WO2006003785A1 - キャパシタの劣化判定方法 - Google Patents

キャパシタの劣化判定方法 Download PDF

Info

Publication number
WO2006003785A1
WO2006003785A1 PCT/JP2005/010847 JP2005010847W WO2006003785A1 WO 2006003785 A1 WO2006003785 A1 WO 2006003785A1 JP 2005010847 W JP2005010847 W JP 2005010847W WO 2006003785 A1 WO2006003785 A1 WO 2006003785A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
deterioration
inflection point
impedance
value
Prior art date
Application number
PCT/JP2005/010847
Other languages
English (en)
French (fr)
Inventor
Toshiaki Shimizu
Toshihiko Oohashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/564,507 priority Critical patent/US7212011B2/en
Priority to EP05751539A priority patent/EP1659414A4/en
Publication of WO2006003785A1 publication Critical patent/WO2006003785A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant

Definitions

  • the present invention relates to a method for determining deterioration of a capacitor in which an electrolytic solution is disposed between electrode bodies.
  • an electric double layer capacitor (hereinafter also simply referred to as a capacitor) is known.
  • An electric double layer capacitor uses a large electric double layer capacity by combining an electrode material with a large specific surface area and an electrochemically inert activated carbon and an electrolyte.
  • the characteristics of electric double layer capacitors are, for example, that they can be rapidly charged and discharged with a large current without an electrochemical reaction during charging and discharging, and have a higher output density than chemical cells. Electric double layer capacitors are expected to be applied to large current generation circuits, instantaneous compensation power supplies and load leveling circuits.
  • the internal electrolyte gradually evaporates with long-term use, and as a result, the degradation of the dry-up mode in which the internal resistance increases and the electrostatic capacity decreases progresses. Reach.
  • An example of a conventional method for determining deterioration of a capacitor is to add a low-frequency square wave signal as a measurement signal, integrate a predetermined portion of the response signal, and detect a change in the characteristics of the capacitor based on the integrated value. To do.
  • This deterioration determination method is disclosed in Japanese Patent Laid-Open No. 6-432024.
  • Another example is the control of energization of a capacitor, and the time when the voltage between the terminals reaches a predetermined value. When the voltage between the terminals of the capacitor reaches the deterioration reference voltage within a predetermined time, it is determined that the capacitor is in a degraded state. To do.
  • This deterioration determination method is disclosed in Japanese Patent Application Laid-Open No. 2001-297954.
  • the temperature rise on the surface of the capacitor is measured to determine deterioration.
  • the above-described deterioration determination method is disclosed in Japanese Patent Laid-Open No. 2001-85283.
  • technical capabilities related to the impedance characteristics of capacitors such as Brian E. Conway, "Electrochemical Capacitor Basics 'Materials'Application" issued by TN Corp., June 5, 2001, P. 393 — 401.
  • the conventional method for determining deterioration of a capacitor may require signal processing by a measurement signal source, a circuit unit such as an AZD converter, and a CPU, a measuring device may be expensive, and a method for detecting deterioration is complicated. Can be.
  • measurement accuracy may be a problem when determining deterioration due to the surface temperature of a capacitor.
  • the direct current voltage method directly measures the direct current voltage during charging and discharging, so that an accurate measurement result can be obtained. It can be consumed. Also, the AC impedance method uses less frequency power because it uses the frequency characteristics of AC voltage. However, if the capacitor is in a state of further deterioration, it will be smaller than the value obtained by the DC voltage method, and the force will also deteriorate, and it may be determined that the reliability will be low. It is possible.
  • the present invention provides a method for determining deterioration of a capacitor by an AC impedance method with improved measurement accuracy and improved reliability.
  • an AC voltage is applied to a capacitor including a pair of electrode bodies and an electrolytic solution disposed between the electrode bodies, and impedance characteristics depending on the frequency of the AC voltage are obtained.
  • This is a method of performing deterioration determination by measuring.
  • the inflection point that appears in the impedance characteristics due to deterioration of the electrolyte is obtained in advance, and the impedance in the frequency region lower than the inflection point is obtained.
  • the deterioration determination is performed by comparing the characteristic value based on the value with a predetermined characteristic value.
  • FIG. 1 is a circuit diagram for explaining a method for determining deterioration of a capacitor in a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a capacitor for explaining a method for determining deterioration of a capacitor in an embodiment of the present invention.
  • FIG. 3 is an impedance characteristic diagram of the capacitor.
  • FIG. 4 is a flow chart of the degradation determination method.
  • FIG. 5 is a characteristic diagram of a DCRZZ ratio of a capacitor deterioration limit for explaining a capacitor deterioration determination method in a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of an electric double layer capacitor for illustrating a method for determining deterioration of a capacitor in an example of the present invention.
