WO2006001077A1 - 内燃機関用排ガス浄化装置及び排ガス浄化方法 - Google Patents

内燃機関用排ガス浄化装置及び排ガス浄化方法 Download PDF

Info

Publication number
WO2006001077A1
WO2006001077A1 PCT/JP2004/009459 JP2004009459W WO2006001077A1 WO 2006001077 A1 WO2006001077 A1 WO 2006001077A1 JP 2004009459 W JP2004009459 W JP 2004009459W WO 2006001077 A1 WO2006001077 A1 WO 2006001077A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
metal
internal combustion
alkali metal
Prior art date
Application number
PCT/JP2004/009459
Other languages
English (en)
French (fr)
Inventor
Osamu Kuroda
Norihiro Shinotsuka
Hiroko Watanabe
Yuichi Kitahara
Masato Kaneeda
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2004/009459 priority Critical patent/WO2006001077A1/ja
Priority to JP2006519210A priority patent/JPWO2006001077A1/ja
Publication of WO2006001077A1 publication Critical patent/WO2006001077A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/865Simultaneous elimination of the components characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a catalyst for purifying harmful substances such as nitrogen oxides (NO x), hydrocarbons (HC), and carbon monoxide (CO) contained in gas discharged from an internal combustion engine such as an automobile.
  • NO x nitrogen oxides
  • HC hydrocarbons
  • CO carbon monoxide
  • a lean N 0 X catalyst that purifies NO X, C 0, and HC in exhaust gas generated by combustion at an air / fuel ratio higher than the theoretical air / fuel ratio (lean combustion; lean burn) and exhaust gas purification for internal combustion engines using it
  • the present invention relates to an apparatus and an exhaust gas purification method. Background art
  • Lean-burn engines lean-burn DI (Direct-Injection) which is driven at the engine, diesel engine damage ⁇ combustion efficiency, Shoe Ne, can contribute to C_ ⁇ 2 gas emissions reduction.
  • the exhaust gas contains a high concentration of oxygen.
  • exhaust gas purification catalysts for internal combustion engines such as three-way catalysts and lean NOX catalysts, form a catalyst layer on the cell inner surface of a honeycomb substrate having a monolith structure, and distribute the exhaust gas and the catalyst by circulating the exhaust gas in the cell. Contact to purify harmful components in exhaust gas.
  • the catalyst layer is generally composed of a catalytically active component and a carrier that holds the catalytically active component.
  • the catalytically active component is a component that participates in exhaust gas purification
  • the carrier is a material that holds the catalytically active component in a highly dispersed state.
  • cordierite As a material for the monolith 820 cam structure, cordierite is often used because of its excellent thermal shock resistance. Application of metal materials such as stainless steel is also possible. Various metal oxides and composite oxides are applied to the support, and r-alumina or composites of alumina and transition metal oxides are often used.
  • NOx trapping components mainly composed of alkali metals such as Na and K and alkaline earth metals such as Z or Sr and Ba and NOx mainly composed of noble metals such as Pt, Rh and Pd Those composed of components that cause oxidation and reduction and oxidation such as HC and CO are known. These are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 8-1 4 1 3 94, 1 1 1 1 4 4 2 2 and the like.
  • one of the important characteristics required for exhaust gas purification catalysts for internal combustion engines such as automobiles is the ability to maintain a high purification rate for a long time even when exposed to high temperature exhaust gas, so-called thermal durability. .
  • a lean NOX catalyst when cordierite is used as the honeycomb substrate material and an alkali metal (hereinafter sometimes referred to as alkali) is used as one of the catalyst components, the catalyst is exposed to high temperature exhaust gas. Power Metals move from the catalyst layer into the substrate, reducing the exhaust gas purification performance of the catalyst. And the mechanical strength of the substrate decreases (for example,
  • an exhaust gas purifying catalyst body carrying an Al force metal or a catalyst layer containing an Al force metal, wherein the aluminum titanate is zirconium phosphate.
  • Proposals have been proposed that use as a main material.
  • W ⁇ / 0 2/2 6 2 5 4 Al includes calcium aluminate, magnesium di titanate, iron tit anat e, zirconium titanate, and mixtures and solid solutions thereof.
  • a catalyst body for exhaust gas purification including the like has been proposed.
  • the proposed substrate material is a kind of ceramics, and it is necessary to consider the mechanical strength when applying it.
  • a honeycomb using a metal such as stainless steel a so-called metal honeycomb, contains almost no Si in the material, so that a large amount of alkali does not move into the substrate, and the catalyst layer, which is a problem in KOEI This avoids a drastic decrease in the strength of the metal and the strength of the substrate.
  • Precious metal masking reduces the redox performance of precious metals, so it reduces the purification performance of HC and C0, and further reduces NOx oxidation function. Reduces purification performance. Naturally, a decrease in the concentration and amount of alkali metal will lead to a decrease in NOO purification performance.
  • the present invention provides a new lean NOX catalyst that purifies NOX, CO, and HC in exhaust gas produced by combustion (lean burn) at an air fuel ratio higher than the stoichiometric air-fuel ratio.
  • the present invention provides an exhaust gas purification device using the same, and in particular, provides a new lean NOX catalyst and an exhaust gas purification device using the same that have solved the above-mentioned problems that occur when a metal honeycomb substrate is applied.
  • the present invention is a catalyst for purifying NO x, CO, and HC in exhaust gas generated by combustion (lean burn) at an air / fuel ratio higher than the stoichiometric air / fuel ratio, and a base made of a metal material and at least an alkali metal And a carrier for supporting the catalytically active component, characterized in that an aluminum-powered metal reservoir portion capable of holding the aluminum-based metal on the substrate is provided. To do.
  • the exhaust gas purifying apparatus using the catalyst of the present invention can effectively purify NOx, CO, and HC in exhaust gas generated by combustion (lean burn) at an air fuel ratio higher than the stoichiometric air fuel ratio.
  • FIG. 1 is an explanatory view showing the structure of a catalyst according to the method of the present invention.
  • FIG. 2 is an explanatory view showing the structure of the catalyst according to the method of the present invention.
  • FIG. 3 is an explanatory view showing the configuration of the exhaust gas purifying apparatus according to the method of the present invention.
  • Fig. 1 shows the basic structure of the lean NO X catalyst according to the present invention.
  • a substrate made of a metal material is applied to the substrate that holds the catalyst layer.
  • the type and composition of the metal elements that make up the substrate material are selected as appropriate in consideration of the heat resistance and corrosion resistance in the exhaust gas, but stainless steel can be applied, and in particular, A 1, F e, and Cr are the main components. Ferrite-based stainless steel can be suitably applied.
  • the shape of the substrate can be selected as appropriate from the viewpoints of easy loading of the catalyst layer, large contact area with the exhaust gas, and low pressure loss.
  • a so-called monolith honeycomb substrate having a through-cell having a channel cross-sectional shape such as the above can be suitably applied.
  • an alkali metal reservoir is formed on the cell inner surface of the substrate.
  • a portion of the alkali metal reservoir is made of a material that has an affinity for at least one alkali metal.
  • affinity is the property that the alkali metal and the reservoir component material form a chemically stable state (free energy decreases).
  • the chemicals such as combination, adsorption, absorption, etc. It means that it is stabilized by dynamic interaction.
  • metal salts such as silicates and phosphates can be used.
  • composite oxides of the various metal oxides can be applied.
  • complex oxides include S iO 2 ⁇ A 1 2 0 3 (including zeolite), S i O 2 ⁇ M g O, S i O 2 ⁇ A 1 2 O 3 ⁇ Mg 0 (including Elite), S i 0 2 'C a 0, S i O 2 ⁇ S r O, S i O 2 ⁇ B a O, S i O 2 ⁇ ⁇ 1: 0 2 etc. 3 i ⁇ .
  • the alkali reservoir portion has a high specific surface and high heat resistance, such as A 1 2 0 3 , T i 0 2 , Z r 0 2, etc., and further, heat resistance made of these composite oxides.
  • An Al force retaining material may be supported on the porous material surface or in the pores. Nor is it excluded that noble metals or other catalyst materials are supported. In short, it is only necessary that the material including at least one material having an alkali reserve function constitutes a region different from the catalyst layer described later.
  • a part of the alkali metal reservoir does not necessarily need to be formed in a layer form on the metal substrate, and various forms of existence such as an island form in the catalyst layer are possible.
  • the catalyst layer in FIG. 1 is a layer containing a catalytically active component. Constituent components are required to have NOx redox components and NOx trapping components at a minimum in terms of function, and various material configurations are possible.
  • the following configuration can be applied as the catalytically active component.
  • At least one element selected from at least one selected from alkali metals such as lithium (L i), sodium (Na) and potassium (K) and noble metals such as P t, P d and R h is used.
