WO2006001180A1 - 円偏波ループアンテナ - Google Patents

円偏波ループアンテナ Download PDF

Info

Publication number
WO2006001180A1
WO2006001180A1 PCT/JP2005/010619 JP2005010619W WO2006001180A1 WO 2006001180 A1 WO2006001180 A1 WO 2006001180A1 JP 2005010619 W JP2005010619 W JP 2005010619W WO 2006001180 A1 WO2006001180 A1 WO 2006001180A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
loop antenna
circularly polarized
antenna
conductor
Prior art date
Application number
PCT/JP2005/010619
Other languages
English (en)
French (fr)
Inventor
Tatsuhiko Iwasaki
Original Assignee
Furuno Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co., Ltd. filed Critical Furuno Electric Co., Ltd.
Priority to US11/630,843 priority Critical patent/US7768467B2/en
Priority to GB0625823A priority patent/GB2430557B/en
Publication of WO2006001180A1 publication Critical patent/WO2006001180A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces

Definitions

  • the present invention relates to an antenna that generates circularly polarized waves, and more particularly to a circularly polarized loop antenna that generates circularly polarized waves from a loop conductor having a length corresponding to one wavelength of a transmission / reception signal.
  • a loop antenna As a loop antenna, a C-type loop element obtained by cutting a portion of a loop-shaped conductor having a length corresponding to approximately one wavelength of circularly radiated radiation at a predetermined interval, and one end connected to the C-type loop element are connected.
  • a linear I-shaped conductor with multiple ends serving as a feeding point a ground plane arranged in parallel with the C-type loop element, and a feeding conductor connected to the feeding point and transmitting power to the feeding point (For example, refer to Patent Document 1.)
  • a linear conductor having a length corresponding to approximately one wavelength of circularly radiated radiation and having a power of about 1 to about 1.5 turns is a semicircle having a different shape.
  • a device including a spiral curl portion formed by joining together, and a shaft portion having one end connected to the starting end of the curl portion and a power supply conductor connected to the other end (for example, , See Patent Document 2).
  • Patent Document 1 Japanese Patent No. 3431045
  • Patent Document 2 Japanese Patent Publication No. 8-17289
  • the strength of the loop antenna described in Patent Document 1 is weak because part of the loop conductor is cut at a predetermined interval, that is, it is a C-type loop antenna that is not closed. Have the problem.
  • the curl antenna described in Patent Document 2 is not a closed antenna like the C-type loop antenna, so that the strength is weak and the antenna has a predetermined characteristic because it is a shoreline. It is not easy to maintain the shape to obtain.
  • an object of the present invention is to configure a circularly polarized loop antenna having a simple structure that is easy to form and relatively strong.
  • the present invention provides a circularly polarized wave including a loop portion having a conductor force whose length of one circumference is substantially one wavelength of a transmission / reception signal, and a power feeding portion that inputs and outputs signals to and from the loop portion.
  • a loop antenna In the loop antenna, one end is connected to the loop portion and the other end is connected to the feeding point, and the connecting point force with the loop portion is fed to the coupling portion extending at a length of approximately 1Z4 of wavelength along the loop portion.
  • the feature is that it was prepared for the club! /
  • FIG. 17 is a conceptual diagram of an antenna including a feeding point, a coupling line, and a semi-infinite length line.
  • this antenna has a semi-infinite line 51 and a length of 1Z4 wavelength of the transmission signal arranged along the semi-infinite line 51 from the end of the semi-infinite line 51. And a switch 53 for grounding a connection point 500 between the semi-infinite length line 51 and the coupling line 52.
  • connection point 500 is opened, and the current standing wave shown in FIG. 18 is generated in the semi-infinite length line 51 and the coupling line 52 with the connection point 500 as a node. .
  • FIG. 18 is a diagram showing a current standing wave Iwl when the switch 53 in the antenna shown in FIG. 17 is OFF.
  • the position of the length of one wavelength ( ⁇ ) of the transmission signal from the connection point 500 between the semi-infinite length line 51 and the coupling line 52 is naturally a node of the current standing wave Iwl. Therefore, even when the semi-infinite line 51 is cut from the connection point 500 at a point corresponding to one wavelength ( ⁇ ) and connected to the connection point 500, a similar current standing wave is generated.
  • a structure in which the cut line 51 ′ is formed in a circular shape and the coupling line 52 is disposed along the line 51 ′ corresponds to the circularly polarized loop antenna of the present invention. That is, the circularly polarized loop antenna of the present invention has the same current standing wave Iwl shown in FIG. Current standing wave is generated.
  • FIG. 20 is a diagram showing the current standing wave Iw2 when the switch 53 in the antenna shown in FIG. 17 is on.
  • the position of the length of one wavelength ( ⁇ ) of the transmission signal from the connection point 500 between the semi-infinite length line 51 and the coupling line 52 naturally becomes the antinode of the current standing wave Iw2. For this reason, even if the semi-infinite line 51 is cut from the connection point 500 at a point corresponding to one wavelength (e) and connected to the connection point 500, a similar current standing wave Iw2 is generated.
  • a structure in which the cut line 51 ′ is formed in a circular shape and the coupling line 52 is disposed along this line also corresponds to the circularly polarized loop antenna of the present invention. That is, the current standing wave same as the current standing wave Iw2 shown in FIG. 21 is generated in the circularly polarized loop antenna of the present invention.
  • the circularly polarized loop antenna having the configuration of the present invention forms two virtual feed points that are separated from each other by a 1Z4 wavelength interval along the loop portion at one feed point. A standing wave is generated from each of these two virtual feed points.
  • FIG. 22 is a configuration diagram of an ideal circularly polarized loop antenna 1.
  • 1 is a loop antenna
  • Sa and Sb are feeding points
  • la and lb are current standing waves by feeding points Sa and Sb, respectively.
  • the loop antenna of the present invention is characterized in that a coupling portion is arranged on the inner peripheral side of the loop portion.
  • the coupling portion is arranged on the inner peripheral side of the loop portion, so that the loop portion and the coupling portion are arranged on the same plane and are arranged at the center position of the loop portion.
  • the loop antenna of the present invention is characterized in that a coupling portion is arranged on the reflector side of the loop portion.
  • the coupling portion is disposed on the side facing the main radiation direction of the circularly polarized wave from the loop portion. Therefore, the influence of the coupling portion on the radiation characteristics is suppressed.
  • the loop antenna of the present invention is characterized in that the coupling portion is arranged on the outer peripheral side of the loop portion.
  • the impedance of the loop antenna is reduced from 150 ⁇ or more to about 50 ⁇ .
  • the loop antenna of the present invention is characterized in that the power feeding unit includes a matching unit that performs impedance matching with respect to a signal supplied to the coupling unit or a signal output from the coupling unit force.
  • the loop antenna has a desired radiation characteristic, so that impedance matching is performed by the matching unit even if the impedance is different from that of the external connection circuit, for example, the transmission signal generation circuit or the reception signal processing circuit. .
  • a loop-shaped conductor having a closed shape and a length corresponding to approximately one wavelength ( ⁇ ) of a transmission / reception signal, and a coupling portion extending parallel to the loop-shaped conductor with a length of approximately 1Z4 wavelength,
