WO2006000384A1 - Verfahren zum kolorieren von textilen substraten, wässrige vorbehandlungsflotten und ihre verwendung zur vorbehandlung von textilen substraten - Google Patents

Verfahren zum kolorieren von textilen substraten, wässrige vorbehandlungsflotten und ihre verwendung zur vorbehandlung von textilen substraten Download PDF

Info

Publication number
WO2006000384A1
WO2006000384A1 PCT/EP2005/006719 EP2005006719W WO2006000384A1 WO 2006000384 A1 WO2006000384 A1 WO 2006000384A1 EP 2005006719 W EP2005006719 W EP 2005006719W WO 2006000384 A1 WO2006000384 A1 WO 2006000384A1
Authority
WO
WIPO (PCT)
Prior art keywords
melamine
dmdheu
derivatives
pretreatment
thickener
Prior art date
Application number
PCT/EP2005/006719
Other languages
English (en)
French (fr)
Inventor
Michael Kluge
Cedric Dieleman
Mike Freche
Clarissa Seidl
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP2007518504A priority Critical patent/JP2008504465A/ja
Priority to CN2005800219145A priority patent/CN1977080B/zh
Priority to DE502005010181T priority patent/DE502005010181D1/de
Priority to EP05768257A priority patent/EP1763606B1/de
Priority to AT05768257T priority patent/ATE479795T1/de
Priority to US11/571,025 priority patent/US20090191383A1/en
Publication of WO2006000384A1 publication Critical patent/WO2006000384A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/649Compounds containing carbonamide, thiocarbonamide or guanyl groups
    • D06P1/6491(Thio)urea or (cyclic) derivatives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5207Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • D06P1/5214Polymers of unsaturated compounds containing no COOH groups or functional derivatives thereof
    • D06P1/5242Polymers of unsaturated N-containing compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/56Condensation products or precondensation products prepared with aldehydes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/30Ink jet printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to a process for coloring textile substrates, characterized in that textile substrates
  • the present invention relates to aqueous pretreatment liquors and Vor ⁇ treatment agent. Finally, the present invention relates to textile substrates obtainable by the process according to the invention.
  • EP-A 0 928 841 describes the use of natural thickeners and bivalent metal salts in the printing of direct dyes and pigments on silk.
  • WO 99/33669 discloses the pretreatment of a textile to be printed with cationic compounds for improving the ink level of disperse dye inks, mention being made of low molecular weight cationic compounds.
  • No. 6,001,137 describes the use of polycationic compounds based on epichlorohydrin copolymers for improving the fixation. An improvement of the ink level is not described.
  • WO 00/03081 describes a pretreatment of textiles for ink-jet printing with pigments.
  • WO 00/03081 proposes treating textiles with a pretreatment liquor containing textile binders and melamine crosslinkers.
  • the printing then follows with an ink containing a thickener.
  • JP 62231787 describes the use of divalent inorganic metal salts and / or cationic compounds and crosslinkers for the preparation of textile for ink-jet printing with pigments.
  • the crosslinker results in crosslinking with a binder contained in the ink.
  • WO 00/56972 describes the use of cationic polymers and copolymers and of polymer latices as binders for the pretreatment of textile substrates for ink-jet printing.
  • a disadvantage of the processes of the prior art is a frequently insufficient definition of the printed image on the textile substrate. This is caused by the bleeding of the inks on the substrate.
  • WO 2004/031473 discloses that it is possible to pretreat textiles with a pretreatment liquor which comprises at least one polycationic compound and at least one thickener. You get textiles that have an improved ink level when printing. The handle of the printed textiles so available is not deteriorated, but in many cases still in need of improvement. The rubbing fastness of prints with inks based on pigments are in need of improvement.
  • a further object was to provide pretreatment liquors which can be used to produce textiles which can be printed with sharp contours and which have improved grip and improved rubbing fastness after printing.
  • a further object was to provide printed textiles which avoid the above-described disadvantages of the prior art, in particular a deterioration of the handle.
  • the inventive method is based on textile substrates that can be arbitrarily shaped and made of any materials, such as fibers, yarns, Zwir ⁇ ne, knitted fabric, woven fabric (woven), non-wovens and made-up of polyester, modified polyester, polyester blended fabric cellulose-containing materials such as cotton, cotton blended fabric, jute, flax, hemp and ramie, viscose, wool, silk, polyamide, polyamide blended fabric, polyacrylonitrile, triacetate, acetate, polycarbonate, polypropylene, polyvinyl chloride, polyester microfibers and glass fiber fabric. Preference is given to flat textile substrates such as fabrics and knits.
  • any materials such as fibers, yarns, Zwir ⁇ ne, knitted fabric, woven fabric (woven), non-wovens and made-up of polyester, modified polyester, polyester blended fabric cellulose-containing materials such as cotton, cotton blended fabric, jute, flax, hemp and ramie, viscose, wool, silk, polyamide, polyamide blended fabric
  • textile substrates in step (a) are first treated with an aqueous pretreatment liquor containing
  • DMDHEU dimethyloldihydroxyethyleneurea
  • B at least one thickener.
  • Suitable resins (A) are dimethyloldihydroxyethyleneurea (DMDHEU)
  • DMDHEU for example etherification products of DMDHEU with, for example, C 1 -C 4 -alkanol, in particular with methanol and with ethanol.
  • DMDHEU etherification products of DMDHEU with, for example, C 1 -C 4 -alkanol, in particular with methanol and with ethanol.
  • Suitable derivatives of DMDHEU are bridged derivatives, which are disclosed in EP 0 923 560, and mixed-alkylated or -hydroxyalkoxyalkylated bis-4,5-dihydroxy-imidazolidin-2-ones according to WO 98/29393.
  • Resins (A) are preferably selected from melamine derivatives which may be condensed up to sixfold with one or more aldehydes and etherified with at least one aliphatic alcohol.
  • At least one aldehyde is selected from C 6 -C 4 -arylaldehydes, for example 2-naphthaldehyde, 1-naphthaldehyde and in particular benzaldehyde,
  • C 1 -C 10 -alkyl aldehydes where C 1 -C 10 -alkyl is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyi, neo-pentyl, 1,2-dimethylpropyl, iso-amyl, n-hexyl, iso-hexyl, sec-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl; particularly preferably C r C 4 alkyl such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and tert-butyl;
  • Suitable aliphatic alcohols are C 1 -C 10 -alkanols, in particular primary C 1 -C 10 -alkanols and very particularly preferably methanol and ethanol.
  • Other suitable Aliphatic alcohols are polyhydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, pentane-1, 2-diol, hexane-1, 2-diol, 1, 3-propanediol, 1, 4-butanediol, 1, 6-hexanediol, 1 , 12-dodecanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, glycerol, diglycerol, triglycerol, polyethylene glycol with on average 5 to 50 ethylene oxide units per molecule (number average), polypropylene glycol with an average of 4 to 50 Propylene oxide
  • melamine derivatives as the resin (A), for example melamine derivatives of the general formula I.
  • z is a number in the range of 1 to 10 and can be an integer, but does not have to,
  • R 7 is the same or different and selected from
  • C 1 -C 12 -alkyl branched or unbranched, selected from C 1 -C 12 -alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert.
  • n-pentyl iso-pentyl, sec-pentyl, neo-pentyl, 1, 2-dimethylpropyl, iso-amyl, n-hexyl, iso-hexyl, sec-hexyl, n-heptyl, iso-heptyl , n-octyl, n-nonyl, n-decyl, and n-dodecyl; preferably C r C 6 alkyl such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyl , neo-pentyl, 1, 2-dimethylpropyl, iso-amyl, n-hexyl, iso-hex
  • Alkoxyalkylene such as (-CH 2 -CH 2 -O) 01 -H, (-CHCH 3 -CH 2 -O) m -H, (-CH 2 -CHCH 3 -O) m -H, (-CH 2 - CH 2 -CH 2 -CH 2 -O) m -H, where m is an integer from 1 to 20, preferably 1 to 10 and particularly preferably 1 to 5.
  • R 8 different or preferably the same and selected from
  • C 1 -C 10 -alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neo -Pentyl, 1, 2-dimethylpropyl, iso-amyl, n-hexyl, iso -hexyl, sec-hexyl, n-heptyl, iso-heptyl, n-octyl, n-nonyl, n-decyl; preferably C r C 6 alkyl such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl,
  • the radicals R 1 , R 3 and R 5 are different.
  • R 1 and R 2 are hydrogen, and more preferably R 3 and R 4 are CH 2 -OH. Most preferably, R 1 and R 2 are hydrogen and R 3 is CH 2 -OH.
  • melamine derivatives of general formula I are known per se and are commercially available, for example, as Luwipal® from BASF Aktiengesellschaft and as Cymel® 327 from Cytec.
  • Melamine derivatives according to the present invention are generally not pure according to a defined formula; In ⁇ termolekulare rearrangements of the radicals R 1 to R 6 , ie Um-Acetalleitersre forceen and Um-Aminalleitersre forceen, and also to a certain extent condensation reactions and cleavage reactions are usually observed.
  • the above-mentioned formula V is to be understood in the sense that it defines the stoichiometric ratios of the substituents and also includes intermolecular rearrangement products and condensation products.
  • melamine derivatives used as resin (A) are obtainable by reacting melamine with one to three, preferably from 1.4 to 2.8, especially preferably with 1.5 to 2.6 equivalents of at least one aliphatic aldehyde, for example propionaldehyde, acetaldehyde and in particular formaldehyde.
  • the mixture is then etherified with 4.5 to 15 equivalents, preferably up to 10 and particularly preferably up to 6 equivalents of at least one di- or polyhydric aliphatic alcohol.
  • melamine derivatives can be prepared by methods known per se.
  • Melamine derivatives which are particularly preferably used as resin (A) can be prepared by first reacting melamine with one to three equivalents of at least one aliphatic aldehyde and then etherifying the reaction product with 4.5 to 10 equivalents of at least one polyhydric aliphatic alcohol ,
  • the reaction of melamine with at least one aliphatic aldehyde is carried out in aqueous solution, preferably at pH values in the range from 7 to 10, particularly preferably at pH values in the range from 8 to 9.
  • aqueous solution preferably at pH values in the range from 7 to 10
  • reaction of melamine is carried out with at least one aldehyde alipha ⁇ tables at temperatures ranging from 50 to 105 0 C, preferably 0 to 90 C in the range of 70th
  • reaction of melamine with at least one aliphatic aldehyde is carried out at atmospheric pressure. In another embodiment of the present invention, the reaction of melamine with at least one aliphatic aldehyde is carried out at pressures in the range from 1.01 to 50 bar, preferably up to 10 bar.
  • reaction of melamine with at least one aliphatic aldehyde is carried out in the presence of at least one catalyst, for example sodium hydroxide or potassium hydroxide.
  • at least one catalyst for example sodium hydroxide or potassium hydroxide.
  • the etherification is carried out with at least one polyhydric aliphatic alcohol in the aqueous phase at pH values in the range from 1 to 6, preferably in the range of 5 to 5.5.
  • the desired pH values can be set by adding acid such as, for example, trifluoroacetic acid, methylsulfonic acid, para-toluenesulfonic acid, benzenesulfonic acid, sulfuric acid, phosphoric acid or nitric acid.
  • the etherification is carried out with at least one polyhydric alcohol a- liphatischen at temperatures of 20 to 100 0 C, preferably at 30 to 70 0 C.
  • the etherification is carried out with at least one polyhydric aliphatic alcohol at atmospheric pressure. In another embodiment of the present invention, the etherification is carried out with at least one polyhydric aliphatic alcohol at pressures in the range from 1.01 to 50 bar.
  • excess aliphatic aldehyde can be distilled off. It is also possible to dispense with distilling off and remove excess aliphatic aldehyde from the reaction equilibrium by suitable reagents, for example oxidizing agents such as, for example, nitric acid.
  • suitable reagents for example oxidizing agents such as, for example, nitric acid.
  • melamine derivatives which are preferably used as the resin (A) are prepared such that distillations are not required between the reaction of melamine with at least one aldehyde and the etherification with at least one polyhydric aliphatic alcohol.
  • melamine derivatives used as the resin (A) for example by evaporating, if appropriate, solvents used, in particular water.
  • a particularly suitable method for isolating melamine derivatives used according to the invention as resin (A) is spray-drying.
  • the isolation of melamine derivatives preferably used as resin (A) is dispensed with and employed in the form of dispersions, preferably in the form of aqueous dispersions.
  • aqueous pretreatment liquors furthermore contain at least one thickener (B).
  • Suitable thickeners (B) are natural thickeners such as alginates, polysaccharides, starch, carboxymethylcellulose, guar flour and derivatives thereof, and synthetic thickeners such as, where appropriate, acrylic acid homopolymers and copolymers which may be crosslinked, for example by copolymerization of at least one Compound of the general formula
  • R 9 is methyl or preferably hydrogen.
  • Preferred thickeners (B) are associative thickeners of the general formula I, II and / or III IH-T- (EVIrU I
  • E is the same or different and selected from -CH 2 -CH 2 -, -CH 2 -CH (CH 3 ) -, -CH 2 -CH (C 2 H 5 ) -,
  • y is an integer in the range of 1 to 100,000, preferably 10 to 10,000,
  • T is the same or different and a unit derived from a diisocyanate
  • x is an integer in the range of 1 to 500, preferably 1 to 2, more preferably about 1,
