WO2005123631A1 - ガス発生装置用の着火剤 - Google Patents

ガス発生装置用の着火剤 Download PDF

Info

Publication number
WO2005123631A1
WO2005123631A1 PCT/JP2005/011125 JP2005011125W WO2005123631A1 WO 2005123631 A1 WO2005123631 A1 WO 2005123631A1 JP 2005011125 W JP2005011125 W JP 2005011125W WO 2005123631 A1 WO2005123631 A1 WO 2005123631A1
Authority
WO
WIPO (PCT)
Prior art keywords
agent
gas generating
igniting
azide
generating agent
Prior art date
Application number
PCT/JP2005/011125
Other languages
English (en)
French (fr)
Other versions
WO2005123631A8 (ja
Inventor
Kazuya Serizawa
Tomonori Tasaki
Katsuhiko Takahashi
Original Assignee
Nof Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004180000A external-priority patent/JP4682542B2/ja
Priority claimed from JP2004180001A external-priority patent/JP4682543B2/ja
Application filed by Nof Corporation filed Critical Nof Corporation
Priority to US10/571,155 priority Critical patent/US20080217893A1/en
Priority to CA002538343A priority patent/CA2538343C/en
Priority to EP05751583A priority patent/EP1785409A4/en
Publication of WO2005123631A1 publication Critical patent/WO2005123631A1/ja
Publication of WO2005123631A8 publication Critical patent/WO2005123631A8/ja
Priority to US12/626,140 priority patent/US7993475B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C9/00Chemical contact igniters; Chemical lighters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/34Belt retractors, e.g. reels
    • B60R22/46Reels with means to tension the belt in an emergency by forced winding up
    • B60R22/4628Reels with means to tension the belt in an emergency by forced winding up characterised by fluid actuators, e.g. pyrotechnic gas generators
    • B60R22/4633Linear actuators, e.g. comprising a piston moving along reel axis and rotating along its own axis