  • the coupling portion is arranged on the inner peripheral side of the loop portion, a loop antenna can be realized with a substrate having a single-layer electrode pattern. As a result, a simple loop antenna having the above-described effects can be configured.
  • the coupling portion is arranged on the reflector side of the loop portion, the radiation characteristics are further improved. In other words, it is possible to configure a loop antenna having further excellent radiation characteristics.
  • the coupling portion by arranging the coupling portion on the outer peripheral side of the loop portion, the impedance of the loop antenna can be adjusted to about 50 ⁇ , and the 50 ⁇ transmission line normally used in the communication system Because it is possible to connect directly to the antenna or directly use 50 ⁇ electrical parts and measuring instruments, it is possible to assemble and adjust the antenna easily and inexpensively.
  • the coupling unit since the coupling unit is connected to the external circuit via the matching unit, the transmission loss of the signal input and output between the loop antenna and the external circuit is suppressed, and the high A circularly polarized loop antenna having efficient transmission / reception characteristics can be configured.
  • FIG. 1 is an external perspective view showing a schematic configuration of a circularly polarized loop antenna according to a first embodiment.
  • FIG. 2 is a plan view of the circularly polarized loop antenna shown in FIG. 1 and a side sectional view thereof.
  • FIG. 3 is a diagram showing the definitions of ⁇ and ⁇ in FIGS.
  • FIG. 4 is a graph showing a simulation result of the axial ratio characteristics of the loop antenna of the first embodiment.
  • FIG. 5 is a graph showing a simulation result of the axial ratio characteristics of the loop antenna of the first embodiment.
  • FIG. 6 is a Smith chart of the S11 characteristic of the loop antenna of the first embodiment.
  • FIG. 7 is an external perspective view showing another configuration of the loop antenna of the first exemplary embodiment.
  • FIG. 8 is an external perspective view showing still another configuration of the loop antenna of the first exemplary embodiment.
  • FIG. 9 is an external perspective view showing a schematic configuration of a loop antenna according to a second embodiment.
  • FIG. 10 is a graph showing the simulation result of the axial ratio characteristics of the loop antenna of the second embodiment.
  • FIG. 11 is a graph showing a simulation result of radiation characteristics of the loop antenna of the second exemplary embodiment.
  • FIG. 12 is a Smith chart of the S 11 characteristic of the loop antenna of the second embodiment.
  • FIG. 13 is an external perspective view showing a schematic configuration of a loop antenna according to a third embodiment.
  • FIG. 14 is a graph showing a simulation result of radiation characteristics of the loop antenna of the third exemplary embodiment.
  • FIG. 15 is a Smith chart of the S 11 characteristic of the loop antenna of the third embodiment.
  • FIG. 16 is a schematic configuration diagram showing another configuration of the loop antenna of the third exemplary embodiment.
  • FIG. 17 is a conceptual diagram of an antenna composed of a feeding point, a coupling line, and a semi-infinite length line.
  • FIG. 18 is a diagram showing a current standing wave Iwl when the switch 53 in the antenna shown in FIG. 17 is OFF.
  • FIG. 19 is a diagram showing a current standing wave Iwl when the antenna shown in FIG. 18 is replaced with a loop antenna.
  • FIG. 20 is a diagram showing current standing wave Iw2 when switch 53 in the antenna shown in FIG. 17 is on.
  • FIG. 21 is a diagram showing a current standing wave Iw2 when the antenna shown in FIG. 20 is replaced with a loop antenna.
  • FIG. 22 is an equivalent circuit of a loop antenna.
  • FIG. 1 is an external perspective view showing a schematic configuration of a circularly polarized loop antenna according to this embodiment.
  • 2 (a) is a plan view of the circularly polarized loop antenna shown in FIG. 1, and (b) is a side sectional view thereof.
  • the loop portion 11 of the circularly polarized loop antenna 1 of the present embodiment has a loop (circular shape) whose length is a length corresponding to approximately one wavelength ( ⁇ ) of a transmission / reception signal. ) -Shaped conductor, and at one point, a joint 12 having the same conductor strength is connected.
  • the coupling portion 12 is connected to the loop portion 11 at a connection point 201 at one end thereof, and is formed in a shape extending along the loop portion 11 over a length of approximately 1Z4 of the wavelength ⁇ .
  • the coupling portion 12 is disposed inside the loop portion 11 and in a state spaced apart from the loop portion 11 by a predetermined distance in the same plane as the circumferential surface of the loop portion 11.
  • the other end of the coupling portion 12, that is, the end facing the connection point 201 is a feeding point 200, and is connected to the first feeding conductor 13 extending from the feeding point 200 to the center side of the loop portion 11 in the direction of the force. ing.
  • the end of the first feeding conductor 13 facing the feeding point 200 extends along the center line passing through the center of the loop portion 11, transmits a transmission signal from the outside to the first feeding conductor 13, and the first feeding conductor. It is connected to the second power supply conductor 14 that transmits the received signal from 13 to the outside.
  • the second feeding conductor 14 extends along the center line to the reflector 2 side (vertically downward in the figure), and is connected to an external circuit on the side of the reflector 2 opposite to the side where the loop antenna 1 is disposed. .
  • the loop portion 11 has a length of approximately 1 wavelength of the transmission / reception signal, and the coupling portion 12 has a length of 1Z4 of the wavelength.
  • two standing waves are substantially generated by the following principle.
  • the loop section 11 has a length of approximately one wavelength ( ⁇ ) of the transmission / reception signal, it can be regarded as a semi-infinite line having one end at the connection point 201 equivalent to a standing wave.
  • the coupling part 12 is regarded as a feeding line having the connection point 201 as one end, extending along a semi-infinite line (loop part 11) with a length of approximately 1Z4 wavelength of the transmission / reception signal, and having the other end as a feeding point. be able to.
  • two standing waves having a phase difference corresponding to the length of ⁇ 4 are generated depending on the state of the connection point 201. That is, if the connection point 201 is grounded, the current standing wave shown in FIG. 20 is generated. If the connection point 201 is open (if not connected to the ground), the current standing wave shown in FIG. Occurs.
  • the circularly polarized loop antenna 1 When this state is applied to the loop shape, that is, the circularly polarized loop antenna 1, if the connection point 201 is grounded, the current standing wave shown in FIG. 21 is generated, and the connection point 201 is opened. Then, the current standing wave shown in Fig. 19 is generated.
  • This ground state and open state correspond to the length of ⁇ ⁇ 4 of the signal when replaced by the phase difference of the signal.
  • the circularly polarized loop antenna 1 has two current constants by virtual feed points Sa and Sb existing at positions separated by a length of / 4 along the loop portion 11.
  • the standing waves la and lb exist. These virtual feed points Sa and Sb can be realized by signal power input via the first and second feed conductors 13 and 14.
  • the circularly polarized loop antenna 1 functions as an ideal circularly polarized loop antenna. That is, with the configuration of the present embodiment, an ideal circularly polarized loop antenna having an excellent axial ratio can be realized with a simple structure.
  • the loop portion 11 has a closed loop shape, so that it is more than a C-shaped loop shape having a cut part in the middle or a curl shape having different diameters at the start and end points. Strength against external pressure increases. Further, since the loop portion 11 has a closed loop shape and the coupling portion has a shape along the loop shape, the formation becomes easy. Therefore, by using the configuration of this embodiment, it is possible to configure a loop antenna that is strong and can be easily formed. Next, a simulation result of the loop antenna using the configuration of the present embodiment will be described.