  • U is the same or different and selected from units derived from aliphatic or aromatic alcohols, thiols, amines or carboxylic acids each having at least 4 C atoms, preferably at least 6 C atoms, aromatic alcohols, thiols, amines or carboxylic acids with in each case at least 6 C atoms, alcohols, thiols, amines or carboxylic acids with C 7 -C 13 aralkyl radicals or heteroaromatic alcohols, thiols, amines or carboxylic acids.
  • R 10 -OH at least one diisocyanate and (iii) at least one compound of general formula R 10 -OH, R 10 -SH, R 10 -NH 2 , R 10 R 11 NH or R 10 -COOH, wherein R 10 and R 11 may be the same or different and are selected from aliphatic radicals having at least 4 C atoms, aromatic radicals having at least 6 C atoms and heteroaromatic radicals and wherein R 10 -OH may be alkoxylated, and further derivatives of these compounds capable of forming a urethane, thiourethane or urea bond.
  • Preferred polyether diols (i) for the purposes of the present invention are polyethylene glycol, polypropylene glycol and polytetrahydrofuran, but also copolymers of ethylene oxide and propylene oxide or butylene oxide or terpolymers of ethylene oxide, propylene oxide and butylene oxide, where the copolymers are block copolymers or random copolymers may be present polymers or terpolymers.
  • Suitable diisocyanates (ii) are diisocyanates having NCO groups of the same or different reactivity.
  • diisocyanates having NCO groups of the same reactivity are aromatic or aliphatic diisocyanates, preference being given to aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, trimethylhexane diisocyanate, tetramethylhexane diisocyanate, 1, 4, 1, 3 or 1, 2-diisocyanatocyclohexane, 4,4'-di (isocyanatocyclohexyl) methane, 1-isocyanato-SSS-trimethyl- ⁇ -OsocyanatomethyOcyclohexan (isophorone diisocyanate
  • Preferred diisocyanates having NCO groups of different reactivity are the readily and cheaply available isocyanates such as 2,4-tolylene diisocyanate (2,4-TDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), triisocyanatotoluene as a representative of aromatic Diisocyanates or aliphatic diisocyanates, such as 2-butyl-2-ethylpentamethylene diisocyanate, 2-isocyanatopropylcyclohexyl isocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,4'-methylenebis (cyclohexyl) diisocyanate and 4-methylcyclohexane-1, 3-diisocyanate (H-TDI).
  • isocyanates such as 2,4-tolylene diisocyanate (2,4-TDI), 2,4'-diphenylmethane diisocyanate (2
  • isocyanates having groups of different reactivity are 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1,5-naphthylene diisocyanate, diphenyl diisocyanate, tolidine diisocyanate and 2,6-toluene diisocyanate.
  • polyisocyanates may also be used to a certain extent, for example in amounts of up to 10% by weight, based on the total amount of diisocyanate and polyisocyanate.
  • Suitable polyisocyanates are, for example, biurs and allophanates of HDI or TDI.
  • Very particularly preferred diisocyanates (ii) are HDI, IPDI, MDI and TDI.
  • the molar ratio of polyether diols (i) to diisocyanates (ii) is generally from 0.3: 1 to 1: 1, preferably about 0.5: 1.
  • reaction of diisocyanate (ii) with polyether diol (i) is usually carried out with the addition of at least one catalyst.
  • the catalyst or catalysts are preferably used in an amount of from 0.01 to 10% by weight, preferably from 0.05 to 5% by weight, based on diisocyanate (ii).
  • Suitable catalysts which in particular accelerate the reaction between the NCO groups of diisocyanate (ii) and the hydroxyl groups of polyether diol (i) are tertiary amines known in the art, e.g. Triethylamine, N, N-dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) ethanol, 1,4-diazabicyclo [2,2,2] octane ("DABCO”) and the like, and in particular organic metal compounds such as titanic acid esters, iron (III) acetylacetonate, tin compounds, for example tin diacetate, tin dioctoate, tin dilaurate or the dialkyl derivatives of tin dialkyl salts of aliphatic carboxylic acids such as dibutyltin diacetate, dibutyltin dilaurate or the like.
  • associative thickeners (B) is generally carried out in bulk or in an aprotic solvent, all solvents which are in principle suitable as solvents and which react neither with polyurethane nor with polyether diol (i) nor with diisocyanate (ii), for example, tetrahydrofuran, diethyl ether, diisopropyl ether, chloroform, dichloromethane, di-n-butyl ether, acetone, N-methylpyrrolidone (NMP), xylene, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK) or 1,4-dioxane.
  • Bevor ⁇ ferred reaction temperatures range from -20 0 C up to the boiling point of the solvent used.
  • the reaction is generally carried out without pressure, but reactions in autoclaves at up to 20 bar are also suitable.
  • Particularly suitable are alcohols R 10 -OH and primary or secondary amines R 10 - NH 2 and R 10 R 11 NH, in which R 10 and R 11 may be the same or different and are selected from
  • C 4 -C 60 -AlkVl such as n-butyl, isobutyl, n-pentyl, preferably C 6 -C 40 -AlkVl such as n-hexyl and n-heptyl and in particular C 8 -C 40 alkyl such as n-octyl , n-nonyl, n-decyl, n-dodecyl, n-hexadecyl or n-eicosyl;
  • C 6 -C 14 -aryl such as phenyl, ⁇ -naphthyl, ⁇ -naphthyl, 1-anthracenyl, 2-anthracenyl or 9-anthracenyl
  • heteroaromatic radicals such as ⁇ -pyridyl, ⁇ -pyridyl, ⁇ -pyridyl, N-pyrryl, ⁇ -pyrryl, ⁇ -pyrryl, porphyrinyl, 2-furanyl, 3-furanyl, 2-thiophenyl, 3-thiophenyl, N-pyrazolyl, N Imidazolyl, N-triazolyl, N-oxazolyl, N-indolyl, N-carbazolyl, 2-benzofuranyl, 2-benzothiophenyl, N-indazolyl, benztriazolyl, 2-quinolinyl, 3-isoquinolinyl and ⁇ -phenanthrolinyl;
  • C 7 -C 13 aralkyl preferably C 7 - to C 12 phenylalkyl such as benzyl, 1-phenethyl, 2-phenethyl, 1-phenyl-propyl, 2-phenyl-propyl, 3-phenyl-propyl, neophyl (1- Methyl-1-phenylethyl), 1-phenyl-butyl, 2-phenyl-butyl, 3-phenyl-butyl and 4-phenyl-butyl, particularly preferably benzyl.
  • phenylalkyl such as benzyl, 1-phenethyl, 2-phenethyl, 1-phenyl-propyl, 2-phenyl-propyl, 3-phenyl-propyl, neophyl (1- Methyl-1-phenylethyl), 1-phenyl-butyl, 2-phenyl-butyl, 3-phenyl-butyl and 4-phenyl-butyl,
  • Alcohols R 10 -OH may also be alkoxylated with one or more equivalents of ethylene oxide, propylene oxide or butylene oxide, it being possible to use both homo- and (block) copolymers of said alkylene oxides, usually with about 20 to 500 alkylene oxide units. Furthermore, the alcohols R-OH may be alkoxylated with THF.
  • the compound of general formula R 10 -OH, R 10 -SH, R 10 -NH 2 , R 10 R 11 NH or R 10 -COOH (iii) is at least stoichiometrically, but often in stoichiometric excess, with respect to the free isocyanate groups , For example, from 50 to 100 mol%, based on free NCO groups used.
  • Hydrophobic groups R 10 can also be linked to polyetherdiol (i) via an ester or ether bridge.
  • Associative thickeners of the general formula II are thus obtainable, for example, by reacting
  • Associative thickeners of the formula III are obtained, for example, from diisocyanate (ii) and at least one compound of the general formula R 10 -OH, R 10 -SH, R 10 -NH 2 , R 10 R 11 NH or R 10 -COOH (iii) without polyether diols (i) being present.
  • the compound of the general formula R 10 -OH, R 10 -SH, R 10 -NH 2 , R 10 R 11 NH or R 10 - COOH (iii) or the compounds (iii) can be used in stoichiometric excess ein ⁇ are based on diisocyanate (ii).
  • textile substrates are treated with at least one aqueous pretreatment liquor containing the above-described components (A) and (B).
  • aqueous pretreatment liquor containing the above-described components (A) and (B)
  • contacted textile substrate at least once with inventive aqueous pretreatment fleet leaves over a act for a certain time, for example over a period in the range of 0.1 seconds to 2 hours, and then removes pretreated textile substrate.
  • inventive aqueous pretreatment fleet leaves over a act for a certain time, for example over a period in the range of 0.1 seconds to 2 hours, and then removes pretreated textile substrate.
  • inventive aqueous pretreatment liquor for the purpose of contacting one can proceed in various ways. It is thus possible, for example, to apply aqueous pretreatment liquor according to the invention to a textile substrate, for example by exhaustion processes or batchwise or continuous processes with forced application.
  • Exhaust processes are always suitable if the aqueous pretreatment liquor according to the invention has a marked affinity for textile substrate, for example due to different ionogeneity.
  • the extraction process which are known in principle from textile dyeing.
  • textile substrate is exposed in aqueous pretreatment liquor according to the invention and is agitated therewith.
  • textile substrate may be drawn through a standing bath containing aqueous pretreatment liquor according to the invention.
  • textile substrate is repeatedly drawn through aqueous pretreatment liquor according to the invention, wherein the direction of movement of the textile substrate should be reversed. This promotes the uniformity of the contract. Further details on these application methods can be found in the relevant literature, for example, finishing of textiles, VEB subuchverlag Leipzig, 1st edition 1976, page 93 ff. Suitable continuous methods of application are all methods by which it is possible to apply the pretreatment composition according to the invention over the entire surface or imagewise.
  • Particularly suitable in this case are all printing processes and all processes in which the textile is impregnated over its full area with the aqueous pretreatment liquor according to the invention.
  • the difference to extraction methods is that you realize a compulsory order.
  • the aqueous pretreatment liquor according to the invention need have no affinity for the fiber for these processes.
  • screen printing processes are important processes, which are known in principle and are used, among other things, in the production of printed materials.
  • an aqueous pretreatment liquor according to the invention is pressed by means of a doctor blade through a fine mesh and thus transferred to a textile substrate to be pretreated.
  • the mesh can hereby be made of synthetic fibers, as in flat film printing plants, or metals, such as in rotary printing plants.
  • high-pressure, intaglio or gravure printing as common textile printing processes are also suitable for the application of inventive aqueous pretreatment liquor. Details on the individual printing processes can be found in the above-cited reference on pages 110 et seq.
  • aqueous pretreatment liquor according to the invention can be applied by spraying and casting techniques known per se.
  • textile substrate is contacted with so much pre-treatment liquor that 0.1 to 30 g solids / m 2 textile substrate are applied, preferably 1 g / m 2 to 25 g / m 2 , particularly preferably up to 15 g / m 2 .
  • a temperature of the pretreatment liquor is in the range of 2O 0 C is chosen to 60 0 C.
  • the textile substrate contacted with the aqueous pretreatment liquor according to the invention preferably carried out at temperatures in the range of 80 to 100 0 C.
  • the heat required can be introduced Scheme- as a heat carrier in the form of heated air.
  • the use of infrared radiators or microwave radiators is also suitable.
  • the textile substrate is preferably kept under tension during drying in order to avoid the formation of wrinkles.
  • pretreatment liquors of the invention may be added to one or more salts of monovalent or divalent metals or ammonium salts.
  • suitable salts are ZnCl 2 , Zn (NO 3 ) 2 , in each case also in the form of their hydrates, NH 4 Cl 1 (NH 4 ) 2 SO 4 , NaBF 4 , AICl 3 -6H 2 O, ammonium dihydrogenphosphate, diammonium hydrogenphosphate , and most preferably MgCl 2 , for example in the form of its hexahydrate.
  • pretreatment liquors according to the invention contain one or more salts of monovalent or divalent metals or ammonium salts, then it is customary to choose from 0.1 to 30% by weight, based on resin (A), preferably from 0.5 to 10 and more preferably to 8% by weight.
  • step (b) of the process according to the invention pretreated and optionally dried textile substrate are printed, preferably by the ink-jet process.
  • inks which may be solvent-based or preferably aqueous, are sprayed in small droplets directly onto the substrate.
  • continuous processes are used, in which the ink is divided uniformly by one Pressed nozzle and is directed by an electric field, depending on the pattern to be printed on the substrate, and discontinuous inkjet or "drop-on-demand" method, where the ink ejection takes place only where a colored dot is to be set
  • pressure is exerted on the ink system either via a piezoelectric crystal or a heated cannula (bubble jet method) and the ink droplets are ejected in such a manner.
  • the ink-jet inks used in the process according to the invention for printing on textile substrates usually contain, in addition to one or more dispersants, water or a water / solvent mixture and preferably finely divided water or in the water / solvent mixture organic or inorganic colorants, for example pigments according to the definition in DIN 55944.
  • disperse dyes can also be used.
  • In-Jet inks can also contain as dissolved dyes direct, acid, reactive and vat dyes. Said soluble dyes may be contained as fining agents in pigment-containing ink-jet inks, wherein the color similar to the pigment soluble dyes, in particular direct, acid or reactive dyes are used.
  • step (b) particular preference is given to using at least one pigment-containing ink-ink containing, in addition to at least one pigment and water, at least one dispersant.
  • Suitable dispersants are, for example, those based on maleic acid / acrylic acid copolymers, in particular those having a molecular weight M n in the range from 2000 to 10,000 g / mol, which are suitable in the form of random copolymers or block copolymers.
  • Further suitable dispersants are N-vinylpyrrolidone homopolymers and acrylate-N-vinylpyrrolidine copolymers, in particular those N-vinylpyrrolidone homopolymers and acrylate-N-vinylpyrrolidine copolymers having molecular weight M n in the range from 2000 to 10,000 g / mol, in Form of random Copo ⁇ lymeren or block copolymers.