Definitions

  • the present invention relates to an igniting agent used for a vehicle occupant protection device, and more particularly to an igniting agent for accelerating ignition of a non-azide gas generating agent.
  • an occupant protection device is mounted on a vehicle to protect the occupant from a shock at the time of a collision.
  • the occupant protection device are an airbag device and a seatbelt pretensioner.
  • the airbag device When a vehicle collides at a high speed, the airbag device rapidly inflates the bag with the combustion gas of a gas generating agent, and the occupant strongly hits a hard part inside the vehicle such as a steering wheel or a front windshield. Prevent that.
  • the seatbelt pretensioner instantly pulls in the seatbelt with the combustion gas of the gas generating agent as a driving source when a vehicle collides at a high speed, and prevents the occupant from being thrown forward.
  • the performance required of a gas generating agent for an occupant protection device is a gasification rate of 70% or more and a burning rate of 8.0 mmZ seconds or more (under a nitrogen gas atmosphere pressurized to 7 MPa).
  • the high gasification rate contributes to a reduction in the amount of gas generating agent to be charged into the gas generator and a reduction in the size and weight of the occupant protection device.
  • a more preferred gasification rate is 75% or more.
  • a non-azide-based gas generating agent containing no sodium azide As a gas generating agent used in an airbag device or a seatbelt pretensioner, a non-azide-based gas generating agent containing no sodium azide has been developed.
  • the main component of the conventional non-azide gas generant is -trocellulose. Nitrocellulose is preferred in terms of improving the gasification rate. However, nitrocellulose has two disadvantages: a large amount of carbon monoxide is generated when it is burned. It is disadvantageous and it easily degrades at high temperatures!
  • a conventional non-azide gas generating agent for an occupant protection device contains an oxidizing agent. Its oxidant examples are chlorates, perchlorates, nitrates and nitrites of ammonium, alkali and alkaline earth metals, which can achieve high gasification rates.
  • Patent Document 1 discloses a non-azide gas generating agent containing ammonium perchlorate as an oxidizing agent and starch as a fuel.
  • Patent Document 2 discloses a non-azide gas generating agent containing ammonium nitrate as an oxidizing agent and polyacrylamide as a fuel.
  • Patent Document 3 discloses a non-azide gas generating agent containing ammonium nitrate as an oxidizing agent and 5-aminotetrazole as a fuel. These non-azide gas generating agents meet the requirements for high gasification rate, high heat resistance, and combustion gas.
  • Patent Document 1 JP 2001-2488 A
  • Patent Document 2 JP 2000-103691A
  • Patent Document 3 JP-A-10-130086
  • An object of the present invention is to provide an igniting agent used in a gas generator together with a non-azide gas generating agent having a high gasification rate, which ignites the non-azide gas generating agent quickly. Is to do.
  • One embodiment of the present invention provides an igniting agent for use in a gas generating device of a vehicle occupant protection device together with a non-azide gas generating agent to ignite the non-azide gas generating agent.
  • the non-azide-based gas generating agent burns at a first burning rate, and the igniting agent contains fuel and an oxidizing agent, and is higher than the first burning rate of the non-azide-based gas generating agent. It is also configured to burn at a speed V, the second combustion speed.
  • Another embodiment of the present invention provides a method for using an igniting agent for igniting a non-azide gas generating agent.
  • the non-azide gas generating agent burns at a first burning rate, and
  • the explosive contains a fuel and an oxidant, and burns at a second combustion speed higher than the first combustion speed.
  • the method includes the steps of: A step of loading an azide-based gas generating agent and the igniting agent.
  • a further aspect of the present invention provides a gas generator of a vehicle occupant protection device.
  • the gas generator includes a combustion chamber, an igniter for supplying thermal energy to the combustion chamber, a non-azide gas generator contained in the combustion chamber, and a non-azide gas generator contained in the combustion chamber.
  • the non-azide-based gas generating agent burns at a first burning rate, and the igniting agent contains fuel and an oxidizing agent, and is higher than the first burning rate of the non-azide-based gas generating agent. It also burns at a faster second combustion rate.
  • FIG. 1] (a) to (g) are perspective views of an ignition agent according to a first embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of a gas generator.
  • FIG. 3 (a) is a partially cutaway front view of the seatbelt pretensioner, and (b) is a partially cutaway side view of the seatbelt pretensioner.
  • FIG. 5 is a cross-sectional view of a gas generator.
  • FIG. 6 is a combustion profile of Comparative Example 2.
  • FIG. 7 is a combustion profile of Example 15.
  • the ignition agent according to the first embodiment of the present invention will be described.
  • the first embodiment solves the problem relating to low ignitability and flammability of a non-azide gas generating agent by adjusting the size of the igniting agent.
  • FIGS. 3 (a) and 3 (b) show a seatbelt pretensioner 110 arranged beside a seat in an automobile cabin.
  • the seatbelt pretensioner 10 includes a gas generator 12 mounted on an upper surface of a main body 11.
  • the gas generator 12 is connected to an L-shaped cylinder 13.
  • the piston 17 is housed in a cylinder 13 and rises along the cylinder 13 when the gas generator 12 generates gas.
  • the piston 17 is fixed to the middle of the piston rod 16 Yes.
  • the rise of the piston 17 is regulated by a stopper 18 fixed in the cylinder 13.
  • the cap 19 covers the upper end of the cylinder 13.
  • the rotating drum 14 is rotatably supported by the main body 11.
  • One end of the seat belt 15 is wound around the rotating drum 14.
  • the lower end of the piston rod 16 is connected to the rotating drum 14.
  • the gas generator 12 will be described with reference to FIG.
  • the gas generator 12 includes a main body 20, a cylindrical container 21 attached to the main body 20 to define a combustion chamber 24, an electric igniter 22 supported by the main body 20 and supplying ignition energy to the combustion chamber 24, And a lead wire 23 electrically connected to the electric igniter 22.
  • a non-azide gas generating agent 25 and an igniting agent 26 smaller than the gas generating agent 25 are charged in the combustion chamber 24.
  • a plurality of radially extending grooves 27 are formed on one surface of the container 21.
  • a cylindrical gas generant 25 and igniter 26 are shown in FIG.
  • the electric igniter 22 When the electric igniter 22 is energized and operated, the electric igniter 22 generates heat energy. With this heat energy, the igniting agent 26 and the gas generating agent 25 ignite in the combustion chamber 24 and burn to generate gas. Due to the pressure of this gas, the container 21 is broken at the relatively weak groove 27 to form a gas discharge hole. The gas is discharged from the container 21 into the cylinder 13 through the gas discharge holes. The gas moves the piston 17 and rotates the rotating drum 14. As a result, the seat belt 15 is retracted.
  • FIG. 5 shows an airbag device including the airbag 45 and the gas generator 30.
  • the gas generator 30 includes a cylindrical housing.
  • the housing defines an ignition chamber 28 containing an ignition section 31 and a donut-shaped combustion chamber 32 containing a non-azide gas generating agent 38.
  • the igniting agent 39 is stored in the combustion chamber 32. Some or all of the igniting agent 39 may be contained in the ignition chamber 28.
  • the igniter 39 is smaller than the gas generant 38. Cylindrical gas generant 38 and igniter 39 are shown in FIG.
  • a partition 36 is provided between the combustion chamber 32 and the ignition chamber 28.
  • the partition 36 has a plurality of ventilation holes 37.
  • the igniter 31 includes an electric igniter 34 and a pyrotechnic charge 35 disposed above the electric igniter 34.
  • the electric igniter 34 When the electric igniter 34 is energized and operates, the electric igniter 34 ignites the igniter 35.
  • the flame (thermal energy) of the igniter 35 passes through the vent hole 37 of the bulkhead 36 and passes through the combustion chamber 32 To reach.
  • the gas generating agent 38 and the igniting agent 39 are ignited in the combustion chamber 32 and burn to generate gas.
  • the gas generator 30 includes a filter 42 disposed along the peripheral wall 43 in the combustion chamber 32.
  • the filter 42 has a function of cooling the combustion gas and a function of filtering and collecting the combustion residue (solid).
  • a plurality of gas discharge holes 44 are formed in a peripheral wall 43 of the combustion chamber 32. The gas cooled by the filter 42 is supplied to the airbag 45 through the gas discharge hole 44, and inflates the airbag 45.
  • the non-azide gas generating agents 25 and 38 generate combustion gas.
  • the pressure of the gas is used as a driving force for expansion of the airbag 45 and movement of the piston 17 (fastening of the seat belt).
  • Non-azide gas generators 25 and 38 are loaded in large amounts into the gas generators 12 and 30, and non-azide gas generators include harmful substances such as carbon monoxide, nitrogen oxides, and hydrogen chloride. It is required to generate a combustion gas substantially free of components. Harmful components can adversely affect occupants in the cabin.
  • the composition of the non-azide gas generants 25 and 38 is determined so as not to generate gas containing harmful components and to have a high gasification rate.
  • the required burning rate of the non-azide gas generants 25, 38 is determined. Therefore, the non-azide gas generants 25, 38 satisfying the combustion gas requirements, gasification rate requirements, and combustion rate requirements are loaded into the gas generators 12, 30.
  • the igniting agents 26 and 39 ignite and burn faster than the non-azide gas generating agents 25 and 38, and the ignitability and flammability deteriorate. It has a function to ignite. Ignition agents 26 and 39 are sometimes called ignition and combustion accelerators or ignition and combustion aids. The ignitability and flammability of igniters 26 and 39 must be superior to those of non-azide gas generants. Since the igniting agents 26 and 39 are used in smaller amounts than non-azide gas generating agents, there is no need to consider the gasification rate and combustion gas components.
  • the combustion speed can be represented by the elapsed time (attainment time) up to the time when the gas pressure in the combustion chambers 24, 32 reaches the maximum value when the energization to the igniters 22, 34 is started.
  • the burning speed of the igniting agents 26, 39 is adjusted so as to be shorter than the burning speed of the non-azide gas generating agents 25, 38.
  • the burning speed of non-azide gas generating agent 25, 38 Ignition agents 26, 39 having a burning rate faster than the temperature are used.
  • a non-azide gas generating agent having a high gasification rate is difficult to ignite (low ignitability), but when used in combination with igniting agents 26 and 39 having excellent ignitability and combustibility, non-azide gas generating agents can be obtained.
  • Agent ignites quickly. Specifically, the igniters 26 and 39 are instantaneously ignited by the thermal energy generated by the igniter.
  • the non-azide gas generating agent ignites and burns instantaneously with the flame generated by the combustion of the igniting agent.
  • the combined use of the igniting agent compensates for the low ignitability and flammability of the non-azide gas generating agent, and improves the ignitability and flammability of the entire chemical loaded in the gas generator.
  • the igniting agents 26 and 39 are preferably formed bodies having a predetermined shape, but may be granules, powders, or distorted irregular shapes having irregular surfaces.
  • the igniting agents 26 and 39 are used for the occupant protection device, and must be able to be stored in the gas generating device in which the gas generating agents 25 and 38 are loaded. Therefore, the shape of the igniting agents 26 and 39 is limited by the size of the gas generating device to be charged. For example, when used for the seat belt pretensioner 10, the maximum outer diameter of the ignition agents 26 and 39 is determined to be 8 mm or less. The preferred maximum length is 15 mm or less.
  • the burning rate of the igniting agents 26, 39 or the gas generating agent is measured by a closed bomb burning test.
  • the igniting agent or the gas generating agent was loaded into the closed container at a loading density of 0.059 gZml, and from when power was applied to the igniters 22, 34 until the gas pressure in the combustion container reached the maximum value. Is defined by the elapsed time (arrival time). A specific example of the measurement of the burning rate will be described later.
  • the arrival time of the igniting agent is 5 to 20 milliseconds, and the preferred time V of the non-azide gas generating agent is 25 to: LOO milliseconds.
  • the arrival time is more preferably 10 to 15 milliseconds for the igniting agent, and the arrival time is 30 to 65 milliseconds for the non-azide gas generating agent.
  • the arrival time of the igniting agents 26 and 39 is less than 5 milliseconds, the gas generation speed becomes too fast, and the igniting agents 26 and 39 are instantaneously burned out and the non-azide-based gas generating agent may not be ignited. If the arrival time of the igniting agents 26 and 39 exceeds 20 milliseconds, the gas generation speed becomes too slow, and it is difficult to obtain the effect of quickly igniting the gas generating agents 25 and 38. If the arrival time of the non-azide gas generant is less than 25 ms, the gas generation rate tends to be too fast. In the direction. On the other hand, when the arrival time of the non-azide gas generating agent exceeds 100 milliseconds, the gas generation speed becomes too slow, and it is difficult to apply the gas generating devices 12 and 30.
  • the shapes of the ignition agents 26 and 39 will be described. Combustion of igniters 26, 39 and non-azide gas generants begins at their surface and proceeds in multiple directions. In this specification, the plurality of directions are referred to as combustion directions.
  • the igniter has a plurality of dimensions along a plurality of combustion directions. In this specification, the minimum value of the plurality of dimensions is referred to as a minimum dimension L.
  • Preferred ignition agents 26 and 39 are granules having a minimum dimension L of about 0.1 to 3 mm or powder having a minimum dimension L of about 0.01 to 1 mm.
  • the minimum dimension L of the igniting agent is determined to be smaller than the minimum dimension L of the non-azide gas generant.
  • the igniting agents 26 and 39 having such a dimensional relationship can quickly ignite the non-azide gas generating agent and compensate for the low ignitability and flammability of the non-azide gas generating agent.
  • the minimum dimension L of the igniting agents 26 and 39 is 0.01 to 3 mm
  • the minimum dimension L of the non-azide gas generating agent is in the range of 0.3 to 4 mm
  • the minimum dimension L of the igniting agents 26 and 39 Is preferably smaller than the minimum dimension L of the non-azide gas generant.
  • the shapes of the igniting agents 26 and 39 are not particularly limited as long as the above conditions are satisfied, and any shapes can be used as long as they can exhibit excellent ignitability.
  • Examples of shaped bodies of the igniting agents 26 and 39 are a solid body having an axis and a hollow body having a hole extending along the axis. Specific examples include a cylinder 70 as shown in FIG. 1 (a), a cylinder 72 having a through hole 71 extending along an axis as shown in FIG. 1 (b), or a cylinder 72 as shown in FIG. 1 (c).
  • FIG. 1 (d) A hexagonal column 75, a disk (short cylinder) 76 as shown in FIG. 1 (f), and a ring (short cylinder) 77 having a through hole 71 as shown in FIG. 1 (g).
  • the upper and lower forces are also downward and upward along the axis, respectively, radially inward from the outer peripheral surface toward the axis (center), and outward from the inner peripheral surface of each hole.
  • the igniting agents 26 and 39 shown in FIGS. 1 (c) to 1 (e) have a through hole 71 arranged at the center and six outside through holes 71.
  • the six outer through holes 71 are arranged at equal angular intervals around the center through hole 71.
  • Three through holes 71 adjacent to each other form a regular triangle. That is, the distance (thickness of the wall) between three adjacent through holes 71 is equal to each other.
  • the minimum size L of the igniting agents 26 and 39 is 0.01 to 3 mm, and the shapes and dimensions of the igniting agents 26 and 39 are as uniform as possible. If the minimum dimension L is less than O.Olmm or the minimum dimension L exceeds 3 mm, there is a possibility that the arrival time may fall outside the range of 5 to 20 milliseconds.
  • the minimum dimension L is the diameter of the cylinder.
  • the minimum dimension L is the distance between the outer peripheral surface and the inner peripheral surface of the cylinder 72, that is, the thickness of the peripheral wall.
  • the minimum dimension L is the length along the axis, that is, the thickness of the disk 76.
  • the minimum dimension L is the distance between the outer peripheral surface and the inner peripheral surface, that is, the thickness of the peripheral wall. Since combustion proceeds in multiple directions P, the minimum dimension L is the minimum value among the dimensions along the multiple combustion directions P.
  • the above-mentioned arrival times of the igniting agents 26 and 39 can be achieved.
  • the force whose length (height) along the axis is the maximum dimension is the maximum dimension. Contribution is small.
  • the outer diameter is preferably 0.1 to 2 mm, and the length along the axis is preferably 0.1 to 3 mm.
  • a more preferable outer diameter is 0.1 to 1 mm, and a more preferable length is 0.5 to 2 mm.
  • a particularly preferred outer diameter is 0.2 to 0.8 mm, and a particularly preferred length is l to 2 mm. If the outer diameter or the length is less than O.lmm, it tends to be difficult to form the igniting agents 26 and 39. If the outer diameter exceeds 2 mm or the length exceeds 3 mm, it may not be possible to load the required amount of igniter 26, 39 into the gas generator.
  • the outer diameter is 0.
  • the diameter is 3 to 3 mm
  • the hole diameter is 0.1 to: Lmm
  • the length is 0.1 to 3 mm
  • the wall thickness is 0.1 to 1.5 mm. If it is necessary to ignite a non-azide gas generant more quickly, the outer diameter should be 0.3 to 2 mm, the hole diameter should be 0.1 to 0.8 mm, the length should be 0.5 to 2 mm, and the thickness should be 0.1 to: Lmm. More preferably, there is.
  • the outer diameter is 0.5 to 1.6 mm
  • the hole diameter is 0.1 to 0.5 mm
  • the length is 1 to 2 mm
  • the thickness is It is particularly preferred that it is 0.2 to 0.8 mm.
  • the above hole diameter is the inner diameter of each hole.
  • the thickness or length is less than 0.1 mm, molding tends to be difficult. If the outer diameter exceeds 3 mm or the length exceeds 3 mm, the gas generator may not be able to be loaded with the required amount of igniting agents 26 and 39. When the thickness exceeds 1.5 mm, the burning time of the igniting agents 26 and 39 becomes longer, and the ignition of the gas generating agent may be delayed.
  • the minimum dimension L is preferably 0.01 to Lmm.
  • the minimum dimension L is more preferably 0.01 to 0.5 mm. Considering the mechanical properties of the igniting agents 26 and 39 and the loadability into the gas generator, the minimum dimension L is particularly preferably 0.02 to 0.1 mm.
  • the shape of the non-azide gas generating agent used in combination with the igniting agents 26 and 39 will be described.
  • the shape of the non-azide gas generating agent is not particularly limited, but is generally granular or powdery, and may be a shape used for the igniting agents 26 and 39. Specifically, a solid body having an axis (a column, a disk) and a hollow body having a hole extending along the axis (a cylinder, a column having a hole, a ring).
  • the shape of the non-azide gas generating agent is appropriately determined in consideration of the burning rate requirement required for the gas generating agent and the ease of loading the gas generating device.
  • the outer diameter is preferably 0.3 to 3 mm, and the length is preferably 0.3 to 4 mm.
  • the outer diameter is preferably 0.5 to 2.5 mm and the length is more preferably 0.8 to 3 mm. It is particularly preferred that the length is 2 mm and the length is 1.3 to 2.5 mm. If the outer diameter or length is less than 0.3 mm, the required amount may not be able to be loaded into the gas generator, and the productivity tends to deteriorate. If the outer diameter of the non-azide gas generant exceeds 3 mm or the length exceeds 4 mm, the bulk density will be low and the gas generator may not be able to be loaded with the required amount of non-azide gas generant. .
  • the non-azide gas generating agent is a hollow body having a hole along the axis, the outer diameter is 0.5 to 3.
  • the diameter is 5 mm
  • the hole diameter is 0.1 to 1.5 mm
  • the length is 0.5 to 3.5 mm
  • the wall thickness is 0.2 to 2 mm.
  • the outer diameter is 1 to 2.5 mm
  • the hole diameter is 0.1 to 1.3 mm
  • the length is 1 to 3 mm
  • the wall thickness is 0.3 to 1.5 mm.
  • the outer diameter is more preferably 1.3 to 2 mm
  • the pore diameter is 0.1 to: Lmm
  • the length is 1.5 to 2.5 mm
  • the thickness is 0.5 to 1.3 mm.
  • the thickness is less than 0.2 mm, the necessary amount may not be able to be loaded into the gas generator.
  • the combustion time may be shortened, and the performance as a non-azide gas generating agent may not be sufficiently exhibited.
  • the thickness exceeds 2 mm, the burning time will be prolonged, and the performance as a non-azide gas generating agent may not be fully exhibited.
  • the outer diameter or the length exceeds 3.5 mm, the bulk density becomes low and the gas generator may not be able to be loaded with the required amount of non-azide gas generant.
  • the granular igniters 26 and 39 When forming the granular igniters 26 and 39 by the extrusion molding method, measure the oxidizing agent, polymer binder, and fuel. Measure additives such as plasticizers, aging stabilizers and slag forming agents as necessary. The measured components and water or an organic solvent are kneaded with a kneader to prepare a uniform mass.
  • organic solvent used in the extrusion molding method all known organic solvents that dissolve or swell the polymer binder can be used.
  • organic solvents such as acetone, ethyl alcohol, and ethyl acetate can be used. These mixed solutions can also be used.
  • acetone-ethyl alcohol 80-20-40-40 by mass ratio Is particularly preferred.
  • the uniformly mixed mass is charged into an extruder, applied with a predetermined pressure, extruded while passing through a hole of a die, formed into a predetermined shape, and then cut into a predetermined length, dried and formed. I do.
  • the oxidizing agent and the fuel are measured. If necessary, additives such as a plasticizer, a temporal stabilizer and a slag forming agent are weighed. The measured components and water or an organic solvent are kneaded with a kneader to prepare a uniform mass.
  • organic solvent used in the granulation molding method all known organic solvents that improve the mixing property and processability of the raw material components can be used. Examples are acetone and ethyl alcohol.
  • a mixed solution of water and these organic solvents can also be used.
  • Use of water alone is not preferred because it takes a long time to dry the granules. However, water may be used alone.
  • the uniformly mixed mass is charged into a granulator, and is pressed under a predetermined pressure, extruded while passing through holes of a punching metal, formed into a predetermined shape, and then dried and molded.
  • the particulate ignition agents 26 and 39 contain a large amount of an organic solvent such as acetone, ethyl alcohol, and ethyl acetate, the combustion performance is deteriorated. Therefore, it is preferable to remove the organic solvent as much as possible.
  • the organic solvent content at the end of drying is usually 0.5% by mass and the moisture content is preferably 1.0% by mass or less. Considering handling after molding, the organic solvent component is 0.3% by mass or less and the moisture content is 0.5% by mass or less. Is more preferred.
  • the organic solvent content at the end of the drying be 0.1% by mass or less and the water content be 0.2% by mass or less. If the organic solvent content exceeds 0.5% by mass or the water content exceeds 1.0% by mass, the gas generation speed and mechanical properties of the ignition agents 26 and 39 tend to decrease.
  • the mixing ratio of the igniting agents 26 and 39 and the non-azide gas generating agent will be described.
  • the non-azide gas generating agent is preferably 60 to 98% by mass and the igniting agents 26 and 39 are preferably 2 to 40% by mass.
  • the seatbelt pretensioner 10 requires a faster gas generation speed than that for an airbag device and a combustion profile in which combustion up to the maximum pressure for starting current to the igniter proceeds linearly. . Therefore, when the non-azide gas generating agent is used for the seat belt pretensioner 110, the non-azide gas generating agent is 60 to 95% by mass and the igniting agent 26, 39 Is more preferably 5 to 40% by mass. In consideration of the gasification rate and the loadability in the gas generator, it is particularly preferable that the non-azide gas generating agent is 80 to 95% by mass and the igniting agents 26 and 39 are 5 to 20.
  • the non-azide gas generating agent is 60 to 85% by mass and the igniting agents 26 and 39 are 15 to 40% by mass. It is particularly preferred that the gas generating agent is 70 to 85% by mass and the igniters 26 and 39 are 15 to 30% by mass.
  • the ratio of the igniting agents 26 and 39 is less than 2% by mass, the ignitability cannot be sufficiently exhibited, and it becomes difficult to rapidly ignite the non-azide gas generating agent.
  • the ratio of the igniting agents 26 and 39 exceeds 40% by mass, the gas generation rate tends to be too high to satisfy the required value, and the gasification rate tends to decrease.
  • the shapes of the igniting agents 26 and 39 and the non-azide-based gas generating agent may be the same or different. Good.
  • the raw materials of the igniting agents 26, 39 may be different from those of the non-azide gas generating agents, or the igniting agents 26, 39
  • the burning speed of the igniting agents 26 and 39 is adjusted to be faster than the burning speed of the non-azide gas generating agent.
  • the igniting agents 26 and 39 are loaded into the gas generator together with the non-azide gas generating agent.
  • igniting agents 26 and 39 and non-azide gas generating agents may be mixed in one room, or ignited.
  • the agents 26, 39 may be located near the igniter while the gas generating agents 25, 38 may be located away from the igniter.
  • the most preferred non-azide gas generating agents to be used in combination with the igniting agents 26 and 39 are those containing an ammonium oxyacid oxidizing agent.
  • Ignition agents 26, 39 contain oxidizer and fuel.
  • the ignition agents 26, 39 may further contain additives such as plasticizers, aging stabilizers and slag formers.
  • the oxidizing agent used for the igniting agents 26 and 39 is not particularly limited, and any of known oxidizing agents can be used.
  • the closed bomb combustion test was carried out by the following method using a closed bomb combustion test apparatus.
  • the bomb body 50 has a combustion chamber (cylinder) 51 having a volume of 70 ml.
  • the combustion chamber 51 is loaded with a gas generating agent 25, 38 or an igniting agent 26, 39.
  • the volume of the combustion chamber 51 is calculated by subtracting a part of the volume of the plug 52 from the volume force of a cylindrical body having a diameter of 35 mm and a depth of 75 mm.
  • a plug 52 for loading or sealing the gas generating agents 25, 38 or the igniting agents 26, 39 into the combustion chamber 51 is mounted, and is detachable with a bolt 53.
  • one end of the bomb body 50 is connected to an ignition device 56 via a lead wire 54, and a lead wire 55 is connected to the bomb body 50.
  • a pair of electrodes 57 and 58 are attached to the inner end surface of the plug 52 in the combustion chamber 51. Electrode 57 is connected to lead wire 54, and electrode 58 is connected to bomb body 50. An ignition ball (with 0.5 g of boron nitrite) 59 is attached to both electrodes 57, 58 via connection wires. In response to the operation of the ignition device 56, the ignition ball 59 is ignited, and the gas generating agents 25, 38 or the igniting agents 26, 39 in the combustion chamber 51 ignite and burn.
  • a degassing valve 60 is attached to a side surface of the bomb main body 50, and communicates with the combustion chamber 51 via a sampling pipe 61.
  • the gas in the combustion chamber 51 can be sampled from the degassing valve 60. Evaluate combustion characteristics based on gas composition be able to.
  • the pressure sensor 62 is connected to the combustion chamber 51 via a communication pipe 63.
  • the pressure sensor 62 detects the pressure of the combustion chamber 51 and outputs a detection signal. By monitoring the detection signal, the operation time (arrival time) from the start of operation of the ignition device 56 to the point at which the pressure in the combustion chamber 51 reaches the maximum value is obtained.
  • the gas generating agents 25 and 38 or the igniting agents 26 and 39 are charged into the combustion chamber 51 with the plug 52 removed. At this time, the loading amount was 0.059 gZml. Next, the plug 52 is closed, and the gas generating agents 25 and 38 or the igniting agents 26 and 39 in the combustion chamber 51 are ignited by the ignition device 56. Then, the relationship between the combustion time and the combustion pressure at the time of combustion was measured by an oscilloscope (not shown) via the pressure sensor 62, and the arrival time from the start of energization to the igniter to the maximum pressure was obtained.
  • the time required to start energizing the igniter which is required for the gas generating agent for the airbag device, usually reaches 50 to 65 milliseconds, and the ignition required for the gas generating agent for the seatbelt pretensioner is required.
  • the time required to reach the maximum pressure when the power is applied to the vessel is typically 15 to 30 milliseconds.
  • the igniting agent 26 in the combustion chamber 24 is ignited by energizing the electric ignition device 22 based on a signal at the time of a vehicle collision or the like, and the non-azide gas generating agent is used. 25 is burned to produce a combustion gas containing nitrogen gas.
  • the igniting agent 26 is ignited by the electric current to the electric igniter 22, and at the same time, the gas of the igniting agent is fired by the flame of the igniting agent.
  • Generator 25 burns quickly. Since the igniting agent 26 is arranged in the combustion chamber 24 in a state of being mixed with the gas generating agent 25, the combustion of the gas generating agent 25 based on the ignition of the igniting agent 26 proceeds uniformly throughout the combustion chamber 24. .
  • the combustion gas generated in the combustion chamber 24 breaks the portion where the groove 27 is formed and is jetted into the cylinder 13 to move the piston 17 together with the piston rod 16.
  • the rotation of the rotating drum 14 is caused by the movement of the piston rod 16, and the seat belt 15 is retracted.
  • the igniter 35 is ignited by energizing the electric igniter 34 based on a signal at the time of a vehicle collision or the like.
  • the flame generated by the ignition is transmitted to the combustion chamber 32 through the ventilation hole 37, the igniting agent 39 in the combustion chamber 32 is ignited, and the non-azide gas generating agent 38 burns to generate combustion gas.
  • the minimum dimension L of the igniting agent 39 is When the electric igniter 22 is energized, the igniting agent 39 is ignited from the smaller than the minimum dimension L of the gas generating agent 38, and the flame of the igniting agent rapidly burns the gas generating agent 38.