  • FIG. 3 is a diagram showing the definitions of ⁇ and ⁇ in FIGS. 4 and 5.
  • is an angle in a direction horizontal to the plane including the loop portion 11, the feed point 200 direction is 90 ° with respect to the center of the loop portion 11, and the counterclockwise direction is the positive direction.
  • FIG. 4 is a graph showing a simulation result of axial ratio characteristics of the loop antenna having the shape shown in FIGS. 1 and 2 for a 1420 MHz signal (circular polarization).
  • Fig. 5 is a graph showing the simulation results of the radiation characteristics of the loop antenna with the shape shown in Figs. 1 and 2 for a 1420MHz signal (circular polarization).
  • AGPRHCP shows the radiation characteristics of right-handed circularly polarized waves
  • AGPLHCP shows the radiation characteristics of left-handed circularly polarized waves.
  • the loop antenna used in the simulation results shown in Figs. 4 and 5 has a radius of the loop portion 11 of approximately 30.8 mm, and the diameter of the conductor forming the loop portion 11 and the coupling portion 12 is approximately 1 mm.
  • the distance between the loop part 11 and the coupling part is 2 mm
  • the coupling part 12 and the loop part 11 are connected at a position of 84 ° counterclockwise from the feeding point 200
  • the loop part 11 is connected to the reflector 2 (simulation unit). It is placed approximately 20mm away from the infinite plane conductor) on the Chillon.
  • FIG. 4 by using the configuration of the present embodiment, it has a wide characteristic in the range from the zenith direction to the zenith angle direction, has substantially the same flat characteristics, and substantially the same characteristics in the horizontal direction. Therefore, a loop antenna having excellent axial ratio characteristics can be realized. Further, as shown in FIG. 5, a substantially spherical radiation characteristic, that is, a radiation characteristic having a substantially circular cross section is obtained regardless of the angle in the horizontal direction, and radiation is performed with respect to the right-handed circularly polarized wave to be radiated. Since the intensity of left-handed circularly polarized waves that are not desired is significantly weak, it is possible to realize a loop antenna that radiates circularly polarized waves with excellent directivity.
  • FIG. 6 shows a Smith chart when the loop antenna having this configuration is used.
  • FIG. 6 is a Smith chart of the S11 characteristic of the loop antenna having the structure shown in FIGS. .
  • the force that causes the impedance to be separated by as much as 50 ⁇ is the force that connects an impedance matching circuit such as a coaxial cable to the second feeding conductor 14 or as shown in FIG.
  • this can be solved by making the second feeding conductor 14 an impedance matching circuit such as a coaxial cable 15 or the like.
  • FIG. 7 is an external perspective view showing another configuration of the loop antenna of the present embodiment.
  • the loop antenna shown in FIG. 7 has a structure in which the first feeding conductor 13 is connected to the coaxial cable 15 arranged in the central axis of the loop portion 11, and the other configuration is the same as the loop antenna shown in FIG. .
  • the impedance matching circuit may be constituted by a microstrip circuit 16.
  • FIG. 8 is an external perspective view showing still another configuration of the loop antenna of the present embodiment.
  • the first feeding conductor 13 extends from the feeding point 200 in the direction of the reflecting plate 2 (vertically downward), and is arranged on the upper surface of the reflecting plate 2 (the surface on the loop portion 11 side).
  • the configuration is connected to the circuit 16, and the other configuration is the same as the loop antenna shown in FIG. Even if such a configuration is used, impedance matching can be performed.
  • the loop portion 11, the coupling portion 12, and the first feeding conductor 13 are connected to one surface of a single substrate.
  • the loop antenna can be formed more easily because it can be formed by the upper single layer.
  • FIG. 9 is an external perspective view showing a schematic configuration of the loop antenna of the present embodiment.
  • the coupling portion 12 is arranged on the reflector 2 side of the loop portion 11, and the other configuration is the same as the loop antenna shown in FIG. is there
  • FIG. 10 to FIG. 12 show the axial ratio characteristics, radiation characteristics, and Smith charts of the 1410 MHz signal (circular polarization) of the loop antenna configured as described above.
  • FIG. 10 shows a simulation result of the axial ratio characteristics of the loop antenna of this embodiment.
  • FIG. 11 is a graph showing a simulation result of the radiation characteristics.
  • AGPRHCP shows the radiation characteristics of right-handed circularly polarized waves
  • AGPLHCP shows the radiation characteristics of left-handed circularly polarized waves.
  • ⁇ and ⁇ are the same as those shown in Figs.
  • FIG. 12 shows a Smith chart of the S 11 characteristic in this case.
  • a loop antenna having excellent axial ratio characteristics and directivity can be configured using this embodiment.
  • both the axial ratio characteristic and the radiation characteristic are improved, and the peak gain is increased.
  • the loop antenna shown in the first embodiment an antenna having a slightly better characteristic than the conventional curl antenna
  • this embodiment shows that The peak gain of the loop antenna is about 9.3 dB, and the gain increases.
  • a loop antenna having more excellent antenna characteristics can be realized.
  • FIG. 13 is an external perspective view showing a schematic configuration of the loop antenna of the present embodiment.
  • the coupling portion 12 is disposed outside the loop portion 11, and the first feeding conductor 13 includes a flat portion including the loop portion 11 from the feeding point 20.
  • the second feeder 14 is formed in a shape extending in a direction parallel to the plane including the loop portion 11 (the plane of the reflector 2).
  • Other configurations are the same as the loop antenna shown in Fig. 1.
  • Fig. 14 and Fig. 15 show the radiation characteristics and Smith chart of the 1585.75MHz signal (circular polarization) of the loop antenna configured as described above.
  • FIG. 14 is a graph showing the simulation results of the radiation characteristics of the loop antenna of the present embodiment.
  • FIG. Shows radiation characteristics.
  • FIG. 14 the definitions of ⁇ and ⁇ are shown in FIG. The definition is the same as shown in Fig. 5.
  • FIG. 15 shows a Smith chart of the S11 characteristic in this case.
  • the coupling portion 12 is arranged on the outer peripheral side of the loop portion 11, and the first feeding conductor 13 is extended vertically in the direction of the reflector 2,
  • the impedance of the loop antenna approaches 150 ⁇ to 50 ⁇ , and the coupling portion 12, the first feed conductor 13, and the second feed conductor 14 are substantially
  • the structure has an impedance matching circuit.
  • the structure in which the first feeding conductor 13 is extended perpendicularly to the reflector 2 and the second feeding conductor 14 is extended parallel to the reflector 2 is shown. Is placed on the outer circumference of the loop part 1 1, the impedance approaches 50 ⁇ . For this reason, it may be a loop antenna having a structure as shown in FIG.
  • FIG. 16 is a schematic configuration diagram showing another configuration of the loop antenna of this embodiment.
  • the loop antenna shown in FIG. 16 is provided with a linear feed conductor 17 in the direction from the feeding point 200 of the coupling portion 12 to the through hole of the reflector 2.
  • the other configuration is the loop antenna shown in FIG. It is the same as the antenna.
  • the structure of the loop antenna is further simplified. Since the structure of the feed conductor 17 is used for fine adjustment of the impedance of the loop antenna 1, it may be formed in any shape such as a straight line or a curve as long as an appropriate impedance can be obtained. .
  • the present invention can be used for an antenna that generates circularly polarized waves, particularly a circularly polarized loop antenna that generates circularly polarized waves having a length corresponding to one wavelength of a transmission / reception signal.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