  • a composition comprising a metal and a metal oxide (or complex oxide).
  • alkaline earth metals such as magnesium (Mg), strontium (Sr) and force russium (Ca), rare earth metals such as cerium,
  • a composition comprising a metal and a metal oxide (or composite oxide) containing at least one element selected from transition metals such as Ti, Zr, Mn, and Fe.
  • the catalyst component is
  • a 1 2 O 3, T i ⁇ 2, Z r ⁇ 2, etc., more can be used by supporting on these ing composite oxide heat-resistant porous body.
  • alkali metal when functioning as a catalyst, alkali metal is present in both the Al force reserve metal reserve part and the catalyst layer part. Then, it can be distributed to both parts by thermal diffusion.
  • FIG. 2 shows another embodiment of the present invention.
  • the alkali metal reservoir portion is formed in an island shape in the catalyst layer.
  • an alkali metal riser part and a catalyst layer part can be coated on the substrate at the same time in preparing the catalyst described later.
  • the contact interface with the catalyst layer can be increased, and there is an advantage that the distribution of the alkali metal between the alkali metal reservoir portion and the catalyst layer can be easily performed.
  • the catalyst of the present invention can be prepared by the following method.
  • a method of wash coating on the metal substrate can be applied to form the layer in the form of an island.
  • the catalyst layer constituting material and the alkali metal reservoir are used.
  • One bar part Can be formed by simultaneously coating the components.
  • a method of wash coating the mixed slurry of both can be applied.
  • the wash coat is not limited to the use of a slurry containing water as a medium, and a slurry containing an organic solvent or a mixed solvent of water and organic solvent can be applied.
  • Catalyst components such as precious metals are supported on particles Alternatively, it may be supported by a usual catalyst preparation method such as an impregnation method after formation of the catalyst layer.
  • the catalyst according to the method of the present invention purifies harmful components in the exhaust gas of the internal combustion engine with the following configuration and method.
  • FIG. 3 shows an embodiment of an exhaust purification device and an exhaust purification method according to the method of the present invention.
  • the catalyst 6 of the present invention is connected to the exhaust duct 8 of the lean-burnable engine 7 and is provided with a predetermined method. If necessary, a pre-catalyst can be placed directly under the engine.
  • This exhaust purification device functions as follows.
  • the exhaust gas contains a large amount of oxygen, so HC (hydrocarbon) and CO (—carbon oxide) contained in the exhaust gas are H 2 0 (water) and C 0 2 ( Oxide is captured by the catalyst, and the lean exhaust gas is purified. If the lean exhaust gas continues to be introduced, the NOX trapping capacity gradually decreases. However, if the stoichiometric or rich combustion exhaust gas is introduced, the trapped NOX is returned to N 2 (nitrogen) by the CO in the exhaust gas and becomes harmless. . This operation restores the catalyst to capture NOX.
  • the NOx, HC and C0 in the lean exhaust gas are all purified by bringing the lean combustion exhaust gas and stoichiometric or rich combustion exhaust gas into contact with the catalyst alternately, and the exhaust gas purification ability of the catalyst is maintained.
  • the reduction of the trapped N O X is not necessarily performed with the combustion exhaust gas, and any component that can reduce N O X may be used. This can also be realized by injecting gasoline, light oil, kerosene, natural gas, reformed products thereof, hydrogen, alcohols, ammonia, etc. into the burned exhaust gas.
  • a catalyst having the structure shown in FIG. 1 was manufactured by the above-described method using a monolithic metal honeycomb having a diameter of 1 inch ⁇ and a length of 50 mm as a base. Metal materials with a thickness of 5 0 ferritic stainless steel, the number of cells was applied to those 4 0 0 cell Le / in 2. And 5 0 g / L Wosshukoto the A 1 2 ⁇ 3 2 5 wt% of S i ⁇ 2 'A l 2 ⁇ 3 gel powder alumina sol as a binder in the cell surface of the metal honeycomb. On top of this, 15 parts by weight of Ce, 2.5 parts by weight of T i, 7 parts by weight of M n, 0.7 parts by weight of P t and 0.
  • S i 0 2 -A 1 2 0 3 gel powder of catalyst 1 has the same ingredients and the same component amount except that it is replaced with S i 0 2 * MgO gel powder containing Mg 0 30 wt% of the same weight, and Catalyst 3 was obtained by the same preparation method.
  • the catalyst 1 metal honeycomb substrate was 50 g / L washcoated with alumina powder using alumina sol as a binder.
  • the formed alumina layer was impregnated with silica sol and then fired, and silica was supported on alumina in a weight ratio of 20 wt% to alumina.
  • Catalyst 1 15 parts by weight of 06, 15 parts by weight of Ding 1, 2.5 parts by weight of Mn, ⁇ parts by weight of Pn, 0.7 parts by weight of P t, R
  • the powder carrying 0.03 parts by weight of h and 0.3 parts by weight of Pd was wash-coated so that the coating amount was 1550 g / L as alumina.
  • Li, Na, and soot were supported on 0.8 g / L, 6 g / L, and 8 gZL, respectively, and catalyst 5 was obtained.
  • alumina powder was coated with 5 O gZL washcoat using alumina sol as a binder.
  • the formed alumina layer was impregnated with a sodium dihydrogen phosphate solution, and 20 wt% sodium dihydrogen phosphate (no water) was supported, followed by drying and firing.
  • the powder carrying 0.03 parts by weight of Rh and 0.3 parts by weight of Pd was wash-coated so that the coating amount was 1550 g / L as alumina.
  • Li, Na and K were supported on 0.8 g / L, 6 g / L and 8 gZL, respectively, and catalyst 6 was obtained.
  • Example 7 S i O 2 -A 1 2 O 3 gel powder, and 100 parts by weight of alumina, Ce is 15 parts by weight, T i is 2.5 parts by weight, M n is 7 parts by weight, P t From the powder loaded with 0.7 parts by weight, Rh of 0.03 parts by weight, and Pd of 0.3 parts by weight, the weight ratio of the former to the alumina in the latter is 1 to 3, and alumina sol is used as a binder. A slurry was prepared, and the slurry was washcoated on the catalyst honeycomb substrate of Example Catalyst 1. After the wash coat, drying and firing were performed to fix the wash coat layer to the substrate. The amount of washcoat was adjusted so that alumina was 1550 g / L. Finally, like Catalyst 1, Li, Na, and K were supported at 0.8 g / L, 6 g / L, and 8 g / L, respectively, to obtain Catalyst 7.
  • Catalyst 8 was obtained with the same component amount and the same preparation method.
  • the molar ratio of C A_ ⁇ pairs A 1 2 ⁇ 3 1 Preparation and 2 of the calcium aluminate one Bok powder, using a 7 alumina powder, a slurry former and the latter weight ratio containing alumina sol as a pair 3 a and a binder Then, the metal honeycomb base of catalyst 1 was wash coated. After wash coating, drying and firing were performed to fix the wash coat layer to the substrate. The amount of washcoat was 2 0 0 / L (alumina was 1 5 0 g / L). 22.5 parts by weight of Ce, 4 parts by weight of T i, and 10.5 parts by weight of Mn were supported on 200 parts by weight of the coating layer.
  • a catalyst of Comparative Example was obtained with the same components and the same amount of components as in Catalyst 9 and the same preparation method, except that the washcoat of catalyst 9 was coated with alumina sol as a binder and ⁇ -almina powder was 200 g / L washcoat.
  • a heat durability treatment was carried out by exposing the exhaust gas of a gasoline engine in which all of the catalyst of the example and the comparative example catalyst were burned at an air-fuel ratio of 24 to 100 h at 85 ° C. .
  • the catalyst was filled in the reaction tube of the fixed bed flow reactor, and the performance of the catalyst was evaluated by flowing model exhaust gas. Two model exhaust gases were used, a lean model exhaust gas and a stoichiometric model exhaust gas, and these were alternately passed to the catalyst every 3 minutes.
  • the composition of Li one Nmoderu exhaust gas N_ ⁇ a 0.0 6vol%, C 3 H 6 to 0.04vol%, CO and 0.1 vol%, C0 2 and 1 0 vol%, 0 2 and 5 vol%, steam 1 OVOL%, the balance was nitrogen.
  • the gas flow rate was 6 0 0 0 0 Zh in SV.
  • the reaction temperature is the gas temperature at the inlet of the catalyst. Thus, the temperature was changed between 300 ° C. and 500 ° C.
  • the NO purification rate 1 minute after lean model exhaust gas flow was used as an index of NO X purification performance, and was calculated using the following formula.
  • NO purification rate (%) (1- (NO X concentration at catalyst outlet) NO X concentration at catalyst inlet)) X I 0 0
  • Example catalyst 9 4 8 6 6 3 6 Comparative Example Catalyst 1 0 3 0 3 0 According to the present invention, since the alkali metal is held in the Al-powered reservoir portion, the Al-force coexisting with the carrier and the catalyst component Concentration of metal and Z or amount can be reduced, and masking of noble metal with alkali metal, sintering of carrier and other catalyst components, volatilization of alkali metal, and corrosion of base metal can be suppressed. On the other hand, when the alkali metal concentration in the catalyst layer decreases, it becomes a supply source of alkali metal, which can suppress
  • the exhaust gas purification apparatus using the catalyst of the present invention can effectively purify NOx, CO, and HC in the exhaust gas produced by combustion (lean burn) at an air fuel ratio higher than the stoichiometric air fuel ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

