WO2005124749A1 - 光情報装置及び光情報装置の制御方法 - Google Patents

光情報装置及び光情報装置の制御方法 Download PDF

Info

Publication number
WO2005124749A1
WO2005124749A1 PCT/JP2005/011296 JP2005011296W WO2005124749A1 WO 2005124749 A1 WO2005124749 A1 WO 2005124749A1 JP 2005011296 W JP2005011296 W JP 2005011296W WO 2005124749 A1 WO2005124749 A1 WO 2005124749A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spherical aberration
correction
laser
optical
Prior art date
Application number
PCT/JP2005/011296
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Yasuda
Hidenori Wada
Takeharu Yamamoto
Toshio Matsumoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05751387A priority Critical patent/EP1770693B1/en
Priority to US11/568,014 priority patent/US7652970B2/en
Priority to KR1020067007853A priority patent/KR101109944B1/ko
Priority to DE602005022721T priority patent/DE602005022721D1/de
Priority to JP2006514825A priority patent/JP4538453B2/ja
Publication of WO2005124749A1 publication Critical patent/WO2005124749A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means

Definitions

  • the present invention relates to an optical information device for writing and reading information signals to and from an optical recording medium such as an optical disk, a magneto-optical disk, and an optical card, and a control method thereof.
  • an optical recording medium such as an optical disk, a magneto-optical disk, and an optical card
  • Optical memory technology that uses an optical recording medium having a pit-like pattern as a high-density, large-capacity storage medium has been developed for digital 'versatile' disks (DVD), video disks, document file disks, and data files. Has been put to practical use.
  • NA numerical aperture
  • the spherical aberration caused by an error in the thickness of the protective layer that protects the recording layer of the optical recording medium is proportional to the fourth power of NA. Thickness error is especially due to the small thickness of the original protective layer in high density discs such as Blu-ray discs (0.1 mm in the case of Blu-ray discs). Even appear as spherical aberration
  • NA is set to a large value such as 0.8 or 0.85, it is indispensable to provide a means for correcting spherical aberration in the optical system.
  • FIG. 12 is a schematic diagram showing the configuration of a conventional optical information device.
  • the optical head 1 includes a laser 2, a diffraction grating 3, a collimator lens 4, a polarizing beam splitter 5, a mirror 7, a 1Z4 wavelength plate 8, an objective lens 9, a condenser lens 11, a cylindrical lens 12, a photodetector. 13, consisting of an objective lens aperture 16 and an actuator 17.
  • the lens group 6 and the driving means 18 constitute the spherical aberration correcting means 24.
  • the laser 2 is, for example, a laser composed of a GaN-based semiconductor laser device (wavelength: 405 nm) and outputting coherent light for recording and reproduction to the recording layer of the optical recording medium 10.
  • the diffraction grating 3 is an optical element having an uneven pattern formed on the surface of a glass substrate, dividing an incident beam into three beams, and enabling detection of a tracking error signal by a so-called three-beam method.
  • the collimator lens 4 is a lens that converts divergent light emitted from the laser 2 into parallel light.
  • the polarization beam splitter 5 is an optical element for separating light whose transmittance and reflectance differ depending on the polarization direction of incident light.
  • the spherical aberration correcting means 24 is for correcting spherical aberration caused by the thickness variation of the protective layer of the optical recording medium 10, etc., and comprises a concave lens 6a, a convex lens 6b, and a driving means 18, and includes a concave lens 6a. The spherical aberration can be corrected by changing the distance between the convex lenses 6b.
  • the mirror 7 is an optical element that reflects incident light and directs it toward the optical recording medium 10, and transmits 5% and reflects 95% of a certain linearly polarized light, and a linear line orthogonal to the linearly polarized light. It has the property of reflecting 100% for polarized light.
  • the 1Z4 wavelength plate 8 is formed of a birefringent material, and is an optical element that converts linearly polarized light into circularly polarized light.
  • the objective lens 9 is a lens for condensing light on the recording layer of the optical recording medium 10, and has a numerical aperture (NA) of 0.85.
  • the condensing lens 11 is a lens that condenses the light reflected by the recording layer of the optical recording medium 10 on the photodetector 13.
  • the cylindrical lens 12 has a cylindrical incident surface and a rotational symmetric surface with respect to the optical axis of the lens. To provide astigmatism for enabling the detection of.
  • the photodetector 13 receives light reflected by the recording layer of the optical recording medium 10 and converts the light into an electric signal.
  • the objective lens aperture 16 limits the size of light incident on the objective lens 9 and is used to determine the NA of the objective lens 9, and also serves as a member that holds the objective lens 9.
  • the actuator 17 performs focus control as position control in the optical axis direction and tracking control as position control in a direction perpendicular to the optical axis direction, and is constituted by driving means such as coils and magnets.
  • the driving means 18 drives the concave lens 6a in the optical axis direction.
  • the operation of the optical information device configured as described above will be described.
  • the linearly polarized light emitted from the laser 2 is split into three beams by the diffraction grating 3, and the light split into the three beams is converted into parallel light by the collimator lens 4.
  • the collimated light passes through the polarizing beam splitter 5 and enters the lens group 6.
  • the incident parallel light is driven by the distance between the concave lens 6a and the convex lens 6b constituting the spherical aberration correction means 24.
  • the light is converted into divergent light or convergent light by using the light, and the converted light is incident on the mirror 7, a part of the light is transmitted, most of the light is reflected, and the traveling direction in the direction of the optical recording medium 10 is changed. be changed.
  • the reflected light is incident on the 1Z4 wavelength plate 8 and linearly polarized light is converted into circularly polarized light.
  • the circularly polarized light is aperture-limited by the objective lens aperture 16 and is incident on the objective lens 9 and is incident thereon.
  • Spherical aberration is generated according to the degree of divergence of light or the degree of convergence, and the light is converged on the optical recording medium 10.
  • the circularly polarized light reflected from the optical recording medium 10 is converted into linearly polarized light in a direction orthogonal to the linearly polarized light input to the 1Z4 wavelength plate 8 and emitted from the laser 2.
  • the linearly polarized light converted by the 1Z4 wavelength plate 8 is all reflected by the mirror 7, passes through the lens group 6, is reflected by the polarization beam splitter 5, and is returned to the laser 2 by the condenser lens 11.
  • the light is converged, given astigmatism by the cylindrical lens 12, and condensed on the photodetector 13.
  • the photodetector 13 converts the received light beam into an electric signal. This electric signal is supplied to focus control means 19, tracking control means 20, and reproduction signal processing means 102.
  • the focus control unit 19 obtains a focus error signal from a signal supplied from the photodetector 13 and performs focus control, which is position control in the optical axis direction, using the actuator 17 according to the focus error signal.
  • the tracking control means 20 obtains a tracking error signal from the signal light supplied from the photodetector 13, and in accordance with the tracking error signal, uses the actuator 17 to emit a light beam to a predetermined area on the optical recording medium 10. Tracking control is performed so as to perform on-track.
  • the focus error signal and the tracking error signal are detected by a known technique, for example, by an astigmatism method and a three-beam method.
  • the reproduction signal processing means 102 is supplied with a reproduction signal corresponding to the record information recorded on the optical recording medium 10.
  • the reproduction signal processing means 102 performs processing such as waveform equalization on the reproduction signal! ⁇ Output reproduced data as digital data.
  • the spherical aberration can be corrected using the spherical aberration correcting means 24.
  • the parallel light is converted into divergent light, and when the distance is increased, the light is converted into convergent light.
  • the divergence angle of the light output from the spherical aberration corrector 24 can be freely changed, and the divergence angles Z with different signs on the basis of the parallel light. Light with corners can be generated.
  • the objective lens 9 when divergent light or convergent light, that is, non-parallel light having an elevation or depression angle with respect to the optical axis, is incident on the objective lens 9, the light converged by the objective lens 9 generates spherical aberration, The size and direction of the optical recording medium 10 depend on the angle of the incident divergent light Z and the convergent light (elevation angle Z depression angle). The aberration can be corrected.
  • the optical recording medium 10 is used to perform appropriate reproduction or recording. It is necessary to perform control such as optimizing the irradiation laser power. Therefore, feedback control is performed in which the intensity of light extracted at an arbitrary position in the optical system from the laser to the objective lens is measured, and the magnitude of the output of the laser power is controlled based on the measured intensity.
  • FIG. 13 is a diagram showing a configuration for performing feedback control of laser power in an optical information device including the spherical aberration correcting means 24.
  • the lens 14 focuses the light transmitted through the mirror 7 on the light amount detector 15.
  • the light quantity detector 15 converts the received light beam into an electric signal.
  • the lens opening 14a adjusts light incident on the lens 14. In the optical system, the lens opening 14a, the lens 14, and the light amount detector use one of the lights that has passed through the spherical aberration correcting means 24 and is branched by the mirror 7.
  • the controller 103 sets the emission power of the laser that is optimal for reproduction or recording, and is input to the laser power control means 21 as a reference voltage signal b.
  • the laser power control means 21 controls the amount of laser drive current supplied to the laser 2 so that the emission power detection signal a and the reference voltage signal b are equal. As a result, the output power of the laser 2 is controlled to a predetermined power in both reproduction and recording.
  • FIG. 14 is a diagram schematically showing light incident on the objective lens 9 when the driving unit 18 drives the concave lens 6a to correct spherical aberration.
  • the protective layer of the optical recording medium 10 when the protective layer of the optical recording medium 10 is thick, the distance between the concave lens 6a and the convex lens 6b of the spherical aberration corrector 24, which cancels the spherical aberration associated with this thickness, is increased, and the mirror 7 is reflected.
  • the light enters the objective lens 9 as convergent light. This state is shown by a solid line.
  • the interval between the concave lens group 6 a and the convex lens group 6 b becomes narrower, and the light reflected by the mirror 7 is transmitted to the objective lens 9. Incident with divergent light. This state is indicated by a dotted line.
  • the concave lens 6a moves to correct the spherical aberration of the optical recording medium 10
  • the light incident on the objective lens 9 within the moving range that is, regardless of the position of the concave lens 6a.
  • the volume needs to be constant. That is, it is necessary to prevent the occurrence of leakage light that is not irradiated to the objective lens 9 as shown by a dashed line in FIG.
  • the light used for the light amount detector 15 is located at the position A shown in FIG. 14, the light amount incident on the light amount detector 15 (substantial area of the light receiving area) As shown by a solid line optical path and a dotted line optical path in the figure, vignetting or the like occurs, and fluctuates according to the position of the concave lens 6a. That is, although the output power of the laser 2 has not changed, the cross-sectional area of the light beam to the light quantity detector 15 changes due to the correction by the spherical aberration correction means 24, so that the light incident on the light quantity detector 15 changes. The light quantity changes.
  • the output level of the light quantity detector 15 (output power detection signal a) is the spherical aberration correction amount SA1 to 382 Changes from ⁇ (161; 1 to ⁇ (16 2 ( ⁇ (16 2> ⁇ (161; 1)).
  • the laser power control means 21 determines that the output power detection signal a is equal to the reference voltage signal b. Since the control is performed so as to be equal, if the laser power is controlled in this state, the output power of the objective lens output fluctuates according to the spherical aberration correction amount.
  • the signal level detected by the light amount detector 15 becomes small, so that the emission power of the laser 2 is controlled to be increased.
  • the signal level detected by the light amount detector 15 is Since the laser power is increased, the emission power of the laser 2 is controlled to be reduced. At this time, the quality of the reproduced signal may be degraded during reproduction of the optical recording medium 10, and the recorded information may not be reproduced.
  • the optical system is designed on the light amount detector 15 side so as to secure a constant light amount similarly to the objective lens 9 side, or the optical detector 15 has a spherical surface.
  • a countermeasure such as providing the light at a position that can directly receive light, for example, light that has passed through the polarizing beam splitter 5 without being affected by the difference correction means 24, can be considered.
  • the former measure imposes severe optical conditions on both the objective lens 9 side and the optical detector 15 side design in the design of the optical head 1. This will itself be reflected in the manufacturing costs.
  • the optimum dimensions that satisfy both optical conditions become large, and if, for example, the dimensions cannot be obtained within the design dimensions of the conventional optical head, new parts must be designed, leading to a serious problem. Become. A similar problem occurs in the latter case.
  • the present invention has been proposed in view of the above-mentioned circumstances, and can cope with variations in the thickness of a protective layer of an optical recording medium without depending on optical conditions in design.
  • Another object of the present invention is to provide an optical information device in which the output power of an objective lens output is kept constant and a laser power setting method provided with such an optical information device.
  • a first aspect of the present invention is a light beam having a laser light source that emits a light beam, and an objective lens that converges the light beam emitted from the laser light source onto an optical recording medium.
  • a spherical aberration correcting unit disposed on an optical axis of the light beam connecting the laser light source and the objective lens, and correcting a spherical aberration generated on the optical recording medium;
  • a light separating means for separating the emitted light beam into a plurality of light beams; receiving a shift of the light beam separated by the light separating means; Light amount detection means for outputting an air signal;
  • Laser power control means for controlling the emission power of the laser light source based on the electric signal of the light quantity detection means
  • the correction amount of the spherical aberration is determined based on the relationship between the output power of the light beam emitted from the objective lens and the magnitude of the electric signal output from the light amount detection unit with respect to the correction amount of the spherical aberration by the aberration correction unit.
  • An optical information device comprising: a laser power correction unit that performs correction such that the emission power of the laser light source changes in response to the change.
  • the laser power correction means changes a target control signal used by the laser power control means according to the correction amount of the spherical aberration. Device.
  • the laser power correction means corrects the electric signal obtained by the light quantity detection means in accordance with the correction amount of the spherical aberration.
  • the light separating means is provided such that the light quantity detecting means receives light after passing through the spherical aberration correcting means.
  • Optical information device is provided such that the light quantity detecting means receives light after passing through the spherical aberration correcting means.
  • the light separating means is provided such that the light amount detecting means receives light before passing through the spherical aberration correcting means.
  • Optical information device Optical information device.
  • An optical information device comprising a storage unit for storing a relationship.
  • a seventh aspect of the present invention is the optical information device according to the sixth aspect, wherein the storage means is a nonvolatile memory.
  • the laser power correction means performs preliminary correction for changing the emission power by a predetermined amount before performing the correction. Either An optical information device according to the present invention.
  • the laser power correcting means includes:
  • An optical information device When the optical information apparatus records or reproduces information on a multilayer optical recording medium having a plurality of recording layers as the optical recording medium, the preliminary correction is performed before the focal position of the objective lens moves the recording layer.
  • the predetermined amount of the laser beam is corrected.
  • An optical information device according to a ninth aspect of the present invention, wherein the preliminary correction is performed to reduce power.
  • an eleventh aspect of the present invention in the laser power correction unit, after performing the preliminary correction of the emission power according to the position of the recording layer, after the focal movement of the recording layer is completed, An optical information device according to a ninth aspect of the present invention, wherein the output power is corrected in accordance with the correction amount of the spherical aberration.