  • FIG. 1 is a circuit diagram for explaining a method for determining deterioration of a capacitor in the first embodiment of the present invention.
  • a voltage is applied from the input power supply unit 50 so that the load unit 51 is operated, and a part thereof charges the electric double layer capacitor 52.
  • the power is supplied from the capacitor 52 to the load 51 when the input power supply 50 becomes abnormal or when high power is required.
  • Capacitor 52 deteriorates due to long-term use and usage environment.
  • the deterioration measuring unit 53 measures and determines the deterioration of the capacitor 52, and if it is determined to be deteriorated, the abnormality display unit 54 gives a warning or a display.
  • the shape of the electric double layer capacitor for explaining the method of determining the deterioration of the capacitor in the embodiment of the present invention includes a coin type for memory backup and a cylindrical type for power.
  • a coin type (not shown)
  • a disk-shaped lower electrode, separator, and upper electrode are sequentially laminated on a short cylindrical metal case with an open top, and an electrolyte is injected into the inside.
  • a gasket for insulation and sealing is housed in the inner peripheral edge of the metal case, and the upper surface is covered with a metal lid so that the metal case and the metal lid are not in direct contact with each other and are crimped.
  • the electric double layer capacitor 28 is configured as follows.
  • Capacitor element 20 uses a strip-shaped metal foil, punched metal, expanded metal, or the like as a current collector. Apply a polarization electrode such as activated carbon, carbon and binder on both sides or one side of the current collector, and prepare two of them. Between these current collectors, an insulating strip and a separator for holding an electrolyte solution are also interposed in the same manner. Connect one electrode terminal 21 to each current collector.
  • the capacitor element 20 is configured by winding them in a spiral shape and finally fixing with an adhesive tape 22.
  • the electrode terminal 21 of the capacitor element 20 is connected to an eyelet fitting 27 provided on the sealing body 24.
  • the capacitor element 20 is accommodated by projecting the lead terminal 26 to the outside in a metal case 23 having a bottomed cylindrical shape and having a concave groove 25 in the vicinity of the upper end.
  • An electrolytic solution (not shown) is injected, and the upper end of the metal case 23 is folded inward to seal it.
  • FIG. 2 is a cross-sectional view of another capacitor for explaining deterioration judgment of the capacitor in the embodiment of the present invention.
  • the capacitor includes a pair of electrode bodies 1 and an electrolytic solution 3 disposed between the electrode bodies 1. Then, inside the nosing 4 filled with the electrolyte 3, a pair of electrode bodies 1, a separator 2 disposed between the electrode bodies 1, a lead terminal 5 connected to each electrode body 1, and a housing 4 And a sealing body 6 for sealing.
  • the electrode body 1 is formed by coating activated carbon lb on the wall surface of a current collector la made of a metal such as aluminum.
  • the separator 2 can be omitted if the electrolyte 3 has a high viscosity such as a gel.
  • the deterioration determination of the capacitor is performed by the deterioration measuring unit 53 measuring and determining by the AC impedance method.
  • the AC impedance method can perform very power-saving measurement, but it is important to improve the measurement accuracy and improve the reliability of the measurement results.
  • FIG. 3 is a diagram showing impedance characteristics of the capacitor in the first embodiment of the present invention.
  • An AC voltage is applied to the capacitor of this embodiment, and the impedance characteristics depending on the frequency of the AC voltage are measured.
  • the vertical axis in the figure is the impedance value
  • the horizontal axis is the frequency when a constant AC voltage is applied. Both the vertical axis and the horizontal axis are logarithmic axes.
  • the impedance characteristic at the initial stage of use of the capacitor of this example is the characteristic impedance locus. It looks like 7.
  • the use of this capacitor increases the resistance component of the electrolyte 3, activated carbon lb, and current collector la constituting the capacitor itself, the so-called equivalent series resistance (ESR) 9, and the impedance characteristics are It looks like locus 8.
  • ESR equivalent series resistance
  • the equivalent series resistance further increases, and the degradation product of the electrolytic solution 3 appears in the electrolytic solution 3, and the degradation product is separated into the surface of the activated carbon lb. Will become attached to. Then, a resistance component against the movement of ions, a so-called diffusion resistance component 10 is formed, and the impedance characteristic becomes a locus 11 having an inflection point 12 generated by the deterioration of the electrolytic solution.
  • the present invention is based on the existence of the inflection point 12, and has an impedance value in the frequency region 13 that is lower than the upper inflection point 12 and lower than another inflection point 16 that is convex downward. judge.