明 細 書
内燃機関用排ガス浄化装置及び排ガス浄化方法 技術分野
本発明は、 自動車等の内燃機関から排出されるガス中に含まれる窒素 酸化物 (NO x), 炭化水素 (H C), 一酸化炭素 (C O) 等の有害物質 を浄化する触媒に係り、 特に理論空燃比より高い空燃比で燃焼 (希薄燃 焼 ; リーンバーン) させて生成した排ガス中の NO X, C 0, HCを浄 化するリーン N 0 X触媒とそれを用いた内燃機関用排ガス浄化装置及び 排ガス浄化方法に関する。 背景技術
リーンバーンエンジン, 希薄燃焼条件で運転される D I (Direct- Injection) エンジン, ディーゼルエンジンは燃焼効率が髙いため、 省ェ ネ, C〇 2ガス排出量低減に資することができる。 しかし、 これらは理 論空燃比以上で燃料を燃焼させるため、 排ガス中には酸素が高濃度に含 まれる。
自動車用ガソリンエンジンで通常排ガス浄化に用いられる三元触媒を、 酸素を高濃度に含む排ガスの浄化適用した場合、 H C及び C〇は浄化で きるが、 NO Xは効果的に浄化する事が出来ない。 従ってリーンバーン エンジン, (希薄燃焼) D Iエンジン及びディーゼルエンジンから排出さ れる排ガスを三元触媒で十分に浄化することは出来ない。
このため、 酸素を含む排ガス中の NO Xを効果的に浄化する触媒 (リ ーン N〇 x触媒) の開発が進められ、 N〇 xを一旦吸着材等に捕捉した 後捕捉した NO Xを還元浄化する触媒の実用化が進んでいる。 一般に三元触媒やリーン N O X触媒といった内燃機関用の排ガス浄化 触媒は、 モノリス構造を有するハニカム状基体のセル内表面に、 触媒層 を構成し、 セル内に排ガスを流通させることにより排ガスと触媒を接触 させて排ガス中の有害成分を浄化する。 触媒層は一般に、 触媒活性成分 と、 触媒活性成分を保持する担体から構成される。 ここで触媒活性成分 とは、 排ガス浄化に関与する成分であり、 担体は触媒活性成分を高分散 させて保持する材料である。
モノリス八二カム構造体の材料には、 コ一ジェライ トが耐熱衝撃性に 優れるために多用される。ステンレス等の金属材料の適用も可能である。 担体には各種の金属酸化物や複合酸化物が適用されるが、 rアルミナま たは アルミナと遷移金属酸化物の複合体が多用される。
触媒成分および触媒構成はその要求機能により多岐にわたる。 リーン N O X触媒では、 N a , Kといったアルカリ金属及び Zまたは S r, B aといったアルカリ土類金属を主体とする N O X捕捉成分と P t , R h, P dといった貴金属を主体とする N O xの酸化と還元及び H C , C O等の酸化を行わせる成分から構成されるものが知られている。 これ らは、 例えば特開平 8 - 1 4 1 3 9 4号公報, 特開平 1 1 一 1 1 4 4 2 2 号公報等に開示されている。
ところで、 自動車等の内燃機関の排ガス浄化用触媒に要求される重要 な特性の一つに、 高い温度の排ガスにさらされても、 高い浄化率を長期 間維持できる性質、 いわゆる熱耐久性がある。
リーン N O X触媒を構成するにあたり、 ハニカム基体材料にコージェ ライ トを用い、 触媒成分の 1つにアルカリ金属 (以下アルカリ と称する ことがある) を用いた場合、 該触媒が高温排ガスにさらされるとアル力 リ金属が触媒層中から基体中に移動し、 触媒の排ガス浄化性能が低下す るとともに基体の機械的強度が低下するという問題が生じる (例えば
SAE 2002 - 01 - 0734)。
アルカリが基体中に移動する駆動力は、 コーデイエライ ト中の S i ( S i 〇 2) がアルカリ金属と比較的安定な化合物を生成することに起 因する。 そこで、 本課題解決のため、 コーディエライ トに替わる基体材 料を用いたリーン N O X触媒に関する以下の提案がある。
特開 2 0 0 1— 3 1 4 7 6 2では、 アル力リ金属またはアル力リ金属 を含有する触媒層を担持してなる排ガス浄化用触媒体であって、 チタン 酸アルミニウムゃリン酸ジルコニウムを基体主要材料としたものが提案 されている。 また、 W〇/ 0 2 / 2 6 2 5 4 A l、 には、 calcium aluminate, magnesium di t i tanate, iron t i t anat e, zirconium titanate およびこれらの混合物および固溶体を基体とした貴金属とアル力リ金属 等を含む排ガス浄化用触媒体が提案されている。
上記提案の基体材料はセラミックスの一種であり、 適用に当たっては 機械的強度に配慮が必要となる。
一方、 ステンレス等の金属を用いたハニカムいわゆるメタルハニカム は、 材料中に S i を殆ど含まず、 したがってアルカリの基体中への大量 の移動が起こらず、 コーデイエライ 卜での問題点である触媒層中のアル 力リ金属濃度の大幅な低下, 基体強度の急激な低下を免れることができ る。
しかし、 メタルハニカムに固有の問題として、 アルカリ金属による貴 金属のマスキング現象が拡大する、 アル力リが高温下で徐々に揮散して 触媒層中の濃度が低下する、 メタルの腐食も皆無ではない、 がある。
貴金属のマスキングは貴金属の酸化還元性能を低下させるため、 H C, C〇の浄化性能を低下させ、 さらに、 NOの酸化機能低下を通じて NOx 浄化性能を低下させる。 アルカリ金属濃度及び量の減少は当然 N〇 X浄 化性能の低下につながる。
本発明は、 上記従来の技術の問題点に鑑み、 理論空燃比より高い空燃 比で燃焼 (リーンバーン) させて生成した排ガス中の N O X , C O , H Cを浄化する、 新たなリーン N O X触媒とそれを使用した排ガス浄化 装置を提供するものであり、 特にメタルハニカム基体を適用する際に生 起する前記各課題を解決した、 新たなリーン N O X触媒とそれを使用し た排ガス浄化装置を提供するものである。 発明の開示