形成が容易で且つ比較的強度を有する簡素な構造の円偏波ループアンテナを構成する。 円偏波ループアンテナ1のループ部11はその長さが送受信信号の1波長(λ)分の長さからなるループ状の導体からなり、所定点に導体からなる結合部12が接続されている。結合部12は、一方端の接続点201でループ部11に接続し、λ/4の長さに亘ってループ部11に沿って伸びる形状で形成されている。ループ部11の円周面から垂直な方向の所定位置には、円周面に平行に反射板2が設置されている。そして、ループ部11の他方端は、第1給電導体13、第2給電導体14を介して送受信信号の処理を行う外部回路に接続し、給電点200となる。

Description

明 細 書
円偏波ループアンテナ
技術分野
[0001] この発明は、円偏波を発生するアンテナ、特に送受信信号の 1波長分の長さのル ープ導体から円偏波を発生する円偏波ループアンテナに関するものである。
背景技術
[0002] 従来、円偏波を発生するアンテナとして、ループ状の導体を備えるループアンテナ や、カール状の導体を備えるカールアンテナが各種考案されて 、る。
[0003] ループアンテナとしては、放射する円偏波の略 1波長分の長さのループ状導体の 一部を所定間隔で切断した C型ループ素子と、該 C型ループ素子に一端が接続され 、多端が給電点とされる直線状の I字形導体と、 C型ループ素子に平行に配置された グランドプレーンと、給電点に接続され該給電点に電力を伝搬する給電導体とを備 えたものが開示されている (例えば、特許文献 1参照。 ) o
[0004] また、カールアンテナとしては、放射する円偏波の略 1波長分の長さで、卷数が約 1 〜約 1. 5巻の範囲内である線状導体を形の異なる半円同士の結合により形成する 螺旋形状のカール部と、このカール部の卷始端に一方端が接続し、他方端に電力 供給用導体が接続した軸部とを備えたものが開示されている (例えば、特許文献 2参 照。)。
特許文献 1:特許第 3431045号公報
特許文献 2:特公平 8 - 17289号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特許文献 1に記載のループアンテナは、ループ状導体の一部が所 定間隔で切断された、すなわち、閉じた形状でない C型ループアンテナであるため強 度が弱いという問題を有する。
[0006] また、特許文献 2に記載のカールアンテナは、前記 C型ループアンテナと同様に閉 じた形状のアンテナでないため強度が弱ぐ且つ、卷線状であるため所定の特性を 得るための形状に維持することが容易ではない。
[0007] したがって、この発明の目的は、形成が容易で且つ比較的強度を有する簡素な構 造の円偏波ループアンテナを構成することにある。
課題を解決するための手段
[0008] この発明は、 1周の長さが送受信信号の略 1波長である導体力もなるループ部と、 該ループ部に対して信号の入出力を行う給電部とを備えた円偏波ループアンテナに おいて、一方端がループ部に接続するとともに他方端が給電点に接続し、ループ部 との接続点力 該ループ部に沿って波長の略 1Z4の長さで伸びる結合部を給電部 に備えたことを特徴として!/、る。
[0009] この構成では、ループ部が送受信信号の略 1波長の長さであり、結合部が 1Z4波 長の長さであることから、ループ部に次に示す原理で 2つの定在波が実質的に発生 する。
[0010] 図 17は、給電点と結合用線路と、半無限長線路とから構成されるアンテナの概念 図である。
[0011] 図 17に示すようにこのアンテナは、半無限長線路 51と、半無限長線路 51の端部か ら半無限長線路 51に沿って配置された、伝送信号の 1Z4波長の長さの結合用線路 52と給電点 50と、半無限長線路 51と結合用線路 52との接続点 500を接地させるス イッチ 53と備える。
[0012] まず、スィッチ 53をオフにすると接続点 500は開放となり、この接続点 500を節とし て、半無限長線路 51と結合用線路 52とに図 18に示す電流定在波が発生する。
[0013] 図 18は図 17に示すアンテナにおけるスィッチ 53がオフの場合の電流定在波 Iwlを 示す図である。
[0014] ここで、半無限長線路 51の結合用線路 52との接続点 500から伝送信号の 1波長( λ )の長さの位置は、当然に電流定在波 Iwlの節となる。このため、この接続点 500か ら 1波長( λ )分の長さの点で半無限長線路 51を切断して接続点 500に接続しても、 同様の電流定在波が発生する。そして、この切断された線路 51 'を円形状に形成し、 これに結合用線路 52を沿わせた構造は、本発明の円偏波ループアンテナに相当す る。すなわち、本発明の円偏波ループアンテナには図 19に示す電流定在波 Iwlと同 じ電流定在波が生じる。
[0015] 一方、スィッチ 53をオンにすると、接続点 500は接地に短絡となり、この接続点を腹 として、半無限長線路 51と結合用線路 52とに図 20に示す電流定在波 Iw2が発生す る。
[0016] 図 20は図 17に示すアンテナにおけるスィッチ 53がオンの場合の電流定在波 Iw2を 示す図である。
[0017] ここで、半無限長線路 51の結合用線路 52との接続点 500から伝送信号の 1波長( λ )の長さの位置は、当然に電流定在波 Iw2の腹となる。このため、接続点 500から 1 波長(え)分の長さの点で半無限長線路 51を切断して接続点 500に接続しても、同 様の電流定在波 Iw2が発生する。そして、この切断された線路 51 'を円形状に形成し 、これに結合用線路 52を沿わせた構造もまた、本発明の円偏波ループアンテナに相 当する。すなわち、本発明の円偏波ループアンテナには図 21に示す電流定在波 Iw2 と同じ電流定在波が生じる。
[0018] このように、本発明の構成の円偏波ループアンテナは、 1つの給電点で、ループ部 に沿って互いに 1Z4波長の間隔で離間されて存在する 2つの仮想給電点を形成し 、この 2つの仮想給電点からそれぞれに定在波を発生する。これは、すなわち、図 22 に示すような理想的な円偏波ループアンテナ 1の構造に相当する。図 22は理想的な 円偏波ループアンテナ 1の構成図である。図 22において、 1はループアンテナ、 Sa, Sbは給電点、 la, lbはそれぞれ給電点 Sa, Sbによる電流定在波である。
[0019] また、この発明のループアンテナは、ループ部の内周側に結合部を配置することを 特徴としている。
[0020] この構成では、結合部がループ部の内周側に配置されることで、ループ部と結合部 とが同じ平面上に配置されるとともに、ループ部の中心位置に配置される外部回路と の接続点に結合部を接続するアンテナ構成が単層の電極パターン等により実現され る。