  • another inflection point 16 is an inflection point 16 at which the impedance value changes from the region 14 where the impedance value suddenly decreases from the frequency 0 to the region 13 where the impedance value gradually decreases.
  • the capacitor deterioration judgment method of the present embodiment can obtain highly accurate results that are almost the same as the measurement results derived from the DC voltage method, and at the same time the power saving measurement that is the merit of the AC impedance method. Can be realized.
  • FIG. 4 is a flowchart showing the steps of the capacitor deterioration determination method according to the first embodiment of the present invention.
  • the deterioration characteristics of the same type of electric double layer capacitor as the capacitor 52 to be used are obtained.
  • a load 2.0 to 2.5 V
  • impedance characteristics after 10,000 to 15000 hours are measured. This deterioration characteristic can be shortened by further increasing the temperature.
  • the inflection point 12 generated by the deterioration of the electrolytic solution is obtained from the impedance characteristics at the time of deterioration, the frequency lower than the inflection point 12 is determined as the measurement frequency, and the frequency and impedance value are determined.
  • the deterioration measuring unit 53 Store in the deterioration measuring unit 53.
  • the product design capability of the circuit incorporating the capacitor 52 also determines the degradation limit impedance value of the capacitor 52 and stores it in the degradation measurement unit 53 (Sl).
  • the capacitor 52 gradually deteriorates.
  • the capacitor 52 The AC voltage is applied tl, and the impedance value is measured at a preset frequency (S2).
  • the measured impedance value is compared with the impedance value of the deterioration limit stored in advance in the deterioration measuring unit 53 (S3). If the measured impedance value is less than the degradation limit impedance value, it is determined that there is no abnormality (No in S4), and the capacitor 52 is used continuously. On the other hand, if the measured impedance value exceeds the deterioration limit impedance value, it is determined that the capacitor 52 has deteriorated (Yes in S4), and the abnormality display unit 54 displays a replacement request with a warning lamp or the like (S5). .
  • the capacitor deterioration determination method determines the capacitor deterioration based on the impedance value in the frequency region 13 lower than the inflection point 12 of the impedance characteristic. As a result, the deterioration of the capacitor can be determined with high accuracy, the determination reliability can be improved, and the power used for the measurement can also be reduced.
  • the capacitor deterioration is determined by measuring at a frequency higher than the inflection point 12 of the AC impedance characteristic, as shown in Fig. 3, even if the capacitor is deteriorated, the impedance value Since the value is low, a large error may occur in the deterioration determination of the capacitor, and the accuracy of the deterioration determination may deteriorate.
  • FIG. 1 is a basic circuit when the electric double layer capacitor 52 is used in the present embodiment, and the present invention is not limited to this circuit configuration.
  • FIG. 5 is a graph showing the DCRZZ ratio of the capacitor degradation limit in the second embodiment of the present invention. Both the vertical and horizontal axes are logarithmic axes.
  • the DCRZZ ratio at a frequency lower than the inflection point 15 at the capacitor degradation limit is acquired and stored in the degradation measurement unit 53.
  • the capacitor 52 gradually deteriorates.
  • the AC voltage is imprinted at a predetermined time interval according to a preset frequency. Measure ZR as well as DCR. If the measured DCRZZ ratio is less than or equal to the degradation limit DCRZZ ratio stored in advance in the degradation measuring unit 53, the capacitor is judged to have deteriorated and the capacitor is used continuously. If the measured DCRZZ ratio exceeds the degradation limit DCRZZ ratio, it is judged that the capacitor has deteriorated and a warning lamp or the like is displayed.
  • the capacitor deterioration determination method according to the present embodiment can improve the measurement accuracy of the AC impedance method and improve the determination reliability.
  • a capacitor deterioration determination method will be described with reference to FIG.
  • the region 14 in which the impedance value power frequency of the capacitor rapidly decreases from 0 is a capacitive frequency region in which the capacitance component of the power gradient accompanying the capacitor self-discharge is shown. It is possible to determine the deterioration of the capacitor by the capacitive frequency region 14.
  • the measurement of the impedance value using the alternating current impedance method and the measurement of the capacitance component using the self-discharge of the capacitor have a small voltage fluctuation in order to increase the accuracy. It is desirable to do this when the capacitor is not used.
  • the 1S described in the case where the capacitor is an electric double layer capacitor is not limited to this embodiment.
  • a capacitor including a pair of electrode bodies and an electrolytic solution disposed between the electrode bodies a redox capacitor has the same effect.
  • the method for determining deterioration of a capacitor in which an electrolytic solution is disposed between electrode bodies according to the present invention has an effect that power can be saved, and is particularly useful in in-vehicle applications where downsizing is required.