本発明は、 理論空燃比より高い空燃比で燃焼 (リーンバーン) させて 生成した排ガス中の N O x, C O , H Cを浄化する触媒であり、 金属材 料からなる基体と、すくなく とも、アルカリ金属を含む触媒活性成分と、 触媒活性成分を担持するための担体とから構成されるものにおいて、 基 体上にアル力リ金属を保持できるアル力リ金属リザ一バー部を設けたこ とを特徴とする。
本発明の触媒を用いた排ガス浄化装置によって、 理論空燃比より高い 空燃比で燃焼(リーンバーン) させて生成した排ガス中の N O X, C O , H Cを効果的に浄化することができる。 図面の簡単な説明
第 1図は、 本発明の方法による触媒の構成を示した説明図である。 第 2図は、 本発明の方法による触媒の構成を示した説明図である。 第 3図 は、 本発明の方法による排ガス浄化装置の構成を示した説明図である。 発明を実施するための最良の形態
本発明に関するリーン NO X触媒の基本構成を第 1図に示す。
触媒層を保持する基体には金属材料からなる基体が適用される。 基体 材料を構成する金属元素の種類及び組成は排ガス中における耐熱性, 耐 腐食性を考慮して適宜選択されるが、ステンレスが適用でき、特に A 1 , F e, C rを主な構成成分とするフェライ ト系ステンレス鋼が好適に適 用できる。 また、 基体の形状については、 触媒層の担持が容易で、 排ガ スとの接触面積が大きく、 更に圧力損失が小さく、 との観点から適宜選 択できるが、 4角, 6角, 3角等の流路断面形状を有する貫通セルを有 するいわゆるモノリスハニカム状基体が好適に適用できる。
基体には、 基体のセル内表面上に、 アルカリ金属リザーバー部を形成 する。 アルカリ金属リザーバ一部は少なくとも 1種のアルカリ金属に対 して親和性のある材料で構成される。 ここで親和性とは、 アルカリ金属 とリザ一バー部構成材が化学的に安定な状態 (自由エネルギーが低下す る) をつくる性質であり、 換言すれば両者が化合, 吸着, 吸収等の化学 的相互作用により安定化することを意味する。
アルカリ金属リザーバ一部の構成材としては、 各種の物理的形状およ び結晶形態をした S i 〇 2, T i 〇 2, Z r 02, A l 23, M g〇, C a O , S r O, B a〇, P 25, M o〇 3,W〇 3,Mn〇 2, F e 203, C e O 2, L a 23等の金属酸化物が適用できる。 またこれらを構成す る金属の塩例えば珪酸塩, 燐酸塩が適用できる。 さらに前記各種金属酸 化物の複合酸化物が適用できる。複合酸化物としては、例えば、 S i〇 2 · A 1 203 (含むゼォライ ト), S i O 2 · M g O, S i O 2 · A 1 2 O 3 · M g〇 (含むコーディエライ ト), S i 〇 2 ' C a〇, S i O 2 · S r O, S i O 2 · B a O, S i O 2 · ∑ 1:〇 2等の 3 i 〇。を含む複合酸化物、 T i O 2 · A 1 2 O 3 , T i O 2 · S i O 2 , T i O 2 · Z r O 2 , T i O 2 · M g〇, T i O 2 · WO 3 , T i O 2 · M O 3 , T i 〇 2 ' F e 203, T i O 2 · M n 2 O 5 , A 1 2 O 3 · M o O 3 , A l 203 - F e 203, Α 1 203 · Μη 23, A 1 2 O 3 · Z r O 2. 等が適用できる。 さらに、 S i C, WC , T i C等の非酸化物セラミックスが適用できる。
さらに、 アルカリ リザ一バー部は、 髙比表面かつ高耐熱性であること が好ましく、 A 1 203, T i 02 , Z r 〇 2等、 さらにはこれらの複合 酸化物からなる耐熱性多孔質材料表面や細孔内にアル力リ保持材を担持 して構成しても良い。 また、 貴金属やその他の触媒材料が担持されるこ とを排除するものでもない。 要するに、 少なくとも 1種のアルカリ リザ ーブ機能を有する材料を含む材料が、 後述する触媒層と異なる領域を構 成していれば良い。
また、 本アルカリ金属リザーバ一部は金属基体上に必ずしも層状で形 成される必要はなく、 触媒層中に島状で存在する等の各種の存在形態が 可能である。
第 1図における触媒層は、触媒活性成分を含む層である。構成成分は、 機能上は NO Xの酸化還元成分と NO X捕捉成分が最低限必要となり、 各種の材料構成が可能である。
触媒活性成分としては、 例えば以下の構成が適用できる。 リチウム (L i ), ナトリウム (N a), カリウム (K) 等のアルカリ金属類から 選ばれる少なく とも 1種と P t , P d, R h等の貴金属類から選ばれる 少なくとも 1種の元素を含む、 金属および金属酸化物 (もしくは複合酸 化物) からなる組成物。
これらに加え、 マグネシウム (M g), ス トロンチウム ( S r ) 及び力 ルシゥム (C a) 等のアルカリ土類金属, セリウム等の希土類金属, T i , Z r, M n , F e等の遷移金属から選ばれる少なくとも 1種の元 素を含む、 金属および金属酸化物 (もしくは複合酸化物) からなる組成 物。
上記触媒成分を含む触媒層を形成するにあたり、 上記触媒成分は、
A 1 2 O 3 , T i 〇 2, Z r 〇 2等、 さらにはこれらの複合酸化物からな る耐熱性多孔質体上に担持して用いることが出来る。
本発明における触媒においては、 触媒として機能をするときは、 アル カリ金属は、アル力リ金属リザーブ部と、触媒層部の両方に存在するが、 触媒調製時には、 そのどちらか一方に存在させ、 その後、 熱拡散等によ り両部分に分配することも可能である。
第 2図は本発明の他の実施形態である。 本実施態様では、 アルカリ金 属リザーバー部は触媒層内に島状に形成される。 本態様では、 後述する 触媒調製に際し、 アルカリ金属リザ一パー部と触媒層部を同時に基体上 にコートできるという利点がある。 また触媒層との接触界面を大きく と ることができ、 アルカリ金属リザ一バー部と触媒層との間におけるアル 力リ金属の分配が容易に行えるという利点がある。