[0021] また、この発明のループアンテナは、ループ部の反射板側に結合部を配置すること を特徴としている。
[0022] この構成では、結合部がループ部から円偏波の主放射方向と対向する側に配置さ れるので、結合部が放射特性に与える影響が抑制される。
[0023] また、この発明のループアンテナは、結合部をループ部の外周側に配置することを 特徴としている。
[0024] この構成では、結合部がループ部の外周に配置されることで、ループアンテナのィ ンピーダンスが、 150 Ω以上から約 50 Ωまで低下する。
[0025] また、この発明のループアンテナは、給電部に、結合部に供給される信号または結 合部力 出力される信号に対するインピーダンスマッチングを行うマッチング部を備 えたことを特徴としている。
[0026] この構成では、ループアンテナに所望の放射特性を備えることにより、インピーダン スが外部接続回路、例えば送信信号生成回路や受信信号処理回路等と異なってい ても、マッチング部によりインピーダンス整合される。
発明の効果
[0027] この発明によれば、閉じた形状で送受信信号の略 1波長( λ )分の長さのループ状 導体と、このループ状導体に略 1Z4波長の長さで平行に沿う結合部とを備え、この 結合部の一方端をループ状導体に接続するとともに、他方端を給電点に接続するこ とで、理想的な 1波長ループアンテナを構成することができる。これにより、形成が容 易で且つ比較的強度を有する簡素な構造で、軸比に優れた円偏波ループアンテナ を構成することができる。
[0028] また、この発明によれば、結合部がループ部の内周側に配置されることで、単層電 極パターンの基板でループアンテナを実現することができる。これにより、前述の効 果を有し、簡素なループアンテナを構成することができる。
[0029] また、この発明によれば、結合部がループ部の反射板側に配置されることで、より放 射特性が良化する。すなわち、さらに放射特性に優れるループアンテナを構成する ことができる。
[0030] また、この発明によれば、結合部をループ部の外周側に配置することで、ループア ンテナのインピーダンスを約 50 Ωに調整可能となり、通信系に通常用いられる 50 Ω 系の伝送線路に直接接続したり、 50 Ω系の電気部品や測定器を直接用いることが できるため、容易で且つ安価にアンテナの組み立ておよび調整検査が可能になる。 [0031] また、この発明によれば、結合部がマッチング部を介して外部回路に接続すること で、ループアンテナと外部回路との間で入出力される信号の伝送損失が抑制されて 、高効率の送受信特性を有する円偏波ループアンテナを構成することができる。 図面の簡単な説明
[0032] [図 1]図 1は、第 1の実施形態に係る円偏波ループアンテナの概略構成を示す外観 斜視図である。
[図 2]図 2は、図 1に示す円偏波ループアンテナの平面図、およびその側面断面図で ある。
[図 3]図 3は、図 5〜図 6の φ , Θの定義を示す図である。
[図 4]図 4は、第 1の実施形態のループアンテナの軸比特性のシミュレーション結果を 示すグラフである。
[図 5]図 5は、第 1の実施形態のループアンテナの軸比特性のシミュレーション結果を 示すグラフである。
[図 6]図 6は、第 1の実施形態のループアンテナの S11特性のスミスチャートである。
[図 7]図 7は、第 1の実施形態のループアンテナの他の構成を示す外観斜視図である
[図 8]図 8は、第 1の実施形態のループアンテナのさらに他の構成を示す外観斜視図 である。
[図 9]図 9は、第 2の実施形態のループアンテナの概略構成を示す外観斜視図である
[図 10]図 10は、第 2の実施形態のループアンテナの軸比特性のシミュレーション結 果を示すグラフである。
[図 11]図 11は、第 2の実施形態のループアンテナの放射特性のシミュレーション結 果を示すグラフである。
[図 12]図 12は、第 2の実施形態のループアンテナの S 11特性のスミスチャートである
[図 13]図 13は、第 3の実施形態のループアンテナの概略構成を示す外観斜視図で ある。 [図 14]図 14は、第 3の実施形態のループアンテナの放射特性のシミュレーション結 果を示すグラフである。
[図 15]図 15は、第 3の実施形態のループアンテナの S 11特性のスミスチャートである
[図 16]図 16は、第 3の実施形態のループアンテナの他の構成を示す概略構成図で ある。
[図 17]図 17は、給電点と結合用線路と、半無限長線路とから構成されるアンテナの 概念図である。
[図 18]図 18は、図 17に示すアンテナにおけるスィッチ 53がオフの場合の電流定在 波 Iwlを示す図である。
[図 19]図 19は、図 18に示すアンテナをループアンテナに置き換えた場合の電流定 在波 Iwlを示す図である。
[図 20]図 20は、図 17に示すアンテナにおけるスィッチ 53がオンの場合の電流定在 波 Iw2を示す図である。
[図 21]図 21は、図 20に示すアンテナをループアンテナに置き換えた場合の電流定 在波 Iw2を示す図である。
[図 22]図 22は、ループアンテナの等価回路である。
符号の説明
1 ノレープアンテナ
2 反射板
11 ノレープ部
110 ループ部 11の対向部
12 結合部
13 第 1給電導体
14 第 2給電導体
15 同軸ケープノレ
16 マイクロストリップ回路
17 給電導体 200 給電点
201 接続点
発明を実施するための最良の形態
[0034] 本発明の第 1の実施形態に係る円偏波ループアンテナについて図を参照して説明 する。 図 1は本実施形態に係る円偏波ループアンテナの概略構成を示す外観斜視 図である。また、図 2 (a)は図 1に示す円偏波ループアンテナの平面図、(b)はその側 面断面図である。
[0035] 図 1に示すように、本実施形態の円偏波ループアンテナ 1のループ部 11は、その 長さが送受信信号の略 1波長( λ )分の長さからなるループ(円周形)状の導体からな り、その一点に同じく導体力もなる結合部 12が接続されている。結合部 12は、その一 方端の接続点 201でループ部 11に接続し、前記波長 λの略 1Z4の長さに亘り、ル ープ部 11に沿って伸びる形状で形成されている。この際、結合部 12は、ループ部 1 1の内側で、ループ部 11の円周面と同じ平面内で、ループ部 11に対して所定距離 離間した状態で配置されている。結合部 12の他方端、すなわち、接続点 201に対向 する端部は給電点 200であり、この給電点 200からループ部 11の中心 Οに向力 方 向に伸びる第 1給電導体 13に接続している。第 1給電導体 13の給電点 200に対向 する端部は、ループ部 11の中心 Οを通る中心線に沿って伸び、外部から第 1給電導 体 13に送信信号を伝送し、第 1給電導体 13から外部に受信信号を伝送する第 2給 電導体 14に接続している。第 2給電導体 14は、前記中心線に沿って反射板 2側(図 における鉛直下方向)に伸び、反射板 2のループアンテナ 1が配置された側と対向す る側で外部回路に接続する。