  • the generated combustion gas is ejected from the gas discharge holes 44 through the filter 42, and inflates the airbag 45.
  • the minimum dimension L of the igniting agents 26, 39 is smaller than the minimum dimension L of the non-azide gas generating agents 25, 38.
  • the igniting agents 26 and 39 can ignite faster than the gas generating agents 25 and 38, and the gas generating agents 25 and 38 can be ignited quickly.
  • Non-azide gas generating agents 25 and 38 burn. Therefore, it is possible to provide a gas generating device for an occupant protection device that satisfies the gasification rate requirement and the flammability requirement.
  • the igniting agent according to the second embodiment of the present invention will be described.
  • the problem relating to the low ignitability and low flammability of the non-azide gas generating agent is solved by the composition of the igniting agent.
  • the igniting agents 26 and 39 contain an oxidizing agent and a fuel.
  • the igniters 26, 39 may further contain additives such as plasticizers, aging stabilizers and slag formers.
  • oxidizing agents used for igniters 26, 39 are nitrates, nitrites, and halides.
  • the nitrates include ammonium salts such as ammonium nitrate, alkali metal salts such as sodium nitrate and potassium nitrate, and alkaline earth metal salts such as barium nitrate and strontium nitrate.
  • the nitrites include, for example, alkali metal salts such as sodium nitrite and potassium nitrite, and alkaline earth metal salts such as barium nitrite.
  • Oxonoperogenates include halogenates and perhalates.
  • halogenates include alkali metal salts such as potassium chlorate and sodium chlorate, alkaline earth metal salts such as potassium chlorate and calcium chlorate, and ammonium chloride such as ammonium chlorate. Salt.
  • alkali metal salts such as potassium chlorate and sodium chlorate
  • alkaline earth metal salts such as barium perchlorate and calcium perchlorate
  • ammonium perchlorate is included.
  • the oxidizing agents for igniting agents 26 and 39 are potassium salts, specifically Are potassium nitrate, potassium nitrite, potassium chlorate and potassium perchlorate, and a particularly preferred oxidizing agent is potassium perchlorate.
  • a preferred oxidizing agent in terms of flammability is ammonium salt. Specifically, ammonium nitrate, ammonium chlorate, and ammonium perchlorate are preferred oxidizing agents, and ammonium perchlorate is a particularly preferred oxidizing agent.
  • ammonium perchlorate Since ammonium perchlorate generates hydrogen chloride during combustion, it is mixed with a chlorine scavenger such as sodium nitrate or potassium nitrate in at least one of an igniting agent and a non-azide gas generating agent. U, preferably to prevent the release of hydrogen.
  • a chlorine scavenger such as sodium nitrate or potassium nitrate in at least one of an igniting agent and a non-azide gas generating agent.
  • U preferably to prevent the release of hydrogen.
  • the blending amount of the perchlorate and the chlorine scavenger in the combination of the igniting agent and the non-azide-based gas generating agent reduces the amount of hydrogen chloride generated in the generated gas
  • 1.0 to 1.2 moles of chlorine scavenger is preferable to 1.0 mole of perchlorate.
  • 1.0 to: L1 mole is more preferable.
  • 1.0 to 1.05 mole is particularly preferable. If the amount of chlorine scavenger is less than 1.0 mol, perchlorate power, which also generates perchlorate power, cannot be completely captured and tends to be released into the interior of the car. Gas generation tends to decrease.
  • the non-azide gas generating agent ignites as an oxidizing agent.
  • Hydrogen chloride generated from agents 26 and 39 can also contain a chlorine scavenger in an amount sufficient to collect.
  • the igniting agent and the non-azide gas generating agent contains the above amount of chlorine scavenger, generation of hydrogen chloride at the time of combustion, that is, at the time of operation of the vehicle occupant protection device can be prevented.
  • the shape of the oxidizing agent is desirably a powder having mixing and flammability.
  • the average particle size of the powder is preferably from 1 to 200 m. If it is less than 1 ⁇ m, manufacturing tends to be difficult. On the other hand, if the average particle size exceeds 200 / zm, the clogging of the production equipment will occur and the production efficiency will be reduced immediately, and the ignitability and burning rate of the igniting agent will be reduced.
  • the preferred average particle size of the oxidizing agent is 1 to: LOO m, and the particularly preferred average particle size is 1 to 50 ⁇ m.
  • the blending amount of the oxidizing agent is preferably 68 to 98% by mass, more preferably 78 to 96% by mass, and particularly preferably 82 to 95% by mass based on the total mass of the oxidizing agent and the fuel. Amount of oxidizing agent If the force is less than 68% by mass, the igniting agents 26 and 39 have poor ignitability and the burning speed tends to be low, so that they cannot function as an igniting agent. On the other hand, if the amount of the oxidizing agent exceeds 98% by mass, the mechanical properties of the igniting agents 26 and 39 tend to decrease.
  • the fuel will be described.
  • the fuel used for the igniters 26 and 39 is not particularly limited, and any known fuel can be used. Examples of fuels are polymeric binders, powdered microcrystalline carbon, and nitrogenous compounds.
  • the polymer binder will be described.
  • the polymer binder has both a function as a binder for shaping powdery constituents into granules and a function as a fuel.
  • polymer binder examples include nitrocellulose, cellulose acetate, carboxymethylcellulose and salts thereof, carboxymethylethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, microcrystalline cellulose, acetic acid Cellulose-based polymers such as butanol acid butanolose, methinoresenololose, etinoresenololose, cenorellose acetate nitrate and cellulose nitrate carboxymethyl ether; polyvinyl alcohol, polyvinyl butyral, polyvinyl ether, polyvinyl acetal, polyvinyl formal , Polyvinylpyrrolidone, polyvinylcaprolatum, copolymers of polyvinylpyrrolidone and polyvinylcaprolatatam, carboxybutyl polymers, etc.
  • Cellulose-based polymers such as butanol acid butanolose, methinoresenololose, etinoresen
  • Polyester polymer such as polyester synthetic fiber, polyethylene terephthalate and unsaturated polyester resin; polyurethane polymer such as urethane resin; polyether such as polypropylene oxide, polyphenylene oxide and polyetherimide Polymers; poly (meth) acrylic acid derivatives, such as polyacrylamide, polyacrylic hydrazide, polyacrylic acid soda, polyatalylate, polymetharylate, and polymethylmetharylate; polyurethane urethane elastomer (trade name: Pandettas, Dai Thermoplastic elastomers such as Nippon Ink Co., Ltd.), polyester elastomers (trade name: Perprene, Toyobo Co., Ltd.), polystyrene elastomers (trade name: Clayton, Shell Japan Co., Ltd.); nylon 6, Nylon 66, nylon 610, nylon 612 Nylon 11, nylon 12, nylon 46, copolymer poly amide, methoxymethyl Lee spoon polyamides, polyamides such as
  • At least one of these polymer binders is appropriately selected and used.
  • cellulose binders such as cellulose acetate, cellulose acetate butyrate or ethyl cellulose, which have a high ability to shape oxidizing agents and fuel components in the form of fuel, are preferred.
  • powdered microcrystalline carbon will be described.
  • powdered microcrystalline carbon are activated carbon, charcoal, coatas, animal charcoal, bone charcoal, and bituminous coal.
  • Powdered microcrystalline carbon is an aggregate of graphite-based microcrystals that lack structural integrity compared to graphite.
  • the two-dimensional structure of powdered microcrystalline carbon is similar to that of graphite, and powdered microcrystalline carbon has a structure in which the net planes are parallel and stacked at equal intervals.
  • the vertical orientation of the mesh plane (layer) is incomplete.
  • the mesh plane (layer) is a stack of irregularly stacked or intersecting hexagonal carbon skeletons, a force with a connected spatial lattice, and a distorted graphite surface.
  • Preferred powdered microcrystalline carbon is activated carbon and charcoal having high reactivity with an oxidizing agent.
  • the powdered microcrystalline carbon is desirably a miscible and combustible powder.
  • the average particle size is preferably from 0.1 to 200 ⁇ m. If it is less than 0.1 ⁇ m, it tends to be difficult to form granules. On the other hand, if the average particle size exceeds 200 m, the production equipment for igniting agents 26 and 39 will be clogged and production efficiency will be reduced. It also lowers the ignitability and burning rate of the igniter.
  • the average particle size is more preferably 1 to 100 m, and particularly preferably 1 to 50 / ⁇ .
  • the specific surface area of the powdered microcrystalline carbon is preferably from 5 to 1600 m 2 Zg. When the specific surface area of the powdered microcrystalline carbon is less than 5 m 2 Zg, the burning speed of the igniters 26 and 39 tends to decrease. On the other hand, when the specific surface area of the powdered microcrystalline carbon exceeds 1600 m 2 Zg, the productivity of the powdered microcrystalline carbon tends to deteriorate.
  • the ignition agent 26, if 39 mechanical properties and flammability taken into account it is more preferable that the specific surface area is 10 ⁇ 1500m 2 Zg instrument 50 ⁇ 1300m Particularly preferred is 2 Zg.
  • Nitrogen-containing compounds include nitramine conjugates, guanidine derivatives, tetrazole derivatives, bitetrazole derivatives, triazole derivatives, hydrazine derivatives, triazine derivatives, amino acid derivatives, and acid amide derivatives.
  • nitrogen-containing compounds include trimethylenetri-troamine (RDX), tetramethylenetetranitroamine (HMX), pentaerythritol tetranitrate (PETN), nitroguanidine (NQ), and triaminoguanidine nitrate (TAGN).
  • RDX trimethylenetri-troamine
  • HMX tetramethylenetetranitroamine
  • PETN pentaerythritol tetranitrate
  • NQ nitroguanidine
  • TAGN triaminoguanidine nitrate
  • the average particle diameter of the nitrogen-containing compound is preferably 1 to 200 Pm. Average particle size is 1
  • a nitrogen-containing compound of less than / zm When a nitrogen-containing compound of less than / zm is used, molding of the igniting agent tends to be difficult. On the other hand, when a nitrogen-containing compound having an average particle size of more than 200 / zm is used, the production equipment for the igniting agents 26 and 39 is clogged and the production efficiency is reduced immediately. Decreases the ignitability and burning rate of the igniting agent.
  • a preferred average particle size is 1 to: LOO / zm, and a particularly preferred average particle size is 1 to 30 ⁇ m.
  • the blending amount of the fuel is preferably 2 to 32% by mass, more preferably 4 to 22% by mass, and particularly preferably 5 to 18% by mass, based on the total mass of the oxidizing agent and the fuel. If the blending amount of the fuel is less than 2% by mass, the mechanical properties of the igniting agents 26 and 39 decrease, and the amount of generated gas tends to decrease. If the blending amount of the fuel exceeds 32% by mass, the ignitability of the igniting agents 26 and 39 tends to be poor, and the burning speed tends to be low.
  • the igniting agents 26 and 39 can contain a plasticizer to improve moldability. All known plasticizers with good compatibility with the binder can be used. Examples of the plasticizer include fatty acid ester plasticizers such as acetyltributyl quenate and acetylethyltriate; phthalic acid diester plasticizers such as dibutyl phthalate, dimethyl phthalate and getyl phthalate; and phosphate esters, triacetin, and the like.
  • Glycidyl azide plasticizer such as trimethylolethane trinitrate, diethylene glycol dinitrate, triethylene glycol dinitrate, nitroglycerin, bis 2,2-dinitropropyl acetal Z-formal.
  • the blending amount of the plasticizer is preferably 15% by mass or less in the igniting agent. Yes If the amount of the plasticizer exceeds 15% by mass, the proportion of components other than the plasticizer decreases, and the flammability and ignitability decrease. In consideration of flammability and ignitability, the preferred amount of the plasticizer is 1 to 12% by mass, and the particularly preferred amount is 1 to 8% by mass.
  • the igniting agents 26 and 39 may be blended with a temporal stabilizer in order to improve long-term stability.
  • All known aging stabilizers capable of improving the aging stability can be used.
  • Examples of aging stabilizers include diphenyl-urea derivatives such as diphenylurea, methyldiphenylurea, ethyldiphenylurea, getyldiphenylurea, dimethyldiphenylurea, and methylethyldiurea; diphenylamine, 2-fluorodiamine and the like.
  • Resorcinol diphenyl-uramine derivatives; phenylurethane derivatives such as ethylfururethane and methylfluorourethane; diphenyl-urethane derivatives such as difluorourethane;
  • examples of particularly preferred temporal stabilizers are diphenylamine and getyldiphenylurea, which have excellent temporal stability of the igniting agents 26 and 39 and ignitability at the beginning of combustion.
  • the blending amount of the aging stabilizer in the igniting agents 26 and 39 is preferably 10% by mass or less. When the content exceeds 10% by mass, the effect as a stabilizer is great, but the mixing ratio of other components is reduced, so that the flammability and ignitability tend to deteriorate. In view of improving the aging stability of the igniting agents 26 and 39 and considering the flammability and ignitability, 0.2 to 5% by mass is more preferable, and 0.2 to 3% by mass is particularly preferable.
  • the igniting agents 26 and 39 include a slag forming agent in order to suppress release of an alkali metal or alkaline earth metal oxidized product generated by the decomposition of the oxidizing agent as mist to the outside of the gas generator.
  • a slag forming agent in order to suppress release of an alkali metal or alkaline earth metal oxidized product generated by the decomposition of the oxidizing agent as mist to the outside of the gas generator.
  • slag formers are silica, alumina, acid clay, talc, myriki, molybdenum disulfide.
  • Preferred slag formers are silica, alumina and acid clay.
  • the amount of the slag forming agent in the igniting agents 26 and 39 is preferably 10% by mass or less. If the amount of the slag forming agent exceeds 10% by mass, the ratio of other components excluding the slag forming agent is reduced, and the combustibility and ignitability are reduced. In consideration of combustibility and ignitability, the preferred amount of the slag forming agent is 1 to 5% by mass, and the particularly preferred amount is 1 to 3% by mass.
  • the ignition agent composition is a combination of an alkali metal salt of oxohalogen acid as an oxidizing agent, a cellulose-based polymer binder as a fuel, and a fatty acid ester-based as a plasticizer.
  • a combination of potassium perchlorate as an oxidizing agent, cellulose acetate butyrate as a fuel, and acetyltributyl taenate as a plasticizer has excellent ignitability, flammability, heat resistance and mechanical properties.
  • a combination of an ammonium salt of oxohalogen acid as an oxidizing agent, a cellulose-based polymer binder as a fuel, and a fatty acid ester as a plasticizer More specifically, it is a combination of ammonium perchlorate as an acidifier, cellulose acetate butyrate as a fuel, and acetyltributyl citrate as a plasticizer.
  • This composition has excellent flammability, heat resistance and mechanical properties.
  • the igniting agents 26 and 39 are required to have excellent ignitability and flammability, it is preferable that the igniting agents 26 and 39 have a composition in which the oxygen content in the igniting agents 26 and 39 is excessive (the oxygen balance is positive). .
  • Non-azide gas generating agents consist of oxidizing agents and fuels, as well as plasticizers, aging stabilizers and slag forming agents.
  • the oxidizing agent is not particularly limited, and the oxidizing agent used for the igniting agents 26 and 39 can also be used. In consideration of the gasification rate, ammonium salts, specifically, ammonium nitrate, which is more preferable than ammonium nitrate, ammonium chlorate and ammonium perchlorate, are particularly preferable.
  • the shape of the oxidizing agent is desirably a powder having mixing and flammability. The average particle size of the powder is preferably in the range of 1 to 500 m.
  • the average particle size is less than 1 ⁇ m, it tends to be difficult to produce a non-azide gas generating agent. On the other hand, if the average particle size exceeds 500 m, the mechanical properties of the molded product will deteriorate, and the burning rate tends to decrease. Further, in consideration of the mechanical properties and combustion performance of the non-azide gas generating agent, the average particle size is particularly preferably 1 to 200 m, more preferably 1 to 200 m, more preferably 1 to 200 m.
  • the compounding amount of the oxidizing agent is preferably 58 to 97% by mass, more preferably 75 to 95% by mass, and particularly preferably 78 to 93% by mass, based on the total mass of the oxidizing agent and the fuel.
  • the amount of the oxidizing agent is less than 58% by mass, a large amount of carbon monoxide tends to be produced in the produced gas.
  • the amount of the oxidizing agent exceeds 97% by mass, the mechanical properties of the non-azide gas generating agent tend to decrease, and the burning rate tends to decrease. If the amount of oxygen in the non-azide gas generating agent is insufficient (when the oxygen balance is negative), harmful carbon monoxide is generated due to incomplete combustion when burning.
  • the fuel will be described.
  • the fuel contained in the non-azide gas generating agent is not particularly limited.
  • the fuel used for the ignition agent can be used.
  • Examples of fuels are polymeric binders, powdered microcrystalline carbon, and nitrogenous compounds.
  • cellulose binders such as cellulose acetate, cellulose acetate butyrate, and ethyl cellulose, which have a high ability to shape the oxidizing agent and the constituents of the fuel powder, are preferable.
  • the shape of the powdered microcrystalline carbon is desirably a powder having a mixability and flammability.
  • the average particle size is preferably from 0.1 to 500 ⁇ m. If it is less than 0.1 m, it tends to be difficult to form the non-azide-based gas generant into granules. On the other hand, if the average particle size exceeds 500 m, the burning rate tends to be slow. Further, in consideration of the mechanical properties and combustion performance of the non-azide gas generating agent, the average particle diameter is particularly preferably 1 to 200 / zm, more preferably 1 to 100 ⁇ m.
  • the specific surface area of the powdered microcrystalline carbon 5 ⁇ 1600m 2 Zg are preferred. If the specific surface area of the powdered microcrystalline carbon is less than 5 m 2 / g, the burning rate of the non-azide gas generating agent tends to be low. On the other hand, when the specific surface area of the powdered microcrystalline carbon exceeds 1600 m 2 Zg, the productivity of the powdered microcrystalline carbon tends to deteriorate. Further, in consideration of the mechanical properties and combustion performance of the non-azide gas generating agent, the specific surface area is more preferably from 10 to 1500 m 2 Zg, particularly preferably from 50 to 1300 m 2 Zg.
  • trimethylenetri-troamine RDX
  • tetramethylenetetra-troamine HMX
  • PETN pentaerythritol tetranitrate
  • NQ nitroguanidine
  • TAGN triaminoguanidine nitrate
  • the nitrogen-containing compound preferably has an average particle size of 1 to 500 ⁇ m. If the average particle diameter is less than m, it tends to be difficult to form the non-azide gas generant into granules, and if the average particle diameter exceeds 500 m, the effect of improving the combustion rate tends to be lost. Furthermore, considering the mechanical properties and combustion performance of the non-azide gas generant, the average particle size is more preferably 1 to 200 ⁇ m, and 1 to: LOO ⁇ m. Especially preferred
  • the blending amount of the fuel is preferably 3 to 42% by mass, more preferably 5 to 25% by mass, and particularly preferably 7 to 22% by mass based on the total mass of the oxidizing agent and the fuel.
  • the blending amount of the fuel is less than 3% by mass, the mechanical properties of the non-azide gas generating agent tend to decrease, and the amount of gas generation tends to decrease.
  • the blending amount of the fuel exceeds 42% by mass, a large amount of carbon monoxide tends to be produced in the produced gas.
  • a plasticizer may be added to the non-azide gas generating agent in order to impart plasticity and improve moldability. All known plasticizers having good compatibility with the binder can be used. The amount of the plasticizer added is preferably 15% by mass or less in the non-azide gas generating agent.
  • a temporal stabilizer can be combined with the non-azide gas generating agent in order to improve the temporal stability.
  • the type of the aging stabilizer is not limited. All known substances capable of improving aging stability can be used as aging stabilizers.
  • the amount of the aging stabilizer added is preferably 10% by mass or less in the non-azide gas generating agent.
  • the non-azide-based gas generating agent uses a slag forming agent in order to prevent the oxidized product of the alkali metal or alkaline earth metal generated by the decomposition of the oxidizing agent from being released as a mist to the outside of the gas generator. Can be blended.
  • the slag forming agent any substance capable of forming a slag can be used in the same manner as the ignition agents 26 and 39.
  • the addition amount of the slag forming agent is preferably 10% by mass or less in the non-azide gas generating agent.
  • a preferred composition as a non-azide gas generating agent is a combination of an ammonium salt of nitric acid as an oxidizing agent, a cellulose-based polymer binder as a fuel, and a fatty acid ester as a plasticizer. Specifically, a combination of ammonium nitrate as an oxidizing agent, cellulose acetate butyrate as a fuel, and acetylethyl butylate as a plasticizer is used. Since this composition is excellent in gasification rate and also excellent in heat resistance and mechanical properties, it is more preferable as a non-azide gas generating agent.
  • a combination of an ammonium salt of oxohalogen acid, an alkali metal salt of nitric acid as an oxidizing agent, a cellulosic polymer binder as a fuel, and a fatty acid ester as a plasticizer is also preferable.
  • a combination of ammonium perchlorate and sodium nitrate as an oxidizing agent, cellulose acetate butyrate as a fuel, and acetylethyl tributylate as a plasticizer is excellent in gasification rate and also excellent in heat resistance and mechanical properties, and is therefore more preferable as a non-azide gas generating agent.
  • igniting agents 26 and 39 When using the igniting agents 26 and 39 together with the non-azide gas generating agent, make sure that the burning speed of the igniting agents 26 and 39 is faster than that of the non-azide gas generating agent. No. This is because the ignitability and flammability of the non-azide gas generating agent cannot be improved even if an igniting agent having a lower burning rate than the non-azide gas generating agent is used.
  • igniting agents 26 and 39 obtained from the same raw material are used in combination with non-azide gas generating agents, the particle size is changed for both, and the mixing ratio of the oxidizing agent and the fuel is adjusted. However, it is necessary to make the burning rate of the igniting agent 26, 39 faster than that of the non-azide gas generating agent.
  • the igniting agents 26 and 39 of the second embodiment can be manufactured by the method described in the first embodiment.
  • the shape of the ignition agent is not particularly limited.
  • the igniting agents 26 and 39 of the second embodiment can have the shape described in the first embodiment.
  • Examples of the shape of the igniting agent include a cylindrical shape with an outer diameter of 0.1 to 5 mm and a length of 0.1 to 5 mm, an outer diameter of 0.3 to 5 mm, an inner hole diameter of 0.1 to 4.9 mm, a length of 0.1 to 5 mm, It is a cylinder with a wall thickness of about 0.1 to 3 mm.
  • the burning speed of the ignition agents 26 and 39 Is configured to be faster than the burning rate of the non-azide gas generants 25 and 38. Therefore, the igniting agents 26 and 39 can promptly advance the combustion of the gas generating agents 25 and 38, in which the propagation of combustion at the time of combustion is faster than that of the gas generating agents 25 and 38. Therefore, the ignitability and combustibility of the non-azide gas generating agents 25 and 38 can be improved while maintaining a high gasification rate.
  • the combustion speed is defined by the time from the start of energization of the igniter to the maximum pressure of the gas generated in the combustion chambers 24 and 32.
  • the arrival time of the igniters 26 and 39 is shorter than the arrival time of the non-azide gas generating agent. Therefore, the ignitability and flammability of the non-azide gas generating agents 25 and 38 can be further improved.
  • the Werner pulverizer is a device that stirs and mixes with a stirring blade supported on a rotating shaft extending in a lateral direction.
  • This mixture was charged into an extruder.
  • a die with a hole diameter of 0.75 mm and a pin with a diameter of 0.25 mm are attached to the extruder in advance. Then, by applying pressure, it is extruded through the hole of this die and formed into a cylinder having one through hole.
  • This molded product was cut into a length of 2.0 mm and dried to obtain a granular igniting agent having a shape shown in FIG. 1 (b).
  • Table 1 shows the dimensions of the ignition agent. The time required to reach the maximum pressure at which the igniter begins to conduct electricity was examined by a closed bomb combustion test. Table 1 shows the test results.
  • composition is the same as the raw material component and the compounding amount as in Example 1.
  • igniting agents were manufactured in the same manner as in Example 1, and the arrival times were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 The average particle diameter of 30 mu potassium perchlorate 84.2 wt% of m, the cellulose acetate butyrate 2.0 mass 0/0, to blended mixture to be a ratio of Taen acid ⁇ cetyl tributyl 2.0 wt% and activated carbon 11.8 wt% acetone A mixed solution of 30% by mass and 5% by mass of water was added, and the mixture was uniformly mixed with a Derna monomixer.
  • Example 6 the same raw material components and compounding amounts as in Example 6 were used. Then, using the molding jigs shown in Table 1, igniting agents were respectively manufactured by the same method as in Example 6, and the arrival time was evaluated by the same method as in Example 6. The results are shown in Table 1.
  • the above mixed solution was added to the above mixture, and the mixture was uniformly mixed with a Werner mixer to produce a kneaded product.
  • the kneaded product was charged into an extruder.
  • the extruder is equipped with a die with a hole diameter of 1.75 mm and one pin with a diameter of 0.25 mm.
  • Perchlorate ammonium having an average particle size of 80 mu m - ⁇ beam 47.1 mass 0/0, the average particle diameter of 70 mu nitrate sodium 34.9 wt% of m, the cellulose acetate butyrate 9.0 wt%, Taen acid ⁇ cetyl tributyl 8.0 mass % And activated carbon 1.0 mass%. Then, using a molding jig shown in Table 2, a gas generating agent was produced in the same manner as in Production Example 1 of the gas generating agent for seat belt pretensioner. Table 2 shows the dimensions of the gas generating agent.
  • FIG. 7 is a combustion profile of Example 15.
  • the Werner mixer is a device for stirring and mixing by a stirring blade supported on a rotating shaft extending in a lateral direction.
  • This mixture was charged to the extruder.
  • a die with a hole diameter of 0.95 mm and a pin with a diameter of 0.25 mm are attached to the extruder in advance. Then, by applying pressure to the mixture, the mixture is extruded while passing through the holes of the die, and is formed into a cylinder having one through hole. This cylinder was cut into a length of 2.0 mm and dried to obtain a granular igniting agent having the shape shown in FIG. 1 (b).
  • Table 4 shows the dimensions of the obtained ignition agent.
  • a closed bomb combustion test was conducted to determine the time required for the ignition agent to reach the maximum energization starting force pressure. Table 4 The arrival time was in the range of 5 to 20 ms as shown in FIG.
  • the mixed solution in which the mass% was mixed was added, and the mixture was uniformly mixed with a Werner mixer.
  • This mixture was charged into a granulator. Punching metal with a hole diameter of 0.35 mm is attached to the granulator in advance. Then, by applying pressure to the mixture, the mixture was extruded while passing through the holes of the punched metal, and a granular igniting agent having the shape shown in FIG. 1 (a) was obtained. Table 4 shows the dimensions of the obtained ignition agent. In addition, a closed bomb combustion test was performed to determine the time required for the ignition agent to reach the maximum pressure from the start of energization. As shown in Table 4, the arrival time was in the range of 5 to 20 ms.
  • Example 37 showed almost the same combustion profile as the combustion profile of FIG.
  • the igniting agents of Examples 1 to 8 were able to adjust the time to reach the maximum pressure in the energization starting force to 6 to 13 milliseconds.
  • Examples 9 to 20 in which a granular igniting agent was blended, the ignitability and the flammability were improved, so that the arrival time was in the range of 15 to 30 milliseconds, and as a gas generating agent for the sheet belt pretensioner. It turned out to be usable.
  • the ignition agents shown in Examples 21 to 29 could adjust the time to reach the maximum energization start pressure to 8 to 14 milliseconds.
  • Examples 30 to 41 in which the igniting agent was added, the ignitability and flammability were improved. It became clear. In Example 41, although the blending ratio of the igniting agent was large, it could be used as a gas generating agent for pretensioner, but it was obvious that the gasification rate tended to decrease.
  • the combustion profile in Fig. 6 is a so-called S-shape.
  • the combustion speed (combustion pressure) in the initial stage of combustion (the power to start energizing the igniter was also about 23 msec) was extremely low, and the combustion pressure was in the middle of combustion (approx. (After 23 ms), and there is a problem in flammability.
  • the combustion profile in Fig. 7 is a so-called linear type. That is, with the gas generating agent for the seat belt pretensioner containing the igniting agent of Examples 15 and 37, the combustion pressure (combustion rate) increases linearly from the initial stage of combustion, and is higher than the initial stage of combustion. The burning rate has been reached, and the flammability has been greatly improved.
  • Example 19 Since the mass ratio of the igniting agent was small, it could be used as a gas generating agent for a seat belt pretensioner, but it was obvious that the arrival time tended to be slow. In Example 20, since the mass ratio of the igniting agent was large, it could be used as a gas generating agent for a sheet belt pretensioner, but the gasification rate was low. I've noticed that it tends to go down.
  • the content of the igniting agents 26, 39 with respect to the non-azide-based gas generating agents 25, 38 can be increased in the case of the gas generating device 12 as compared with the case of the gas generating device 30. In this case, the entire non-azide gas generating agent 25 housed in the combustion chamber 24 of the gas generator 12 can be sufficiently burned.
  • the non-azide gas generating agent is a combustion catalyst such as copper oxide, iron oxide and manganese oxide, or oxyethylene dodecylamine, polyoxyethylene dodecylamine and polyoxyethylene octadecylamine. And the like may be contained.
  • a thin portion or a through hole may be formed.
  • Ignition agents 26 and 39 can also be used for rear seat gas generators, side impact gas generators, curtain gas generators, etc.
  • the most preferred igniting agent has the shape and dimensions described in the first embodiment and the composition described in the second embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