  • the twelfth invention is the optical information device according to the first invention, wherein at least the laser power control means and the laser power correction means are integrated on an integrated circuit.
  • a thirteenth aspect of the present invention is an information processing apparatus including the optical information device of the first aspect of the present invention and processing information to be recorded or reproduced from the optical recording medium.
  • a fourteenth aspect of the present invention provides a light beam converging system having a laser light source for emitting a light beam, an objective lens for converging a light beam emitted from the laser light source on an optical recording medium, A spherical aberration corrector disposed on an optical axis of the light beam connecting the laser light source and the objective lens, for correcting a spherical aberration generated on the optical recording medium, and a light beam emitted from the laser light source; A light separating unit that separates the light into a plurality of light beams, a light amount detecting unit that receives a shift of the light beam separated by the light separating unit, and outputs an electric signal corresponding to an amount of received light; A method for controlling an optical information device, comprising: a laser power control means for controlling an emission power of the laser light source based on a signal;
  • the light emitted from the objective lens with respect to the correction amount of the spherical aberration by the aberration correction unit Correction based on the relationship between the output power of the light beam and the magnitude of the electric signal output from the light amount detection means, so that the output power of the laser light source changes according to the correction amount of the spherical aberration.
  • the emission power of the light beam emitted from the objective lens with respect to the correction amount of the spherical aberration by the aberration correcting means is a computer as a laser power correction step for performing a correction such that the emission power of the laser light source changes in accordance with the correction amount of the spherical aberration based on a relationship between the power of the laser beam and the magnitude of the electric signal output from the light amount detection means. It is a program to make the function work.
  • a sixteenth aspect of the present invention is a recording medium on which the program of the fifteenth aspect of the present invention is recorded, which is a recording medium that can be processed by a computer.
  • the present invention it is possible to cope with variations in the thickness of the protective layer of the optical recording medium without depending on the optical conditions in the design of the optical head, and to keep the output power of the output to the objective lens at a predetermined value. Therefore, it is possible to realize an optical information device capable of obtaining a stable control signal and a stable reproduction signal irrespective of the thickness variation of the protective layer of the optical recording medium.
  • the spherical aberration correction amount suitable for the recording layer to be newly focused is set, so that the spherical aberration correction amount is required on the optical recording medium during reproduction. It is possible to realize an optical information device that does not have a risk of erroneously deteriorating the recorded information recorded on the optical recording medium due to the irradiation of the above-described power and that enables stable movement between the recording layers.
  • FIG. 1 is a schematic diagram showing a configuration of the optical information device according to the first embodiment.
  • Figure 1 The same components as those in FIG. 13 are denoted by the same reference numerals, and detailed description will be omitted.
  • reference numeral 14 denotes a lens for condensing the light transmitted through the mirror 7 to the light amount detector 15, and reference numeral 15 denotes a light amount detector for converting the received light beam into an electric signal. Constitute the light amount detecting means.
  • Reference numeral 22 denotes a reproduction signal processing unit; 23, a controller; and 25, a storage unit.
  • the light beam received by the photodetector 13 is converted into an electric signal, and the focus control means 1
  • the reproduction signal processing unit 22 is supplied with a reproduction signal corresponding to the recording information recorded on the optical recording medium 10.
  • the reproduction signal processing means 22 performs processing such as waveform equalization on the reproduction signal, outputs the reproduction data as digital data, and obtains information on the reproduction signal quality, for example, the modulation degree, jitter value or error of the reproduction signal. Is input to the controller 23.
  • the controller 23 sets the optimum emission power of the laser 2 for reproduction or recording, inputs it to the laser power control means 21 as a reference voltage signal, and controls the spherical aberration correction means 24.
  • the controller 23 includes a laser power setting unit.
  • the spherical aberration corrector 24 corrects the spherical aberration according to an instruction from the controller 23 so that the spherical aberration in the recording layer of the optical recording medium 10 is minimized.
  • the storage unit 25 is realized by a non-volatile memory such as an EPFROM, and stores the relationship between the correction amount of the spherical aberration by the spherical aberration correction unit 24 and the output level of the light amount detector 15, and stores the relationship, for example, at the time of factory shipment. .
  • the laser 2 corresponds to the laser light source of the present invention, and includes a diffraction grating 3, a collimator lens 4, a polarizing beam splitter 5, a mirror 7, a 1Z4 wave plate 8, an objective lens aperture 16, and an objective.
  • the lens 9 constitutes the light beam focusing system of the present invention.
  • the spherical aberration correcting means 24 corresponds to the spherical aberration correcting means of the present invention
  • the polarization beam splitter 5 corresponds to the light separating means of the present invention.
  • the light amount detector 15 corresponds to the light amount detecting means of the present invention
  • the laser power control means 21 corresponds to the laser power controlling means of the present invention
  • the controller 23 corresponds to the laser power correcting means of the present invention
  • the storage unit 25 corresponds to a storage unit of the present invention.
  • the value of the reference voltage signal b corresponding to the target control signal of the present invention is corrected in accordance with the amount of spherical aberration correction by the spherical aberration correction means 24 to obtain a reference voltage signal ( Correcting the target value of the emission power of the laser light set in the laser power control means 21) is a major feature of the first embodiment. That is, in the configuration in which the feedback control of the laser power as shown in FIG.
  • the signal level detected by the light amount detector 15 fluctuated according to the spherical aberration correction amount). Since the output power of light to the objective lens 9 is constant, the change in the signal detected by the light amount detector 15 can be calculated back from the spherical aberration correction amount.
  • the present embodiment utilizes this to obtain a change in the detection signal of the light amount detector 15 from the spherical aberration correction amount, thereby correcting the detection signal of the light amount detector 15.
  • FIG. 2 is a flowchart illustrating an example of a procedure for determining the reference voltage signal in the controller 23.
  • the controller 23 detects the amount of spherical aberration correction before setting the reference voltage signal b ′ (processing Sl).
  • the spherical aberration correcting means 24 is constituted by an actuator, the spherical aberration correction amount can be detected by a drive current of the actuator.
  • the spherical aberration correcting means 24 is formed of a stepping motor, it can be detected by the number of steps from the reference position.
  • the optimal spherical aberration correction amount for the recording layer of the optical recording medium 10 may be determined by, for example, predetermined learning when the optical information device is started.
  • the optical information device when the optical information device is started, the optical information is recorded on the optical recording medium 10 while changing the spherical aberration correction amount by the spherical aberration correction means 24 according to an instruction from the controller 23.
  • the recorded information is reproduced, and the spherical correction aberration amount at which the reproduction signal quality is optimal can be determined based on the information such as the jitter obtained from the reproduction signal processing means 22 at that time.
  • the spherical aberration correction amount can be detected from the drive current of the actuator and the reference position force by the number of steps.
  • the controller 23 detects a light amount correction coefficient corresponding to the spherical aberration correction amount obtained in the processing S1 from the storage unit 25 (processing S2).
  • the optical information device using the spherical aberration correcting means 24 for forming the divergent light and the convergent light to correct the spherical aberration as shown in FIG.
  • the output light amount on the objective lens 9 side is designed to be constant
  • the light amount detection is performed according to the spherical aberration correction amount SA1 to SA2 unless the photodetector 15 side is designed to consider the effects of vignetting and the like.
  • the output level of the detector 15 (the output power detection signal a) changes from ⁇ (161; 1 to ⁇ (162 (162> Vdetl)). Therefore, for example, at the time of shipment from the factory, as shown in FIG.
  • the light amount correction coefficient a sa corresponding to the aberration correction amount is stored in the storage unit 25.
  • the light amount correction coefficient ( ⁇ sal) when the spherical aberration correction amount is SA1 is 1, and when the spherical aberration correction amount is SA2.
  • Spherical to aberration number of combinations of the correction amount SAn and the light quantity correction coefficient a san may be two points, may be in three or more points as shown in FIG. 3 (b).
  • a light amount correction coefficient a sa is obtained by calculation according to the spherical aberration correction amount obtained in the process S1, and the obtained spherical aberration correction amount is SAz (SA1 ⁇ SAz ⁇ SA2).
  • the light quantity correction coefficient a saz is obtained by the following equation.
  • the storage unit 25 stores the light amount correction coefficient for a plurality of spherical aberration correction amounts as shown in FIG. If a sa is stored, the spherical aberration correction amount SAz obtained in process S1 is Soon! A light amount correction coefficient according to the spherical aberration correction amount may be used.
  • the controller 23 corrects the reference voltage signal b using the light amount correction coefficient a sa detected in the processing S2 as shown in the following equation, and controls the corrected reference voltage signal by laser power control. Input to means 21 (process S3).
  • the spherical aberration correction amount is SA2
  • the signal level detected by the light amount detector 15 is higher than when the spherical aberration correction amount is SA1, so that the output power of the laser 2 is reduced.
  • the value of the reference voltage signal b ′ set by the controller 23 is changed according to the fluctuation amount of the output level of the light amount detector 15 (Vdet2ZVdetl when the spherical aberration correction amount is SA2).
  • the light emitted from the spherical aberration corrector 24 is converted into the light amount detector 15 for controlling the laser power feedback and the objective lens 9 for information recording and reproduction.
  • the laser power can be adjusted appropriately by correcting the reference voltage signal according to the spherical aberration correction amount. It can be controlled by value.
  • the reference voltage signal b ' corresponds to a control signal used by the laser power control means of the present invention.
  • the optical information device of the first embodiment is designed so that even the light amount of the light incident on the objective lens 9 side is constant, regardless of whether the optical design of the light amount detector 15 is appropriate or not. Normal control operation can always be performed.
  • the target control of the present invention is performed according to the spherical aberration correction amount.
  • the method of correcting the set value of the reference voltage signal b that also outputs the controller 23 side force as a signal has been described, but the present invention is not limited to this, and the output power detection signal a may be corrected.
  • the correction of the output power detection signal a by the light amount correction coefficient asa may be performed by separately providing a correction unit associated with the storage unit 25 on a path from the light amount detector 15 to the laser power control unit 21. Further, the laser power control means 21 may acquire the light quantity correction coefficient asa from the storage unit 25 and correct it.
  • the output power of the output to the objective lens 9 is constant according to the spherical aberration correction amount, and the spherical aberration correction amount and the output of the light amount detector 15 are stored in the storage unit 25.
  • the force described in the case where the relationship with the level is stored is not limited to this.
  • the output power of the output of the objective lens 9 may be changed according to the amount of spherical aberration correction. For example, the amount of change in the ratio of the output power of the output of the objective lens 9 to the spherical aberration correction amount and the output level of the light amount detection unit 15 is stored.
  • a series of operations S 1 to S 3 are continuously performed to detect the amount of spherical aberration correction and correct the reference voltage signal b as soon as the light amount correction amount ex sa is obtained.
  • the controller 23 performs a preliminary correction operation of changing the output power of the objective lens 9 prior to the correction of the reference voltage signal b. Is also good. This is because if there is a difference between the timing of the spherical aberration correction and the timing of the correction of the reference voltage signal, a light beam having an output power more than necessary is radiated on the optical recording medium 10 and recorded on the optical recording medium 10. This is to prevent the recorded information from being degraded and to prevent it.
  • a reference voltage signal b power is reduced by a predetermined amount so that the emission power is reduced in advance, and the reference voltage signal is output to the laser power control means 21. .
  • the output power decreases.
  • the processes S1 to S3 are executed, the reference voltage signal is output to the laser power control means 21 as the reference voltage signal b ', and the emission power is appropriately corrected.
  • the force described in the case where the spherical aberration correction means 24 is disposed between the polarizing beam splitter 5 and the objective lens 9 is not limited to this. It may be in between.
  • a beam splitter 45 may be newly provided between the optical beam splitter 5 and the light amount detector 15 or the like may be arranged so as to receive the branched light.
  • the light that has passed through the spherical aberration corrector 24 and becomes divergent light Z convergent light is incident on the objective lens 9 side, while the light amount detector 15 side has the spherical aberration corrector 24 Therefore, a constant amount of light is always incident.
  • the storage unit 25 stores, for example, the amount of change in the ratio between the output power of the output of the objective lens 9 (this is constant) and the output level of the light amount detector 15 with respect to the amount of spherical aberration correction.
  • the objective lens 9 side can be implemented regardless of any optical conditions of the light amount detector 15 and the light amount detector 15. That is, when at least one of the emission power of the light emitted from the objective lens 9 and the magnitude of the electric signal output from the light quantity detector 15 is constant, the correction is performed based on the other change in the spherical aberration correction amount. It can be performed. If both the output power of the light emitted from the objective lens 9 and the magnitude of the electric signal output from the light amount detector 15 are undefined, the correction should be performed based on both changes in the spherical aberration correction amount. I can do it.
  • the method of determining the optimal spherical correction aberration amount based on the information such as the jitter obtained from the reproduction signal processing means 22 has been described.
  • the determination may be based on the amplitude of the tracking error signal, or may be determined based on other information.
  • FIG. 5 shows a configuration diagram of the spherical aberration correcting means 24 (a single-axis actuator is not shown) composed of a negative lens group 51 having a negative curvature and a positive lens group 52 having a positive curvature. Since each lens group is made of glass material having a different Abbe number, the lenses constituting the optical head 1, especially the objective lens 9, are used.
  • the spherical aberration correcting means 24 capable of correcting the generated chromatic aberration can be configured. Furthermore, in the method using a lens, it is possible to correct spherical aberration in both the forward path and the backward path, so that a stable reproduction signal and control signal can be obtained.
  • the spherical aberration correction means 24 may be configured not to use a lens.
  • a method using a phase change layer disclosed in Japanese Patent Application No. 2001-221927 may be used.
  • An optical element used in this method will be briefly described.
  • FIG. 6 shows a cross-sectional view of an optical element using liquid crystal as the phase change layer
  • FIG. 7 shows a pattern diagram used for the optical element.
  • reference numeral 61 denotes a first substrate
  • 62 denotes a second substrate disposed substantially parallel to the first substrate 61
  • 63 denotes a voltage application disposed between the first substrate 61 and the liquid crystal 67.