[0036] また、ループ部 11の円周面から所定距離、第 2給電導体 14側(図における鉛直下 側)に離間した位置には、少なくともループ部 11の面積よりも大きい面積で形成され た、導電体からなる反射板 2が配置されており、この反射板 2には貫通孔が形成され ており、この貫通孔を第 2給電導体 14が貫通して、反射板 2を介してループ部 11と対 向する位置に配置された前記外部回路に接続している。ここで、本実施形態では、 結合部 12、第 1給電導体 13、および第 2給電導体 14が本発明の「給電部」に相当す る。 [0037] このような構成の円偏波ループアンテナでは、ループ部 11が送受信信号の略 1波 長の長さであり、結合部 12が前記波長の 1Z4の長さであることから、ループ部 11に 次に示す原理で 2つの定在波が実質的に発生する。
[0038] ループ部 11は、送受信信号の略 1波長(λ )の長さであることから、定在波に対して は等価的に接続点 201を一端する半無限長線路として見なすことができる。また、結 合部 12はこの接続点 201を一方端として送受信信号の略 1Z4波長の長さで半無限 長線路 (ループ部 11)に沿って伸び、他方端を給電点とする給電ラインとして見なす ことができる。
[0039] このような構造のアンテナでは、接続点 201の状態により、互いに λ Ζ4の長さに相 当する位相差を有する 2つの定在波は生じる。すなわち、接続点 201が接地されて いれば、図 20に示す電流定在波が発生し、接続点 201が開放されていれば (接地さ れていなければ)、図 18に示す電流定在波が発生する。
[0040] この状態をループ形状、すなわち、円偏波ループアンテナ 1に適用すると、接続点 201が接地されて ヽれば図 21に示す電流定在波が発生し、接続点 201が開放され ていれば図 19に示す電流定在波が発生する。この接地状態と開放状態とは、信号 の位相差に置き換えると信号の λ Ζ4の長さ分に相当する。すなわち、円偏波ルー プアンテナ 1には、図 22に示すように、ループ部 11に沿って互いにえ /4の長さで 離間された位置に存在する仮想給電点 Sa, Sbによる 2つの電流定在波 la, lbが存 在することとなる。そして、これら仮想給電点 Sa, Sbを第 1、第 2給電導体 13, 14を 介して入力される信号電力により実現することができる。
[0041] この結果、円偏波ループアンテナ 1は理想的な円偏波ループアンテナとして機能 する。すなわち、本実施形態の構成とすることで、軸比に優れた理想的な円偏波ル ープアンテナを簡素な構造で実現することができる。
[0042] また、本実施形態の構成では、ループ部 11は閉じた状態のループ形状であるので 、途中に切断部を有する C型ループ形状や、始点と終点とで径の異なるカール形状 よりも外圧に対する強度が高くなる。また、ループ部 11が閉じたループ形状であり、 結合部がこれに沿う形状であるので形成が容易となる。従って、本実施形態の構成 を用いることで、強度が強ぐ形成が容易なループアンテナを構成することができる。 [0043] 次に、本実施形態の構成を用いたループアンテナのシミュレーション結果について 説明する。
[0044] 図 3は、図 4、図 5の φ , Θの定義を示す図である。
[0045] 図 3に示すように、 φはループ部 11を含む平面に水平な方向の角で、ループ部 11 の中心に対して給電点 200方向が 90° となり、反時計回りを正方向とする水平角で ある。また、 Θはループ部 11の中心軸方向で、反射板 2と対向する方向を天頂( Θ = 0° )とし、互いに 180° の角度差を有する水平角方向に対して、角度が小さい側に 向力う方向を正方向として角度が大きい側に向力う方向を負方向とする天頂角であ る。
[0046] 図 4は、図 1、図 2に示した形状のループアンテナの 1420MHzの信号(円偏波)に 対する軸比特性のシミュレーション結果を示すグラフである。また、図 5は、図 1、図 2 に示した形状のループアンテナの 1420MHzの信号(円偏波)に対する放射特性の シミュレーション結果を示すグラフである。図 5において、 AGPRHCPは右旋円偏波 の放射特性を示し、 AGPLHCPは左旋円偏波の放射特性を示す。
[0047] なお、図 4、図 5に示すシミュレーション結果に用いたループアンテナは、ループ部 11の半径が略 30. 8mmで、ループ部 11と結合部 12を形成する導体の直径が略 1 mmで、ループ部 11と結合部との間隔が 2mmで、給電点 200から反時計回りに 84 ° の位置で結合部 12とループ部 11とが接続し、ループ部 11が反射板 2 (シミュレ一 シヨン上は無限平面導体)から略 20mm離間して配置されたものである。
[0048] 図 4に示すように、本実施形態の構成を用いることにより、天頂方向から天頂角方 向に広 、範囲で略同じで且つ平坦な特性を有し、水平方向にも略同じ特性を有する 軸比が得られるので、優れた軸比特性を有するループアンテナを実現することができ る。また、図 5に示すように、略球状の放射特性、すなわち水平方向の角度によらず、 断面が略円形状の放射特性が得られ、且つ、放射したい右旋円偏波に対して放射 したくない左旋円偏波の強度が大幅に弱いので、優れた指向性を有する円偏波を放 射するループアンテナを実現することができる。
[0049] なお、この構成のループアンテナを用いた場合のスミスチャートを図 6に示す。
[0050] 図 6は図 1、図 2に示した構造のループアンテナの S11特性のスミスチャートである 。このように、本実施形態の構成を用いると、インピーダンスが 50 Ω力も離れる力 こ れは、第 2給電導体 14に同軸ケーブル等のインピーダンスマッチング回路を接続す る力、または、図 7に示すように、第 2給電導体 14を同軸ケーブル 15等のインピーダ ンスマッチング回路にすることで、解消することができる。
[0051] 図 7は、本実施形態のループアンテナの他の構成を示す外観斜視図である。図 7 に示すループアンテナは、第 1給電導体 13がループ部 11の中心軸状に配置された 同軸ケーブル 15に接続する構造であり、他の構成は図 1に示したループアンテナと 同じである。