明 細 書
ガス発生装置用の着火剤
技術分野
[0001] 本発明は、車両の乗員保護装置に使用される着火剤に関し、特に、非アジド系ガ ス発生剤の着火を促進する着火剤に関する。
背景技術
[0002] 一般に、車両には、衝突時のショックから乗員を保護するために乗員保護装置が搭 載されている。乗員保護装置の例は、エアバッグ装置やシートベルトプリテンショナ一 である。
[0003] エアバッグ装置は、車両が高速で衝突した際に、ガス発生剤の燃焼ガスでバックを 急速に膨張させ、乗員がステアリングホイールやフロントウィンドシールド等の車両内 部の硬い部分に強く当たることを防ぐ。シートベルトプリテンショナ一は、車両が高速 で衝突した際に、ガス発生剤の燃焼ガスを駆動源として、シートベルトを瞬時に引き 込み、乗員が前方に投げ出されることを防ぐ。
[0004] 乗員保護装置用のガス発生剤に要求される性能は、 70%以上のガス化率と、 8.0 mmZ秒以上の燃焼速度(7MPaに加圧された窒素ガス雰囲気下)である。高 、ガス 化率は、ガス発生装置に充填するガス発生剤の量の低減と、乗員保護装置の小型 化と軽量化に寄与する。より好ましいガス化率は 75%以上である。
[0005] エアバッグ装置やシートベルトプリテンショナ一に使用されるガス発生剤として、ァ ジ化ナトリウムを含有しない非アジド系ガス発生剤が開発されている。従来の非アジド 系ガス発生剤の主成分は-トロセルロースである。ニトロセルロースはガス化率の向 上の点で好ましい。しかし、ニトロセルロースには、燃焼時に多量の一酸化炭素を発 生すると!/ヽぅ短所と、高温で劣化しやす!ヽ (耐熱性の低さ) ヽぅ短所とがある。
[0006] 近年では、ガス化率と燃焼速度の要件を満たすだけでなぐ一酸化炭素を実質的 に発生しない性質 (一酸ィ匕炭素要件または燃焼ガス要件)と、高耐熱性要件とを満た す非アジド系ガス発生剤が要求されて 、る。
[0007] 従来の乗員保護装置用非アジド系ガス発生剤は、酸化剤を含有する。その酸化剤 の例は、高ガス化率を達成できる、アンモ-ゥム、アルカリ金属及びアルカリ土類金 属の塩素酸塩、過塩素酸塩、硝酸塩、亜硝酸塩である。
[0008] 特許文献 1は酸化剤としての過塩素酸アンモ-ゥムと、燃料としてのデンプンとを含 有する非アジド系ガス発生剤を開示している。特許文献 2は、酸化剤としての硝酸ァ ンモ-ゥム、燃料としてのポリアクリルアミドとを含有する非アジド系ガス発生剤を開示 している。特許文献 3は、酸化剤としての硝酸アンモ-ゥムと、燃料としての 5—ァミノ テトラゾールとを含有する非アジド系ガス発生剤を開示して 、る。これらの非アジド系 ガス発生剤は、高ガス化率要件、高耐熱性要件、燃焼ガス要件を満たす。
特許文献 1:特開 2001— 2488号公報
特許文献 2 :特開 2000— 103691号公報
特許文献 3 :特開平 10— 130086号公報
[0009] 車両乗員保護装置に使用可能な従来のガス発生剤は、一酸化炭素を含まない燃 焼ガスを生成し、かつ、ガス化率を高く維持するために、酸素バランスと、酸化剤の種 類とが決められている。し力しながら、非アジド系ガス発生剤においては、ガス化率の 向上に伴って、着火性や燃焼性が低下する。そのため、車両乗員保護装置に使用 可能な従来のガス発生剤は、高いガス化率を有するが、着火性が極めて悪ぐ燃焼 性が低力つた。
発明の開示
[0010] 本発明の目的は、高ガス化率を有する非アジド系ガス発生剤と共にガス発生装置 に使用される着火剤であって、非アジド系ガス発生剤を速やかに着火させる着火剤 を提供することにある。
[0011] 本発明の一態様は、非アジド系ガス発生剤と共に車両乗員保護装置のガス発生装 置に使用されて前記非アジド系ガス発生剤を着火するための着火剤を提供する。前 記非アジド系ガス発生剤は第 1の燃焼速度で燃焼するものであり、前記着火剤は、 燃料と酸化剤とを含有し、前記非アジド系ガス発生剤の前記第 1の燃焼速度よりも速 V、第 2の燃焼速度で燃焼するように構成されて 、る。
[0012] 本発明の別の態様は、非アジド系ガス発生剤を着火させる着火剤の使用方法を提 供する。前記非アジド系ガス発生剤は第 1の燃焼速度で燃焼するものであり、前記着 火剤は燃料と酸化剤とを含有し、前記第 1の燃焼速度よりも速い第 2の燃焼速度で燃 焼するものであり、その方法は、車両乗員保護装置のガス発生装置に、前記非アジド 系ガス発生剤と前記着火剤とを装填する工程を備える。
[0013] 本発明の更なる態様は、車両乗員保護装置のガス発生装置を提供する。ガス発生 装置は、燃焼室と、前記燃焼室に熱エネルギーを供給する点火装置と、前記燃焼室 に収容された非アジド系ガス発生剤と、前記燃焼室に収容され、前記非アジド系ガス 発生剤を着火するための着火剤とを備える。前記非アジド系ガス発生剤は、第 1の燃 焼速度で燃焼するものであり、前記着火剤は燃料と酸化剤とを含有し、前記非アジド 系ガス発生剤の前記第 1の燃焼速度よりも速い第 2の燃焼速度で燃焼する。
図面の簡単な説明
[0014] [図 1] (a)〜 (g)は本発明の第 1実施形態に従う着火剤の斜視図。
[図 2]ガス発生装置の概略断面図。
[図 3] (a)はシートベルトプリテンショナ一の部分破断正面図、(b)はシートベルトプリ テンショナ一の部分破断側面図。
圆 4]密閉ボンブ燃焼試験装置の断面図。
[図 5]ガス発生装置の断面図。
[図 6]比較例 2の燃焼プロファイル。
[図 7]実施例 15の燃焼プロファイル。
発明を実施するための最良の形態
[0015] 本発明の第 1実施形態に従う着火剤について説明する。第 1実施形態は、非アジド 系ガス発生剤の着火性及び燃焼性の低さに関わる課題を着火剤の寸法を調整する ことで解決する。
[0016] まず、乗員保護装置について図 3、 5を参照して説明する。
図 3 (a)、(b)は、自動車室内の座席の横に配置されたシートベルトプリテンショナ 一 10を示す。シートベルトプリテンショナ一 10は、本体 11の上面に取り付けられたガ ス発生装置 12を含む。ガス発生装置 12は L字状のシリンダ 13に連結されている。ピ ストン 17はシリンダ 13内に収容されており、ガス発生装置 12がガスを発生したときに シリンダ 13に沿って上昇する。ピストン 17はピストンロッド 16の中間部に固定されて いる。ピストン 17の上昇はシリンダ 13内に固定されたストッパ 18によって規制される。 キャップ 19はシリンダ 13の上端部を覆う。回転ドラム 14は本体 11に回転可能に支持 される。シートベルト 15の一端が回転ドラム 14に卷付けられている。ピストンロッド 16 の下端が回転ドラム 14に接続されて 、る。
[0017] 図 2を参照してガス発生装置 12を説明する。
ガス発生装置 12は、本体 20と、本体 20に取り付けられて燃焼室 24を区画する円 筒容器 21と、本体 20に支持されて、燃焼室 24に点火エネルギーを供給する電気点 火器 22と、電気点火器 22に電気的に接続されたリード線 23とを含む。非アジド系ガ ス発生剤 25と、ガス発生剤 25より小さい着火剤 26とが燃焼室 24内に装填されてい る。容器 21の一面には、放射状に延びる複数の溝 27が形成されている。円柱形の ガス発生剤 25及び着火剤 26が図 2に示されている。
[0018] 電気点火器 22が通電されて作動したとき、電気点火器 22は熱エネルギーを生成 する。この熱エネルギーによって、着火剤 26及びガス発生剤 25は燃焼室 24内で着 火し、燃焼して、ガスを生成する。このガスの圧力によって、比較的弱い溝 27の部分 で容器 21が割れて、ガス放出孔が形成される。ガスはガス放出孔を通って容器 21か らシリンダ 13内に放出される。ガスはピストン 17を移動させて、回転ドラム 14を回転さ せる。その結果、シートベルト 15が引き込まれる。
[0019] 図 5は、エアバッグ 45と、ガス発生装置 30とを含むエアバッグ装置を示す。ガス発 生装置 30は円筒状のハウジングを含む。ハウジングは、点火部 31を収容する点火 室 28と、非アジド系ガス発生剤 38を収容するドーナツ状の燃焼室 32とを区画する。 着火剤 39は燃焼室 32に収容される。着火剤 39の一部または全部は点火室 28に収 容されてもよい。着火剤 39はガス発生剤 38より小さい。円柱のガス発生剤 38及び着 火剤 39が図 5に示されている。
[0020] 燃焼室 32と点火室 28との間に隔壁 36が設けられている。隔壁 36は複数の通気孔 37を有する。点火部 31は、電気点火器 34と、電気点火器 34の上部に配置された点 火薬 35とを含む。
[0021] 電気点火器 34が通電されて作動したとき、電気点火器 34は点火薬 35を点火する 。点火薬 35の火炎 (熱エネルギー)は、隔壁 36の通気孔 37を通過して、燃焼室 32 に到達する。この熱エネルギーによって、ガス発生剤 38と着火剤 39は燃焼室 32内 で着火し、燃焼して、ガスを生成する。
[0022] ガス発生装置 30は、燃焼室 32内で、周壁 43に沿って配置されたフィルター 42を 備える。フィルター 42は、燃焼ガスの冷却作用と、燃焼残渣(固体)の濾過及び捕集 作用とを有する。燃焼室 32の周壁 43には複数のガス放出孔 44が形成されている。 フィルター 42で冷却されたガスはガス放出孔 44を通ってエアバッグ 45に供給され、 エアバッグ 45を膨張させる。
[0023] 非アジド系ガス発生剤 25, 38は、燃焼ガスを発生する。そのガスの圧力はエアバッ グ 45の膨張や、ピストン 17の移動(シートベルトの締め上げ)の駆動力として利用さ れる。非アジド系ガス発生剤 25, 38はガス発生装置 12, 30内に多量に装填される ため、非アジド系ガス発生剤には、一酸化炭素、窒素酸化物、及び塩化水素等の有 害な成分を実質的に含まない燃焼ガスを発生することが要求される。有害な成分は 車室内の乗員に悪影響を及ぼす可能性があるからである。非アジド系ガス発生剤 25 , 38の組成は、有害な成分を含むガスを生成しないように、かつ、高いガス化率を有 するように決められる。用途によって、すなわち、ガス発生装置 12, 30に要求される 作動時間によって、非アジド系ガス発生剤 25, 38に要求される燃焼速度は決まる。 従って、燃焼ガス要件、ガス化率要件、及び燃焼速度要件を満たす非アジド系ガス 発生剤 25, 38がガス発生装置 12, 30に装填される。
[0024] 着火剤 26、 39は、非アジド系ガス発生剤 25, 38よりも速やかに着火し、燃焼して、 着火性及び燃焼性の悪 、非アジド系ガス発生剤 25, 38を速やかに着火させる機能 を有する。着火剤 26、 39は、着火及び燃焼促進剤または着火及び燃焼補助剤と呼 ぶこともある。着火剤 26、 39の着火性と燃焼性は、非アジド系ガス発生剤のものより 優れていなければならない。着火剤 26、 39は、非アジド系ガス発生剤に比べて少量 で使用されるため、そのガス化率及び燃焼ガス成分を考慮する必要はない。
[0025] 燃焼速度は、点火器 22, 34への通電を開始した時点力 燃焼室 24、 32内のガス 圧力が最大値に到達した時点までの経過時間 (到達時間)で表すことができる。第 1 実施形態では、着火剤 26、 39の燃焼速度は非アジド系ガス発生剤 25, 38の燃焼 速度よりも短くなるように調整される。または、非アジド系ガス発生剤 25, 38の燃焼速 度よりも速い燃焼速度を有する着火剤 26、 39が使用される。
[0026] 高ガス化率を有する非アジド系ガス発生剤は着火しにくいが (低着火性)、着火性 及び燃焼性の優れた着火剤 26、 39と併用することにより、非アジド系ガス発生剤は 速やかに着火する。具体的には、点火器の発生した熱エネルギーで着火剤 26、 39 が瞬時に着火する。着火剤の燃焼により生じた火炎で非アジド系ガス発生剤は瞬時 に着火し、燃焼する。このように、着火剤の併用により、非アジド系ガス発生剤の着火 性及び燃焼性の低さが補われ、ガス発生装置に装填される薬剤全体の着火性及び 燃焼性が向上する。
[0027] 着火剤 26、 39は、所定形状を有する成形体であることが好ましいが、凹凸の表面 を有する粒、粉、または、歪んだ不定形であってもよい。
[0028] 着火剤 26、 39は乗員保護装置に用いられるものであり、ガス発生剤 25、 38を装填 するガス発生装置内に収納できなければならない。そのため、装填するガス発生装 置の寸法によって、着火剤 26、 39の形状は限定される。例えば、シートベルトプリテ ンショナー 10に使用する場合には、着火剤 26、 39の最大外径は 8mm以下に決め られる。好ましい最大長さは 15mm以下である。
[0029] 着火剤 26、 39又はガス発生剤の前記燃焼速度は密閉ボンブ燃焼試験によって測 定される。燃焼試験は、密閉容器内に着火剤又はガス発生剤を 0.059gZmlの装填 密度で装填し、点火器 22, 34に通電を開始した時点から燃焼容器内のガス圧力が 最大値に到達した時点までの経過時間(到達時間)によって規定される。燃焼速度 の測定の具体例は後述する。
[0030] 着火剤の好ま 、到達時間は 5〜20ミリ秒であり、非アジド系ガス発生剤の好まし V、到達時間は 25〜: LOOミリ秒である。着火剤のより好ま 、到達時間は 10〜 15ミリ 秒であり、非アジド系ガス発生剤のより好ま 、到達時間は 30〜65ミリ秒である。
[0031] 着火剤 26、 39の到達時間が 5ミリ秒未満ではガス発生速度が速くなり過ぎ、着火剤 26、 39が瞬時に燃え尽きてしまい、非アジド系ガス発生剤を着火できないことがある 。着火剤 26、 39の到達時間が 20ミリ秒を越える場合には、ガス発生速度が遅くなり 過ぎて、ガス発生剤 25、 38を速やかに着火させる作用を得るのが困難である。非ァ ジド系ガス発生剤の到達時間が 25ミリ秒未満ではガス発生速度が速くなり過ぎる傾 向にある。一方、非アジド系ガス発生剤の到達時間が 100ミリ秒を越える場合には、 ガス発生速度が遅くなり過ぎてガス発生装置 12、 30に適用することが困難となる。
[0032] 着火剤 26、 39の形状について説明する。着火剤 26、 39及び非アジド系ガス発生 剤の燃焼は、その表面で開始し、複数の方向に進行する。本明細書では、当該複数 の方向を燃焼方向と呼ぶ。着火剤は複数の燃焼方向に沿った複数の寸法を有する 。本明細書では、当該複数の寸法の内の最小値を、最小寸法 Lと呼ぶ。
[0033] 好ましい着火剤 26、 39は、 0. l〜3mm程度の最小寸法 Lを有する粒や、 0. 01〜 lmm程度の最小寸法 Lを有する粉である。着火剤の最小寸法 Lは非アジド系ガス発 生剤の最小寸法 Lより小さくなるように決められる。この寸法関係にある着火剤 26、 3 9は、非アジド系ガス発生剤を速やかに着火させて、非アジド系ガス発生剤の着火性 及び燃焼性の低さを補うことができる。着火剤 26、 39の最小寸法 Lは 0. 01〜3mm であり、非アジド系ガス発生剤の最小寸法 Lが 0. 3〜4mmの範囲であり、かつ、着火 剤 26、 39の最小寸法 Lが非アジド系ガス発生剤の最小寸法 Lより小さいことが好まし い。
[0034] 着火剤 26、 39の形状は、上記の条件を満たせば特に限定されず、優れた着火性 を発揮できるものであればいずれも使用できる。着火剤 26、 39の成形体の例は、軸 線を有する中実体及び軸線に沿って延びる孔を有する中空体である。具体例は、図 1 (a)に示すような円柱 70、図 1 (b)に示すような軸線に沿って延びる貫通孔 71を有 する円筒 72、又は図 1 (c)に示すような 7個の貫通孔 71を有する円柱体 73、図 1 (d) に示すような 7個の貫通孔 71を有する異形柱体 74、図 1 (e)に示すような 7個の貫通 孔 71を有する六角柱体 75、図 1 (f)に示すような円板 (短い円柱) 76、図 1 (g)に示 すような貫通孔 71を有するリング (短い円筒) 77である。
[0035] 着火剤 26、 39の燃焼方向について説明する。図 1 (a)、 1 (f)に示す中実体 70、 76 の場合には、燃焼方向 Pは、上端及び下端から軸線に沿ってそれぞれ下向き及び上 向き、及び外周面力も軸線(中心)に向力 径方向内向きである。図 1 (b)、 1 (g)に示 す中空体 72, 77の場合には、燃焼方向 Pは、上端及び下端力も軸線に沿ってそれ ぞれ下向き及び上向き、外周面から内周面に向かう径方向内向き、及び内周面から 外周面に向力 径方向外向きである。図 1 (c)、 1 (d)、 1 (e)の中空体の場合、燃焼 方向 P (図示せず)は、上端及び下端力も軸線に沿ってそれぞれ下向き及び上向き、 外周面から軸線(中心)に向かう径方向内向き、及び各孔の内周面から外向きである
[0036] 図 1 (c)〜(e)に示す着火剤 26、 39は、中心に配置された貫通孔 71と、外側の 6つ の貫通孔 71とを有する。外側の 6つの貫通孔 71は中心の貫通孔 71の周りで等角度 間隔に配置されている。互いに隣接する 3つの貫通孔 71は正三角を形成する。すな わち、隣接する 3つの貫通孔 71の間の距離 (壁の厚み)は互いに等しい。
[0037] 着火剤 26、 39を乗員保護装置のガス発生装置に使用するには、前記到達時間を 5〜20ミリ秒に調整し、また着火性能のばらつきを極力抑制する必要がある。この点 から、着火剤 26、 39の最小寸法 Lは 0.01〜3mmであり、着火剤 26、 39の形状と寸 法はできる限り揃っていることが好ましい。最小寸法 Lが O.Olmm未満又は最小寸法 Lが 3mmを越える場合には、前記到達時間が 5〜20ミリ秒の範囲力も外れるおそれ がある。
[0038] 上記最小寸法について説明する。図 1 (a)に示す円柱 70の場合には、最小寸法 L は円柱の直径である。図 1 (b)に示す筒 72の場合には、最小寸法 Lは筒 72の外周面 と内周面との間の距離、すなわち、周壁の厚みである。図 1 (f)に示す円板 76の場合 、最小寸法 Lは軸線に沿った長さ、すなわち、円板 76の厚みである。図 1 (g)に示す リング 77の場合、最小寸法 Lは外周面と内周面との間の距離、すなわち、周壁の厚 みである。燃焼は複数の方向 Pに進行するため、最小寸法 Lは複数の燃焼方向 Pに 沿った寸法のうちの最小値である。
[0039] 前記条件を満たすように最小寸法 Lを決めることにより、着火剤 26、 39の前記到達 時間を達成することができる。一方、図 1 (a)及び図 1 (b)の形状を有する着火剤 26、 39の場合、軸線に沿った長さ(高さ)が最大寸法である力 最大寸法は前記到達時 間の短縮への寄与は少な 、。