  • Suitable dispersants are those based on naphthalenesulfonic acid-formaldehyde condensates, for example according to US Pat. No. 5,186,846, or based on alkoxylated styrenated and optionally sulfated alkylphenols or bisphenols, for example according to US Pat. No. 4,218,218.
  • step (b) Ink-jet inks at least one Lö ⁇ solvents glycol used having a boiling point above 110 0 C, for example ethylene glycol, diethylene, Triethylengykol, tetraethylene glycol, glycerol, diglycerol, propylene glycol, dipropylene glycol, liquid at room temperature poly- tetrahydrofuran, 1, 3- propanediol, mono-, di- or triethylene glycol mono-Ci-C 4 alkyl esters, in which C 1 -C 4 - alkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl , iso-butyl, sec-butyl and tert-butyl.
  • glycol used having a boiling point above 110 0 C
  • ink-jet inks used in step (b) have a dynamic viscosity of from 1 to 30 mPa.s, preferably from 1 to 20 mPa.s, more preferably from 2 to 15 mPa.s, determined in each case 2O 0 C.
  • ink-jet inks used in step (b) have a surface tension of 20 to 70 mN / m, in particular 20 to 40 mN / m, particularly preferably 25 to 35 mN / m, each determined at 20 0 C.
  • the pH of ink-jet inks used in step (b) is generally in the range from 5 to 10, preferably in the range from 7 to 9.
  • Ink-jet inks used in step (b) may contain other auxiliaries, as are customary in particular for aqueous ink-jet inks and in the printing and coating industry. Mention may be made, for example, of erythritol, pentaerythritol, pentites, such as Arabitol, adonite and xylitol and hexites such as sorbitol, mannitol and dulcitol. Mention may furthermore be made of polyethylene glycols having an M w of more than 2000 g / mol to about 10,000 g / mol, preferably up to 800 g / mol.
  • preservatives such as, for example, 1,2-benzisothiazolin-3-one and its alkali metal salts, degassers / defoamers such as ethoxylated acetylenediols, which usually contain 20 to 40 moles of ethylene oxide per mole of acetylenediol and at the same time may also have a dispersing effect, regulating agents viscosity, flow control agents, wetting agents (for example wetting surfactants based on ethoxylated or propoxylated fatty or oxo alcohols, propylene oxide / ethylene oxide block copolymers, ethoxylates of oleic acid or alkylphenols, alkylphenol ether sulfates, alkylpolyglycosides, alkylphosphonates, alkylphenylphosphonates, alkyl phosphates, alkylphenyl phosphates or preferably polyether siloxan
  • the total amount thereof is generally 2% by weight, in particular 1% by weight, based on the weight of the colorant preparations according to the invention and in particular of the inks according to the invention for inkjet printing. Jet method.
  • step (b) it is possible to dispense with the addition of handle improvers to ink jet inks used in step (b).
  • Inks used in step (b) may contain one or more resins (A) in amounts of up to 10% by weight.
  • textile substrate (a) is treated with at least one aqueous pretreatment liquor comprising (A) at least one resin selected from melamine derivatives, dimethyloldihydroxy ethyleneurea (DMDHEU) and derivatives of DMDHEU, (B) at least one thickener, (C) optionally at least one polycationic compound and (D) optionally at least one additive (b) and subsequently printed by the inkjet process.
  • A at least one resin selected from melamine derivatives, dimethyloldihydroxy ethyleneurea (DMDHEU) and derivatives of DMDHEU
  • B at least one thickener
  • C optionally at least one polycationic compound
  • additive optionally at least one additive
  • Resins (A) and thickeners (B) are defined above.
  • aqueous pretreatment liquors according to the invention may contain one or more polycationic compounds.
  • Suitable polycationic compounds are, for example, cationic homopolymers or copolymers.
  • Preferred polycationic compounds are polyvinylamines, for example having Fikentscher K values in the range from 15 to 60, polyethylenimines, for example having a molecular weight M n in the range from 5,000 to 1,000,000 g / mol, homo- and copolymers of diallyldialkylammonium Monomers such as diallyldimethylammonium chloride, cationic acrylates and acrylamides such as acryloxyethyldimethylammonium chloride or acrylamidoethyldimethylammonium chloride, quaternary vinylpyridines such as methylvinylpyridinium chloride, polyalkylamine polymers and copolymers, also polyallylamine hydrochloride, allylamine hydrochloride-diallylamine hydrochloride copolymer, N-vinylacrylamidine hydrochloride-acryl
  • Preferred polycationic compounds (C) are homopolymers or copolymers of dialkyldialkylammonium monomers, such as polydiallyldimethylammonium chloride (polyDAD-MAC), polydiallyldiethylammonium chloride (polyDADEAC), polydiallyldimethylammonium bromides (polyDADMAB), polydiallyldiethylammonium bromide (polyDADEAB), particularly preferably polymers or Copolymers of diallyldimethylammonium chloride, particularly preferred is diallyldi-methylammonium chloride homopolymer (polyDADMAC).
  • polyDAD-MAC polydiallyldimethylammonium chloride
  • polyDADEAC polydiallyldiethylammonium chloride
  • polyDADMAB polydiallyldimethylammonium bromides
  • polyDADEAB polydiallyldiethylammonium bromide
  • polyDADMAC diallyldi-methyl
  • Copolymers of the monomers mentioned can also contain, as comonomers, nonionic monomers, for example N-vinylpyrrolidone, (partially hydrolyzed) vinyl acetate or hydroxy (meth) acrylate in copolymerized form.
  • nonionic monomers for example N-vinylpyrrolidone, (partially hydrolyzed) vinyl acetate or hydroxy (meth) acrylate in copolymerized form.
  • inventive aqueous pretreatment liquors comprise polymers or copolymers of diallyldialkylammonium monomers, in particular diallyldimethylammonium chloride homopolymer, as polycationic compounds (C), at least one melamine derivative as the resin (A) and one or more associative thickeners of the formula I, Il and / or III as thickener (B).
  • inventive aqueous pretreatment liquors may contain additives as component (D).
  • Additives are, for example, aldehyde scavengers, defoamers, emulsifiers, solvents, biocides, deaerators and wetting agents.
  • Suitable aldehyde scavengers are, for example, urea and carbamates.
  • Suitable defoamers are, for example, silicone-containing defoamers such as, for example, those of the formula HO- (CH 2 ) 3-Si (CH 3 ) [OSi (CH 3 ) 3]
  • Silicone-free defoamers are also suitable, for example polyalkoxylated alcohols, For example, fatty alcohol alkoxylates, preferably 2 to 50-fold ethoxylated preferably unbranched Cio-C 2 o-alkanols, unbranched C 10 -C 20 -alkanols and 2-ethylhexan-1-ol.
  • Suitable emulsifiers are, for example, cationic, anionic, zwitterionic and nonionic surfactants. Particularly suitable are nonionic surfactants such as, for example, multiply, in particular 5 to 100 times alkoxylated fatty alcohols.
  • Suitable biocides are, for example, 1,2-benzisothiazolin-3-one ("BIT”) (commercially available as Proxel® brands from Avecia Lim.) And its alkali metal salts, other suitable biocides are 2- Methyl 2H-isothiazol-3 (“MIT”) and 5-chloro-2-methyl-2H-isothiazol-3-one (“CIT”).
  • BIT 1,2-benzisothiazolin-3-one
  • MIT 2- Methyl 2H-isothiazol-3
  • CIT 5-chloro-2-methyl-2H-isothiazol-3-one
  • Suitable deaerators are, for example, those based on polyethersiloxane copolymers, for example H- (EO) aO- (CH 2 ) 3-Si (CH 3 ) [OSi (CH 3 ) 3 ] 2 , where a is, for example, an integer in the Range is from 1 to 10 and EO is OCH 2 CH 2 .
  • Suitable wetting agents are, for example, nonionic, anionic or cationic surfactants, in particular ethoxylation and / or propoxylation products of fatty alcohols or propylene oxide-ethylene oxide block copolymers, ethoxylated or propoxylated fatty or oxo alcohols, furthermore ethoxylates of oleic acid or alkylphenols, alkylphenol ether sulfates, alkylpolyglycosides, Alkylphosphonates, Alkylphenylphosphona- te, alkyl phosphates, or Alkylphenylphosphate.
  • nonionic, anionic or cationic surfactants in particular ethoxylation and / or propoxylation products of fatty alcohols or propylene oxide-ethylene oxide block copolymers, ethoxylated or propoxylated fatty or oxo alcohols, furthermore ethoxylates of oleic acid or alkylphenols, al
  • the present invention further provides aqueous pretreatment baths comprising (A) at least one resin selected from melamine derivatives, dimethyloldihydroxyethyleneurea (DMDHEU) and derivatives of DMDHEU, (B) at least one thickener, (C) optionally at least one polycationic compound and (D) optionally at least one additive.
  • A at least one resin selected from melamine derivatives, dimethyloldihydroxyethyleneurea (DMDHEU) and derivatives of DMDHEU
  • B at least one thickener
  • C optionally at least one polycationic compound
  • D optionally at least one additive.
  • aqueous pretreatment liquors (A) comprise from 0.1 to 20% by weight, preferably from 0.1 to 15% by weight, particularly preferably from 0.1 to 10% by weight, of at least one resin from melamine derivatives, dimethylol dihydroxyethyleneurea (DMDHEU) and derivatives of DMDHEU, (B) from 0.1 to 30% by weight of thickener, (C) from 0.1 to 50% by weight of polycationic compound and (D) from 0 to 30% by weight .-% additives.
  • DMDHEU dimethylol dihydroxyethyleneurea
  • D from 0 to 30% by weight .-% additives.
  • the solids content of pretreatment liquors according to the invention can be selected, for example, from solids contents in the range from 10 g / l to 600 g / l, preferably from 50 g / l to 500 g / l.
  • Pre-treatment liquors according to the invention are particularly suitable for carrying out step (a) of the process according to the invention for coloring textile substrates.
  • a further subject of the present invention are treatment agents containing the components (A), (B), optionally (C) and optionally (D), from which aqueous pretreatment liquors according to the invention can be obtained by dilution with water.
  • Another object of the present invention is a process for the preparation of pretreatment liquors of the invention by diluting erfindungsge ⁇ MAESSEN treatment agents with water.
  • pretreatment liquors according to the invention can be prepared by stirring water with component (A) and (B) if appropriate (C) and, if appropriate, (D) in successive steps.
  • a further aspect of the present invention are textile substrates obtainable by the process according to the invention for coloring textile substrates.
  • Inventive textile substrates are distinguished not only by the particular brilliance of the color and the contours and particularly good adhesion and therefore fastness to printing, for example by particularly good rub fastnesses, wet rub fastnesses and washfastnesses, but also by a particularly pleasant feel.
  • non-volatile components 42.5 wt .-% (determined by drying 2 h at Tro ⁇ drying oven at 120 0 C), H 2 O by Karl Fischer: ⁇ 3.7 wt .-%, dynamic viscosity: 850 mPa-s, determined by means of a cone / plate viscometer.
  • nb not determined Abbreviations: nfA: non-volatile components, determined (determined by drying for 2 h in a drying oven at 120 ° C.), DEG: diethylene glycol.
  • Component (A) melamine derivative according to Table 1 or 2
  • the liquors according to the invention were prepared according to Table 2.
  • B1 associative thickener, reaction product of hexamethylene diisocyanate (HDI) with ethoxylated nC 18 H 37 OH with an M w of 10,000 g / mol, the ethoxylated Fett ⁇ alcohol in an excess of 50 mol%, based on isocyanate groups used has been;
  • C1 polyethyleneimine, M w 25,000 g / mol
  • C2 diallyldimethylammonium chloride homopolymer; M w 10,000 g / mol
  • D1 phosphoric acid tri-n-butyl ester as antifoam
  • D2 20% by weight solution of 1,2-benzisothiazolin-3-one in propylene glycol
  • D3 dispersing binder according to Example IV.
  • Table 2 Pretreatment liquors according to the invention
  • Fabric G3.1, G3.2 or G3.3 was treated with a pretreatment liquor according to Table 2 on a padder (manufacturer: Mathis, type no. HVF63003).
  • the Anpress ⁇ pressure of the rollers was 2.2 bar. This resulted in a fleet intake of 60%.
  • the application speed was 1 m / min.
  • the pretreated fabric was dried at 8O 0 C on a tenter.
  • the ink jet inks listed below were prepared by mixing the ingredients listed in Table 4 below.
  • Mixing components M1 to M3 were prepared by first adding the ingredients listed in Table 3 to a ball mill, filling each with distilled water to 100 ml and dispersing it. Subsequently, the ink T1 was formulated in a beaker of Mix component M1 and the ingredients according to Table 5, the ink T2 from Mix component M2 and the ingredients according to Table 4 and the ink T3 from Mix component M3 and the ingredients according to Table 5 and filled each with distilled water to 100 ml.
  • Wetting agent 1 [(CHgkSikSKCHsMCHda-CKCHsC ⁇ COsH biocide 1: 20 wt .-% solution of 1, 2-benzisothiazolin-3-one in dipropylene glycol Table 3: Composition of mix components M1 to M3 M 1 M2 M3 Cl. Pigment Red 122 10 Cl. Pigment Blue 15: 3 8 Cl. Pigment Black 7 9 Dispersing binder D3 30 24.36 27.2 Melamine derivative AIO 4.44 3.55 4 1, 2-propylene glycol 5 4 4.5 Biocide 1 2.6 2.0 2.3 Phosphoric acid tri-n-butyl ester 0, 04 0.04 0.02 All use amounts are g / 100 ml. In each case 100 ml mix components M1, M2 and M3 were produced.
  • Table 4 Composition of inks T1 to T3
  • Cotton fabric, polyester microfibre fabric and cotton / polyester blend fabric were each printed with an ink on a Mimaki TX 1600 S printer.
  • Pre-treated and printed fabrics of the invention had an excellent feel.
  • reaction solution was cooled by means of an ice bath, added with a solution of 6.25 g of diethanolamine in 6.25 g of distilled tetrahydrofuran and then with 5.4 g of triethylamine. 315 g of water were added and the tetrahydrofuran was distilled off. This gave dispersing binder D3 in aqueous solution, solids content 33 wt .-%.
  • the polyester diol used was a polyester diol having a hydroxyl number of 140 mg KOH / g polyester diol, determined in accordance with DIN 53240, which was obtained from isophthalic acid, adipic acid and 1,4-cyclohexanedimethanol in a molar ratio of 1: 1: 2.2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Coloring (AREA)