本発明の触媒は以下の方法で調製することができる。
アルカリ金属リザ一バー部については、 これを層状に形成するに当た つて、 メタル基体上にゥオシュコートする方法が適用でき、 触媒層中に 島状に形成するに当たって、 触媒層構成材とアルカリ金属リザ一バー部 構成材を同時にゥォシュコートすることにより形成出来る。 具体的には 両者の混合スラリーをゥオシュコートする方法が適用できる。 また、 ゥ オシュコートは文字どおり水を媒体としたスラリーを使用することに限 定されず、 有機溶媒, 水と有機溶媒の混合溶媒を媒体としたスラリーが 適用できる。 貴金属等の触媒成分はゥオシュコ一卜する粒子に担持させ ておいても良いし、 触媒層形成後含浸法等の通常の触媒調製法で担持し ても良い。
本発明の方法による触媒は以下の構成及び方法で内燃機関排ガス中の 有害成分を浄化する。
第 3図は、 本発明の方法による排気浄化装置および排気浄化方法の一 実施態様を示す。
リーンバーン可能なエンジン 7の排気ダク ト 8に連結して本発明の触 媒 6が、 所定の方法でキヤニングされて設けられる。 必要に応じて、 ェ ンジン直下に前触媒を置く ことができる。
この排気浄化装置は、 以下のように機能する。
リーン燃焼排ガスが触媒 6に導かれると、 該排ガスには酸素が多量に 含まれるため排ガスに含まれる H C (炭化水素), C O (—酸化炭素) は H 2 0 (水) 及び C 0 2 (炭酸ガス) に酸化され、 N〇 xは触媒に捕捉さ れ、 リーン排ガスは浄化される。 リーン排ガスを導入し続けると次第に N O X捕捉能が低下するが、 ス トィキもしくはリ ツチ燃焼排ガスを導入 すると、 捕捉された N O Xは排ガス中の C O等により N 2 (窒素) に還 元され無害となる。 この操作により、 触媒は N O X捕捉能を回復する。 したがって、 リーン燃焼排ガスとス トイキもしくはリツチ燃焼排ガスを 交互に触媒に接触させることにより リーン排ガス中の N O x, H C , C〇が全て浄化されるし、 触媒の排ガス浄化能は持続する。
なお、 捕捉 N O Xの還元は必ずしも燃焼排ガスで行う必要はなく、 N O Xを還元できる成分を含むものであれば良い。 リ一ンバーン排ガス にガソリ ン, 軽油, 灯油, 天然ガス、 これらの改質物, 水素, アルコー ル類, アンモニア等を注入することによつても実現できる。
以下に具体例を挙げて本発明をさらに詳細に説明する。 (実施例 1 )
直径 1インチ φ, 長さ 5 0 mmのモノリス形メタルハニカムを基体とし、 前述の第 1図の構成からなる触媒を上述の方法により製作した。 メタル 材料は厚さ 5 0 のフェライ ト系ステンレス鋼で、 セル数は 4 0 0セ ル /in2のものを適用した。 メタルハニカムのセル内表面に A 1 23が 2 5 w t %の S i 〇 2 ' A l 23ゲル粉末をアルミナゾルをバインダー として 5 0 g/Lゥォッシュコートした。 この上に、 ァアルミナ 1 0 0 重量部に対し C eを 1 5重量部、 T i を 2. 5重量部、 M nを 7重量部、 P t を 0. 7重量部、 R hを 0. 0 3重量部、 P dを 0. 3重量部担持した 粉末をゥォッシュコートした。 コート量はァアルミナとして 1 5 0 g / Lとなるようにした。 ここで、 C e , Τ ί , Μηはいずれも酸化物の形 態で担持した。 最後に、 ハニカム全体に対し、 L i , N a, Kをそれぞ れ 0. 8 gZL, 6 g/L, 8 gZL担持した。 L i , N aは硝酸塩を、 Kは酢酸塩を水溶液として含浸法で担持した。 各ゥォッシュコ一ト操作 の後および含浸操作の後に、 乾燥と焼成を行いゥォッシュコート層をハ 二カムに固定した。 この様にして触媒 1を得た。
(実施例 2 )
触媒 1の、 3 1 〇2 —八 1 23ゲル粉末を、 同重量のコーデイエライ ト粉末 ( 2 M g O ' 2 A 1 203 ' 5 S i 〇 2) に置き換えた以外は同じ 成分同じ成分量とし、 かつ同じ調製法で触媒 2を得た。
(実施例 3 )
触媒 1の S i 02 - A 1 203ゲル粉末を、 同重量の M g 03 0 w t % 含有 S i 02 * M g Oゲル粉末に置き換えた以外は同じ成分同じ成分量 とし、 かつ同じ調製法で触媒 3を得た。
(実施例 4) 0
触媒 1の S i 02 - A 1 23ゲル粉末を、 同重量の S i /A 1原子比 2 0のモルデナィ ト粉末に置き換えた以外は同じ成分同じ成分量とし、 かつ同じ調製法で触媒 4を得た。
(実施例 5 )
触媒 1のメタルハニカム基体に、 アルミナゾルをバインダ一としてァ アルミナ粉末を 5 0 g/Lゥォッシュコートした。 形成されたァアルミ ナ層にシリカゾルを含浸した後焼成して rアルミナにシリカを対アルミ ナ重量比 2 0 w t %担持した。 この上に、 触媒 1 と同様に、 ァアルミナ 1 0 0重量部に対し 06を 1 5重量部、丁 1 を 2. 5重量部 M nを Ί重量 部、 P t を 0. 7重量部、 R hを 0. 0 3重量部、 P dを 0. 3重量部担持 した粉末をコート量がァアルミナとして 1 5 0 g/Lとなるようにゥォ ッシュコートした。 最後に、 触媒 1 と同様に、 L i , N a , Κをそれぞ れ 0. 8 g/L, 6 g/L, 8 gZL担持し、 触媒 5を得た。
(実施例 6 )
触媒 1のメタルハニカム基体に、 アルミナゾルをパインダ一としてァ アルミナ粉末を 5 O gZLゥォッシュコ一トした。 形成されたァアルミ ナ層に燐酸 2水素ナトリゥムの溶液を含浸し燐酸 2水素ナトリウム (無 水) を 2 0 w t %担持した後乾燥 · 焼成した。 この上に、 触媒 1 と同様 に、 ァアルミナ 1 0 0重量部に対し C eを 1 5重量部、 T i を 2. 5重量 部、 Mnを 7重量部、 P t を 0. 7重量部、 R hを 0. 0 3重量部、 P d を 0. 3重量部担持した粉末をコー卜量がァアルミナとして 1 5 0 g/ Lとなるようにゥォッシュコートした。最後に、触媒 1 と同様に、 L i , N a , Kをそれぞれ 0. 8 g/L, 6 g /L , 8 gZL担持し、 触媒 6を 得た。
