WO2005109144A1 - Stromspiegelanordnung - Google Patents

Stromspiegelanordnung Download PDF

Info

Publication number
WO2005109144A1
WO2005109144A1 PCT/EP2005/004038 EP2005004038W WO2005109144A1 WO 2005109144 A1 WO2005109144 A1 WO 2005109144A1 EP 2005004038 W EP2005004038 W EP 2005004038W WO 2005109144 A1 WO2005109144 A1 WO 2005109144A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
current
current mirror
controlled
mirror arrangement
Prior art date
Application number
PCT/EP2005/004038
Other languages
English (en)
French (fr)
Inventor
Jakob Jongsma
Original Assignee
Austriamicrosystems Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austriamicrosystems Ag filed Critical Austriamicrosystems Ag
Priority to US11/579,023 priority Critical patent/US7872463B2/en
Priority to EP05742902A priority patent/EP1741016B1/de
Priority to JP2007509920A priority patent/JP2007535744A/ja
Publication of WO2005109144A1 publication Critical patent/WO2005109144A1/de

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the present invention relates to a current mirror arrangement.
  • Current mirrors can be used in different circuit techniques or integration techniques, for example in MOS, metal oxide semiconductor, circuit technology.
  • FIG. 1 shows an exemplary known current mirror, which has two transistors 2, 3 connected against a reference potential connection 1.
  • the transistors 2, 3 of the current mirror are each of the n-conductivity type and connected directly to one another at their control connections.
  • the transistor 2 on the input side of the current mirror has a controlled path which is connected with a first connection to the gate connection of the transistor 2 and with a further connection to the reference potential connection 1.
  • the connection of the controlled path of transistor 2 connected to the gate connection of transistor 2 is also connected via a current source 4 to a supply potential connection 5.
  • the transistor 3 from FIG. 1 also has a controlled path, which on the one hand has the reference potential connection 1 and on the other hand has a connection of a further transistor 6 connected is.
  • the further transistor 6 is connected with a further connection of its controlled path to the supply potential connection 5 and is of the p-conductivity type.
  • the control connection of transistor 6 is connected to that connection of its controlled path which is connected to transistor 3.
  • the circuit according to FIG. 1 serves to generate two bias signals, namely on the one hand a bias signal NBIAS for n-MOS components and on the other hand a bias signal PBIAS for p-MOS components.
  • the bias signal NBIAS can be tapped off at the control connections of the n-channel transistors 2, 3 at an output connection 7.
  • Another output terminal 8, which is connected to the control terminal of the transistor 6, serves as an output for tapping the PBIAS signal.
  • FIG. 2 shows a further development of the circuit from FIG. 1, which largely corresponds to this in the components used and their mode of operation, but is supplemented by a cascode stage 9, 10.
  • the cascode stage 9, 10 comprises two transistors, one of which is connected into the current paths between current source 4 and transistor 2 and between diode 6 and transistor 3.
  • the current mirror arrangement of FIG. 2 with a cascode has an improved correspondence of the signals NBIAS and PBIAS with one another. Nevertheless, even in the circuit according to FIG. 2, no exact match of the bias signals for components of the opposite, that is to say complementary, conductivity type is guaranteed. Rather, the bias signals in the circuit of FIG. 2 can also differ remarkably from one another.
  • NBIAS and PBIAS signals it is desirable to achieve an exact match between the NBIAS and PBIAS signals, for example in order to operate transistors of complementary conductivity type in matching operating points and / or to create circuits with high symmetry and good matching.
  • the object of the present invention is to provide a current mirror arrangement which makes it possible to emit two bias currents which correspond very precisely to one another and are suitable for controlling integrated components of different conductivity types.
  • a current mirror arrangement comprising:
  • a first transistor which is of a first conductivity type, designed to deliver a first current
  • a second transistor which is of a second conductivity type, designed to deliver a second current
  • a controlled current source which is connected between the first transistor and the second transistor and which forms the output of a current mirror.
  • the invention provides that the output transistor of a Current mirror is designed as a controlled current source, which is connected between the first and the second transistor.
  • the proposed current mirror arrangement Because of the interconnection of the proposed current mirror arrangement, it is possible to generate currents that exactly match each other on the first transistor and the second transistor, which currents enable the respective control of complementary components in a highly precise manner.
  • An additional advantage is that the circuit complexity is low compared to a conventional current mirror arrangement for providing complementary bias signals. As a result, the proposed principle can be integrated with a relatively small chip area and thus cost-effectively.
  • the controlled current source which forms the output of the current mirror driving the first and second transistor, is preferably designed as a so-called floating current source, that is to say for operation with a floating potential.
  • a floating potential is sometimes referred to as a floating potential.
  • the first transistor, the controlled current source and the second transistor are preferably arranged in a common current path.
  • the controlled current source arranged in the middle between the two transistors, which itself has floating potential, ensures that the currents through the first and second transistors are of identical size and thus an even better match between the two emitted bias currents of the current mirror arrangement is present.
  • the two conductivity types of the transistors are preferably a p-conductivity type and an n-conductivity type. This means that the first transistor is preferably a p-channel transistor and the second transistor is a complementary n-channel transistor.
  • the first transistor and the second transistor are preferably each connected as a diode.