  • the electrode, 64 is a counter electrode arranged substantially parallel to the voltage application electrode so as to face the voltage application electrode 63
  • 65 is a translucent resin film formed so as to cover the voltage application electrode 63
  • 66 is A translucent resin film formed so as to cover the opposing electrode 64
  • 67 is a liquid crystal disposed between the translucent resin films 65 and 66 (between the voltage applying electrode 63 and the opposing electrode 64).
  • Reference numeral 68 denotes a sealing resin disposed between the translucent resin films 65 and 66 so as to surround the liquid crystal 67.
  • the first substrate 61 and the second substrate 62 have, for example, a glass power and are translucent.
  • the voltage application electrode 63 is an electrode for applying a desired voltage to the liquid crystal 67.
  • the voltage application electrode 63 is formed on the main surface inside the first substrate 61 (the liquid crystal 67 side).
  • the counter electrode 64 is an electrode for applying a desired voltage to the liquid crystal 67 together with the voltage application electrode 63.
  • the counter electrode 64 is formed on the main surface inside the second substrate 62 (on the liquid crystal 67 side).
  • the counter electrode 64 is translucent, and for example, has an ITO force.
  • the opposing electrode 64 is formed substantially uniformly on at least a portion opposing the segment electrode on the inner main surface of the second substrate 62.
  • the translucent resin films 65 and 66 are alignment films for aligning the liquid crystal 67 in a predetermined direction, and are made of, for example, a polyvinyl alcohol film.
  • the liquid crystal 67 can be oriented in a predetermined direction by performing a rubbing treatment on the translucent resin film 65 or 66. Further, the liquid crystal 67 functions as a phase change layer that changes the phase of the incident light.
  • the liquid crystal 67 is, for example, a nematic liquid crystal color.
  • the sealing resin 68 seals the liquid crystal 67.
  • the voltage application electrode 63 is constituted by concentric segment electrodes. This segment electrode is translucent, and for example, has ITO power. The operation of the optical element thus configured will be described. A control voltage is applied from the outside to each of the segment electrodes of the voltage application electrode of the optical element so as to impart a phase of a curvature component to light incident on the optical element of the present invention.
  • the incident plane wave can be converted into a spherical wave, and the spherical wave enters the objective lens 9 to generate spherical aberration.
  • the spherical aberration causes the thickness of the optical recording medium 10 to be designed.
  • the spherical aberration that occurs when the thickness deviates from the thickness of the protective layer is corrected.
  • a liquid crystal whose refractive index changes according to the voltage is used as the phase change layer, but PLZT whose thickness (volume) changes according to the voltage is PLZT (acid oxide, lanthanum, acid oxide zirconium, acid oxide).
  • PLZT whose thickness (volume) changes according to the voltage
  • a transparent crystal having a perovskite structure containing titanium) may be used.
  • the optical element can be made thinner.
  • the lens since the lens is used, the aberration caused by the thickness of the optical recording medium can be corrected on the outward path as well as on the backward path, so that the method is stable.
  • the obtained control signal can be obtained.
  • the optical element using the phase change layer corrects the difference due to the substrate thickness of the optical recording medium, so that the optical head 1 is suitable for downsizing.
  • spherical aberration is corrected using convergent light and divergent light, so that the spherical aberration correction performance does not deteriorate even if the objective lens 9 shifts. .
  • the spherical aberration correcting means 24 is constituted by the concave lens 6a, the convex lens 6b, and the driving means 18 serving as a lens position changing means for changing the interval between the concave lens and the convex lens. Even if the convex lens 6b is not provided, the spherical aberration correcting means can be constituted only by changing the position of the collimator lens 4. In this case, even in the configuration shown in FIG. 4, the light passing through the beam splitter 45 becomes non-parallel light, and the amount of light incident on the light amount detector 15 side is the same as the amount of light incident on the objective lens 9 side. Since it changes in accordance with the change in the position, correction is performed based on the change in the spherical aberration correction amount.
  • the objective lens 9 uses a single lens and has a NA! There is no problem even with a lens.
  • a finite optical head may be used instead of a power collimator lens showing an infinite optical head as the optical head 1.
  • the optical head 1 is a polarization optical system, but may be a non-polarization optical system.
  • FIG. 8 is a schematic diagram showing a configuration of the optical information device according to the second embodiment.
  • 40 is an optical recording medium having two recording layers
  • 48 is focus control means
  • 49 is tracking control means
  • 53 is a controller.
  • FIG. 9 is an example of a schematic diagram of an optical recording medium having two recording layers. From the optical head side, the structure is such that a front surface 87, a protective layer 82, a first recording layer 83, an intermediate layer 85, a second recording layer 84, and a base material 86 on the back surface.
  • the protective layer 82 and the intermediate layer 85 are transparent media such as resin. Since there is an intermediate layer 85 between the first recording layer 83 and the second recording layer 84, the thickness from the optical recording medium 40 on the optical head side to each recording layer is smaller than that of the second recording layer 84. Becomes thicker than that of the first recording layer 83 by the thickness of the intermediate layer 85.
  • the controller 53 sets the emission power of the laser 2 that is optimal for reproduction or recording, inputs it as the reference voltage signal c to the laser power control means 21, and also controls the focus control means 48, the tracking control means 49 and The spherical aberration correction means 24 is controlled.
  • the controller 53 includes a laser power setting unit.
  • the spherical aberration correcting means 24 corrects the spherical aberration according to an instruction from the controller 53 so that the spherical aberration in each recording layer of the optical recording medium 40 is minimized.
  • the controller 53 corrects the reference voltage signal c set in the laser power control means 21 according to the spherical aberration correction amount, as in the first embodiment. This makes it possible to keep the output power of the objective lens 9 at a predetermined value irrespective of the spherical aberration correction amount, that is, the thickness of the protective layer 82 of the optical recording medium 40 and the position of the recording layer to be focused. Become.
  • the difference between Embodiment 2 and Embodiment 1 is the procedure for focusing, that is, moving the recording layer on which recording and Z or reproduction is performed (hereinafter, interlayer movement).
  • the optimal spherical aberration correction amount in the first recording layer 83 is SA11
  • the optimal spherical aberration correction amount in the second recording layer 84 is SA12.
  • light amount detection is performed for the spherical aberration correction amounts SA11 to SA12. It is assumed that the output level of the container 15 changes from Vdetl 1 to Vdetl2 (Vdetl 1 and Vdetl 2) as shown in FIG.
  • the optimum spherical aberration correction amount for each recording layer of the optical recording medium 40 can be determined by predetermined learning when the optical information device is started, for example.
  • each recording on the optical recording medium 40 is changed while changing the amount of spherical aberration correction by the spherical aberration correcting means 24 according to an instruction from the controller 53.
  • the recorded information recorded on the layer is reproduced, and based on the information such as the jitter obtained from the reproduced signal processing means 22 at that time, the spherical correction difference amount at which the reproduced signal quality is optimal can be determined. This makes it possible to set the spherical aberration correction amount optimal for each recording layer.
  • the spherical aberration correction amount can be detected by the drive current of the actuator, and the spherical aberration correction means 24 is a stepping motor. In the case of, it can be detected by the number of steps from the reference position.
  • FIG. 11 is a diagram illustrating a procedure for performing the interlayer movement including the preliminary correction operation of the present invention. Hereinafter, description will be made with reference to FIG.
  • the controller 53 outputs a control signal to the tracking control means 49 to turn off the tracking control (processing S21).
  • the controller 53 reduces the value of the reference voltage signal input to the laser power control means 21 by a predetermined amount (for example, 20%) to reduce the output power of the output to the objective lens 9 by a predetermined amount. (Step S22).
  • the spherical aberration correction amount is set to a value suitable for the recording layer of the movement destination (process S23).
  • stable focus control can be performed with the spherical aberration correction performed on the recording layer of the movement destination where the focus is newly adjusted. It is possible to prevent the focus control from being lost due to the failure of the movement between the two.
  • step S22 the emission power of the output to the objective lens 9 side is reduced in advance because the first recording layer 83 to the second recording layer 84 or the second recording layer 84 to the first recording layer 84.
  • This is so that the same procedure can be used to move to either of the layers 83. That is, when the processing S22 is not performed, if the spherical aberration correction is performed on the recording layer that is newly focused in the processing S23, for example, the recording layer moves from the first recording layer 83 to the second recording layer 84. In this case, by setting the spherical aberration correction amount to SA11, the signal level detected by the light amount detector 15 decreases.
  • the output power to the objective lens 9 side becomes large, and there is a possibility that the recording information recorded on the first recording layer 83 may be erroneously deteriorated.
  • the light amount correction coefficient corresponding to the spherical aberration correction amount of the second recording layer prior to step S23 when moving from the first recording layer 83 to the second recording layer 84, the light amount correction coefficient corresponding to the spherical aberration correction amount of the second recording layer prior to step S23.
  • the output power of the output to the objective lens 9 side is increased, and the recording information recorded on the second recording layer 84 may be erroneously deteriorated. Therefore, when moving to either layer by lowering the set value of the reference voltage signal c set by the instruction of the controller 53 before moving between layers and lowering the output power of the output to the objective lens 9 side Also, the same procedure can be used
  • the spherical aberration correction amount suitable for the recording layer to be newly focused can be set in the second embodiment. It is a big feature.
  • the controller 53 resets the reference voltage signal c using the light quantity correction coefficient corresponding to the spherical aberration correction quantity of the moved recording layer (processing S25).
  • This resetting operation is the same as in the first embodiment. As a result, it is possible to obtain the output power of the output to the objective lens 9 side suitable for performing the recording and the Z or reproduction on the recording layer after the movement.
  • the tracking control is turned on (process S26), and information recording and Z or reproduction are performed on the moved recording layer.
  • the predetermined amount of the output power that is output to the objective lens 9 side to be reduced in the process S22 does not degrade the recording information recorded on the recording layer before the interlayer movement!
  • the output power of the output to the objective lens 9 side capable of performing the interlayer movement stably should be equal to or less than a value that can be obtained.
  • the optical recording medium 40 has been described as having two recording layers.
  • the optical recording medium 40 may have three or more recording layers. Since it is necessary to correct spherical aberration for each recording layer, the present invention is useful regardless of the number of recording layers. In this case, every time the layer moves to the recording layer farther from the objective lens 9, the emission power for each of the above-described predetermined amounts should be reduced.
  • the interlayer movement from either the first recording layer 83 to the second recording layer 84 or from the second recording layer 84 to the first recording layer 83 is possible.
  • the force described in the case where the output power of the objective lens output is reduced in advance is not limited to this.
  • the value of the reference voltage signal c input to the laser power control means 21, that is, Alternatively, the laser power setting value may be reduced. According to this, it is possible to prevent the recording information recorded on the optical recording medium 40 from being erroneously deteriorated.
  • the controllers 23 and 53 for controlling the optical head 1, the laser power control means 21, the tracking control means 20 and 49, the focus control means 19 and 48, and the storage unit 25 are respectively provided.
  • the components may be integrated on the same integrated circuit such as an LSI or an IC shown as an independent block. It is desirable that at least the controllers 23 and 53 and the laser power control means 21 have a monolithic configuration.
  • a digital disk recorder for music and video for processing information recorded or reproduced from an optical recording medium such as an optical disk, a magneto-optical disk, or an optical card, on which the above-described optical information device is mounted.
  • Information processing devices such as a z-player, a personal computer, and a car navigation device are also included in the present invention.
  • the program according to the present invention and the program according to the present invention are used for causing a computer to execute all or a part of the operations of the above-described method for controlling an optical information device of the present invention. And the program may operate in cooperation with a computer.
  • the present invention is a medium having a program for causing a computer to execute all or some of the operations of all or some of the above-described control methods for an optical information device of the present invention.
  • the program that is readable by a computer and that is read may be a medium that executes the operation in cooperation with the computer.
  • the "partial steps” of the present invention mean some steps among the plurality of steps, or part of the operations within one step. Is what it means.
  • the present invention also includes a computer-readable recording medium on which the program of the present invention is recorded.
  • One use form of the program of the present invention may be a form in which the program is recorded on a computer-readable recording medium and operates in cooperation with the computer.
  • One use form of the program of the present invention may be a form in which the program is transmitted through a transmission medium, read by a computer, and operates in cooperation with the computer.
  • the recording medium also includes a ROM and the like.
  • the computer of the present invention described above is not limited to pure hardware such as a CPU, but may include firmware, an OS, and peripheral devices.
  • the configuration of the present invention may be realized by software or hardware.
  • the present invention can cope with variations in the thickness of the protective layer of the optical recording medium without depending on the optical conditions in the design of the optical head, and can maintain the output power to the output side of the objective lens at a predetermined value. As a result, it is possible to realize an optical information device capable of obtaining a stable control signal and reproduction signal irrespective of the thickness variation of the protective layer of the optical recording medium.
  • the present invention is useful as an optical information device for writing and reading an information signal to and from an optical recording medium such as an optical disk, a magneto-optical disk, and an optical card, and a control method of the optical information device.
  • FIG. 1 is a schematic diagram of an optical information device according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a procedure for determining a reference voltage signal b ′ according to the first embodiment of the present invention.
  • FIG. 3 (a) A diagram showing a relationship between a light quantity correction coefficient and a spherical aberration correction amount according to the first embodiment of the present invention. (B) A relationship between the light quantity correction coefficient and the spherical aberration correction amount according to the first embodiment of the present invention. Diagram showing a table of relationships
  • FIG. 4 is a schematic diagram showing another configuration example of the optical information device according to the first embodiment of the present invention.
  • FIG. 5 Configuration diagram of spherical aberration correction means
  • FIG. 6 is a cross-sectional view of an optical element using a liquid crystal as a phase change layer as a spherical aberration correction unit.
  • FIG. 7 A pattern diagram used for an optical element.
  • FIG. 8 is a schematic diagram of an optical information device according to a second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an optical recording medium 40 according to a second embodiment of the present invention.
  • FIG. 10 is a diagram showing a relationship between a spherical aberration correction amount and a signal level detected by the light amount detector 15.
  • FIG. 11 is a flowchart showing a procedure for moving a recording layer to be focused according to a second embodiment of the present invention.
  • FIG. 12 A schematic diagram of a conventional optical information device
  • FIG. 14 A schematic diagram showing light incident on the objective lens 9 side when correcting spherical aberration.
  • FIG. 15 is a diagram showing a relationship between a spherical aberration correction amount and a signal level detected by the light amount detector 15