Abstract

Verfahren zum Kolorieren von textilen Substraten, wässrige Vorbehandlungsflotten und ihre Verwendung zur Vorbehandlung von textilen Substraten Verfahren zum Kolorieren von textilen Substraten, dadurch gekennzeichnet, dass man textile Substrate (a) mit einer wässrigen Vorbehandlungsflotte vorbehandelt, die (A) mindestens ein Harz, gewählt aus Melaminderivaten, Dimethyloldihydroxyethylenharnstoff (DMDHEU) und Derivaten von DMDHEU und (B) mindestens einen Verdicker enthält, und danach (b) nach dem Ink-Jet-Verfahren bedruckt.

Description

Verfahren zum Kolorieren von textilen Substraten, wässrige Vorbehandlungsflotten und ihre Verwendung zur Vorbehandlung von textilen Substraten
Die vorliegende Erfindung betrifft ein Verfahren zum Kolorieren von textilen Substraten, dadurch gekennzeichnet, dass man textile Substrate
(a) mit einer wässrigen Vorbehandlungsflotte vorbehandelt, die (A) mindestens ein Harz, gewählt aus Melaminderivaten, Dimethyloldihydroxy- ethylenharnstoff (DMDHEU) und Derivaten von DMDHEU und (B) mindestens einen Verdicker enthält, und danach (b) nach dem I nk- Jet-Verfahren bedruckt.
Weiterhin betrifft die vorliegende Erfindung wässrige Vorbehandlungsflotten und Vor¬ behandlungsmittel. Schließlich betrifft die vorliegende Erfindung textile Substrate, er- hältlich durch das erfindungsgemäße Verfahren.
Es ist bekannt, textile Materialien, die beispielsweise nach dem Ink-Jet-Verfahren be¬ druckt werden sollen, zur Verbesserung der anwendungstechnischen Eigenschaften der bedruckten Textilien mit einer Vorbehandlungsflotte zu behandeln. Durch diese Vorbehandlung soll der Stand der Tinten auf dem textilen Substrat verbessert, eine höhere Farbstärke sowie eine bessere Fixierung der Tinten auf dem Substrat erreicht werden. Angestrebt werden deutlich schärfere Konturen (verbesserte Definition) der Drucke auf dem Substrat, um höhere Auflösungen (höhere dpi) der Drucke zu rea¬ lisieren. Angestrebt werden außerdem hohe Gebrauchsechtheiten, beispielsweise Waschechtheit und Reibechtheit.
EP-A 0 928 841 beschreibt die Verwendung von natürlichen Verdickern und zweiwer¬ tigen Metallsalzen beim Drucken von Direktfarbstoffen und Pigmenten auf Seide.
WO 99/33669 offenbart die Vorbehandlung eines zu bedruckenden Textils mit kationi¬ schen Verbindungen zur Verbesserung des Tintenstandes von Dispersionsfarbstoff- Tinten, wobei niedermolekulare kationische Verbindungen genannt werden.
US 6,001 ,137 beschreibt die Verwendung von polykationischen Verbindungen auf Ba- sis von Epichlorhydrin-Copolymeren zur Verbesserung der Fixierung. Eine Verbesse¬ rung des Tintenstandes ist nicht beschrieben.
WO 00/03081 beschreibt eine Vorbehandlung von Textilien für den Ink-Jet-Druck mit Pigmenten. Dazu schlägt WO 00/03081 vor, Textilien mit einer Vorbehandlungsflotte zu behandeln, die Textilbindemittel und Melaminvernetzer enthält. Das Bedrucken er¬ folgt dann mit einer Tinte, die einen Verdicker enthält. JP 62231787 beschreibt die Verwendung von zweiwertigen anorganischen Metallsal¬ zen und/oder kationischen Verbindungen und Vernetzern zur Vorbereitung von Textil für den Ink-Jet-Druck mit Pigmenten. Der Vernetzer führt zur Vernetzung mit einem Binder, der in der Tinte enthalten ist.
WO 00/56972 beschreibt die Verwendung von kationischen Polymeren und Copolyme- ren sowie von Polymerlatices als Bindemittel für die Vorbehandlung textiler Substrate für den Ink-Jet-Druck.
Nachteilig an den Verfahren des Standes der Technik ist eine häufig nicht ausreichen¬ de Definition des Druckbildes auf dem textilen Substrat. Dies wird durch das Verlaufen der Tinten auf dem Substrat verursacht.
Aus WO 2004/031473 ist bekannt, dass man Textilien mit einer Vorbehandlungsflotte vorbehandeln kann, die mindestens eine polykationische Verbindung und mindestens einen Verdicker enthält. Man erhält Textilien, die beim Bedrucken einen verbesserten Tintenstand aufweisen. Der Griff der so erhältlichen bedruckten Textilien ist zwar nicht verschlechtert, jedoch in vielen Fällen noch verbesserungswürdig. Die Reibechtheiten von Drucken mit Tinten auf Basis von Pigmenten sind aber verbesserungswürdig.
Es bestand daher die Aufgabe, ein Verfahren bereit zu stellen, das die eingangs er¬ wähnten Nachteile vermeidet und insbesondere Textilien liefert, die nach dem Bedru¬ cken zumindest unveränderten, möglichst aber einen verbesserten Griff aufweisen. Weiterhin sollen die Tinten beim Bedrucken einen verbesserten Stand aufweisen. Es bestand weiterhin die Aufgabe, Vorbehandlungsflotten bereit zu stellen, mit deren Hilfe sich Textilien herstellen lassen, die sich mit scharfen Konturen bedrucken lassen und die nach dem Bedrucken einen verbesserten Griff und verbesserte Reibechtheiten aufweisen. Weiterhin bestand die Aufgabe, bedruckte Textilien bereit zu stellen, welche die oben bezeichneten Nachteile des Stands der Technik vermeiden, insbesondere eine Verschlechterung des Griffs.
Demgemäß wurde das eingangs definierte Verfahren gefunden.
Das erfindungsgemäße Verfahren geht aus von textilen Substraten, die beliebig ge- formt und aus beliebigen Materialien sein können, beispielsweise Fasern, Garne, Zwir¬ ne, Maschenware, Webware (Gewebe), Non-wovens und konfektionierte Ware aus Polyester, modifiziertem Polyester, Polyestermischgewebe, cellulosehaltige Materialien wie Baumwolle, Baumwollmischgewebe, Jute, Flachs, Hanf und Ramie, Viskose, Wol¬ le, Seide, Polyamid, Polyamidmischgewebe, Polyacrylnitril, Triacetat, Acetat, Polycar- bonat, Polypropylen, Polyvinylchlorid, Polyestermikrofasern und Glasfasergewebe. Bevorzugt geht man von flächigen textilen Substraten aus wie beispielsweise Geweben und Maschenwaren.
Erfindungsgemäß behandelt man textile Substrate in Schritt (a) zunächst mit einer wässrigen Vorbehandlungsflotte, enthaltend
(A) mindestens ein Harz, gewählt aus Melaminderivaten, Dimethyloldihydroxy- ethylenharnstoff (DMDHEU) und Derivaten von DMDHEU und (B) mindestens einen Verdicker.
Beispiele für geeignete Harze (A) sind Dimethyloldihydroxyethylenharnstoff (DMDHEU)
Figure imgf000004_0001
und Derivate von DMDHEU, beispielsweise Veretherungsprodukte von DMDHEU mit beispielsweise C1-C4-Alkanol, insbesondere mit Methanol und mit Ethanol. Weitere geeignete Derivate von DMDHEU sind verbrückte Derivate, die in EP 0 923 560 offen¬ bart sind, und gemischt-alkylierte bzw. -hydroxyalkoxyalkylierte Bis-4,5-dihydroxy- imidazolidin-2-one gemäß WO 98/29393.
Bevorzugt wählt man Harze (A) aus Melaminderivaten, die einfach bis sechsfach mit einem oder mehreren Aldehyden kondensiert und mit mindestens einem aliphatischen Alkohol verethert sein können. Dabei wird mindestens ein Aldehyd gewählt aus C6-Ci4-Arylaldehyden, beispielsweise 2-Naphthaldehyd, 1-Naphthaldehyd und insbe- sondere Benzaldehyd,
und aliphatischen Aldehyden wie
Ci-Cio-Alkylaldehyden, wobei Ci-C10-Alkyl gewählt wird aus Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyi, tert.-Butyl, n-Pentyl, iso-Pentyl, sec- Pentyi, neo-Pentyl, 1 ,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec- Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl; besonders bevorzugt CrC4-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl;
und ganz besonders bevorzugt Formaldehyd.
Als aliphatische Alkohole sind Ci-C10-Alkanole geeignet, insbesondere primäre C1-C10- Alkanole und ganz besonders bevorzugt Methanol und Ethanol. Andere geeignete aliphatische Alkohole sind mehrwertige Alkohole wie beispielsweise Ethylenglykol, Pro- pylenglykol, Butylenglykol, Pentan-1 ,2-diol, Hexan-1 ,2-diol, 1 ,3-Propandiol, 1 ,4- Butandiol, 1 ,6-Hexandiol, 1,12-Dodecandiol, Diethylenglykol, Triethylenglykol, Tetra- ethylenglykol, Dipropylenglykol, Tripropylenglykol, Tetrapropylenglykol, Glycerin, Digly- cerin, Triglycerin, Polyethylenglykol mit im Mittel 5 bis 50 Ethylenoxideinheiten pro Mo¬ lekül (Zahlenmittel), Polypropylenglykol mit im Mittel 4 bis 50 Propylenoxideinheiten pro Molekül (Zahlenmittel), Ethylenoxid/Propylenoxid-Copolymerisate, die statistisch, alter¬ nierend oder blockartig aufgebaut sein können, mit im Mittel 2 bis 50 Alkylenoxideinhei- ten (Zahlenmittel) pro Molekül, wobei Alkylenoxideinheiten gewählt sind aus Ethylen- oxid und Propylenoxid, und Polytetrahydrofurane mit einem Molgewicht Mn im Bereich von 150 bis 2500 g/mol, bevorzugt 200 bis 300 g/mol.
Bevorzugt setzt man als Harz (A) Melaminderivate ein, beispielsweise Melaminderivate der allgemeinen Formel I
Figure imgf000005_0001
in denen die Variablen R1 bis R6 gleich oder verschieden und wie folgt definiert sind:
Wasserstoff oder
(CHR8-O)2R7, CHR8-OR7 oder CH(OR7)2 oder CH2-N(R7J2
wobei z eine Zahl im Bereich von 1 bis 10 ist und eine ganze Zahl sein kann, aber nicht muss,
und wobei R7 gleich oder verschieden und ausgewählt aus
Wasserstoff,
Ci-C12-Alkyl, verzweigt oder unverzweigt, ausgewählt aus C1-C12-AIRyI wie Methyl, E- thyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso- Pentyl, sec.-Pentyl, neo-Pentyl, 1 ,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso- Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, n-Nonyl, n-Decyl, und n- Dodecyl; bevorzugt CrC6-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1 ,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, besonders bevor¬ zugt Ci-C4-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec- Butyl und tert.-Butyl;
Alkoxyalkylen wie beispielsweise (-CH2-CH2-O)01-H, (-CHCH3-CH2-O)m-H, (-CH2- CHCH3-O)m-H, (-CH2-CH2-CH2-CH2-O)m-H, wobei m eine ganze Zahl von 1 bis 20, be¬ vorzugt 1 bis 10 und besonders bevorzugt 1 bis 5 bedeutet.
R8 verschieden oder vorzugsweise gleich und gewählt aus
C6-C14-ArVl und insbesondere Phenyl,
Ci-C10-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec- Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1 ,2- Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, n-Nonyl, n-Decyl; bevorzugt CrC6-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.- Pentyl, neo-Pentyl, 1 ,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.- Hexyl, besonders bevorzugt CrC4-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert-Butyl;
und ganz besonders bevorzugt Wasserstoff.
Bevorzugt sind die Reste R1, R3 und R5 verschieden.
Besonders bevorzugt sind R1 und R2 gleich Wasserstoff, und besonders bevorzugt ist R3 und R4 gleich CH2-OH. Ganz besonders bevorzugt sind R1 und R2 gleich Wasser¬ stoff und R3 gleich CH2-OH.
Viele Melaminderivate der allgemeinen Formel I sind an sich bekannt und beispiels¬ weise als Luwipal® der BASF Aktiengesellschaft und als Cymel® 327 der Firma Cytec im Handel erhältlich. Melaminderivate im Sinne der vorliegenden Erfindung liegen im Allgemeinen nicht rein gemäß einer definierten Formel vor; üblicherweise werden in¬ termolekulare Umlagerungen der Reste R1 bis R6, also Um-Acetalisierungsreaktionen und Um-Aminalisierungsreaktionen, und auch zu einem gewissen Grade Kondensati¬ onsreaktionen und Abspaltungsreaktionen beobachtet. Die oben angegebene Formel V ist in dem Sinne zu verstehen, dass sie die stöchiometrischen Verhältnisse der Substi- tuenten definiert und auch intermolekulare Umlagerungsprodukte und Kondensations¬ produkte mit umfasst.
Ganz besonders bevorzugt als Harz (A) eingesetzte Melaminderivate sind erhältlich durch Umsetzung von Melamin mit einem bis drei, bevorzugt mit 1 ,4 bis 2,8, besonders bevorzugt mit 1 ,5 bis 2,6 Äquivalenten mindestens eines aliphatischen Aldehyds, bei¬ spielsweise Propionaldehyd, Acetaldehyd und insbesondere Formaldehyd. Anschlie¬ ßend verethert man mit 4,5 bis 15 Äquivalenten, bevorzugt bis 10 und besonders be¬ vorzugt bis 6 Äquivalenten mindestens eines zwei- oder mehrwertigen aliphatischen Alkohols.
Dabei muss weder die Umsetzung mit aliphatischem Aldehyd bzw. aliphatischen Alde¬ hyden noch die Veretherung stöchiometrisch einheitlich erfolgen, so dass eine Darstel¬ lung der erfindungsgemäßen Melaminderivate durch eine Formel nicht möglich ist. Man erhält hingegen üblicherweise Gemische von verschiedenen Produkten, die weiterhin Umaminalisierungsreaktionen und Umetherungsreaktionen zugänglich sind.
Erfindungsgemäß als Harz (A) eingesetzte Melaminderivate kann man nach an sich bekannten Methoden herstellen. Besonders bevorzugt als Harz (A) eingesetzte MeI- aminderivate kann man herstellen, indem man zunächst Melamin mit einem bis drei Äquivalenten mindestens eines aliphatischen Aldehyds umsetzt und das Umsetzungs¬ produkt anschließend mit 4,5 bis 10 Äquivalenten mindestens eines mehrwertigen a- liphatischen Alkohols verethert.
Die Umsetzung von Melamin mit mindestens einem aliphatischen Aldehyd führt man in einer Ausführungsform der vorliegenden Erfindung in wässriger Lösung durch, bevor¬ zugt bei pH-Werten im Bereich von 7 bis 10, besonders bevorzugt bei pH-Werten im Bereich von 8 bis 9. In einer anderen Variante verzichtet man auf die Verwendung von Wasser und vermischt Melamin und mindestens einen Aldehyd, insbesondere Melamin und Paraformaldehyd, und bringt beide Reaktionspartner miteinander zur Reaktion.
In einer Variante führt man die Umsetzung von Melamin mit mindestens einem alipha¬ tischen Aldehyd bei Temperaturen im Bereich von 50 bis 1050C, bevorzugt im Bereich von 70 bis 900C durch.
In einer Variante führt man die Umsetzung von Melamin mit mindestens einem alipha¬ tischen Aldehyd bei Atmosphärendruck durch. In einer anderen Ausführungsform der vorliegenden Erfindung führt man die Umsetzung von Melamin mit mindestens einem aliphatischen Aldehyd bei Drücken im Bereich von 1,01 bis 50 bar, bevorzugt bis 10 bar durch.