(実施例 7 ) S i O 2 - A 1 2 O 3ゲル粉末と、 了アルミナ 1 0 0重量部に対し C e を 1 5重量部、 T i を 2. 5重量部、 M nを 7重量部、 P t を 0. 7重量 部、 R hを 0. 0 3重量部、 P dを 0. 3重量部担持した粉末から、 前者 の重量と後者中のァアルミナの重量比が 1対 3でありバインダーとして アルミナゾルを含むスラリーを調製し、 該スラリーを実施例触媒 1のメ 夕ルハニカム基体にゥォッシュコートした。 ゥォッシュコート後は乾 燥 · 焼成を行いゥォッシュコート層を基体に固定した。 ゥォッシュコ一 ト量はァアルミナが 1 5 0 g / Lとなるようにした。 最後に、 触媒 1 と 同様に、 L i , N a, Kをそれぞれ 0. 8 g/L , 6 g/L, 8 g/L担 持し触媒 7を得た。
(実施例 8 )
触媒 7の S i 02 - A 1 23ゲル粉末を同重量の C a〇対 A 1 203 のモル比が 1 : 2のカルシウムアルミネート粉末に置き換えた以外は、 触媒 7 と同じ成分同じ成分量とし、 かつ同じ調製法で触媒 8を得た。
(実施例 9 )
C a〇対 A 1 23のモル比が 1 : 2のカルシウムアルミネ一卜粉末と、 7アルミナ粉末を用い、 前者と後者の重量比が 1対 3でありバインダー としてアルミナゾルを含むスラリーを調製し触媒 1のメタルハニカム基 体にゥォッシュコートした。 ゥォッシュコート後は乾燥 · 焼成を行いゥ ォッシュコ一ト層を基体に固定した。 ゥォッシュコート量は 2 0 0 / L (ァアルミナが 1 5 0 g/L) となるようにした。 コート層 2 0 0重 量部に対し C eを 2 2. 5重量部、 T i を 4重量部、 Mnを 1 0. 5重量 部担持した。 続いて、 コート層 2 0 0重量部に対し L i, N a , Kをそ れぞれ 0.8 g, 6 g, 8 g担持した。 最後にァアルミナコ一ト層 2 0 0 重量部に対し P t を 1重量部、 R hを 0. 0 5重量部、 P dを 0. 5重量 部担持した。ここで全ての担持成分は溶液を含浸する含浸法で担持した。 含浸法においては、 担持成分の含浸後に乾燥 · 焼成を行った。 以上によ り触媒 9を得た。
(比較例)
触媒 9のゥォッシュコートを、 アルミナゾルをバインダーとして τァ ルミナ粉末を 2 0 0 g/Lゥォッシュコートした以外、 触媒 9と同じ成 分同じ成分量かつ同じ調製法で比較例触媒を得た。
(試験例)
以下の方法で、 本発明の触媒をおよびそれを用いた場合の排ガス浄化 性能を評価した。
(熱耐久処理)
排ガス浄化性能評価に先立ち、 実施例触媒の全てと比較例触媒を空燃 比 24で燃焼させたガソリンエンジン排ガスに 8 5 0 °Cで 1 0 0 h触媒 をさらして、 熱耐久処理を実施した。
(触媒性能試験)
固定床流通反応装置の反応管内に触媒を充填し、 モデル排ガスを流し て触媒の性能を評価した。 モデル排ガスとしてはリーンモデル排ガスと ストィキモデル排ガスの 2種を用い、 これらを、 3分毎に交互に触媒に 通じた。 リ一ンモデル排ガスの組成は、 N〇を 0.0 6vol%、 C3H6を 0.04vol%、 COを 0.1vol%、 C02を 1 0vol%、 02を 5vol%、 水蒸気を 1 Ovol%、残部を窒素とした。ス トイキモデル排ガスの組成は、 NOを 0. 1vol%、 C 3 H 6を 0.0 5 vol%、 COを 0.6vol%、 C02 を 1 2¥01%、 02を 0.6¥01%、112を 0.2¥01%、水蒸気を 1 Ovol%、 残部を窒素とした。 ガス流速は S Vで 6 0 0 0 0 Zhとした。 反応温度 は、 触媒入り口ガス温度とし、 反応管外部から電気炉で過熱することに より、 3 0 0 °Cから 5 0 0 °Cの間で変化させた。 リーンモデル排ガス流 通 1分後の NO浄化率を NO X浄化性能の指標とすることとし、 次式で 算出した。
NOの浄化率 (%) = ( 1― (触媒出口部における NO X濃度ノ触 媒入口部における NO X濃度)) X I 0 0
(試験結果)
得られた試験結果を表 1に示す。
本発明の方法による触媒を用いリーン燃焼排ガスを浄化すると、 熱耐 久後も高い N O X浄化性能が維持できる。 触媒の種類 NO浄化率 (%)
反応温度 3 0 0 °C 4 0 0 °C 5 0 0 °C 実施例触媒 1 5 0 7 0 3 5 実施例触媒 2 4 8 6 8 3 2 実施例触媒 3 4 3 6 2 3 4 実施例触媒 4 3 5 6 0 3 1 実施例触媒 5 4 1 6 6 3 3 実施例触媒 6 3 2 5 8 3 1 実施例触媒 7 4 8 6 9 3 3 実施例触媒 8 5 0 6 9 3 1 実施例触媒 9 4 8 6 6 3 6 比較例触媒 1 0 3 0 3 0 本発明によれば、 アルカリ金属がアル力リ金属リザ一バー部に保持さ れているため、 担体および触媒成分と共存するアル力リ金属の濃度及び Zまたは量を小さくでき、 アルカリ金属による貴金属のマスキング, 担 体その他触媒成分のシンタリング, アルカリ金属の揮散, 基体金属の腐 食、 が抑制できる。 一方で、 触媒層中のアルカリ金属濃度が低下した場 合アルカリ金属の供給源となり、 触媒層中のアル力リ金属濃度の大幅な 低下を抑制でき、 N O X浄化性能の低下を防止できる。
本発明の触媒を用いた排ガス浄化装置によって、 理論空燃比より高い 空燃比で燃焼(リーンバーン) させて生成した排ガス中の N O x, C O , H Cを効果的に浄化することができる。