Abstract

 測定精度を高めて信頼性を向上した交流インピーダンス法によるキャパシタの劣化判定方法が開示されている。このキャパシタの劣化判定方法は、一対の電極体と電極体間に配置された電解液とを備えたキャパシタに交流電圧を印加して、交流電圧の周波数によるインピーダンス特性を測定して劣化判定を行う方法である。電解液の劣化によってインピーダンス特性に現れる変曲点(12)を予め求め、変曲点(12)より低い周波数領域(13)のインピーダンス値を比較して劣化判定を行うようにした。

Description

明 細 書
キャパシタの劣化判定方法
技術分野
[0001] 本発明は、電極体間に電解液を配置したキャパシタの劣化判定方法に関する。
背景技術
[0002] 電極体間に電解液を配置したキャパシタとして、例えば、電気二重層キャパシタ(以 下、単にキャパシタとも略記する)が知られている。電気二重層キャパシタは、電極材 料の比表面積が大きぐかつ、電気化学的に不活性の活性炭と、電解質とを組み合 わせて、大きな電気二重層容量を利用する。電気二重層キャパシタの特徴は、たとえ ば、充放電の際に電気化学反応を伴わず、大電流での急速充放電が可能であり、 化学電池と比較して出力密度が大きいことである。電気二重層キャパシタは、大電流 発生回路、瞬時補償電源やロードレべリング回路などへの応用が期待されている。
[0003] 上記キャパシタは、長時間の使用により内部の電解液が徐々に蒸発し、その結果、 内部抵抗が増大し、静電容量が減少するというドライアップモードの劣化が進行し、 いずれ寿命に達する。
[0004] 従来のキャパシタの劣化判定方法の一例は、測定信号として低周波の方形波信号 を加えるとともに、その応答信号の所定部分を積分し、その積分値に基づいてキャパ シタの特性変化を検出する。この劣化判定方法は、特開平 6— 432024号に開示さ れている。また、別の一例は、キャパシタの通電制御を行い、その端子間電圧が所定 値に達した時点力 所定時間内にキャパシタの端子間電圧が劣化基準電圧に達し た場合に劣化状態にあると判定する。この劣化判定方法は、特開 2001— 297954 号に開示されている。
[0005] さらに、別の一例は、キャパシタの表面の温度上昇を測定し劣化を判定する。前述 の劣化判定方法は、特開 2001— 85283号に開示されている。また、キャパシタのィ ンピーダンス特性に関する技術力、例えば、 Brian E. Conway著「電気化学キャパ シタ 基礎 '材料'応用」株式会社ェヌ'ティー'エス発行、 2001年 6月 5日、 P. 393 —401に開示されている。 [0006] しかしながら、従来のキャパシタの劣化判定方法は、測定信号源、 AZD変換器等 の回路部及び CPUによる信号処理が必要となり得、測定する装置が高価になり得、 劣化検出の手法も複雑になり得る。また、キャパシタの表面温度による劣化判定は、 測定精度が問題となり得る。
[0007] また、一般に公知の従来の電解キャパシタの劣化判定方法は、測定されたデータ の蓄積が莫大になり得、そのデータに基づいて劣化を判定する回路装置も高価で複 雑になり得る。
[0008] さらに、電気二重層キャパシタのような電極体間に電解液を配置したキャパシタの 劣化判定を行う場合、その容量成分と直流コンデンサ抵抗 (以下、 DCRと称す)成分 とを測定し、その測定結果を基に判断を行う方法も考えられる。これらの容量成分と DCR成分との測定は、直流電圧法と交流インピーダンス法とが知られている。直流 電圧法は、キャパシタを充放電する際の直流電圧の挙動を基にそれらを測定する。 交流インピーダンス法は、キャパシタに対して交流電圧を印加し、そのインピーダンス 値からそれらを導き出す。
[0009] 直流電圧法は、充放電における直流電圧から直接測定するため正確な測定結果 が得られる反面、充放電のためにキャパシタ内の電荷の多くを使用するため、劣化 判定に多くの電力が消費されてしまうということがあり得る。また、交流インピーダンス 法は、交流電圧の周波数特性を利用するため消費電力は少なくてすむ。しかし、キ ャパシタの劣化が進んだ状態にぉ 、て直流電圧法で求めた値よりも小さくなり、あた 力も劣化して 、な 、ものと判定しまうことがあり得、その信頼性が低くなることがあり得 る。
発明の開示
[0010] 本発明は、測定精度を高めて信頼性を向上した交流インピーダンス法によるキャパ シタの劣化判定方法を提供する。
[0011] 本発明のキャパシタの劣化判定方法は、一対の電極体と電極体間に配置された電 解液とを備えたキャパシタに交流電圧を印加して、交流電圧の周波数によるインピー ダンス特性を測定して劣化判定を行う方法である。電解液の劣化によってインピーダ ンス特性に現れる変曲点を予め求め、変曲点より低い周波数領域のインピーダンス 値に基づく特性値を予め定めた特性値と比較して劣化判定を行うようにした。本方法 によって、キャパシタの劣化判定における測定精度が高められるとともに、その判定 に要する消費電力を抑制することができる。
図面の簡単な説明
[0012] [図 1]図 1は本発明の第 1実施例におけるキャパシタの劣化判定方法を説明する為の 回路図である。
[図 2]図 2は本発明の実施例におけるキャパシタの劣化判定方法を説明する為のキヤ パシタの断面図である。
[図 3]図 3は同キャパシタのインピーダンス特性図である。
[図 4]図 4は同劣化判定方法のフロー図である。
[図 5]図 5は本発明の第 2実施例におけるキャパシタの劣化判定方法を説明する為の キャパシタの劣化限界の DCRZZ比の特性図である。
[図 6]図 6は本発明の実施例におけるキャパシタの劣化判定方法を説明する為の電 気二重層キャパシタの断面図である。
符号の説明
[0013] 1 電極体
la 集電体
lb 活性炭
2 セパレータ
3 電解液
4 ハウジング