In einer Variante führt man die Umsetzung von Melamin mit mindestens einem alipha¬ tischen Aldehyd in Gegenwart mindestens eines Katalysators durch, beispielsweise Natriumhydroxid oder Kaliumhydroxid.
In einer Variante führt man die Veretherung mit mindestens einem mehrwertigen a- liphatischen Alkohol in wässriger Phase bei pH-Werten im Bereich von 1 bis 6, bevor- zugt im Bereich von 5 bis 5,5 durch. Die gewünschten pH-Werte kann man durch Zu¬ gabe von Säure wie beispielsweise Trifluoressigsäure, Methylsulfonsäure, para- Toluolsulfonsäure, Benzolsulfonsäure, Schwefelsäure, Phosphorsäure oder Salpeter¬ säure einstellen.
In einer Variante führt man die Veretherung mit mindestens einem mehrwertigen a- liphatischen Alkohol bei Temperaturen von 20 bis 1000C, bevorzugt bei 30 bis 700C durch.
In einer Variante führt man die Veretherung mit mindestens einem mehrwertigen a- liphatischen Alkohol bei Atmosphärendruck durch. In einer anderen Ausführungsform der vorliegenden Erfindung führt man die Veretherung mit mindestens einem mehrwer¬ tigen aliphatischen Alkohol bei Drücken im Bereich von 1 ,01 bis 50 bar durch.
Nach beendeter Veretherung kann man überschüssigen aliphatischen Aldehyd abdes- tillieren. Man kann auch auf das Abdestillieren verzichten und überschüssigen aliphati¬ schen Aldehyd durch geeignete Reagenzien, beispielsweise Oxidationsmittel wie bei¬ spielsweise Salpetersäure aus dem Reaktionsgleichgewicht entfernen.
In einer bevorzugten Variante stellt man bevorzugt als Harz (A) verwendete Melamin- derivate so dar, dass man zwischen der Umsetzung von Melamin mit mindestens ei¬ nem Aldehyd und der Veretherung mit mindestens einem mehrwertigen aliphatischen Alkohol auf Destillationen verzichtet.
In einer Ausführungsform der vorliegenden Erfindung isoliert man bevorzugt als Harz (A) eingesetzte Melaminderivate, beispielsweise durch Eindampfen von gegebenen¬ falls eingesetzten Lösungsmitteln wie insbesondere Wasser. Eine besonders geeignete Methode zur Isolierung von erfindungsgemäß als Harz (A) eingesetzten Melaminderi- vaten ist die Sprühtrocknung.
In einer anderen Ausführungsform der vorliegenden Erfindung verzichtet man auf eine Isolierung von bevorzugt als Harz (A) eingesetzten Melaminderivaten und setzt sie in Form von Dispersionen, vorzugsweise in Form von wässrigen Dispersionen ein.
Erfindungsgemäß enthalten wässrige Vorbehandlungsflotten weiterhin mindestens einen Verdicker (B).
Geeignete Verdicker (B) sind natürliche Verdicker wie Alginate, Polysaccharide, Stär¬ ke, Carboxymethylcellulose, Guar-Mehl sowie deren Derivate, und synthetische Verdi- cker wie gegebenenfalls Acrylsäurehomo- und -copolymere, die vernetzt sein können, beispielsweise durch Einpolymerisation von mindestens einer Verbindung der allge¬ meinen Formel
Figure imgf000009_0001
in der R9 für Methyl oder bevorzugt für Wasserstoff steht.
Bevorzugte Verdicker (B) sind Assoziativverdicker der allgemeinen Formel I, Il und/oder III IH-T-(EVIrU I
U-(EVU Il
U-T-U III
Dabei bedeuten
E gleich oder verschieden und gewählt aus -CH2-CH2-, -CH2-CH(CH3)-, -CH2-CH(C2H5)-,
y eine ganze Zahl im Bereich von 1 bis 100.000, bevorzugt 10 bis 10 000,
T gleich oder verschieden und eine von einem Diisocyanat abgeleitete Einheit,
x eine ganze Zahl im Bereich von 1 bis 500, vorzugsweise 1 bis 2, besonders bevorzugt ca. 1 ,
U gleich oder verschieden und gewählt aus Einheiten, abgeleitet von aliphati- schen oder aromatischen Alkoholen, Thiolen, Aminen oder Carbonsäuren mit jeweils mindestens 4 C-Atomen, bevorzugt mindestens 6 C-Atomen, aromati¬ schen Alkoholen, Thiolen, Aminen oder Carbonsäuren mit jeweils mindestens 6 C-Atomen, Alkoholen, Thiolen, Aminen oder Carbonsäuren mit C7-C13- Aralkylresten oder heteroaromatischen Alkoholen, Thiolen, Aminen oder Car¬ bonsäuren.
Assoziatiwerdicker der allgemeinen Formel I sind erhältlich durch Umsetzung von
(i) mindestens einem Polyetherdiol mit
(ii) mindestens einem Diisocyanat und (iii) mindestens einer Verbindung der allgemeinen Formel R10-OH, R10-SH, R10- NH2, R10R11NH oder R10-COOH, wobei R10 und R11 gleich oder verschieden sein können und gewählt aus aliphatischen Resten mit mindestens 4 C-Atomen, aromatischen Resten mit mindestens 6 C-Atomen und heteroaromatischen Resten und wobei R10-OH alkoxyliert sein kann, sowie weiteren zur Ausbildung einer Urethan-, Thiourethan- oder Harnstoffbindung befähigten Derivaten dieser Verbindungen.
Bevorzugte Polyetherdiole (i) im Sinne der vorliegenden Erfindung sind Polyethylengly- kol, Polypropylenglykol und Polytetrahydrofuran, aber auch Copolymere aus Ethylen- oxid und Propylenoxid oder Butylenoxid oder Terpolymere aus Ethylenoxid, Propyleno- xid und Butylenoxid, wobei die Copolymere als Blockcopolymere oder statistische Co¬ polymere beziehungsweise Terpolymere vorliegen können.
Geeignete Diisocyante (ii) sind Diisocyanate mit NCO-Gruppen gleicher oder verschie¬ dener Reaktivität. Beispiele für Diisocyanate mit NCO-Gruppen gleicher Reaktivität sind aromatische oder aliphatische Diisocyanate, bevorzugt sind aliphatische Diisocya¬ nate wie Tetramethylendiisocyanat, Hexamethylendiisocyanat (HDI), Octamethylendii- socyanat, Decamethylendiisocyanat, Dodecamethylendiisocyanat, Tetradecamethy- lendiisocyanat, Trimethylhexandiisocyanat, Tetramethylhexandiisocyanat, 1 ,4-, 1 ,3- oder 1 ,2-DiisocyanatocycIohexan, 4,4'-Di(isocyanatocyclohexyl)methan, 1-lsocyanato- S.S.S-trimethyl-δ-OsocyanatomethyOcyclohexan (Isophorondiisocyanat) und 2,4- und 2,6-Diisocyanato-1-methylcyclohexan, wobei Hexamethylendiisocyanat und Isopho¬ rondiisocyanat besonders bevorzugt sind. Ein weiteres besonders bevorzugtes Diiso- cyanat ist m-Tetramethylxyloldiisocyanat (TMXDI).
Bevorzugte Diisocyanate mit NCO-Gruppen unterschiedlicher Reaktivität sind die leicht und billig verfügbaren Isocyanate wie beispielsweise 2,4-Toluylendiisocyanat (2,4- TDI), 2,4'-Diphenylmethandiisocyanat (2,4'-MDI), Triisocyanatotoluol als Vertreter für aromatische Diisocyanate oder aliphatische Diisocyanate, wie 2-Butyl-2- ethylpentamethylendiisocyanat, 2-lsocyanatopropylcyclohexylisocyanat, 2,4,4- oder 2,2,4-Trimethylhexamethylendiisocyanat, 2,4'-Methylenbis(cyclohexyl)diisocyanat und 4-Methylcyclohexan-1 ,3-diisocyanat (H-TDI).
Weitere Beispiele von Isocyanaten mit Gruppen unterschiedlicher Reaktivität sind 1 ,3- Phenylendiisocyanat, 1 ,4-Phenylendiisocyanat, 1 ,5-Naphthylendiisocyanat, Diphenyl- diisocyanat, Tolidindiisocyanat und 2,6-Toluylendiisocyanat.
Natürlich kann man auch Mischungen von mindestens zwei der vorstehend genannten Isocyanate zur Synthese verwenden. Zu einem gewissem Anteil können neben Diisocyanaten auch Polyisocyanate einge¬ setzt werden, beispielsweise in Mengen bis zu 10 Gew.-%, bezogen auf die Gesamt¬ menge an Di- und Polyisocyanat. Geeignete Polyisocyanate sind beispielsweise Biure- te und Allophanate von HDI oder TDI.
Ganz besonders bevorzugte Diisocyanate (ii) sind HDI, IPDI, MDI und TDI.
Das Molverhältnis Polyetherdiole (i) zu Diisocyanaten (ii) beträgt im allgemeinen von 0,3 : 1 bis 1 : 1 , vorzugsweise ca. 0,5 : 1.
Die Umsetzung von Diisocyanat (ii) mit Polyetherdiol (i) erfolgt üblicherweise unter Zu¬ gabe mindestens eines Katalysators.
Der oder die Katalysatoren werden vorzugsweise in einer Menge von 0,01 bis 10 Gew.-%, vorzugsweise 0,05 bis 5 Gew.-%, bezogen auf Diisocyanat (ii), eingesetzt.
Geeignete Katalysatoren, welche insbesondere die Reaktion zwischen den NCO- Gruppen von Diisocyanat (ii) und den Hydroxylgruppen von Polyetherdiol (i) beschleu¬ nigen, sind nach dem Stand der Technik bekannte tertiäre Amine, wie z.B. Triethyla- min, N.N-Dimethylcyclohexylamin, N-Methylmorpholin, N,N'-Dimethylpiperazin, 2- (Dimethylaminoethoxy)ethanol, 1 ,4-Diazabicyclo[2,2,2]octan („DABCO") und ähnliche sowie insbesondere organische Metallverbindungen wie Titansäureester, Ei- sen(lll)acetylacetonat, Zinnverbindungen, z.B. Zinndiacetat, Zinndioctoat, Zinndilaurat oder die Dialkylderivate von Zinndialkylsalzen aliphatischer Carbonsäuren wie Dibutyl- zinndiacetat, Dibutylzinndilaurat oder ähnliche.
Die Synthese von Assoziatiwerdickern (B) wird im Allgemeinen in Substanz oder in einem aprotischen Lösemittel durchgeführt, wobei als Lösemittel prinzipiell alle Löse¬ mittel geeignet sind, die weder mit Polyurethan noch mit Polyetherdiol (i) noch mit Dii- socyanat (ii) reagieren, beispielsweise Tetrahydrofuran, Diethylether, Diisopropylether, Chloroform, Dichlormethan, Di-n-butylether, Aceton, N-Methylpyrrolidon (NMP), XyIoI, Toluol, Methylethylketon (MEK), Methylisobutylketon (MIBK) oder 1,4-Dioxan. Bevor¬ zugte Reaktionstemperaturen liegen im Bereich von -200C bis zum Siedepunkt des jeweiligen eingesetzten Lösemittels. Die Reaktion wird im Allgemeinen drucklos durch- geführt, jedoch sind auch Reaktionen in Autoklaven bei bis zu 20 bar geeignet.
Durch Umsetzung von NCO-terminierten Umsetzungsprodukten von Polyetherdiol (i) mit Diisocyanat (ii) mit aliphatischen oder aromatischen Alkoholen, Thiolen, primären oder sekundären Aminen oder Carbonsäuren (iii) lassen sich aus den Umsetzungspro- dukten der Komponenten (i) und (ii), die freie Isocyanatgruppen enthalten, hydropho- bierte Produkte erhalten. Geeignet sind insbesondere Alkohole R10-OH und primäre oder sekundäre Amine R10- NH2 und R10R11NH, in denen R10 und R11 gleich oder verschieden sein können und gewählt werden aus
C4-C60-AIkVl wie beispielsweise n-Butyl, Isobutyl, n-Pentyl, bevorzugt C6-C40-AIkVl wie beispielsweise n-Hexyl und n-Heptyl und insbesondere C8-C40-Alkyl wie beispielsweise n-Octyl, n-Nonyl, n-Decyl, n-Dodecyl, n-Hexadecyl oder n-Eicosyl;
C6-C14-Aryl wie Phenyl, α-Naphthyl, ß-Naphthyl, 1-Anthracenyl, 2-Anthracenyl oder 9- Anthracenyl
heteroaromatischen Resten wie α-Pyridyl, ß-Pyridyl, γ-Pyridyl, N-Pyrryl, ß-Pyrryl, γ- Pyrryl, Porphyrinyl, 2-Furanyl, 3-Furanyl, 2-Thiophenyl, 3-Thiophenyl, N-Pyrazolyl, N- Imidazolyl, N-Triazolyl, N-Oxazolyl, N-Indolyl, N-Carbazolyl, 2-Benzofuranyl, 2- Benzothiophenyl, N-Indazolyl, Benztriazolyl, 2-Chinolinyl, 3-lsochinolinyl und α- Phenanthrolinyl;
C7-C13-Aralkyl, bevorzugt C7- bis C12-Phenylalkyl wie Benzyl, 1-Phenethyl, 2-Phenethyl, 1-Phenyl-propyl, 2-Phenyl-propyl, 3-Phenyl-propyl, Neophyl (1-Methyl-1-phenylethyl), 1-Phenyl-butyl, 2-Phenyl-butyl, 3-Phenyl-butyl und 4-Phenyl-butyl, besonders bevor¬ zugt Benzyl.
Alkohole R10-OH können auch mit einem oder mehreren Äquivalenten Ethylenoxid, Propylenoxid oder Butylenoxid alkoxyliert sein, wobei sowohl Homo- als auch (Block)copolymere der genannten Alkylenoxide eingesetzt werden können, üblicher¬ weise mit ca. 20 bis 500 Alkylenoxid-Einheiten. Ferner können die Alkohole R-OH mit THF alkoxyliert sein.
Im allgemeinen wird Verbindung der allgemeinen Formel R10-OH, R10-SH, R10-NH2, R10R11NH oder R10-COOH (iii) bezüglich der freien Isocyanatgruppen zumindest stö- chiometrisch, häufig jedoch in stöchiometrischem Überschuss, beispielsweise von 50 bis 100 mol-%, bezogen auf freie NCO-Gruppen, eingesetzt.
Hydrophobe Gruppen R10 können auch über eine Ester- oder Etherbrücke an Polye- therdiol (i) angeknüpft werden. Assoziativverdicker der allgemeinen Formel Il sind so¬ mit beispielsweise erhältlich durch Umsetzung von
Polyetherdiolen (i) mit
einer oder mehreren Verbindungen der allgemeinen Formel R10-OH oder R10-COOH, wobei R10 die oben genannte Bedeutungen hat, oder weiteren zur Ausbildung einer Ether- oder Esterbindung befähigten Derivaten dieser Verbindungen. Assoziativverdicker der Formel III werden beispielsweise aus Diisocyanat (ii) und min¬ destens einer Verbindung der allgemeinen Formel R10-OH, R10-SH, R10-NH2, R10R11NH oder R10-COOH (iii) erhalten, ohne dass Polyetherdiole (i) zugegen sind. Dabei kann die Verbindung der allgemeinen Formel R10-OH, R10-SH, R10-NH2, R10R11NH oder R10- COOH (iii) bzw. können die Verbindungen (iii) in stöchiometrischem Überschuss ein¬ gesetzt werden, bezogen auf Diisocyanat (ii).
Zur Durchführung des erfindungsgemäßen Verfahrens behandelt man textile Substrate mit mindestens einer wässrigen Vorbehandlungsflotte, die oben beschriebene Kompo¬ nenten (A) und (B) enthält. Zur Behandlung von textilem Substrat mit wässriger Vorbe¬ handlungsflotte, die oben beschriebene Komponenten (A) und (B) enthält, im Folgen¬ den auch erfindungsgemäße wässrige Vorbehandlungsflotte genannt, kontaktiert man textiles Substrat mindestens einmal mit erfindungsgemäßer wässriger Vorbehand- lungsflotte, lässt über eine gewisse Zeit einwirken, beispielsweise über einen Zeitraum im Bereich von 0,1 Sekunden bis 2 Stunden, und entnimmt danach vorbehandeltes textiles Substrat. Zum Zweck des Kontaktierens kann man auf verschiedene Weisen vorgehen. So ist es beispielsweise möglich, erfindungsgemäße wässrige Vorbehand¬ lungsflotte auf textiles Substrat aufzutragen, beispielsweise durch Ausziehverfahren oder diskontinuierliche oder kontinuierliche Verfahren mit Zwangsauftrag.