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 光記録媒体上で生じる球面収差を光学的に補正すると、その補正量に応じて、光量検出器で検出される信号レベルが変動し、対物レンズ側の出力の照射パワーが変動していた。  光ビームを放射するレーザ2と、レーザ2から出射される光ビームを光記録媒体10上へ収束させる対物レンズ9等と、レーザ2と対物レンズ9とを結ぶ前記光ビームの光軸上に配置され、光記録媒体10上で発生する球面収差を補正する球面収差補正手段24と、レーザ2から出射される光ビームを複数に分離する偏光ビームスプリッタ5と、偏光ビームスプリッタ5で分離された光ビームのいずれかを受け、その受光量に応じた電気信号を出力する光量検出器15と、光量検出器15の電気信号に基づき、前記レーザ光源の出射パワーを制御するレーザパワー制御手段21と、球面収差補正手段24による補正量に応じてレーザ2の出射パワーが変化するような補正を行う、コントローラ23とを備えた。                                                                                 

Description

光情報装置及び光情報装置の制御方法
技術分野
[0001] 本発明は、光ディスク、光磁気ディスクや光カードの如き光学記録媒体に対して情 報信号の書込み読出しを行う光情報装置及びその制御方法等に関するものである。 背景技術
[0002] 高密度'大容量の記憶媒体として、ピット状パターンを有する光記録媒体を用いる 光メモリ技術は、ディジタル 'バーサタイル'ディスク(DVD)、ビデオディスク、文書フ アイルディスク、さらにはデータファイルと用途を拡張しつつ、実用化されてきている。
[0003] 近年、光記録媒体の記録密度を一層高密度化するため、光記録媒体上に光ビー ムを収束させて回折限界の微小スポットを形成する対物レンズの開口数 (NA)を拡 大することが検討されている。しかし、光記録媒体の記録層を保護する保護層の厚み の誤差に起因する球面収差は NAの 4乗に比例する。厚みの誤差は、特に Blu— ray ディスクのような高密度ディスクにおいては、元の保護層の厚みが小さいため(Blu— rayディスクの場合は 0. 1mm)、例えばらつきの絶対値が微少なものであっても、球 面収差として現れ
る影響を無視することができなくなる。したがって、例えば NAを 0. 8や 0. 85等の大 きなものにする場合には、前記光学系に球面収差を補正する手段を設けることが不 可欠になる。
[0004] さらに光記録媒体の記録容量を大きくする方法として光記録媒体の多層化がある。
一般的に複数の記録層を有する光記録媒体にぉ 、ては、各記録層間に中間層が配 置されるため、各記録層に焦点を合わせた時に発生する球面収差量は異なる。この ため、焦点を合わせる記録層毎に球面収差を補正することが不可欠になる。
[0005] そこで、特に光記録媒体の保護層の厚みばらつきや、レンズの製造誤差により発生 する球面収差を補正するための構成として、 2枚のレンズで構成されるエキスパンダ レンズをレーザと対物レンズとの間に挿入し、このエキスパンダレンズをなす 2枚のレ ンズ間隔を可変調整するものが特開 2000— 131603号公報に提案されている。 [0006] ここで図面を参照しながら、上述した従来の光情報装置の一例について説明する。
[0007] 図 12は従来の光情報装置の構成を示す模式図であり、光ヘッド 1、フォーカス制御 手段 19、トラッキング制御手段 20、レーザパワー制御手段 21、再生信号処理手段 1 02、コン卜ローラ 103力らなる。
[0008] また、光ヘッド 1は、レーザ 2、回折格子 3、コリメータレンズ 4、偏光ビームスプリッタ 5、ミラー 7、 1Z4波長板 8、対物レンズ 9、集光レンズ 11、シリンドリカルレンズ 12、光 検出器 13、対物レンズ用開口 16、ァクチユエータ 17からなる。なおレンズ群 6及び駆 動手段 18より球面収差補正手段 24を構成する。
[0009] ここで、レーザ 2は、例えば GaN系の半導体レーザ素子(波長 405nm)で構成され 、光記録媒体 10の記録層に対し、記録再生用のコヒーレント光を出力するレーザで ある。回折格子 3はガラス基板の表面に凹凸のパターンが形成されており、入射する ビームを 3ビームに分割し、いわゆる 3ビーム法によるトラッキング誤差信号の検出を 可能とするための光学素子である。
[0010] コリメータレンズ 4はレーザ 2から出射された発散光を平行光に変換するレンズであ る。偏光ビームスプリッタ 5は入射する光の偏光方向により透過率及び反射率が異な り、光を分離するための光学素子である。球面収差補正手段 24は光記録媒体 10の 保護層の厚みばらつき等により生じる球面収差を補正するためのものであり、凹レン ズ 6aと凸レンズ 6bと駆動手段 18で構成されており、凹レンズ 6aと凸レンズ 6bの間隔 を変えることで上記球面収差を補正することが可能である。ミラー 7は入射する光を反 射して光記録媒体 10の方向に向かわせる光学素子であり、ある直線偏光に対しては 5%透過、 95%反射し、前記直線偏光に対して直交する直線偏光に対しては 100% 反射する特性を有している。
[0011] 1Z4波長板 8は複屈折材料で形成されており、直線偏光を円偏光に変換する光 学素子である。対物レンズ 9は光記録媒体 10の記録層に光を集光するレンズであり 、開口数 (NA)が 0. 85である。集光レンズ 11は光記録媒体 10の記録層で反射され た光を光検出器 13に集光するレンズである。
[0012] シリンドリカルレンズ 12は、入射面が円筒面で、出射面がレンズ光軸に対し回転対 称面になっており、入射光に対していわゆる非点収差法によるフォーカス誤差信号 の検出を可能とするための非点収差を与えるものである。
[0013] 光検出器 13は光記録媒体 10の記録層で反射された光を受光して光を電気信号 に変換するものである。
[0014] 対物レンズ用開口 16は対物レンズ 9に入射する光の大きさを制限するもので、対物 レンズの NAを決めるためのものであり、対物レンズ 9を保持する部材が兼ねている。 ァクチユエータ 17は、光軸方向の位置制御であるフォーカス制御と、それに垂直な 方向の位置制御であるトラッキング制御を行 、、コイルとマグネットなどの駆動手段に より構成される。駆動手段 18は、凹レンズ 6aを光軸方向に駆動するものである。
[0015] このように構成された光情報装置の動作について説明する。レーザ 2から出射され た直線偏光の光は回折格子 3により、 3ビームに分割され、この 3ビームに分割された 光はコリメータレンズ 4により平行光に変換される。平行光にされた光は偏光ビームス プリッタ 5を透過しレンズ群 6に入射される。ここで、光記録媒体 10の保護層厚みのば らつきにより生じる球面収差を補正するために、入射された平行光は球面収差補正 手段 24を構成する凹レンズ 6aと凸レンズ 6bの間隔を駆動手段 18を用いて変えるこ とで発散光や収束光に変換され、この変換された光はミラー 7に入射され、その一部 が透過し、ほとんどが反射され、光記録媒体 10の方向に進行方向を変えられる。こ の反射された光は 1Z4波長板 8に入射され直線偏光が円偏光に変換され、この円 偏光の光は対物レンズ用開口 16により開口制限され、対物レンズ 9に入射され、入 射される光の発散度合!、もしくは収束度合いに応じて球面収差を発生し、光記録媒 体 10上に集光される。ここで、光記録媒体 10の保護層の厚みのばらつきにより記録 層上に生じる球面収差を補正するため、保護層の厚みに起因する球面収差をキャン セルする方向の球面収差を有する光が対物レンズ 9で集光されるので光記録媒体 1 0の記録層上では収差のな 、、すなわち回折限界まで絞られた光スポットが形成され る。
[0016] 次に、光記録媒体 10から反射された円偏光の光は、 1Z4波長板 8に入力されレー ザ 2から出射された直線偏光と直交する方向の直線偏光に変換される。 1Z4波長板 8により変換された直線偏光の光はミラー 7によりすベて反射され、レンズ群 6を透過 し、偏光ビームスプリッタ 5により反射されてレーザ 2には戻らずに集光レンズ 11により 収束され、シリンドリカルレンズ 12により非点収差が与えられて光検出器 13に集光さ れる。光検出器 13は、受光した光ビームを電気信号に変換する。この電気信号はフ オーカス制御手段 19、トラッキング制御手段 20、再生信号処理手段 102に供給され る。
[0017] フォーカス制御手段 19は、光検出器 13から供給される信号からフォーカス誤差信 号を得て、このフォーカス誤差信号に応じてァクチユエータ 17を用いて光軸方向の 位置制御であるフォーカス制御を行う。トラッキング制御手段 20は、光検出器 13から 供給される信号カゝらトラッキング誤差信号を得て、このトラッキング誤差信号に応じて ァクチユエータ 17を用いて光記録媒体 10上の所定の領域に光ビームがオントラック するようにトラッキング制御を行う。なお、フォーカス誤差信号とトラッキング誤差信号 は周知の技術により、たとえば非点収差法と 3ビーム法により検出される。
[0018] 再生信号処理手段 102には光記録媒体 10に記録された記録情報に応じた再生信 号が供給される。再生信号処理手段 102では、この再生信号に対して波形等化など の処理を行!ヽ、ディジタルデータとして再生データを出力する。
[0019] ここで、球面収差補正手段 24を用いて球面収差補正が可能となることについて詳 しく述べる。球面収差補正手段 24を構成する凹レンズ 6aと凸レンズ 6bの間隔を狭く すると平行光が発散光に変換され、間隔を大きくすると収束光に変換される。すなわ ち凹レンズ 6aと凸レンズ群 6bの間隔を変えることで、球面収差補正手段 24から出力 される光の発散角を自在に変更して、平行光を基準として、正負符号の異なる発散 角 Z収束角を有する光を発生することができる。ここで、対物レンズ 9に発散光又は 収束光、すなわち光軸に対して仰角又は俯角を有する非平行光が入射されると、対 物レンズ 9で絞られた光には球面収差が発生し、その大きさ及び向きは入射される発 散光 Z収束光の角度 (仰角 Z俯角)に依存することになるので、この球面収差を用い ることで光記録媒体 10の基材厚ばらつき等により生じる球面収差を補正することが可 能となる。
発明の開示
発明が解決しょうとする課題
[0020] 一方、光情報装置においては、適切な再生又は記録を行うため光記録媒体 10へ 照射するレーザパワーを最適化する等の制御をする必要がある。そこで、レーザから 対物レンズに至るまでの光学系の任意の箇所にて取り出した光の強度を測定し、こ れに基づいてレーザパワーの出力の大きさを制御するフィードバック制御が行われて いる。
[0021] し力しながら、上記図 12に示すような構成の光情報装置において、レーザパワーの フィードバック制御を行おうとすると、以下のような不具合が想定される。
[0022] 図 13は、上記球面収差補正手段 24を備えた光情報装置において、レーザパワー のフィードバック制御を行う構成を示す図である。
[0023] 図 13において、レンズ 14はミラー 7を透過した光を光量検出器 15に集光するもの である。光量検出器 15は受光した光ビームを電気信号に変換するものである。また レンズ用開口 14aはレンズ 14に入射する光を調整する。なお、光学系において、レン ズ用開口 14a、レンズ 14及び光量検出器は、球面収差補正手段 24を通過し、ミラー 7により分岐した一方の光を用いるようにして 、る。
[0024] このような構成において、ミラー 7を透過した光はレンズ用開口 14aを経てレンズ 14 により光量検出器 15に集光され、光量検出器 15は受け取った光ビームを電気信号 に変換する。この電気信号は、レーザ 2の出射パワーをモニタするための信号(出射 パワー検出信号 a)であり、レーザパワー制御手段 21に入力される。一方、コントロー ラ 103は再生又は記録に最適なレーザの出射パワーを設定し、基準電圧信号 bとし て、レーザパワー制御手段 21に入力される。レーザパワー制御手段 21では、出射パ ヮー検出信号 aと基準電圧信号 bが等しくなるように、レーザ 2に供給するレーザ駆動 電流量が制御される。これにより、レーザ 2の出射パワー力 再生、記録いずれの場 合にも所定のパワーに制御される。
[0025] し力しながら、上記の構成においては、以下のような不具合が想定される。以下、図 14を用いて説明する。図 14は、駆動手段 18が凹レンズ 6aを駆動して球面収差を補 正している時に対物レンズ 9に入射される光を模式的に示した図である。図 14にお いて、光記録媒体 10の保護層が厚い場合は、この厚みに伴う球面収差をキャンセル すべぐ球面収差補正手段 24の凹レンズ 6aと凸レンズ 6bの間隔が広くなり、ミラー 7 を反射した光は対物レンズ 9に収束光で入射する。この状態を実線で示して ヽる。 [0026] また、光記録媒体 10の保護層厚が薄い場合は、上記の場合とは逆に凹レンズ群 6 aと凸レンズ群 6bの間隔が狭くなり、ミラー 7を反射した光は対物レンズ 9に発散光で 入射する。この状態を点線で示している。
[0027] 以上の構成において、光記録媒体 10の球面収差を補正するために凹レンズ 6aが 移動する場合、その移動範囲内において、つまり凹レンズ 6aの場所によらず対物レ ンズ 9に入射する光の量は一定になるようにする必要がある。すなわち、図 14中の一 点鎖線に示すような、対物レンズ 9に照射されない漏れ光が生じることを防ぐ必要が ある。そのためには、球面収差補正手段 24における凹レンズ 6a、凸レンズ 6b、 1/4 波長板 8,対物レンズ 9等の光学配置をあらかじめ設計しておく必要がある。
[0028] し力しながら、図 13に示す構成では、光量検出器 15側の構成については上記のよ うな考慮をしていない。この場合、以下のような事態が生ずる。
[0029] すなわち、レンズ用開口 14aが光量検出器 15に用いられる光が図 14に示されてい る位置 Aにあるとすると、光量検出器 15へ入射する光量 (実質的な受光領域の面積 )は、図中実線の光路と点線の光路にて示すように、ケラレ等が生じ、凹レンズ 6aの 位置に応じて変動することになる。すなわち、レーザ 2の出射パワーは変化していな いにも関わらず、球面収差補正手段 24の補正により光量検出器 15側への光線の断 面積が変化するために、光量検出器 15への入射光量が変化してしまう。