5, 26 リード端子
6, 24 封口体
7, 8, 11 特'性インピーダンス軌跡
10 拡散抵抗成分
12, 15, 16 変曲点
13 DCR測定周波数領域
14 容量性周波数領域 20 コンデンサ素子
21 電極端子
22 粘着テープ
23 金属ケース
25 凹溝
27 ハトメ金具
28, 52 電気二重層キャパシタ
50 入力電源部
51 負荷部
53 劣化測定部
54 異常表示部
発明を実施するための最良の形態
[0014] 以下、本発明の実施例について、図面を用いて説明する。
[0015] (第 1実施例)
図 1は、本発明の第 1実施例におけるキャパシタの劣化判定方法を説明する為の 回路図である。同図は、入力電源部 50より電圧を印加して負荷部 51を動作するよう にしたものであり、その一部は電気二重層キャパシタ 52を充電する。そして、入力電 源部 50が異常になった場合や高電力が必要となった場合などに、キャパシタ 52より 電力を負荷部 51に供給するようになっている。キャパシタ 52は、長時間の使用や使 用環境等により劣化する。劣化測定部 53は、キャパシタ 52の劣化を測定して判定し 、劣化と判定した場合は、異常表示部 54が警報や表示等で報知する。
[0016] 本発明の実施例におけるキャパシタの劣化判定方法を説明する為の電気二重層 キャパシタの形状としては、メモリバックアップ用のコイン型と、パワー用の円筒型とが ある。コイン型(図示せず)は、上端を開口した背の低い円筒形の金属ケースに、円 板状の下部電極、セパレータ、上部電極を順次積層し、内部に電解液を注入したも のである。金属ケースの内周縁部に、絶縁と封止のためのガスケットを収納し、上面 に金属蓋を被せ、金属ケースと金属蓋とが直接接触しな 、ようにしてカシメ加工した 構成である。 [0017] また、本発明の実施例におけるキャパシタの劣化判定方法を説明する為の円筒形 の電気二重層キャパシタの構成を図 6に示す。図 6において、電気二重層キャパシタ 28は、次のように構成されている。コンデンサ素子 20は、細長帯状の金属箔、パン チングメタル、エキスパンドメタルなどを集電体とする。この集電体の両面又は片面に 、活性炭とカーボンとバインダカゝらなる分極電極を塗布し、これを 2枚用意する。これ ら集電体の間に、同様に細長帯状で絶縁と電解液保持のためのセパレータとを介在 する。それぞれの集電体に、 1本づっ電極端子 21を接続する。そして、コンデンサ素 子 20は、これらを渦巻状に卷回して、最後に粘着テープ 22で固定して構成される。 コンデンサ素子 20の電極端子 21は、封口体 24に設けられたハトメ金具 27に接続さ れる。有底筒状で、上端部付近に凹溝 25を形成した金属ケース 23に、リード端子 26 を外部に突出させて、コンデンサ素子 20を収納する。電解液(図示せず)を注入し、 金属ケース 23の上端部を内側に折り曲げて密封する。
[0018] 図 2は、本発明の実施例におけるキャパシタの劣化判定を説明する為の他のキヤ パシタの断面図である。このキャパシタは、一対の電極体 1と、電極体 1間に配置され た電解液 3とを備える。そして、電解液 3で満たされたノヽウジング 4の内部に、一対の 電極体 1と、電極体 1間に配置されたセパレータ 2と、各電極体 1に接続されたリード 端子 5と、ハウジング 4を密封する封口体 6とを備える。電極体 1は、アルミニウムなど の金属からなる集電体 laの壁面に、活性炭 lbを被覆することで形成される。電解液 3がゲル状などの粘性の高!、ものであれば、セパレータ 2を省くことも可能である。
[0019] 本発明の第 1実施例におけるキャパシタの劣化判定は、劣化測定部 53が、交流ィ ンピーダンス法により、測定して判定を行うものである。交流インピーダンス法では、 非常に省電力な測定を行うことができるが、測定精度を高め、その測定結果の信憑 性を向上することが重要になる。
[0020] 図 3は、本発明の第 1実施例におけるキャパシタのインピーダンス特性を示す図で ある。本実施例のキャパシタに交流電圧を印加し、その交流電圧の周波数によるイン ピーダンス特性を測定する。同図の縦軸はインピーダンス値で、横軸は一定の交流 電圧を印加したときの周波数である。縦軸および横軸は、共に対数軸である。本実施 例のキャパシタにおける使用初期のインピーダンス特性は、特性インピーダンス軌跡 7のようになる。そして、本キャパシタが使用されることにより、キャパシタを構成する電 解液 3、活性炭 lb、集電体 laの構成要素自体の抵抗成分、いわゆる等価直列抵抗 (ESR) 9が増加し、インピーダンス特性は軌跡 8のようになる。
[0021] さらにキャパシタが使用されていくと、等価直列抵抗がさらに増加するとともに、電 解液 3の劣化物が電解液 3中に現れ出し、その劣化物が活性炭 lbの表面ゃセパレ ータ 2に付着するようになる。そして、イオンの移動に対する抵抗成分、いわゆる拡散 抵抗成分 10が構成されるようになり、インピーダンス特性は、電解液の劣化によって 発生する変曲点 12を有した軌跡 11のようになる。
[0022] 本発明は、変曲点 12の存在を踏まえ、上側に凸状の変曲点 12より低ぐ下側に凸 状の別の変曲点 16よりも高い周波数領域 13のインピーダンス値で判定する。但し、 別の変曲点 16とは、インピーダンス値が周波数 0から急激に減少する領域 14から、 なだらかに減少する領域 13に変わる変曲点 16のことである。これにより、本実施の形 態のキャパシタの劣化判定方法は、直流電圧法から導き出される測定結果とほぼ一 致した精度の高い結果を得ることができるとともに、交流インピーダンス法のメリットで ある省電力測定を実現することができる。
[0023] 図 4は、本発明の第 1実施例におけるキャパシタの劣化判定方法のステップを示す フロー図である。