Ausziehverfahren sind immer dann geeignet, wenn die erfindungsgemäße wässrige Vorbehandlungsflotte eine deutliche Affinität zu textilem Substrat aufweist, beispiels¬ weise aufgrund unterschiedlicher lonogenität. Es gibt verschiedene Formen des Aus- ziehverfahrens, welche aus der Textilfärberei prinzipiell bekannt sind. Beispielsweise kann man von aufgewickeltem textilem Substrat ausgehen und erfindungsgemäße wässrige Vorbehandlungsflotte unter Druck durch das aufwickelte textile Substrat pres¬ sen, wobei die erfindungsgemäße wässrige Vorbehandlungsflotte von innen nach au¬ ßen oder, in voll gefluteten Apparaten, auch von außen nach innen fließen kann. Um eine gleichmäßige Auftragung zu gewährleisten, ist es vorteilhaft, die Fließrichtung von erfindungsgemäßer wässriger Vorbehandlungsflotte während der Vorbehandlung min¬ destens einmal zu wechseln. In einer anderen Ausführungsform liegt textiles Substrat frei in erfindungsgemäßer wässriger Vorbehandlungsflotte und wird mit dieser bewegt. In einer weiteren Ausführungsform kann man textiles Substrat durch ein stehendes Bad, enthaltend erfindungsgemäße wässrige Vorbehandlungsflotte, ziehen. Vorteilhaft zieht man textiles Substrat mehrfach durch erfindungsgemäße wässrige Vorbehand¬ lungsflotte, wobei man die Bewegungsrichtung des textilen Substrats umkehren sollte. Hierdurch wird die Gleichmäßigkeit des Auftrags gefördert. Nähere Einzelheiten zu diesen Auftragsverfahren können der einschlägigen Literatur, beispielsweise Veredlung von Textilien, VEB Fachbuchverlag Leipzig, 1. Auflage 1976, Seite 93 ff entnommen werden. Geeignete kontinuierliche Verfahren zum Auftragen sind alle Verfahren, durch die man vollflächig oder bildmäßig das erfindungsgemäße Vorbehandlungsmittel auftragen kann. Insbesondere geeignet sind hierbei alle Druckverfahren sowie alle Verfahren, bei denen das Textil vollflächig mit dem erfindungsgemäßer wässriger Vorbehandlungsflot- te getränkt wird. Der Unterschied zu Ausziehverfahren besteht darin, dass man einen Zwangsauftrag realisiert. Die erfindungsgemäße wässrige Vorbehandlungsflotte braucht für diese Verfahren keine Affinität zur Faser aufzuweisen.
Als Druckverfahren sind beispielsweise alle Siebdruckverfahren geeignet. Siebdruck- verfahren sind wichtige Verfahren, welche prinzipiell bekannt sind und unter anderem bei der Herstellung bedruckter Stoffe eingesetzt werden. Zur Durchführung eines Auf¬ trag durch Siebdruckverfahren drückt man erfindungsgemäße wässrige Vorbehand¬ lungsflotte mittels einer Rakel durch ein feines Netz und überträgt sie so auf vorzubehandelndes textiles Substrat. Das Netz kann hierbei aus synthetischen Fasern, wie in Flachfilmdruckanlagen, oder Metallen, wie in Rotationsdruckanlagen, hergestellt sein. Aber auch dem Hochdruck, Tiefdruck oder Rouleauxdruck als gängige textile Druckver¬ fahren sind für die Auftragung von erfindungsgemäßer wässriger Vorbehandlungsflotte geeignet. Einzelheiten zu den einzelnen Druckverfahren findet man in der oben ange- gebenen Literaturstelle auf den Seiten 110 ff .
Neben Druckverfahren sind auch Techniken geeignet, bei denen textiles Substrat voll¬ flächig mit erfindungsgemäßer wässriger Vorbehandlungsflotte getränkt wird. Bei¬ spielsweise kann man die sogenannte Foulard-Technologie anwenden, bei der man textiles Substrat durch einen mit erfindungsgemäßer wässriger Vorbehandlungsflotte gefüllten Trog führt und anschließend durch zwei Walzen auf eine definierte Flüssig¬ keitsaufnahme abquetscht. Man kann auch so vorgehen, dass man textiles Substrat durch einen mit erfindungsgemäßer wässriger Vorbehandlungsflotte gefüllten Zwickel, gebildet aus zwei sich drehenden Rollen, führt. Die Rollen führen zu einem intensiven Kontaktieren von textilem Substrat mit erfindungsgemäßer wässriger Vorbehandlungs¬ flotte und pressen dabei gleichzeitig das textile Substrat auf die gewünschte Flüssig¬ keitsaufnahme ab. Darüber hinaus gibt es noch vielfältige andere an sich bekannte Anordnungsmöglichkeiten der sogenannten Foulard-Technologie, die ebenfalls alle für die Auftragung von erfindungsgemäßer wässriger Vorbehandlungsflotte geeignet sind.
Man kann definierte Mengen erfindungsgemäßer wässriger Vorbehandlungsflotte durch an sich bekannte Sprüh- und Gießtechniken auftragen.
Geeignet sind ferner Schaumauftragmethoden. In einer Ausführungsform der vorliegenden Erfindung kontaktiert man textiles Substrat mit so viel Vorbehandlungsflotte, dass man 0,1 bis 30 g Feststoffe/m2 textiles Substrat aufträgt, bevorzugt 1 g/m2 bis 25 g/m2, besonders bevorzugt bis 15 g/m2.
In einer Ausführungsform der vorliegenden Erfindung wählt man eine Temperatur der Vorbehandlungsflotte im Bereich von 2O0C bis 600C.
Wünscht man nach der sogenannten Foulard-Technologie vorzugehen, so kann man beispielsweise einen Anpressdruck der Walzen im Bereich von 2 bis 3 bar einstellen.
In einer Ausführungsform der vorliegenden Erfindung kann man im Anschluss an das Kontaktieren von textilem Substrat mit erfindungsgemäßer wässriger Vorbehandlungs¬ flotte trocknen, beispielsweise auf einen Restfeuchtegehalt im Bereich von 5 bis 30 Gew.-%.
Dazu kann man mit erfindungsgemäßer wässriger Vorbehandlungsflotte kontaktiertes textiles Substrat soweit erhitzen, dass vorhandenes Wasser vollständig oder partiell abdampfen kann. Bevorzugt arbeitet man bei Temperaturen im Bereich von 80 bis 100 0C. Die benötigte Wärme kann in Form von erhitzter Luft als Wärmeüberträger einge- bracht werden. Geeignet ist aber auch die Verwendung von Infrarotstrahlern oder Mik¬ rowellenstrahlern. Vorzugsweise hält man textiles Substrat beim Trocknen unter Span¬ nung, um die Bildung von Falten zu vermeiden.
In einer Ausführungsform der vorliegenden Erfindung kann man erfindungsgemäßen Vorbehandlungsflotten ein oder mehrere Salze von ein- oder zweiwertigen Metallen bzw. Ammoniumsalze zusetzen. Beispiele für geeignete Salze sind ZnCI2, Zn(NO3)2, jeweils auch in Form ihrer Hydrate, NH4CI1 (NH4)2SO4, NaBF4, AICI3-6 H2O, Ammoni- umdihydrogenphosphat, Diammoniumhydrogenphosphat, und ganz besonders bevor¬ zugt MgCI2, beispielsweise in Form seines Hexahydrats.
Wenn erfindungsgemäße Vorbehandlungsflotten ein oder mehrere Salze von ein- oder zweiwertigen Metallen bzw. Ammoniumsalze enthalten, so wählt man üblicherweise 0,1 bis 30 Gew.-%, bezogen auf Harz (A), bevorzugt 0,5 bis 10 und besonders bevor¬ zugt bis 8 Gew.-%.
In Schritt (b) des erfindungsgemäßen Verfahrens bedruckt man vorbehandeltes und gegebenenfalls getrocknetes textiles Substrat, vorzugsweise nach dem Ink-Jet- Verfahren.
Beim Ink-Jet-Verfahren werden Tinten, die auf Lösungsmittelbasis oder vorzugsweise wässrig sein können, in kleinen Tröpfchen direkt auf das Substrat gesprüht. Man unter¬ scheidet dabei kontinuierliche Verfahren, bei denen die Tinte gleichmäßig durch eine Düse gepresst und durch ein elektrisches Feld, abhängig vom zu druckenden Muster, auf das Substrat gelenkt wird, und unterbrochene Tintenstrahl- oder "Drop-on- Demand'-Verfahren, bei denen der Tintenausstoß nur dort erfolgt, wo ein farbiger Punkt gesetzt werden soll. Bei dem letztgenannten Verfahren wird entweder über einen piezoelektrischen Kristall oder eine beheizte Kanüle (Bubble-Jet-Verfahren) Druck auf das Tintensystem ausgeübt und so die Tintentropfen herausgeschleudert. Solche Ver¬ fahrensweisen sind in Text. Chem. Color, Band 19 (8), Seiten 23 bis 29, 1987, und Band 21 (6), Seiten 27 bis 32, 1989, beschrieben.
Die in dem erfindungsgemäßen Verfahren zum Bedrucken textiler Substrate eingesetz¬ ten Ink-Jet-Tinten enthalten üblicherweise neben einem oder mehreren Dispergiermit¬ teln Wasser oder ein Wasser/Lösungsmittel-Gemisch sowie in Wasser oder in dem Wasser/Lösungsmittel-Gemisch vorzugsweise schwer lösliche, feinteilige organische oder anorganische Farbmittel, beispielsweise Pigmente nach der Definition in DIN 55944. Statt Pigmenten lassen sich auch Dispersionsfarbstoffe einsetzen. In-Jet-Tinten können aber auch als gelöste Farbstoffe Direkt-, Säure-, Reaktiv- und Küpenfarbstoffe enthalten. Genannte lösliche Farbstoffe können als Schönungsmittel in Pigment¬ haltigen Ink-Jet-Tinten enthalten sein, wobei im Farbton dem Pigment ähnliche lösliche Farbstoffe, insbesondere Direkt-, Säure- oder Reaktivfarbstoffe, eingesetzt werden.
Besonders bevorzugt setzt man in Schritt (b) mindestens eine Pigment-haltige Ink-üet- Tinte ein, die neben mindestens einem Pigment und Wasser mindestens ein Disper¬ giermittel enthält.
Geeignete Dispergiermittel sind beispielsweise solche auf Basis von Maleinsäure- Acrylsäurecopolymeren, insbesondere solche mit Molekulargewicht Mn im Bereich von 2000 bis 10.000 g/mol, die in Form von statistischen Copolymeren oder Blockcopoly- meren geeignet sind. Weitere geeignete Dispergiermittel sind N-Vinylpyrrolidon- Homopolymere und Acrylat-N-Vinylpyrrolidin-Copolymere, insbesondere solche N- Vinylpyrrolidon-Homopolymere und Acrylat-N-Vinylpyrrolidin-Copolymere mit Moleku¬ largewicht Mn im Bereich von 2000 bis 10.000 g/mol, in Form von statistischen Copo¬ lymeren oder Blockcopolymeren.
Andere geeignete Dispergiermittel sind solche auf Basis von Naphthalinsulfonsäure- Formaldehyd-Kondensaten, beispielsweise nach US 5,186,846, oder auf Basis von alkoxylierten styryiierten und gegebenenfalls sulfatierten Alkylphenolen oder Bispheno¬ len beispielsweise nach US 4,218,218, enthalten.
Andere geeignete Dispergiermittel sind statistische Polyurethancopolymere, wie sie beispielsweise in WO 2004/31255 S. 3 ff. offengelegt sind. Vorzugsweise enthalten in Schritt (b) eingesetzte Ink-Jet-Tinten mindestens ein Lö¬ sungsmittel mit einem Siedepunkt über 1100C, beispielsweise Ethylenglykol, Diethy- lenglykol, Triethylengykol, Tetraethylenglykol, Glycerin, Diglycerin, Propylenglykol, Dipropylenglykol, bei Zimmertemperatur flüssiges Poly-Tetrahydrofuran, 1 ,3- Propandiol, Mono-, Di- oder Triethylenglykolmono-Ci-C4-Alkylester, bei denen C1-C4- Alkyl gewählt wird aus Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl.
In einer Ausführungsform der vorliegenden Erfindung weisen in Schritt (b) eingesetzte Ink-Jet-Tinten eine dynamische Viskosität von 1 bis 30 mPa-s auf, bevorzugt 1 bis 20 mPa-s, besonders bevorzugt 2 bis 15 mPa-s, jeweils bestimmt bei 2O0C.
In einer Ausführungsform der vorliegenden Erfindung weisen in Schritt (b) eingesetzte Ink-Jet-Tinten eine Oberflächenspannung von 20 bis 70 mN/m auf, insbesondere 20 bis 40 mN/m, besonders bevorzugt 25 bis 35 mN/m, jeweils bestimmt bei 200C.
Der pH-Wert von in Schritt (b) eingesetzten Ink-Jet-Tinten liegt im allgemeinen im Be¬ reich von 5 bis 10, vorzugsweise im Bereich von 7 bis 9.
In Schritt (b) eingesetzte Ink-Jet-Tinten können weitere Hilfsmittel, wie sie insbesonde¬ re für wässrige Ink-Jet-Tinten und in der Druck- und Lackindustrie üblich sind, enthal¬ ten. Genannt seien beispielsweise Erythrit, Pentaerythrit, Pentite wie Arabit, Adonit und Xylit und Hexite wie Sorbit, Mannit und Dulcit. Genannt seien weiterhin Polyethylengly- kole mit einem Mw von mehr als 2000 g/mol bis etwa 10.000 g/mol, bevorzugt bis 800 g/mol. Genannt seien weiterhin Konservierungsmittel wie beispielsweise 1 ,2- Benzisothiazolin-3-on und dessen Alkalimetallsalze, Entgaser/Entschäumer wie bei¬ spielsweise ethoxylierte Acetylendiole, die üblicherweise 20 bis 40 mol Ethylenoxid pro mol Acetylendiol enthalten und gleichzeitig auch dispergierend wirken können, Mittel zur Regulierung der Viskosität, Verlaufshilfsmittel, Benetzer (z.B. benetzend wirkende Tenside auf der Basis von ethoxylierten oder propoxylierten Fett- oder Oxoalkoholen, Propylenoxid/Ethylenoxid-Blockcopolymeren, Ethoxylaten von Ölsäure oder Alkylphe- nolen, Alkylphenolethersulfaten, Alkylpolyglycosiden, Alkylphosphonaten, Alkylphe- nylphosphonaten, Alkylphosphaten, Alkylphenylphosphaten oder bevorzugt Polyether- siloxan-Copolymeren, insbesondere alkoxylierten 2-(3-Hydroxypropyl)hepta- methyltrisiloxanen, die in der Regel einen Block aus 7 bis 20, vorzugsweise 7 bis 12, Ethylenoxideinheiten und einen Block aus 2 bis 20, vorzugsweise 2 bis 10 Propyleno- xideinheiten aufweisen und in Mengen von 0,05 bis 1 Gew.-% in den Farbmittelzube¬ reitungen enthalten sein können), Antiabsetzmittel, Glanzverbesserer, Gleitmittel, Haft¬ verbesserer, Hautverhinderungsmittel, Mattierungsmittel, Emulgatoren, Stabilisatoren, Hydrophobiermittel, Lichtschutzadditive, Antistatikmittel, Basen wie beispielsweise K2CO3 oder Säuren, speziell Carbonsäuren wie beispielsweise Milchsäure oder Zitro¬ nensäure zur Regulierung des pH-Wertes. Wenn diese Mittel Bestandteil von in Schritt 7 (b) eingesetzten I nk- Jet-Tinten sind, beträgt ihre Gesamtmenge in der Regel 2 Gew.- %, insbesondere 1 Gew.-%, bezogen auf das Gewicht der erfindungsgemäßen Farb¬ mittelzubereitungen und insbesondere der erfindungsgemäßen Tinten für das Ink-Jet- Verfahren.
In einer Ausführungsform der vorliegenden Erfindung kann man auf den Zusatz von Griffverbesserern zu in Schritt (b) eingesetzten Ink-Jet-Tinten verzichten.
In Schritt (b) eingesetzte Tinten können ein oder mehrere Harze (A) in Anteilen von bis zu 10 Gew.-% enthalten.
In einer Ausführungsform der vorliegenden Erfindung behandelt man textiles Substrat (a) mit mindestens einer wässrigen Vorbehandlungsflotte vor, enthaltend (A) mindestens ein Harz, gewählt aus Melaminderivaten, Dimethyloldihydroxy- ethylenhamstoff (DMDHEU) und Derivaten von DMDHEU, (B) mindestens einen Verdicker, (C) optional mindestens eine polykationische Verbindung und (D) optional mindestens ein Additiv (b) und bedruckt danach nach dem Ink-Jet-Verfahren.
Harze (A) und Verdicker (B) sind vorstehend definiert.
Als Komponente (C) können erfindungsgemäße wässrige Vorbehandlungsflotten eine oder mehrere polykationische Verbindungen enthalten.