[0030] このため、例えば、図 15に示すように、対物レンズ出力の出射パワーを一定として も、光量検出器 15の出力レベル(出射パワー検出信号 a)は球面収差補正量 SA1〜 3八2に応じて¥(161;1〜¥(16 2 (¥(16 2 >¥(161;1)まで変化する。ここで、レーザパヮ 一制御手段 21はこの出射パワー検出信号 aが基準電圧信号 bと等しくなるように制御 を行うため、この状態でレーザパワー制御を行うと、球面収差補正量に応じて対物レ ンズ出力の出射パワーが変動してしまう。
[0031] つまり、球面収差補正量が SA1の場合には、光量検出器 15で検出される信号レべ ルが小さくなるため、レーザ 2の出射パワーが大きくなるように制御される。この時、光 記録媒体 10を再生中に、光記録媒体 10上に必要以上のパワーが照射され、光記 録媒体 10に記録されている記録情報を誤って劣化させてしまう恐れがある。また逆 に、球面収差補正量が SA2の場合には、光量検出器 15で検出される信号レベルが 大きくなるため、レーザ 2の出射パワーが小さくなるように制御される。この時には、光 記録媒体 10を再生中に再生信号品質が劣化し、記録情報を再生できなくなる恐れ がある。
[0032] このような不具合に対しては、光量検出器 15側にも、対物レンズ 9側と同様、一定 の光量確保ができるように光学系の設計をする、若しくは光学検出器 15が、球面収 差補正手段 24による影響を受けな 、光、例えば偏光ビームスプリッタ 5を通過した光 を直接受光できるような位置に設ける、等の対策が考えられる。
[0033] し力しながら、前者の対策は、光ヘッド 1の設計において、対物レンズ 9側、光学検 出器 15側の設計の両方に対してシビアな光学的条件を課すことになり、それ自体が 製造コストに反映されることとなる。さらには両者の光学的条件を満たす最適な寸法 は大型化し、例えば従来の光ヘッドの設計寸法内では得られなくなる場合、新規な 部品設計を行わなければならな 、と 、つた不具合を招くことになる。後者にぉ ヽても 同様の問題が生ずる。
[0034] なお、上述した問題点は、コリメータレンズを光軸方向に動力して球面収差の補正 を行う場合においても、同様に発生する。
[0035] そこで、本発明は、上述の実情に鑑みて提案されるものであって、設計における光 学的条件に依存せず、光記録媒体の保護層の厚みのばらつきに対応できるとともに
、対物レンズ出力の出射パワーが一定に保たれる光情報装置及びこのような光情報 装置を備えたレーザパワー設定方法を提供するものである。
課題を解決するための手段
[0036] 上記の目的を達成するために、第 1の本発明は、光ビームを放射するレーザ光源と 前記レーザ光源から出射される光ビームを光記録媒体上へ収束させる対物レンズ を有する光ビーム収束系と、
前記レーザ光源と前記対物レンズとを結ぶ前記光ビームの光軸上に配置され、前 記光記録媒体上で発生する球面収差を補正する球面収差補正手段と、
前記レーザ光源力 出射される光ビームを複数に分離する光分離手段と、 前記光分離手段で分離された光ビームの!/、ずれかを受け、その受光量に応じた電 気信号を出力する光量検出手段と、
前記光量検出手段の前記電気信号に基づき、前記レーザ光源の出射パワーを制 御するレーザパワー制御手段と、
前記収差補正手段による球面収差の補正量に対する、前記対物レンズから出射す る光ビームの出射パワーと前記光量検出手段の出力する電気信号の大きさとの関係 に基づき、前記球面収差の前記補正量に応じて前記レーザ光源の出射パワーが変 化するような補正を行う、レーザパワー補正手段とを備えた、光情報装置である。
[0037] また、第 2の本発明は、前記レーザパワー補正手段は、前記球面収差の補正量に 応じて前記レーザパワー制御手段が用いる目標制御信号を変化する、第 1の本発明 の光情報装置である。
[0038] また、第 3の本発明は、前記レーザパワー補正手段は、前記球面収差の補正量に 応じて前記光量検出手段で得られた前記電気信号を補正することにより、前記レー ザパワー制御手段の制御による前記レーザ光源の前記出射パワーを変化する、第 1 の本発明の光情報装置である。
[0039] また、第 4の本発明は、前記光分離手段は、前記光量検出手段が前記球面収差補 正手段を通過した後の光を受光するように設けられている、第 1の本発明の光情報 装置である。
[0040] また、第 5の本発明は、前記光分離手段は、前記光量検出手段が前記球面収差補 正手段を通過する前の光を受光するように設けられている、第 1の本発明の光情報 装置である。
[0041] また、第 6の本発明は、前記収差補正手段による球面収差の補正量に対する、前 記対物レンズから出射する光ビームの出射パワーと前記光量検出手段の出力する 電気信号の大きさとの関係を記憶する記憶手段を備えた、第 1の本発明の光情報装 置である。
[0042] また、第 7の本発明は、前記記憶手段は不揮発性メモリである、第 6の本発明の光 情報装置である。
[0043] また、第 8の本発明は、前記レーザパワー補正手段は、前記補正を行う前に、あら 力じめ所定量だけ前記出射パワーを変化する予備補正を行う、第 1から第 3のいずれ かの本発明の光情報装置である。
[0044] また、第 9の本発明は、前記レーザパワー補正手段は、
前記光情報装置が前記光記録媒体として複数の記録層を有する多層光記録媒体 に対して情報の記録又は再生を行う場合、前記予備補正を、前記対物レンズの焦点 位置が記録層を移動する前に行う、第 8の本発明の光情報装置である。
[0045] また、第 10の本発明は、前記レーザパワー補正手段は、前記対物レンズの焦点位 置に対応する前記記録層と前記対物レンズとの距離が大きくなるにつれて、 前記所定量だけ前記出射パワーを減少させるような前記予備補正を行う、第 9の本 発明の光情報装置である。
[0046] また、第 11の本発明は、前記レーザパワー補正手段は、前記記録層の位置に応じ た前記出射パワーの前記予備補正を行った後、前記記録層の焦点移動が完了して から、前記球面収差の前記補正量に応じた前記出射パワーの補正を行う、第 9の本 発明の光情報装置である。
[0047] また、第 12の本発明は、少なくとも前記レーザパワー制御手段及び前記レーザパ ヮー補正手段を集積回路上に一体化して構成した、第 1の本発明の光情報装置で ある。
[0048] また、第 13の本発明は、第 1の本発明の光情報装置を備え、前記光記録媒体から 記録又は再生する情報を処理する、情報処理装置である。
[0049] また、第 14の本発明は、光ビームを放射するレーザ光源と、前記レーザ光源から出 射される光ビームを光記録媒体上へ収束させる対物レンズを有する光ビーム収束系 と、前記レーザ光源と前記対物レンズとを結ぶ前記光ビームの光軸上に配置され、 前記光記録媒体上で発生する球面収差を補正する球面収差補正手段と、前記レー ザ光源から出射される光ビームを複数に分離する光分離手段と、前記光分離手段で 分離された光ビームの 、ずれかを受け、その受光量に応じた電気信号を出力する光 量検出手段と、前記光量検出手段の前記電気信号に基づき、前記レーザ光源の出 射パワーを制御するレーザパワー制御手段とを備えた光情報装置の制御方法であ つて、
前記収差補正手段による球面収差の補正量に対する、前記対物レンズから出射す る光ビームの出射パワーと前記光量検出手段の出力する電気信号の大きさとの関係 に基づき、前記球面収差の前記補正量に応じて前記レーザ光源の出射パワーが変 化するような補正を行う、レーザパワー補正工程を備えた、光情報装置の制御方法 である。
[0050] また、第 15の本発明は、第 14の本発明の光情報装置の制御方法の、前記収差補 正手段による球面収差の補正量に対する、前記対物レンズから出射する光ビームの 出射パワーと前記光量検出手段の出力する電気信号の大きさとの関係に基づき、前 記球面収差の前記補正量に応じて前記レーザ光源の出射パワーが変化するような 補正を行う、レーザパワー補正工程としてコンピュータを機能させるためのプログラム である。
[0051] また、第 16の本発明は、第 15の本発明のプログラムを記録した記録媒体であって 、コンピュータにより処理可能な記録媒体である。
発明の効果
[0052] 本発明では、光ヘッドの設計における光学的条件に依存せず、光記録媒体の保護 層の厚みのばらつきに対応できるとともに、対物レンズ側への出力の出射パワーを所 定値に保つことが可能となるので、光記録媒体の保護層の厚みばらつきに関係なく 安定な制御信号及び再生信号を得ることができる光情報装置を実現することが可能 となる。
[0053] また本発明では、予め対物レンズ出力の出射パワーを下げた後に、新たに焦点を 合わせる記録層に適した球面収差補正量に設定することにより、再生中に光記録媒 体上に必要以上のパワーが照射されて光記録媒体に記録されている記録情報を誤 つて劣化させてしまう恐れなぐかつ記録層間の安定な移動が可能となる光情報装 置を実現することが可能となる。
発明を実施するための最良の形態
[0054] 以下、本発明の具体的な実施の形態について、図面を参照しながら詳細に説明す る。
[0055] (実施の形態 1)
図 1は、実施の形態 1における光情報装置の構成を示す模式図である。図 1におい て、図 13と同じ構成要素については同じ符号を用い、詳細な説明を省略する。
[0056] 図 1において、 14はミラー 7を透過した光を光量検出器 15に集光するレンズ、 15は 受光した光ビームを電気信号に変換する光量検出器で、レンズ 14及び光量検出器 15により光量検出手段を構成する。また、 22は再生信号処理手段、 23はコントロー ラ、 25は記憶部である。
[0057] 光検出器 13で受光された光ビームは電気信号に変換され、フォーカス制御手段 1
9、トラッキング制御手段 20、再生信号処理手段 22に供給される。
[0058] 再生信号処理手段 22には光記録媒体 10に記録された記録情報に応じた再生信 号が供給される。再生信号処理手段 22では、この再生信号に対して波形等化など の処理を行い、ディジタルデータとして再生データを出力するとともに、再生信号品 質に関する情報、例えば再生信号の変調度やジッタ値あるいはエラーレート、をコン トローラ 23に入力する。
[0059] コントローラ 23は、再生又は記録に最適なレーザ 2の出射パワーを設定し、基準電 圧信号 として、レーザパワー制御手段 21に入力するとともに、球面収差補正手段 24の制御を行う。なお、コントローラ 23はレーザパワー設定手段を含む。球面収差 補正手段 24はコントローラ 23の指示により、光記録媒体 10の記録層における球面 収差が最小となるように、球面収差を補正する。記憶部 25は、例えば EPFROM等 の不揮発性メモリにより実現され、球面収差補正手段 24による球面収差の補正量と 光量検出器 15の出力レベルの関係が記憶されており、例えば工場出荷時に記憶さ せる。
[0060] なお、上記の構成において、レーザ 2は本発明のレーザ光源に相当し、回折格子 3 ,コリメータレンズ 4,偏光ビームスプリッタ 5、ミラー 7、 1Z4波長板 8、対物レンズ用 開口 16及び対物レンズ 9は本発明の光ビーム収束系を構成する。また、球面収差補 正手段 24は本発明の球面収差補正手段に相当し、偏光ビームスプリッタ 5は本発明 の光分離手段に相当する。また光量検出器 15は本発明の光量検出手段に相当し、 レーザパワー制御手段 21は本発明のレーザパワー制御手段に相当し、コントローラ 23は本発明のレーザパワー補正手段に相当する。また記憶部 25は本発明の記憶 手段に相当する。これらの対応は以下の実施の形態においても同様である。なお、 本発明の光ビーム収束系は、対物レンズ 9を有し、レーザ 2から出射される光ビーム を光記録媒体 10上へ収束させることができる構成であれば、上記の構成に限定され るものではなぐ任意にレンズその他の光学部品を省略、置換して用いてもよい。
[0061] 以上のように構成された本発明の実施の形態 1による光情報装置について、以下、 図 1から図 3を用いてその動作について説明するとともに、これにより、本発明の光情 報装置の制御方法について説明を行う。
[0062] ここで、コントローラ 23において、球面収差補正手段 24による球面収差補正量に 応じて、本発明の目標制御信号に相当する基準電圧信号 bの値を補正して基準電 圧信号 とする(レーザパワー制御手段 21に設定されるレーザ光の出射パワーの目 標値を補正する)ことが、本実施の形態 1における大きな特徴である。すなわち、図 1 3に示すようなレーザパワーのフィードバック制御と、球面収差補正手段 24による球 面収差補正とを同時に行う構成においては、球面収差補正手段 24により補正される 球面収差の量 (以下、球面収差補正量)に応じて光量検出器 15で検出される信号レ ベルが変動していた。対物レンズ 9側への光の出力パワーは一定となっているので、 したがって球面収差補正量から、光量検出器 15で検出される信号の変化を逆算で きること〖こなる。本実施の形態はこれを利用して、球面収差補正量から光量検出器 1 5の検出信号の変化分を得て、これにより光量検出器 15の検出信号を補正するよう にしたものである。
[0063] 以下、具体的な動作の一例を図 2を参照して説明する。なお、図 2は、コントローラ 2 3における基準電圧信号 の決定手順の一例を示すフローチャートである。
[0064] コントローラ 23は基準電圧信号 b'の設定に先立ち、球面収差補正量を検出する( 処理 Sl)。球面収差補正量は、球面収差補正手段 24がァクチユエータで構成され ている場合には、ァクチユエータの駆動電流により検出可能である。また、球面収差 補正手段 24がステッピングモータで構成されて 、る場合には、基準位置からのステ ップ数により検出可能である。なお、光記録媒体 10の記録層に最適な球面収差補正 量は、例えば、光情報装置の起動時に所定の学習により決定するようにしてもよい。 より具体的には、光情報装置の起動時に、コントローラ 23からの指示により、球面収 差補正手段 24による球面収差補正量を変化させながら光記録媒体 10に記録された 記録情報を再生し、その時に再生信号処理手段 22から得られるジッタ等の情報に基 づいて、再生信号品質が最適となる球面補正収差量を決定することができる。これに より、情報を記録及び Z又は再生を行う記録層に最適な球面収差補正量に決定す ることが可能となる。なお、この場合にも、球面収差補正量としては、ァクチユエータ の駆動電流や基準位置力ものステップ数により検出可能である。