[0040] 着火剤 26、 39が円柱の場合(図 la)には、外径は 0.1〜2mm、軸線に沿った長さ は 0.1〜3mmであることが好ましい。非アジド系ガス発生剤をより速やかに着火させ る点から考慮すれば、より好ましい外径は 0.1〜lmm、より好ましい長さは 0.5〜2m mである。着火剤 26、 39の機械的特性及びガス発生装置内への装填性を考慮すれ ば、特に好ましい外径は 0.2〜0.8mm、特に好ましい長さは l〜2mmである。外径 又は長さが O.lmm未満では着火剤 26、 39の成形が困難となる傾向にある。外径が 2mm又は長さが 3mmを越えた場合には、ガス発生装置に必要な量の着火剤 26、 3 9を装填できな 、場合がある。
[0041] 着火剤 26、 39が軸線に沿った孔を有する中空体の場合(図 lb〜le)、外径は 0.
3〜3mm、孔径は 0. 1〜: Lmm、長さは 0.1〜3mm、壁の厚さは 0.1〜1.5mmであ ることが好ましい。非アジド系ガス発生剤をより速やかに着火させる必要があれば、外 径は 0. 3〜2mm、孔径は 0. l〜0.8mm、長さは 0.5〜2mm、厚さは 0.1〜: Lmmで あることがより好ましい。着火剤 26、 39の機械的特性及びガス発生装置内への装填 性を考慮すれば、外径は 0.5〜1.6mm、孔径は 0. l〜0.5mm、長さは l〜2mm、 厚さは 0.2〜0.8mmであることが特に好ましい。上記の孔径は各孔の内径である。
[0042] 厚さ又は長さが O.lmm未満では成形が困難となる傾向にある。外径が 3mm又は 長さが 3mmを越える場合には、ガス発生装置に必要量の着火剤 26、 39を装填でき なくなるおそれがある。厚さが 1.5mmを超える場合には、着火剤 26、 39の燃焼時間 が長くなり、ガス発生剤を着火させるのが遅れる場合がある。
[0043] 粉状の着火剤 26、 39の場合、最小寸法 Lは 0. 01〜: Lmmであることが好ましい。
非アジド系ガス発生剤を速やかに着火させるためには、最小寸法 Lは 0. 01〜0.5m mであることがより好ましい。着火剤 26、 39の機械的特性及びガス発生装置内への 装填性を考慮すれば、最小寸法 Lは 0.02〜0. lmmであることが特に好ま 、。
[0044] 着火剤 26、 39と併用される非アジド系ガス発生剤の形状について説明する。非ァ ジド系ガス発生剤の形状は、特に限定されないが一般に粒状又は粉状であり、着火 剤 26、 39に用いられる形状であってもよい。具体的には、軸線を有する中実体 (柱 体、円板)及び軸線に沿って延びる孔を有する中空体(円筒、孔を有する柱体、リン グ)である。非アジド系ガス発生剤の形状は、ガス発生剤に要求される燃焼速度要件 及びガス発生装置への装填の容易性を考慮して適宜決定される。
[0045] 非アジド系ガス発生剤の形状が円柱の場合には、外径は 0.3〜3mm、長さは 0.3 〜4mmであることが好ま 、。ガス発生装置内への装填性及び製造性を考慮すれ ば、外径は 0.5〜2.5mm、長さは 0.8〜3mmであることがより好ましぐ外径は 0.8〜 2mm、長さは 1.3〜2.5mmであることが特に好ましい。外径又は長さが 0.3mm未満 では必要となる量がガス発生装置内に装填できないおそれがあり、製造性が悪くなる 傾向にある。非アジド系ガス発生剤の外径が 3mm又は長さが 4mmを越える場合に は、嵩密度が低くなり、ガス発生装置に必要量の非アジド系ガス発生剤を装填できな くなるおそれがある。
[0046] 非アジド系ガス発生剤が軸線に沿った孔を有する中空体ならば、外径は 0. 5〜3.
5mm、孔径は 0. l〜1.5mm、長さは 0.5〜3.5mm、壁の厚さは 0.2〜2mmである ことが好ましい。ガス発生装置内への装填性及び製造性を考慮すれば、外径は 1〜 2.5mm,孔径は 0. l〜1.3mm、長さは l〜3mm、壁の厚さは 0.3〜1.5mmである ことがより好ましぐ外径は 1.3〜2mm、孔径は 0. 1〜: Lmm、長さは 1.5〜2.5mm、 厚さ 0.5〜1.3mmであることが特に好ましい。
[0047] 厚さが 0.2mm未満には必要となる量がガス発生装置内に装填できない可能性が ある。燃焼時間が短くなり、非アジド系ガス発生剤としての性能を十分に発揮できなく なるおそれがある。厚さが 2mmを超える場合には、燃焼時間が長くなり、非アジド系 ガス発生剤としての性能を十分に発揮できなくなる場合がある。外径又は長さが 3.5 mmを越えた場合には、嵩密度が低くなり、ガス発生装置に必要量の非アジド系ガス 発生剤を装填できなくなるおそれがある。
[0048] 着火剤 26、 39の製造方法にっ 、て説明する。
押出成形法にて粒状の着火剤 26、 39を成形する場合には、酸化剤、高分子系結 合剤、燃料を計量する。必要により可塑剤、経時安定剤、スラグ形成剤等の添加剤を 計量する。計量した成分と、水又は有機溶剤とを、捏和機で混練し、均一な塊状体を 調製する。
[0049] 押出成形法に用いられる有機溶剤としては、高分子系結合剤を溶解又は膨潤させ る公知の全ての有機溶剤が使用可能である。例えば、アセトン、エチルアルコール、 酢酸ェチル等の有機溶剤が使用できる。これらの混合溶液も使用可能である。この 場合、例えばアセトンとエチルアルコールの混合溶液における配合割合は、質量比 でアセトン Zエチルアルコール = 90Z10〜20Z80が好ましい。着火剤 26、 39の 成形性を考慮すれば、質量比でアセトン Ζエチルアルコール =80Ζ20〜40Ζ60 が特に好ましい。なぜならば、アセトンのみでは蒸発速度が速いため着火剤 26、 39 の製造が困難となり、逆にエチルアルコールのみでは結合剤を完全に溶解又は膨潤 させることが困難となるカゝらである。そして、均一に混合された塊状体を押出装置に 装填し、所定の圧力を加え、ダイスの孔を通しながら押し出すことにより所定の形状と し、その後所定の長さに切断し、乾燥させて成形する。
[0050] 造粒成形法にて粒状の着火剤 26、 39を成形する場合には、酸化剤及び燃料を計 量する。必要により可塑剤、経時安定剤及びスラグ形成剤等の添加剤を計量する。 計量した成分と、水又は有機溶剤とを、捏和機で混練し、均一な塊状体を調製する。 造粒成形法に用いられる有機溶剤として、原料成分の混合性、加工性を向上させる 公知の全ての有機溶剤が使用可能である。その例はアセトン及びエチルアルコール である。
[0051] 水とこれらの有機溶剤の混合溶液も使用可能である。例えば、水とアセトンの混合 溶液における配合割合は、質量比で水 Zアセトン = 10Z90〜70Z30が好ましい。 着火剤 26、 39の混合性、加工性及び成形性を考慮すれば、質量比で水 Ζアセトン = 10Ζ90〜50Ζ50が特に好ましい。なぜならば、アセトンのみでは蒸発速度が速 いため着火剤 26、 39の製造が困難となる。水の単独使用は、造粒物の乾燥に長時 間を要する点で好ましくない。しかし、水を単独使用してもよい。
[0052] 均一に混合された塊状体を造粒装置に装填し、所定の圧力を加え、パンチングメタ ルの孔を通しながら押し出すことにより所定の形状とし、その後乾燥させて成形する。 粒状の着火剤 26、 39中に、アセトン、エチルアルコール、酢酸ェチル等の有機溶剤 が多く含有されていると燃焼性能の低下がみられるため、有機溶剤をできる限り取り 除くことが好ましい。乾燥終了時の有機溶剤分は通常 0.5質量%、水分は 1.0質量% 以下であることが好ましぐ成形後の取扱いを考慮すれば有機溶剤分 0.3質量%以 下、水分 0.5質量%以下であることが更に好ましい。この乾燥終了時の有機溶剤分 は 0.1質量%以下、水分は 0.2質量%以下であることが特に好ましい。この有機溶剤 分が 0.5質量%又は水分が 1.0質量%を越える場合、着火剤 26、 39のガス発生速 度や機械的物性が低下する傾向がある。
[0053] 着火剤 26、 39と非アジド系ガス発生剤の配合割合につ ヽて説明する。この配合割 合は、非アジド系ガス発生剤が 60〜98質量%で着火剤 26、 39が 2〜40質量%で あることが好ましい。
[0054] シートベルトプリテンショナ一 10は、エアバッグ装置用に比べて速いガス発生速度 と、点火器への通電開始力 最大圧力までの燃焼が直線的に進行する燃焼プロファ ィルとを要求する。それゆえ、シートベルトプリテンショナ一 10に使用する場合には、 非アジド系ガス発生剤をより速やかに着火させるために、非アジド系ガス発生剤が 60 〜95質量%で、着火剤 26、 39が 5〜40質量%であることがより好ましい。ガス化率 及びガス発生装置内への装填性を考慮すれば、非アジド系ガス発生剤が 80〜95質 量%で着火剤 26、 39が 5〜20であることが特に好まし 、。
[0055] エアバッグ 45に使用する場合には、非アジド系ガス発生剤が 60〜85質量%で、着 火剤 26、 39が 15〜40質量%であることがより好ましぐ非アジド系ガス発生剤が 70 〜85質量%で、着火剤 26、 39が 15〜30質量%であることが特に好ましい。
[0056] 着火剤 26、 39の割合が 2質量%未満では着火性を十分に発揮させることができず 、非アジド系ガス発生剤を速やかに着火させることが困難となる。一方、着火剤 26、 3 9の割合が 40質量%を越える場合には、ガス発生速度が速くなり過ぎて要求値を満 足できなくなる傾向にあり、またガス化率が低下する傾向にある。
[0057] 着火剤 26、 39と非アジド系ガス発生剤を併用する際には、必ず着火剤 26、 39の 燃焼速度の方が非アジド系ガス発生剤の燃焼速度よりも速いものでなければならな い。なぜならば、非アジド系ガス発生剤よりも燃焼速度が遅い着火剤 26、 39を使用し ても、非アジド系ガス発生剤を速やかに着火させることができな 、からである。
[0058] 着火剤 26、 39の燃焼速度が非アジド系ガス発生剤の燃焼速度よりも速ければ、着 火剤 26、 39と非アジド系ガス発生剤の形状は同一でもよぐ異なっていてもよい。同 一形状の着火剤 26、 39と非アジド系ガス発生剤を併用する場合には、着火剤 26、 3 9の原材料を非アジド系ガス発生剤のものとは異ならせたり、着火剤 26、 39中の酸 ィ匕剤と燃料との配合比率を調整したりすることにより、着火剤 26、 39の燃焼速度を非 アジド系ガス発生剤の燃焼速度よりも速く調整する。
[0059] 着火剤 26、 39は、非アジド系ガス発生剤とともにガス発生装置に装填される。例え ば、着火剤 26、 39と非アジド系ガス発生剤とを一つの室内に混合配置したり、着火 剤 26、 39を点火器の近傍に配置する一方でガス発生剤 25、 38を点火器から離れ た位置に配置してもよい。着火剤 26、 39との併用するのが最も好ましい非アジド系ガ ス発生剤は、アンモ-ゥム酸素酸塩酸化剤を含有するものである。なぜならば、この タイプの非アジド系ガス発生剤は、非常に高いガス化率を有するが、低い着火性及 び燃焼性のため、このタイプの非アジド系ガス発生剤の単独使用は乗員保護装置の 要求する燃焼性能要件を満足できな 、からである。
[0060] 着火剤 26、 39の組成について説明する。着火剤 26、 39は酸化剤と燃料とを含有 する。着火剤 26、 39は、可塑剤、経時安定剤及びスラグ形成剤のような添加剤を更 に含有してもよい。着火剤 26、 39に使用される酸化剤は特に限定されず、公知の酸 ィ匕剤のいずれもが使用できる。
[0061] 前記密閉ボンブ燃焼試験は密閉ボンブ燃焼試験装置を用いて以下に示す方法に より行った。
[0062] 密閉ボンブ燃焼試験装置について説明する。図 4に示すように、ボンブ本体 50は 容積が 70mlの燃焼室 (シリンダ) 51を有する。燃焼室 51にはガス発生剤 25、 38又 は着火剤 26、 39が装填される。燃焼室 51の容積は、直径 35mm、深さ 75mmの円 柱体の容積力もプラグ 52の一部の容積を差し引いて算出されたものである。ボンブ 本体 50の一端側には燃焼室 51内にガス発生剤 25、 38又は着火剤 26、 39を装填し たり、密閉したりするためのプラグ 52が装着され、ボルト 53により着脱可能である。同 じくボンブ本体 50の一端側にはリード線 54を介して点火装置 56が接続されると共に 、リード線 55はボンブ本体 50に接続されている。
[0063] 燃焼室 51内におけるプラグ 52の内端面には一対の電極 57、 58が取り付けられる 。電極 57はリード線 54と接続され、電極 58はボンブ本体 50に接続される。両電極 5 7, 58には接続線を介して点火玉 (ボロン硝石 0.5g付き) 59が取り付けられる。点火 装置 56の作動に応答して、点火玉 59が点火されて、燃焼室 51のガス発生剤 25, 3 8又は着火剤 26, 39は着火し、燃焼する。
[0064] ボンブ本体 50の側面には、ガス抜き用バルブ 60が取り付けられており、サンプリン グ管 61を介して燃焼室 51と連通されて 、る。ガス抜き用バルブ 60から燃焼室 51内 のガスをサンプリングすることができる。ガスの組成に基づいて、燃焼特性を評価する ことができる。圧力センサ 62は連通管 63を介して燃焼室 51と連通されている。圧力 センサ 62は燃焼室 51の圧力を検出し、検出信号を出力する。その検出信号をモ- タすることにより点火装置 56の作動開始時点から燃焼室 51の圧力が最大値に到達 する時点までの作動時間(到達時間)が求められる。
[0065] プラグ 52を抜いた状態で燃焼室 51内にガス発生剤 25、 38又は着火剤 26、 39を 装填する。その際に装填する装填量は、装填密度 0.059gZmlとした。次いで、ブラ グ 52を閉め、点火装置 56にて燃焼室 51のガス発生剤 25、 38又は着火剤 26、 39を 着火する。そして、燃焼した際の燃焼時間と燃焼圧力との関係を圧力センサ 62を介 してオシロスコープ(図示せず)にて計測し、点火器への通電開始から最大圧力まで の到達時間を求めた。エアバッグ装置用ガス発生剤に要求される点火器への通電開 始カも最大圧力までの到達時間は通常 50〜65ミリ秒であり、シートベルトプリテンシ ョナー用ガス発生剤に要求される点火器への通電開始力 最大圧力までの到達時 間は通常 15〜30ミリ秒である。
[0066] ガス発生装置 12においては、車両の衝突時などにおける信号に基づいて、電気点 火器 22への通電により燃焼室 24内の着火剤 26が着火されると共に、非アジド系の ガス発生剤 25が燃焼され、窒素ガスを含む燃焼ガスが生成する。このとき、着火剤 2 6の最小寸法 Lがガス発生剤 25の最小寸法 Lより小さ 、から、電気点火器 22への通 電によって着火剤 26が着火され、それと同時にその着火剤の炎によりガス発生剤 25 が速やかに燃焼する。着火剤 26はガス発生剤 25と混合された状態で燃焼室 24内 に配置されているので、着火剤 26の着火に基づくガス発生剤 25の燃焼が燃焼室 24 内の全体に均等に進行する。
[0067] 燃焼室 24内で生成された燃焼ガスは溝 27が形成された部分を破ってシリンダ 13 内へ噴出され、ピストン 17をピストンロッド 16と共に移動させる。ピストンロッド 16の移 動によって回転ドラム 14が回転され、シートベルト 15が引き込まれる。
[0068] ガス発生装置 30においては、車両の衝突時などにおける信号に基づいて、電気点 火器 34への通電により点火薬 35が点火される。その点火による炎が通気孔 37を介 して燃焼室 32に伝播され、燃焼室 32内の着火剤 39が着火し、非アジド系のガス発 生剤 38が燃焼して燃焼ガスを生成する。このとき、着火剤 39の最小寸法 Lが非アジ ド系のガス発生剤 38の最小寸法 Lより小さから、電気点火器 22への通電によって着 火剤 39が着火され、その着火剤の炎によりガス発生剤 38が速やかに燃焼する。生 成した燃焼ガスはフィルター 42を介してガス放出孔 44から噴出され、エアバッグ 45 を膨張させる。
[0069] 第 1実施形態によれば、以下の利点が得られる。
• 第 1実施形態では、着火剤 26, 39の最小寸法 Lは非アジド系のガス発生剤 25、 38の最小寸法 Lより小さい。この構成により、着火剤 26、 39がガス発生剤 25、 38より も速く着火し、ガス発生剤 25、 38を速やかに着火させることができ、乗員保護装置用 ガス発生装置の要求する燃焼プロファイルで非アジド系ガス発生剤 25、 38は燃焼す る。従って、ガス化率要件及び燃焼性要件を満たす乗員保護装置用のガス発生装 置を提供することができる。
[0070] 本発明の第 2実施形態に従う着火剤について説明する。第 2実施形態は、非アジド 系ガス発生剤の着火性及び燃焼性の低さに関わる課題を着火剤の組成によって解 決する。
[0071] 着火剤 26、 39は酸化剤と燃料とを含有する。着火剤 26、 39は、可塑剤、経時安定 剤及びスラグ形成剤のような添加剤を更に含有してもよい。着火剤 26、 39に使用さ れる酸化剤の例は、硝酸塩、亜硝酸塩、及びハロゲン酸塩である。
[0072] 硝酸塩には、硝酸アンモ-ゥム等のアンモ-ゥム塩、硝酸ナトリウム、硝酸カリウム 等のアルカリ金属塩、硝酸バリウム、硝酸ストロンチウム等のアルカリ土類金属塩が含 まれる。亜硝酸塩には、例えば亜硝酸ナトリウム、亜硝酸カリウム等のアルカリ金属塩 、亜硝酸バリウム等のアルカリ土類金属塩が含まれる。ォキソノヽロゲン酸塩には、ハロ ゲン酸塩、過ハロゲン酸塩が含まれる。
[0073] ハロゲン酸塩には、塩素酸カリウム、塩素酸ナトリウム等のアルカリ金属塩、塩素酸 ノ リウム、塩素酸カルシウム等のアルカリ土類金属塩、塩素酸アンモ-ゥム等のアン モ -ゥム塩が含まれる。過ハロゲン酸塩の具体例には、過塩素酸カリウム、過塩素酸 ナトリウム等のアルカリ金属塩、過塩素酸バリウム、過塩素酸カルシウム等のアルカリ 土類金属塩、過塩素酸アンモ-ゥム等のアンモ-ゥム塩が含まれる。
[0074] 着火性及び燃焼性の面で好ま ヽ着火剤 26、 39の酸化剤は、カリウム塩、具体的 には硝酸カリウム、亜硝酸カリウム、塩素酸カリウム及び過塩素酸カリウムであり、特に 好ましい酸化剤は過塩素酸カリウムである。燃焼性の面で好ましい酸化剤は、アンモ -ゥム塩である。具体的には硝酸アンモ-ゥム、塩素酸アンモ-ゥム、過塩素酸アン モ-ゥムが好ましい酸化剤であり、過塩素酸アンモ-ゥムが特に好ましい酸化剤であ る。過塩素酸アンモ-ゥムは燃焼時に塩ィ匕水素を発生するため、着火剤と非アジド 系ガス発生剤との少なくとも一つに硝酸ナトリウムや硝酸カリウムのような塩素掃去剤 を配合して塩ィ匕水素の放出を防止することが好ま U、。
[0075] 着火剤と非アジド系ガス発生剤との組合せ中における過塩素酸塩と塩素掃去剤と の配合量は、発生ガス中の塩ィ匕水素発生量を低減させ、しかもガス発生量を向上さ せると ヽぅ観点から、過塩素酸塩 1.0モルに対して塩素掃去剤 1.0〜 1.2モルが好ま しぐ 1.0〜: L1モルが更に好ましぐ 1.0〜1.05モルが特に好ましい。塩素掃去剤の 配合量が、 1.0モル未満では、過塩素酸塩力も発生する塩ィ匕水素は、完全に捕足で きず自動車の車室内に放出される傾向にあり、 1.2モルを越えるとガス発生量が低下 する傾向にある。