Geeignete polykationische Verbindungen sind beispielsweise kationische Homopoly- mere oder Copolymere. Bevorzugte polykationische Verbindungen sind Polyvinylami- ne, beispielsweise mit K-Werte nach Fikentscher im Bereich von 15 bis 60, Polyethyle- nimine, beispielsweise mit einem Molekulargewicht Mn im Bereich von 5.000 bis 1.000.000 g/mol, Homo- und Copolymere von Diallyldialkylammonium-Monomeren, wie Diallyldimethylammoniumchlorid, kationische Acrylate und Acrylamide wie Acryloxye- thyldirnethylammoniumchlorid oder Acrylamidoethyldimethyl-ammoniumchlorid, qua- ternäre Vinylpyridine wie Methylvinylpyridinchlorid, Polyalkylaminpolymere und - copolymere, ferner Polyallylaminhydrochlorid, Allylaminhydrochlorid- Diallylaminhydrochlorid-Copolymer, N-Vinylacrylamidinhydro-chlorid-Acrylamid- Copolymer, Dialkylamin-Epichlorohydrin-Polymer, Polyamid-Polyamin-Epichlorohydrin- Polymer, Dicyandiamid-Formaldehyd-Polykondensat, Poly-ethylenpolyamin- Dicyandiamid-Polycondensat, Polyethyleniminhydrochlorid, PoIy- (meth)acryloyloxyalkyldialkylaminhydrochlorid, (Meth)acryloyloxyalkyldialkylamin- hydrochlorid-Acrylamid-Copolymer und Poly(meth)acryloyloxyalkyltrialkyl- ammoniumchlorid. Bevorzugte polykationische Verbindungen (C) sind Homo- oder Copolymere von Dial- lyldialkylammonium-Monomeren, wie Polydiallyldimethylammoniumchlorid (polyDAD- MAC), Polydiallyldiethylammoniumchlorid (polyDADEAC), Polydiallyldi- methylammoniumbromide (polyDADMAB), Polydiallyldiethylammoniumbromid (poly- DADEAB), besonders bevorzugt sind Polymere oder Copolymere von Diallyldimethy- lammoniumchlorid, insbesondere bevorzugt ist Diallyldi-methylammoniumchlorid- Homopolymer (polyDADMAC).
Copolymere der genannten Monomere können als Comonomere auch nichtionische Monomere, beispielsweise N-Vinylpyrrolidon, (teilverseiftes) Vinylacetat oder Hydro- xy(meth)acrylat einpolymerisiert enthalten.
Verfahren zur Herstellung von Diallyldialkylammoniumhomo- oder -copolymeren sind beispielsweise in US 4,742,134, US 5,283,306 und EP-A 0 264 710 beschrieben.
In einer besonders bevorzugten Ausführungsform enthalten erfindungsgemäße wässri- ge Vorbehandlungsflotten Polymere oder Copolymere von Diallyldialkylammonium- Monomeren, insbesonder Diallyldimethylammoniumchlorid-Homopolymer, als polykati¬ onische Verbindungen (C), mindestens ein Melaminderivat als Harz (A) und einen oder mehrere Assoziatiwerdicker der Formel I, Il und/oder III als Verdicker (B).
Neben den Komponenten (A), (B) und (C) können erfindungsgemäße wässrige Vorbe¬ handlungsflotten als Komponente (D) Additive enthalten. Additive sind beispielsweise Aldehyd-Fänger, Entschäumer, Emulgatoren, Lösemittel, Biozide, Entlüfter und Netz- mittel.
Geeignete Aldehydfänger sind beispielsweise Harnstoff und Carbamate.
Geeignete Entschäumer sind beispielsweise silikonhaltige Entschäumer wie beispiels- weise solche der Formel HO-(CH2)3-Si(CH3)[OSi(CH3)3]2- Auch Silikon-freie Entschäu¬ mer sind geeignet wie beispielsweise mehrfach alkoxylierte Alkohole, z.B. Fettalkoho- lalkoxylate, bevorzugt 2 bis 50-fach ethoxylierte vorzugsweise unverzweigte Cio-C2o-Alkanole, unverzweigte C10-C20-Alkanole und 2-Ethylhexan-1-ol.
Geeignete Emulgatoren sind beispielsweise kationische, anionische, zwitterionische und nichtionische Tenside. Besonders geeignet sind nichtionische Tenside wie bei¬ spielsweise mehrfach, insbesondere 5 bis 100fach alkoxylierte Fettalkohole.
Geeignete Biozide (auch als Konservierungsmittel bekannt) sind beispielsweise 1 ,2- Benzisothiazolin-3-on („BIT") (kommerziell erhältlich als ProxelΘ-Marken der Fa. Ave- cia Lim.) und dessen Alkalimetallsalze; andere geeignete Biozide sind 2-Methyl-2H- isothiazol-3 („MIT") und 5-Chlor-2-methyl-2H-isothiazol-3-on („CIT"). Geeignete Entlüfter sind beispielsweise solche auf Basis von Polyethersiloxan- Copolymeren, beispielsweise H-(EO)a-O-(CH2)3-Si(CH3)[OSi(CH3)3]2, wobei a bei¬ spielsweise für eine ganze Zahl im Bereich von 1 bis 10 steht und EO für OCH2CH2.
Geeignete Netzmittel sind beispielsweise nichtionische, anionische oder kationische Tenside, insbesondere Ethoxylierungs- und/oder Propoxylierungsprodukte von Fettal¬ koholen oder Propylenoxid-Ethylenoxid-Blockcopolymere, ethoxylierte oder propoxy- lierte Fett- oder Oxoalkohole, weiterhin Ethoxylate von Ölsäure oder Alkylphenolen, Alkylphenolethersulfate, Alkylpolyglycoside, Alkylphosphonate, Alkylphenylphosphona- te, Alkylphosphate, oder Alkylphenylphosphate.
Ein weiterer Gegenstand der vorliegenden Erfindung sind wässrige Vorbehandlungs¬ flotten, enthaltend (A) mindestens ein Harz, gewählt aus Melaminderivaten, Dimethyloldihydroxy- ethylenharnstoff (DMDHEU) und Derivaten von DMDHEU, (B) mindestens einen Verdicker, (C) optional mindestens eine polykationische Verbindung und (D) optional mindestens ein Additiv.
In einer Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße wässrige Vorbehandlungsflotten (A) 0,1 bis 20 Gew.-%, bevorzugt 0,1 bis 15 Gew.-%, besonders bevorzugt 0,1 bis 10 Gew.-% mindestens ein Harz, gewählt aus Melaminderivaten, Dimethyloldi- hydroxyethylenhamstoff (DMDHEU) und Derivaten von DMDHEU, (B) 0,1 bis 30 Gew.-% Verdicker, (C) 0,1 bis 50 Gew.-% polykationische Verbindung und (D) 0 bis 30 Gew.-% Additive.
Ale Feststoffgehalt von erfindungsgemäßen Vorbehandlungsflotten kann man bei¬ spielsweise Feststoffgehalte im Bereich von 10g/l bis 600 g/l, bevorzugt 50g/l bis 500 g/l wählen.
Erfindungsgemäße Vorbehandlungsflotten sind besonders geeignet zur Durchführung von Schritt (a) des erfindungsgemäßen Verfahrens zum Kolorieren von textilen Sub¬ straten.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Behandlungsmittel, enthal¬ tend die Komponenten (A), (B), gegebenenfalls (C) und gegebenenfalls (D), aus wel- chen durch Verdünnung mit Wasser erfindungsgemäße wässrige Vorbehandlungsflot¬ ten erhältlich sind. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von erfindungsgemäßen Vorbehandlungsflotten durch Verdünnen von erfindungsge¬ mäßen Behandlungsmitteln mit Wasser. Man kann jedoch erfindungsgemäße Vorbe¬ handlungsflotten so herstellen, dass man Wasser mit Komponente (A) und (B) gege- benenfalls (C) und gegebenenfalls (D) in aufeinanderfolgenden Schritten verrührt.
Ein weiterer Aspekt der vorliegenden Erfindung sind textile Substrate, erhältlich nach dem erfindungsgemäßen Verfahren zum Kolorieren von textilen Substraten. Erfin¬ dungsgemäße textile Substrate zeichnen sich nicht nur durch besondere Brillanz der Farbe und der Konturen und besonders gute Haftung und daher Echtheit des Drucks aus, beispielsweise durch besonders gute Reibechtheiten, Nassreibechtheiten und Waschechtheiten, sondern auch durch einen besonders angenehmen Griff.
Die Erfindung wird durch Arbeitsbeispiele erläutert.
Herstellung erfindungsgemäß eingesetzter Melaminderivate 1.1. Allgemeine Vorgehensweise am Beispiel eines Melaminderivats A1 aus Melamin Formaldehyd : Diethylenglykol 1 : 2,2 : 5 (molare Verhältnisse)
Man legte 115,5 g einer 40 Gew.-%iger wässrigen Lösung von Formaldehyd (1 ,54 Mol) wurde in einem 1-l-Dreihalkolben mit Tropftrichter und Rührer vor und stellte mit 25 Gew.-%iger wässriger NaOH einen pH-Wert von 8,5 ein. Anschließend gab man Mel¬ amin (88,2 g, 0,7 Mol) als Feststoff zu und erwärmte für 30 min auf 8O0C. danach tropf¬ te man Diethylenglykol (371 ,3 g; 3,5 Mol) zu und stellte anschließend den pH-Wert mit 30 Gew.-% wässriger HNO3 auf 5,3 ein. Die resultierende Lösung wurde für 1 h auf 60 0C erwärmt. Anschließend wurde der pH-Wert mit 25 Gew.-%iger NaOH auf 8 gestellt. Bei 100 mbar und einer Temperatur von 100°C wurden anschießend etwa 80 ml eines Gemischs von Wasser und Diethylenglykol abdestilliert. Man erhielt Melaminderivat A1.
Analytik: nicht-flüchtige Anteile: 42,5 Gew.-% (bestimmt durch Trocknen 2 h im Tro¬ ckenschrank bei 1200C), H2O nach Karl Fischer: 3,7 Gew.-%, dynamische Viskosität η : 850 mPa-s, bestimmt mit Hilfe eines Kegel/Platte-Viskosimeters.
I.2 Darstellung von weiteren erfindungsgemäß eingesetzten Melaminderivaten Vorschrift 1.1 wurde wiederholt, jedoch wurden die Mengen an Formaldehyd und Diethylenglykol zugegeben wie aus Tabelle 1 ersichtlich. Tabelle 1 : Herstellung erfindungsgemäß eingesetzter Melaminderivate
Figure imgf000022_0001
n.b.: nicht bestimmt Abkürzungen: n.f.A.: Nicht-flüchtige Anteile, bestimmt (bestimmt durch Trocknen 2 h im Trockenschrank bei 1200C), DEG: Diethylenglykol.
II. Herstellung von erfindungsgemäßen Vorbehandlungsflotten
Komponente (A): Melaminderivat gemäß Tabelle 1 bzw. 2 Komponente (B): B1 , s.u. Komponente (C): C1 oder C2, s.u.
Zur Herstellung von 1 kg erfindungsgemäßer Vorbehandlungsflotte wurde vollentsalz¬ tes Wasser mit Komponente (C) verrührt, bis sich alles gelöst hatte. Anschließend wurden unter Rühren die Komponenten (B) und (D) zugegeben und homogenisiert. Anschließend wurde Harz (A) nach Tabelle 1 zugegeben.
Es wurden die erfindungsgemäßen Flotten gemäß Tabelle 2 hergestellt.
Dabei bedeuten: B1 : Assoziativverdicker, Umsetzungsprodukt von Hexamethylendiisocyanat (HDI) mit ethoxyliertem n-C18H37OH mit einem Mw von 10.000 g/mol, wobei der ethoxylierte Fett¬ alkohol in einem Überschuss von 50 mol-%, bezogen auf Isocyanatgruppen, eingesetzt wurde; C1 : Polyethylenimin, Mw 25.000 g/mol C2: Diallyldimethylammoniumchlorid-Homopolymer; Mw 10.000 g/mol D1 : Phosphorsäuretri-n-butylester als Entschäumer D2: 20 Gew.-% Lösung von 1 ,2-Benzisothiazolin-3-on in Propylenglykol D3: Dispergierbindemittel nach Beispiel IV. Tabelle 2: Erfindungsgemäße Vorbehandlungsflotten
Figure imgf000023_0001
III. Erfindungsgemäße Kolorierung von Textilgewebe Man ging aus von Geweben G3.1 bis G3.3 G3.1 Baumwolle 283, gebleicht, Flächengewicht 119,7 g/m2 G3.2 Baumwoll/Polyester-Mischgewebe 50/50, Flächengewicht 114,7 g/m2 G3.3 Polyester-Microfaser-Gewebe, Flächengewicht 104,23 g/m2
III.1. Allgemeine Vorschrift für Schritt (a)
Gewebe G3.1, G3.2 bzw. G3.3 wurde mit einer Vorbehandlungsflotte gemäß Tabelle 2 auf einem Foulard (Hersteller Fa. Mathis, Typ Nr. HVF63003) behandelt. Der Anpress¬ druck der Walzen betrug 2,2 bar. Es resultierte eine Flottenaufnahme von 60%. Die Auftraggeschwindigkeit betrug 1 m/min. Anschließend wurde das vorbehandelte Gewebe bei 8O0C auf einem Spannrahmen getrocknet.
Man erhielt erfindungsgemäß vorbehandelte Gewebe
III.2 Bedrucken nach dem Ink-Jet-Verfahren 111.2.1. Herstellung von Tinten für das Ink-Jet-Verfahren
Es wurden die unten aufgeführten Tinten für das Ink-Jet-Verfahren durch Vermischen der in Tabelle 4 genannten Bestandteile hergestellt. Dazu stellte man zunächst Mix¬ komponenten M1 bis M3 her, indem man die in Tabelle 3 aufgeführten Bestandteile jeweils in eine Kugelmühle gab, mit destilliertem Wasser jeweils auf 100 ml auffüllte und dispergierte. Anschließend formulierte man in einem Becherglas aus Mixkompo- nente M1 und den Zutaten gemäß Tabelle 5 die Tinte T1, aus Mixkomponente M2 und den Zutaten gemäß Tabelle 4 die Tinte T2 und aus Mixkomponente M3 und den Zuta¬ ten gemäß Tabelle 5 die Tinte T3 und füllte jeweils mit destilliertem Wasser auf 100 ml auf.
Netzmittel 1: [(CHgkSikSKCHsMCHda-CKCHsC^COsH Biozid 1 : 20 Gew.-% Lösung von 1 ,2-Benzisothiazolin-3-on in Dipropylenglykol Tabelle 3: Zusammensetzung von Mixkomponenten M1 bis M3 M 1 M2 M3 Cl. Pigment Red 122 10 Cl. Pigment Blue 15:3 8 Cl. Pigment Black 7 9 Dispergierbindemittel D3 30 24,36 27,2 Melaminderivat AIO 4,44 3,55 4 1 ,2-Propylenglykol 5 4 4,5 Biozid 1 2,6 2,0 2,3 Phosphorsäuretri-n- butylester 0,04 0,04 0,02 Alle Einsatzmengen sind g/100 ml. Man stellte jeweils 100 ml Mixkomponente M1, M2 und M3 her.
Tabelle 4: Zusammensetzung von Tinten T1 bis T3
Figure imgf000024_0001
Alle Einsatzmengen sind g/100 ml. Man stellte jeweils 100 ml Tinte T1, T2 und T3 her.
III.2 Bedrucken mit Tinten
Baumwollgewebe, Polyester-Microfaser-Gewebe und Baumwoll/Polyester- Mischgewebe wurden mit je einer Tinte auf einem Drucker des Typs Mimaki TX 1600 S bedruckt.
Es wurden quantitativen Untersuchungen zur Bestimmung der Farbmetrik durchge¬ führt. Zur Messung wurde ein X-Rite CA22 Spectrophotometer eingesetzt, als Auswer¬ teprogramm wurde X-Rite Color Master verwendet. Dabei wurde je eine Probe des betreffenden nicht vorbehandelten Gewebes jeweils als Standard für die Farbmetrik¬ messungen verwendet. Ein höherer Wert bei der Farbstärke und im Chroma (gemäß M. Richter, Einführung in die Farbmetrik, DeGruyter, Berlin 1981) für erfindungsgemäß vorbehandeltes Gewebe zeigte also die Verbesserung des Druckergebnisses an. Durch erfindungsgemäße Vorbehandlung des jeweiligen Gewebes hat sich der Tinten¬ stand verbessert, damit erhielt man eine bessere Auflösung. Rθibechtheit :
Figure imgf000025_0001
Figure imgf000026_0001
Erfindungsgemäße vorbehandelte und bedruckte Gewebe hatten einen ausgezeichne¬ ten Griff.
IV. Herstellung eines Dispergierbindemittels D3 in wässriger Lösung 6,85 g Neopentylglykol, 7,03 g Dimethylpropionsäure, 51,95 g Polyesterdiol und 53,01 g 4,4'-Diphenyldiisocyanat wurden in 118,74 g Tetrahydrofuran, das zuvor über Na/Benzophenon nach einer Labor-Standard-Methode destilliert worden war, gelöst. Man gab einen Tropfen Di-n-butylzinndilaurat zu und brachte die Reaktionslösung zum Kochen. Man erhitzte unter Rückfluss, bis sich kein freies Isocyanat mehr nachweisen ließ (titrimetrisch gemäß DIN 53 185). Danach kühlte man die Reaktionslösung mit Hilfe eines Eisbads ab, versetzte mit einer Lösung von 6,25 g Diethanolamin in 6,25 g destilliertem Tetrahydrofuran und danach mit 5,4 g Triethylamin. Man gab 315 g Was¬ ser zu und destillierte das Tetrahydrofuran ab. Man erhielt Dispergierbindemittel D3 in wässriger Lösung, Feststoffgehalt 33 Gew.-%.
Als Polyesterdiol wurde ein Polyesterdiol mit einer Hydroxylzahl von 140 mg KOH/g Polyesterdiol, bestimmt nach DIN 53240 verwendet, das aus Isophthalsäure, Adipin- säure und 1 ,4-Cyclohexandimethanol in Molverhältnis 1 : 1 : 2,2 erhalten wurde.