[0065] 次に、コントローラ 23は処理 S1で得た球面収差補正量に対応する、光量補正係数 を記憶部 25から検出する(処理 S2)。
[0066] 発明が解決しょうとする課題で述べたように、発散光や収束光を形成して球面収差 を補正する球面収差補正手段 24を用いた光情報装置では、図 14に示したように、 対物レンズ 9側の出力の光量を一定となるよう設計しても、光検出装置 15側がケラレ 等の影響を考慮した設計となっていない限り、球面収差補正量 SA1〜SA2に応じて 光量検出器 15の出力レベル(出射パワー検出信号 a)は¥(161;1〜¥(16 2 (16 2 > Vdetl)まで変化する。そこで、例えば工場出荷時に、図 3 (a)に示すように球面収差 補正量に応じた光量補正係数 a saを記憶部 25に記憶させる。例えば、球面収差補 正量が SA1の時の光量補正係数( α sal)を 1とし、球面収差補正量が SA2の時の 光量補正係数を α sa2として、 Vdet2ZVdetlの値を記憶する( a sa2 =Vdet2/V detl > l) oなお、記憶部 25に記憶する球面収差補正量 SAnと光量補正係数 a san の組み合わせの数は 2点であってもよいし、図 3 (b)に示すように 3点以上であっても よい。
[0067] 処理 S2においては、処理 S1で得られた球面収差補正量に応じて、例えば、光量 補正係数 a saを計算で求め、得られた球面収差補正量が SAz (SA1 < SAz< SA2 )であった場合、光量補正係数 a sazを以下の式により求める。
(数 1)
a saz= (Vdet2/Vdetl - 1) / (SA2- SA1) X (SAz— SAl) + l (式
1)
なお、光量補正係数の検出は(式 1)に示した計算で求める方法に限るものではな ぐ記憶部 25に図 3 (b)に示したように複数の球面収差補正量に対する光量補正係 数 a saが記憶されている場合には、処理 S 1で得られた球面収差補正量 SAzに最も 近!、球面収差補正量に応じた光量補正係数を用いるようにしてもょ 、。
[0068] 次に、コントローラ 23は処理 S2で検出した光量補正係数 a saを用いて、基準電圧 信号 bに対して以下の式のように補正を行い、補正後の基準電圧信号 をレーザパ ヮー制御手段 21に入力する(処理 S3)。
[0069] b' =b X a sa (式 2)
従来、球面収差補正量が SA2の場合には、球面収差補正量が SA1の場合に比べ て光量検出器 15で検出される信号レベルが大きくなるため、レーザ 2の出射パワー 力 、さくなるように制御されていた。しかし、(式 2)に示すように光量検出器 15の出力 レベルの変動量(球面収差補正量が SA2の場合、 Vdet2ZVdetl)に応じて、コント ローラ 23により設定する基準電圧信号 b'の値を可変とする (球面収差補正量が SA2 の場合、 b' =b X a sa2=b XVdet2ZVdetl)ことにより、光量検出器 15の出カレ ベルの変動分を補正することが可能になる。
[0070] このように、本実施の形態 1によれば、球面収差補正手段 24から射出された光を、 情報記録再生のための対物レンズ 9側及びレーザパワーフィードバック制御のため の光量検出器 15の両方に用いる構成において、光量検出器 15側にケラレ等の光学 的条件を考慮せず設計した場合でも、球面収差補正量に応じて基準電圧信号を補 正することにより、レーザパワーを適切な値で制御することが可能となる。なお、上記 の説明において基準電圧信号 b' は本発明の、レーザパワー制御手段が用いる制 御信号に相当する。
[0071] なお、光量検出器 15が光学的条件を満たす場合であっても、本実施の形態は正 常に動作し、このときの光量補正係数 a saは、 a sa= lとなる。これは以下のことを意 味する。すなわち、本実施の形態 1の光情報装置は、対物レンズ 9側へ入射する光 の光量さえ一定となるように設計していれば、光量検出器 15側の光学的設計の適否 に関わらず、常に正常な制御動作を行うことができる。
[0072] これにより、従来の光ヘッド 1の設計をそのまま用いて、球面収差補正とレーザパヮ 一フィードバックとを両立させることができるので、装置の新設計、大型化等を防ぐこ とがでさる。
[0073] なお、本実施の形態 1においては、球面収差補正量に応じて、本発明の目標制御 信号としてのコントローラ 23側力も出力する基準電圧信号 bの設定値を補正する方 法について説明したが、これに限るものではなぐ出射パワー検出信号 aを補正する ようにしてもよい。このとき、出射パワー検出信号 aの光量補正係数 a saによる補正は 、光量検出器 15からレーザパワー制御手段 21までの経路に、記憶部 25と連係した 補正手段を別途設けて行ってもよい。また、レーザパワー制御手段 21が、記憶部 25 から光量補正係数 a saを取得して補正するようにしてもょ 、。
[0074] また、本実施の形態 1では、球面収差補正量に応じて対物レンズ 9側への出力の出 射パワーが一定であり、記憶部 25において球面収差補正量と光量検出器 15の出力 レベルとの関係を記憶する場合について説明した力 これに限るものではなぐ球面 収差補正量に応じて対物レンズ 9側の出力の出射パワーが変化してもよぐこの場合 には、記憶部 25には、例えば球面収差補正量に対する対物レンズ 9側の出力の出 射パワーと光量検出部 15の出力レベルの比の変動量が記憶される。
[0075] また、本実施の形態 1では、処理 S 1〜S3の一連の動作を連続して行い、球面収差 補正量を検出し、光量補正量 ex saを取得すると直ちに基準電圧信号 bを補正して基 準電圧信号 b' を得るものとして説明を行ったが、コントローラ 23は、基準電圧信号 b の補正に先だって、対物レンズ 9側の出力パワーを変化させる予備補正動作を行うよ うにしてもよい。これは、球面収差補正のタイミングと、基準電圧信号の補正のタイミン グとにずれがある場合、光記録媒体 10上に必要以上の出射パワーの光ビームが照 射され、光記録媒体 10に記録されている記録情報を劣化させてしまうため、それを 防ぐためのものである。
[0076] 具体的には、球面収差補正量を変化させるに先だって、あらかじめ出射パワーが 小さくなるような基準電圧信号 b力 所定量だけ小さくした基準電圧信号をレーザパ ヮー制御手段 21に対して出力する。この制御により出射パワーは減少する。次いで 、処理 S 1〜S3を実行し、基準電圧信号を基準電圧信号 b' をレーザパワー制御手 段 21へ出力し、出射パワーを適正に補正する。
[0077] また、本実施の形態 1では、球面収差補正手段 24が偏光ビームスプリッタ 5と対物 レンズ 9の間に配置される場合について説明した力 これに限るものではなぐミラー 7と対物レンズ 9の間にあってもよい。また、図 4に示すように、コリメータレンズ 4と偏 光ビームスプリッタ 5との間にビームスプリッタ 45を新たに設けて、ここ力も分岐した光 を受光するように、光量検出器 15等を配置する構成としてもょ 、。
[0078] 上記の構成においては、対物レンズ 9側には球面収差補正手段 24を通過して発散 光 Z収束光となった光が入射される一方、光量検出器 15側は球面収差補正手段 24 を介さな 、ため、常に一定光量の光が入射されることになる。
[0079] この場合にも、記憶部 25には、例えば球面収差補正量に対する対物レンズ 9側の 出力の出射パワー(こちらは一定)と光量検出器 15の出力レベルの比の変動量が記 憶され、基準電圧信号 b又は出射パワー検出信号 aを補正することにより、対物レン ズ 9側が一定光量を受光する設計がされていなくとも、球面収差補正量に応じて対物 レンズ 9側の出力の出射パワーを補正して所定値に保つことが可能となる。
[0080] 要するに、球面収差補正量に対する、対物レンズ 9から出射する光の出射パワーと 光量検出器 15の出力する電気信号の大きさとの関係を前もって定量ィ匕しておけば、 対物レンズ 9側及び光量検出器 15のいずれの光学的条件によらずとも本発明は実 施できる。すなわち、対物レンズ 9から出射する光の出射パワー、光量検出器 15の出 力する電気信号の大きさの少なくとも一方が一定である場合は、球面収差補正量に 対する他方の変化に基づいて、補正を行うことができる。また、対物レンズ 9から出射 する光の出射パワー、光量検出器 15の出力する電気信号の大きさの両方が不定で ある場合は、球面収差補正量に対する両方の変化に基づいて、補正を行うことがで きる。
[0081] また、本実施の形態 1では再生信号処理手段 22から得られるジッタ等の情報に基 づいて、最適な球面補正収差量を決定する方法について説明したが、これに限るも のではなぐトラッキング誤差信号の振幅に基づいて決定してもよいし、それ以外の 情報に基づ 、て決定するようにしてもょ 、。
[0082] また、本実施の形態 1では球面収差補正手段 24として凹レンズ 6aと凸レンズ 6bを 用いた方式を用いている力 正レンズ群と負レンズ群であっても良い。図 5に負の曲 率を持つ負レンズ群 51と正の曲率を持つ正レンズ群 52で構成された球面収差補正 手段 24 (1軸ァクチユエータは図示しない)の構成図を示す。各レンズ群がアッベ数 の異なる硝材で構成されて 、るので光ヘッド 1を構成するレンズ、特に対物レンズ 9で 発生する色収差を補正することが可能な球面収差補正手段 24が構成できる。さらに 、レンズを用いた方式では往路及び復路ともに球面収差を補正することが可能である ので安定な再生信号及び制御信号を得ることができる。
[0083] また、球面収差補正手段 24はレンズを用いな 、構成であっても良 、。例えば、特 願 2001— 221927号公報に開示されている位相変化層を用いた方式であっても良 い。この方式に使われる光学素子について簡単に述べる。図 6に位相変化層として 液晶を用いた光学素子の断面図を、図 7に光学素子に用いられて 、るパターン図を それぞれ示す。図 6において、 61は第 1の基板、 62は第 1の基板 61に略平行に配 置された第 2の基板、 63は第 1の基板 61と液晶 67との間に配置された電圧印加電 極、 64は電圧印加電極 63に対向するように電圧印加電極に略平行に配置された対 向電極、 65は電圧印加電極 63を覆うように形成された透光性榭脂膜、 66は対向電 極 64を覆うように形成された透光性榭脂膜と、 67は透光性榭脂膜 65及び 66の間( 電圧印加電極 63と対向電極 64との間)に配置された液晶、 68は液晶 67を囲むよう に透光性榭脂膜 65及び 66の間に配置された封止榭脂である。ここで、第 1の基板 6 1及び第 2の基板 62は、たとえばガラス力もなり、透光性である。また、電圧印加電極 63は液晶 67に所望の電圧を印加するための電極である。電圧印加電極 63は、第 1 の基板 61の内側 (液晶 67側)の主面上に形成されている。また、対向電極 64は、電 圧印加電極 63とともに、液晶 67に所望の電圧を印加するための電極である。
[0084] 対向電極 64は、第 2の基板 62の内側 (液晶 67側)の主面上に形成されている。対 向電極 64は、透光性であり、たとえば ITO力もなる。なお、対向電極 64は、第 2の基 板 62の内側の主面のうち、少なくともセグメント電極に対向する部分に略均一に形成 される。また、透光性榭脂膜 65及び 66は、液晶 67を所定の方向に配向させるため の配向膜であり、たとえばポリビニルアルコール膜からなる。透光性榭脂膜 65又は 6 6をラビング処理することによって、液晶 67を所定の方向に配向させることができる。 また、液晶 67は、入射した光の位相を変化させる位相変化層として機能する。液晶 6 7は、たとえばネマチック液晶カゝらなる。電圧印加電極 63と対向電極 64との間の電圧 差を変化させることによって液晶 67の屈折率を変化させることができ、これによつて 入射した光の位相を変化させることができる。また、封止榭脂 68は、液晶 67を封止 するためのものであり、たとえばエポキシ榭脂からなる。また、電圧印加電極 63は図 7 に示したように、同心円状のセグメント電極で構成されている。このセグメント電極は 透光性であり、たとえば ITO力もなる。このように構成された光学素子の動作につい て説明する。外部から制御電圧が光学素子の電圧印加電極のセグメント電極のそれ ぞれに印加され、本発明の光学素子に入射される光に曲率成分の位相を与えるよう にする。このように入射された平面波を球面波に変換することが可能となり、この球面 波が対物レンズ 9に入射することで球面収差が発生し、この球面収差で光記録媒体 1 0の厚さが設計した保護層の厚みからずれたときに生じる球面収差を補正することと なる。ここで、位相変化層として電圧に応じて屈折率が変化する液晶を用いたが、電 圧に応じて厚さ(体積)が変化する PLZT (酸ィ匕鉛、ランタン、酸ィ匕ジルコニウム、酸ィ匕 チタンを含むぺロブスカイト構造の透明結晶体)を用いてもよい。さらに PLZTは固体 であるので液晶のように基板や封止榭脂は必要ではないため、光学素子を薄くする ことが可能である。実施の形態 1及び 2で述べた方法では、レンズで構成されている ため、往路は当然として復路においても光記録媒体の基材厚に起因する収差を補 正することが可能であるため、安定した制御信号を得ることができる。また、ここで述 ベた方式では位相変化層を用いた光学素子で光記録媒体の基材厚に起因する収 差を補正しているので光ヘッド 1の小型化に向いている。また、レンズ方式及び上記 位相変化層を用いた方式のどちらも収束光及び発散光を用いて球面収差を補正す るので、対物レンズ 9がレンズシフトしても球面収差補正性能が劣化しな 、。
[0085] また、上記の実施の形態では、球面収差補正手段 24が凹レンズ 6aと凸レンズ 6bと 凹レンズと凸レンズの間隔を変えるレンズ位置可変手段となる駆動手段 18で構成さ れているが、凹レンズ 6a及び凸レンズ 6bがなくてもコリメータレンズ 4の位置を可変さ せることだけで球面収差補正手段を構成することができる。この場合、図 4に示す構 成においても、ビームスプリッタ 45を通過する光は非平行光となり、光量検出器 15側 に入射する光量も、対物レンズ 9側に入射する光量同様、コリメータレンズ 4の位置の 変化に応じて変化するため、球面収差補正量に対する両者の変化に基づいて補正 を行う。