[0052] また、図 8に示すように、インピーダンスマッチング回路をマイクロストリップ回路 16 で構成してもよい。図 8は、本実施形態のループアンテナのさらに他の構成を示す外 観斜視図である。図 8に示すループアンテナは、第 1給電導体 13が給電点 200から 反射板 2側方向(鉛直下方向)に伸び、反射板 2上面 (ループ部 11側の面)上に配置 されたマイクロストリップ回路 16に接続する構成であり、他の構成は図 1に示したルー プアンテナと同じである。このような構成を用いてもインピーダンスマッチングを行うこ とがでさる。
[0053] 以上のように、本実施形態の構成を用いることにより、優れた軸比特性、および指 向性を有し、強度が強ぐ形成が容易なループアンテナを構成することができる。
[0054] なお、本実施形態のような結合部がループ部の内周側(中心側)にある構造では、 ループ部 11と結合部 12と第 1給電導体 13とを単一基板の一表面上の単層により形 成することができ、ループアンテナをより容易に形成することができる。
[0055] 次に、第 2の実施形態に係るループアンテナについて図を参照して説明する。
[0056] 図 9は本実施形態のループアンテナの概略構成を示す外観斜視図である。
[0057] 図 9に示すように本実施形態のループアンテナは結合部 12がループ部 11の反射 板 2側に配置されたものであり、他の構成は図 1に示したループアンテナと同じである
[0058] このような構成のループアンテナの 1410MHzの信号(円偏波)の軸比特性、放射 特性およびスミスチャートを図 10〜図 12に示す。
[0059] 図 10は本実施形態のループアンテナの軸比特性のシミュレーション結果を示すグ ラフであり、図 11はその放射特性のシミュレーション結果を示すグラフである。図 11 において、 AGPRHCPは右旋円偏波の放射特性を示し、 AGPLHCPは左旋円偏 波の放射特性を示す。なお、図 10、図 11においても、 φ、 Θの定義は図 4、図 5に示 した定義と同じである。
[0060] 図 12はこの場合の S 11特性のスミスチャートを示す。
[0061] 図 10、図 11に示すように、本実施形態を用いても、優れた軸比特性、および指向 性を有するループアンテナを構成することができる。そして、図 10に対する図 4、図 1 1に対する図 5の関係が示すように、本実施形態を用いることで、軸比特性および放 射特性ともに良好となり、ピーク利得が増加する。具体的には、第 1の実施形態に示 したループアンテナ (従来のカールアンテナと略同等が若干良好な特性のアンテナ) でピーク利得が約 8. 7dBであるのに対し、本実施形態に示すループアンテナのピー ク利得は約 9. 3dBとなり利得が増加する。このように、本実施形態の構成を用いるこ とにより、アンテナ特性 (軸比特性、放射特性を含む総合的なアンテナの特性)がより 優れるループアンテナを実現することができる。
[0062] なお、本実施形態の場合も第 1の実施形態の図 7、図 8に示したようなインピーダン スマッチング回路を用いることにより、問題なく外部回路との接続を行うことができる。
[0063] 次に、第 3の実施形態に係るループアンテナについて図を参照して説明する。
[0064] 図 13は本実施形態のループアンテナの概略構成を示す外観斜視図である。
[0065] 図 13に示すように本実施形態のループアンテナは結合部 12がループ部 11の外 側に配置されたものであり、第 1給電導体 13が給電点 20からループ部 11を含む平 面に対して反射板 2方向に垂直な方向に伸び、第 2給電導体 14がループ部 11を含 む平面 (反射板 2の平面)に平行な方向に伸びる形状に形成されたものであり、他の 構成は図 1に示したループアンテナと同じである。
[0066] このような構成のループアンテナの 1585. 75MHzの信号(円偏波)の放射特性お よびスミスチャートを図 14、図 15に示す。
[0067] 図 14は本実施形態のループアンテナの放射特性のシミュレーション結果を示すグ ラフであり、図 14において、 AGPRHCPは右旋円偏波の放射特性を示し、 AGPLH CPは左旋円偏波の放射特性を示す。なお、図 14においても、 φ、 Θの定義は図 4、 図 5に示した定義と同じである。
[0068] 図 15はこの場合の S11特性のスミスチャートを示す。
[0069] 図 14に示すように本実施形態の構成を用いても所定の放射特性を有する円偏波 を放射するループアンテナを実現することができる。さらに、図 15に示すように、本実 施形態の構成のように、結合部 12をループ部 11の外周側に配置して、第 1給電導 体 13を反射板 2方向へ垂直に伸ばし、第 2給電導体 14を反射板 2の表面に沿って 伸ばすことで、ループアンテナのインピーダンスが 150 Ω以上から 50 Ωに近づき、結 合部 12、第 1給電導体 13、第 2給電導体 14が実質的にインピーダンスマッチング回 路を備えた構造となる。これにより、通信系で多く用いられるインピーダンス 50 Ωの外 部回路に、インピーダンスマッチング回路を挿入することなく接続することができる。 すなわち、より簡素な構造で、外部回路に接続する部分を含むループアンテナを実 現することができる。さらに、 50 Ω系の電気部品や測定器を直接用いることができる ため、容易で且つ安価にアンテナの^ aみ立ておよび調整検査が可能になる。
[0070] なお、本実施形態では、第 1給電導体 13を反射板 2に垂直に伸ばし、第 2給電導 体 14を反射板 2に平行に伸ばして設置する構造を示したが、給電部 12をループ部 1 1の外周側に配置するのみで、インピーダンスが約 50 Ωに近づく。このため、図 16に 示すような構造のループアンテナであってもよ 、。
[0071] 図 16は本実施形態のループアンテナの他の構成を示す概略構成図である。
[0072] 図 16に示すループアンテナは、結合部 12の給電点 200から反射板 2の貫通孔に 向力 直線状の給電導体 17を備えたものであり、他の構成は図 13に示すループア ンテナと同じである。このような構成とすることで、より一層ループアンテナの構造が簡 素化される。なお、給電導体 17の構造は、ループアンテナ 1のインピーダンスの微調 整に用いるものであるので、適当なインピーダンスが得られる形状であれば、直線や 曲線等、どのような形状で形成してもよい。
[0073] なお、前述の各実施形態では、給電点に対して反時計回り方向に伸びる結合部を 備えた右旋円偏波ループアンテナについて示したが、給電点に対して時計回り方向 に伸びる結合部を備えた左旋円偏波ループアンテナについても同様の構成を適用 することができ、前述の効果を奏することができる。 産業上の利用可能性
この発明は、円偏波を発生するアンテナ、特に送受信信号の 1波長分の長さのル ープ導体力 円偏波を発生する円偏波ループアンテナに利用可能である。