[0024] まず、使用されるキャパシタ 52と同タイプの電気二重層キャパシタの劣化特性を得 る。本実施例においては、劣化特性を得る為のキャパシタに、温度 50°Cで、負荷(2 . 0〜2. 5V)を印加し、 10000〜 15000時間後のインピーダンス特性を測定する。 この劣化特性は温度をさらに高くすることにより時間を短くすることもできる。
[0025] この劣化させたときのインピーダンス特性から、電解液の劣化によって発生する変 曲点 12を求め、この変曲点 12よりも低い周波数を測定周波数として決定し、その周 波数とインピーダンス値を劣化測定部 53に記憶させる。また、キャパシタ 52を組み込 まれた回路の製品設計力もキャパシタ 52の劣化限界インピーダンス値を決め、劣化 測定部 53に記憶させる(Sl)。
[0026] そして、キャパシタ 52を組み込んだ回路を動作させることにより、キャパシタ 52が徐 々に劣化する。この回路の動作中に、予め決めた所定時間ごとに、キャパシタ 52に 交流電圧を印力 tlして、予め設定した周波数でインピーダンス値を測定する(S2)。
[0027] 測定されたインピーダンス値と予め劣化測定部 53に記憶させた劣化限界のインピ 一ダンス値とを比較する(S3)。測定されたインピーダンス値が劣化限界のインピーダ ンス値以下であれば異常なしと判断して(S4の No)、キャパシタ 52を続けて使用する 。一方、測定したインピーダンス値が劣化限界のインピーダンス値を超える場合は、 キャパシタ 52が劣化したと判断して(S4の Yes)、異常表示部 54は警告ランプなどで 、交換要求を表示する(S5)。
[0028] 以上のように、本実施例のキャパシタの劣化判定方法は、インピーダンス特性の変 曲点 12より低い周波数領域 13におけるインピーダンス値で、キャパシタの劣化を判 定する。これにより、キャパシタの劣化を、精度良く判定でき、判定の信頼性が向上で き、その測定に用いる電力も省電力にすることができる。
[0029] なお、キャパシタの劣化判定を、交流インピーダンス特性の変曲点 12よりも高い周 波数で測定して判定しょうとすると、図 3に示すように、キャパシタが劣化していても、 インピーダンス値は低 、値を示すので、キャパシタの劣化判定に大きな誤差が生じ 得、劣化判定の精度が悪くなり得る。
[0030] なお、図 1は、本実施例において電気二重層キャパシタ 52を使用する場合の基本 回路であり、本発明はこの回路構成に限定されない。
[0031] (第 2実施例)
本発明の第 2実施例におけるキャパシタの劣化判定方法では、まず、キャパシタの 劣化限界の特性を、まず直流電圧法により、その DCRを測定する。次に、第 1実施 例と類似の方法で、劣化限界の交流インピーダンス特性 (以下、 Zと記す)を測定する 。そして、先に得た DCRと Zとの相関(DCRZZ)を求める。図 5は、本発明の第 2実 施例におけるキャパシタの劣化限界の DCRZZ比を示す図である。縦軸および横軸 は、共に対数軸である。
[0032] 図 5より、キャパシタの劣化限界における変曲点 15より低い周波数の DCRZZ比を 取得し、劣化測定部 53に記憶させる。そして、第 1実施例と同様に、キャパシタ 52を 組み込んだ回路を動作させると、キャパシタ 52が徐々に劣化する。この回路の動作 中に、予め決めた所定時間ごとに、交流電圧を印カロして、予め設定した周波数によ る Zを測定すると共に、 DCRも測定する。測定した DCRZZ比が、予め劣化測定部 5 3に記憶させた劣化限界の DCRZZ比以下であれば、キャパシタは劣化して 、な ヽ と判断して、キャパシタを続けて使用する。もし、測定した DCRZZの比が劣化限界 の DCRZZ比を超えた場合は、キャパシタが劣化したと判断して、警告ランプなどで 表示させるようにする。
[0033] 以上のように、本実施例によるキャパシタの劣化判定方法は、交流インピーダンス 法の測定精度を高め、判定の信頼性が向上できる。
[0034] (第 3実施例)
本発明の第 3実施例におけるキャパシタの劣化判定方法を、図 3を用いて説明する 。図 3において、キャパシタのインピーダンス値力 周波数 0から急激に減少する領域 14は、キャパシタの自己放電に伴う電力勾配の容量成分を現す容量性周波数領域 である。この容量性周波数領域 14によりキャパシタの劣化判定を行うことができる。
[0035] 本実施例によれば、自己放電を利用することで、キャパシタの劣化判定に要する電 力消費を抑制できる。
[0036] なお、本発明にお 、て、交流インピーダンス法を用いたインピーダンス値の測定や 、キャパシタの自己放電を用いた容量成分の測定は、その精度を高めるために、電 圧変動の少ない、キャパシタの非使用時に、行うことが望ましい。
[0037] また、昨今、燃料電池車などの車載用電源として、この電気二重層キャパシタを用 いることが提案されている。特に車載用の電源のように、その容量が限られる場合に は、電源の電力消費を極力抑制することが望まれる。このような分野において、先に 述べた交流インピーダンス法を用いたインピーダンス値の測定や、キャパシタの自己 放電を用いた容量成分の測定が有効となる。また、劣化判定の精度をより高めるため には、車載用電源においても、電圧変動の少ない、電源の非使用時に測定すること が望ましい。
[0038] また、本実施例にお!、ては、キャパシタを電気二重層キャパシタの場合で説明した 1S 本発明はこの実施例に限定されない。一対の電極体と、電極体間に配置された 電解液とを備えたキャパシタとしては、レドックスキャパシタであっても同様の効果を 奏する。 産業上の利用可能性
本発明にかかる電極体間に電解液を配置したキャパシタの劣化判定方法は、省電 力化できるという効果を有し、特に小型化が要望される車載用途等において有用で ある。