[0076] 着火剤 26、 39が酸化剤として過塩素酸アンモ-ゥム等の過塩素酸塩を含有するが 塩素掃去剤を含有しない場合、非アジド系ガス発生剤は酸化剤として、着火剤 26、 3 9から発生する塩ィ匕水素も捕集できるだけの量の塩素掃去剤を含有することができる 。着火剤と非アジド系ガス発生剤の少なくとも一方が上記量の塩素掃去剤を含有す る場合、燃焼時すなわち車両乗員保護装置の作動時における塩化水素の発生を防 止することができる。
[0077] 酸化剤の形状は、混合性と燃焼性力 粉末であることが望ま 、。粉末の平均粒子 径は 1〜200 mであることが好ましい。 1 μ m未満の場合、製造が困難となる傾向 にある。一方、平均粒子径が 200 /z mを越えると製造装置の詰まりが生じやすぐ製 造効率が落ち、着火剤の着火性と燃焼速度が低下する。着火剤 26、 39の製造性及 び燃焼性能を考慮すれば、酸化剤の好ましい平均粒子径は 1〜: LOO mであり、特 に好ましい平均粒子径は 1〜50 μ mである。
[0078] 酸化剤の配合量は、酸化剤と燃料の総質量に対して好ましくは 68〜98質量%、よ り好ましくは 78〜96質量%、特に好ましくは 82〜95質量%である。酸化剤の配合量 力 S68質量%未満の場合、着火剤 26、 39の着火性が悪ぐまた燃焼速度が遅くなる 傾向にあるため、着火剤としての機能を果たせない傾向にある。一方、酸化剤の配 合量が 98質量%を超える場合、着火剤 26、 39の機械的物性が低下する傾向にある
[0079] 燃料について説明する。着火剤 26、 39に使用される燃料は、特に限定されず、公 知の燃料のいずれもが使用できる。燃料の例は、高分子結合剤、粉末状微結晶炭 素、及び含窒素化合物である。
[0080] 高分子結合剤について説明する。高分子結合剤とは、粉体状の構成成分を粒状 に賦形する結合剤としての機能と、燃料としての機能とを併せ持つものである。
[0081] 高分子結合剤の例は、ニトロセルロース、酢酸セルロース、カルボキシメチルセル口 ース及びその塩、カルボキシメチルェチルセルロース、ヒドロキシメチルセルロース、 ヒドロキシェチルセルロース、ヒドロキシプロピルセルロース、微結晶セルロース、酢酸 酪酸セノレロース、メチノレセノレロース、ェチノレセノレロース、セノレロースアセテートナイト レート、セルロースナイトレートカルボキシメチルエーテル等のセルロース系高分子; ポリビニルアルコール、ポリビニルブチラール、ポリビニルエーテル、ポリビニルァセタ ール、ポリビニルホルマール、ポリビニルピロリドン、ポリビニルカプロラタタム、ポリビ -ルピロリドンとポリビ-ルカプロラタタムの共重合体、カルボキシビュルポリマー等の ポリビニル系高分子;ポリエステル合成繊維、ポリエチレンテレフタラート、不飽和ポリ エステル榭脂等のポリエステル系高分子;ウレタン榭脂等のポリウレタン系高分子;ポ リプロピレンォキシド、ポリフエ-レンォキシド、ポリエーテルイミド等のポリエーテル系 高分子;ポリアクリルアミド、ポリアクリル酸ヒドラジド、ポリアクリル酸ソーダ、ポリアタリ レート、ポリメタタリレート、ポリメチルメタタリレート等のポリ (メタ)アクリル酸誘導体;ポ リウレタンエラストマ一(商品名:パンデッタス、大日本インキ (株)製)、ポリエステルェ ラストマー(商品名:ペルプレン、東洋紡 (株)製)、ポリスチレンエラストマ一(商品名: クレイトン、シェルジャパン (株)製)等の熱可塑性エラストマ一類;ナイロン 6、ナイロン 66、ナイロン 610、ナイロン 612、ナイロン 11、ナイロン 12、ナイロン 46、共重合ポリ アミド、メトキシメチルイ匕ポリアミド、アルコール可溶性ポリアミド等のポリアミド類;グリシ ジルアジドポリマー、 3, 3—ビス(アジドメチル)ォキセタン、 3—アジドメチル一 3—メ チルォキセタン、 3—ナイトレートメチルー 3—メチルォキセタン等のエネルギー性化 合物結合剤;グァガム、可溶性デンプン、ぺクチン、キチン及びそれらの誘導体等の 多糖類;アクリルゴム、イソプレンゴム、ウレタンゴム、シリコンゴム、バイトン(デュポン 社の登録商標)、ブタジエンゴム、ブチルゴム、二トリルブタジエンゴム、二トリルブタジ ェンゴム、フッ素ゴム等のゴム類である。これらの高分子結合剤は、少なくとも一種が 適宜選択して用いられる。これらの高分子結合剤の中でも、酸化剤や燃料の粉体状 の構成成分を賦形する能力の高 、酢酸セルロース、酢酸酪酸セルロース又はェチ ルセルロース等のセルロース系結合剤が好まし 、。
[0082] 粉末状微結晶炭素について説明する。粉末状微結晶炭素の例は、活性炭、木炭、 コータス、獣炭、骨炭、及び瀝青炭である。粉末状微結晶炭素は、黒鉛に比べて構 造の完全性に欠ける黒鉛系の微結晶の集合体である。粉末状微結晶炭素の二次元 的構造は黒鉛のものに類似しており、粉末状微結晶炭素は網平面が平行で等間隔 に積層された構造を有する。網平面 (層)の垂直方向の配向は不完全である。網平 面 (層)は不規則に積み重なっているか、六角形の炭素骨格が不規則に交差し、連 結した空間格子を有する力、黒鉛表面にゆがみがある積層体である。好ましい粉末 状微結晶炭素は、酸化剤との反応性の高!ヽ活性炭及び木炭である。
[0083] 粉末状微結晶炭素は混合性と燃焼性カゝら粉末であることが望ま ヽ。その平均粒 子径は 0.1〜200 μ mであることが好ましい。 0.1 ^ m未満の場合、粒状体の成形が 困難となる傾向にある。一方、平均粒子径が 200 mを越える場合、着火剤 26、 39 の製造装置が詰まり、製造効率を低下させる。また、着火剤の着火性と燃焼速度を 低下させる。
[0084] 着火剤 26、 39の機械的物性及び燃焼性能を考慮すれば、その平均粒子径は 1〜 100 mであることがより好ましぐ 1〜50 /ζ πιであることが特に好ましい。粉末状微 結晶炭素の比表面積は、 5〜1600m2Zgが好ましい。粉末状微結晶炭素の比表面 積が 5m2Zg未満の場合、着火剤 26、 39の燃焼速度が遅くなる傾向にある。一方、 粉末状微結晶炭素の比表面積が 1600m2Zgを越える場合、粉末状微結晶炭素の 製造性が悪くなる傾向にある。しかも、着火剤 26、 39の機械的物性及び燃焼性を考 慮すれば、その比表面積は 10〜1500m2Zgであることがより好ましぐ 50〜1300m 2Zgであることが特に好ま 、。
[0085] 含窒素化合物 (含窒素燃料)について説明する。含窒素化合物には、ニトラミンィ匕 合物、グァ-ジン誘導体、テトラゾール誘導体、ビテトラゾール誘導体、トリァゾール 誘導体、ヒドラジン誘導体、トリアジン誘導体、アミノ酸誘導体、酸アミド誘導体が含ま れる。含窒素化合物の例は、トリメチレントリ-トロアミン (RDX)、テトラメチレンテトラ 二トロアミン(HMX)、ペンタエリスリトールテトラナイトレート(PETN)、ニトログァ-ジ ン(NQ)、トリアミノグァ二ジンナイトレート(TAGN)、 5—アミノテトラゾール、ジニトロ ァメリン、ァゾジカルボンアミド、硝酸ヒドラジンである。
[0086] 含窒素化合物の平均粒子径は 1〜200 μ mであることが好ましい。平均粒子径が 1
/z m未満の含窒素化合物を用いた場合、着火剤の成形が困難となる傾向にある。一 方、平均粒子径が 200 /z mを越える含窒素化合物を用いた場合、着火剤 26、 39の 製造装置が詰まりやすぐ製造効率が低下する。着火剤の着火性と燃焼速度を低下 させる。機械的物性及び燃焼性を考慮すれば、好ましい平均粒子径は 1〜: LOO /z m であり、特に好ましい平均粒子径は 1〜30 μ mである。
[0087] 燃料の配合量は、酸化剤及び燃料の総質量に対して、好ましくは 2〜32質量%、 より好ましくは 4〜22質量%、特に好ましくは 5〜18質量%である。燃料の配合量が 2質量%未満の場合、着火剤 26、 39の機械的特性が低下し、ガス発生量も低下す る傾向にある。燃料の配合量が 32質量%を超える場合、着火剤 26、 39の着火性が 悪ぐまた燃焼速度が遅くなる傾向にあるため、着火性が低下する傾向にある。
[0088] 着火剤 26、 39は、成形性を向上させるために可塑剤を含有することができる。結合 剤と相溶性の良い公知の全ての可塑剤が使用できる。可塑剤の例は、クェン酸ァセ チルトリブチル、タエン酸ァセチルトリェチル等の脂肪酸エステル可塑剤;ジブチルフ タレート、ジメチルフタレート、ジェチルフタレート等のフタル酸ジエステル可塑剤;リ ン酸エステル、トリァセチン、トリメチロールェタントリナイトレート、ジエチレングリコー ルジナイトレート、トリエチレングリコールジナイトレート、ニトログリセリン、ビス 2, 2— ジニトロプロピルァセタール Zホルマール等の-トロ可塑剤;グリシジルアジド可塑剤 である。
[0089] 可塑剤の配合量は、着火剤中において、 15質量%以下であることが好ましい。可 塑剤の添加量が 15質量%を越えると、可塑剤を除く成分の割合が低下して、燃焼性 及び着火性が低下する。燃焼性及び着火性を考慮すれば、可塑剤の好ましい配合 量は 1〜12質量%であり、特に好ましい配合量は 1〜8質量%である。
[0090] 着火剤 26、 39には、長期間に渡る安定性を向上させるために経時安定剤を配合 することができる。経時安定性を向上させることが可能な公知の全ての経時安定剤が 使用できる。経時安定剤の例は、ジフエ-ルゥレア、メチルジフエ-ルゥレア、ェチル ジフエ-ルゥレア、ジェチルジフエ-ルゥレア、ジメチルジフエ-ルゥレア、メチルェチ ルジフエ-ルゥレア等のジフエ-ルゥレア誘導体;ジフエ-ルァミン、 2— -トロジフエ -ルァミン等のジフヱ-ルァミン誘導体;ェチルフエ-ルウレタン、メチルフヱ-ルウレ タン等のフエ-ルウレタン誘導体;ジフヱ-ルウレタン等のジフヱ-ルウレタン誘導体; レゾルシノールである。特に好ましい経時安定剤の例は、着火剤 26、 39の経時安定 性や燃焼初期の着火性に優れるジフヱニルァミン及びジェチルジフヱ-ルゥレアで ある。
[0091] 経時安定剤の配合量は、着火剤 26、 39中において、 10質量%以下であることが 好ましい。 10質量%を越えると安定剤としての効果は多大となるが、他の成分の配合 比率が低下するため燃焼性及び着火性が悪くなる傾向にある。着火剤 26、 39の経 時安定性を向上させ、燃焼性及び着火性を考慮すれば、 0. 2〜5質量%がより好ま しぐ 0.2〜3質量%が特に好ましい。
[0092] 着火剤 26、 39には、酸化剤の分解により生成するアルカリ金属又はアルカリ土類 金属の酸ィ匕物をミストとしてガス発生装置外へ放出することを抑制するため、スラグ形 成剤を配合することができる。スラグ形成剤の例は、シリカ、アルミナ、酸性白土、タル ク、マイ力、二硫化モリブデンである。好ましいスラグ形成剤は、シリカ、アルミナ及び 酸性白土である。
[0093] スラグ形成剤の配合量は、着火剤 26、 39中において、 10質量%以下であることが 好ましい。スラグ形成剤の配合量が 10質量%を越えると、スラグ形成剤を除く他の成 分の比率が低下して、燃焼性及び着火性が低下する。燃焼性及び着火性を考慮す れば、スラグ形成剤の好ましい配合量は 1〜5質量%であり、特に好ましい配合量は 1〜3質量%である。 [0094] 好ま 、着火剤組成物は、酸化剤としてォキソハロゲン酸のアルカリ金属塩と、燃 料としてセルロース系の高分子結合剤と、可塑剤として脂肪酸エステル系との組み合 わせである。より具体的には、酸化剤として過塩素酸カリウムと、燃料として酢酸酪酸 セルロースと、可塑剤としてタエン酸ァセチルトリブチルとの組み合わせである。この 組成物は、着火性、燃焼性、耐熱性及び機械的特性に優れている。
[0095] 以下の着火剤組成物のバリエーションも好ま 、。
酸化剤としてォキソハロゲン酸のアンモ-ゥム塩と、燃料としてセルロース系の高分 子結合剤と、可塑剤として脂肪酸エステル系との組み合わせ。より具体的には、酸ィ匕 剤として過塩素酸アンモ-ゥムと、燃料として酢酸酪酸セルロースと、可塑剤としてク ェン酸ァセチルトリブチルとの組み合わせである。この組成物は、燃焼性、耐熱性及 び機械的特性に優れる。
[0096] 着火剤 26、 39には優れた着火性及び燃焼性が要求されることから、着火剤 26、 3 9中の酸素量が過剰 (酸素バランスが正)となる組成を有することが好ましい。
[0097] 非アジド系ガス発生剤の組成にっ 、て説明する。
非アジド系ガス発生剤は、酸化剤及び燃料のほか、可塑剤、経時安定剤、スラグ形 成剤等により構成されている。酸化剤は特に限定されず、着火剤 26、 39に用いられ る酸化剤も使用することができる。ガス化率を考慮すれば、アンモニゥム塩、具体的 には硝酸アンモ-ゥム、塩素酸アンモ-ゥム、過塩素酸アンモ-ゥムが好ましぐ硝酸 アンモ-ゥムが特に好ましい。酸化剤の形状は、混合性と燃焼性力 粉末であること が望ましい。粉末の平均粒子径は 1〜500 mの範囲であることが好ましい。この平 均粒子径が 1 μ m未満の場合、非アジド系ガス発生剤の製造が困難となる傾向にあ る。一方、平均粒子径が 500 mを越えると成形物の機械的物性が悪くなり、また燃 焼速度が遅くなる傾向にある。更に非アジド系ガス発生剤の機械的物性及び燃焼性 能を考慮すれば、その平均粒子径は 1〜200 mであることがより好ましぐ 1〜100 μ mであることが特に好ましい。
[0098] 酸化剤の配合量は、酸化剤と燃料の総質量に対して好ましくは 58〜97質量%、よ り好ましくは 75〜95質量%、特に好ましくは 78〜93質量%である。酸化剤の配合量 が 58質量%未満の場合、生成ガス中に多量の一酸ィ匕炭素が生成する傾向にある。 また、酸化剤の配合量が 97質量%を超える場合、非アジド系ガス発生剤の機械的物 性が低下し、また燃焼速度も低下する傾向にある。非アジド系ガス発生剤中の酸素 量が不足 (酸素バランスが負の場合)していると、燃焼した際に不完全燃焼により有 害な一酸化炭素が発生する。
[0099] 一方、非アジド系ガス発生剤中の酸素量が過剰 (酸素バランスが正の場合)となると 、燃焼した際に二酸ィ匕窒素等の有害物質が発生する。そのため、有害物質の発生を 抑制するためには、非アジド系ガス発生剤中の酸化剤と燃料との配合割合を調整し 、非アジド系ガス発生剤中の酸素量が過不足とならな ヽ (酸素バランスが士 0)状態 にすることが望ましい。この観点から、非アジド系ガス発生剤中の酸化剤の配合量が 実質的に設定される。
[0100] 燃料について説明する。非アジド系ガス発生剤に含まれる燃料は特に限定されな い。着火剤に用いられる燃料が使用可能である。燃料の例は、高分子結合剤、粉末 状微結晶炭素、及び含窒素化合物である。高分子結合剤の中では、酸化剤や燃料 の粉体状の構成成分を賦形する能力の高 ヽ酢酸セルロース、酢酸酪酸セルロース 又はェチルセルロース等のセルロース系結合剤が好ましい。
[0101] 粉末状微結晶炭素の中では、酸化剤との反応性の高い活性炭及び木炭が好まし い。粉末状微結晶炭素の形状は、混合性と燃焼性力 粉末であることが望ましい。そ の平均粒子径は 0.1〜500 μ mであることが好ましい。 0.1 m未満の場合、非アジ ド系ガス発生剤を粒状に成形することが困難となる傾向にある。一方、平均粒子径が 500 mを越えると燃焼速度が遅くなる傾向にある。更に非アジド系ガス発生剤の機 械的物性及び燃焼性能を考慮すれば、その平均粒子径は l〜200 /z mであることが より好ましぐ 1-100 μ mであることが特に好ましい。
[0102] 粉末状微結晶炭素の比表面積は、 5〜1600m2Zgが好ましい。粉末状微結晶炭 素の比表面積が 5m2/g未満の場合、非アジド系ガス発生剤の燃焼速度が遅くなる 傾向にある。一方、粉末状微結晶炭素の比表面積が 1600m2Zgを越える場合、粉 末状微結晶炭素の製造性が悪くなる傾向にある。更に非アジド系ガス発生剤の機械 的物性及び燃焼性能を考慮すれば、その比表面積は 10〜 1500m2Zgであることが より好ましく、 50〜 1300m2Zgであることが特に好まし 、。 [0103] 含窒素化合物の中では、トリメチレントリ-トロアミン (RDX)、テトラメチレンテトラ-ト ロアミン(HMX)、ペンタエリスリトールテトラナイトレート(PETN)、ニトログァ-ジン( NQ)、トリアミノグァ二ジンナイトレート(TAGN)、 5—アミノテトラゾール、ジ-トロアメ リン、ァゾジカルボンアミド、硝酸ヒドラジン等が好ましい。
[0104] 含窒素化合物の平均粒子径は 1〜500 μ mであることが好ましい。この平均粒子径 力 m未満では非アジド系ガス発生剤を粒状に成形することが困難となる傾向にあ り、平均粒子径が 500 mを越えると燃焼速度向上の効果がなくなる傾向にある。更 に、非アジド系ガス発生剤の機械的物性及び燃焼性能を考慮すれば、その平均粒 子径は 1〜200 μ mであることがより好ましぐ 1〜: LOO μ mであることが特に好ましい
[0105] 燃料の配合量は、酸化剤及び燃料の総質量に対して、好ましくは 3〜42質量%、 より好ましくは 5〜25質量%、特に好ましくは 7〜22質量%である。燃料の配合量が 3質量%未満の場合、非アジド系ガス発生剤の機械的特性が低下し、またガス発生 量も低下する傾向にある。燃料の配合量が 42質量%を超える場合、生成ガス中に多 量の一酸ィ匕炭素が生成する傾向にある。
[0106] 更に非アジド系ガス発生剤には、可塑性を付与し、成形性を向上させるために可塑 剤を配合することができる。結合剤と相溶性の良 、公知の全ての可塑剤が使用でき る。可塑剤の添加量は、非アジド系ガス発生剤中に 15質量%以下であることが好ま しい。
[0107] 更に非アジド系ガス発生剤には、経時安定性を向上させるために経時安定剤を配 合することができる。経時安定剤の種類は限定されない。経時安定性を向上させるこ とが可能である公知の全ての物質が経時安定剤として使用できる。経時安定剤の添 加量は、非アジド系ガス発生剤中にお 、て 10質量%以下が好ま 、。
[0108] 非アジド系ガス発生剤は、酸化剤の分解により生成するアルカリ金属又はアルカリ 土類金属の酸ィ匕物をミストとしてガス発生器外へ放出することを抑制するため、スラグ 形成剤を配合することができる。スラグ形成剤としては、着火剤 26、 39と同様にスラ グを形成させることが可能である物質であれば全て使用できる。スラグ形成剤の添加 量は、非アジド系ガス発生剤中にお 、て 10質量%以下が好まし 、。 [0109] 非アジド系ガス発生剤として好ましい組成物は、酸化剤として硝酸のアンモ-ゥム 塩、燃料としてセルロース系の高分子結合剤、可塑剤として脂肪酸エステルの組み 合わせである。具体的には、酸化剤として硝酸アンモ-ゥム、燃料として酢酸酪酸セ ルロース、可塑剤としてタエン酸ァセチルトリブチルの組み合わせである。この組成物 は、ガス化率に優れているものであり、更に耐熱性及び機械的特性にも優れている ため、非アジド系ガス発生剤としてより好ま U、ものである。