  • the first current and the second current are tapped in each case at the load connection of the first or second transistor connected to the controlled current source.
  • the tap is more preferred
  • the common current path which comprises the series connection of the first transistor, controlled current source and second transistor, is preferably connected between a supply potential connection and a reference potential connection.
  • the controlled current source itself is preferably also designed as a transistor, namely as a current source transistor, the controlled path of which forms a series circuit with the controlled paths of the first and second transistors.
  • the controlled current source preferably forms the current mirror with a transistor connected as a diode, the transistor connected as a diode being further preferably arranged in a further current path which is connected from an input side is fed to the power source.
  • the current source in the further current path serves as a reference current source.
  • the further current path further preferably comprises a further diode which is connected between the transistor on the input side of the current mirror and the reference potential or supply potential connection.
  • a further transistor can be provided which, together with the second transistor, forms a feedback current mirror, the second transistor being connected as a diode.
  • the two current mirrors of this further developed current mirror arrangement together form a so-called Wilson current mirror.
  • the current mirror arrangement is preferably produced in an integrated circuit design.
  • the current mirror arrangement is preferably integrated in unipolar circuit technology, for example a metal-insulator-semiconductor structure.
  • the current mirror arrangement is preferably constructed using complementary MOS circuit technology.
  • the proposed current mirror arrangement also functions alternatively in the complementary circuit variant, which means that all MOS transistors of the n-channel conductivity type are replaced by components with p-channel and vice versa.
  • the invention is explained in more detail below on the basis of several exemplary embodiments in connection with the figures.
  • FIG. 1 shows a current mirror arrangement according to the prior art
  • FIG. 2 shows a current mirror arrangement according to the prior art with a cascode stage
  • FIG. 3 shows the basic principle of the proposed current mirror arrangement using a circuit diagram
  • Figure 4 is a further development of the circuit of Figure 3 using a circuit diagram
  • Figure 5 is a further development of the circuit of Figure 3 with Wilson current mirror.
  • FIG. 3 shows a current mirror arrangement in accordance with the proposed principle with a first transistor 11, which is of a p-conductivity type, and with a second transistor 12, which is of an n-conductivity type.
  • the first and the second transistor 11, 12 each have a control connection and a controlled path.
  • a current source 13 is connected between one connection each of the controlled sections of the transistors 11, 12.
  • the free connection of the controlled path of the transistor 11 is connected to a supply potential connection 14 and the free connection of the controlled path of the second transistor 12 connected to a reference potential connection 15.
  • the connections of the controlled paths of the transistors 11, 12 connected to the current source 13 are connected to the respective control connection of the associated transistor 11, 12 to form a diode and at the same time form outputs 16, 17 of the current mirror arrangement.
  • the first output 16 is designed to deliver a first current PBIAS, while the second output 17 is designed to deliver a second current NBIAS complementary to the first.
  • the first and second stream serve as complementary BIAS signals.
  • the current source 13 is designed as a floating current source, that is to say with a floating potential.
  • a current mirror which is not explicitly shown in FIG. 3, is provided for coupling these two current paths, which is indicated by the fact that the controlled current source 13 flows through the n-fold reference current I REF of the first current path.
  • the letter n represents the mirror ratio of the current mirror.
  • the interconnection according to FIG. 3 ensures that the currents in the p-channel transistor 11 and in the n-channel transistor 12 are of identical size and thus also the complementary ones provided by the transistors and tapped at the outputs 16, 17 Bias signals PBIAS, NBIAS are exactly the same size.
  • the proposed circuit has a low component cost and can be integrated with a small chip area and therefore inexpensively.
  • FIG. 4 A development of the circuit of FIG. 3 for generating identical n-MOS and p-MOS currents by means of a current mirror arrangement is shown in FIG. 4.
  • the circuit of FIG. 4 is correct in the components used, their advantageous interconnection and mode of operation largely match that of
  • the float-operated, controlled current source 13 is formed in FIG. 4 as a transistor 13 ', which forms the current mirror 18, 13' with an input transistor 18.
  • the input transistor 18 is connected as a diode.
  • transistor 18 is of the n-channel type.
  • a current source 19 is provided, which connects a supply potential connection 14 to a connection of the controlled path of the diode transistor 18, which is also connected to its gate connection.
  • the reference current source 19, the transistor 18 and the diode 20 thus form a series circuit with one another.
  • FIG. 5 shows a further embodiment of a development of a current mirror arrangement according to the proposed Principle.
  • the circuit of FIG. 5 is largely the same as that of FIG. 4 in the components used, their interconnection with one another and their advantageous mode of operation and is not described again in this regard.
  • the control connection of the transistor provided with reference numeral 20 ′ in FIG. 5 is connected to the gate connection of the second transistor 12.
  • the transistors 12, 20 ' together form a feedback current mirror which, together with the current mirror 18, 13' which operates in the forward direction, forms a Wilson current mirror.
  • the Wilson current mirror 18, 13 '; 12, 20 ' forms a closed control loop.
  • bias signals PBIAS, NBIAS which can be tapped at the outputs 16, 17 match exactly with one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

Es ist eine Stromspiegelanordnung angegeben, die zwei Transistoren (11, 12) umfasst, die von unterschiedlichem Leitfähigkeitstyp und je zur Abgabe eines Bias-Stroms (PBIAS, NBIAS) geeignet sind. Eine gesteuerte Stromquelle (13, 13') ist zwischen die beiden Transistoren (11, 12) geschaltet und bildet den Ausgang eines Stromspiegels (18, 13'). Mit dem vorgeschlagenen Prinzip ist sichergestellt, dass die abgegebenen Bias-Signale (PBIAS, NBIAS) hochgenau miteinander übereinstimmen. Die vorgeschlagene Stromspiegelanordnung ist bevorzugt in CMOS-Schaltungstechnik integrierbar.

Description

Stromspiegelanordnung
Die vorliegende Erfindung betrifft eine Stromspiegelanordnung.
Stromspiegel sind als Grundschaltungen mit Transistoren bekannt und beispielsweise in U. Tietze, Ch. Schenk: "Halbleiter-Schaltungstechnik", 10. Auflage 1993, S. 62 bis 63, beschrieben.
Stromspiegel können in unterschiedlichen Schaltungstechniken oder Integrationstechniken, beispielsweise in MOS, Metal Oxide Semiconductor, -Schaltungstechnik angewandt werden.
Figur 1 zeigt einen beispielhaften, bekannten Stromspiegel, der zwei gegen einen Bezugspotenzialanschluss 1 geschaltete Transistoren 2, 3 aufweist. Die Transistoren 2, 3 des Stromspiegels sind jeweils vom n-Leitfähigkeitstyp und an ihren Steueranschlüssen unmittelbar miteinander verbunden. Der ein- gangsseitige Transistor 2 des Stromspiegels hat eine gesteuerte Strecke, die mit einem ersten Anschluss mit dem Gate- Anschluss des Transistors 2 und mit einem weiteren Anschluss mit dem Bezugspotenzialanschluss 1 verbunden ist. Der mit dem Gate-Anschluss des Transistors 2 verbundene Anschluss der gesteuerten Strecke des Transistors 2 ist weiterhin über eine Stromquelle 4 an einen Versorgungspotenzialanschluss 5 geschaltet .
Auch der Transistor 3 von Figur 1 hat eine gesteuerte Strecke, die einerseits mit dem Bezugspotenzialanschluss 1 und andererseits mit einem Anschluss eines weiteren Transistors 6 verbunden ist. Der weitere Transistor 6 ist mit einem weiteren Anschluss seiner gesteuerten Strecke mit dem Versorgungs- potenzialanschluss 5 verbunden und vom p-Leitfähigkeitstyp . Der Steueranschluss des Transistors 6 ist mit demjenigen An- schluss seiner gesteuerten Strecke verbunden, der mit dem Transistor 3 verbunden ist.
Die Schaltung gemäß Figur 1 dient zur Erzeugung zweier Bias- Signale, nämlich einerseits eines Bias-Signals NBIAS für n- MOS-Bauteile und andererseits eines Bias-Signals PBIAS für p- MOS-Bauteile. Das Bias-Signal NBIAS ist an den Steueranschlüssen der n-Kanal-Transistoren 2 , 3 an einem Ausgangsan- schluss 7 abgreifbar. Ein weiterer Ausgangsanschluss 8, der mit dem Steueranschluss des Transistors 6 verbunden ist, dient als Ausgang zum Abgreifen des PBIAS-Signals .
Figur 2 zeigt eine Weiterbildung der Schaltung von Figur 1, die dieser in den verwendeten Bauteilen und deren Funktionsweise weitgehend entspricht, jedoch um eine Kaskode-Stufe 9, 10 ergänzt ist. Die Kaskode-Stufe 9, 10 umfasst zwei Transistoren, von denen je einer in die Strompfade zwischen Stromquelle 4 und Transistor 2 sowie zwischen Diode 6 und Transistor 3 geschaltet sind. Dabei bilden die Transistoren 9, 10 der Kaskode-Stu e, von denen Transistor 9 als Diode verschal- tet ist, selbst wiederum gemeinsam einen Stromspiegel.
Gegenüber der Schaltung von Figur 1 hat die Stromspiegelanordnung von Figur 2 mit Kaskode eine verbesserte Übereinstimmung der Signale NBIAS und PBIAS miteinander. Gleichwohl ist auch bei der Schaltung gemäß Figur 2 keine exakte Übereinstimmung der Bias-Signale für Bauteile vom entgegengesetzten, das heißt komplementären, Leitfähigkeitstyp gewährleistet. Vielmehr können auch die Bias-Signale bei der Schaltung von Figur 2 bemerkenswert voneinander abweichen.
Es ist jedoch in vielen Anwendungen wünschenswert, eine exakte Übereinstimmung zwischen NBIAS- und PBIAS-Signal zu erzielen, um beispielsweise Transistoren von komplementärem Leitfähigkeitstyp in je übereinstimmenden Arbeitspunkten zu betreiben und/oder Schaltungen mit hoher Symmetrie und gutem Matching zu schaffen.
Aufgabe der vorliegenden Erfindung ist es, eine Stromspiegel- anordnung anzugeben, die es ermöglicht, zwei Bias-Ströme abzugeben, die sehr genau miteinander übereinstimmen und zur Ansteuerung von integrierten Bauteilen unterschiedlichen Leitfähigkeitstyps geeignet sind.
Erfindungsgemäß wird die Aufgabe durch eine Stromspiegelanordnung gelöst, aufweisend:
- einen ersten Transistor, der von einem ersten Leitfähig- keitstyp ist, ausgelegt zur Abgabe eines ersten Stroms,
- einen zweiten Transistor, der von einem zweiten Leitfähigkeitstyp ist, ausgelegt zur Abgabe eines zweiten Stroms,
- eine gesteuerte Stromquelle, die zwischen den ersten Transistor und den zweiten Transistor geschaltet ist und die den Ausgang eines Stromspiegels bildet.
Es entspricht dem vorgeschlagenen Prinzip, zwei Transistoren vorzusehen, die von unterschiedlichem Leitfähigkeitstyp sind und je zur Abgabe eines Stroms dienen, der als Bias-Signal geeignet ist. Der erste und der zweite Transistor werden dabei so angesteuert, dass sie nicht selbst der jeweilige Ausgangstransistor eines Stromspiegels sind. Vielmehr ist erfindungsgemäß vorgesehen, dass der Ausgangstransistor eines Stromspiegels als gesteuerte Stromquelle ausgeführt ist, die zwischen den ersten und den zweiten Transistor geschaltet ist .
Aufgrund der Verschaltung der vorgeschlagenen Stromspiegelanordnung ist es möglich, an dem ersten Transistor und dem zweiten Transistor exakt miteinander übereinstimmende Ströme zu generieren, die die jeweilige Ansteuerung komplementärer Bauteile in hochpräziser Weise ermöglichen. Dabei ist mit zu- sätzlichem Vorteil der Schaltungsaufwand gegenüber einer herkömmlichen Stromspiegelanordnung zur Bereitstellung von komplementären Bias-Signalen gering. Dadurch kann das vorgeschlagene Prinzip mit verhältnismäßig geringer Chipfläche und somit kostengünstig integriert werden.
Die gesteuerte Stromquelle, die den Ausgang des den ersten und zweiten Transistor ansteuernden Stromspiegels bildet, ist bevorzugt als so genannte floatende Stromquelle, also zum Betrieb mit schwebendem Potenzial, ausgelegt. Ein schwebendes Potenzial wird gelegentlich auch als schwimmendes Potenzial bezeichnet .
Der erste Transistor, die gesteuerte Stromquelle und der zweite Transistor sind bevorzugt in einem gemeinsamen Strom- pfad angeordnet. Dabei stellt die in der Mitte zwischen den beiden Transistoren angeordnete, gesteuerte Stromquelle, die selbst floatendes Potenzial hat, sicher, dass die Ströme durch ersten und zweiten Transistor identisch groß sind und somit eine noch weiter verbesserte Übereinstimmung zwischen den beiden abgegebenen Bias-Strömen der Stromspiegelanordnung vorliegt . Bei den beiden Leitfähigkeitstypen der Transistoren handelt es sich bevorzugt um einen p-Leitfähigkeitstyp und einen n- Leitfähigkeitstyp. Das bedeutet, dass der erste Transistor bevorzugt ein p-Kanal-Transistor und der zweite Transistor ein dazu komplementärer n-Kanal-Transistor ist.
Der erste Transistor und der zweite Transistor sind bevorzugt je als Diode verschaltet.
In einer vorteilhaften Weiterbildung wird der erste Strom und der zweite Strom jeweils an dem mit der gesteuerten Stromquelle verbundenen Lastanschluss des ersten bzw. zweiten Transistors abgegriffen.
Mit diesem Abgriffsknoten ist jeweils weiter bevorzugt der
Steueranschluss des jeweiligen Transistors zur Bildung einer Diode verbunden.
Der gemeinsame Strompfad, der die Serienschaltung von erstem Transistor, gesteuerter Stromquelle und zweitem Transistor umfasst, ist bevorzugt zwischen einen Versorgungspotenzialan- schluss und einen Bezugspotenzialanschluss geschaltet.
Die gesteuerte Stromquelle selbst ist bevorzugt ebenfalls als Transistor, nämlich als Stromquellentransistor, ausgebildet, dessen gesteuerte Strecke mit den gesteuerten Strecken des ersten und zweiten Transistors eine Serienschaltung bildet .
Die gesteuerte Stromquelle bildet bevorzugt mit einem als Di- ode verschalteten Transistor den Stromspiegel, wobei der als Diode verschaltete Transistor weiter bevorzugt in einem weiteren Strompfad angeordnet ist, der von einer eingangsseiti- gen Stromquelle gespeist wird. Die Stromquelle in dem weiteren Strompfad dient dabei als Referenzstromquelle.
Der weitere Strompfad umfasst aus Symmetriegründen weiter be- vorzugt eine weitere Diode, die zwischen den eingangsseitigen Transistor des Stromspiegels und Bezugspotenzial- oder Ver- sorgungspotenzialanschluss geschaltet wird.
Anstelle der weiteren Diode im weiteren Strompfad kann in ei- ner alternativen Ausfuhrungsform ein weiterer Transistor vorgesehen sein, der gemeinsam mit dem zweiten Transistor einen Rückkopplungs-Stromspiegel bildet, wobei der zweite Transistor als Diode verschaltet ist. Die beiden Stromspiegel dieser weitergebildeten Stromspiegelanordnung bilden miteinander ei- nen so genannten Wilson-Stromspiegel.
Die Stromspiegel-Anordnung ist bevorzugt in integrierter Schaltungsbauweise hergestellt.
Insbesondere ist die Stromspiegelanordnung bevorzugt in unipolarer Schaltungstechnik integriert, beispielsweise einer Metall-Isolator-Halbleiter-Struktur.
Die Stromspiegelanordnung ist bevorzugt in komplementärer MOS-Schaltungstechnik aufgebaut.
Die vorgeschlagene Stromspiegelanordnung funktioniert alternativ auch in der komplementären Schaltungsvariante, das bedeutet, dass alle MOS-Transistoren vom n-Kanal-Leitfähig- keitstyp durch Bauteile mit p-Kanal ersetzt werden und umgekehrt . Die Erfindung wird nachfolgend anhand von mehreren Ausführungsbeispielen in Zusammenhang mit den Figuren näher erläutert .
Es zeigen dabei :
Figur 1 eine Stromspiegelanordnung gemäß Stand der Technik,
Figur 2 eine Stromspiegelanordnung gemäß Stand der Technik mit Kaskode-Stufe,
Figur 3 das Grundprinzip der vorgeschlagenen Stromspiegel- anordnung anhand eines Schaltplans,
Figur 4 eine Weiterbildung der Schaltung von Figur 3 anhand eines Schaltplans und
Figur 5 eine Weiterbildung der Schaltung von Figur 3 mit Wilson-Stromspiegel .
Figuren 1 und 2 wurden bereits in der Beschreibungseinleitung erläutert. Deren Beschreibung soll daher an dieser Stelle nicht noch einmal wiederholt werden.
Figur 3 zeigt eine Stromspiegelanordnung gemäß dem vorgeschlagenen Prinzip mit einem ersten Transistor 11, der von einem p-Leitfähigkeitstyp ist, und mit einem zweiten Transistor 12, der von einem n-Leitf higkeitstyp ist. Der erste und der zweite Transistor 11, 12 haben je einen Steueranschluss und je eine gesteuerte Strecke. Zwischen je einen Anschluss der gesteuerten Strecken der Transistoren 11, 12 ist eine Stromquelle 13 geschaltet . Der freie Anschluss der gesteuerten Strecke des Transistors 11 ist mit einem Versorgungspo- tenzialanschluss 14 und der freie Anschluss der gesteuerten Strecke des zweiten Transistors 12 mit einem Bezugspotenzialanschluss 15 verschaltet . Die mit der Stromquelle 13 verbundenen Anschlüsse der gesteuerten Strecken der Transistoren 11, 12 sind mit dem jeweiligen Steueranschluss des zugehörigen Transistors 11, 12 zur Bildung einer Diode verbunden und bilden zugleich Ausgänge 16, 17 der Stromspiegelanordnung. Der erste Ausgang 16 ist ausgelegt zur Abgabe eines ersten Stroms PBIAS, während der zweite Ausgang 17 zur Abgabe eines zweiten, zum ersten komplementären Stroms NBIAS ausgelegt ist. Erster und zweiter Strom dienen als komplementäre BIAS- Signale. Gemäß Figur 1 ist die Stromquelle 13 als floatende Stromquelle, also mit schwebendem Potenzial, ausgeführt.
Zusätzlich zu dem Strompfad 11, 13, 12 ist ein weiterer
Strompfad vorgesehen, der dazu ausgelegt ist, von einem Referenzstrom IREF durchflössen zu werden. Zur Kopplung dieser beiden Strompfade ist ein in Figur 3 nicht explizit eingezeichneter Stromspiegel vorgesehen, was dadurch angedeutet ist, dass die gesteuerte Stromquelle 13 von dem n-fachen Referenzstrom IREF des ersten Strompfades durchflössen ist. Der Buchstabe n repräsentiert dabei das Spiegelverhältnis des Stromspiegels .
Durch die Verschaltung gemäß Figur 3 ist sichergestellt, dass die Ströme in dem p-Kanal-Transistor 11 und in dem n-Kanal- Transistor 12 identisch groß sind und damit auch die von den Transistoren bereitgestellten und an den Ausgängen 16, 17 abgreifbaren, komplementären Bias-Signale PBIAS, NBIAS exakt identisch groß sind. Die vorgeschlagene Schaltung hat dabei einen geringen Bauteilaufwand und ist mit geringer Chipfläche und daher kostengünstig integrierbar. Eine Weiterbildung der Schaltung von Figur 3 zur Erzeugung identischer n-MOS- und p-MOS-Strδme mittels einer Stromspiegelanordnung zeigt Figur 4. Die Schaltung von Figur 4 stimmt in den verwendeten Bauteilen, deren vorteilhafter Zusammen- schaltung und Funktionsweise weitgehend mit derjenigen von
Figur 3 überein und wird insoweit an dieser Stelle nicht noch einmal wiederholt .
Die floatend betriebene, gesteuerte Stromquelle 13 ist bei Figur 4 als Transistor 13' ausgebildet, der mit einem Eingangstransistor 18 den Stromspiegel 18, 13' bildet. Der Eingangstransistor 18 ist als Diode verschaltet. Ebenso wie der Transistor 13', der als Stromquelle arbeitet, ist der Transistor 18 vom n-Kanal-Typ. Zur Bereitstellung des Referenz- Stroms IREF ist eine Stromquelle 19 vorgesehen, die einen Ver- sorgungspotenzialanschluss 14 mit einem Anschluss der gesteuerten Strecke des Diodentransistors 18 verbindet, der auch mit dessen Gate-Anschluss verbunden ist. Eine weitere Transistordiode 20, ebenfalls vom n-Leitfähigkeitstyp, verbindet den Transistor 18 mit dem Bezugspotenzialanschluss 15. Somit bilden die Referenzstromquelle 19, der Transistor 18 und die Diode 20 miteinander eine Serienschaltung.
Man erkennt, dass ausgehend von einer Stromspiegelanordnung mit Kaskode-Stufe, wie in Figur 2 gezeigt, nur geringfügige
Modifikationen und keinerlei zusätzliche Bauteile erforderliche sind, um gleichwohl mit Vorteil Bias-Ströme, die exakt miteinander übereinstimmen und zum Betrieb komplementärer Bauteile geeignet sind, gemäß der Schaltung von Figur 4 zu erzeugen.
Figur 5 zeigt ein weiteres Ausführungsbeispiel einer Weiterbildung einer Stromspiegelanordnung gemäß vorgeschlagenem Prinzip. Die Schaltung von Figur 5 stimmt in den verwendeten Bauteilen, deren Verschaltung miteinander sowie ihrer vorteilhaften Funktionsweise weitgehend mit der von Figur 4 ü- berein und wird insoweit an dieser Stelle nicht noch einmal beschrieben.
Anstelle des als Diode verschalteten Transistors 20 ist bei Figur 5 der Steueranschluss des dort mit Bezugszeichen 20' versehenen Transistors mit dem Gate-Anschluss des zweiten Transistors 12 verbunden. Dadurch bilden die Transistoren 12, 20' miteinander einen Feedback-Stromspiegel, der zusammen mit dem Stromspiegel 18, 13', der in Vorwärtsrichtung arbeitet, einen Wilson-Stromspiegel bildet. Der Wilson-Stromspiegel 18, 13'; 12, 20' bildet einen geschlossenen Regelkreis.
Auch für das Ausführungsbeispiel gemäß Figur 5 gilt, dass die an den Ausgängen 16, 17 abgreifbaren Bias-Signale PBIAS, NBIAS exakt miteinander übereinstimmen.
Im Rahmen der Erfindung können alle gezeigten Ausfuhrungsbei- spiele auch in komplementärer Ausführung realisiert sein, das bedeutet, dass alle Transistoren vom n-Leitfähigkeitstyp durch p-MOS-Bauteile und umgekehrt ersetzt werden.
Selbstverständlich dienen die gezeigten Ausfuhrungsbeispiele nicht zur Beschränkung der Erfindung, sondern lediglich zu illustrativen Zwecken. Bezugszeichenliste
1 Bezugspotenzialanschluss
2 Transistor 3 Transistor
4 Stromquelle
5 Versorgungspotenzialanschluss
6 Transistor
7 Ausgang 8 Ausgang
9 Diode
10 Transistor
11 Transistor
12 Transistor 13 gesteuerte Stromquelle
13 ' Transistor
14 Versorgungspotenzialanschluss
15 Bezugspotenzialanschluss
16 Ausgang 17 Ausgang
18 Diode
19 Referenzstromquelle 20' Transistor

Claims

Patentansprüche
1. Stromspiegelanordnung, aufweisend
- einen ersten Transistor (11) , der von einem ersten Leitfä- higkeitstyp ist, ausgelegt zur Abgabe eines ersten Stroms (PBIAS) ,
- einen zweiten Transistor (12) , der von einem zweiten Leitfähigkeitstyp ist, ausgelegt zur Abgabe eines zweiten Stroms (NBIAS) , - eine gesteuerte Stromquelle (13) , die zwischen den ersten Transistor (11) und den zweiten Transistor (12) geschaltet ist und die den Ausgang eines Stromspiegels bildet,
- wobei ein als Diode verschalteter Transistor (18) des Stromspiegels (18, 13') gemeinsam mit einer Referenzstrom- quelle (19) in einem weiteren Strompfad angeordnet ist, und
- wobei der weitere Strompfad (19, 18) eine weitere Diode (20) umfasst.
2. Stromspiegelanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die gesteuerte Stromquelle (13) zum Betrieb mit schwebendem Potenzial ausgelegt ist.
3. Stromspiegelanordnung nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass der erste Transistor (11) , die gesteuerte Stromquelle (13) und der zweite Transistor (12) in einem gemeinsamen Strompfad angeordnet sind, der zwischen einen Versorgungs- und einen Bezugspotentialanschluss (14, 15) geschaltet ist.
4. Stromspiegelanordnung nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass der erste Leitfähigkeitstyp und der zweite Leitfähigkeitstyp zueinander komplementär sind.
5. Stromspiegelanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der erste Transistor (11) und der zweite Transistor (12) je als Diode verschaltet sind.
6. Stromspiegelanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der erste Transistor (11) einen Steueranschluss aufweist, der mit einem Anschluss der gesteuerten Strecke des ersten Transistors (11) sowie mit einem Anschluss der gesteuerten Stromquelle (13) verbunden ist und an dem ein Ausgang (16) zur Ab- gäbe des ersten Stroms (PBIAS) gebildet ist, und dass der zweite Transistor (12) einen Steueranschluss aufweist, der mit einem Anschluss der gesteuerten Strecke des zweiten Transistors (12) sowie mit einem weiteren Anschluss der gesteuerten Stromquelle (13) verbunden ist und an dem ein Aus- gang (17) zur Abgabe des zweiten Stroms (NBIAS) gebildet ist.
7. Stromspiegelanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die gesteuerte Stromquelle ein Stromquellentransistor (13') ist, dessen gesteuerte Strecke mit den gesteuerten Strecken des ersten und des zweiten Transistors (11, 12) eine Serienschaltung bildet.
8. Stromspiegelanordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die gesteuerte Stromquelle (13') gemeinsam mit einem als Diode verschalteten Transistor (18) den Stromspiegel bildet.
9. Stromspiegelanordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der weitere Strompfad (19, 18) einen Transistor (20') umfasst, der gemeinsam mit dem zweiten Transistor (12) einen Rückkopplungs-Stromspiegel (12, 20') bildet, wobei der zweite Transistor (12) als Diode verschaltet ist.
10. Stromspiegelanordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Stromspiegelanordnung in integrierter Schaltungsbauweise hergestellt ist.
11. Stromspiegelanordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Stromspiegelanordnung in Complementary Metal Oxide Semi- conductor-Schaltungstechnik integriert ist.
PCT/EP2005/004038 2004-04-30 2005-04-15 Stromspiegelanordnung WO2005109144A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/579,023 US7872463B2 (en) 2004-04-30 2005-04-15 Current balance arrangement
EP05742902A EP1741016B1 (de) 2004-04-30 2005-04-15 Stromspiegelanordnung
JP2007509920A JP2007535744A (ja) 2004-04-30 2005-04-15 カレントミラー回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004021232A DE102004021232A1 (de) 2004-04-30 2004-04-30 Stromspiegelanordnung
DE102004021232.5 2004-04-30

Publications (1)

Publication Number Publication Date
WO2005109144A1 true WO2005109144A1 (de) 2005-11-17

Family

ID=34967876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/004038 WO2005109144A1 (de) 2004-04-30 2005-04-15 Stromspiegelanordnung

Country Status (5)

Country Link
US (1) US7872463B2 (de)
EP (2) EP1741016B1 (de)
JP (1) JP2007535744A (de)
DE (1) DE102004021232A1 (de)
WO (1) WO2005109144A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878511B2 (en) * 2010-02-04 2014-11-04 Semiconductor Components Industries, Llc Current-mode programmable reference circuits and methods therefor
US8680840B2 (en) * 2010-02-11 2014-03-25 Semiconductor Components Industries, Llc Circuits and methods of producing a reference current or voltage
JP5500108B2 (ja) * 2011-03-16 2014-05-21 富士通セミコンダクター株式会社 カレントミラー回路及びそれを有する増幅回路
US9563222B2 (en) * 2014-05-08 2017-02-07 Varian Medical Systems, Inc. Differential reference signal distribution method and system
CN209248374U (zh) * 2018-12-05 2019-08-13 北京矽成半导体有限公司 不受温度电压影响的固定延迟电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034626A (en) * 1990-09-17 1991-07-23 Motorola, Inc. BIMOS current bias with low temperature coefficient
EP0747800A1 (de) * 1995-06-05 1996-12-11 STMicroelectronics, Inc. Schaltungsanordnung zum Liefern einer kompensierten Polarisationsspannung für P-Kanal-Transistoren
US5680038A (en) * 1996-06-20 1997-10-21 Lsi Logic Corporation High-swing cascode current mirror
US5694073A (en) * 1995-11-21 1997-12-02 Texas Instruments Incorporated Temperature and supply-voltage sensing circuit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652420A (en) * 1979-10-03 1981-05-11 Toshiba Corp Constant-current circuit
KR930010834A (ko) * 1991-11-25 1993-06-23 프레데릭 얀 스미트 기준 전류 루프
GB9223338D0 (en) * 1992-11-06 1992-12-23 Sgs Thomson Microelectronics Low voltage reference current generating circuit
JP3436971B2 (ja) * 1994-06-03 2003-08-18 三菱電機株式会社 電圧制御型電流源およびそれを用いたバイアス発生回路
FR2724025B1 (fr) * 1994-08-31 1997-01-03 Sgs Thomson Microelectronics Circuit integre avec fonction de demarrage rapide de sources de tension ou courant de reference
JP3853911B2 (ja) * 1997-06-25 2006-12-06 沖電気工業株式会社 定電流回路及びそれを用いた差動増幅回路
US6133749A (en) * 1999-01-04 2000-10-17 International Business Machines Corporation Variable impedance output driver circuit using analog biases to match driver output impedance to load input impedance
US6232831B1 (en) * 1999-12-02 2001-05-15 National Instruments Corporation Electrical power supply with floating current source suitable for providing bias voltage and current to an amplified transducer
US6515538B2 (en) * 2000-04-19 2003-02-04 Nec Compound Semiconductor Devices, Ltd. Active bias circuit having wilson and widlar configurations
FR2834396B1 (fr) * 2002-01-03 2004-02-27 Cit Alcatel Pompe a charge a tres large plage de tension de sortie
ITTO20020816A1 (it) * 2002-09-19 2004-03-20 Atmel Corp Specchio di corrente a bassa tensione a dinamica rapida con
JP2004274207A (ja) * 2003-03-06 2004-09-30 Renesas Technology Corp バイアス電圧発生回路および差動増幅器
DE102004042354B4 (de) 2004-09-01 2008-06-19 Austriamicrosystems Ag Stromspiegelanordnung
DE102007007579B4 (de) 2007-02-15 2015-05-21 Infineon Technologies Ag Senderschaltung
US20090066498A1 (en) 2007-09-07 2009-03-12 Infineon Technologies Ag Tire localization systems and methods
US8077025B2 (en) 2007-09-18 2011-12-13 Infineon Technologies, Ag Intelligent tire systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034626A (en) * 1990-09-17 1991-07-23 Motorola, Inc. BIMOS current bias with low temperature coefficient
EP0747800A1 (de) * 1995-06-05 1996-12-11 STMicroelectronics, Inc. Schaltungsanordnung zum Liefern einer kompensierten Polarisationsspannung für P-Kanal-Transistoren
US5694073A (en) * 1995-11-21 1997-12-02 Texas Instruments Incorporated Temperature and supply-voltage sensing circuit
US5680038A (en) * 1996-06-20 1997-10-21 Lsi Logic Corporation High-swing cascode current mirror

Also Published As

Publication number Publication date
US7872463B2 (en) 2011-01-18
EP1741016A1 (de) 2007-01-10
EP2282249A1 (de) 2011-02-09
EP1741016B1 (de) 2012-09-19
EP2282249B1 (de) 2015-10-07
DE102004021232A1 (de) 2005-11-17
US20080018320A1 (en) 2008-01-24
JP2007535744A (ja) 2007-12-06

Similar Documents

Publication Publication Date Title
DE3874974T2 (de) Cmos-leistungsoperationsverstaerker.
DE69838633T2 (de) Konstantstrom-CMOS-Ausgangstreiberschaltung mit Dual-Gate-Transistoren
EP1086531B1 (de) Logikgatter
DE102005054216B4 (de) Ausgangsstufe, Verstärkerregelschleife und Verwendung der Ausgangsstufe
US6528981B1 (en) Low-voltage current mirror circuit
DE10152888A1 (de) Integrierter Analogmultiplexer
DE10142707A1 (de) Mehrstufiger Differenzverstärker mit CMFB-Schaltkreis
DE10154170A1 (de) Differentialverstärker konstanter Transkonduktanz
EP1741016B1 (de) Stromspiegelanordnung
DE68921136T2 (de) Transistorverstärker für hohe Anstiegsgeschwindigkeiten und kapazitive Belastungen.
EP1784701A1 (de) Stromspiegelanordnung
DE60209482T2 (de) Gepufferte strom-gegengekoppelte stromversorgung und anwendungen hiervon
EP1741185A1 (de) Ausgangsstufenanordnung
DE19533768C1 (de) Stromtreiberschaltung mit Querstromregelung
WO2004017153A1 (de) Bandabstands-referenzschaltung
DE4209858C2 (de) Transferleitwert-Verstärker
DE10211891A1 (de) Intgrierte Halbleiterschaltung
WO2005010631A1 (de) Spannungsregler mit stromspiegel zum auskoppeln eines teilstroms
DE10060842A1 (de) Stromspiegelschaltung
EP1160642B1 (de) Strombegrenzungsschaltung
DE10049774C2 (de) Gegentaktendstufe für digitale Signale mit geregelten Ausgangspegeln
EP0719474B1 (de) BiCMOS-OPERATIONSVERSTÄRKER FÜR SCHALTER-KONDENSATOR-SCHALTUNGEN
DE102010031575B4 (de) Verstärkerschaltung und Verfahren
EP1430596B1 (de) Temperaturstabilisierte verstärkerschaltung
DE10353340A1 (de) Schaltungsanordnung zur Bereitstellung einer Vorspannung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005742902

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007509920

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005742902

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11579023

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11579023

Country of ref document: US