Claims

請求の範囲
[1] 一対の電極体と前記電極体間に配置された電解液とを備えたキャパシタに交流電圧 を印加して、前記交流電圧の周波数によるインピーダンス特性を測定して劣化判定 を行う方法であって、
前記電解液の劣化によって前記インピーダンス特性に現れる変曲点を予め求め、前 記変曲点より低い周波数領域のインピーダンス値に基づく特性値を、予め定めた特 性値と比較して、劣化判定を行うようにしたキャパシタの劣化判定方法。
[2] 横軸を右に行くほど周波数が高ぐ縦軸を上に行くほどインピーダンス値が高くなるよ う、前記インピーダンス特性を表示した場合に、前記変曲点は上側に凸状の第 1の変 曲点であり、さらに、前記変曲点とは異なる下側に凸状の変曲点を第 2の変曲点とす る請求項 1に記載のキャパシタの劣化判定方法。
[3] 前記特性値は、前記第 1の変曲点より低ぐかつ、前記第 2の変曲点より高い周波数 におけるインピーダンス値である請求項 2に記載のキャパシタの劣化判定方法。
[4] 前記特性値は、前記第 1の変曲点より低ぐかつ、前記第 2の変曲点より高い周波数 において、予め劣化することにより求めたインピーダンス値と直列コンデンサ抵抗値と の相関により求めた値である請求項 2に記載のキャパシタの劣化判定方法。
[5] 前記特性値は、前記第 1の変曲点より低ぐさらに前記第 2の変曲点よりも低い周波 数において、前記キャパシタの自己放電に伴う電圧変化に基づき得られた容量成分 である請求項 2に記載のキャパシタの劣化判定方法。
PCT/JP2005/010847 2004-06-30 2005-06-14 キャパシタの劣化判定方法 WO2006003785A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/564,507 US7212011B2 (en) 2004-06-30 2005-06-14 Capacitor deterioration judgment method
EP05751539A EP1659414A4 (en) 2004-06-30 2005-06-14 METHOD FOR ASSESSING CONDENSATE EXPLOITATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-193649 2004-06-30
JP2004193649 2004-06-30

Publications (1)

Publication Number Publication Date
WO2006003785A1 true WO2006003785A1 (ja) 2006-01-12

Family

ID=35782597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010847 WO2006003785A1 (ja) 2004-06-30 2005-06-14 キャパシタの劣化判定方法

Country Status (4)