[0086] また、上記実施の形態では対物レンズ 9は単レンズを用いて!/、るが高!、NAを有す る糸且レンズであっても何ら問題はな 、。
[0087] また、上記実施の形態では光ヘッド 1として無限系光ヘッドを示した力 コリメ一タレ ンズを用いな 、有限系の光ヘッドであっても良 、。
[0088] また、上記実の形態では光ヘッド 1として偏光光学系の光ヘッドを示したが、無偏光 光学系の光ヘッドであっても良い。
[0089] (実施の形態 2)
図 8は、実施の形態 2における光情報装置の構成を示す模式図である。図 7におい て、図 1又は図 13と同じ構成要素については同じ符号を用い、説明を省略する。また 図 8において、 40は 2層の記録層を有する光記録媒体、 48はフォーカス制御手段、 49はトラッキング制御手段、 53はコントローラである。
[0090] 図 9は 2層の記録層を有する光記録媒体の模式図の一例である。光ヘッド側から順 に表面 87、保護層 82、第 1の記録層 83、中間層 85、第 2の記録層 84、裏面の基材 86という構成になっている。保護層 82と中間層 85は榭脂などの透明な媒質である。 第 1の記録層 83と第 2の記録層 84の間には中間層 85があるため、光ヘッド側の光 記録媒体 40から各記録層までの厚さは、第 2の記録層 84の方が中間層 85の厚み分 だけ第 1の記録層 83のそれよりも厚くなる。
[0091] コントローラ 53は、再生又は記録に最適なレーザ 2の出射パワーを設定し、基準電 圧信号 cとして、レーザパワー制御手段 21に入力するとともに、フォーカス制御手段 4 8、トラッキング制御手段 49及び球面収差補正手段 24の制御を行う。なお、コント口 ーラ 53はレーザパワー設定手段を含む。球面収差補正手段 24はコントローラ 53の 指示により、光記録媒体 40の各記録層における球面収差が最小となるように、球面 収差を補正する。
[0092] 以上のように構成された光情報装置について、以下、図 8から図 11を用いてその動 作について説明する。
[0093] コントローラ 53は実施の形態 1と同様に、球面収差補正量に応じて、レーザパワー 制御手段 21に設定する基準電圧信号 cを補正する。これにより、球面収差補正量、 すなわち、光記録媒体 40の保護層 82の厚みや焦点を合わせる記録層の位置に関 係なく対物レンズ 9側の出力の出射パワーを所定値に保つことが可能となる。 [0094] 実施の形態 2において実施の形態 1と異なるのは、焦点を合わせる、すなわち、記 録及び Z又は再生を行う記録層を移動(以下、層間移動)する際の手順である。
[0095] 第 1の記録層 83における最適球面収差補正量を SA11、第 2の記録層 84における 最適球面収差補正量を SA12とし、ここで、球面収差補正量 SA11〜SA12に対して 、光量検出器 15の出力レベルは、図 10に示すように Vdetl l〜Vdetl2 (Vdetl l く Vdetl2)まで変化するものとする。なお、光記録媒体 40の各記録層に最適な球 面収差補正量は、例えば、光情報装置の起動時に所定の学習により決定することが できる。
[0096] より具体的には、光情報装置の起動時に、予備補正動作として、コントローラ 53か らの指示により球面収差補正手段 24による球面収差補正量を変化させながら光記 録媒体 40の各記録層に記録された記録情報を再生し、その時に再生信号処理手段 22から得られるジッタ等の情報に基づいて、再生信号品質が最適となる球面補正収 差量を決定することができる。これにより、各記録層に最適な球面収差補正量に設定 することが可能となる。
[0097] なお、球面収差補正量としては、例えば、球面収差補正手段 24がァクチユエータ で構成されている場合には、ァクチユエータの駆動電流により検出可能であるし、球 面収差補正手段 24がステッピングモータで構成されている場合には、基準位置から のステップ数により検出可能である。
[0098] 図 11は、本発明の予備補正の動作を含む、層間移動を行う際の手順を説明する 図である。以下、図 11を参照して説明する。
[0099] まず、コントローラ 53はトラッキング制御手段 49に対して制御信号を出力し、トラッ キング制御をオフにさせる(処理 S21)。
[0100] 次に、コントローラ 53は、レーザパワー制御手段 21に入力する基準電圧信号じの 値を所定量 (例えば 20%)下げることにより、対物レンズ 9側への出力の出射パワー を所定量だけ下げる(処理 S22)。
[0101] 続いて、コントローラ 53の指示により、球面収差補正量を移動先の記録層に適した 値に設定する(処理 S23)。これにより、新たに焦点を合わせる移動先の記録層に対 して、球面収差補正が行われた状態で安定した焦点制御を行うことができ、記録層 間の移動の失敗によってフォーカス制御がはずれることを防止することができる。
[0102] なお、処理 S22において予め対物レンズ 9側への出力の出射パワーを下げるのは 、第 1の記録層 83から第 2の記録層 84、又は第 2の記録層 84から第 1の記録層 83の どちらに層間移動する場合にも、同じ手順で移動できるようにするためである。つまり 、処理 S22を行わない場合には、処理 S23により新たに焦点を合わせる記録層に対 して球面収差補正を行うと、例えば、第 1の記録層 83から第 2の記録層 84に移動す る場合には、球面収差補正量を SA11とすることにより、光量検出器 15で検出される 信号レベルが小さくなる。このため、対物レンズ 9側への出射パワーが大きくなり、第 1 の記録層 83に記録されている記録情報を誤って劣化させる恐れがある。一方ここで 、処理 S23に先立って、第 2の記録層 84の球面収差補正量に応じた光量補正係数 を設定することも考えられる。しカゝしながら、逆に第 1の記録層 83から第 2の記録層 8 4に移動する場合には、処理 S23に先立って第 2の記録層の球面収差補正量に応じ た光量補正係数を設定すると、対物レンズ 9側への出力の出射パワーが上げることに なり、第 2の記録層 84に記録されている記録情報を誤って劣化させる恐れがある。そ こで、層間移動を行う前にコントローラ 53の指示により設定する基準電圧信号 cの設 定値を下げて、対物レンズ 9側への出力の出射パワーを下げることにより、どちらの層 に移動する場合にも、同じ手順で行うことが可能となり、制御を単純にできる。
[0103] ここで、予め対物レンズ 9側への出力の出射パワーを下げた後に、新たに焦点を合 わせる記録層に適した球面収差補正量に設定することが、本実施の形態 2における 大きな特徴である。
[0104] その後、実際に、フォーカス制御手段 48により目標の記録層に移動する(処理 S24
) o
[0105] 次に、コントローラ 53は移動後の記録層の球面収差補正量に応じた光量補正係数 を用いて、基準電圧信号 cを再設定する (処理 S25)。この再設定の動作は、実施の 形態 1と同様である。これにより、移動後の記録層に対して記録及び Z又は再生を行 うのに適した対物レンズ 9側への出力の出射パワーを得ることができる。
[0106] そして次に、トラッキング制御をオン (処理 S26)するとともに、移動後の記録層に対 して情報の記録及び Z又は再生を行う。 [0107] なお、処理 S22において下げる対物レンズ 9側へ出力の出射パワーの所定量とし ては、層間移動前の記録層に記録された記録情報を劣化させる恐れがな!、程度以 上で、かつ層間移動を安定して行える対物レンズ 9側へ出力の出射パワーが得られ る値以下である必要があるので、 10%〜50%に設定することが望ましい。
[0108] これにより、単純な手順で、かつ再生中に光記録媒体 40上に必要以上のパワーが 照射されて光記録媒体 40に記録されている記録情報を誤って劣化させてしまう恐れ なぐかつ記録層間の安定な移動が可能となる。
[0109] なお、本実施の形態 2においては、光記録媒体 40が 2層の記録層を有するとして 説明したが、これに限るものではなぐ 3層以上の記録層を有している場合にも、各記 録層毎に球面収差を補正することが必要となるため、本発明は記録層の数を問わず 有用である。この場合は、対物レンズ 9から遠い方の記録層へ層間移動する毎に、上 記所定量毎出射パワーを減少させるようにすればょ 、。
[0110] また、本実施の形態 2においては、第 1の記録層 83から第 2の記録層 84、又は第 2 の記録層 84から第 1の記録層 83のどちらに層間移動する場合にも、処理 S22にお いて予め対物レンズ出力の出射パワーを下げる場合について説明した力 これに限 るものではなぐ処理 S23により新たに焦点を合わせる記録層に対して球面収差補 正を行う際に、対物レンズ出力の出射パワーが大きくなる場合 (例えば、第 1の記録 層 83から第 2の記録層 84に移動する場合)にのみ、レーザパワー制御手段 21に入 力する基準電圧信号 cの値、つまり、レーザパワー設定値を下げるようにしてもよい。 これによつても、光記録媒体 40に記録されている記録情報を誤って劣化させてしまう ことを防ぐことができる。
[0111] なお、上記の各実施の形態において、光ヘッド 1を制御するコントローラ 23及び 53 , レーザパワー制御手段 21,トラッキング制御手段 20及び 49、フォーカス制御手段 19及び 48、並びに記憶部 25は各自独立したブロックとして示した力 LSI, IC等の 同一の集積回路上に一体ィ匕して構成してもよい。少なくともコントローラ 23及び 53と 、レーザパワー制御手段 21はモノリシックな構成とすることが望ましい。
[0112] また、上述の光情報装置を搭載し、光ディスク、光磁気ディスク、光カード等の光記 録媒体から記録又は再生した情報を処理する、音楽用、映像用デジタルディスクレコ ーダー zプレイヤー、パーソナルコンピュータ、カーナビゲーシヨン装置等の情報処 理装置も本発明に含まれる。
[0113] なお、本発明に力かるプログラムは、また、本発明に力かるプログラムは、上述した 本発明の光情報装置の制御方法の全部または一部の工程の動作をコンピュータに より実行させるためのプログラムであって、コンピュータと協働して動作するプログラム であってもよい。
[0114] また、本発明は、上述した本発明の光情報装置の制御方法の全部または一部のス テツプの全部または一部の動作をコンピュータにより実行させるためのプログラムを担 持した媒体であり、コンピュータにより読み取り可能且つ、読み取られた前記プロダラ ムが前記コンピュータと協動して前記動作を実行する媒体であってもよい。
[0115] なお、本発明の上記「一部の工程」とは、それらの複数の工程の内の、幾つかのェ 程を意味し、あるいは、一つの工程の内の、一部の動作を意味するものである。
[0116] また、本発明のプログラムを記録した、コンピュータに読みとり可能な記録媒体も本 発明に含まれる。
[0117] また、本発明のプログラムの一利用形態は、コンピュータにより読み取り可能な記録 媒体に記録され、コンピュータと協働して動作する態様であっても良い。
[0118] また、本発明のプログラムの一利用形態は、伝送媒体中を伝送し、コンピュータによ り読みとられ、コンピュータと協働して動作する態様であっても良い。
[0119] また、記録媒体としては、 ROM等も含まれる。
[0120] また、上述した本発明のコンピュータは、 CPU等の純然たるハードウェアに限らず、 ファームウェアや、 OS、更に周辺機器を含むものであっても良い。
[0121] なお、以上説明した様に、本発明の構成は、ソフトウェア的に実現しても良いし、ハ 一ドウエア的に実現しても良 、。
産業上の利用可能性
[0122] 本発明は、光ヘッドの設計における光学的条件に依存せず、光記録媒体の保護層 の厚みのばらつきに対応できるとともに、対物レンズ出力側への出射パワーを所定値 に保つことが可能となるので、光記録媒体の保護層の厚みばらつきに関係なく安定 な制御信号及び再生信号を得ることができる光情報装置を実現することが可能であ り、光ディスク、光磁気ディスクや光カードの如き光学記録媒体に対して情報信号の 書込み読出しを行う光情報装置及び光情報装置の制御方法として有用である。 図面の簡単な説明
[0123] [図 1]本発明の実施の形態 1にかかる光情報装置の模式図
[図 2]本発明の実施の形態 1にかかる基準電圧信号 b'の決定手順を示すフローチヤ ート
[図 3] (a)本発明の実施の形態 1にかかる光量補正係数と球面収差補正量の関係を 示す図 (b)本発明の実施の形態 1にかかる光量補正係数と球面収差補正量の関係 の表を示す図
[図 4]本発明の実施の形態 1にかかる光情報装置の他の構成例を示す模式図
[図 5]球面収差補正手段の構成図
[図 6]球面収差補正手段としての位相変化層として液晶を用いた光学素子の断面図
[図 7]光学素子に用いられて 、るパターン図
[図 8]本発明の実施の形態 2にかかる光情報装置の模式図
[図 9]本発明の実施の形態 2にかかる光記録媒体 40の模式図
[図 10]球面収差補正量と光量検出器 15で検出される信号レベルの関係を示す図
[図 11]本発明の実施の形態 2にかかる焦点を合わせる記録層を移動する際の手順を 示すフローチャート
[図 12]従来の光情報装置の模式図
[図 13]発明が解決しょうとする課題を説明するための図
[図 14]球面収差補正時に対物レンズ 9側に入射される光を示す模式図
[図 15]球面収差補正量と光量検出器 15で検出される信号レベルの関係を示す図 符号の説明
[0124] 1 光ヘッド
2 レーザ
3 回折格子
4 コリメータレンズ
5 偏光ビームスプリッタ レンズ群
a 凹レンズ
b 凸レンズ
ミラー
1 4波長板
対物レンズ
0, 40 光記録媒体1 集光レンズ
2 シリンドリカ/レレンズ3 光検出器
4 レンズ
4a レンズ用開口
5 光量検出器
6 対物レンズ用開口7 ァクチユエータ
8 駆動手段
9 フォーカス制御手段 トラッキング制御手段1 レーザパワー制御手段2, 102 再生信号処理手. , 53, 103 コン卜ローラ 球面収差補正手段
I-& B¾
ビームスフ。リツタ
1 第 1の基板
第 2の基板
電圧印加電極 対向電極 6 透光性榭脂膜 液晶
封止榭脂 保護層
第 1の記録層 第 2の記録層 中間層
基材層
表面