Claims

請 求 の 範 囲
1. 理論空燃比より高い空燃比で燃焼させて生成したリーン排ガス中の N O , C O, H Cを浄化する触媒であって、 すくなく ともアルカリ金 · 属を含む触媒活性成分と、 前記アル力リ金属を保持するアル力リ金属リ ザ一バー部 、 少なくとも前記触媒活性成分と前記アル力リ金属リザー バー部とを支持する金属材料からなる基体とを有することを特徴とする 内燃機関用排ガス浄化装置。
2. 請求項 1 において、
前記基体の材料は、 A l , F e , C rを主な構成成分とするフェライ ト系ステンレス鋼であることを特徴とする内燃機関用排ガス浄化装置。
3. 請求項 1において、
前記基体の形状は、 多数の排気流路 (セル) を有するモノリス状ハニ カムであることを特徴とする内燃機関用排ガス浄化装置。
4. 請求項 1 において、
前記アルカリ金属リザーバー部は、 前記基体の前記排気通路 (セル) の内側表面上に層状に、 または、 前記内側表面上に形成された触媒層中 に島状に、形成されていることを特徴とする内燃機関用排ガス浄化装置。
5. 請求項 1において、
前記アル力リ金属リザ一バー部は、 アルカリ金属に対して親和性のあ る材料であることを特徴とする内燃機関用排ガス浄化装置。
6. 請求項 5において、
前記アルカリ金属リザーバー部は、 S i 02, T i 02, Z r O 2, A 1 2 O 3 , M g O , C a O, S r O, B a O, P 205, M o 03,W03, M n O 2 , F e 2 O 3 , C e O 2 , L a 23の少なく とも 1つを含む金属 酸化物、 前記金属酸化物を構成する金属の塩、 S i 〇 2 · A 1 2 O 3 (含 むゼオライ ト), S i 02 · M g O, S i 〇 2 ' A l 203 ' M g〇 (含む コーディエライ ト), S i 02 · C a 0, S i O 2 · S r O, S i O 2 · B a O , S i O 2 · τ τ Q) ^ i 〇 2の少なく とも 1つを含む S i 〇 2 複合酸化物、 T i 〇 2 ' A l 203, T i 〇 2 ' S i O 2 , T i O 2 · Z r 02, T i O 2 ■ M g O , T i O 2 · WO 3 , T i O 2 · M O 3 , T i O 2 · F e 2 O a , T i O 2 · M n 2 O 5 , A 1 2 O 3 · M o O 3 , Α 1 23 · F e 2 O 3 , Α 1 23 · Μ η 23, A l 23 ' Z r 02の少なくとも 1 つを含む複合酸化物、 S i C, WC, T i Cの少なく とも 1つを含む非 酸化物セラミックス、 から選ばれる少なく とも 1つ含むことを特徴とす る内燃機関用排ガス浄化装置。
7. 請求項 1において、
前記アルカリ金属リザーバー部は、 A 1 23, T i O 2 , Z r O 2、 または、 これらの複合酸化物からなる耐熱性多孔質材料表面または細孔 内に前記アル力リ金属リザ一バー部を担持して構成したことを特徴とす る内燃機関用排ガス浄化装置。
8. 請求項 1において、
前記アル力リ金属を含む触媒活性成分は、 リチウム (L i ), ナトリウ ム (N a), カリウム (K) のアル力リ金属類から選ばれる少なくとも 1 種と、 P t, P d , R hの貴金属類から選ばれる少なく とも 1種を含む 金属, 金属酸化物、 または、 複合酸化物からなる組成物であることを特 徴とする内燃機関用排ガス浄化装置。
9. 請求項 1において、
前記アル力リ金属を含む触媒活性成分は、 リチウム (L i ), ナトリウ ム (N a), カリウム (K) 等のアルカリ金属類から選ばれる少なくとも 1種と、 P t , P d , R h等の貴金属類から選ばれる少なく とも 1種と、 マグネシウム (M g), ストロンチウム (S r ) 及びカルシウム (C a) 等のアル力リ土類金属およびセリゥム等の希土類金属および T i, Z r , Mn, F e等の遷移金属から選ばれる少なくとも 1種を含む、 金属およ び金属酸化物 (もしくは複合酸化物) からなる組成物であることを特徴 とする内燃機関用排ガス浄化装置。
1 0. 内燃機関の排ガス通路に置かれ、 すくなく ともアルカリ金属を含 む触媒活性成分と、 アルカリ金属を保持するアル力リ金属リザ一パー部 と、 これらを支持する金属材料からなる基体からなる触媒に対して、 理 論空燃比より高い空燃比で燃焼させて生成した排ガスと理論空燃比もし くは理論空燃比より低い空燃比で燃焼させて生成した排ガスを交互に通 じることにより、 理論空燃比より高い空燃比で燃焼させて生成した排ガ ス中に含まれる NO x, C O, H Cの有害物質を浄化する内燃機関の排 ガス浄化方法。
PCT/JP2004/009459 2004-06-28 2004-06-28 内燃機関用排ガス浄化装置及び排ガス浄化方法 WO2006001077A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/009459 WO2006001077A1 (ja) 2004-06-28 2004-06-28 内燃機関用排ガス浄化装置及び排ガス浄化方法
JP2006519210A JPWO2006001077A1 (ja) 2004-06-28 2004-06-28 内燃機関用排ガス浄化装置及び排ガス浄化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009459 WO2006001077A1 (ja) 2004-06-28 2004-06-28 内燃機関用排ガス浄化装置及び排ガス浄化方法