Claims

請求の範囲
[1] 1周の長さが送受信信号の略 1波長である導体力 なるループ部と、該ループ部に 対して信号の入出力を行う給電部とを備えた円偏波ループアンテナにおいて、 前記給電部は、一方端が前記ループ部に接続するとともに他方端が給電点に接続 し、前記ループ部との接続点から該ループ部に沿って前記波長の略 1Z4の長さで 伸びる結合部を備えたことを特徴とする円偏波ループアンテナ。
[2] 前記結合部は前記ループ部の内周側に配置されて!、る請求項 1に記載の円偏波 ノレープアンテナ。
[3] 前記結合部は前記ループ部の反射板側に配置されて!、る請求項 1に記載の円偏 波ノレープアンテナ。
[4] 前記結合部は前記ループ部の外周側に配置されて!ヽる請求項 1に記載の円偏波 ノレープアンテナ。
[5] 前記給電部は、前記結合部に供給される信号または前記結合部から出力される信 号に対するインピーダンスマッチングを行うマッチング部を備えた請求項 1〜請求項 4 の!、ずれかに記載の円偏波ループアンテナ。
PCT/JP2005/010619 2004-06-24 2005-06-09 円偏波ループアンテナ WO2006001180A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/630,843 US7768467B2 (en) 2004-06-24 2005-06-09 Circularly polarized loop antenna
GB0625823A GB2430557B (en) 2004-06-24 2005-06-09 Circularly polarized loop antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-186812 2004-06-24
JP2004186812A JP4297840B2 (ja) 2004-06-24 2004-06-24 円偏波ループアンテナ

Publications (1)

Publication Number Publication Date
WO2006001180A1 true WO2006001180A1 (ja) 2006-01-05

Family

ID=35780517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010619 WO2006001180A1 (ja) 2004-06-24 2005-06-09 円偏波ループアンテナ

Country Status (4)

Country Link
US (1) US7768467B2 (ja)
JP (1) JP4297840B2 (ja)
GB (1) GB2430557B (ja)
WO (1) WO2006001180A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010085996A1 (de) 2009-01-27 2010-08-05 Bayerische Motoren Werke Aktiengesellschaft Fahrdynamisches steuerungs- oder regelsystem eines zweispurigen kraftfahrzeugs

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145077B2 (ja) * 2008-02-25 2013-02-13 パナソニック株式会社 無線装置
DE102009011542A1 (de) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale
JP5493527B2 (ja) 2009-07-14 2014-05-14 セイコーエプソン株式会社 無線機能付き時計
EP2296227B1 (de) * 2009-09-10 2018-02-21 Delphi Deutschland GmbH Antenne für den Empfang Zirkular Polarisierter Satellitenfunksignale
JP2011097431A (ja) 2009-10-30 2011-05-12 Seiko Epson Corp 腕装着型電子機器
GB201012923D0 (en) * 2010-07-30 2010-09-15 Sarantel Ltd An antenna
JP5965671B2 (ja) * 2012-03-01 2016-08-10 三省電機株式会社 カールアンテナ
JP2018201080A (ja) 2017-05-25 2018-12-20 富士通株式会社 アンテナ装置、及び、電子機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268432A (ja) * 1993-03-10 1994-09-22 Hisamatsu Nakano 直線偏波用ループアンテナ
JP2003163531A (ja) * 2001-11-28 2003-06-06 Nippon Antenna Co Ltd 複合アンテナ
JP2003332837A (ja) * 2002-05-15 2003-11-21 Furuno Electric Co Ltd 広角円偏波アンテナ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582951A (en) * 1968-06-10 1971-06-01 New Tronics Corp Helmet antenna
US4801944A (en) * 1987-10-13 1989-01-31 Madnick Peter A Antenna
JPH0817289A (ja) 1994-07-04 1996-01-19 Tokai Rika Co Ltd スライドスイッチ
JP3431045B2 (ja) 1995-01-18 2003-07-28 久松 中野 円偏波ループアンテナ
IT1289333B1 (it) * 1996-06-21 1998-10-02 Alfa Accessori Antenna per la ricezione e la trasmissione in polarizzazione circolare
CN1171356C (zh) * 1998-01-13 2004-10-13 三仨电机株式会社 平面天线供电方法及平面天线
JP2004217907A (ja) * 2002-12-25 2004-08-05 Du Pont Toray Co Ltd ポリイミドフィルムおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268432A (ja) * 1993-03-10 1994-09-22 Hisamatsu Nakano 直線偏波用ループアンテナ
JP2003163531A (ja) * 2001-11-28 2003-06-06 Nippon Antenna Co Ltd 複合アンテナ
JP2003332837A (ja) * 2002-05-15 2003-11-21 Furuno Electric Co Ltd 広角円偏波アンテナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010085996A1 (de) 2009-01-27 2010-08-05 Bayerische Motoren Werke Aktiengesellschaft Fahrdynamisches steuerungs- oder regelsystem eines zweispurigen kraftfahrzeugs

Also Published As

Publication number Publication date
US20080018547A1 (en) 2008-01-24
JP4297840B2 (ja) 2009-07-15
JP2006013798A (ja) 2006-01-12
GB2430557A9 (en) 2007-03-28
US7768467B2 (en) 2010-08-03
GB2430557A (en) 2007-03-28
GB2430557B (en) 2009-03-04
GB0625823D0 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
WO2006001180A1 (ja) 円偏波ループアンテナ
US7245268B2 (en) Quadrifilar helical antenna
KR100455498B1 (ko) 프린트안테나
EP1376757B1 (en) Dual-band directional/omnidirectional antenna
US4494117A (en) Dual sense, circularly polarized helical antenna
JP4689610B2 (ja) 指向性アンテナ・アレイ
JP2002518921A5 (ja)
JP2003507915A (ja) アパーチャ結合スロットアレイアンテナ
JP2004056204A (ja) パッチアンテナ
JP2004516694A (ja) 移動通信装置用の内部アンテナ
JP2000507766A (ja) 無線通信装置
JP5323448B2 (ja) スロットボウタイアンテナ
JP2009005086A (ja) テーパスロットアンテナおよびアンテナ装置
CN111585015A (zh) 微带线耦合馈电的宽带圆极化八臂缝隙螺旋天线
JP2009521885A (ja) アンテナ装置並びにその適用方法
JP5139919B2 (ja) クロスダイポールアンテナ
JP4930947B2 (ja) 円偏波ラインアンテナ
JP4136178B2 (ja) 双ループアンテナ
JP5562080B2 (ja) アンテナ
JP2006135605A (ja) 水平偏波用アンテナ
JPH07321548A (ja) マイクロストリップアンテナ
JP3382900B2 (ja) ヘリカルアンテナ
JP2010057007A (ja) アンテナ
JPH05129823A (ja) マイクロストリツプアンテナ
JP2007336170A (ja) スロットアンテナ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11630843

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 0625823.0

Country of ref document: GB

Ref document number: 0625823

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11630843

Country of ref document: US