[0110] 酸化剤としてォキソハロゲン酸のアンモ-ゥム塩、硝酸のアルカリ金属塩、燃料とし てセルロース系の高分子結合剤、可塑剤として脂肪酸エステル系の組み合わせも好 ましいものである。具体的には、酸化剤として過塩素酸アンモ-ゥム及び硝酸ナトリウ ム、燃料として酢酸酪酸セルロース、可塑剤としてタエン酸ァセチルトリブチルの組み 合わせである。この組成物は、ガス化率に優れているものであり、更に耐熱性及び機 械的特性にも優れて ヽるため、非アジド系ガス発生剤としてより好ま Uヽものである。
[0111] 第 2実施形態の着火剤 26、 39と非アジド系ガス発生剤との割合は第 1実施形態で 説明したとおりである。
[0112] 着火剤 26、 39と非アジド系ガス発生剤を併用する際には、必ず着火剤 26、 39の 燃焼速度の方が非アジド系ガス発生剤の燃焼速度よりも速いものでなければならな い。なぜならば、非アジド系ガス発生剤よりも燃焼速度が遅い着火剤を使用しても、 非アジド系ガス発生剤の着火性及び燃焼性を改善できないからである。尚、同一原 材料より得られる着火剤 26、 39と非アジド系ガス発生剤を併用する場合には、両者 で粒径を変えたり、酸化剤と燃料との配合割合を調整したりすることにより、着火剤 2 6、 39の燃焼速度を非アジド系ガス発生剤の燃焼速度よりも速くさせる必要がある。
[0113] 第 2実施形態の着火剤 26、 39は第 1実施形態で説明した方法で製造することがで きる。着火剤の形状は特に限定されない。第 2実施形態の着火剤 26、 39は第 1実施 形態で説明した形状を有することができる。着火剤の形状の例は、外径 0. l〜5mm 及び長さ 0.1〜5mmの円柱状、外径 0. 3〜5mm、内孔径 0. l〜4.9mm、長さ 0. 1 〜5mm、壁の厚さ 0.1〜3mm程度の円筒である。
[0114] 第 2実施形態によれば、以下の利点が得られる。
• 第 2実施形態のガス発生器用の着火剤 26、 39では、着火剤 26、 39の燃焼速度 が非アジド系のガス発生剤 25、 38の燃焼速度より速くなるように構成されている。こ のため、着火剤 26、 39はガス発生剤 25、 38よりも着火が速ぐ燃焼時における燃焼 の伝播が速ぐガス発生剤 25、 38の燃焼を速やかに進行させることができる。従って 、高ガス化率を維持しながら、非アジド系のガス発生剤 25、 38の着火性及び燃焼性 を向上させることができる。
[0115] · 前記燃焼速度は、点火器への通電開始から燃焼室 24、 32で発生したガスによ る最大圧力までの到達時間によって規定される。そして、着火剤 26、 39の到達時間 が非アジド系ガス発生剤の到達時間より短くなるように構成されている。従って、非ァ ジド系のガス発生剤 25、 38の着火性及び燃焼性を一層向上させることができる。
[0116] 以下に、実施例、製造例及び比較例を挙げて、第 1及び第 2実施形態を具体的に 説明する。
(実施例 1)
平均粒径 30 mの過塩素酸カリウム 79.5質量%、酢酸酪酸セルロース 11.5質量 。/。、タエン酸ァセチルトリブチル 8.0質量%、活性炭 1.0質量%の割合になるように混 合した混合物に対し、アセトン 20質量%、エチルアルコール 10質量%の混合溶液を 加え、いわゆるウェルナー混和機で均一に混合した。ウェルナー混和機は、横方向 に延びる回転軸に支持された撹拌羽根により撹拌、混合する装置である。
[0117] この混合物を押出装置に装填した。押出装置には予め孔径 0.75mmのダイス及び 直径 0.25mmのピンが取り付けられている。そして、圧力を加えることにより、このダイ スの孔を通りながら押出され 1個の貫通孔を有する円筒に成形される。この成形物を 2.0mmの長さに切断し、乾燥することにより図 1 (b)に示す形状を有する粒状の着火 剤を得た。着火剤の寸法を表 1に示す。密閉ボンブ燃焼試験により、点火器への通 電開始力 最大圧力までに要する到達時間を調べた。試験結果を表 1に示す。
[0118] (実施例 2〜5)
組成に関しては、実施例 1と同じ原料成分及び配合量である。表 1に示した成形治 具を用いて、実施例 1と同様の方法により着火剤を各々製造し、到達時間を実施例 1 と同じ方法で評価した。結果を表 1に示す。
[0119] (実施例 6) 平均粒径 30 μ mの過塩素酸カリウム 84.2質量%、酢酸酪酸セルロース 2.0質量0 /0 、タエン酸ァセチルトリブチル 2.0質量%及び活性炭 11.8質量%の割合になるように 混合した混合物に対し、アセトン 30質量%、水 5質量%の混合溶液を加え、ゥエルナ 一混和機で均一に混合した。
[0120] この混合物を造粒装置に装填した。造粒装置には、予め外径 0.28mmのパンチン グメタルが取り付けられている。そして、混合物に圧力を加えることにより、このパンチ ングメタルの孔を通りながら押出され顆粒状の着火剤が得られた。着火剤の寸法を 表 1に示す。密閉ボンブ燃焼試験により、着火剤の通電開始力 最大圧力までの到 達時間を調べた。表 1に示すように到達時間は 5〜20ミリ秒の範囲内であった。
[0121] (実施例 7〜8)
組成に関しては、実施例 6と同じ原料成分及び配合量とした。そして、表 1に示した 成形治具を用いて、実施例 6と同様の方法により着火剤を各々製造し、到達時間を 実施例 6と同じ方法で評価した。結果を表 1に示す。
[0122] [表 1]
Figure imgf000028_0001
(シートベルトプリテンショナ一用ガス発生剤の製造例 1)
平均粒径 80 μ mの硝酸アンモニゥム 90.0質量%、酢酸酪酸セルロース 6.0質量0 /0 、タエン酸ァセチルトリブチル 3.0質量%及び活性炭 1.0質量%の混合物を用意した 。アセトン 20質量%及びエチルアルコール 10質量%の混合溶液を用意した。上記 混合物に上記混合溶液を加えて、ウェルナー混和機で均一に混合し、混練物を生 成し 7こ。 [0123] この混練物を押出装置に装填した。押出装置には予め孔径 1.75mmのダイス及び 直径 0.25mmの 1個のピンが取り付けられている。混練物を加圧して、ダイスを通過 させることで、 1個の貫通孔を有する円筒を押出し成形した。この円筒を 2.0mmの長 さに切断し、乾燥することにより図 1 (b)の形状を有する粒状のプリテンショナー用ガ ス発生剤を得た。ガス発生剤の寸法を表 2に示す。
[0124] (シートベルトプリテンショナ一用ガス発生剤の製造例 2)
平均粒径 80 μ mの過塩素酸アンモ-ゥム 47.1質量0 /0、平均粒径 70 μ mの硝酸ナ トリウム 34.9質量%、酢酸酪酸セルロース 9.0質量%、タエン酸ァセチルトリブチル 8. 0質量%、活性炭 1.0質量%の割合になるように混合した。そして、表 2に示した成形 治具を用いて、シートベルトプリテンショナ一用ガス発生剤の製造例 1と同様の方法 によりガス発生剤を製造した。ガス発生剤の寸法を表 2に示す。
[0125] [表 2]
Figure imgf000029_0001
(実施例 9)
シートベルトプリテンショナ一用ガス発生剤の製造例 1のガス発生剤を 91質量%、 実施例 1の着火剤を 9質量%の割合で密閉ボンブ装置に配置し、燃焼試験を行なつ た。この組成物のガス化率を理論計算 (組成物の燃焼生成物のうち気体成分の質量 比を%で表記した。)より求めた。密閉ボンブ燃焼試験により、着火剤の通電開始か ら最大圧力までの到達時間力 シートベルトプリテンショナ一用ガス発生剤に要求さ れる 15〜30ミリ秒であるか否かを調べた。試験結果を表 3に示す。
[0126] (実施例 10〜20)
表 3に示した質量比となるように組成物を混合し、各組成物の特性を実施例 9と同じ 方法で評価した。評価を表 3に示す。図 7は、実施例 15の燃焼プロファイルである。
[0127] [表 3] 比 ガス化率 到達時間 実施例 ガス発生剤 (表 2) 着火剤 (表 1 ) (ガス発生剤 Z着火剤) ( ) (ms)
9 1 91/9 96 21
10 1 2 91/9 96 23
11 1 3 91/9 96 29
12 1 4 91/9 96 22
13 7 91/9 96 20
14 2 1 91/9 75 17
15 2 2 91/9 75 20
16 2 3 91/9 75 24
17 2 4 91/9 75 17
18 2 7 91/9 75 15
19 2 1 97/3 76 28
20 2 3 75/25 72 15 比較例 1 1 100/0 100 46
比較例 2 2 - 100/0 76 40
(実施例 21)
平均粒径 30 μ mの過塩素酸カリウム 78.8質量%と酢酸酪酸セルロース 21.2質量 %との混合物に対し、アセトン 20質量%及びエチルアルコール 10質量%を混合した 混合溶液を加え、いわゆるウェルナー混和機で均一に混合した。尚、ウェルナー混 和機は、横方向に延びる回転軸に支持された撹拌羽根により撹拌、混合する装置で ある。
この混合物を押出装置に装填した。押出装置には予め孔径が 0.95mmのダイス及 び直径が 0.25mmのピンが取付けられている。そして、混合物に圧力を加えることに より、混合物はダイスの孔を通りながら押出され、 1個の貫通孔を有する円筒に成形さ れる。この円筒を 2.0mmの長さに切断し、乾燥することにより図 1 (b)の形状を有する 粒状の着火剤を得た。得られた着火剤の寸法を表 4に示す。また、密閉ボンブ燃焼 試験を行って、この着火剤の通電開始力 最大圧力までの到達時間を調べた。表 4 に示すように到達時間は 5〜20ミリ秒の範囲内であった。
[0129] (実施例 22〜27)
表 4に示した組成で、実施例 21と同様の方法により着火剤を各々製造し、各々の 特性を実施例 21と同じ方法で評価した。結果を表 4に示す。
[0130] (実施例 28)
平均粒径 30 μ mの過塩素酸カリウム 85.2質量%、酢酸酪酸セルロース 3.0質量0 /0 、タエン酸ァセチルトリブチル 2.0質量%及び活性炭 9.8質量%の混合物に対し、ァ セトン 30質量%及び水 5質量%を混合した混合溶液を加え、ウェルナー混和機で均 一に混合した。
[0131] この混合物を造粒装置に装填した。造粒装置には、予め孔径 0.35mmのパンチン グメタルが取り付けられている。そして、混合物に圧力を加えることにより、混合物は パンチングメタルの孔を通りながら押出され、図 1 (a)の形状を有する粒状の着火剤 を得た。得られた着火剤の寸法を表 4に示す。また、この着火剤の通電開始カゝら最大 圧力までの到達時間を調べるため、密閉ボンブ燃焼試験を行った。表 4に示すように 到達時間は 5〜20ミリ秒の範囲内であった。
[0132] (実施例 29)
表 4に示した組成で、実施例 28と同様の方法により着火剤を製造し、その特性を実 施例 28と同じ方法で評価した。結果を表 4に示す。
[0133] [表 4]
着火剤
実施例 直径 孔怪 到達時間 成分 質量% 形状 長さ
(mm) (mm) (ms) 過塩素酸カリウム 78 8
21 円筒 0.8 1.8 0.2 1 1 齚酸酪酸セルロース 21 .2
過塩素 ¾アンモニゥム 4735
22 硝酸ナトリウム 34—1 円简 0.7 1.7 0.2 14 if酸酷酸セルロース 18.4
過塩素酸カリウム 79.9
23 醉酸醮酸セルロース 13.6 円简 0.3 1.6 0.2 12 クェン酸ァセチルトリブチル 6.5
遇塩素酸アン ゥ厶 47.4
硝酸ナトリウム 34 6
24 円筒 0.7 1 a 0.2 14 醉酸酪酸セルロース 12 0
クェン酵ァセチルトリブチル 6.0
遏塩素酸カリウム 80.5
酢酸酷酸セルロース 11.5
25 円筒 0,3 1 8 0.2 9 クェン酸ァセチルトリブチル 7 0
活性 1.0
過塩素酸アン ゥ厶 48.2
硝酸ナトリウム 35 8
26 酢酸酪酸セルロース 3.0 円筒 0 7 16 0.2 1 1 クェン酸ァセチルトリブチル G O
活性 2.0
過塩素酸アンモニゥム 85.5
ίΐ酸酪酸セルロース 9.0
27 円筒 0.7 1.8 0.2 10 クェン酸ァセチル Jブチル 4.5
活性 Εϊί 1.0
過塩素酸カリウム 35 2
酸豁酸セルロース 3.0
28 円柱 0.3 8 ゥェン酸ァセチル卜リブチル 2.0
活性 9.3
過塩素酸アンモニゥム 50 2
硓酸ナトリウム 36,3
29 酢酸酪酸セルロース 3.0 円柱 0.3 0.5 - 10 クェン酸ァセチルトリブチル 2.0
活性!^ 8.5
(プリテンショナ一用ガス発生剤の製造例 3、 4)
製造例 1、 2と同じ方法で、表 5の組成と寸法を有するガス発生剤を製造した。
[表 5] ガス発生剤
製造例 成分 質量%
形状 直径 (mm) さ (mm) 孔径 (mm) 碓酸アンモニゥム 90,0
It酸酪酸セルロース 6,0
3 円筒 1.4 1.8 0.2
クェン酸ァセチルトリブチル 3.0
活性炭 1.0
過塩素酸アンモニゥム 47.1
硝酸ナトリウム 34.9
4 齚酸醅酸セルロース 9.0 円筒 1.6 1.8 0.2
クェン酸ァセチルトリブチル 8.0
活性炭 1.0
(実施例 30)
製造例 3のガス発生剤が 91質量%、実施例 21の着火剤が 9質量%の割合となるよ うに混合し、この混合物を密閉ボンブ燃焼装置で燃焼させた。この組成物のガス化率 を理論計算 (組成物の燃焼生成物のうち気体成分の質量割合を%で表記した。 )より 求めた。また、通電開始力も最大圧力までの到達時間を調べた。表 6に示すように、 到達時間はプリテンショナ一用ガス発生剤に要求される 15〜30ミリ秒の範囲内であ つた o
[表 6]
質量比 ガス化率 到達時間 実施例 ガス発生剤 (表 5) 着火剤 (表 4)
(ガス発生剤 着火剤) (%) (ms)
30 3 21 91/9 96 26
31 3 22 91/9 98 28
32 3 25 91/9 69 24
33 3 26 91/9 98 25
34 3 28 91/9 96 24
35 4 21 91/9 75 21
36 4 22 91/9 77 23
37 4 25 91/9 75 20
38 4 26 91/9 76 22
39 4 28 91/9 75 18
40 4 26 97/3 76 29
41 4 25 75/25 72 16
(実施例 31〜41)
表 6に示した質量比でガス発生剤と着火剤とを混合した。実施例 30と同じ方法で各 場合の特性を評価した。結果を表 6に示す。実施例 37は図 7の燃焼プロファイルとほ ぼ同じ燃焼プロファイルを示した。
[0136] (比較例:!〜 2)
着火剤を使用せず、シートベルトプリテンショナ一用ガス発生剤を単独使用したとき の特性を実施例 10と同じ方法で評価した。結果を表 3に示す。図 6は比較例 2の燃 焼プロファイルである。
[0137] 表 1〜表 6、図 6及び図 7の試験結果より次の知見が得られた。
実施例 1〜8の着火剤は、通電開始力も最大圧力までの到達時間を 6〜13ミリ秒に 調整することができた。粒状の着火剤を配合した実施例 9〜20では、着火性及び燃 焼性が改善されたため、いずれも到達時間は 15〜30ミリ秒の範囲となり、シートベル トプリテンショナ一用ガス発生剤として使用可能であることが明らかとなった。 [0138] 実施例 21〜29に示した着火剤は、通電開始力 最大圧力までの到達時間を 8〜1 4ミリ秒に調整することができた。着火剤を配合した実施例 30〜41では、着火性及び 燃焼性が改善されたため、いずれも到達時間は 15〜30ミリ秒の範囲となり、プリテン ショナ一用ガス発生剤として使用可能であることが明らかとなった。実施例 41は、着 火剤の配合割合が多 、ため、プリテンショナ一用ガス発生剤として使用可能ではある ものの、ガス化率が低下する傾向にあることがわ力つた。
[0139] これに対して、着火剤を配合しな!、比較例 1及び 2のガス発生剤では、低着火性、 低燃焼性に起因して、到達時間が 30ミリ秒以上であり、プリテンショナ一用ガス発生 剤として使用不可能であった。
[0140] 図 6の燃焼プロファイルは、いわゆる S字型である。すなわち、比較例 2のガス発生 剤の単独使用では、燃焼初期 (点火器への通電開始力も約 23ミリ秒まで)の燃焼速 度 (燃焼圧力)は非常に低ぐ燃焼圧力は燃焼中期 (約 23ミリ秒の経過後)から上昇 しており、燃焼性に問題がある。
[0141] 一方、図 7の燃焼プロファイルは、いわゆる直線型である。すなわち、実施例 15及 び実施例 37の着火剤を配合したシートベルトプリテンショナ一用ガス発生剤では、燃 焼圧力 (燃焼速度)は燃焼初期から直線的に上昇しており、燃焼初期から高い燃焼 速度に達しており、燃焼性が大幅に改善されている。
[0142] 比較例 2に示したシートベルトプリテンショナ一用ガス発生剤の組成物にて最小寸 法 Lを小さくした試料を作製し、密閉ボンブ燃焼試験を実施した。その結果、最小寸 法 Lを小さくするに従い、着火性は改善される方向にあり、到達時間が速くなることが わかった。し力しながら、燃焼プロファイルは、 S字型のままであることから、燃焼性に 関しては改善が不可能であることが分かった。以上の結果より、着火性及び燃焼性 の改善を行うためには、必ず着火剤の併用が必要であることがわ力つた。
[0143] 実施例 15の耐熱性及び燃焼後の一酸化炭素濃度について試験を行った結果、共 に問題のないことが確認できた。実施例 19は、着火剤の質量比が小さいため、シート ベルトプリテンショナ一用ガス発生剤として使用可能ではあるものの、到達時間が遅 くなる傾向にあることがわ力つた。実施例 20は、着火剤の質量比が大きいため、シー トベルトプリテンショナ一用ガス発生剤として使用可能ではあるものの、ガス化率が低 下する傾向にあることがわ力つた。
[0144] 各実施形態は次のように変更することができる。
• 着火剤 39を、ガス発生装置 30の点火薬 35の部位に収容することも可能である。 或は、点火薬 35に代えて着火剤 39を配置することも可能である。
[0145] . 非アジド系のガス発生剤 25、 38に対する着火剤 26、 39の含有量を、ガス発生 装置 30の場合に比べてガス発生装置 12の場合に高くすることができる。この場合、 ガス発生装置 12の燃焼室 24内に収容されている非アジド系のガス発生剤 25全体を 十分に燃焼させることができる。
[0146] · 非アジド系ガス発生剤は、酸化銅、酸化鉄及び酸化マンガンのような燃焼触媒、 又は、ォキシエチレンドデシルァミン、ポリオキシエチレンドデシルァミン及びポリオキ シエチレンォクタデシルァミンのような耐環境安定剤等を含有してもよい。
[0147] ガス発生装置 12の溝 27に代えて、薄肉部や貫通孔を形成してもよい。
着火剤 26、 39を後部座席ガス発生装置、側面衝突ガス発生装置、カーテンガス発 生装置等に使用することもできる。
最も好ましい着火剤は、第 1実施形態で説明した形状及び寸法と、第 2実施形態で 説明した組成とを有するものである。

Claims

請求の範囲
[1] 非アジド系ガス発生剤と共に車両乗員保護装置のガス発生装置に使用されて前記 非アジド系ガス発生剤を着火するための着火剤であって、前記非アジド系ガス発生 剤は第 1の燃焼速度で燃焼するものであり、前記着火剤は、燃料と酸化剤とを含有し 、前記非アジド系ガス発生剤の前記第 1の燃焼速度よりも速 、第 2の燃焼速度で燃 焼するように構成されている、前記着火剤。
[2] 前記第 1又は第 2の燃焼速度は、
前記非アジド系ガス発生剤又は前記着火剤を点火器付きの密閉室内に収容し、 前記点火器を作動させ、
前記密閉室内のガス圧力をモニタし、
前記点火器の作動開始時点力 前記密閉室内のガス圧力が最大値に到達した時 点までの到達時間を測定することによって得られるものであり、
前記着火剤の到達時間は前記非アジド系ガス発生剤の到達時間よりも短い請求項 1の着火剤。
[3] 前記着火剤が 0.059gZmlの装填密度で前記密閉室に装填されて点火されたとき にお 、て、前記着火剤の前記到達時間は 5〜20ミリ秒である請求項 2の着火剤。
[4] 前記着火剤の酸素バランスは正である請求項 1の着火剤。
[5] 前記非アジド系ガス発生剤は第 1の複数の寸法によって定義される形状を有するも のであり、
前記着火剤は、第 2の複数の寸法によって定義される形状を有するものであり、 前記第 2の複数の寸法の最小値は、前記非アジド系ガス発生剤の前記第 1の複数 の寸法の最小値よりも小さい請求項 1の着火剤。
[6] 前記非アジド系ガス発生剤が着火されたときに、前記非アジド系ガス発生剤の燃焼 は第 1の複数の燃焼方向に沿って進行するものであり、前記非アジド系ガス発生剤 は、前記第 1の複数の燃焼方向に沿った第 1の複数の寸法を有するものであり、前記 着火剤が着火されたときに、前記着火剤の燃焼は第 2の複数の燃焼方向に沿って進 行するものであり、
前記着火剤は、前記第 2の複数の燃焼方向に沿った第 2の複数の寸法を有し、そ の第 2の複数の寸法の最小値は、前記第 1の複数の寸法の最小値より小さい請求項 1の着火剤。
[7] 前記着火剤は、前記第 1の複数の寸法の最小値が 0. 3〜4mmの範囲にある非アジ ド系ガス発生剤とともに使用されるものであって、前記第 2の複数の寸法の最小値が 0. 01〜3mmである請求項 5又は 6の着火剤。
[8] 前記着火剤及び前記非アジド系ガス発生剤は粒状又は粉状である請求項 5又は 6の 着火剤。
[9] 前記着火剤は粒状であり、前記第 2の複数の寸法の最小値が 0.01〜3mmである請 求項 5又は 6の着火剤。
[10] 前記着火剤は
軸線と、 0.1〜2mmの外径と、 0.1〜3mmの軸線に沿った長さとを有する円柱か、 又は
軸線と、外径と、軸線に沿った長さと、軸線に沿って延びる孔と、側面とを有する中 空体であって、前記外径が 0.3〜3mmであり、前記長さが 0. l〜3mmであり、前記 孔の直径が 0.1〜lmmであり、前記側面力も前記孔までの間の厚さが 0.1〜1.5mm である前記中空体である、請求項 5又は 6の着火剤。
[11] 前記孔は複数の孔の一つである請求項 10の着火剤。
[12] 前記非アジド系ガス発生剤は過塩素酸塩酸化剤と燃料と塩素掃去剤とを含有し、 前記着火剤の前記酸化剤は過塩素酸塩酸化剤である請求項 1、 5、 6のいずれか 一項の着火剤。
[13] 前記非アジド系ガス発生剤はアンモ-ゥム塩酸化剤及び燃料を含有し、
前記着火剤の前記酸化剤はカリウム塩である請求項 1、 5、 6のいずれか一項の着 火剤。
[14] 前記着火剤の前記酸化剤は硝酸塩、亜硝酸塩又はォキソハロゲン酸塩であり、 前記着火剤の燃料は、高分子結合剤、粉末状微結晶炭素又は含窒素化合物である 請求項 1、 5、 6のいずれか一項の着火剤。
[15] 更に、可塑剤、経時安定剤又はスラグ形成剤を含有する請求項 12乃至 14のいずれ か一項の着火剤。
[16] 前記着火剤の前記酸化剤と前記着火剤の前記燃料との重量比が、 68: 32〜98: 2 である請求項 12乃至 14のいずれか一項の着火剤。
[17] 前記乗員保護装置は車両エアバッグ装置であり、前記着火剤及び前記非アジド系ガ ス発生剤は前記車両の車室内に配置される請求項 1乃至 16のいずれか一項の着火 剤。
[18] 前記乗員保護装置は車両シートベルトプリテンショナ一であり、前記着火剤及び前記 非アジド系ガス発生剤は前記車両の車室内に配置される請求項 1乃至 16のいずれ か一項の着火剤。
[19] 非アジド系ガス発生剤を着火させる着火剤の使用方法であって、
車両乗員保護装置のガス発生装置に、前記非アジド系ガス発生剤と前記着火剤と を装填する工程を備え、前記非アジド系ガス発生剤は第 1の燃焼速度で燃焼するも のであり、前記着火剤は燃料と酸化剤とを含有し、前記第 1の燃焼速度よりも速い第
2の燃焼速度で燃焼するものである、前記使用方法。
[20] 60〜98質量%の前記非アジド系ガス発生剤と、 2〜40質量%の前記着火剤とを前 記ガス発生装置に装填することを備える請求項 19の使用方法。
[21] 前記非アジド系ガス発生剤は、 0.059gZmlの装填密度で密閉室に装填されて点火 されたとき、 25〜: LOOミリ秒の前記到達時間を有するものであり、
前記着火剤は、 0.059gZmlの装填密度で密閉室に装填されて点火されたとき、 5
〜20ミリ秒の前記到達時間を有するものである請求項 19の使用方法。
[22] 前記非アジド系ガス発生剤の酸素バランスは実質的に ±0であり、前記着火剤の酸 素バランスは正である請求項 19の使用方法。
[23] 車両乗員保護装置のガス発生装置であって、
燃焼室と、
前記燃焼室に熱エネルギーを供給する点火装置と、
前記燃焼室に収容された非アジド系ガス発生剤と、
前記燃焼室に収容され、前記非アジド系ガス発生剤を着火するための着火剤とを 備え、
前記非アジド系ガス発生剤は、第 1の燃焼速度で燃焼するものであり、 前記着火剤は燃料と酸化剤とを含有し、前記非アジド系ガス発生剤の前記第 1の 燃焼速度よりも速い第 2の燃焼速度で燃焼するものである前記ガス発生装置。
前記非アジド系ガス発生剤は、第 1の最小寸法を含む第 1の複数の寸法によって定 義される形状を有するものであり、前記着火剤は、酸化剤及び燃料を含有し、第 2の 最小寸法を含む第 2の複数の寸法によって定義される形状を有するものであり、前記 着火剤の前記第 2の最小寸法は、前記非アジド系ガス発生剤の前記第 1の最小寸法 よりも小さい請求項 23のガス発生装置。
PCT/JP2005/011125 2004-06-17 2005-06-17 ガス発生装置用の着火剤 WO2005123631A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/571,155 US20080217893A1 (en) 2004-06-17 2005-06-17 Firing Agent for Gas Generating Device
CA002538343A CA2538343C (en) 2004-06-17 2005-06-17 Firing agent for gas generating device
EP05751583A EP1785409A4 (en) 2004-06-17 2005-06-17 IGNITION AGENT FOR GAS GENERATING DEVICE
US12/626,140 US7993475B2 (en) 2004-06-17 2009-11-25 Firing agent for gas generating device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004180000A JP4682542B2 (ja) 2004-06-17 2004-06-17 ガス発生器用の着火剤
JP2004180001A JP4682543B2 (ja) 2004-06-17 2004-06-17 ガス発生器用の着火剤
JP2004-180000 2004-06-17
JP2004-180001 2004-06-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/571,155 A-371-Of-International US20080059258A1 (en) 2004-06-24 2005-06-23 Method and System for Selecting Search List Table in Internet Search Engine in Response to Search Request
US12/626,140 Division US7993475B2 (en) 2004-06-17 2009-11-25 Firing agent for gas generating device

Publications (2)

Publication Number Publication Date
WO2005123631A1 true WO2005123631A1 (ja) 2005-12-29
WO2005123631A8 WO2005123631A8 (ja) 2006-02-23

Family

ID=35509589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011125 WO2005123631A1 (ja) 2004-06-17 2005-06-17 ガス発生装置用の着火剤

Country Status (4)

Country Link
US (2) US20080217893A1 (ja)
EP (1) EP1785409A4 (ja)
CA (1) CA2538343C (ja)
WO (1) WO2005123631A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137815A (ja) * 2007-12-10 2009-06-25 Daicel Chem Ind Ltd ガス発生剤組成物
EP1990088A4 (en) * 2006-01-18 2017-12-13 Nippon Kayaku Kabushiki Kaisha Small gas-generating device for gas actuator and pretensioner system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618495B1 (en) 2013-10-28 2020-04-14 Joyson Safety Systems Acquisition Llc Foam-in-place pyrotechnic system
DE102016113732A1 (de) 2016-07-26 2018-02-01 Trw Airbag Systems Gmbh Gasgenerator mit pyrotechnischem Treibsatz und Verfahren zur Herstellung des Treibsatzes
WO2019162575A1 (en) * 2018-02-22 2019-08-29 Jyväskylän Ammattikorkeakoulu Oy Oxidizer agent for a composition generating gas in a protection device of a vehicle, composition for generating gas, and a gas generator for a protection device of a vehicle
RU2694773C1 (ru) * 2018-09-21 2019-07-16 Естиконде Инвестмент Лимитед Азотогенерирующий состав для пожаротушения и способ его получения

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118580A (ja) * 1995-09-15 1997-05-06 Morton Internatl Inc 非アジド系ガス発生剤用点火剤組成物
WO1999057083A1 (fr) * 1998-04-30 1999-11-11 Daicel Chemical Industries, Ltd. Composition ameliorante pour gonfleur
JP2002265293A (ja) * 2000-12-27 2002-09-18 Nof Corp ガス発生剤組成物
JP2003112991A (ja) * 2001-10-04 2003-04-18 Nof Corp ガス発生剤組成物及びエアバッグ
JP2003524565A (ja) * 1997-07-22 2003-08-19 アライアント・テクシステムズ・インコーポレーテッド 押出成形可能な点火薬組成物
JP2003527276A (ja) * 1999-02-02 2003-09-16 オートリブ ディベロップメント アクティエボラーグ ガス発生伝火薬組成物及び方法
JP2005219987A (ja) * 2004-02-09 2005-08-18 Nippon Kayaku Co Ltd 伝火薬成形体及びこれを有するガス発生器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966403A (en) * 1950-09-06 1960-12-27 Atlantic Res Corp Solid propellant compositions and processes for making same
US4097241A (en) * 1974-11-04 1978-06-27 Allied Chemical Corporation Pyrotechnic tire inflator
FR2665254B1 (fr) * 1990-07-27 1992-10-16 Giat Ind Sa Systeme d'allumage pour une composition pyrotechnique.
US5125684A (en) * 1991-10-15 1992-06-30 Hercules Incorporated Extrudable gas generating propellants, method and apparatus
US5898126A (en) * 1992-07-13 1999-04-27 Daicel Chemical Industries, Ltd. Air bag gas generating composition
US5695216A (en) * 1993-09-28 1997-12-09 Bofors Explosives Ab Airbag device and propellant for airbags
US5641938A (en) * 1995-03-03 1997-06-24 Primex Technologies, Inc. Thermally stable gas generating composition
AU5525996A (en) * 1995-03-31 1996-10-16 Atlantic Research Corporation An all pyrotechnic method of generating a particulate-free, non-toxic odorless and colorless gas
DE19681514B4 (de) * 1995-07-27 2006-04-27 Nippon Kayaku K.K. Sprengstoff-Zusammensetzung für einen Airbag und Verfahren zu ihrer Herstellung
DE19531288A1 (de) * 1995-08-25 1997-02-27 Temic Bayern Chem Airbag Gmbh Pyrotechnische Gasgeneratoren mit verbessertem Anbrennverhalten
US5756929A (en) * 1996-02-14 1998-05-26 Automotive Systems Laboratory Inc. Nonazide gas generating compositions
US5959242A (en) * 1996-05-14 1999-09-28 Talley Defense Systems, Inc. Autoignition composition
EP0944562B1 (en) * 1996-08-16 2005-11-23 Automotive Systems Laboratory Inc. Autoignition compositions for inflator gas generators
JPH10130086A (ja) 1996-10-23 1998-05-19 Nippon Kayaku Co Ltd エアバッグ用ガス発生剤
US6214138B1 (en) * 1997-08-18 2001-04-10 Breed Automotive Technology, Inc. Ignition enhancer composition for an airbag inflator
US5889161A (en) * 1998-05-13 1999-03-30 Sri International N,N'-azobis-nitroazoles and analogs thereof as igniter compounds for use in energetic compositions
DE69834107T2 (de) * 1998-07-13 2006-09-21 Nof Corp. Gaserzeugende Zusammensetzungen
WO2000004152A2 (en) 1998-07-17 2000-01-27 University Of Rochester Androgen receptor coactivators
JP2000103691A (ja) 1998-09-28 2000-04-11 Daicel Chem Ind Ltd ガス発生剤組成物
JP2001002488A (ja) 1999-06-17 2001-01-09 Daicel Chem Ind Ltd プリテンショナー用ガス発生剤組成物
CA2353405C (en) * 1999-10-06 2004-11-23 Nof Corporation Gas generating composition
JP2002283942A (ja) 2001-03-28 2002-10-03 Toyoda Gosei Co Ltd インフレーター
JP3972628B2 (ja) * 2001-10-23 2007-09-05 日本油脂株式会社 ガス発生剤組成物及びガス発生器
JP2003182507A (ja) * 2001-12-25 2003-07-03 Takata Corp イニシエータ及びガス発生器
US20030145922A1 (en) * 2002-02-04 2003-08-07 Taylor Robert D. Vehicular occupant restraint
US20030230367A1 (en) * 2002-06-14 2003-12-18 Mendenhall Ivan V. Micro-gas generation
WO2004012965A1 (ja) * 2002-07-19 2004-02-12 Nippon Kayaku Kabushiki Kaisha ガス発生器
DE60322230D1 (de) * 2002-09-13 2008-08-28 Automotive Systems Lab Aufblasvorrichtung
US20040108030A1 (en) * 2002-12-06 2004-06-10 Mendenhall Ivan V. Porous igniter coating for use in automotive airbag inflators

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118580A (ja) * 1995-09-15 1997-05-06 Morton Internatl Inc 非アジド系ガス発生剤用点火剤組成物
JP2003524565A (ja) * 1997-07-22 2003-08-19 アライアント・テクシステムズ・インコーポレーテッド 押出成形可能な点火薬組成物
WO1999057083A1 (fr) * 1998-04-30 1999-11-11 Daicel Chemical Industries, Ltd. Composition ameliorante pour gonfleur
JP2003527276A (ja) * 1999-02-02 2003-09-16 オートリブ ディベロップメント アクティエボラーグ ガス発生伝火薬組成物及び方法
JP2002265293A (ja) * 2000-12-27 2002-09-18 Nof Corp ガス発生剤組成物
JP2003112991A (ja) * 2001-10-04 2003-04-18 Nof Corp ガス発生剤組成物及びエアバッグ
JP2005219987A (ja) * 2004-02-09 2005-08-18 Nippon Kayaku Co Ltd 伝火薬成形体及びこれを有するガス発生器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1785409A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990088A4 (en) * 2006-01-18 2017-12-13 Nippon Kayaku Kabushiki Kaisha Small gas-generating device for gas actuator and pretensioner system
JP2009137815A (ja) * 2007-12-10 2009-06-25 Daicel Chem Ind Ltd ガス発生剤組成物

Also Published As

Publication number Publication date
EP1785409A1 (en) 2007-05-16
US20100109304A1 (en) 2010-05-06
CA2538343A1 (en) 2005-12-29
WO2005123631A8 (ja) 2006-02-23
US7993475B2 (en) 2011-08-09
CA2538343C (en) 2009-10-20
US20080217893A1 (en) 2008-09-11
EP1785409A4 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP3972628B2 (ja) ガス発生剤組成物及びガス発生器
US20060219340A1 (en) Gas generating system
US7081175B2 (en) Gas generating composition and method
JP5719763B2 (ja) ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器
WO1998042642A1 (fr) Composition servant a generer un gaz et son moulage
EP0972757B1 (en) Gas generating compositions
JP4257740B2 (ja) ガス発生器
US7993475B2 (en) Firing agent for gas generating device
WO2000018619A1 (fr) Corps moule forme d'une composition d'agent generateur de gaz, pour airbags
JP5689065B2 (ja) ガス発生剤組成物及びその成型体、並びにこれを用いたガス発生器
US7959749B2 (en) Gas generating composition
US20070063495A1 (en) Installation structure of gas producer and air bag module
JP4682543B2 (ja) ガス発生器用の着火剤
JP4332936B2 (ja) ガス発生剤組成物及びその成形物
JP2002012492A (ja) プリテンショナー用ガス発生剤組成物
JP2000319086A (ja) ガス発生剤成形体
JP2003112991A (ja) ガス発生剤組成物及びエアバッグ
US6113713A (en) Reduced smoke gas generant with improved mechanical stability
JP4244596B2 (ja) ガス発生器
JP4682542B2 (ja) ガス発生器用の着火剤
JPH1192265A (ja) エアバッグ用ガス発生剤組成物
JPH10120484A (ja) 車両の乗員保護用ガス発生剤組成物及びその成形物並びに成形物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

CFP Corrected version of a pamphlet front page

Free format text: UNDER (57) PUBLISHED ABSTRACT IN JAPANESE REPLACED BY CORRECT ABSTRACT

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2538343

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10571155

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005751583

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005751583

Country of ref document: EP