Publications (1)

Publication Number Publication Date
WO2006001077A1 true WO2006001077A1 (ja) 2006-01-05

Family

ID=35781630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009459 WO2006001077A1 (ja) 2004-06-28 2004-06-28 内燃機関用排ガス浄化装置及び排ガス浄化方法

Country Status (2)

Country Link
JP (1) JPWO2006001077A1 (ja)
WO (1) WO2006001077A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152269A (ja) * 2005-12-07 2007-06-21 Hitachi Ltd 内燃機関の排ガス浄化装置及び排ガス浄化触媒
JP2008302282A (ja) * 2007-06-06 2008-12-18 Toyota Motor Corp 排ガス浄化用触媒とその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141394A (ja) * 1994-11-25 1996-06-04 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2000070717A (ja) * 1998-08-28 2000-03-07 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒および触媒担体
WO2002062468A1 (fr) * 2001-02-02 2002-08-15 Hitachi, Ltd. Catalyseur de traitement des gaz d'émission et moteur à combustion interne pourvu d'un tel catalyseur
JP2004074161A (ja) * 1993-02-04 2004-03-11 Ict:Kk リーンバーンエンジンからの排気ガスを浄化するための触媒
JP2004169609A (ja) * 2002-11-20 2004-06-17 Hitachi Ltd 内燃機関の排ガス浄化装置,浄化方法及び触媒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074161A (ja) * 1993-02-04 2004-03-11 Ict:Kk リーンバーンエンジンからの排気ガスを浄化するための触媒
JPH08141394A (ja) * 1994-11-25 1996-06-04 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2000070717A (ja) * 1998-08-28 2000-03-07 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒および触媒担体
WO2002062468A1 (fr) * 2001-02-02 2002-08-15 Hitachi, Ltd. Catalyseur de traitement des gaz d'émission et moteur à combustion interne pourvu d'un tel catalyseur
JP2004169609A (ja) * 2002-11-20 2004-06-17 Hitachi Ltd 内燃機関の排ガス浄化装置,浄化方法及び触媒

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152269A (ja) * 2005-12-07 2007-06-21 Hitachi Ltd 内燃機関の排ガス浄化装置及び排ガス浄化触媒
US7772149B2 (en) 2005-12-07 2010-08-10 Hitachi, Ltd. Exhaust gas purification apparatus for an internal combustion engine and a catalyst for purifying exhaust gas
JP2008302282A (ja) * 2007-06-06 2008-12-18 Toyota Motor Corp 排ガス浄化用触媒とその製造方法

Also Published As

Publication number Publication date
JPWO2006001077A1 (ja) 2008-04-17

Similar Documents

Publication Publication Date Title
JP6629269B2 (ja) アンモニア生成触媒およびscr触媒を備える排出処理システム
JP5746720B2 (ja) 圧力平衡化された触媒付き排気物品
JP6450540B2 (ja) リーンバーンicエンジン用排気装置
JP3724708B2 (ja) 排気ガス浄化用触媒
JP5523104B2 (ja) 熱再生可能な窒素酸化物吸着材
JP5826285B2 (ja) NOx吸収触媒
WO2018054929A1 (en) Diesel particle filter
JP5769732B2 (ja) 選択還元型触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
JP3965711B2 (ja) 窒素酸化物の浄化触媒及び浄化方法
KR20110025848A (ko) 우수한 저온 성능을 갖는 NOx 흡착제 촉매
US20050282698A1 (en) Particulate filter device and exhaust treatment system, and methods of regenerating the same
US20100077727A1 (en) Continuous diesel soot control with minimal back pressure penatly using conventional flow substrates and active direct soot oxidation catalyst disposed thereon
US20200056523A1 (en) Exhaust gas-purifying catalyst
JP4390000B2 (ja) NOx吸着装置
JP3952617B2 (ja) 内燃機関の排ガス浄化装置,排ガス浄化方法及び排ガス浄化触媒
WO2011049064A1 (ja) 排気浄化触媒およびこれを用いた排気浄化装置
JP2007196146A (ja) 排ガス浄化用触媒
JP4573993B2 (ja) 排気ガス浄化用触媒及びその製造方法
JP5094199B2 (ja) 排ガス浄化装置
WO2006001077A1 (ja) 内燃機関用排ガス浄化装置及び排ガス浄化方法
JP2005205302A (ja) 内燃機関用排ガス浄化触媒および排ガス浄化装置
JP2009273989A (ja) 排ガス浄化装置
JP2004230241A (ja) 排気ガス浄化触媒及びその製造方法
JP2002168117A (ja) 排気ガス浄化システム
JP2004211566A (ja) 排ガス浄化システムおよび排ガス浄化方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006519210

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase