WO2005119912A1 - コイル負荷駆動出力回路 - Google Patents

コイル負荷駆動出力回路 Download PDF

Info

Publication number
WO2005119912A1
WO2005119912A1 PCT/JP2005/010039 JP2005010039W WO2005119912A1 WO 2005119912 A1 WO2005119912 A1 WO 2005119912A1 JP 2005010039 W JP2005010039 W JP 2005010039W WO 2005119912 A1 WO2005119912 A1 WO 2005119912A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
ground
power supply
drive transistor
coil load
Prior art date
Application number
PCT/JP2005/010039
Other languages
English (en)
French (fr)
Inventor
Toshiro Okubo
Original Assignee
Rohm Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd filed Critical Rohm Co., Ltd
Priority to US11/569,946 priority Critical patent/US20080018365A1/en
Publication of WO2005119912A1 publication Critical patent/WO2005119912A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements

Definitions

  • the present invention relates to a coil load drive output circuit for driving a coil load such as a motor actuator.
  • Patent Document 1 JP-A-6-152374
  • Patent Document 2 JP-A-11 317653
  • the current flows to the coil load 2 through the parasitic diode 113 existing in parallel with the second drive transistor 112. Therefore, at this time, the voltage at the output terminal OUT changes from the power supply potential V to the ground potential or less. Radiated noise.
  • This radiation noise can usually be dealt with by mounting a noise suppression component such as a capacitor at a place where it is necessary. It is important in terms of performance and cost to reduce the power radiation noise itself.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coil load drive output circuit that can reduce radiation noise due to switching. Means for solving the problem
  • a coil load drive output circuit is connected in series between a power supply potential and a ground potential, and includes a midpoint power supply drive drive circuit.
  • First and second control transistors that output transistor control voltages, first and second current limiting impedance elements that respectively limit currents flowing through the first and second control transistors, a power supply potential and a ground potential,
  • the third and fourth control transistors which are connected in series between each other and output the midpoint force ground-side drive transistor control voltage, and the third and fourth control transistors, which limit the current flowing through the third and fourth control transistors, respectively.
  • the fourth current limiting impedance element is connected in series between the power supply potential and the ground potential, and each is controlled by the power supply side drive transistor control voltage or the ground side drive transistor control voltage.
  • the power supply side drive transistor and the ground side drive transistor that output the drive voltage for driving the coil load from the middle point are controlled by the power supply side drive transistor control voltage.
  • the power supply side driving transistor is a P-type MOS transistor
  • the ground side driving transistor is an N-type MOS transistor
  • the second and third current limiting impedance elements are first and fourth current limiting impedance elements. Is larger than the resistance value.
  • the power supply side driving transistor and the ground side driving transistor are both N-type MOS transistors, and the first and third current limiting impedance elements are the second and fourth current limiting impedance elements. Greater than the resistance value.
  • the invention's effect since the coil load drive output circuit is provided with the current limiting impedance element that limits the current flowing through each control transistor, the power supply side drive transistor and the ground side drive transistor are gradually turned off. In addition, radiation noise due to switching can be reduced.
  • FIG. 1 is a circuit diagram of a coil load drive output circuit according to a preferred embodiment of the present invention.
  • FIG. 2 is a waveform chart showing waveforms generated in respective parts of the above.
  • FIG. 3 is a circuit diagram of a coil load drive output circuit according to another preferred embodiment of the present invention.
  • FIG. 4 is a circuit diagram illustrating a phenomenon during switching.
  • FIG. 1 is a circuit diagram of a coil load drive output circuit 1 according to a preferred embodiment of the present invention.
  • Reference numeral 11 denotes an inverter.
  • This inverter 11 is a motor control circuit or an actuator control circuit (not shown). Inverts the input signal (PWM signal) of low level, low level, or low level input to the input terminal IN.
  • 12, 13 are P-type MOS transistors and N-type MOS transistors.
  • OS transistor 12 and N-type MOS transistor 13 are connected between power supply potential V and ground potential.
  • Reference numeral 14 denotes a current limiting impedance element.
  • the current limiting impedance element 14 limits a current flowing through the P-type MOS transistor 12.
  • Reference numeral 15 denotes a ground-side detection transistor which is an N-type MOS transistor. This ground-side detection transistor 15 is connected to a node A, and is controlled by a voltage at a node D described later, that is, a ground-side drive transistor control voltage. .
  • Reference numeral 16 denotes a buffer, and the buffer 16 shapes the voltage waveform of the node A.
  • Reference numerals 17 and 18 denote a first control transistor which is a P-type MOS transistor and a second control transistor which is an N-type MOS transistor.
  • the first control transistor 17 and the second control transistor 18 are connected to a power supply potential. Connected in series between V and ground potential
  • Reference numerals 19 and 20 denote first and second current-limiting impedance elements. These first and second current-limiting impedance elements 19 and 20 are first and second control transistors 17 and 20, respectively.
  • 21 and 22 are a P-type MOS transistor and an N-type MOS transistor.
  • OS transistor 21 and N-type MOS transistor 22 are connected between power supply potential V and ground potential.
  • Reference numeral 23 denotes a current limiting impedance element.
  • the current limiting impedance element 23 limits the current flowing through the N-type MOS transistor 22.
  • Reference numeral 24 denotes a power-supply-side detection transistor that is a P-type MOS transistor.
  • the power-supply-side detection transistor 24 is connected to the node C, and is controlled by a voltage at the node B, that is, a power-supply-side drive transistor control voltage.
  • 25 is a buffer, and this buffer 25 shapes the voltage waveform of the node C.
  • Reference numerals 26 and 27 denote a third control transistor which is a P-type MOS transistor and a fourth control transistor which is an N-type MOS transistor.The third control transistor 26 and the fourth control transistor 27 Connected in series between the
  • Reference numerals 28 and 29 denote third and fourth current limiting impedance elements, respectively.
  • the third and fourth current limiting impedance elements 28 and 29 respectively control the current flowing through the third and fourth control transistors 26 and 27, respectively. Restrict.
  • reference numerals 30 and 31 denote a power-side drive transistor as a P-type MOS transistor and a ground-side drive transistor as an N-type MOS transistor. These power-side drive transistor 30 and ground-side drive transistor 31 Connected in series between the potential V and the ground potential,
  • Each is controlled by the power-side drive transistor control voltage or the ground-side drive transistor control voltage, and outputs a drive voltage for driving the coil load 2 from the middle point via the output terminal OUT.
  • the parasitic capacitance 32 between the drain and the gate of the power supply side driving transistor 30 and the parasitic capacitance 33 between the drain and the gate of the ground side driving transistor 31 are shown. Is shown.
  • a circuit similar to the coil load drive output circuit 1 is provided on one side (not shown) of the coil load 2.
  • the current limiting impedance elements 14, 19, 20, 23, 28, 29 are resistors.
  • the current-limiting impedance element 14 has such a resistance that the voltage at the node A can be kept at a low level even when the P-type MOS transistor 12 is on when the ground-side detection transistor 15 is on.
  • the current limiting impedance element 23 has such a resistance that the voltage at the node C can be maintained at a high level even when the power supply side detection transistor 24 is turned on and the N-type MOS transistor 22 is turned on! It is.
  • the resistance values of the first current limiting impedance element 19 and the fourth current limiting impedance element 29 are the same or substantially the same (for example, 1K to 2 ⁇ ), and the second current limiting impedance element 20 and the third current limiting impedance Is smaller than the resistance value of the sensing element 28 (for example, 10K to 30K ⁇ ).
  • the operation of the coil load drive output circuit 1 will be described based on the waveform diagram of FIG. First, a case where a current flows from the output terminal OUT to the coil load 2 will be described.
  • the waveform of OUT indicates the voltage waveform of the output terminal OUT in this case, and OUT and the voltage waveform of the output terminal OUT when a current flows from the coil load 2 described later in the direction of the output terminal OUT. Is shown.
  • the node A goes to a low level, and the voltage at the node B turns on the first control transistor 17, so that the resistance value of the impedance element 19 and the parasitic With a capacity value of 32 It rises at the determined time constant.
  • the on-resistance of the power supply side drive transistor 30 gradually increases, and the coil load 2 tries to keep flowing current due to the inductive property, so that the voltage of the output terminal OUT gradually decreases. Therefore, the voltage at the output terminal OUT does not drop sharply, and radiation noise is reduced.
  • the power supply side detection transistor 24 since the power supply side detection transistor 24 is turned on, the node C is kept at a high level and the node D is kept at a low level. Therefore, the ground side drive transistor 31 is connected to the input terminal IN from the input terminal IN. It is forcibly turned off regardless of the input signal. Then, when the voltage at the node B further rises and the gate-source voltage of the power supply side driving transistor 30 becomes smaller than a value (threshold), the power supply side driving transistor 30 becomes a sub-threshold region. And the on-resistance rises sharply and begins to turn off. Then, the power supply side detection transistor 24 also starts to turn off at the same time, so that the node C becomes low level. Since the third control transistor 26 is turned on, the voltage at the node D rises with a time constant determined by the resistance value of the impedance element 28 and the capacitance value of the parasitic capacitance 33.
  • the impedance of the impedance element 28 is larger than the resistance of the impedance element 19, the voltage at the node D rises more slowly than the voltage at the node B.
  • the power supply side driving transistor 30 through which a small amount of current flows is completely turned off, and the power also flows through the ground side driving transistor 31, and these two transistors 30, 31 At the same time.
  • the voltage at the node B must rise to the power supply potential V relatively quickly, so the impedance element 19
  • the level changes to a high level
  • the voltage at the node D changes the resistance value of the impedance element 29 because the fourth control transistor 27 is turned on.
  • the time constant determined by the capacitance value of the parasitic capacitance 33.
  • the on-resistance of the ground-side drive transistor 31 gradually increases according to the voltage change at the node D, and the coil load 2 tries to continue to flow current due to the inductive property, so that the voltage at the output terminal OUT drops slightly. However, it is clamped by a parasitic diode (not shown) existing in parallel with the ground side drive transistor 31.
  • the ground-side detection transistor 15 since the ground-side detection transistor 15 is on, the node A is kept at a low level and the node B is kept at a high level.
  • the source side drive transistor 30 is forcibly turned off regardless of the input signal of the input terminal IN.
  • the voltage at the node D further decreases and the voltage between the gate and the source of the ground-side drive transistor 31 becomes smaller than the threshold! /, The value (threshold), the ground-side drive transistor 31 becomes in the sub-threshold region. Then, the on-resistance rises rapidly and starts to turn off. Then, the ground side detection transistor 15 also starts to be turned off at the same time, so that the node A becomes high level.
  • the second control transistor 18 Since the second control transistor 18 is turned on, the voltage at the node B gradually decreases with a time constant determined by the resistance value of the impedance element 20 and the capacitance value of the parasitic capacitance 32. The voltage at the output terminal OUT gradually increases according to the voltage at the node B. Therefore, radiation noise is reduced.
  • Each part other than the output terminal OUT (waveform OUT 'in Fig. 2) operates in the same manner as described above.
  • the voltage at the output terminal OUT gradually decreases or rises according to the voltage at the node D. That is, the voltage of the output terminal OUT starts to decrease after the ground-side drive transistor 31 starts to turn on, and starts to increase when the ground-side drive transistor 31 starts to turn off. In this case as well, radiation noise is reduced.
  • the power supply drive transistor 30 which is a P-type MOS transistor in the coil load drive output circuit 1 is replaced with a power supply drive transistor 56 which is an N-type MOS transistor. Things.
  • the power supply side detection transistor 24, which is a P-type MOS transistor is connected to the power supply side detection transistor 55, which is an N-type MOS transistor; Is relatively large (for example, 10K to 30 ⁇ ), the second current limiting impedance element 20 is connected to the second current limiting impedance element 53 for relatively small resistance (for example, 1K to 2 ⁇ ).
  • Each is replaced by an impedance element 54.
  • the coil load drive output circuit 51 performs the same operation as the coil load drive output circuit 1, although the voltage waveform of the node B is upside down in FIG. 2 described above, and radiation noise is reduced.
  • the coil load drive output circuit 1 or 51 is provided with the ground-side detection transistor 15 and the power-side detection transistor 24 or 55 so that if the power-side drive transistor 30 or 56 is turned on, The drive transistor 31 is forcibly turned off, and if the ground drive transistor 31 is on, the power drive transistor 30 is forcibly turned off so that the power drive transistor 30 or 56 and the ground drive transistor are turned off. Force that automatically suppresses through current in 31 It is also possible to individually control the gates of the first to fourth control transistors 17, 18, 26, and 27 to suppress the through current.
  • the coil load drive output circuit according to the embodiment of the present invention has been described above.
  • the present invention is not limited to the circuit described in the embodiment, but may be implemented in various forms within the scope of the claims.
  • Various design changes are possible.
  • the current limiting impedance elements 14, 19 (or 53), 20 (or 54), 23, 28, and 29 are resistors, but these can be used as constant current sources.
  • the parasitic capacitances 32 and 33 it is possible to positively add capacitance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)

Abstract

 スイッチングによる輻射ノイズを低減することができるコイル負荷駆動出力回路を提供する。このコイル負荷駆動出力回路1は、電源側駆動トランジスタ制御電圧を出力する第1及び第2の制御トランジスタ17、18と、それらの電流を制限する第1及び第2の電流制限インピーダンス素子19、20と、接地側駆動トランジスタ制御電圧を出力する第3及び第4の制御トランジスタ26、27と、それらの電流を制限する第3及び第4の電流制限インピーダンス素子28、29と、それぞれが電源側又は接地側駆動トランジスタ制御電圧により制御され、コイル負荷2の駆動電圧を出力する電源側及び接地側駆動トランジスタ30、31と、それぞれが電源側又は接地側駆動トランジスタ制御電圧により制御され、オンしていると強制的に接地側又は電源側駆動トランジスタをオフする電源側及び接地側検出トランジスタ24、15と、を備える。

Description

明 細 書
コイル負荷駆動出力回路
技術分野
[0001] 本発明は、モータゃァクチユエータなどのコイル負荷を駆動するためのコイル負荷 駆動出力回路に関するものである。
背景技術
[0002] 通常、コイル負荷を駆動するのにパルス幅変調(PWM)パルスを用いた装置では、 そのスイッチングにより発生する輻射ノイズが多いため、他の信号へのクロストーク等 の影響などが問題となる。特に、コイル負荷の駆動電圧を出力するコイル負荷駆動 出力回路の駆動トランジスタは電流出力能力が大きいため、そのスイッチングによる 輻射ノイズは大きい。
[0003] 一方、一般の出力回路でのスイッチングによるノイズ低減対策としては例えば特許 文献 2に示されるような提案がなされている。すなわち、これらの出力回路は、電 源側駆動トランジスタ又は接地側駆動トランジスタを徐々にオンさせることで、ノイズ 低減を図っている。また、それにより同時に電源側駆動トランジスタと接地側駆動トラ ンジスタにおける貫通電流の防止も図っている。
[0004] 特許文献 1 :特開平 6— 152374号公報
特許文献 2 :特開平 11 317653号公報
発明の開示
発明が解決しょうとする課題
[0005] ところが、この出力回路が駆動する負荷力 Sコイル負荷の場合、すなわち、出力回路 力 Sコイル負荷駆動出力回路である場合、コイル負荷の誘導性の性質により特別な現 象が起きる。例えば、図 4に示すように、コイル負荷 2に出力端子 OUTから電流 Iの 供給をして 、る電源側駆動トランジスタ 111がスィッチングによりオフになったとき、コ ィル負荷 2の誘導性の性質により電流は流れ続けようとするため、回生電流 Iが接地
2 側駆動トランジスタ 112と並列に存在する寄生ダイオード 113を通ってコイル負荷 2に 流れる。従って、このとき、出力端子 OUTの電圧は電源電位 V から接地電位以下 に急激に降下して輻射ノイズを発生する。
[0006] この輻射ノイズは、通常、コンデンサなどのノイズ対策部品を必要とする箇所に実装 することで対処が可能である力 輻射ノイズ自体を低減させることは性能やコストの面 力 重要である。
[0007] 本発明は、係る事由に鑑みてなされたものであり、その目的は、スイッチングによる 輻射ノイズを低減することができるコイル負荷駆動出力回路を提供することにある。 課題を解決するための手段
[0008] 上記目的を達成するために、本発明の望ましい実施形態に係るコイル負荷駆動出 力回路は、電源電位と接地電位との間に直列に接続され、中点カゝら電源側駆動トラ ンジスタ制御電圧を出力する第 1及び第 2の制御トランジスタと、第 1及び第 2の制御 トランジスタに流れる電流をそれぞれ制限する第 1及び第 2の電流制限インピーダン ス素子と、電源電位と接地電位との間に直列に接続され、中点力 接地側駆動トラン ジスタ制御電圧を出力する第 3及び第 4の制御トランジスタと、第 3及び第 4の制御ト ランジスタに流れる電流をそれぞれ制限する第 3及び第 4の電流制限インピーダンス 素子と、電源電位と接地電位との間に直列に接続され、それぞれが電源側駆動トラ ンジスタ制御電圧又は接地側駆動トランジスタ制御電圧により制御され、中点からコ ィル負荷を駆動するための駆動電圧を出力する電源側駆動トランジスタ及び接地側 駆動トランジスタと、電源側駆動トランジスタ制御電圧により制御され、オンしていると 強制的に接地側駆動トランジスタをオフする電源側検出トランジスタと、接地側駆動ト ランジスタ制御電圧により制御され、オンして!/、ると強制的に電源側駆動トランジスタ をオフする接地側検出トランジスタと、を備えてなる。
[0009] 望ましくは、電源側駆動トランジスタは P型 MOSトランジスタ、接地側駆動トランジス タは N型 MOSトランジスタであり、第 2及び第 3の電流制限インピーダンス素子は第 1 及び第 4の電流制限インピーダンス素子の抵抗値よりも大きい。
[0010] 或 、は、望ましくは、電源側駆動トランジスタ及び接地側駆動トランジスタは共に N 型 MOSトランジスタであり、第 1及び第 3の電流制限インピーダンス素子は第 2及び 第 4の電流制限インピーダンス素子の抵抗値よりも大きい。
発明の効果 [0011] 本発明によれば、コイル負荷駆動出力回路は、各制御トランジスタに流れる電流を それぞれ制限する電流制限インピーダンス素子を設けているので、電源側駆動トラン ジスタ及び接地側駆動トランジスタを徐々にオフ及びオンさせることができてスィッチ ングによる輻射ノイズを低減することができる。
図面の簡単な説明
[0012] [図 1]本発明の望ましい実施形態に係るコイル負荷駆動出力回路の回路図。
[図 2]同上の各部に生じる波形を示した波形図。
[図 3]本発明の望ましい別の実施形態に係るコイル負荷駆動出力回路の回路図。
[図 4]スイッチング時の現象を説明する回路図。
符号の説明
1、 51 コイル負荷駆動出力回路
2 コイル負荷
15 接地側検出トランジスタ
17 第 1の制御トランジスタ
18 第 2の制御トランジスタ
19、 53 第 1の電流制限インピーダンス素子
20、 54 第 2の電流制限インピーダンス素子
24、 55 電源側検出トランジスタ
26 第 3の制御トランジスタ
27 第 4の制御トランジスタ
28 第 3の電流制限インピー -ダンス素子
29 第 4の電流制限インピー -ダンス素子
30、 56 電源側駆動トランジスタ
31 接地側駆動トランジスタ
発明を実施するための最良の形態
[0014] 以下、本発明の最良の実施形態を図面を参照しながら説明する。図 1は本発明の 望ましい実施形態に係るコイル負荷駆動出力回路 1の回路図である。 11はインバー タであり、このインバータ 11は、図外モータ制御回路又はァクチユエータ制御回路か ら入力端子 INに入力されるノ、ィ又はローレベルの入力信号 (PWM信号)を反転出 力する。 12、 13は P型 MOSトランジスタ、 N型 MOSトランジスタであり、これら P型 M
OSトランジスタ 12及び N型 MOSトランジスタ 13は、電源電位 V と接地電位との間 cc
に直列に接続され、インバータ 11の出力信号を入力して中点、すなわち節点 Aから 反転出力する。 14は電流制限インピーダンス素子であり、この電流制限インピーダン ス素子 14は P型 MOSトランジスタ 12に流れる電流を制限する。 15は N型 MOSトラ ンジスタである接地側検出トランジスタであり、この接地側検出トランジスタ 15は、節 点 Aに接続され、後述の節点 Dの電圧、すなわち接地側駆動トランジスタ制御電圧に より制御される。 16はバッファであり、このバッファ 16は節点 Aの電圧波形を整形する 。 17、 18は P型 MOSトランジスタである第 1の制御トランジスタ、 N型 MOSトランジス タである第 2の制御トランジスタであり、これら第 1の制御トランジスタ 17及び第 2の制 御トランジスタ 18は、電源電位 V と接地電位との間に直列に接続され、ノ ッファ 16
CC
の出力信号を入力して中点、すなわち節点 Bから電源側駆動トランジスタ制御電圧を 出力する。 19、 20は第 1及び第 2の電流制限インピーダンス素子であり、これら第 1 及び第 2の電流制限インピーダンス素子 19、 20は第 1及び第 2の制御トランジスタ 17
、 18に流れる電流をそれぞれ制限する。
更に、 21、 22は P型 MOSトランジスタ、 N型 MOSトランジスタであり、これら P型 M
OSトランジスタ 21及び N型 MOSトランジスタ 22は、電源電位 V と接地電位との間 cc
に直列に接続され、インバータ 11の出力信号を入力して中点、すなわち節点じから 反転出力する。 23は電流制限インピーダンス素子であり、この電流制限インピーダン ス素子 23は N型 MOSトランジスタ 22に流れる電流を制限する。 24は P型 MOSトラ ンジスタである電源側検出トランジスタであり、この電源側検出トランジスタ 24は、節 点 Cに接続され、節点 Bの電圧、すなわち電源側駆動トランジスタ制御電圧により制 御される。 25はバッファであり、このバッファ 25は節点 Cの電圧波形を整形する。 26 、 27は P型 MOSトランジスタである第 3の制御トランジスタ、 N型 MOSトランジスタで ある第 4の制御トランジスタであり、これら第 3の制御トランジスタ 26及び第 4の制御ト ランジスタ 27は、電源電位 V と接地電位との間に直列に接続され、ノッファ 25の出
CC
力信号を入力して中点、すなわち節点 D力 接地側駆動トランジスタ制御電圧を出 力する。 28、 29は第 3及び第 4の電流制限インピーダンス素子であり、これら第 3及 び第 4の電流制限インピーダンス素子 28、 29は、第 3及び第 4の制御トランジスタ 26 、 27に流れる電流をそれぞれ制限する。
[0016] 更に、 30、 31は P型 MOSトランジスタである電源側駆動トランジスタ、 N型 MOSト ランジスタである接地側駆動トランジスタであり、これら電源側駆動トランジスタ 30及 び接地側駆動トランジスタ 31は、電源電位 V と接地電位との間に直列に接続され、
CC
それぞれが電源側駆動トランジスタ制御電圧又は接地側駆動トランジスタ制御電圧 により制御され、中点から出力端子 OUTを介してコイル負荷 2を駆動するための駆 動電圧を出力する。なお、図 1においては、理解を容易にするために、電源側駆動ト ランジスタ 30のドレイン 'ゲート間の寄生容量 32と、接地側駆動トランジスタ 31のドレ イン'ゲート間の寄生容量 33と、を示している。また、コイル負荷 2の図示しない片側 にはコイル負荷駆動出力回路 1と同様の回路が設けられる。
[0017] ここで、電流制限インピーダンス素子 14、 19、 20、 23、 28、 29は抵抗である。電流 制限インピーダンス素子 14は、接地側検出トランジスタ 15がオンしていると、 P型 M OSトランジスタ 12がオンしていても節点 Aの電圧をローレベルに保つことができる程 度の抵抗値である。電流制限インピーダンス素子 23は、電源側検出トランジスタ 24 がオンして 、ると、 N型 MOSトランジスタ 22がオンして!/ヽても節点 Cの電圧をハイレ ベルに保つことができる程度の抵抗値である。第 1の電流制限インピーダンス素子 1 9と第 4の電流制限インピーダンス素子 29の抵抗値は同一又は略同一であり(例えば 1K乃至 2ΚΩ )、第 2の電流制限インピーダンス素子 20と第 3の電流制限インピーダ ンス素子 28の抵抗値 (例えば 10K乃至 30K Ω )よりも小さ!/、。
[0018] このコイル負荷駆動出力回路 1の動作を図 2の波形図に基づいて説明する。先ず、 出力端子 OUTからコイル負荷 2の方向に電流が流れている場合を説明する。なお、 同図において、 OUTの波形はこの場合の出力端子 OUTの電圧波形を示し、 OUT ,は後述のコイル負荷 2から出力端子 OUTの方向に電流が流れている場合の出力 端子 OUTの電圧波形を示す。入力端子 IN力 の入力信号がハイレベル力 ローレ ベルに変化すると、節点 Aはローレベルとなり、節点 Bの電圧は、第 1の制御トランジ スタ 17がオンするので、インピーダンス素子 19の抵抗値と寄生容量 32の容量値で 決まる時定数で上昇する。節点 Bの電圧変化に従って電源側駆動トランジスタ 30の オン抵抗は徐々に高くなり、コイル負荷 2は誘導性の性質により電流を流し続けようと するため、出力端子 OUTの電圧は徐々に降下する。従って、出力端子 OUTの電圧 は急激には降下しな ヽので、輻射ノイズが低減される。
[0019] なお、このとき、電源側検出トランジスタ 24はオンしているので、節点 Cはハイレべ ルに、節点 Dはローレベルに保たれ、従って、接地側駆動トランジスタ 31は入力端子 INからの入力信号に係わらず強制的にオフされている。そして、節点 Bの電圧が更 に上昇して電源側駆動トランジスタ 30のゲート ·ソース間電圧がしき 、値 (スレショー ルド)よりも小さくなると、電源側駆動トランジスタ 30は 、わゆるサブスレショールド領 域となりオン抵抗は急激に高くなつてオフし始める。そうすると、同時に電源側検出ト ランジスタ 24もオフし始めるので節点 Cはローレベルとなる。節点 Dの電圧は、第 3の 制御トランジスタ 26がオンするので、インピーダンス素子 28の抵抗値と寄生容量 33 の容量値で決まる時定数で上昇する。
[0020] ここで、インピーダンス素子 28はインピーダンス素子 19の抵抗値よりも大きいので、 節点 Dの電圧は節点 Bの電圧よりも緩やかに上昇する。これにより、サブスレショール ド領域であっても少量の電流が流れる電源側駆動トランジスタ 30が完全にオフして 力も接地側駆動トランジスタ 31に電流が流れることになり、これら 2個のトランジスタ 3 0、 31における貫通電流を抑制する。この貫通電流抑制のためには、節点 Bの電圧 は比較的早く電源電位 V まで上昇させる必要があるので、インピーダンス素子 19
CC
は前述のようにインピーダンス素子 28の抵抗値よりも小さくしてあるのである。
[0021] 入力端子 INからの入力信号がローレべルカ ハイレベルに変化すると、節点 ま ハイレベルとなり、節点 Dの電圧は、第 4の制御トランジスタ 27がオンするので、イン ピーダンス素子 29の抵抗値と寄生容量 33の容量値で決まる時定数で降下する。節 点 Dの電圧変化に従って接地側駆動トランジスタ 31のオン抵抗は徐々に高くなり、コ ィル負荷 2は誘導性の性質により電流を流し続けようとするため、出力端子 OUTの 電圧は僅かに降下するが、接地側駆動トランジスタ 31と並列に存在する寄生ダイォ ード(図示せず)によりクランプされる。なお、このとき、接地側検出トランジスタ 15はォ ンしているので、節点 Aはローレベルに、節点 Bはハイレベルに保たれ、従って、電 源側駆動トランジスタ 30は入力端子 IN力もの入力信号に係わらず強制的にオフされ ている。そして、節点 Dの電圧が更に下降して接地側駆動トランジスタ 31のゲート'ソ ース間電圧がしき!/、値 (スレショールド)よりも小さくなると、接地側駆動トランジスタ 31 はサブスレショールド領域となりオン抵抗は急激に高くなつてオフし始める。そうする と、同時に接地側検出トランジスタ 15もオフし始めるので節点 Aはハイレベルとなる。 節点 Bの電圧は、第 2の制御トランジスタ 18がオンするので、インピーダンス素子 20 の抵抗値と寄生容量 32の容量値で決まる時定数で緩やかに降下する。この節点 B の電圧に従い出力端子 OUTの電圧は徐々に上昇する。従って、輻射ノイズは低減 される。
[0022] 次に、コイル負荷 2から出力端子 OUTの方向に電流が流れて 、る場合を説明する 。出力端子 OUT (図 2の波形 OUT' )以外の各部は前述と同様の動作を示す。入力 端子 INからの入力信号がハイレベルからローレベル又はローレベルからハイレベル に変化すると、出力端子 OUTの電圧は、節点 Dの電圧に従って徐々に降下又は上 昇する。つまり、出力端子 OUTの電圧は、接地側駆動トランジスタ 31がオンし始めて から降下し始め、接地側駆動トランジスタ 31がオフし始めて力 上昇し始める。この 場合も同様に輻射ノイズは低減される。
[0023] 次に、本発明の望ましい別の実施形態であるコイル負荷駆動出力回路を説明する 。このコイル負荷駆動出力回路 51は、図 3に示すように、コイル負荷駆動出力回路 1 における P型 MOSトランジスタである電源側駆動トランジスタ 30を N型 MOSトランジ スタである電源側駆動トランジスタ 56に置き換えたものである。これに伴い、 P型 MO Sトランジスタである電源側検出トランジスタ 24を N型 MOSトランジスタである電源側 検出トランジスタ 55に、ノッファ 16を反転バッファ 52に、第 1の電流制限インピーダ ンス素子 19を抵抗値が比較的大きい (例えば 10K乃至 30ΚΩの)第 1の電流制限ィ ンピーダンス素子 53に、第 2の電流制限インピーダンス素子 20を抵抗値が比較的小 さい(例えば 1K乃至 2ΚΩの)第 2の電流制限インピーダンス素子 54に、それぞれ置 き換えられている。このコイル負荷駆動出力回路 51は、前述の図 2において節点 Bの 電圧波形が上下逆になるが、コイル負荷駆動出力回路 1と同様な動作を行い、輻射 ノイズが低減される。 [0024] なお、コイル負荷駆動出力回路 1又は 51は、接地側検出トランジスタ 15及び電源 側検出トランジスタ 24又は 55などを設けることにより、電源側駆動トランジスタ 30又は 56がオンして 、れば接地側駆動トランジスタ 31は強制的にオフされ、接地側駆動ト ランジスタ 31がオンしていれば電源側駆動トランジスタ 30は強制的にオフされるよう にして、電源側駆動トランジスタ 30又は 56と接地側駆動トランジスタ 31における貫通 電流を自動的に抑制している力 第 1乃至第 4の制御トランジスタ 17、 18、 26、 27の ゲートを個別に制御して貫通電流を抑制することも可能である。
[0025] 以上、本発明の実施形態であるコイル負荷駆動出力回路について説明したが、本 発明は、実施形態に記載したものに限られることなぐ請求の範囲に記載した事項の 範囲内でのさまざまな設計変更が可能である。例えば、電流制限インピーダンス素子 14、 19(又は 53)、 20 (又は 54)、 23、 28、 29は抵抗であるが、これを定電流源とす ることも可能である。また、寄生容量 32、 33の他に積極的に容量を付加することも可 能である。

Claims

請求の範囲
[1] 電源電位と接地電位との間に直列に接続され、中点から電源側駆動トランジスタ制 御電圧を出力する第 1及び第 2の制御トランジスタと、
第 1及び第 2の制御トランジスタに流れる電流をそれぞれ制限する第 1及び第 2の 電流制限インピーダンス素子と、
電源電位と接地電位との間に直列に接続され、中点から接地側駆動トランジスタ制 御電圧を出力する第 3及び第 4の制御トランジスタと、
第 3及び第 4の制御トランジスタに流れる電流をそれぞれ制限する第 3及び第 4の 電流制限インピーダンス素子と、
電源電位と接地電位との間に直列に接続され、それぞれが電源側駆動トランジスタ 制御電圧又は接地側駆動トランジスタ制御電圧により制御され、中点カゝらコイル負荷 を駆動するための駆動電圧を出力する電源側駆動トランジスタ及び接地側駆動トラ ンジスタと、
電源側駆動トランジスタ制御電圧により制御され、オンしていると強制的に接地側 駆動トランジスタをオフする電源側検出トランジスタと、
接地側駆動トランジスタ制御電圧により制御され、オンしていると強制的に電源側 駆動トランジスタをオフする接地側検出トランジスタと、
を備えてなることを特徴とするコイル負荷駆動出力回路。
[2] 請求項 1のコイル負荷駆動出力回路において、
電源側駆動トランジスタは P型 MOSトランジスタ、接地側駆動トランジスタは N型 M OSトランジスタであり、
第 2及び第 3の電流制限インピーダンス素子は第 1及び第 4の電流制限インピーダ ンス素子の抵抗値よりも大きいことを特徴とするコイル負荷駆動出力回路。
[3] 請求項 1のコイル負荷駆動出力回路において、
電源側駆動トランジスタ及び接地側駆動トランジスタは共に N型 MOSトランジスタ であり、
第 1及び第 3の電流制限インピーダンス素子は第 2及び第 4の電流制限インピーダ ンス素子の抵抗値よりも大きいことを特徴とするコイル負荷駆動出力回路。
PCT/JP2005/010039 2004-06-02 2005-06-01 コイル負荷駆動出力回路 WO2005119912A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/569,946 US20080018365A1 (en) 2004-06-02 2005-06-01 Coil Load Drive Output Circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-164291 2004-06-02
JP2004164291A JP4014048B2 (ja) 2004-06-02 2004-06-02 コイル負荷駆動出力回路

Publications (1)

Publication Number Publication Date
WO2005119912A1 true WO2005119912A1 (ja) 2005-12-15

Family

ID=35463169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010039 WO2005119912A1 (ja) 2004-06-02 2005-06-01 コイル負荷駆動出力回路

Country Status (6)

Country Link
US (1) US20080018365A1 (ja)
JP (1) JP4014048B2 (ja)
KR (1) KR20070029178A (ja)
CN (1) CN1961481A (ja)
TW (1) TW200614667A (ja)
WO (1) WO2005119912A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733134B1 (en) * 2006-03-31 2010-06-08 Ciena Corporation High speed low noise switch

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924032B2 (ja) * 2006-12-28 2012-04-25 富士通セミコンダクター株式会社 ラッチ回路及びそれを備えたフリップフロップ回路並びに論理回路
US8026745B2 (en) 2009-03-16 2011-09-27 Apple Inc. Input/output driver with controlled transistor voltages
JP5537270B2 (ja) * 2009-07-13 2014-07-02 ローム株式会社 出力回路
JP5679514B2 (ja) * 2011-01-28 2015-03-04 トヨタ自動車株式会社 インバータ駆動回路
JP2012239285A (ja) * 2011-05-11 2012-12-06 Denso Corp スイッチング電源装置
CN102545560B (zh) * 2011-12-15 2014-09-03 无锡中星微电子有限公司 一种功率开关驱动器、ic芯片及直流-直流转换器
JP5580350B2 (ja) * 2012-01-26 2014-08-27 株式会社東芝 ドライバ回路
KR102092964B1 (ko) * 2012-12-27 2020-03-24 솔루엠 (허페이) 세미컨덕터 씨오., 엘티디. 슈트-스루 전류 방지 기능을 갖는 게이트 드라이버
KR20170070691A (ko) * 2015-12-14 2017-06-22 주식회사 실리콘웍스 디스플레이 구동 장치의 출력 회로

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176117A (ja) * 1987-12-29 1989-07-12 Asahi Kasei Micro Syst Kk 貫通電流防止回路
JPH01240013A (ja) * 1988-03-22 1989-09-25 Hitachi Ltd 半導体集積回路装置
JPH06152374A (ja) * 1992-11-11 1994-05-31 Toshiba Corp 出力回路
JPH11317653A (ja) * 1998-05-01 1999-11-16 Nec Corp 貫通電流防止を含むスルーレートコントロールの方法とその回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146111A (en) * 1991-04-10 1992-09-08 International Business Machines Corporation Glitch-proof powered-down on chip receiver with non-overlapping outputs
US5396108A (en) * 1993-09-30 1995-03-07 Sgs-Thomson Microelectronics, Inc. Latch controlled output driver
US5541541A (en) * 1994-11-23 1996-07-30 Texas Instruments Incorporated Comparator circuit for decreasing shoot-through current on power switches
US5717343A (en) * 1996-07-23 1998-02-10 Pericom Semiconductor Corp. High-drive CMOS output buffer with noise supression using pulsed drivers and neighbor-sensing
JP4731056B2 (ja) * 2000-08-31 2011-07-20 三菱電機株式会社 半導体集積回路
US7208984B1 (en) * 2004-07-15 2007-04-24 Linear Technology Corporation CMOS driver with minimum shoot-through current

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176117A (ja) * 1987-12-29 1989-07-12 Asahi Kasei Micro Syst Kk 貫通電流防止回路
JPH01240013A (ja) * 1988-03-22 1989-09-25 Hitachi Ltd 半導体集積回路装置
JPH06152374A (ja) * 1992-11-11 1994-05-31 Toshiba Corp 出力回路
JPH11317653A (ja) * 1998-05-01 1999-11-16 Nec Corp 貫通電流防止を含むスルーレートコントロールの方法とその回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733134B1 (en) * 2006-03-31 2010-06-08 Ciena Corporation High speed low noise switch

Also Published As

Publication number Publication date
JP4014048B2 (ja) 2007-11-28
CN1961481A (zh) 2007-05-09
KR20070029178A (ko) 2007-03-13
JP2005348019A (ja) 2005-12-15
US20080018365A1 (en) 2008-01-24
TWI357718B (ja) 2012-02-01
TW200614667A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
WO2005119912A1 (ja) コイル負荷駆動出力回路
US7382116B2 (en) Semiconductor device configured to control a gate voltage between a threshold voltage and ground
JP5934925B2 (ja) ゲートドライバおよびこれを備えたパワーモジュール
US6222403B1 (en) Slew rate output circuit with an improved driving capability of driving an output MOS field effect transistor
KR100934910B1 (ko) 셀프 타이밍 스위칭 조정 전치 구동기
JP5945629B2 (ja) レベルシフト回路
JP5011585B2 (ja) 電力素子の駆動回路
JP5119894B2 (ja) ドライバ回路
JP2011211836A (ja) スイッチングデバイス駆動装置および半導体装置
JP4734390B2 (ja) コンバータの制御回路
JP5482815B2 (ja) パワーmosfetの駆動回路およびその素子値決定方法
US7705638B2 (en) Switching control circuit with reduced dead time
KR20040075024A (ko) 하프-브릿지 구동기 및 그러한 구동기를 갖는 파워 변환시스템
US8624655B2 (en) Level shifter circuit and gate driver circuit including the same
US9876425B2 (en) Control circuit for power converter
CN107005232B (zh) 具有改进的时间响应特性的通路开关电路及其控制方法
US20140028233A1 (en) Motor drive overcurrent blocking circuit, motor driving circuit and method for blocking overcurrent thereof
JP2009194514A (ja) パワー半導体のゲート駆動回路
JP4830829B2 (ja) 絶縁ゲートトランジスタの駆動回路
JP2020195213A (ja) スイッチングトランジスタの駆動回路
KR20170104164A (ko) 개선된 시간 응답 특성을 가지는 레벨 시프터 회로 및 그 제어 방법
JPH10215567A (ja) 電源回路
JP2018074676A (ja) ゲート駆動回路
JP2001274665A (ja) 電圧駆動型素子の駆動方法および駆動回路
JP2002223157A (ja) Mosfet等の電圧駆動型トランジスタの駆動回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067024760

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580017826.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067024760

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11569946

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11569946

Country of ref document: US