガスセンサー
CN107290392A (zh) * 2017-07-31 2017-10-24 成都信息工程大学 一种高稳定性低湿度检测的qcm湿度传感器及其制备方法
CN107290241A (zh) * 2017-07-31 2017-10-24 成都信息工程大学 一种qcm湿度传感器及其制备方法
JP2020098113A (ja) * 2018-12-17 2020-06-25 株式会社東芝 分子検出装置
US11566977B2 (en) 2018-12-17 2023-01-31 Kabushiki Kaisha Toshiba Molecular detection apparatus

Also Published As

Publication number Publication date
JP4164580B2 (ja) 2008-10-15
JPWO2006006587A1 (ja) 2008-07-31
US20080022755A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4164580B2 (ja) ガス検知方法およびガスセンサ
Patil et al. An ultra-sensitive piezoresistive polymer nano-composite microcantilever sensor electronic nose platform for explosive vapor detection
US9038437B2 (en) Chemical sensor having a flexible member with III/N heterojunction
Korotcenkov et al. Sensing layers in work-function-type gas sensors
TWI427290B (zh) 一種氣體偵測裝置及其方法
JP2005528629A5 (ja)
JP4927785B2 (ja) 電界効果型センサ
JP2011080996A5 (ja)
KR100937260B1 (ko) 나노갭 전극을 이용한 나노입자 검출센서
US20120272728A1 (en) Hydrogen Sensor
US8516880B2 (en) Gas sensing system with quartz crystal substrate
RU2350936C1 (ru) Полупроводниковый газоанализатор
US20050235735A1 (en) Micro-structured gas sensor with control of gas sensitive properties by application of an electric field
JP2009133772A (ja) 検出センサ、振動子
CN106525921B (zh) 一种电化学检测器及其制造方法和检测目标物质的方法
KR20110075841A (ko) 수소 센서 및 그 제조방법
KR101130084B1 (ko) 수소 센서 및 그 제조방법
RU2400737C2 (ru) Датчик микропримесей аммиака
RU2469300C1 (ru) Полупроводниковый газоанализатор
JP2006220508A (ja) ガスセンサ
KR20120056915A (ko) 수소 센서 및 그 제조방법
CN102608172A (zh) 具有直流电极的薄膜体声波谐振生化传感器
KR20070072224A (ko) 초소형 마이크로 브리지 질량 센서를 이용한 인체바이오마커 센서 및 모듈
RU2652646C1 (ru) Датчик микропримесей аммиака
RU2613482C1 (ru) Полупроводниковый датчик аммиака

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006529055

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11632243

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11632243

Country of ref document: US