Claims

請求の範囲
[1] 光ビームを放射するレーザ光源と、
前記レーザ光源から出射される光ビームを光記録媒体上へ収束させる対物レンズ を有する光ビーム収束系と、
前記レーザ光源と前記対物レンズとを結ぶ前記光ビームの光軸上に配置され、前 記光記録媒体上で発生する球面収差を補正する球面収差補正手段と、
前記レーザ光源力 出射される光ビームを複数に分離する光分離手段と、 前記光分離手段で分離された光ビームの!/、ずれかを受け、その受光量に応じた電 気信号を出力する光量検出手段と、
前記光量検出手段の前記電気信号に基づき、前記レーザ光源の出射パワーを制 御するレーザパワー制御手段と、
前記収差補正手段による球面収差の補正量に対する、前記対物レンズから出射す る光ビームの出射パワーと前記光量検出手段の出力する電気信号の大きさとの関係 に基づき、前記球面収差の前記補正量に応じて前記レーザ光源の出射パワーが変 化するような補正を行う、レーザパワー補正手段とを備えた、光情報装置。
[2] 前記レーザパワー補正手段は、前記球面収差の補正量に応じて前記レーザパヮ 一制御手段が用いる目標制御信号を変化する、請求の範囲第 1項に記載の光情報 装置。
[3] 前記レーザパワー補正手段は、前記球面収差の補正量に応じて前記光量検出手 段で得られた前記電気信号を補正することにより、前記レーザパワー制御手段の制 御による前記レーザ光源の前記出射パワーを変化する、請求の範囲第 1項に記載の 光情報装置。
[4] 前記光分離手段は、前記光量検出手段が前記球面収差補正手段を通過した後の 光を受光するように設けられている、請求の範囲第 1項に記載の光情報装置。
[5] 前記光分離手段は、前記光量検出手段が前記球面収差補正手段を通過する前の 光を受光するように設けられている、請求の範囲第 1項に記載の光情報装置。
[6] 前記収差補正手段による球面収差の補正量に対する、前記対物レンズから出射す る光ビームの出射パワーと前記光量検出手段の出力する電気信号の大きさとの関係 を記憶する記憶手段を備えた、請求の範囲第 1項に記載の光情報装置。
[7] 前記記憶手段は不揮発性メモリである、請求の範囲第 6項に記載の光情報装置。
[8] 前記レーザパワー補正手段は、前記補正を行う前に、あらかじめ所定量だけ前記 出射パワーを変化する予備補正を行う、請求の範囲第 1から 3のいずれか 1項に記載 の光情報装置。
[9] 前記レーザパワー補正手段は、
前記光情報装置が前記光記録媒体として複数の記録層を有する多層光記録媒体 に対して情報の記録又は再生を行う場合、前記予備補正を、前記対物レンズの焦点 位置が記録層を移動する前に行う、請求の範囲第 8項に記載の光情報装置。
[10] 前記レーザパワー補正手段は、前記対物レンズの焦点位置に対応する前記記録 層と前記対物レンズとの距離が大きくなるにつれて、
前記所定量だけ前記出射パワーを減少させるような前記予備補正を行う、請求の範 囲第 9項に記載の光情報装置。
[11] 前記レーザパワー補正手段は、前記記録層の位置に応じた前記出射パワーの前 記予備補正を行った後、前記記録層の焦点移動が完了してから、前記球面収差の 前記補正量に応じた前記出射パワーの補正を行う、請求の範囲第 9項に記載の光 情報装置。
[12] 少なくとも前記レーザパワー制御手段及び前記レーザパワー補正手段を集積回路 上に一体化して構成した、請求の範囲第 1項に記載の光情報装置。
[13] 請求の範囲第 1項に記載の光情報装置を備え、前記光記録媒体から記録又は再 生する情報を処理する、情報処理装置。
[14] 光ビームを放射するレーザ光源と、前記レーザ光源から出射される光ビームを光記 録媒体上へ収束させる対物レンズを有する光ビーム収束系と、前記レーザ光源と前 記対物レンズとを結ぶ前記光ビームの光軸上に配置され、前記光記録媒体上で発 生する球面収差を補正する球面収差補正手段と、前記レーザ光源から出射される光 ビームを複数に分離する光分離手段と、前記光分離手段で分離された光ビームの 、 ずれかを受け、その受光量に応じた電気信号を出力する光量検出手段と、前記光量 検出手段の前記電気信号に基づき、前記レーザ光源の出射パワーを制御するレー ザパワー制御手段とを備えた光情報装置の制御方法であって、
前記収差補正手段による球面収差の補正量に対する、前記対物レンズから出射す る光ビームの出射パワーと前記光量検出手段の出力する電気信号の大きさとの関係 に基づき、前記球面収差の前記補正量に応じて前記レーザ光源の出射パワーが変 化するような補正を行う、レーザパワー補正工程を備えた、光情報装置の制御方法。
[15] 請求の範囲第 14項に記載の光情報装置の制御方法の、前記収差補正手段による 球面収差の補正量に対する、前記対物レンズから出射する光ビームの出射パワーと 前記光量検出手段の出力する電気信号の大きさとの関係に基づき、前記球面収差 の前記補正量に応じて前記レーザ光源の出射パワーが変化するような補正を行う、 レーザパワー補正工程としてコンピュータを機能させるためのプログラム。
[16] 請求の範囲第 15項に記載のプログラムを記録した記録媒体であって、コンピュータ により処理可能な記録媒体。
PCT/JP2005/011296 2004-06-21 2005-06-20 光情報装置及び光情報装置の制御方法 WO2005124749A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05751387A EP1770693B1 (en) 2004-06-21 2005-06-20 Optical information device and optical information device control method
US11/568,014 US7652970B2 (en) 2004-06-21 2005-06-20 Light information apparatus and control method of light information apparatus
KR1020067007853A KR101109944B1 (ko) 2004-06-21 2005-06-20 광 정보장치 및 광 정보장치의 제어방법
DE602005022721T DE602005022721D1 (de) 2004-06-21 2005-06-20 Optische informationseinrichtung und steuerverfahren für eine optische informationseinrichtung
JP2006514825A JP4538453B2 (ja) 2004-06-21 2005-06-20 光情報装置及び光情報装置の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004182637 2004-06-21
JP2004-182637 2004-06-21

Publications (1)

Publication Number Publication Date
WO2005124749A1 true WO2005124749A1 (ja) 2005-12-29

Family

ID=35509950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011296 WO2005124749A1 (ja) 2004-06-21 2005-06-20 光情報装置及び光情報装置の制御方法

Country Status (7)

Country Link
US (1) US7652970B2 (ja)
EP (1) EP1770693B1 (ja)
JP (1) JP4538453B2 (ja)
KR (1) KR101109944B1 (ja)
CN (1) CN100433151C (ja)
DE (1) DE602005022721D1 (ja)
WO (1) WO2005124749A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041307A1 (fr) * 2006-09-29 2008-04-10 Pioneer Corporation Dispositif de capture optique et appareil d'informations
JP2009238344A (ja) * 2008-03-28 2009-10-15 Sanyo Electric Co Ltd 光ピックアップ装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112249A1 (ja) * 2005-04-15 2006-10-26 Pioneer Corporation 光ピックアップ装置及び情報記録再生装置
US7675832B2 (en) * 2006-03-01 2010-03-09 Hitachi Media Electronics Co., Ltd. Optical element feeding device driving method and optical disk apparatus
KR100882748B1 (ko) 2007-09-10 2009-02-09 도시바삼성스토리지테크놀러지코리아 주식회사 포커스 제어 방법 및 이를 이용한 광 디스크 드라이브
KR100926935B1 (ko) * 2007-10-10 2009-11-17 도시바삼성스토리지테크놀러지코리아 주식회사 광픽업 시스템 및 광출력 보정 방법
JP2012113788A (ja) * 2010-11-26 2012-06-14 Sanyo Electric Co Ltd 光ピックアップ装置
CN103115266B (zh) * 2013-02-01 2014-03-12 深圳市保千里电子有限公司 一种激光照明装置
JP7116567B2 (ja) * 2018-03-27 2022-08-10 株式会社トプコン 照射位置検出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077142A (ja) * 2001-06-22 2003-03-14 Pioneer Electronic Corp 光ピックアップのフォーカシング制御装置及び方法
JP2003099976A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 光ヘッド装置およびその光ヘッド装置が利用される情報記録再生装置
JP2003109239A (ja) * 2001-09-27 2003-04-11 Toshiba Corp 光ディスク装置及び光ディスク処理方法
JP2003132573A (ja) * 2001-10-19 2003-05-09 Sharp Corp 光ピックアップ装置および光記録媒体駆動装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131603A (ja) 1998-10-22 2000-05-12 Sony Corp 光学ヘッド及び記録再生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077142A (ja) * 2001-06-22 2003-03-14 Pioneer Electronic Corp 光ピックアップのフォーカシング制御装置及び方法
JP2003099976A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 光ヘッド装置およびその光ヘッド装置が利用される情報記録再生装置
JP2003109239A (ja) * 2001-09-27 2003-04-11 Toshiba Corp 光ディスク装置及び光ディスク処理方法
JP2003132573A (ja) * 2001-10-19 2003-05-09 Sharp Corp 光ピックアップ装置および光記録媒体駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1770693A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041307A1 (fr) * 2006-09-29 2008-04-10 Pioneer Corporation Dispositif de capture optique et appareil d'informations
US7894322B2 (en) 2006-09-29 2011-02-22 Pioneer Corporation Optical pickup and information equipment
JP4771340B2 (ja) * 2006-09-29 2011-09-14 パイオニア株式会社 光ピックアップ装置及び情報機器
JP2009238344A (ja) * 2008-03-28 2009-10-15 Sanyo Electric Co Ltd 光ピックアップ装置

Also Published As

Publication number Publication date
JPWO2005124749A1 (ja) 2008-04-17
DE602005022721D1 (de) 2010-09-16
KR20070022635A (ko) 2007-02-27
US7652970B2 (en) 2010-01-26
CN100433151C (zh) 2008-11-12
JP4538453B2 (ja) 2010-09-08
KR101109944B1 (ko) 2012-02-24
EP1770693A4 (en) 2008-07-23
EP1770693A1 (en) 2007-04-04
US20070253068A1 (en) 2007-11-01
CN1947188A (zh) 2007-04-11
EP1770693B1 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4538453B2 (ja) 光情報装置及び光情報装置の制御方法
US7164638B2 (en) Optical head and optical recording/reproducing device using it and aberration correction method
JP5042352B2 (ja) 光記録再生装置用光ヘッド
US20070159936A1 (en) Optical head unit and optical disc apparatus
JP4733868B2 (ja) 光ヘッドと光記録再生装置
US7596061B2 (en) Optical disk apparatus
JP5417331B2 (ja) 光ディスク装置、光学ヘッド及び情報処理装置
US20080212418A1 (en) Optical disc device
US8194521B2 (en) Optical disc device, video reproducing apparatus, server, car navigation system using the optical disc device, integrated circuit and recording/reproducing method
US7254107B2 (en) Optical head and optical recording and reproducing apparatus
JP4792910B2 (ja) 液晶デバイスおよび光ピックアップ
JP4136400B2 (ja) 情報記録再生装置
JP2003132573A (ja) 光ピックアップ装置および光記録媒体駆動装置
JP2008059681A (ja) 光ピックアップ装置
US20080291803A1 (en) Optical pickup device
JP2010211842A (ja) 光ピックアップ、光学的情報再生装置および光学的情報記録再生装置
JP2004327012A (ja) 光ヘッド及びそれを備えた光記録再生装置
JP2004296082A (ja) 光記録媒体
JP2007184028A (ja) 光ヘッドおよび光ディスク装置
JP2006040380A (ja) 光記録装置
JP2002352470A (ja) 光記録媒体
JP2008112576A (ja) 光記録再生装置、光ヘッド、光記録再生方法及び処理回路
JP2001134978A (ja) 光ピックアップ装置
JP2007048354A (ja) 光ピックアップ装置および光ディスク装置
JP2001076373A (ja) 光情報記録再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067007853

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006514825

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11568014

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580013303.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005751387

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067007853

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005751387

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11568014

Country of ref document: US