Claims

Patentansprüche
1. Verfahren zum Kolorieren von textilen Substraten, dadurch gekennzeichnet, dass man textile Substrate (a) mit einer wässrigen Vorbehandlungsflotte vorbehandelt, die (A) mindestens ein Harz, gewählt aus Melaminderivaten, Dimethyloldihydroxy- ethylenhamstoff (DMDHEU) und Derivaten von DMDHEU und (B) mindestens einen Verdicker enthält, und danach (b) nach dem Ink-Jet-Verfahren bedruckt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man textile Substrate (a) mit mindestens einer wässrigen Vorbehandlungsflotte vorbehandelt, enthal¬ tend (A) mindestens ein Melaminderivat, (B) mindestens einen Verdicker, (C) optional mindestens eine polykationische Verbindung und (D) optional mindestens ein Additiv.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man nach (a) vorbehandeltes textiles Substrat vor dem Bedrucken nach Schritt (b) trocknet.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei mindestens einem Melaminderivat in Schritt (a) um gegebenenfalls mit mindestens einem aliphatischen Alkohol veretherte Kondensationsprodukte von Melamin mit mindestens einem Aldehyd handelt, wobei mindestens ein Aldehyd gewählt wird aus C6-C14-Arylaldehyd und aliphatischen Aldehyden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass a- liphatische Aldehyde gewählt werden aus Formaldehyd und CrC10-Alkylaldehyd.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich bei mindestens einem Melaminderivat in Schritt (a) um ein Melaminderivat handelt, das erhältlich ist durch Umsetzung von Melamin mit 1 bis unter 3 Äquiva¬ lenten mindestens eines Aldehyds und anschließende Veretherung mit 4,5 bis 10 Äquivalenten mindestens eines mehrwertigen aliphatischen Alkohols.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich bei mindestens einem mehrwertigem aliphatischen Alkohol um Ethylenglykol, Diethylenglykol oder Triethylenglykol handelt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es sich bei mindestens einem Verdicker (B) um einen Assoziativverdicker der allge¬ meinen Formel I bis III handelt,
U[-T-(EVlrU I
U-(EVU Il
U-T-U III
wobei die Variablen wie folgt definiert sind:
E gleich oder verschieden und gewählt aus -CH2-CH2-, -CH2-CH(CH3)-, -CH2-CH(C2H5)-, y eine ganze Zahl im Bereich von 1 bis 100.000 T gleich oder verschieden und eine von einem Diisocyanat abgeleitete Ein¬ heit, x eine ganze Zahl im Bereich von 1 bis 500, U gleich oder verschieden und gewählt aus Einheiten, abgeleitet von aliphati- sehen Alkoholen, Thiolen, Aminen oder Carbonsäuren mit jeweils mindes¬ tens 4 C-Atomen oder aromatischen Alkoholen, Thiolen, Aminen oder Car¬ bonsäuren mit jeweils mindestens 6 C-Atomen, Alkoholen, Thiolen, Aminen oder Carbonsäuren mit C7-C13-Aralkylresten oder heteroaromatischen Al¬ koholen, Thiolen, Aminen oder Carbonsäuren.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei mindestens einer polykationischen Verbindung (C) um ein Polymer oder Copolymer von einem Diallyldialkylammoniumgruppen-haltigen Monomer han¬ delt.
10. Wässrige Vorbehandlungsflotten, enthaltend (A) mindestens ein Harz, gewählt aus Melaminderivaten, Dimethyloldihydroxy- ethylenharnstoff (DMDHEU) und Derivaten von DMDHEU, (B) mindestens einen Verdicker, (C) optional mindestens eine polykationische Verbindung und (D) optional mindestens ein Additiv.
11. Wässrige Vorbehandlungsflotten nach Anspruch 10, enthaltend (A) 0,1 bis 50 Gew.-% mindestens ein Harz, gewählt aus Melaminderivaten, Di- methyloldihydroxyethylenharnstoff (DMDHEU) und Derivaten von DMDHEU, (B) 0,1 bis 50 Gew.-% Verdicker, (C) 0,1 bis 50 Gew.-% polykationische Verbindung und (D) 0 bis 30 Gew.-% Additive.
12. Vorbehandlungsmittel, enthaltend (A) mindestens ein Harz, gewählt aus Melaminderivaten, Dimethyloldihydroxy- ethylenhamstoff (DMDHEU) und Derivaten von DMDHEU, (B) mindestens einen Verdicker, (C) mindestens polykationische Verbindung und (D) optional mindestens ein Additiv.
13. Verfahren zur Herstellung von wässrigen Vorbehandlungsflotten nach Anspruch 10 oder 11 durch Vermischen von mindestens einem Vorbehandlungsmittel nach Anspruch 12 mit Wasser.
14. Textile Substrate, erhältlich nach einem Verfahren nach einem der Ansprüche 1 bis 9.
PCT/EP2005/006719 2004-06-29 2005-06-22 Verfahren zum kolorieren von textilen substraten, wässrige vorbehandlungsflotten und ihre verwendung zur vorbehandlung von textilen substraten WO2006000384A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007518504A JP2008504465A (ja) 2004-06-29 2005-06-22 テキスタイル素地の着色方法、水溶性前処理液、及びテキスタイル素地の前処理のためにそれを使用する方法
CN2005800219145A CN1977080B (zh) 2004-06-29 2005-06-22 使纺织品基材着色的方法、含水预处理浴及其在预处理纺织品基材中的用途
DE502005010181T DE502005010181D1 (de) 2004-06-29 2005-06-22 Verfahren zum kolorieren von textilen substraten, wässrige vorbehandlungsflotten und ihre verwendung zur vorbehandlung von textilen substraten
EP05768257A EP1763606B1 (de) 2004-06-29 2005-06-22 Verfahren zum kolorieren von textilen substraten, wässrige vorbehandlungsflotten und ihre verwendung zur vorbehandlung von textilen substraten
AT05768257T ATE479795T1 (de) 2004-06-29 2005-06-22 Verfahren zum kolorieren von textilen substraten, wässrige vorbehandlungsflotten und ihre verwendung zur vorbehandlung von textilen substraten
US11/571,025 US20090191383A1 (en) 2004-06-29 2005-06-22 Method for coloring textile substrates, aqueous pretreatment baths, and use thereof for the pretreatment of textile substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004031530A DE102004031530A1 (de) 2004-06-29 2004-06-29 Verfahren zum Kolorieren von textilen Substraten, wässrige Vorbehandlungsflotten und ihre Verwendung zur Vorbehandlung von textilen Substraten
DE102004031530.2 2004-06-29

Publications (1)

Publication Number Publication Date
WO2006000384A1 true WO2006000384A1 (de) 2006-01-05

Family

ID=35134598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/006719 WO2006000384A1 (de) 2004-06-29 2005-06-22 Verfahren zum kolorieren von textilen substraten, wässrige vorbehandlungsflotten und ihre verwendung zur vorbehandlung von textilen substraten

Country Status (7)

Country Link
US (1) US20090191383A1 (de)
EP (1) EP1763606B1 (de)
JP (1) JP2008504465A (de)
CN (1) CN1977080B (de)
AT (1) ATE479795T1 (de)
DE (2) DE102004031530A1 (de)
WO (1) WO2006000384A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052962A1 (de) * 2006-10-30 2008-05-08 Basf Se Method for coloring substrates from polypropylene
CN100445460C (zh) * 2006-12-18 2008-12-24 贾永科 喷绘写真布的制备方法
WO2018138069A1 (en) 2017-01-24 2018-08-02 Agfa Nv Capsules stabilised by cationic dispersing groups
WO2018137993A1 (en) 2017-01-24 2018-08-02 Agfa Nv Fluid set comprising a pre-treatment liquid and an inkjet ink

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885129B2 (en) 2007-12-19 2018-02-06 Coolcore, Llc Fabric and method of making the same
US8440119B2 (en) * 2007-12-19 2013-05-14 Tempnology Llc Process of making a fabric
JP2010007192A (ja) * 2008-06-25 2010-01-14 Konica Minolta Ij Technologies Inc インクジェット捺染方法
WO2011115912A1 (en) * 2010-03-15 2011-09-22 Isp Investments Inc. Synergistic preservative compositions
JP5110404B2 (ja) * 2010-03-31 2012-12-26 ブラザー工業株式会社 画像形成方法、画像を有する布帛の製造方法および処理剤
JP2012167394A (ja) * 2011-02-14 2012-09-06 Konica Minolta Ij Technologies Inc インクジェット捺染用前処理インク、インクジェット捺染用前処理インクの製造方法、及びインクジェット捺染方法
CN102191685A (zh) * 2011-03-16 2011-09-21 内蒙古鄂尔多斯羊绒集团有限责任公司 一种毛绒制品涂料印花加工方法
US9505024B2 (en) 2011-12-19 2016-11-29 Hewlett-Packard Development Company, L.P. Method of producing a printed image on a pre-treated, low-porous or non-porous medium
US10144830B2 (en) 2011-12-19 2018-12-04 Hewlett-Packard Development Company, L.P. Pretreatment fluids with ammonium metal chelate cross-linker for printing media
ITCO20130034A1 (it) * 2013-07-26 2015-01-27 Alta Chemicals Srl Processo per il pre-trattamento di articoli tessili atti alla stampa digitale con stampanti ink jet
JP6824740B2 (ja) 2013-12-18 2021-02-03 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド デジタル印刷のための布地前処理剤
CN104278587A (zh) * 2014-09-24 2015-01-14 无锡市东北塘宏良染色厂 一种转移印花方法
JP6703457B2 (ja) * 2016-08-05 2020-06-03 株式会社ミマキエンジニアリング 印刷済媒体製造方法および印刷済媒体製造装置
KR101712980B1 (ko) * 2016-09-13 2017-03-08 주식회사 연진물산 친환경 직물염색방법 및 이를 통해 제조된 직물
KR101712983B1 (ko) * 2016-09-13 2017-03-08 주식회사 연진물산 친환경 빈티지 직물염색방법 및 이를 통해 제조된 직물
CH714518A1 (de) * 2017-12-28 2019-06-28 Mouvent Ag Vorbehandlungslösung zum Tintenstrahldrucken auf Textilwaren.
CN111041862A (zh) * 2019-10-25 2020-04-21 深圳市迪威科技有限公司 一种全棉织物的改性和染色方法
CN116997694A (zh) * 2021-03-30 2023-11-03 三菱化学株式会社 喷墨印染用前处理剂及喷墨印染方法
JP2023006240A (ja) * 2021-06-30 2023-01-18 セイコーエプソン株式会社 処理液組成物、インクジェットインク組成物と処理液組成物のセット及び処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001513A1 (en) * 1997-07-03 1999-01-14 Avecia Limited Composition
WO2000003081A1 (de) * 1998-07-08 2000-01-20 Ciba Specialty Chemicals Holding Inc. Verfahren zum bedrucken von textilen fasermaterialien nach dem tintenstrahldruck-verfahren
DE10206842A1 (de) * 2002-02-18 2003-09-04 Freudenberg Carl Kg Verfahren zum Färben und/oder Bedrucken von textilem Material
WO2004031473A1 (de) * 2002-09-26 2004-04-15 Basf Aktiengesellschaft Vorbehandlungsflotte zur vorbereitung von textilen substraten für den ink-jet-druck

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218218A (en) * 1977-10-08 1980-08-19 Basf Aktiengesellschaft Stable finely dispersed aqueous formulations of disperse dyes and optical brighteners, and their use
US4742134A (en) * 1986-10-22 1988-05-03 University Of Florida Method of enhancing polymerization of dialkyldiallyl ammonium compounds to produce high molecular weight polymers
DE4018873A1 (de) * 1990-06-13 1991-12-19 Basf Ag Verwendung von kondensaten auf basis von arylsulfonsaeuren und formaldehyd als dispergiermittel
US5283306A (en) * 1992-08-26 1994-02-01 Nalco Chemical Company Hydrophobic polyelectrolytes used in removing color
US5763332A (en) * 1996-04-30 1998-06-09 The Procter & Gamble Company Cleaning articles comprising a polarphobic region and a high internal phase inverse emulsion
DE19631618A1 (de) * 1996-08-05 1998-02-12 Basf Ag Verbrückte, methylolierte Bis-4,5-dihydroxy-imidazolidin-2-one, Verfahren zu deren Herstellung und Verwendung derselben
DE19654739A1 (de) * 1996-12-30 1998-07-02 Basf Ag Gemischt-alkylierte bzw. -hydroxyalkoxyalkylierte methylolierte 4,5-Dihydroxy-imidazolidin-2-one
US6001137A (en) * 1998-02-27 1999-12-14 Encad, Inc. Ink jet printed textiles
CN1169675C (zh) * 2000-10-05 2004-10-06 王子制纸株式会社 喷墨记录纸

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001513A1 (en) * 1997-07-03 1999-01-14 Avecia Limited Composition
WO2000003081A1 (de) * 1998-07-08 2000-01-20 Ciba Specialty Chemicals Holding Inc. Verfahren zum bedrucken von textilen fasermaterialien nach dem tintenstrahldruck-verfahren
DE10206842A1 (de) * 2002-02-18 2003-09-04 Freudenberg Carl Kg Verfahren zum Färben und/oder Bedrucken von textilem Material
WO2004031473A1 (de) * 2002-09-26 2004-04-15 Basf Aktiengesellschaft Vorbehandlungsflotte zur vorbereitung von textilen substraten für den ink-jet-druck

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052962A1 (de) * 2006-10-30 2008-05-08 Basf Se Method for coloring substrates from polypropylene
CN100445460C (zh) * 2006-12-18 2008-12-24 贾永科 喷绘写真布的制备方法
WO2018138069A1 (en) 2017-01-24 2018-08-02 Agfa Nv Capsules stabilised by cationic dispersing groups
WO2018137993A1 (en) 2017-01-24 2018-08-02 Agfa Nv Fluid set comprising a pre-treatment liquid and an inkjet ink
US10941309B2 (en) 2017-01-24 2021-03-09 Agfa Nv Fluid set comprising a pre-treatment liquid and an inkjet ink
US10947405B2 (en) 2017-01-24 2021-03-16 Agfa Nv Capsules stabilised by cationic dispersing groups

Also Published As

Publication number Publication date
EP1763606A1 (de) 2007-03-21
US20090191383A1 (en) 2009-07-30
ATE479795T1 (de) 2010-09-15
JP2008504465A (ja) 2008-02-14
DE502005010181D1 (de) 2010-10-14
CN1977080A (zh) 2007-06-06
CN1977080B (zh) 2010-04-21
DE102004031530A1 (de) 2006-02-09
EP1763606B1 (de) 2010-09-01

Similar Documents

Publication Publication Date Title
EP1763606B1 (de) Verfahren zum kolorieren von textilen substraten, wässrige vorbehandlungsflotten und ihre verwendung zur vorbehandlung von textilen substraten
EP1440100A1 (de) Vernetzbare polyurethan-blockcopolymere und ihre verwendung in dispergierbindemittelsystemen
EP2084321B1 (de) Verfahren zum behandeln von substraten
DE69927679T2 (de) Blockierte olimogere isocyanate, deren herstellung und verwendung
WO2001012728A1 (de) Farbmittelzubereitungen
DE60304288T2 (de) Bindemittelzusammensetzung für Tintenstrahltinte
US20100047531A1 (en) Method for printing or colouring substrates
DE10244998A1 (de) Vorbehandlungsflotte zur Vorbereitung von textilen Substraten für den Ink-Jet-Druck
DE1769786A1 (de) UEberzugs- und Impraegniermittel
EP1549690B1 (de) Aufzeichnungsflüssigkeiten
WO2008052962A1 (de) Method for coloring substrates from polypropylene
WO2006108832A1 (de) Verfahren zum aufbringen von gelösten oder dispergierten substanzen
WO2003091347A1 (de) Aufzeichnungsflüssigkeiten, enthaltend polyurethane mit hyperverzweigten strukturen
EP1641884B1 (de) verfahren zur behandlung von pigmenten in partikulärer form
DE1965562A1 (de) Beschichtungs- und Impraegniermassen,Verfahren zu ihrer Herstellung und ihre Verwendung zum Behandeln von Fasern,Papier,Textilien oder Leder
WO2009003865A2 (de) Wässrige formulierungen und ihre verwendung zum kolorieren oder beschichten von substraten
EP1915429A1 (de) Verfahren zur herstellung von pigmentzubereitungen
EP1675914A1 (de) Formulierungen und ihre verwendung bei der kolorierung von substraten
EP1412440A1 (de) Farbmittelzubereitungen
DE10149268A1 (de) Verwendung von vernetzbaren Polyurethan-Blockcopolymeren als Dispergierbinderadditive für Pigmentdruck und die Pigmentfärbung
EP1659153A1 (de) Verwendung von wässrigen Dispersionen von wasserlöslichen (Co)polymerisaten von mindestens einem ethylenisch ungesättigten Monomer MON zur Herstellung von Textilhilfsmitteln
DE10026465A1 (de) Farbmittelzubereitungen
DE102008040980A1 (de) Verfahren zur Herstellung von koloriertem Papier oder Textil
DE10147404A1 (de) Vernetzbare Polyurethan-Blockcopolymere und ihre Verwendung in Dispergierbindemittelsystemen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005768257

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11571025

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007518504

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580021914.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005768257

Country of ref document: EP