Country Link
US (1) US7212011B2 (ja)
EP (1) EP1659414A4 (ja)
CN (1) CN100460879C (ja)
WO (1) WO2006003785A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210404403A1 (en) * 2020-06-29 2021-12-30 Denso Corporation Injection control device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11337728B2 (en) 2002-05-31 2022-05-24 Teleflex Life Sciences Limited Powered drivers, intraosseous devices and methods to access bone marrow
CA2485904C (en) 2002-05-31 2013-05-21 Vidacare Corporation Apparatus and method to access the bone marrow
US10973545B2 (en) 2002-05-31 2021-04-13 Teleflex Life Sciences Limited Powered drivers, intraosseous devices and methods to access bone marrow
US8668698B2 (en) 2002-05-31 2014-03-11 Vidacare Corporation Assembly for coupling powered driver with intraosseous device
US8641715B2 (en) 2002-05-31 2014-02-04 Vidacare Corporation Manual intraosseous device
US9504477B2 (en) 2003-05-30 2016-11-29 Vidacare LLC Powered driver
EP1708621B1 (en) 2004-01-26 2009-03-18 Vidacare Corporation Manual interosseous device
US20070173712A1 (en) 2005-12-30 2007-07-26 Medtronic Minimed, Inc. Method of and system for stabilization of sensors
US20070169533A1 (en) 2005-12-30 2007-07-26 Medtronic Minimed, Inc. Methods and systems for detecting the hydration of sensors
US8114269B2 (en) 2005-12-30 2012-02-14 Medtronic Minimed, Inc. System and method for determining the point of hydration and proper time to apply potential to a glucose sensor
US8944069B2 (en) 2006-09-12 2015-02-03 Vidacare Corporation Assemblies for coupling intraosseous (IO) devices to powered drivers
WO2009148160A1 (ja) * 2008-06-06 2009-12-10 株式会社 明電舎 キャパシタの余寿命診断装置および余寿命診断装置を備えた電力補償装置
US9318944B2 (en) * 2013-04-29 2016-04-19 Rockwell Automation Technologies, Inc. Methods and apparatus for active front end filter capacitor degradation detection
JP6354397B2 (ja) 2014-07-04 2018-07-11 富士通株式会社 電源装置、制御装置及びそのプログラム
JP7030618B2 (ja) * 2018-06-04 2022-03-07 新電元工業株式会社 劣化判定装置、及び電源装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142017A (ja) * 1990-10-02 1992-05-15 Osaka Titanium Co Ltd 電気二重層電池
JPH0843507A (ja) * 1994-08-04 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> Ni系電池の劣化状態検知方法
JP2002267708A (ja) * 2001-03-13 2002-09-18 Toshiba Corp 電解コンデンサの劣化診断方法および装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216424A (en) * 1978-10-30 1980-08-05 Vette Carl W Method and apparatus for testing electrolytic capacitors
JPH06342024A (ja) 1993-06-02 1994-12-13 Okamura Kenkyusho:Kk 電気二重層コンデンサの劣化検出方法
JP3574708B2 (ja) * 1995-01-11 2004-10-06 アジレント・テクノロジーズ・インク 実装部品の極性判別方法
JP3114653B2 (ja) * 1997-05-09 2000-12-04 株式会社村田製作所 コンデンサの絶縁抵抗測定方法および特性選別装置
US6151969A (en) * 1998-07-14 2000-11-28 Southwest Research Institute Electromechanical and electrochemical impedance spectroscopy for measuring and imaging fatigue damage
FR2797345B1 (fr) * 1999-08-04 2002-03-29 Univ Claude Bernard Lyon Procede et dispositif pour determiner individuellement l'etat de vieillissement d'un condensateur
JP2001085283A (ja) 1999-09-17 2001-03-30 Elna Co Ltd 電気二重層コンデンサの劣化検出方法及び装置
JP4372311B2 (ja) 2000-04-11 2009-11-25 本田技研工業株式会社 電気二重層コンデンサの劣化検出装置
JP3890951B2 (ja) * 2001-10-18 2007-03-07 株式会社村田製作所 コンデンサの良否判定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142017A (ja) * 1990-10-02 1992-05-15 Osaka Titanium Co Ltd 電気二重層電池
JPH0843507A (ja) * 1994-08-04 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> Ni系電池の劣化状態検知方法
JP2002267708A (ja) * 2001-03-13 2002-09-18 Toshiba Corp 電解コンデンサの劣化診断方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1659414A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210404403A1 (en) * 2020-06-29 2021-12-30 Denso Corporation Injection control device
US11525418B2 (en) * 2020-06-29 2022-12-13 Denso Corporation Injection control device

Also Published As

Publication number Publication date
EP1659414A1 (en) 2006-05-24
US20060220661A1 (en) 2006-10-05
EP1659414A4 (en) 2012-12-19
CN100460879C (zh) 2009-02-11
US7212011B2 (en) 2007-05-01
CN1860373A (zh) 2006-11-08

Similar Documents

Publication Publication Date Title
WO2006003785A1 (ja) キャパシタの劣化判定方法
Jossen Fundamentals of battery dynamics
Stoller et al. Best practice methods for determining an electrode material's performance for ultracapacitors
Briat et al. Impact of calendar life and cycling ageing on supercapacitor performance
US7136762B2 (en) System for calculating remaining capacity of energy storage device
KR102009636B1 (ko) 셀의 성능 측정방법
JP4864383B2 (ja) 蓄電デバイスの劣化状態推定装置
JP4638195B2 (ja) バッテリの劣化度推定装置
JP2007024687A (ja) バッテリ管理システム
WO2013076556A1 (en) Fuel cell system and method for controlling fuel cell system
CN106997026B (zh) 用于确定铅酸蓄电池的剩余电容量的方法和装置
JP3562633B2 (ja) キャパシタ無停電電源装置
JP2006038495A (ja) 蓄電デバイスの残存容量演算装置
JP2006098134A (ja) 蓄電デバイスの残存容量演算装置
JP4525469B2 (ja) キャパシタの劣化判定方法
CN111066197B (zh) 确定电能存储单元的状态的方法、执行该方法的相应设备以及相应的电能存储单元
JP4519551B2 (ja) 蓄電デバイスの残存容量演算装置
US5917309A (en) Charger for electrically charging a capacitor
JP5934567B2 (ja) 電極故障診断装置
JP4519518B2 (ja) 蓄電デバイスの残存容量演算装置
JP2002151366A (ja) 電気二重層キャパシタの検査方法
Diab et al. Electrical, frequency and thermal measurement and modelling of supercapacitor performance
El Brouji et al. Ageing assessment of supercapacitors during calendar life and power cycling tests
JPH1123680A (ja) 鉛蓄電池の寿命判定方法および寿命判定装置
Wei et al. Deterioration diagnosis of ultracapacitor for power electronics applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001090.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005751539

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006220661

Country of ref document: US

Ref document number: 10564507

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2005751539

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10564507

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE