WO2005108604A2 - Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen - Google Patents

Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen Download PDF

Info

Publication number
WO2005108604A2
WO2005108604A2 PCT/EP2005/004923 EP2005004923W WO2005108604A2 WO 2005108604 A2 WO2005108604 A2 WO 2005108604A2 EP 2005004923 W EP2005004923 W EP 2005004923W WO 2005108604 A2 WO2005108604 A2 WO 2005108604A2
Authority
WO
WIPO (PCT)
Prior art keywords
microarray
detection
reaction
reaction chamber
probe
Prior art date
Application number
PCT/EP2005/004923
Other languages
English (en)
French (fr)
Other versions
WO2005108604A3 (de
Inventor
Alexandra Dworrak
Thomas Ellinger
Eugen Ermantraut
Torsten Schulz
Thomas Ullrich
Thomas Kaiser
Original Assignee
Clondiag Chip Technologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP10180859.0A priority Critical patent/EP2299257B1/de
Priority to EP10180879.8A priority patent/EP2280267B1/de
Application filed by Clondiag Chip Technologies Gmbh filed Critical Clondiag Chip Technologies Gmbh
Priority to AT05739547T priority patent/ATE477338T1/de
Priority to NZ551229A priority patent/NZ551229A/en
Priority to CN2005800143517A priority patent/CN1981188B/zh
Priority to EP05739547A priority patent/EP1761641B1/de
Priority to DK05739547.7T priority patent/DK1761641T3/da
Priority to EP10172432.6A priority patent/EP2256478B1/de
Priority to AU2005240757A priority patent/AU2005240757B2/en
Priority to JP2007512036A priority patent/JP4958770B2/ja
Priority to CA2565679A priority patent/CA2565679C/en
Priority to EP18189028.6A priority patent/EP3527287A1/de
Priority to BRPI0510680A priority patent/BRPI0510680B8/pt
Priority to DE502005010078T priority patent/DE502005010078D1/de
Publication of WO2005108604A2 publication Critical patent/WO2005108604A2/de
Publication of WO2005108604A3 publication Critical patent/WO2005108604A3/de
Priority to US11/593,021 priority patent/US8916348B2/en
Priority to HK07106972.2A priority patent/HK1102610A1/xx
Priority to US14/580,137 priority patent/US20160237482A1/en
Priority to US17/154,749 priority patent/US20210172010A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/024Modular construction

Definitions

  • the invention relates to devices and methods for detecting specific interactions between target and probe molecules.
  • Biomedical tests are often based on the detection of an interaction between a molecule present in a known amount and position (the molecular probe) and an unknown molecule to be detected or unknown molecules (the molecular target or target molecules) to be detected.
  • the probes are stored in the form of a substance library on carriers, the so-called microarrays or microarrays or chips, so that a sample can be analyzed simultaneously on several probes simultaneously (see eg DJ Lockhart, EA Winzeler, Genomics, Gene Expression and DNA arrays; Nature 2000, 405, 827-836).
  • the probes are usually immobilized in a predetermined manner on a suitable matrix described, for example, in WO 00/12575 (see, for example, US Pat. No. 5,412,087, WO 98/36827) or synthetically produced (see, for example, US Pat. No. 5,143,854).
  • a prerequisite for the binding of a target molecule labeled, for example, with a fluorescent group in the form of a DNA or RNA molecule to a nucleic acid probe of the microarray is that both the target molecule and the probe molecule are in the form of a single-stranded nucleic acid. Only between such molecules can an efficient and specific hybridization take place.
  • Single-stranded nucleic acid target and nucleic acid probe molecules are generally obtained by heat denaturation and optimum choice of parameters such as temperature, ionic strength and concentration of helix destabilizing molecules. This ensures that only probes with almost perfectly complementary, ie corresponding sequences with the target sequence remain paired (AA Leitch, T. Schwarzacher, D. Jackson, IJ Leitch, 1994, in vitro hybridization, Spektrum Akademischer Verlag, Heidelberg / Berlin / Oxford).
  • a typical example of the use of microarrays in biological test methods is the detection of microorganisms in samples in biomedical diagnostics. It makes use of the fact that the ribosomal RNA (rRNA) genes are ubiquitously distributed and have sequences that are characteristic of each species. These species-characteristic sequences are applied to a microarray in the form of single-stranded DNA oligonucleotides.
  • the target DNA molecules to be investigated are first isolated from the sample to be investigated and provided with markers, for example fluorescent markers. Subsequently, the labeled target DNA molecules are incubated in a solution with the probes applied to the microarray, non-specific interactions are removed by appropriate washing steps and specific interactions are detected by fluorescence optical evaluation.
  • the particular quantitative detection of fluorescence signals is carried out using modified methods of fluorescence microscopy.
  • the light of Absorptipnswellenin is separated from that of the emission wavelength by means of filters or dichroic and the measurement signal by means of optical elements such as lenses and lenses on suitable detectors such. imaging two-dimensional CCD arrays.
  • the analysis is generally done by digital image processing.
  • CCD-based detectors which, in order to discriminate optical effects such as scattering and reflections, realize the excitation of the fluorophores in the dark field by reflected light or transmitted light (see, for example, CE Hooper et al., Quantitative Photon Imaging in the Life Sciences Using Intensified CCD Cameras, Journal of Bioluminescence and Chemiluminescence (1990), pp. 337-344).
  • the imaging of the arrays takes place either in an exposure or by screening using higher-resolution optics.
  • the use of multispectral exposure sources allows relatively easy access to different fluorophores through the use of different excitation filters (combinations).
  • a disadvantage is that autofluorescence and system-related optical effects such as the illumination homogeneity above the array require complicated illumination optics and filter systems.
  • Fluorescence signals along the optical axis by means of two pinholes This results in a high adjustment effort of the samples or the establishment of a powerful autofocus system.
  • Such systems are highly complex in the technical solution.
  • Required components such as lasers, pinholes, optionally cooled detectors such as PMT, avalanche diodes or CCD, complex high-precision mechanical translation elements and optics must be optimized and integrated with considerable effort (see, eg, US 5,459,325; 5,192,980; US 5,834,758). Miniaturization and price are limited by the variety and functionality of the components.
  • confocal systems which are suitable for the detection of low-integrated substance libraries in array format mounted in fluidic chambers (see for example US 5,324,633, US 6,027,880, US 5,585,639, WO 00/12759).
  • WO 02/02810 has provided a method for the qualitative and / or quantitative detection of targets in a sample by molecular interactions between probes and targets on probe arrays, in which the time course of precipitation formation on the array elements is detected in the form of signal intensities is, that is, a dynamic measurement is performed. Each array element is then assigned a value based on a curve function that describes precipitation formation as a function of time, which quantifies the interaction between probe and target on an array element and thus the amount of bound targets.
  • RNA molecules For the amplification of RNA, the RNA molecules must be converted by reverse transcription into correspondingly complementary DNA (cDNA). This cDNA can then also be amplified by PCR (amplified).
  • PCR is a laboratory standard method (as described, for example, in Sambrook et al. (2001) Molecular Cloning: A laboratory manual, 3rd edition, Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press).
  • the amplification of DNA by PCR is relatively fast, allows a high sample throughput in small batch volumes by means of miniaturized methods and is labor-efficient through automation.
  • a characterization of nucleic acids by a sole duplication is not possible. Rather, it is necessary to use analysis methods such as nucleic acid sequence determinations, hybridization and / or electrophoretic separation and isolation methods for the characterization of the PCR products after the amplification.
  • devices and methods for the amplification of nucleic acids and their detection should be designed so that the least possible intervention by an experimenter is necessary.
  • the advantages of methods that allow duplication of nucleic acids and their detection, and in the course of which an experimenter must intervene only minimally, are obvious. On the one hand, contamination is avoided. On the other hand, the reproducibility of such methods is substantially increased since they are accessible to automation. This is also extremely important in terms of drug approval of diagnostic procedures.
  • nucleic acids There are currently a variety of methods for the amplification of nucleic acids and their detection, in which first the target material is amplified by PCR amplification and the identity or the genetic state of the target sequences is subsequently determined by hybridization against a probe array.
  • the amplification of the nucleic acid or target Molecules are usually necessary to have sufficient quantities available for qualitative and quantitative detection in the context of hybridization.
  • detectable markers for example in the form of
  • a washing step is usually performed before the actual detection. Such a washing step serves to remove the large excess of unreacted primer as compared to the amplification product and those provided with a fluorescent label
  • Nucleotides which do not participate in the detection reaction or do not hybridize specifically with the nucleic acid probes of the microarray should be reduced.
  • the detection method is slowed down significantly.
  • the detectable signal is also significantly reduced for the nucleic acids to be detected which specifically hybridize with the nucleic acid probes of the microarray. The latter is mainly due to the fact that the balance between the bound by hybridization and in solution targets after the washing step is no longer exist. Nucleic acids which have already hybridized with the nucleic acid probes on the array are removed from the binding site by washing and thus washed away with the molecules in solution. It remains only a detectable signal at all if the washing or rinsing step in Solution molecules is completed faster than the replacement of the already hybridized nucleic acids takes place.
  • Another object of the present invention is to provide methods and apparatus for the qualitative and / or quantitative detection of To provide target molecules with which a high signal-to-noise ratio is ensured in the detection of interactions on the microarray, without affecting the interaction between the target and the probe molecules on the array.
  • Another object of the present invention is to provide apparatuses for achieving high dynamic resolution in detection, i. the detection of weak probes / target interactions is ensured in addition to strong signals.
  • the invention is also based on the object to provide devices or methods that enable a nearly simultaneous duplication and characterization of nucleic acids with a high throughput.
  • Target molecules are provided in which the exchange and / or removal of solutions, i. especially washing or rinsing steps, can be dispensed with.
  • Such inventive methods comprise in particular the following steps: a) introducing a sample containing target molecules into a reaction chamber having a microarray, said microarray comprising a substrate having probe molecules immobilized thereon on array elements; b) detecting an interaction between the target molecules and the probe molecules immobilized on the substrate, wherein after introduction of the sample containing target molecules and before and during the detection no exchange of solutions in the reaction chamber and / or removal of solutions from the reaction chamber takes place.
  • a device for the qualitative and / or quantitative detection of molecular interactions between probe and target molecules, comprising: a) a microarray with a substrate on which probe molecules are immobilized on array elements, wherein the Microarray is disposed on a first surface of the device; and b) a reaction chamber formed between the first surface having the microarray disposed thereon and a second surface, wherein the distance between the microarray and the second surface is changeable.
  • the variability of the distance between the microarray and the second surface which usually represents the detection plane of the device according to the invention, allows the signal background caused by labeled target molecules not having a specific affinity to the Have probe molecules of the microarray and therefore do not interact with these, can be substantially reduced or completely avoided.
  • Target molecules provided, comprising the following steps: a) introducing a sample solution comprising target molecules in a reaction chamber of a device according to the invention as described above; and b) detecting an interaction between the target molecules and the probe molecules immobilized on the substrate.
  • the methods and devices for the detection of target molecules according to the invention are designed so that the least possible intervention by an experimenter into the reaction chamber is necessary for carrying out the detection method and, if appropriate, amplification of the target molecules. This offers the significant advantage of avoiding contamination. Furthermore, the reproducibility of the method according to the invention is substantially increased in comparison with conventional methods, since the method according to the invention is accessible to automation due to the minimization of external intervention. The above advantages play an important role in the approval of diagnostic procedures.
  • a probe or a probe molecule or a molecular probe is understood as meaning a molecule which can be used for detection of other molecules by a specific, characteristic binding behavior or a specific reactivity is used.
  • the probes arranged on the array can be any kind of molecules that can be coupled to solid surfaces and have a specific affinity. In a preferred embodiment, these are biopolymers, in particular biopolymers from the classes of peptides, proteins, antigens, antibodies, carbohydrates, nucleic acids and / or their analogs and / or copolymers of the abovementioned biopolymers.
  • the probes are particularly preferably nucleic acids and / or nucleic acid analogs.
  • nucleic acid molecules of defined and known sequence which are used to detect target molecules in hybridization methods, are referred to as probes.
  • probes both DNA and RNA molecules can be used.
  • the nucleic acid probes or oligonucleotide probes may be oligonucleotides having a
  • the probes are single-stranded nucleic acid molecules or molecules of nucleic acid analogs, preferably single-stranded DNA molecules or RNA molecules, which have at least one sequence region which is complementary to a sequence region of the target molecules.
  • the probes may be mounted on a solid support substrate, e.g. be immobilized in the form of a microarray.
  • they may be radioactively or non-radioactively labeled, so that they can be detected by standard detection methods used in the art.
  • a target or a target molecule is understood to be the molecule to be detected by a molecular probe.
  • the targets to be detected are nucleic acids.
  • the probe array according to the invention can also be used analogously for the detection of peptide / probe interactions, protein / probe interactions, carbohydrate / onden interactions, antibody / probe interactions, etc.
  • the targets in the context of the present invention are nucleic acids or nucleic acid molecules that are detected by hybridization against probes arranged on a probe array
  • these target molecules generally comprise sequences with a length of 40 to 10,000 bases, preferably from 60 to 2,000 bases, also preferably from 60 to 1,000 bases, more preferably from 60 to 500 bases, and most preferably from 60 to 150 bases.
  • Their sequence optionally includes the sequences of primers, as well as the sequence regions of the template defined by the primers.
  • the target molecules may in particular be single-stranded or double-stranded nucleic acid molecules of which one strand or both strands are radioactively or not radioactively labeled, so that they can be detected in one of the detection methods customary in the prior art.
  • the target sequence according to the invention is the sequence region of the target, which is detected by hybridization with the probe. According to the invention is also spoken of that this area is addressed by the probe.
  • a substance library is understood to mean a multiplicity of different probe molecules, preferably at least two to 1,000,000 different molecules, more preferably at least 10 to 10,000 different molecules, and most preferably between 100 and 1,000 different molecules.
  • a substance library can also comprise only at least 50 or fewer or at least 30,000 different molecules.
  • the substance library is preferably arranged as an array on a support in the reaction chamber of the device according to the invention.
  • a probe array is understood to mean an arrangement of molecular probes or a substance library on a support, the position of each probe being determined separately.
  • the array comprises defined locations or predetermined areas, so-called array elements, which are particularly preferably arranged in a specific pattern, wherein each array element usually contains only one species of probes.
  • the arrangement of the molecules or probes on the support can be generated by covalent or non-covalent interactions.
  • the probes are arranged on the reaction chamber facing side of the carrier. A position within the array, i. of the array is commonly referred to as a spot.
  • an array element or a predetermined area or a spot or an array spot is understood to be an area on a surface intended for the deposition of a molecular probe; the sum of all occupied array elements is the probe array.
  • a carrier element or carrier or substance library carrier or substrate is understood to mean a solid body on which the probe array is constructed.
  • the carrier which is usually also referred to as a substrate or matrix, may be, for example, slides or wafers or even ceramic materials.
  • the probes may also be immobilized directly on the first surface, preferably on a portion of the first surface.
  • the second surface of the device according to the invention is referred to.
  • the probes deposited on the microarray are preferably located substantially in the detection plane in the detection of the interaction between probes and targets, in particular in that the distance between the microarray and the second surface is reduced to approximately zero.
  • a chamber body is understood to be the solid body forming the reaction chamber.
  • the substance library carrier or the chip is usually part of the chamber body, wherein the substance library carrier may be formed of a different material than the rest of the chamber body.
  • a reaction chamber or a reaction space refers to the space which is formed between the microarray and the second surface or detection plane and is preferably configured as a variable capillary gap.
  • the reaction space is bounded laterally by side walls, which may be designed as elastic seals, for example.
  • the immobilized on the microarray probes are located on the interior of the Reaction chamber facing side.
  • the base area of the reaction chamber or of the reaction space is defined by the first area or the second area of the array.
  • the distance between the second surface or detection plane and the surface of the substrate or of the microarray is referred to as the thickness of the reaction space or of the reaction chamber or of the capillary gap.
  • a reaction space in the context of the present invention has a small thickness, for example a thickness of at most 1 cm, preferably of at most 5 mm, more preferably of at most 3 mm and most preferably of at most 1 mm.
  • the distance between the microarray substrate and the second surface is the distance between the surface of the microarray substrate, i. the reaction chamber facing side of the microarray, and the reaction space facing side of the second surface understood. If the distance between the microarray and the second surface is approximately zero, this means that the surface of the substrate rests flush on the second surface.
  • a capillary gap is a reaction space which can be filled by capillary forces acting between the microarray and the second surface.
  • a capillary gap has a small thickness, for example of at most 1 mm, preferably of at most 750 ⁇ m and particularly preferably of at most 500 ⁇ m.
  • the thickness of the capillary gap is preferably in the range from 10 to 300 ⁇ m, from 15 ⁇ m to 200 ⁇ m or from 25 ⁇ m to 150 ⁇ m.
  • the capillary gap has a thickness of 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m or 90 ⁇ m. If the reaction space or the reaction chamber has a thickness of more than 2 mm, the reaction space or the Reaction chamber in the context of the present invention is no longer referred to as capillary gap.
  • a cartridge or reaction cartridge is understood to mean a unit from the reaction chamber with a chamber body and a corresponding housing.
  • a confocal fluorescence detection system is understood to mean a fluorescence detection system in which the object in the focal plane of the objective is illuminated by a point light source.
  • Point light source, object and point light detector lie in exactly optically conjugate planes. Examples of confocal systems are described in A. Diaspro, Confocal and 2-photon-microscopy: Foundations, Applications and Advances, Wiley-Liss, 2002.
  • a fluorescence-optical system imaging the entire volume of the reaction chamber is understood to be a non-confocal fluorescence detection system, ie a fluorescence detection system in which the illumination by the point light source is not limited to the object.
  • a fluorescence detection system thus has no focal limitation.
  • microarrays in the context of the present invention comprise about 50 to 10,000, preferably 150 to 2000, different species of probe molecules on a preferably square area of, for example, 1 mm to 4 mm ⁇ 1 mm to 4 mm, preferably 2 mm ⁇ 2 mm.
  • microarrays in the context of the present invention comprise about 50 to about 80,000, preferably about 100 to about 65,000, more preferably about 1,000 to about 10,000 different species of probe molecules on a • y -y 9 9
  • Area of several mm to several cm preferably about 1 mm to 10 cm, 9 9 9 more preferably 2 mm to 1 cm, and most preferably about 4 mm to 6.25 mm 2 .
  • a conventional microarray of from 100 to 65,000 has different species of probe molecules in a 2mm x 2mm area.
  • a marker or a marker in the context of the present invention denotes a detectable entity, for example a fluorophore or an anchor group, to which a detectable entity can be coupled.
  • a replication reaction or an amplification reaction in the context of the present invention usually comprises 10 to 50 or more amplification cycles, preferably about 25 to 45 cycles, particularly preferably about 40 cycles.
  • a cyclic amplification reaction in the context of the present invention is preferably a polymerase chain reaction (PCR).
  • the amplification cycle in the context of the present invention is a single amplification step of the cyclic amplification reaction.
  • An amplification step of PCR is also referred to as a PCR cycle.
  • an amplification product is a product from the amplification or amplification or amplification of the nucleic acid molecules to be amplified by the cyclic amplification reaction, preferably by the PCR.
  • a PCR amplified nucleic acid molecule is also referred to as a PCR product.
  • denaturation temperature is understood to be the temperature at which the double-stranded DNA is separated in the amplification cycle.
  • the denaturation temperature is, in particular in a PCR, usually more than 90 ° C, preferably about 95 ° C.
  • the annealing temperature is understood to mean the temperature at which the primers hybridize to the nucleic acid to be detected.
  • the annealing temperature is, in particular in a PCR, usually in the range of 50 ° C to 65 ° C and is preferably about 60 ° C.
  • chain extension or extension temperature is understood to mean the temperature at which the nucleic acid is synthesized by incorporation of the monomer units.
  • the extension temperature is, in particular in a PCR, usually in the range of about 68 ° C to about 75 ° C and is preferably about 72 ° C.
  • an oligonucleotide primer or primer is an oligonucleotide which binds or hybridizes to the DNA to be detected, also called target DNA, wherein the binding site initiates the synthesis of the counterstrand of the DNA to be detected in the cyclic amplification reaction
  • a primer is usually a short DNA or RNA oligonucleotide, preferably of about 12 to 30 bases, which is complementary to a portion of a larger DNA or RNA molecule and is attached to its 3 'via a free 3-OH group. Ended. Because of this free 3'-OH group, the primer can be used as a substrate for any DNA or RNA
  • Polymerases serve to synthesize nucleotides on the primer in the 5'-3 'direction.
  • the sequence of the newly synthesized nucleotides is predefined by the sequence of the template hybridized with the primer, which is beyond the free 3'-OH. Group of the primer is located.
  • Standard length primers comprise between 12 to 50 nucleotides, preferably between 15 and 30 nucleotides.
  • a template or template strand is usually a double-stranded nucleic acid molecule or a nucleic acid strand, which serves as template for the synthesis of complementary nucleic acid strands.
  • a molecular interaction or an interaction is understood in particular to mean a specific, covalent or non-covalent bond between a target molecule and an immobilized probe molecule.
  • the interaction between probe and target molecules is a hybridization.
  • Hybridisiemng the formation of double-stranded nucleic acid molecules or duplex molecules of complementary single-stranded nucleic acid molecules is referred to.
  • the association preferably always takes place in pairs of A and T or G and C.
  • duplexes can also be formed with nucleic acid analogs, e.g. DNA-PNA duplexes, RNA-PNA duplexes, DNA-LNA duplexes and RNA-LNA duplexes.
  • Hybridization experiments are commonly used to detect sequence complementarity and thus identity between two different nucleic acid molecules.
  • sample or sample solution or analyte or solution refers to a liquid to be analyzed which contains in particular the target molecules to be detected and possibly to be amplified.
  • a solution may further u.a. in addition to conventional additives such as buffers also required for the performance of amplification reactions required substances such as primers.
  • exchanging solutions in the reaction chamber from the reaction chamber is understood in particular to be washing or rinsing steps.
  • the exchange of solutions serves e.g. for the elimination of detectable label molecules which do not specifically interact with probes on the microarray in which, after interaction, the sample solution is exchanged for an unlabelled solution.
  • Molecules which do not specifically interact with probes on the microarray are e.g. primers provided with a detectable label that have not been reacted during the amplification reaction, or target molecules provided with a detectable label, to which there is no complementary probe on the array that specifically interacts with that target molecule.
  • removal of solutions from the reaction chamber is understood as meaning steps with which molecules which are provided with detectable markers and which do not interact specifically with probes on the microarray are removed from the reaction chamber.
  • molecules which do not interact specifically with probes on the microarray are, for example, primers provided with a detectable label that have not been reacted during the amplification reaction, or target molecules provided with a detectable label, to which there is no complementary probe on the array specific to it Target molecule interacts.
  • a first subject of the present invention thus comprises a method for the qualitative and / or quantitative detection of molecular interactions between probe and target molecules, comprising in particular the following steps: a) introducing a sample containing target molecules into a reaction chamber having a microarray, wherein the Microarray a substrate with it on array
  • An essential feature of the method according to the invention in this aspect of the present invention is that the detection of an interaction between the target molecules to be detected and the probe molecules immobilized on the substrate of the microarray takes place without exchanging solutions in the reaction chamber or removing solutions the reaction chamber takes place. That is, detecting the interaction between targets and probes may be accomplished without requiring rinse steps subsequent to the interaction reaction and / or without removing molecules from the reaction chamber subsequent to the interaction reaction which are not specific to probes interact with the microarray.
  • focus-selective detection methods in the method according to the invention, such as e.g. by confocal techniques or by the application of a depth-selective illumination aufgmnd the e.g. total reflection-based evanescent excitation of excitation light (TIRF) in the sample substrate or the use of waveguide-based methods.
  • TIRF total reflection-based evanescent excitation of excitation light
  • Such focussed selective methods are particularly preferred when further exclusion of the presence in the fluid, i. non-hybridized fluorescent molecules caused background signals to increase sensitivity.
  • the specific interaction signals from the background fluorescence can be discriminated using methods such as total internal reflection fluorescence microscopy (TIRF) or confocal fluorescence microscopy.
  • CCD-based detectors which, in order to discriminate against optical effects such as scattering and reflections, realize the excitation of the fluorophores in the dark field by reflected light or transmitted light (see, for example, CE Hooper et al. Quantitative Photon Imaging in the Life Sciences Using Intensified CCD Cameras, Journal of Bioluminescence and Chemoluminescence (1990), 337-344).
  • fluorescence detection systems that can be used in the method according to the invention are white light structures as described, for example, in WO 00/12759, WO 00/25113 and WO 96/27025; confocal systems such as described in US 5,324,633, US 6,027,880, US 5,585,639 and WO 00/12759; Nipkow disc-based confocal excitation systems in imaging confocal imaging, such as described in US 5,760,950; based on structured excitation distribution systems, as described for example in WO 98/57151;
  • WO 2004/087951 For carrying out a detection method according to the invention without exchanging solutions in the reaction chamber and / or removing solutions from the reaction chamber prior to detection, in particular the devices described in WO 2004/087951 are suitable, in which the reaction chamber is formed by a capillary gap.
  • the relevant content of WO 2004/087951 is hereby incorporated by reference.
  • the replacement and / or removal of solutions from the reaction chamber is avoided by detecting the detection by surface acoustic wave detection, as described, for example, in Z. Guttenberg et al., Lab. 2005; 5 (3): 308-17.
  • the replacement and / or removal of solutions from the reaction chamber is avoided by detection by electrochemical detection by means of electrodes on the surface of the array, such as by measuring the change in redox potentials (see, eg X. Zhu et al., Lab Chip, 2004; 4 (6): 581-7) or cyclic voltometry (see, for example, J. Liu et al., Anal Chem. 2005; 11 (9): 2156-2161; Wang, Anal Chem. 2003; 75 (15): 3941-5).
  • FRET fluorescence resonance energy transfer
  • the use of such FRET Probes are based on the formation of fluorescent quencher pairs, so that a fluorescence signal only arises when a target molecule has bound to the complementary probe on the surface.
  • the use of FRET probes is described, for example, in B. Liu et al., PNAS 2005, 102, 3, 589-593; K. Usui et al., Mol. Divers. 2004; 8 (3): 209-18; YES. Cruz-Aguado et al., Anal Chem. 2004; 76 (14): 4182-8 and J. Szollosi et al., J Biotechnol. 2002; 82 (3): 251-66.
  • the replacement and / or removal of solutions from the reaction chamber is avoided by using a device according to the invention as described in detail below for the qualitative and / or quantitative detection of molecular interactions between probe and target molecules is used, the device comprising: a) a microarray with a substrate on which probe molecules are immobilized on array elements, wherein the microarray is arranged on a first surface of the device; and b) a reaction chamber formed between the first surface having the microarray disposed thereon and a second surface, and wherein the distance between the microarray and the second surface is changeable.
  • Another object of the present invention relates to the use of FRET probe molecules as described above and / or detection method selected from the group consisting of Total Intemal Reflection fluorescence microscopy (TIRF) as described above, confocal
  • a method of qualitatively and / or quantitatively detecting molecular interactions between probe and target molecules comprising in particular the following steps: a) introducing a sample containing target molecules into a reaction chamber having a microarray, the microarray including a substrate having arrayed thereon; Comprises elements immobilized probe molecules; b) detecting an interaction between the target molecules and the probe molecules immobilized on the substrate.
  • a further subject matter of the present invention is in particular a device for the qualitative and / or quantitative detection of molecular interactions between probe and target molecules, comprising:
  • probe molecules and target molecules After interaction between probe molecules and target molecules, unwanted background is caused by the labeled molecules present in the sample solution that do not interact with the probe molecules. If the probe and / or target molecules are nucleic acids and / or nucleic acid analogs, this background is caused in particular by the labeled primers present in the sample solution and / or labeled nucleic acids which are not hybridized with the probe molecules.
  • a known possibility for removing disturbing background signals is the replacement of the sample solution after interaction with an unlabelled, for example, non-fluorescent solution.
  • this variant is generally due to corrosion, aging of the solutions and leakage problems, consuming and prone to failure.
  • An essential feature of the device according to the invention is that the distance between the microarray and the second surface is variable.
  • a variable distance between the microarray and the second surface means that the reaction chamber of the device according to the invention is compressible.
  • the distance between the microarray and the second surface is variable such that the microarray is flush and / or reversible with its active side, i. the side on which the nucleic acid probes are immobilized can abut against the second surface or can be pressed onto it.
  • a compressible reaction chamber allows displacement of sample solution containing labeled molecules that do not interact with the probe molecules and thus present an undesirable background.
  • any optical detection system without exchanging the sample solution for an unlabeled solution prior to detection.
  • the device according to the invention thus enables, for example, in contrast to the previously used fluorescence-optical detection systems for the detection of nucleic acids, a simple fluorescence microscope device without autofocus function as a reading device for the detection of Hybridisiemng between targets and probes can be used without liquid handling steps such as washing steps in particular Removal of target molecules not bound to the array, such as unhybridized target nucleic acids are required.
  • the device according to the invention in spite of the multifunctional sample treatment and analysis that can be carried out with the device according to the invention, an extremely cost-effective system for detecting and possibly amplifying target molecules in a sample is provided.
  • the devices according to the invention in particular in conjunction with an optical detection system, are furthermore so robust that they can also be used for mobile use.
  • Analysis chemicals is the device of the invention for a variety of types of gene analysis such as predisposition diagnostics, pathogen diagnostics and typing applicable.
  • the device according to the invention which is also disposable Cartridge can be carried out, thus a complete genetic analysis with little equipment is Kursbowbar.
  • the device according to the invention thus makes it possible to carry out detection methods at the site of the event, eg in the case of a blood donation.
  • a measurement result can be present within a short time, preferably within 1 h to 2 h. All steps which can be carried out with the device according to the invention, such as purification, work-up, amplification of nucleic acids and the actual hybridization, can be carried out automatically.
  • the operator only has to be familiar with the sampling, the task of the sample in the device according to the invention as well as the knowledge of the results of the analysis.
  • the distance between the microarray and the second surface is variable within a range of about 0 to about 1 mm.
  • Further preferred lower limits for the distance between the microarray and the second surface are approximately 0.1 .mu.m, approximately 1 .mu.m and approximately 10 .mu.m.
  • Other preferred upper limits for the microarray to second surface distance are about 0.01 mm, about 0.5 mm, about 1 mm, and most preferably about 0.3 mm.
  • the device according to the invention further comprises a detection system.
  • the detection system is an optical system.
  • optical systems suitable in the context of the present invention are detection systems based on fluorescence, optical absorption, resonance transfer and the like. The like.
  • the optical detection system is a fluorescent optical system.
  • the fluorescence optical System a fluorescence microscope without autofocus, eg a fluorescence microscope with fixed focus.
  • the detection system is connected to at least one spacer which, when resting on the second surface, adjusts a distance between the detection system and the second surface. If the distance between the microarray and the second surface is approximately zero, the spacer also defines the distance between the surface of the chip and the optical system of the detection device. This makes it possible to keep the variance of the distance between the optical detection device and the microarray surface very low.
  • the variance includes only the thickness variance of the second surface, generally a glass surface, the deflection of the second surface and the thickness of a layer caused by any impurities at the contact surfaces between the chip and the detection plane or between the spacer and the detection plane. As a result, a refocusing to focus the optical system is unnecessary, which greatly simplifies the handling of the device and / or makes a costly autofocus device superfluous.
  • Ausculmngsform laterally bounding compensation areas are provided for the reaction space formed between the first and second surface, which keep the volume in the reaction chamber substantially constant while reducing the distance between the microarray and the second surface.
  • the reaction space formed between the first and second surfaces is bounded laterally by elastic seals.
  • the elastic seals are particularly preferably silicone rubber.
  • the second surface is in particular made of an optically transparent material, preferably glass.
  • the first surface is designed at least in the region below the microarray such that the microarray can be guided relative to the second surface such that the distance between the microarray and the second surface is variable.
  • the first surface may be configured, at least in the region below the microarray, such that the microarray can be guided in the direction of the second surface such that the distance between the microarray and the second surface can be reduced and / or that the microarray is opposite in one direction second surface is so feasible that the distance between the microarray and the second surface is increased.
  • the first surface is elastically deformable at least in the region below the microarray. More preferably, the first surface is made of an elastic plastic, e.g. an elastic membrane, designed.
  • the first surface is configured by means of two superimposed layers, wherein an outer layer of the two superimposed layers at least in the region below the microarray has a Ausspamng.
  • an inner of the two superposed layers of an elastic seal or a sealing membrane is formed, which usually also limits the reaction space laterally (see Figure 6).
  • the sealing membrane is in the direction of second surface drivable.
  • the device comprises at least one means with which the microarray can be guided relative to the second surface.
  • This means is also referred to below as the means for guiding the first surface.
  • the means for guiding the first surface is preferably selected from the group consisting of a rod, a pin, a plunger and a screw.
  • the device may comprise at least one means for guiding the first surface, with which the microarray in the direction of the second surface is feasible so that the distance between the microarray and the second surface is reducible, and / or with which the microarray in one direction opposite to the second surface is feasible so that the distance between the microarray and the second surface is increased.
  • the microarray can be guided by pressure and / or tension of the agent on the first surface relative to the second surface.
  • the abovementioned spacers resting on the second surface can serve as an abutment for the means for guiding the first surface.
  • the first surface can be set into vibration by the means for guiding the first surface, in particular into a vibration having a frequency of 10 to 30 Hz, particularly preferably of about 20 Hz. In this way, bubbles which would impede detection above the chip can be removed and / or the interaction speed, eg the hybridization speed, can be increased by a mixing caused by the vibration of the means for guiding the first surface.
  • the second surface can be guided relative to the first surface such that the distance between the microarray and the second surface is variable.
  • the second surface can be guided relative to the first surface such that the distance between the microarray and the second surface can be reduced and / or that the distance between the microarray and the second surface can be increased.
  • the second surface can be guided by pressure and / or tension of the spacer on the second surface relative to the first surface so that the distance between the microarray and the second surface is variable.
  • both the first surface and the second surface can be guided so that the distance between the microarray and the second surface is variable.
  • the device according to the invention is designed such that the microarray mounted on the first surface is already in its original state on the second surface forming the detection plane rests, preferably flush.
  • the first surface is so feasible that the distance between the microarray and the second surface is increased.
  • the first surface is formed from an elastic material.
  • the first surface is made pivotable about a rotation axis.
  • the axis of rotation divides the first surface into two leg sections.
  • the microarray is arranged in this embodiment on a first leg portion of the first surface.
  • the axis of rotation for the pivoting movement preferably runs in the middle of the first surface, i. the two leg sections are preferably the same size.
  • the first surface is preferably made of an elastic material.
  • the first surface In a first position of the pivotable first surface, the first surface is arranged substantially parallel to the second surface.
  • the surface of the microarray in the first position is substantially flush with the second surface, i. the substrate surface with the probe molecules immobilized thereon is substantially not wetted by the sample solution.
  • a space is formed in this first position, which is also referred to below as a processing chamber.
  • This processing chamber can serve as a chamber for processing the sample solution.
  • the first surface In a second position of the pivotable first surface, the first surface is disposed at an angle other than 180 ° to the second surface.
  • the surface of the microarray is not located on the second surface at this second position, ie the probe molecules immobilized on the substrate of the microarray are free for the target molecules present in the sample solution accessible and can interact with them.
  • the processing chamber is compressed in the second position.
  • the pivotable first surface is preferably by pulling on the first leg portion of the first surface and / or by Dmck on the second
  • the train and / or pressure may be exerted by means for guiding the first surface as described above.
  • the chip or the substrate or the first surface may preferably consist of silicon, ceramic materials such as alumina ceramics, borofloate glasses, quartz glass, monocrystalline CaF 2 , sapphire disks, topaz, PMMA, polycarbonate and / or polystyrene.
  • ceramic materials such as alumina ceramics, borofloate glasses, quartz glass, monocrystalline CaF 2 , sapphire disks, topaz, PMMA, polycarbonate and / or polystyrene.
  • the choice of materials is also to be aligned to the later intended use of the device or the chip. For example, if the chip is used to characterize PCR products, only those materials that can withstand a temperature of 95 ° C may be used.
  • the chips are preferably functionalized by nucleic acid molecules, in particular by DNA or RNA molecules. However, they can also be functionalized by peptides and / or proteins, such as, for example, antibodies, receptor molecules, pharmaceutically active peptides and / or hormones, carbohydrates and / or mixed polymers of these biopolymers.
  • the molecular probes are immobilized on the substrate surface via a polymer linker, for example a modified silane layer.
  • a polymer linker for example a modified silane layer.
  • Such a polymeric linker may impair the derivatization of the substrate surface and thus the immobilization of the substrate serve molecular probes.
  • a covalent attachment of the probes find polymers, eg silanes, use, which are functionalized or modified with reactive functionalities such as epoxides or aldehydes.
  • the activation of a surface by isothiocyanate, succinimide ester and imidoester is also known to the person skilled in the art.
  • amino-functionalized surfaces are frequently derivatized accordingly.
  • coupling reagents such as dicyclohexylcarbodiimide, corresponding Immobilisiemngen the molecular probes are guaranteed.
  • the chamber body of the reaction chamber is preferably made of materials such as glass, plastic and / or metals such as stainless steel, aluminum and brass.
  • injection-molded plastics can be used.
  • plastics such as Makrolon, nylon, PMMA and Teflon are conceivable.
  • electrically conductive plastics such as polyamide with 5-30% carbon fibers, polycarbonate with 5-30% carbon fibers, polyamide with 2-20% stainless steel fibers and PPS with 5-40% carbon fiber and especially 20-30% carbon fiber are preferred.
  • the reaction space between the first and second surfaces can also be closed off by septa, which allow, for example, filling of the reaction space by means of spraying.
  • septa which allow, for example, filling of the reaction space by means of spraying.
  • the chamber body consists of optically transparent materials such as glass, PMMA, polycarbonate, polystyrene and / or topaz.
  • the choice of materials is to be adapted to the intended use of the device. For example, the temperatures to which the device will be exposed must be taken into account in the choice of materials. For example, if the device is to be used to perform a PCR, only those plastics that are stable for extended periods of time at temperatures such as 95 ° C may be used.
  • the chamber body is in particular designed such that the microarray with its active side, ie the side of the array on which the nucleic acid probes are immobilized, can be pressed flush and / or reversibly against the second surface.
  • the device according to the invention comprises modules selected from the group consisting of a chamber body, preferably of plastic; a reaction chamber sealing septum or a seal; a DNA chip and / or a second optically transparent surface, preferably a glass plate, wherein the second surface may optionally also serve as a chip at the same time (see Figure 2 and Figure 3).
  • Chamber body and seal are designed to be elastic in this Ausumngsform so that the DNA chip can be pressed flush and reversible with its active side to the glass lid. This completely displaces the labeled analysis fluid between the DNA chip and the detection surface (see Figure 5 and Figure 6). In this way, highly sensitive fluorescence detection, e.g. a computer imaging fluorescence microscopy are performed, which is not affected by a background fluorescence of the sample solution.
  • the second surface of the chamber body is preferably made of transparent materials such as glass and / or optically transmissive plastics, e.g. PMMA, polycarbonate, polystyrene or acrylic.
  • the reaction chamber is configured as a variable thickness capillary gap between the second surface and the microarray.
  • capillary gap Forming a capillary gap between chip and detection level capillary forces can be used for safe filling of the reaction chamber. These capillary forces are already in the uncompressed state of the reaction chamber , but can be increased by squeezing the reaction chamber. Particularly preferably, the capillary gap has a thickness in the range of about 0 .mu.m to about 100 .mu.m.
  • a plurality of lower chambers are provided instead of a single chamber, wherein the separations between the lower chambers are not pulled up to the second surface, so that there is a fluidic connection between the lower chambers in the uncompressed state of the reaction chamber.
  • a special embodiment of these sub-chambers separated by valves is the subdivision of the reaction space of the device according to the invention into different PCR chambers. Individual primers are presented in each chamber. The lower chambers are initially filled with the analyte at the same time. Subsequently, the reaction space is compressed. Thereafter, the reaction space passes through the temperature cycle for the PCR. Since each sub-chamber is filled with different primers, a different amplification reaction takes place in each chamber. An exchange between the chambers does not take place.
  • Each subchamber can have an individual chip area or an individual chip include. However, it is also possible, by increasing the distance between the microarray and the second surface, to allow a fluidic connection between the lower chambers, so that the different amplificates mix with one another and in this way hybridize to a chip surface.
  • the reaction chamber thus comprises at least two lower chambers, wherein in a first non-compressed state, the lower chambers are fluidically interconnected and in a second compressed state there is no fluid communication between the lower chambers.
  • each sub-chamber is assigned to a defined region of the microarray.
  • the lower chambers may be formed by providing the microarray and / or the second surface with cavities serving as walls between the lower chambers.
  • the walls between the lower chambers are formed by elastic seals.
  • this embodiment of the process unit with separate by valves sub-chambers with all the compression principles described above can be combined as desired.
  • the first surface is formed of a partially deformable elastic material, e.g. from an elastic membrane.
  • a partially deformable elastic material e.g. from an elastic membrane.
  • the means for agitating are identical to the means for guiding the first surface. This allows individual chambers agitate targeted. This can e.g. be useful to realize separate reproduction spaces and / or Hybridisiemngsschreib.
  • the process unit of the device according to the invention is preferably modular. That is, the process unit may include any combination of the modules.
  • the modules can also be exchanged during the analysis.
  • the device according to the invention additionally comprises a temperature control and / or regulating unit for controlling and / or regulating the temperature in the reaction chamber.
  • a temperature control and / or regulating unit for controlling and / or regulating the temperature in the reaction chamber comprises in particular heating and / or cooling elements or temperature blocks.
  • the heating and / or cooling elements or the temperature blocks can be arranged so that they contact the first surface and / or the second surface. By contacting both the first and second surfaces, a particularly effective temperature control and regulation is ensured.
  • the substrate of the microarray or the first surface and / or the second surface with heating and / or cooling elements and / or
  • Such thermally conductive materials offer the significant advantage that they have a homogeneous temperature profile over the entire Guarantee surface of the reaction chamber and thus temperature-dependent reactions such as a PCR in the entire reaction chamber are homogeneous, with high yield and with high accuracy controllable or adjustable feasible.
  • the substrate of the microarray or the first surface or the second surface in a preferred Ausumngsform of materials having a high thermal conductivity, preferably having a thermal conductivity in the range of 15 to 500 W ⁇ 'K ' 1 , more preferably in the range of 50 to 300 Wm " 'K"', and most preferably in the range of 100 to 200 Wm '' K '', where the materials typically are not optically transparent.
  • suitable thermally conductive materials are silicon, ceramic materials such as alumina ceramics, and / or Metals such as stainless steel, aluminum, copper or brass.
  • the substrate of the microarray or the first surface or the second surface of the device according to the invention essentially consists of ceramic materials, preferably aluminum oxide ceramics are used.
  • alumina ceramics are ceramics A-473, A-476 and A-493 from Kyocera (Neuss, Germany).
  • the substrate of the microarray or the first surface or the second surface on the back ie the side facing away from the reaction chamber with optionally miniaturized temperature sensors and / or electrodes provided or has there Schuer Modellen, so that a tempering of the sample liquid and a mixing of the sample liquid by an induced electroosmotic flow is possible.
  • the temperature sensors can be designed, for example, as nickel-chromium thin-film resistance temperature sensors.
  • the electrodes can be designed, for example, as gold-titanium electrodes and in particular as quadrupole.
  • the heating and / or cooling elements can preferably be chosen so that rapid heating and cooling of the liquid in the reaction chamber is possible.
  • rapid heating and cooling it is understood that by the heating and / or cooling elements Temperaturändemngen in a range of 0.2 K / s to 30 K / s, preferably from 0.5 K / s to 15 K / s, especially preferably from 2 K / s to 15 K / s, and most preferably from 8 K / s to 12 K / s or about 10 K / s.
  • temperature ranges of 1 K / s to 10 K / s can also be mediated by the heating and / or cooling elements.
  • the heating and / or cooling elements e.g. Resistance heaters, for example, can be designed as a nickel-chromium thin-film resistance heater.
  • the tempering of the reaction chamber is ensured by using a chamber body of electrically conductive material.
  • an electrically conductive material is preferably an electrically conductive plastic, such as polyamide, optionally with 5-30% carbon fibers, polycarbonate, optionally with 5-30% »carbon fibers and / or polyamide, optionally with 2-20%) stainless Stahlfasem.
  • it is considered more electrically conductive Plastic PPS (polyphenylene sulfide) with 5-40% carbon fiber, more preferably 20-30% carbon fiber used.
  • the chamber body is designed such that it has thickening or tapering. Such thickening or tapering in the chamber body allow targeted heating of the reaction chamber or the corresponding surfaces.
  • the use of such volume conductors also has the advantage that even with possibly lower thermal conductivity of the material used a homogeneous Temperiemng the chamber or the corresponding surfaces is guaranteed, since in each volume element heat is released.
  • the coupling and removal of heat into the reaction space can be done in different ways. It is intended inter alia, the heat via external microwave radiation, internal or external resistance heating, internal induction loops or surfaces, by water cooling and heating, by friction, by irradiation with light, in particular IR light, by air cooling and / or heating, by friction, by thermal radiators and by Peltier elements.
  • the temperature measurement in the reaction space can take place in different ways, for example by integrated resistance sensors, semiconductor sensors, optical waveguide sensors, pyrochromic dyes, pyrochromic liquid crystals, external pyrometers such as IR radiation and / or temperature sensors of all types integrated in the means for guiding the microarray.
  • the measurement of the temperature in the reaction chamber can be further carried out by integration of a temperature sensor in the chamber body, for example by injection during the manufacturing process of the chamber body, by non-contact measurement using a pyrometer, an IR sensor and / or Thermopiles, by contacting measurement, eg by a temperature sensor integrated in the device and contacting a suitable surface or volume of the chamber body or chamber, by measuring the temperature-dependent change in refractive index at the detection surface by measuring the temperature-dependent change in the color of specific molecules For example, in the solution, on the probe array or in the chamber seal and / or by measuring the temperature-dependent ⁇ ndemng the pH of the solution used by measuring the color change of a pH-sensitive indicator eg. By measuring its absorption.
  • an automatic limitation of the temperature can be effected by a sudden increase in the resistance of the heater, wherein the corresponding transition temperature is preferably in a range of 95 ° C to 110 ° C.
  • the resistance of the heater changes spmngartig upward, whereby almost no more current flows and consequently hardly more heat is released.
  • Polymers such as electrically conductive polyamides, whose resistance increases at the transition temperature due to the change in the matrix of the polymer or a phase change, can be used as the material for such heaters.
  • the temperature control and regulation unit may be integrated in one embodiment in the first surface and / or second surface.
  • the process unit is equipped in particular with a heater (see Figure 4), which serves to realize the temperature changes in PCR and Hybridisiemng.
  • the process unit preferably has a low heat capacity, so that at low energy consumption maximum temperature change rates of, for example, at least 5 K / s can be realized.
  • a quick cooling of the process unit to ensure, in a further preferred Ausumngsform the provision of cooling, eg an air cooling, is provided.
  • the cooling of the process unit can preferably also be achieved by permanently reducing the space surrounding the process unit to one
  • the temperature control and regulating unit may comprise temperature blocks which are each preheated to a defined temperature.
  • the process unit has no integrated heater in this Ausumngsform. By eliminating an integrated heater, the provision of the process unit can be performed even more cost-effective.
  • Temperature control and regulation unit is preferably ensured by the fact that the temperature blocks contact the first surface and / or second surface of the device according to the invention.
  • the temperature blocks may preferably be arranged linearly or on a turntable and thus be integrated, for example, in the detection device.
  • Figure 7 shows a turntable, which has several temperature blocks, each set to a defined temperature. By changing the temperature blocks below the process unit, the process unit is brought to a respective temperature defined by the temperature block.
  • the temperature blocks are preferably made so that they have a significantly higher heat capacity than the process unit, so that even in this Ausuremngsform maximum temperature change rates of, for example, at least 5 K / s can be realized.
  • the temperature blocks are only thermostated and not heated or cooled, so that here, too Energy requirement is minimal. A cooling of the process unit can be dispensed with in this Ausrymngsform.
  • the temperature control and regulating unit is integrated in the means for guiding the first surface and / or the means for agitating and / or the spacer.
  • the heat transfer takes place in this embodiment by contacting the means and / or the spacer with the first surface and / or the second surface.
  • the device additionally comprises a processing unit for
  • fluids are liquids or gases.
  • the analysis solution can be rebuffered in the reprocessing unit.
  • the processing unit can also be used to provide the necessary analysis chemicals.
  • the connection of the fluid container to the reaction chamber can be carried out, for example, as in international patent application WO 01/02094.
  • the reaction chamber and the processing unit are particularly preferably connected to one another via two cannulas, wherein the cannulas are arranged such that a first cannula ensures the supply of fluids from the processing unit into the reaction chamber and a second cannula ensures the escape of the fluids supplied by the latter ensured from the reaction chamber displaced air.
  • a given in the processing unit sample can thus get over the cannulas in the reaction chamber of the process unit.
  • the cannulas are arranged so that they extend through the cannula guide in the reaction chamber.
  • the processing unit may be designed so that it can be separated from the process unit. After filling the reaction chamber with the sample solution and, if appropriate, further reaction liquids, the processing unit can thus be separated from the process unit, preferably withdrawn, and possibly disposed of.
  • the reaction solution is introduced with a suitable tool, for example with a pipette into a specific opening of the filling unit.
  • a suitable tool for example with a pipette into a specific opening of the filling unit.
  • the transport of the liquids into the device takes place via the nozzle of the pipette, or by another fertilizer-producing tool such as e.g. a syringe or an automated unit, which is, for example, a functional part of a processing machine.
  • the filling unit is preferably designed in an ergonomically meaningful way for manual operation. Furthermore, it preferably has easily accessible openings on the outside for introducing the reactive substances.
  • a filling unit preferably further comprises a suitable fluidic interface for penetrating the seal of the chamber body.
  • needles are used, which are for example made of stainless steel or polymers and usually have a diameter of 0.05 mm to 2 mm.
  • at least one or more needles are arranged, more preferably two, wherein one can be used for filling with a reactive liquid and another for venting the reaction space and for receiving excess liquids.
  • Such cannulas may be fixed or interchangeable with the filling unit be connected, wherein preferably a non-detachable by the user connection for the realization of filling disposable articles is realized.
  • the filling unit may further comprise a unit for covering the cannulas, so that after the separation of the systems can be prevented that injures the user at the cannulas or the environment is contaminated.
  • the filling unit furthermore preferably comprises a suitable mechanical interface for precisely fitting contact of the reaction cartridge.
  • This interface can e.g. be executed by special snap closures. In this way, a penetration of the seal of the chamber body can be ensured at preferred locations.
  • the device or the filling unit can furthermore comprise an integrated waste container which serves to receive excess or displaced gaseous or liquid media such as protective gas fillings or buffers.
  • the waste container may, for example, be filled with another gaseous, liquid or solid medium which reversibly or irreversibly binds the liquid or gaseous substances, such as, for example, cellulose, filter materials, silica gels.
  • the waste container may have a vent or the Improvement of the filling behavior of the entire unit should be equipped with a Unterdmck.
  • the waste container may alternatively be designed as a separate module.
  • the filling unit is provided with corresponding outward-facing fluidic interfaces, the commercial standards such as e.g. LuerLock can be equipped. Such interfaces can have a form or adhesion to secondary systems.
  • a first special Ausumngsform filling is done with a removable filling unit with integrated waste container.
  • the filling unit is used in particular for a single filling of the reaction chamber.
  • the filling unit is designed, for example, so that it is plugged or temporarily attached to the cartridge, the samples are introduced into the reaction space, and after filling the filling unit is again separated and disposed of the cartridge.
  • the filling unit further comprises an integrated waste container, which may be designed as described above. An example of this embodiment is shown in Figure 22.
  • the procedure for filling a reaction cartridge with a modular filling unit is shown in Figure 23.
  • the filling takes place with an integrated filling unit.
  • the filling unit is an integral part of the reaction cartridge and is therefore not separated from this, the disposal of the filling unit and the cartridge takes place simultaneously.
  • the filling unit is preferably used for the single filling of the reaction chamber and possibly for further process-internal fluid steps.
  • the filling unit preferably further comprises a technical device which has a Preferred position of the cannulas realized in the system, in particular to prevent accidental piercing of the cannulas in the seal of the chamber body. However, it is also conceivable that in this preferred position, the cannulas pierce into the seal of the chamber body.
  • the filling unit in this embodiment further comprises a filling and waste channel, which includes corresponding outwardly leading fluidic interfaces, which may also correspond to commercial standards such as LuerLock. Such interfaces can continue a form or adhesion
  • the filling takes place with an integrated filling unit with integrated waste container.
  • the filling unit is an integral part of the reaction cartridge in this Ausumngsform and is therefore not separated from this, the disposal of the filling unit and the cartridge takes place simultaneously.
  • the filling unit is preferably used for the single filling of the reaction chamber and possibly for further process-internal fluid steps.
  • the filling unit also in this embodiment preferably further comprises a technical device which realizes a preferred position of the cannulas in the system, preferably in order to prevent inadvertent insertion of the cannulas into the seal of the chamber body. However, it is also conceivable that in this preferred position, the cannulas pierce into the seal of the chamber body.
  • the filling unit in this embodiment further comprises an integrated waste container, which may be designed as described above.
  • An example of this embodiment is shown in Figure 26.
  • the procedure for filling a reaction cartridge with an integrated filling unit and integrated waste container can be carried out, for example, by combining the procedures described in FIGS. 23 and 25.
  • the cannulas of a filling tool for the cartridge for example, be arranged so that both a filling in the relaxed state and the transfer of the excess reaction solutions in squeezing the reaction space is possible.
  • This can be achieved preferably by an adapted constuction of the seal and the cannula arrangement, in which the cannulas preferably pierce into the compensation areas within the reaction chamber.
  • Such an arrangement is particularly useful if the excess volume can not be absorbed by a special seal design.
  • An example of a possible vertical cannula assembly with unchanged seal shape is shown in Figure 27.
  • the device according to the invention can furthermore comprise a unit connected to the detection system for controlling the test procedure and / or for processing signals recorded by the detection system.
  • the control and / or processing unit may be a microcontroller or industrial computer. This coupling of detection unit and processing unit, which ensures the conversion of the reaction results in the analysis result, among other things the use of the device according to the invention as a handheld device, for example in medical diagnostics.
  • the device according to the invention preferably additionally has an interface for external computers. This allows, inter alia, the transmission of data for Speichemng outside the device.
  • the device is provided with a coding, preferably a data matrix and / or a barcode, which contains information about the substance library and / or the performance of the amplification and / or detection reaction.
  • a coding preferably a data matrix and / or a barcode
  • the readout or detection device can automatically recognize which test has been carried out.
  • a data record is stored in a database which contains information about the substance library, the performance of the detection reaction and the like.
  • the data record can contain information about the arrangement of the probes on the array as well as information about how the evaluation should be carried out most advantageously.
  • the data set or the data matrix can furthermore provide information about the temperature-time regime of a possibly to be performed PCR for duplication of the
  • the data set created in this way preferably receives a number which is attached to the holder in the form of the data matrix. If necessary, the created data record can be called up when the substance library is read via the number listed in the data matrix. Finally, the data matrix can be read out by the temperature control unit and other controllers, such as a controller for loading and unloading the reaction chamber via the fluid container and so a automatic implementation of amplification and detection reaction can be ensured.
  • the coding like a data matrix does not necessarily have to contain the complete information. It can also simply contain an identification or identifier, by means of which the required data is then loaded from a computer or from a data medium.
  • FIG. 3 shows that the process unit can consist of only four separate components that are easily interlocked.
  • the figures 10 and 11 embodiments are shown, which are also manufacturing friendly due to the Konstmmaschine invention, although they consist of several parts.
  • the geometric tolerances of the dimensions of the Einzellbaumaschine can with e.g. 1/10 to 2/10 mm are very large, so that e.g. the injection molding of seal and chamber body can be carried out on an industrial scale extremely cost.
  • the small tolerances are made possible by the pressing of the chip to the detection plane, as this hardly affects the optical path to the detection microscope by the components of the process unit.
  • the only geometric sizes that have a low tolerance are the x, y location of the chip and the thickness of the detection plane.
  • the variance of the z-position of the chip plays only a minor role.
  • a focusing device on the optical system e.g. a fluorescence detection microscope, not required.
  • a method of qualitatively and / or quantitatively detecting molecular interactions between probe and target molecules comprising the following steps: a) introducing a sample, preferably a sample solution comprising target molecules into a reaction chamber of a device according to the invention as described above; and b) detecting an interaction between the target molecules and the probe molecules immobilized on the substrate.
  • the inventive method allows the qualitative and / or quantitative detection of molecular interactions between probe and target molecules in a reaction chamber, without that after the successful interaction and before the detection of an exchange of sample or reaction liquids to remove a disturbing Schugmnds is required.
  • the detection of an interaction between the probe and the target molecule usually takes place as follows: After the probe or probes have been fixed in a predetermined manner to a specific matrix in the form of a microarray or after the provision of a microarray Targets in a solution contacted with the probes and incubated under defined conditions. As a result of the incubation, a specific interaction or hybridization takes place between the probe and the target. The binding involved is significantly more stable than the binding of target molecules to probes that are not specific for the target molecule.
  • the detection or detection of the specific interaction between a target and its probe can then be carried out by a variety of methods, which usually depend on the type of marker, the before, during or after the interaction of the target molecule with the microarray in target molecules has been introduced.
  • markers are fluorescent gmps, so that specific target-probe interactions with high spatial resolution and, compared to other conventional detection methods, especially mass-sensitive methods, can be read out fluorescence-optically with little effort (see, eg, A. Marshall, J Hodgson, DNA chips: An array of possibilities, Nature Biotechnology 1998, 16, 27-31, G. Ramsay, DNA chips: State of the Art, Nature Biotechnology 1998, 16, 40-44).
  • the nucleic acid libraries are by far the most important. These are microarrays on which deoxyribonucleic acid (DNA) molecules or ribonucleic acid (RNA) molecules are immobilized.
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the distance between the microarray and second surface is kept in a position prior to the detection in step b), which involves processing the sample solution and / or the interaction between the target molecules and the probe molecules immobilized on the substrate, for example the Amplify from Nucleic acids to be detected and / or the hybridization between nucleic acids to be detected and the immobilized on the substrate nucleic acid probes enabled.
  • step b) the distance between the microarray and the second surface is changed, preferably reduced. That the detection is preferably carried out at a reduced distance between microarray and detection plane. Particularly preferably, the distance between the microarray and the detection plane in the detection is approximately equal to zero.
  • the microarray is guided in the direction of the second surface. This is preferably ensured by Dmck at least one means for guiding the first surface, for example a plunger, a rod, a pin and / or a screw on the first surface, wherein the pressure point of the means is in particular below the microarray.
  • Dmck at least one means for guiding the first surface, for example a plunger, a rod, a pin and / or a screw on the first surface, wherein the pressure point of the means is in particular below the microarray.
  • the pressing of the microarray on the second surface or the detection plane can be made possible in that the first surface is elastically deformable at least in the region below the microarray.
  • the first surface may be configured by means of two superimposed layers, wherein an outer layer of the two superimposed layers at least in the region below the microarray has a Ausspamng and an inner of the two superimposed layers is formed from an elastic seal.
  • the die is then applied with the means for guiding the first surface to the inner layer in the region of the spout.
  • the means for guiding the first surface such as a pin, a rod, a plunger and / or a screw, but can not serve only to exercise a Dmcks on the first surface.
  • blisters develop on the DNA chip which would make detection more difficult, they can be agitated by the means for guiding the first surface, eg with a vibration frequency of about 20, which is applied to the first surface, in particular in the form of an elastic membrane Hz, remove.
  • the interaction e.g. the hybridization takes a long time on the chip surface.
  • this is due to the fact that the interaction or hybridization rate is diffusion-determined.
  • the rate of interaction or hybridization can be controlled by agitation via the means for guiding the first surface, e.g. increase with a at the first surface, in particular in the form of an elastic membrane, applied vibration frequency of about 20 Hz, since the agitation or vibration leads to a mixing in the reaction chamber.
  • the second surface is guided in the direction of the first surface. This can be ensured in particular by the fact that the second surface is guided by Dmck of the spacer on the second surface in the direction of the first surface.
  • the first surface is guided in the direction of the second surface and the second surface is guided in the direction of the first surface.
  • the probe array is guided by means of a magnetic field relative to the detection surface or moved in the chamber.
  • the probe array and / or the second surface contains a magnetic material or contains a component, which is mixed with a magnetic material and / or is enclosed in a socket made of a wholly or partially magnetic material.
  • the probe array is moved and / or positioned by the action of gravity relative to the detection surface.
  • the probe array is moved and / or positioned relative to the detection surface by a flow generated in the reaction chamber.
  • the device may for example be designed so that when the probe array is flowed around by a liquid, on one side of the reaction chamber a Unterdmck and on the opposite side an Automatdmck arises, whereby a movement of the probe array in the reaction chamber.
  • a flow may e.g. by a
  • Heat flow which is caused by local temperature differences in the chamber can be realized.
  • the probe array is moved and / or positioned by the action of an electric field relative to the detection surface.
  • a gas bubble is generated by local overheating under the probe array, which results in that the chip is moved in the chamber or guided against the detection surface.
  • the sample solution is preferably substantially completely removed from the region between the microarray and the detection plane.
  • the background signals which are marked by molecules not bound to the array surface, e.g. by labeled primers and / or labeled target nucleic acids not bound to the array surface.
  • the distance between the microarray and the second surface is particularly preferably changed so that the sample solution between the microarray and the second surface is substantially removed.
  • the microarray is then essentially in the detection plane and a disturbing background is almost completely avoided.
  • the microarray is already in the original state of the device flush to the second plane forming the detection plane and is not first by guiding the first surface in the direction of the second surface and / or guiding the second surface in the direction of the first surface brought the detection level.
  • the microarray in this embodiment is not wetted by the sample solution.
  • the interaction reaction eg a hybridization
  • the first surface which is preferably formed of an elastic material, for example an elastic membrane, led away from the detection surface.
  • the chip surface is removed from the detection surface and wetted by the sample solution.
  • the interaction eg a hybridization, can take place.
  • the first surface eg in the form of an elastic membrane
  • a means for guiding the first surface eg a pin, a rod , a screw and / or a plunger
  • a device according to the invention as described above is used, whose first surface is designed such that it can pivot about an axis of rotation.
  • a first position also referred to as the home position
  • the surface of the microarray disposed on the first leg portion abuts substantially flush with the second surface, i. the substrate surface with the probe molecules immobilized thereon is substantially not wetted by the sample solution.
  • the processing chamber In the space formed in the first position between the second leg portion of the first surface and the second surface, the processing chamber, preferably in this first position, the processing of the reaction solution, i. in particular purification, concentration, washing and rinsing and / or amplification steps.
  • the pivotable first surface is brought into a second position in which the first surface at an angle other than 180 °, preferably in one Angle of 45 °, is arranged to the second surface.
  • This is preferably done by pulling on the first leg portion of the first surface and / or by pressing onto the second leg portion of the first surface by means as described above for guiding the first surface.
  • the microarray is led away from the second surface and the sample solution penetrates into the resulting cavity between the microarray and the second surface.
  • the probe molecules immobilized on the substrate of the microarray are freely accessible to the target molecules present in the sample solution, so that an interaction reaction between probe and target molecules can take place.
  • the exercise of a pressure and / or tension on the first surface has the advantage that in this way the sample solution is moved and thus the interaction reaction can be accelerated.
  • the pivotable first surface is again guided into the first position, for example by pressing on the first leg section of the first surface and / or by pulling on the second leg section of the first surface or in the case of an elastic embodiment of FIG first surface by releasing the first leg portion.
  • the microarray is now substantially flush with the second surface, so that the sample solution between the second surface and the microarray is essentially displaced in this position and a substantially background-free detection can take place.
  • the targets to be examined can be present in any type of sample, preferably in a biological sample.
  • the targets are isolated, purified, copied and / or amplified before their detection and quantification by the method according to the invention.
  • the method according to the invention furthermore makes possible the amplification and the qualitative and / or quantitative detection of nucleic acids in one
  • the method of the invention also ensures cyclic detection of hybridization events during amplification, i. one
  • the amplification products can be quantified during the amplification reaction and after the end of the amplification reaction.
  • the amplification is usually carried out by conventional PCR methods or by a method as described above for carrying out in parallel amplification of the target molecules to be analyzed by PCR and detection by Hybridisiemng the target molecules with the substance library carrier.
  • the amplification is carried out as a multiplex PCR in a two-stage process (see also WO 97/45559).
  • multiplex PCR is performed using fusion primers whose 3 'ends are gene specific and whose 5' ends are a universal region. The latter is the same for all forward and reverse primers used in the multiplex reaction.
  • the amount of primer is limiting. This allows all multiplex products to be amplified to a uniform molar level, provided that the number of cycles is sufficient is to achieve primer limitation for all products.
  • universal primers are present that are identical to the 5 'regions of the fusion primers. There is amplification to the desired amount of DNA.
  • Method is the detection during the cyclic amplification reaction and / or after completion of the cyclic amplification reaction.
  • the detection occurs during the amplification reaction at each amplification cycle.
  • the detection can also be determined every other cycle or every third cycle or at any other intervals.
  • the number of duplication steps can be optimized online. If the DNA target amount has reached a certain concentration, the duplication is stopped. If the target start concentration is small, the number of replication steps is increased in order to be able to carry out a safe analysis of the products. With reduced reaction time of positive controls, the analysis process can be stopped very early.
  • the chemicals required for carrying out an amplification reaction for example polymerase, buffer, magnesium chloride, primers, labeled, in particular fluorescently labeled, primers, dNTPs, etc., can be initially introduced into the reaction chamber freeze-dried.
  • the cyclic amplification reaction is a PCR.
  • three temperatures are conventionally passed through for each PCR cycle.
  • the hybridized nucleic acids dissolve at the highest temperature, i. the denaturation temperature of the microarray.
  • a preferred denaturation temperature value is 95 ° C.
  • a hybridization signal can be determined which serves as a zero value or reference value for the nucleic acids detected in the respective PCR cycle.
  • an annealing temperature of for example about 60 ° C, a hybridization between nucleic acids to be detected and the nucleic acids immobilized on the substrate of the microarray is made possible.
  • the detection or detection of target nucleic acids present in a PCR cycle takes place at the annealing temperature.
  • the detection may be at a temperature in the range of 25 ° C to 50 ° C, and preferably in the range of 30 ° C to 45 ° C.
  • the hybridization between nucleic acids to be detected and the nucleic acids immobilized on the substrate of the microarray is first carried out at a low temperature in order subsequently to increase the hybridization temperature.
  • Such an embodiment has the advantage that the Hybridisiemngszeit is reduced over Hybridisiemngen at temperatures above 50 ° C, without losing any specificity in the interactions.
  • the target molecules to be detected are provided with a detectable marker.
  • the detection in the method according to the invention is thus preferably carried out by providing the bound targets with at least one label, which is detected in step b).
  • the label coupled to the targets or probes is preferably a detectable entity or a detectable entity coupled to the targets via a anchor group.
  • the inventive method is extremely flexible.
  • the method of the invention is compatible with a variety of physical, chemical or biochemical detection methods. The only requirement is that the unit or structure to be detected directly to a probe or a target, For example, an oligonucleotide can be coupled or linked via an anchor group which can be coupled to the oligonucleotide.
  • Detection of the label may be for fluorescence, magnetism, charge, mass, affinity, enzymatic activity, reactivity, gold labeling, and the like. bemhen.
  • the label is preferably based on the use of fluorophore-labeled structures or building blocks.
  • the label may be any dye that can be coupled to targets or probes during or after their synthesis. Examples include Cy dyes (Amersham Pharmacia Biotech, Uppsala, Sweden), Alexa dyes, Texas Red, fluorescein, rhodamine (Molecular Probes, Eugene, Oregon, USA), lanthanides such as samarium, ytterbium and europium (EG & G, Wallac,schen, Germany).
  • This detectable marker is particularly preferably a fluorescence marker.
  • the use of the device according to the invention in the method according to the invention ensures the detection of the fluorescence markers by means of a fluorescence microscope without autofocus, e.g. a fluorescence microscope with fixed focus.
  • fluorescence markers can be used in the context of the present invention as
  • Markiemng or as a detection unit, which is coupled to the targets or probes, and luminescence markers, metal markers, enzyme markers, radioactive markers and / or polymeric markers are used.
  • a nucleic acid can be used as a marker (tag) which can be detected by hybridization with a labeled reporter (sandwich hybridization).
  • a labeled reporter such as primer extension, ligation and RCA.
  • the detectable unit is coupled to the targets or probes via an armature cluster.
  • Preferred anchor groups are biotin, digoxygenin and the like.
  • the anchor gene is reacted in a subsequent reaction with specific binding components, for example streptavidin conjugates or antibody conjugates, which are themselves detectable or trigger a detectable reaction.
  • the reaction of the anchor groups into detectable units can take place before, during or after addition of the sample comprising the targets or, if appropriate, before, during or after the cleavage of a selectively cleavable bond in the probes.
  • Such selectively cleavable bonds in the probes are e.g. in International Patent Application WO 03/018838, the content of which is incorporated herein by reference.
  • the labeling according to the invention can also be effected by interaction of a labeled molecule with the probe molecules.
  • the labeling can be carried out by hybridization of an oligonucleotide labeled as described above with an oligonucleotide probe or an oligonucleotide target.
  • the bound targets are provided with a label which catalyzes the reaction of a soluble substrate or educt to a sparingly soluble precipitate on the array element on which a probe / target interaction has taken place or which acts as a nucleation agent for the conversion of a soluble substrate to a sparingly soluble precipitate on the array element where a probe / target interaction has occurred.
  • the use of the method according to the invention in this way allows the simultaneous qualitative and quantitative analysis of a variety of probe / target interactions, with individual array elements realized with a size of ⁇ 1000 .mu.m, preferably ⁇ 100 .mu.m and particularly preferably ⁇ 50 .mu.m can be.
  • enzymatic marrow strains is known (see E. Lidell and I. Weeks, Antibody Technology, BIOS Scientific Publishers Limited, 1995).
  • enzymes catalyze the conversion of a substrate into a sparingly soluble, generally colored product.
  • the reaction leading to the formation of a precipitate on the array elements is an enzyme catalyzed reaction of a soluble substrate or starting material into a sparingly soluble product.
  • the reaction leading to the formation of a precipitate on the array elements is a peroxidase-catalyzed oxidation of 3,3 ', 5,5'-tetramethylbenzidine.
  • Horseradish peroxidase is preferably used as peroxidase for the oxidation of 3,3 ', 5,5'-tetramethylbenzidine.
  • the skilled person however, further peroxidases are known which can be used for the oxidation of 3,3 ', 5,5'-tetramethylbenzidine.
  • 3,3 ', 5,5'-tetramethylbenzidine is oxidized to a blue colored radical cation under the catalytic action of a peroxidase in a first step (see, eg, Gallati and Pracht, J. Clin. Chem. Clin. Biochem. 1985, 23, 8, 454).
  • This blue colored radical cation is prepared by means of a polyanion, e.g. Dextran sulfate precipitated as a complex.
  • the precipitation reaction by peroxidase-catalyzed oxidation of 3,3 ', 5,5'-tetramethylbenzidine is described for example in EP 0456 782.
  • Embodiments of the present invention will now be described which may serve to overcome problems that may be encountered in detecting molecular interactions on solid supports, such as preventing the formation of Newtonian rings between the detection plane and the probe array.
  • the expression of Newtonian rings is essentially determined by the type of illumination, the wavelength of the light used for detection, the distance between the detection plane and the probe array, and the refractive index of the solution in the chamber.
  • Such Newtonian rings can be avoided, for example, by changing the wavelength of the light used for detection, using a solution with the same or similar refractive index as the detection plane and / or the probe array and / or the use of an immersion liquid between the detection plane and the probe array.
  • Newtonian rings can be prevented by applying spacers on the chip and / or the chip-facing side of the detection surface.
  • Newtonian rings can be prevented by applying the probe array to a rough support surface.
  • Newtonian rings can be prevented by applying the probe array to a light-absorbing surface.
  • the contact pressure with which the chip is guided relative to the detection surface can be permanently varied during the detection. This changes the gap thickness between the chip and the detection surface and thus also the position of the Newtonian rings.
  • the integration of the fluorescence signal to be detected over time avoids a falsification of the measured values of the spots relative to one another in this way.
  • Another particularly preferred way to prevent Newton's rings is to use multiple light sources from different directions for illumination and thus to excite the fluorophores of the bound targets.
  • Background fluorescence caused by the fluorophores of unbound targets in the displaced liquid can lead to distortion of the detected signal.
  • This can preferably be prevented by using a shutter, e.g. applied to the detection surface or the chip and / or hemming around the chip or is arranged in the imaging optics and is configured such that only the surface of the probe array is illuminated or imaged.
  • an organic or inorganic light-absorbing and non-fluorescent in the selected wavelength range layer on the support of the probe array fluorescence background signal, which is caused by the probe carrier and / or underlying elements, can be reduced or prevented.
  • a black chrome layer is used as a protective layer.
  • a pre-amplification of the material to be analyzed is not required. From which extracted from bacteria, blood or other cells Sample material can be amplified targeted portions by means of a PCR (polymerase chain reaction), in particular in the presence of the device according to the invention or the substance library carrier as described in DE 102 53 966 and hybridized to the carrier. This represents a significant simplification of the workload.
  • PCR polymerase chain reaction
  • the method according to the invention is thus particularly suitable for the parallel implementation of amplification of the target molecules to be analyzed by PCR and detection by hybridization of the target molecules with the substance library carrier.
  • the nucleic acid to be detected is first amplified by a PCR, wherein at least one competitor, which inhibits the formation of one of the two template strands amplified by the PCR, is added to the reaction at the beginning.
  • a DNA molecule is added in the PCR, which competes with one of the primers used for PCR amplification of the template for the binding to the template, and can not be extended enzymatically.
  • the single-stranded nucleic acid molecules amplified by the PCR are then detected by hybridization with a complementary probe.
  • the nucleic acid to be detected is first amplified in a single strand excess by a PCR and detected by a subsequent hybridization with a complementary probe, wherein the PCR reaction is initially added to a competitor which is a DNA molecule or a molecule of a nucleic acid. Analogs which can hybridize to one of the two strands of the template, but not to the area which is detected by the probe hybridization, and which is enzymatically not extendable.
  • competitors can therefore be proteins, peptides, DNA ligands, intercalators, nucleic acids or their analogues.
  • proteins or peptides are used, which are able to bind single-stranded nucleic acids with sequence specificity and have the properties defined above.
  • Nucleic acid molecules and nucleic acid analog molecules are particularly preferably used as secondary structural breakers.
  • the single-strand excess achieved by the PCR is 1.1 to 1000, preferably 1.1 to 1000, preferably 1.1 to 100, preferably 1.5 to 100, compared to the non-amplified strand, also more preferably the factor 1.5 to 50, particularly preferably the factor 1.5 to 20 and most preferably the factor 1.5 to 10.
  • a competitor typically, the function of a competitor will be to selectively bind to one of the two template strands and thereby hinder the amplification of the corresponding complementary strand. Therefore, single-stranded DNA- or RNA-binding proteins with specificity for one of the two template strands to be amplified in a PCR come into question as competitors. As well they may be aptamers that bind sequence-specifically only to specific areas of one of the two template strands to be amplified.
  • nucleic acids or nucleic acid analogs are used as competitors.
  • the nucleic acids or nucleic acid analogs will act as a competitor of the PCR in that they can either compete with one of the primers used for PCR for the primer binding site or hybridize to a region of a template strand to be detected, following sequence complementarity. This region is not the sequence detected by the probe.
  • nucleic acid competitors are enzymatically not extendable.
  • nucleic acid analogs may be e.g. to so-called peptide nucleic acids (PNA) act.
  • Nucleic acid analogs may, however, also be nucleic acid molecules in which the nucleotides are linked to one another via a phosphorothioate bond instead of a phosphate bond.
  • they may be nucleic acid analogs in which the naturally occurring sugar units ribose or deoxyribose are substituted by alternative sugars, such as Arabinose or trehalose etc. were exchanged.
  • the nucleic acid derivative may be "locked nucleic acid" (LNA) Further conventional nucleic acid analogs are known to the person skilled in the art.
  • DNA or RNA molecules particularly preferably DNA or RNA oligonucleotides or their analogs.
  • the inhibition of the amplification attempts one of the both template strands as part of the PCR reaction on different mechanisms. This will be discussed below by way of example with reference to a DNA molecule.
  • a DNA molecule When used as a competitor e.g. a DNA molecule is used, this may have a sequence which is at least partially identical to the sequence of one of the primers used for PCR such that a specific hybridization of the DNA competitor molecule with the corresponding template strand is possible under stringent conditions ,
  • the DNA molecule used for the competition can not be extended by a DNA polymerase in this case, the DNA molecule competes with the respective primer for binding to the template during the PCR reaction.
  • the amplification of the template strand defined by the primer can be inhibited in such a way that the production of this template strand is markedly reduced.
  • the PCR proceeds according to an exponential kinetics, which is higher than would be expected for the used competitor amounts. In this way, a single strand excess is formed in an amount sufficient for efficient detection of the amplified target molecules by hybridization.
  • the nucleic acid molecules or nucleic acid analogs used for the competition may not be enzymatically extendable.
  • Enzymatically non-extendible means that the DNA or RNA polymerase used for the amplification can not use the nucleic acid competitor as a primer, ie, is unable to 3 'of the sequence defined by the competitor the respective complementary strand to the template synthesize.
  • the DNA competitor molecule may also have a sequence which is complementary to a region of the template strand to be detected which is not addressed by any of the primer sequences and which is not enzymatically extendable. As part of the PCR, the DNA competitor molecule will then hybridize to this template strand and block the amplification of this strand accordingly.
  • nucleic acid competitor molecules or, in general, nucleic acid competitor molecules can be selected accordingly. If the nucleic acid competitor molecules have a sequence that is not substantially identical to the sequence of one of the primers used for the PCR, but is complementary to another region of the template strand to be detected, this sequence should be chosen so that it does not interfere with the area of the template sequence detected in the context of hybridization with a probe falls. This is necessary because there is no work-up reaction between the PCR and the hybridization reaction. If a nucleic acid molecule falling within the region to be detected were used as the competitor, this would compete with the single-stranded target molecule for binding to the probe.
  • such competitors hybridize near the template sequence detected by the probe.
  • the position indication "in the vicinity” is to be understood as given for secondary interruption crushers.
  • the competitors according to the invention can also hybridize in the immediate vicinity of the sequence to be detected, ie exactly one nucleotide removed from the target sequence to be detected. If enzymatically non-extendible nucleic acids or nucleic acid analogs are used as the competing molecules, they should be selected with regard to their sequence or structure such that they can not be extended enzymatically by DNA or RNA polymerases.
  • the 3 'end of a nucleic acid competitor is designed so that it has no complementarity to the template and / or instead of the 3-OH group at the 3' end carries another substituent.
  • nucleic acid competitor can Competitor due to the lack of base complementarity at the 3 'end are not extended by the common DNA polymerases. This type of non-extensibility of nucleic acid competitors by DNA polymerases is known in the art.
  • the nucleic acid competitor has at its 3 'end with respect to the last 4 bases, more preferably with respect to the last 3 bases, more preferably with respect to the last 2 bases, and most preferably with respect to the last base, no complementarity to its target sequence.
  • Such competitors may also have non-natural bases at said positions that do not allow hybridization.
  • Nucleic acid competitors which are enzymatically non-extendable may also exhibit 100% complementarity with their target sequence if modified in their backbone or at their 3 'end such that they are enzymatically non-extendible. If the nucleic acid competitor has a group other than the OH group at its 3 'end, these substituents are preferably a phosphate group, a hydrogen atom (dideoxynucleotide), a biotin nucleotide or an aminoglobule. These Gmppen can not be extended by the common polymerases.
  • a competitor DNA molecule which competes with one of the two primers used for PCR for binding to the template and which was provided at the 3 'end during the chemical synthesis with an amino link.
  • Such competitors may have 100% complementarity to their target sequence.
  • Nucleic acid analog competitors e.g. PNAs
  • PNAs PNAs
  • Corresponding other modifications of the phosphate group, which are not recognized by the DNA polymerases are known in the art. These include u.a. Nucleic acids with backbone modifications such as e.g. 2 '-5' amide linkages (Chan et al. (1999) J. Chem. Soc, Perkin Trans. 1, 315-320), sulfide linkages (Kawai et al. (1993) Nucleic Acids Res.
  • Templates (zBua the primer binding site) hybridize, are used simultaneously in a PCR. When the competitors are talking about secondary characteristics of hybridization can be further enhanced.
  • the DNA competitor molecule may have a sequence complementary to one of the primers.
  • antisense DNA competitor molecules can then be used to titrate the primer in the PCR reaction so that it no longer hybridizes with the respective template strand and correspondingly only the template strand defined by the other primer is amplified.
  • the nucleic acid competitor can be enzymatically extendable, but need not.
  • nucleic acid competitors when referring to nucleic acid competitors in the context of this invention, this includes nucleic acid analog competitors unless the context dictates otherwise.
  • the nucleic acid competitor can bind reversibly or irreversibly to the corresponding strand of the template. The binding can be effected by covalent or non-covalent interactions.
  • the binding of the nucleic acid competitor is via non-covalent interactions and is reversible.
  • the binding to the template is preferably carried out by formation of Watson-Crick base pairs.
  • sequences of the nucleic acid competitors are usually based on the sequence of the template strand to be detected, in antisense primers, however, according to the primer sequences to be titered, but which in turn are defined by the template sequences.
  • the PCR amplification of nucleic acids is a laboratory standard method, with their varied variation and
  • a PCR is characterized in that the double-stranded nucleic acid template, usually a double-stranded DNA molecule, is first subjected to a heat denaturation for 5 minutes at 95 ° C, whereby the two strands are separated. After cooling to the so-called “annealing" temperature (defined by the primer with the lower melting temperature), the "forward” and “reverse” primers present in the reaction solution are stored in the respective template sites complementary to their sequence. Strands.
  • the annealing temperature of the primers depends on the length and base composition of the primers. It can be calculated on the basis of theoretical considerations. Information on the calculation of annealing temperatures can be found e.g. in Sambrook et al. (vide supra).
  • the primer After annealing the primer, which is typically carried out in a temperature range of 40-75 ° C, preferably 45-72 ° C and particularly preferably 50-72 ° C, followed by an elongation step, in which by the activity of the present in the reaction solution DNA polymerase deoxyribonucleotides can be linked to the 3 'end of the primer.
  • DNA polymerase deoxyribonucleotides can be linked to the 3 'end of the primer.
  • the identity of the inserted dNTPs depends on the sequence of the template strand hybridized with the primer. Since usually thermostable DNA polymerases are used, the Elongations suits usually takes place between 68-72 ° C.
  • RNA e.g. mRNA
  • template e.g. single-stranded RNA, e.g. mRNA
  • mRNA e.g. mRNA
  • the polymerase used is a thermostable DNA-dependent DNA polymerase.
  • a thermostable DNA-dependent DNA polymerase is selected from the group consisting of Taq DNA polymerase (Eppendorf, Hamburg, Germany and Qiagen, Hilden, Germany), Pfu DNA polymerase (Stratagene, La Jolla, USA), Tth DNA polymerase (Biozym Epicenter Technol., Madison, USA), Vent DNA polymerase, DeepVent DNA polymerase (New England Biolabs, Beverly, USA), Expand DNA polymerase (Roche, Mannheim, Germany) used.
  • polymerases optimized from naturally occurring polymerases by targeted or evolutionary modification is also preferred.
  • the use of the Taq polymerase from Eppendorf (Hamburg, Germany) or the Advantage cDNA polymerase mix from Clontech (Palo Alto, CA, USA) is particularly preferred.
  • a further aspect of the present invention relates to the use of the device according to the invention for carrying out microarray-based tests.
  • special embodiments of the device according to the invention and of the method according to the invention are shown.
  • the first surface here an elastic membrane, in which preferably a heating device is integrated, deformed by a pin or a plunger and thereby the chip is pressed in the direction of the detection plane.
  • the detection plane is pressed into the reaction chamber by a spacer on the second surface, thus approaching the DNA chip from above until the fluid between the DNA chip and the detection plane is almost completely displaced.
  • the elastic seals sealing the reaction chamber are compressed.
  • the displaced liquid deforms the gasket to compress the air in the balance manifolds.
  • the process unit may also be designed so that either only the first area, e.g. in the form of an elastic membrane, is deformed or only the detection plane is pressed into the chamber.
  • Figure 6 shows another technical design for compressing the process unit.
  • the reaction chamber is enclosed laterally and on the side opposite the detection plane by a sealing membrane on which the DNA chip is mounted.
  • the sealing membrane closes a hole at the bottom of the chamber body at the level of the DNA chip.
  • the hole is slightly smaller than the DNA chip.
  • Example 1 Construction of a reaction cartridge without integrated heating
  • FIGS. 8 and 9 show an embodiment of a processing unit without integrated heating and a device for guiding the DNA chip against the detection plane.
  • the DNA chip in the device shown can be read by a conventional fluorescence microscope (e.g., Axioskop, Zeiss, Jena, Germany).
  • the variant of the processing unit of the device according to the invention shown in FIGS. 10 and 11 is a miniaturized reaction cartridge with an integrated probe array (DNA chip), a silicon heating substrate with integrated temperature sensor ("heating substrate") for setting distinct temperatures in the reaction chamber and a printed circuit board with optional EPROM for electrical Kunststoffiemng the heating substrate.
  • the individual components are embedded in two plastic half shells. The entire unit represents a spatially closed system in which all necessary reactions (e.g., PCR) e.g. temperature controlled can be made.
  • the circuit board In the lower half shell is first inserted the circuit board (with the EPROM down) in the slot provided. On the top of the circuit board, three electrical contact surfaces ("contact pads") are arranged, which ensure the electrical connection with the subsequently inserted heating substrate, which also carries three contact pads.
  • This heating substrate has one Size 8 mm x 6 mm and a thickness of about 0.6 mm. The heating substrate ensures a precise adjustment of different temperatures (eg from 40 ° C to 95 ° C) within the examination.
  • the measurement of the temperature in the reaction chamber can take place either via the sensor integrated in the heating substrate or else via an external measuring unit which measures the temperature directly on the surface of the heating substrate. In the latter case can be dispensed with the integrated sensor in the heating substrate.
  • the integrated components used for heating and / or for temperature measurement can be, for example, diodes or transistors.
  • the surface of the silicon heating substrate facing the reaction space contains no electrical systems and is coated with an SiO 2 passivation layer.
  • the next component is followed by an elastic seal which laterally delimits the reaction space.
  • the DNA chip In the middle of the reaction space, the DNA chip is fixed so that the probe array faces the detection plane. After the installation of the detection plane in the form of a glass surface, this still protrudes 0.2 mm from the lower half shell. By the subsequent joining of the guided by dowel pins upper half-shell, the glass surface is pressed against the seal, thus ensuring an optimal sealing of the reaction chamber.
  • reaction chamber can be filled with reaction solution. It should be noted that only the interior with the chip, but not the outer chambers are filled.
  • the required liquids are injected with cannulas via the provided cannula guide into the reaction space.
  • biochemical reactions controlled via the silicon heating substrate such as, for example, PCR and / or hybridization, can be carried out in the reaction chamber.
  • Detection level pressed by means of the spacers of the detection unit from above against the DNA chip until the distance between the detection plane and probe array is about zero.
  • the surrounding liquid is displaced into the outer chambers, where it compresses the air there. This process is reversible and can be done, for example, after each PCR cycle.
  • this variant of the device according to the invention is particularly suitable for mobile use.
  • Channel masks with a defined channel depth (5 ⁇ m, 10 ⁇ m, 28 ⁇ m) were poured from Sylgard.
  • the channels had a width of 125 microns.
  • a glass chip was placed over the different deep channels.
  • the channels were then filled with a 200 nM solution of a Cy 3 -labeled oligonucleotide in 2 ⁇ SSC + 0.2% SDS and the signal measured at an exposure time of 1.5 s.
  • Figure 12 shows the measurement results. As the channel depth increases, the signal increases linearly. A regression line could be calculated (Equation 1)
  • the layer thicknesses between the DNA chip and the detection surface can now be determined on the basis of the background fluorescence signal.
  • the hybridization signal was measured as a function of the displacement of the fluorescent analyte by pressing a plunger.
  • the experimental setup is outlined in Figure 15. By pressing the plunger, the silicon chip (3.15 x 3.15 mm) was pressed against a probe chip (DNA chip), displacing the liquid between the two surfaces.
  • the chamber was filled with a hybridization solution, which is a model system for the conditions in PCR hybridization.
  • the hybridization solution contained a Cy3-labeled oligonucleotide (final concentration 2 nM in 2 x SSC + 0.2% SDS), which had complementarity with the probe array.
  • the hybridization solution also contained a Cy3-labeled oligonucleotide which does not hybridize to the probe array and therefore contributes only to the fluorescent background signal in the solution but not to the specific signals at the spots.
  • Hybridization was for 10 min. During the subsequent readout of the hybridization signals, a fixed exposure time of 1.5 s was selected. At the The experimental set-up was pushed farther to the probe array (detection area) between each shot of the plungers, reducing the gap between the array and the second area filled with hybridization solution.
  • Figure 16 shows a recording of the hybridization signal at a gap width of 10 microns.
  • the measurement results for background signal and hybridization signal at the spots are shown in Figure 17. Both signals behave as expected linear to the gap width. Therefore, the spot signal corrected by the background does not change with the slit width.
  • the measuring instrument When a gray value of 255 is reached, the measuring instrument is overdriven. That is, with a gap width of about 17 microns, a measurement of the spot intensity is possible only by reducing the exposure time. This then reduces the measuring sensitivity.
  • the process units were each filled with 50 ⁇ l reaction mixture and processed according to the following temperature-time regime.
  • processing unit 1 the background fluorescence was reduced by displacing the analyte. This was ensured by the plunger was pushed upward in the direction of the detection surface, so that the filled with the reaction solution gap largely minimized.
  • the exposure time is 5 seconds (see Figure 18 and Figure 19).
  • the spot intensities were compared by means of the spot with the substance CMV_S_21-3 (5'-NH 2 TGTTGGGCAACCACCGCACTG-3 ').
  • the location of the probes is shown in Figures 18 and 19.
  • Figure 20 summarizes the result of the experiment.
  • the flushing of the reaction chamber in the process unit 2 reduces this Hybridization Signal vs. Displacement in Process Unit 1. It is believed that bleeding of the probes is responsible for this.
  • the method of analyte displacement by the method according to the invention is thus to be preferred to the replacement of the solutions.
  • the device for carrying out microarray-based tests with reaction cartridges according to the invention usually consists of a plurality of components which are combined in one device, but can also be put together modularly from a plurality of sub-devices.
  • the device can be selectively controlled via an integrated computer or an interface to an external computer.
  • the construction of the device is illustrated in Figure 28.
  • the fluid interface of the reaction cartridge is manually brought by the user in the filling position, in which the cannulas pierce the seal of the chamber body.
  • the user then fills the reaction mixture into the reaction chamber using a standard laboratory pipette. Both steps can be taken over by a correspondingly executed device.
  • the fluid interface is now moved back to the starting position, whereby this process can be performed by a correspondingly executed device.
  • reaction cartridge is then inserted into the device.
  • a data matrix reader arranged in the device recognizes the one-dimensional data matrix mounted on the reaction cartridge and loads the identification data for the cartridge as well as for the test to be carried out into the control computer on the basis of a data record transmitted by the user. This then controls the individual process steps, which may include, for example, an amplification and hybridization.
  • the capillary gap in the reaction chamber is then reduced according to the invention for detection.
  • the detection can be done with conventional fluorescence optical imaging or non-imaging systems.
  • the data obtained are then transmitted to a control computer which evaluates them and presents or stores them on an internal or external interface.
  • reaction cartridge can be removed by the user from the device and disposed of.
  • a reaction cartridge as shown in Figure 29 is made.
  • the lower half-shell (1) of the reaction cartridge consists of electrically conductive plastic as the bottom of the reaction chamber (Conduct 2, RKT, Germany). On the At the bottom of the chamber floor, a film Pt100 temperature sensor is fixed using a suitable adhesive, eg Loctite 401 (Loctite, Germany).
  • a suitable adhesive eg Loctite 401 (Loctite, Germany).
  • the cartridge further comprises a threaded hole (2) for inserting screws for electrical contact, an upper half-shell (5) of the reaction cartridge, e.g. of acrylic, a bore (6) for fixing the upper half-shell and a detection window (7) in the upper half-shell.
  • an upper half-shell (5) of the reaction cartridge e.g. of acrylic
  • a bore (6) for fixing the upper half-shell e.g. of acrylic
  • a standard PCR reaction mix is prepared: 30.5 ⁇ l deionized water 5 ⁇ l 10X PCR buffer (eg 10 ⁇ cDNA PCR Reaction Buffer, Clontech, Germany) 5 ⁇ l Mg-acetate, 25 mM (eg Eppendorf, Germany) 0.5 10 ⁇ l 1 ⁇ l 16sRa (5'-TACCGTCACCATAAGGCTTCGTCCCTA-3 '), 10 mM 3 ⁇ l Taq DNA polymerase (eg Genaxxon, Germany) 1 ⁇ l template
  • the reaction chamber is filled with the reaction mixture.
  • a second cannula is pierced through the seal of the chamber body. After filling, the venting cannula and insulin syringe are disposed of properly.
  • the chamber is then connected to a control unit via the two screws provided for this purpose (CLONDIAG chip technologies GmbH, Germany).
  • the temperature sensor on the underside of the lower half shell is also connected to this control unit. This control unit is able to control certain temperatures in the lower half shell according to a predetermined program.
  • Figure 30 shows a picture of the reaction cartridge with a thermal imaging camera at a temperature of 95 ° C.
  • the reaction product is removed from the reaction chamber using an insulin syringe.
  • a cannula is pierced through the seal of the chamber body analogously to the filling.
  • reaction product is now analyzed by agarose gel electrophoresis.
  • a suitable buffer for example 5 ⁇ l of 250 mM in 50% glycerol, bromophenol blue
  • FIG. 31 The result is shown in Figure 31.
  • Illustration 1
  • Exploded view of the process unit according to the invention comprising the detection surface, seal, DNA chip and chamber body.
  • the chamber body has a reversibly deformable elastic membrane.
  • Figure 5 Representation of the state of the process unit according to the invention in the readout device A) during PCR, B) before detection, and C) during detection.
  • Figure 15 Illustration of the experimental setup for the irrigation-free detection of DNA arrays.
  • Fluorescence image of an array with pressed-on chip At the white edges the background radiation can be recognized by the displaced sample solution.
  • Figure 21 Reference analysis of PCR in a process unit using gel electrophoresis.
  • Figure 27 a) Filling of the reaction space with removal of the excess liquid into a waste container or channel b) Ablution of excess liquid in the reduction of the reaction space for detection
  • FIG. 28 Device for processing and detection of reaction cartridges according to the invention in accordance with embodiment 4.
  • the following reference symbols are used: 1 reaction cartridge 1.1 reaction chamber with micro-array
  • identification optics e.g. Barcode or Datamatrix reader
  • Reaction cartridge according to exemplary embodiment 5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Die Erfindung betrifft Vorrichtungen und Verfahren zum Nachweisvon spezifischen Wechselwirkungen zwischen Sonden- und Targetmolekülen. Insbesondere betrifft die Erfindung eine Vorrichtung zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen, umfassend: (a) einen Mikroarray mit einem Substrat, auf dem auf Array-Elementen Sondenmoleküle immobilisiert sind, wobei der Mikroarray auf einer ersten Fläche der Vorrichtung angeordnet ist; und (b) eine Reaktionskammer, die zwischen der ersten Fläche mit dem darauf angeordneten Mikroarray und zweiten Fläche gebildet ist, wobei der Abstand zwischen dem Mikroarrayund der zweiten Fläche veränderbar.

Description

Vorrichtung und Verfahren zum Nachweis von molekularen Wechselwirkungen
Die Erfindung betrifft Vorrichtungen und Verfahren zum Nachweis von spezifischen Wechselwirkungen zwischen Target- und Sondenmolekülen.
Biomedizinische Tests basieren häufig auf dem Nachweis einer Wechselwirkung zwischen einem Molekül, das in bekannter Menge und Position vorhanden ist (der molekularen Sonde) und einem nachzuweisenden, unbekannten Molekül bzw. nachzuweisenden, unbekannten Molekülen (den molekularen Ziel- oder Targetmolekülen). Bei modernen Tests sind die Sonden in Form einer Substanzbibliothek auf Trägern, den so genannten Microarrays oder Mikroarrays oder Chips abgelegt, so dass eine Probe parallel an mehreren Sonden gleichzeitig analysiert werden kann (siehe z.B. D. J. Lockhart, E. A. Winzeler, Genomics, gene expression and DNA arrays; Nature 2000, 405, 827-836). Für die Herstellung der Microarrays werden die Sonden dabei üblicherweise in vorgegebener Art und Weise auf einer geeigneten, beispielsweise in WO 00/12575 beschriebenen Matrix immobilisiert (siehe z.B. US 5,412,087, WO 98/36827) bzw. synthetisch erzeugt (siehe z.B. US 5,143,854).
Voraussetzung für die Bindung eines beispielsweise mit einer Fluoreszenzgruppe markierten Targetmoleküls in Form eines DNA- oder RNA-Moleküls an eine Nukleinsäuresonde des Mikroarrays ist, dass sowohl Targetmolekül als auch Sondenmolekül in Form einer einzelsträngigen Nukleinsäure vorliegen. Nur zwischen solchen Molekülen kann eine effiziente und spezifische Hybridisierung stattfinden. Einzelsträngige Nukleinsäureziel- und Nukleinsäuresondenmoleküle erhält man in der Regel durch Hitzedenaturierung und optimale Wahl von Parametern wie Temperatur, Ionenstärke und Konzentration helixdestabilisierender Moleküle. Somit wird gewährleistet, dass nur Sonden mit nahezu perfekt komplementären, d.h. einander entsprechenden Sequenzen mit der Zielsequenz gepaart bleiben (A.A. Leitch, T. Schwarzacher, D. Jackson, I. J. Leitch, 1994, In vitro Hybridisierung, Spektrum Akademischer Verlag, Heidelberg/Berlin/Oxford).
Ein typisches Beispiel für die Verwendung von Mikroarrays in biologischen Testverfahren ist der Nachweis von Mikroorganismen in Proben in der biomedizinischen Diagnostik. Dabei macht man sich die Tatsache zunutze, dass die Gene für ribosomale RNA (rRNA) ubiquitär verbreitet sind und über Sequenzabschnitte verfügen, die für die jeweilige Spezies charakteristisch sind. Diese Spezies-charakteristischen Sequenzen werden in Form von einzelsträngigen DNA-Oligonukleotiden auf ein Mikroarray aufgebracht. Die zu untersuchenden Target-DNA-Moleküle werden zunächst aus der zu untersuchenden Probe isoliert und mit Markern, beispielsweise fluoreszierenden Markern versehen. Anschließend werden die markierten Target-DNA-Moleküle in einer Lösung mit den auf dem Mikroarray aufgebrachten Sonden inkubiert, unspezifisch auftretende Wechselwirkungen werden durch entsprechende Waschschritte entfernt und spezifische Wechselwirkungen durch fluoreszenzoptische Auswertung nachgewiesen. Auf diese Art und Weise ist es möglich, mit einem einzigen Test in einer Probe gleichzeitig z.B. mehrere Mikroorganismen nachzuweisen. Die Anzahl der nachweisbaren Mikroorganismen hängt bei diesem Testverfahren theoretisch nur von der Anzahl der spezifischen Sonden ab, die auf dem Mikroarray aufgebracht worden sind.
Zur Detektion molekularer Wechselwirkungen mit Hilfe von Mikroarrays bzw. Sonden- Arrays auf festen Oberflächen sind eine Reihe von Methoden und technischen Systemen beschrieben, von denen einige auch kommerziell erhältlich sind. Klassische Systeme zur Detektion molekularer Wechselwirkungen beruhen auf dem Vergleich der Fluoreszenzintensitäten spektral selektiv angeregter, mit Fluorophoren markierter Targetmoleküle. Fluoreszenz ist die Eigenschaft von bestimmten Molekülen, bei Anregung mit Licht einer bestimmten Wellenlänge selber Licht zu emittieren. Dabei ergibt sich ein charakteristisches Absorptions- und Emissionsverhalten. Bei der Analyse wird mit steigender markierter Moleküldichte auf der funktionalisierten Oberfläche, z.B. durch steigende Effizienz der molekularen Wechselwirkung zwischen Target- und Sondenmolekülen, eine proportionale Zunahme des Fluoreszenzsignals angenommen.
Die insbesondere quantitative Detektion von Fluoreszenzsignalen wird mit modifizierten Verfahren der Fluoreszenzmikroskopie vorgenommen. Dabei wird das Licht der Absorptipnswellenlänge von dem der Emissionswellenlänge mittels Filter oder Dichroiten getrennt und das Messsignal mittels optischer Elemente wie Objektiven und Linsen auf geeignete Detektoren wie z.B. zweidimensionale CCD- Arrays bildgebend abgebildet. Die Analyse erfolgt im Allgemeinen durch digitale Bildverarbeitung.
Bislang bekannte technische Lösungen unterscheiden sich hinsichtlich ihres optischen Aufbaus und der verwendeten Komponenten. Probleme und Limitationen können resultieren aus dem Signalrauschen (dem Hintergrund), das durch Effekte wie Bleichen und Quenching der verwendeten Farbstoffe, Autofluoreszenz der Medien, Assemblierungselemente und optischen Komponenten sowie Streuungen, Reflexionen und Fremdlicht im optischen Aufbau wesentlich bestimmt wird.
Daraus resultiert ein hoher technischer Aufwand zum Aufbau hochsensitiver Fluoreszenz-Detektoren zum qualitativen und quantitativen Vergleich von Sonden- Arrays. Insbesondere zum Screening mit mittleren und hohen Durchsätzen sind speziell angepasste Detektionssysteme erforderlich, die einen gewissen Automatisierungsgrad besitzen.
Zur Optimierung von Standardepifluoreszenz- Aufbauten zum Auslesen molekularer Arrays sind CCD-basierte Detektoren bekannt, die zur Diskriminierung von optischen Effekten wie Streuung und Reflexionen die Anregung der Fluorophore im Dunkelfeld durch Auflicht oder Durchlicht realisieren (siehe z.B. C. E. Hooper et al., Quantitative Photon Imaging in the Life Sciences Using Intensified CCD Cameras, Journal of Bioluminescence and Chemiluminescence (1990), S. 337-344). Die Abbildung der Arrays erfolgt dabei entweder in einer Belichtung oder durch ein Rastern unter Verwendung von höher auflösender Optik. Die Verwendung von multispektralen Belichtungsquellen ermöglicht einen relativ einfachen Zugang zu verschiedenen Fluorophoren durch die Verwendung verschiedener Anregungsfilter (-kombinationen). Nachteilig ist allerdings, dass Autofluoreszenz und system- bedingte optische Effekte wie die Beleuchtungshomogenität über dem Array komplizierte Beleuchtungsoptiken und Filtersysteme erfordern.
Weitere Methoden zur quantitativen Detektion von Fluoreszenzsignalen basieren auf der konfokalen Fluoreszenzmikroskopie. Beispielsweise in US 5,304,810 beschriebene konfokale Scanning-Systeme beruhen auf der Selektion der
Fluoreszenzsignale entlang der optischen Achse mittels zweier Pinholes. Daraus ergibt sich ein hoher Justieraufwand der Proben bzw. die Etablierung eines leistungsfähigen Autofokussystems. Solche Systeme sind in der technischen Lösung hochkomplex. Erforderliche Komponenten wie Laser, Pinholes, gegebenenfalls gekühlte Detektoren wie z.B. PMT, Avalanche-Dioden oder CCD, komplexe hochgenaue mechanische Translationselemente und Optiken müssen mit erheblichem Aufwand aufeinander optimiert und integriert werden (siehe z.B. US 5,459,325; US 5,192,980; US 5,834,758). Miniaturisierungsgrad und Preis sind durch die Vielzahl und Funktionalität der Komponenten limitiert.
Analysen basierend auf Sonden- Arrays werden zum derzeitigen Zeitpunkt in der Regel fluoreszenzoptisch ausgelesen (siehe z.B. A. Marshall und J. Hodgson, DNA Chips: An array of possibilities, Nature Biotechnology, 16, 1998, 27-31; G. Ramsay, DNA Chips: State of the Art, Nature Biotechnology, 16, Jan. 1998, 40-44). Nachteilig an den vorstehend beschriebenen Detektionsvorrichtungen und -verfahren ist jedoch der hohe Signalhintergrund, der zu einer eingeschränkten Genauigkeit führt, der teilweise erhebliche technische Aufwand sowie die hohen Kosten, die mit den Nachweisverfahren verbunden sind.
Es sind eine Reihe insbesondere konfokaler Systeme bekannt, die für die Detektion von niederintegrierten Substanzbibliotheken im Array-Format geeignet sind, die in fluidischen Kammern angebracht sind (siehe z.B. US 5,324,633, US 6,027,880, US 5,585,639, WO 00/12759).
Zur Detektion von hochintegrierten molekularen Arrays, die insbesondere in fluidischen Systemen angebracht sind, sind die oben beschriebenen Methoden und Systeme vor allem wegen der dort auftretenden Streuungen, Reflexionen und optischen Aberrationen allerdings nur sehr bedingt adaptierbar. Ferner werden bei derartigen hochintegrierten Arrays hohe Anforderungen hinsichtlich der räumlichen Auflösung gestellt, die jedoch bislang technisch nicht realisiert werden konnten.
Es besteht folglich ein Bedarf an hoch integrierten Arrays, mit denen mit relativ geringem technischem Aufwand die Wechselwirkung zwischen Sonden und Targets mit hoher Genauigkeit qualitativ und/oder quantitativ nachgewiesen werden kann. Die Erhöhung der Selektivität und der Zugang zu alternativen Komponenten motiviert die Etablierung alternativer Imaging-Technologien wie Fluoreszenz- Polarisation und zeitaufgelöste Fluoreszenz für festkörpergebundene Assays. Der Effekt der Verdrehung der Polarisationsachse durch polarisiert angeregte Fluorophore wird zur Quantifizierung im Mikrotiter-Format angewandt. Es gibt ferner Ansätze, durch die Verwendung entsprechend modifizierter Polymerfolien als Polarisationsfilter kostengünstige Systeme mit hohem Durchsatz (HTS-Systeme) aufzubauen (siehe I. Gryczcynski et al., Polarisation sensing with visual detection, Anal. Chem. 1999, 71, 1241-1251).
Neuere Entwicklungen nutzen die Fluoreszenz von anorganischen Materialien, wie zum Beispiel von Lanthaniden (M. Kwiatowski et al., Solid-phase synthesis of chelate-labelled oligonucleotides: application in triple-color ligase-mediated gene analysis, Nucleic Acids Research, 1994, 22, 13) und Quantendots (M. P. Bruchez et. al., Semiconductor nanocrystals as fluorescent biological labeis, Science 1998, 281, 2013). Farbstoffe mit langer Emissionsdauer im Mikrosekunden-Bereich wie Lanthanid-Gelate erfordern eine Umwandlung der Farbstoffe in eine mobile Phase, so dass eine ortsaufgelöste Detektion nicht möglich ist.
In der internationalen Patentanmeldung WO 00/72018 sind optische Aufbauten zur Detektion von mittels Goldbeads markierten Proben und deren Sichtbarmachung mittels Silberverstärkung beschrieben. Die dortigen Vorrichtungen sind allerdings lediglich für eine Detektion bei statischer Messung geeignet. Bei der statischen Messung wird nach der Wechselwirkung der Targets mit dem auf dem Sondenarray angeordneten Sonden sowie nach Beginn der Reaktion, die zu einem Niederschlag auf Array-Elementen führt, an denen eine Wechselwirkung stattgefunden hat, ein Bild aufgenommen und den gemessenen, von dem Grad der Niederschlagsbildung abhängigen Grauwerten Konzentrationen zugeordnet. In WO 02/02810 wurde ein Verfahren zum qualitativen und/oder quantitativen Nachweis von Targets in einer Probe durch molekulare Wechselwirkungen zwischen Sonden und Targets auf Sonden- Arrays bereitgestellt, bei dem der zeitliche Verlauf der Niederschlagsbildung an den Array-Elementen in Form von Signalintensitäten detektiert wird, d.h. eine dynamische Messung durchgeführt wird. Jedem Array- Element wird dann anhand einer Kurvenfunktion, die die Niederschlagsbildung als Funktion der Zeit beschreibt, ein Wert zugeordnet, der die Wechselwirkung zwischen Sonde und Target auf einem Array-Element und damit die Menge an gebundenen Targets quantifiziert.
Für eine derartige dynamische Messung ist die Aufnahme von Bilderserien unter z.B. bestimmten thermischen Bedingungen bzw. in einem bestimmten Verfahrensstadium, z.B. bei Vorhandensein bestimmter Lösungen zur Zeit der Aufnahme, erforderlich. Dies bedingt ein komplexes Zusammenwirken der einzelnen Bauteile eines hochintegrierten Arrays insbesondere bei Anwendungen im Bereich des Genotyping.
Bei vielen Tests in der biomedizinischen Diagnostik tritt ferner das Problem auf, dass die Targetmoleküle zunächst nicht in einer für eine Detektion ausreichenden Menge vorhanden sind und deshalb häufig zunächst vor dem eigentlichen Testverfahren aus der Probe vervielfältigt werden müssen. Die Vervielfältigung von DNA-Molekülen geschieht typischerweise durch die Polymerase-Kettenreaktion (PCR). Für die Vervielfältigung von RNA müssen die RNA-Moleküle durch reverse Transkription in entsprechend komplementäre DNA (cDNA) umgewandelt werden. Diese cDNA kann dann ebenfalls durch PCR vervielfältigt (amplifiziert) werden. Bei der PCR handelt es sich um eine Labor- Standardmethode (wie z.B. in Sambrook et al. (2001) Molecular Cloning: A laboratory manual, 3rd edition, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press).
Die Vervielfältigung von DNA durch PCR ist verhältnismäßig schnell, ermöglicht durch miniaturisierte Verfahren einen hohen Probendurchsatz in geringen Ansatzvolumina und ist durch Automatisierung arbeitseffizient.
Eine Charakterisierung von Nukleinsäuren durch eine alleinige Vervielfältigung ist jedoch nicht möglich. Vielmehr ist es notwendig, nach der Amplifikation Analysemethoden wie Nukleinsäuresequenzbestimmungen, Hybridisierung und/oder elektrophoretische Trenn- und Isolationsverfahren zur Charakterisierung der PCR- Produkte einzusetzen.
Generell sollten Vorrichtungen und Verfahren zur Amplifikation von Nukleinsäuren und deren Nachweis so konzipiert sein, dass möglichst wenige Eingriffe seitens eines Experimentators notwendig sind. Die Vorteile von Verfahren, die eine Vervielfältigung von Nukleinsäuren und deren Nachweis ermöglichen und in deren Verlauf ein Experimentator nur minimal eingreifen muss, liegen auf der Hand. Zum einen werden Kontaminationen vermieden. Zum anderen ist die Reproduzierbarkeit solcher Verfahren wesentlich erhöht, da sie einer Automatisierung zugänglich sind. Dies ist auch im Hinblick auf die arzneimittelrechtliche Zulassung von diagnostischen Verfahren extrem wichtig.
Es gibt gegenwärtig eine Vielzahl von Verfahren zur Amplifikation von Nukleinsäuren und deren Nachweis, bei denen zunächst das Target-Material durch PCR-Amplifikation vervielfältigt wird und die Identität bzw. der genetische Zustand der Zielsequenzen anschließend durch Hybridisierung gegen einen Sondenarray bestimmt wird. Die Amplifikation der nachzuweisenden Nukleinsäure- bzw. Target- Moleküle ist in der Regel notwendig, um ausreichende Mengen für einen qualitativen und quantitativen Nachweis im Rahmen der Hybridisierung zur Verfügung zu haben.
Sowohl die PCR-Amplifikation von Nukleinsäuren als auch deren Nachweis durch Hybridisierung ist einer Reihe von grundlegenden Problemen unterworfen. Dies gilt in gleicher Weise für Verfahren, die eine PCR-Amplifikation von Nukleinsäuren und deren Nachweis durch Hybridisierung kombinieren.
Werden in einem Verfahren, das eine PCR-Amplifikation und deren Nachweis durch Hybridisierung kombiniert, detektierbare Marker beispielsweise in Form von
Fluoreszenz-markierten Primern in die nachzuweisenden Nukleinsäuren bzw. Target- Moleküle eingebracht, wird üblicherweise vor der eigentlichen Detektion ein Waschschritt durchgeführt. Ein derartiger Waschschritt dient der Entfernung der im Vergleich zum Amplifikationsprodukt in großem Überschuss vorliegenden, nicht umgesetzten Primer sowie solcher mit einem Fluoreszenzmarker versehenen
Nukleotide, die nicht an der Nachweisreaktion teilnehmen bzw. nicht spezifisch mit den Nukleinsäuresonden des Mikroarrays hybridisieren. Auf diese Weise soll der hohe Signalhintergrund vermindert werden, der durch diese Moleküle verursacht wird. Durch einen derartigen zusätzlichen Verfahrensschritt wird allerdings das Nachweisverfahren deutlich verlangsamt. Ferner wird das detektierbare Signal auch für die nachzuweisenden Nukleinsäuren deutlich verringert, die spezifisch mit den Nukleinsäuresonden des Mikroarrays hybridisieren. Letzteres beruht vor allem darauf, dass das Gleichgewicht zwischen den durch Hybridisierung gebundenen und in Lösung befindlichen Targets nach dem Waschschritt nicht mehr gegeben ist. Nukleinsäuren, die bereits mit den auf dem Array befindlichen Nukleinsäuresonden hybridisiert hatten, werden von der Bindungsstelle durch das Waschen abgelöst und somit mit den in Lösung befindlichen Molekülen weggewaschen. Es bleibt überhaupt nur dann ein detektierbares Signal zurück, wenn der Wasch- bzw. Spülschritt der in Lösung befindlichen Moleküle schneller vollzogen wird als die Ablösung der bereits hybridisierten Nukleinsäuren erfolgt.
Es besteht folglich ein Bedarf an hochintegrierten Arrays, mit denen mit relativ geringem technischem Aufwand die Wechselwirkung zwischen Sonden und Targets mit hoher Genauigkeit qualitativ und/oder quantitativ nachgewiesen werden kann.
Es besteht ferner ein Bedarf an Vorrichtungen, die die Durchführung von PCR und Analysereaktion, wie z.B. einer Hybridisierungsreaktion, in einem Reaktionsraum ermöglichen.
Aufgabe der vorliegenden Erfindung ist es somit, die vorstehend genannten Probleme des Standes der Technik, die sich insbesondere durch die mangelnde Kompatibilität des Assays mit dem Testsystem ergeben, zu überwinden.
Insbesondere ist es eine Aufgabe der vorliegenden Erfindung, Vorrichtungen bzw. Verfahren zur Verfügung zu stellen, mit denen molekulare Wechselwirkungen zwischen Sonden und Targets auf Sonden- Arrays mit hoher Genauigkeit und hoher Empfindlichkeit und auf einfache und kostengünstige Weise qualitativ und/oder quantitativ nachgewiesen werden können.
Ferner ist es eine Aufgabe der vorliegenden Erfindung, Verfahren bzw. Vorrichtungen zur Amplifikation und zum qualitativen und quantitativen Nachweis von Nukleinsäuren zur Verfügung zu stellen, bei denen die Eingriffe seitens des Experimentators in das Nachweisverfahren minimiert werden können.
Eine weitere Aufgabe der vorliegenden Erfindung ist es, Verfahren bzw. Vorrichtungen zum qualitativen und/oder quantitativen Nachweis von Targetmolekülen zur Verfügung zu stellen, mit denen ein hohes Signal-zu-Rausch- Verhältnis bei der Detektion von Wechselwirkungen auf dem Mikroarray gewährleistet wird, ohne die Wechselwirkung zwischen den Target- und den Sondenmolekülen auf dem Array zu beeinträchtigen.
Eine weitere Aufgabe der vorliegenden Erfindung ist es, Vorrichtungen bzw. Verfahren zur Verfügung zu stellen, mit denen eine hohe dynamische Auflösung bei der Detektion erreicht wird, d.h. der Nachweis schwacher Sonden/Target- Wechselwirkungen neben starken Signalen gewährleistet bleibt.
Der Erfindung liegt femer die Aufgabe zugrunde, Vorrichtungen bzw. Verfahren zur Verfügung zu stellen, die eine nahezu gleichzeitige Vervielfältigung und Charakterisierung von Nukleinsäuren mit einem hohen Durchsatz ermöglichen.
Diese und weitere Aufgaben der vorliegenden Erfindung werden durch die
Bereitstellung der in den Patentansprüchen gekennzeichneten Ausfuhrungsformen gelöst.
Erfindungsgemäß werden Verfahren zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und
Targetmolekülen zur Verfügung gestellt, bei denen auf den Austausch und/oder die Entfernung von Lösungen, d.h. insbesondere auf Wasch- bzw. Spülschritte, verzichtet werden kann.
Derartige erfindungsgemäße Verfahren umfassen insbesondere die folgenden Schritte: a) Einbringen einer Probe enthaltend Targetmoleküle in eine Reaktionskammer, die einen Mikroarray aufweist, wobei der Mikroarray ein Substrat mit darauf auf Array- Elementen immobilisierten Sondenmoleküle umfasst; b) Detektieren einer Wechselwirkung zwischen den Targetmolekülen und den auf dem Substrat immobilisierten Sondenmolekülen, wobei nach dem Einbringen der Probe enthaltend Targetmoleküle und vor und während dem Detektieren kein Austauschen von Lösungen in der Reaktionskammer und/oder Entfernen von Lösungen aus der Reaktionskammer erfolgt.
Femer werden im Rahmen der vorliegenden Erfindung Vorrichtungen bereitgestellt, die zur Durchführung derartiger Verfahren geeignet sind.
Insbesondere wird im Rahmen der vorliegenden Erfindung eine Vorrichtung zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen zur Verfügung gestellt, umfassend: a) einen Mikroarray mit einem Substrat, auf dem auf Array-Elementen Sondenmoleküle immobilisiert sind, wobei der Mikroarray auf einer ersten Fläche der Vorrichtung angeordnet ist; und b) eine Reaktionskammer, die zwischen der ersten Fläche mit dem darauf angeordneten Mikroarray und einer zweiten Fläche gebildet ist, wobei der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
Insbesondere ermöglicht der Variabilität des Abstands zwischen Mikroarray und zweiter Fläche, die üblicherweise die Detektionsebene der erfindungsgemäßen Vorrichtung darstellt, dass der Signalhintergrund, der durch markierte Targetmoleküle verursacht wird, die keine spezifische Affinität zu den Sondenmolekülen des Mikroarrays aufweisen und deshalb nicht mit diesen wechselwirken, wesentlich vermindert bzw. vollständig vermieden werden kann.
Erfindungsgemäß wird femer ein Verfahren zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und
Targetmolekülen zur Verfügung gestellt, das die folgenden Schritte umfasst: a) Einbringen einer Probenlösung umfassend Targetmoleküle in eine Reaktionskammer einer wie vorstehend beschriebenen erfindungsgemäßen Vorrichtung; und b) Detektieren einer Wechselwirkung zwischen den Targetmolekülen und den auf dem Substrat immobilisierten Sondenmolekülen.
Die erfindungsgemäßen Verfahren und Vorrichtungen zum Nachweis von Targetmolekülen sind so konzipiert, dass zur Durchführung des Nachweisverfahrens und ggf. einer Amplifikation der Targetmoleküle möglichst wenige Eingriffe seitens eines Experimentators in die Reaktionskammer notwendig sind. Dies bietet den wesentlichen Vorteil, dass dadurch Kontaminationen vermieden werden. Femer ist die Reproduzierbarkeit der erfindungsgemäßen Verfahren im Vergleich zu herkömmlichen Verfahren wesentlich erhöht, da das erfindungsgemäße Verfahren aufgrund der Minimierung externer Eingriffe einer Automatisierung zugänglich ist. Die vorstehend genannten Vorteile spielen im Hinblick auf die Zulassung von diagnostischen Verfahren eine bedeutende Rolle.
Zur Beschreibung der vorliegenden Erfindung werden femer unter anderen folgende Definitionen verwendet:
Unter einer Sonde bzw. einem Sondenmolekül bzw. einer molekularen Sonde wird im Rahmen der vorliegenden Erfindung ein Molekül verstanden, das zum Nachweis anderer Moleküle durch ein bestimmtes, charakteristisches Bindungsverhalten bzw. eine bestimmte Reaktivität verwendet wird. Für die auf dem Array angeordneten Sonden kommt jede Art von Molekülen in Frage, die sich an feste Oberflächen koppeln lassen und eine spezifische Affinität aufweisen. In einer bevorzugten Ausführungsform handelt es sich um Biopolymere, insbesondere um Biopolymere aus den Klassen der Peptide, Proteine, Antigene, Antikörper, Kohlenhydrate, Nukleinsäuren und/oder deren Analoga und/oder Mischpolymere der vorstehend genannten Biopolymere. Besonders bevorzugt sind die Sonden Nukleinsäuren und/oder Nukleinsäureanaloga.
Als Sonde werden insbesondere Nukleinsäuremoleküle definierter und bekannter Sequenz bezeichnet, die benutzt werden, um in Hybridisierungsverfahren Target- Moleküle nachzuweisen. Als Nukleinsäuren können sowohl DNA- als auch RNA- Moleküle verwendet werden. Beispielsweise kann es sich bei den Nukleinsäurensonden bzw. Oligonukleotidsonden um Oligonukleotide mit einer
Länge von 10 bis 100 Basen, vorzugsweise 15 bis 50 Basen und besonders bevorzugt von 20 bis 30 Basen Länge handeln. Typischerweise handelt es sich erfindungsgemäß bei den Sonden um einzelsträngige Nukleinsäuremoleküle oder Moleküle von Nukleinsäureanaloga, bevorzugt einzelsträngige DNA-Moleküle oder RNA-Moleküle, die mindestens über einen Sequenzbereich verfugen, der zu einem Sequenzbereich der Target-Moleküle komplementär ist. Je nach Nachweisverfahren und Anwendung können die Sonden auf einem festen Trägersubstrat, z.B. in Form eines Mikroarrays immobilisiert sein. Darüber hinaus können sie je nach Nachweisverfahren radioaktiv oder nicht radioaktiv markiert sein, so dass sie über im Stand der Technik übliche Nachweisverfahren nachgewiesen werden können.
Unter einem Target bzw. einem Targetmolekül wird im Rahmen der vorliegenden Erfindung das mit einer molekularen Sonde nachzuweisende Molekül verstanden. Bei einer bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei den zu detektierenden Targets um Nukleinsäuren. Der erfindungsgemäße Sonden- Array kann jedoch analog auch zum Nachweis von Peptid/Sonden- Wechselwirkungen, Protein/Sonden- Wechselwirkungen, Kohlenhydrat/S onden- Wechselwirkungen, Antikörper/Sonden- Wechselwirkungen, usw. eingesetzt werden.
Falls es sich im Rahmen der vorliegenden Erfindung bei den Targets um Nukleinsäuren bzw. Nukleinsäuremoleküle handelt, die durch eine Hybridisierung gegen auf einem Sondenarray angeordnete Sonden nachgewiesen werden, umfassen diese Target-Moleküle in der Regel Sequenzen mit einer Länge von 40 bis 10.000 Basen, bevorzugt von 60 bis 2.000 Basen, ebenfalls bevorzugt von 60 bis 1.000 Basen, insbesondere bevorzugt von 60 bis 500 Basen und am meisten bevorzugt von 60 bis 150 Basen. Ihre Sequenz beinhaltet gegebenenfalls die Sequenzen von Primem, sowie die durch die Primer definierten Sequenzbereiche des Templates. Bei den Target-Molekülen kann es sich insbesondere um einzel- oder doppelsträngige Nukleinsäuremoleküle handeln, von denen ein Strang oder beide Stränge radioaktiv oder nicht radioaktiv markiert sind, so dass sie in einem der im Stand der Technik üblichen Nachweisverfahren nachgewiesen werden können.
Als Target-Sequenz wird erfindungsgemäß der Sequenzbereich des Targets bezeichnet, der durch Hybridisierung mit der Sonde nachgewiesen wird. Erfindungsgemäß wird auch davon gesprochen, dass dieser Bereich durch die Sonde adressiert wird.
Unter einer Substanzbibliothek wird im Rahmen der vorliegenden Erfindung eine Vielzahl von unterschiedlichen Sondenmolekülen verstanden, vorzugsweise mindestens zwei bis 1.000.000 unterschiedliche Moleküle, besonders bevorzugt mindestens 10 bis 10.000 unterschiedliche Moleküle und am meisten bevorzugt zwischen 100 und 1.000 unterschiedlichen Molekülen. Bei speziellen Ausgestaltungen kann eine Substanzbibliothek auch nur mindestens 50 oder weniger oder mindestens 30.000 unterschiedliche Moleküle umfassen. Die Substanzbibliothek ist vorzugsweise als Array auf einem Träger in der Reaktionskammer der erfindungsgemäßen Vorrichtung angeordnet.
Unter einem Sonden-Array wird im Rahmen der vorliegenden Erfindung eine Anordnung von molekularen Sonden bzw. einer Substanzbibliothek auf einem Träger verstanden, wobei die Position einer jeden Sonde separat bestimmt ist. Vorzugsweise umfasst der Array definierte Stellen bzw. vorbestimmte Bereiche, so genannte Array-Elemente, die besonders bevorzugt in einem bestimmten Muster angeordnet sind, wobei jedes Array-Element üblicherweise nur eine Spezies an Sonden beinhaltet. Die Anordnung der Moleküle bzw. Sonden auf dem Träger kann durch kovalente oder nicht kovalente Wechselwirkungen erzeugt werden. Die Sonden sind dabei auf der dem Reaktionsraum zugewandten Seite des Trägers angeordnet. Eine Position innerhalb der Anordnung, d.h. des Arrays, wird üblicherweise als Spot bezeichnet.
Unter einem Array-Element bzw. einem vorbestimmten Bereich bzw. einem Spot bzw. einem Array-Spot wird im Rahmen der vorliegenden Erfindung ein für die Deposition einer molekularen Sonde bestimmtes Areal auf einer Oberfläche verstanden, die Summe aller belegten Array-Elemente ist das Sonden-Array.
Unter einem Trägerelement bzw. Träger bzw. Substanzbibliothekenträger bzw. Substrat wird im Rahmen der vorliegenden Erfindung ein Festkörper verstanden, auf dem das Sonden-Array aufgebaut ist. Bei dem Träger, der üblicherweise auch als Substrat oder Matrix bezeichnet wird, kann es sich z.B. um Objektträger oder Wafer oder aber auch keramische Materialien handeln. Bei einer speziellen Ausgestaltung können die Sonden auch direkt auf der ersten Fläche, vorzugsweise auf einem Teilbereich der ersten Fläche, immobilisiert sein.
Die Gesamtheit aus in Array- Anordnung auf dem Substrat abgelegten Molekülen bzw. der in Array- Anordnung auf dem Substrat bzw. der Detektionsfläche abgelegten Substanzbibliothek und dem Träger bzw. Substrat wird häufig auch als "Chip", "Mikroarray", "Microarray", "DNA-Chip", Sondenarray", "Sonden-Array" etc. bezeichnet.
Als Detektionsebene wird im Rahmen der vorliegenden Erfindung die zweite Fläche der erfindungsgemäßen Vorrichtung bezeichnet. Vorzugsweise befinden sich die auf dem Mikroarray abgelegten Sonden bei der Detektion der Wechselwirkung zwischen Sonden und Targets im Wesentlichen in der Detektionsebene, insbesondere dadurch, dass der Abstand zwischen Mikroarray und zweiter Fläche auf etwa null verringert ist.
Unter einem Kammerkörper wird im Rahmen der vorliegenden Erfindung der die Reaktionskammer bildende Festkörper verstanden. Der Substanzbibliothekenträger bzw. der Chip ist üblicherweise Teil des Kammerkörpers, wobei der Substanzbibliothekenträger aus einem anderen Material gebildet sein kann als der übrige Kammerkörper.
Unter einer Reaktionskammer bzw. einem Reaktionsraum wird im Rahmen der vorliegenden Erfindung der Raum bezeichnet, der zwischen Mikroarray und zweiter Fläche bzw. Detektionsebene gebildet ist und vorzugsweise als veränderbarer Kapillarspalt ausgestaltet ist. Der Reaktionsraum ist seitlich durch Seitenwände begrenzt, die z.B. als elastische Dichtungen ausgeführt sein können. Die auf dem Mikroarray immobilisierten Sonden befinden sich auf der dem Innenraum der Reaktionskammer zugewandten Seite. Die Grundfläche der Reaktionskammer bzw. des Reaktionsraums ist durch die erste Fläche bzw. die zweite Fläche des Arrays definiert. Als Dicke des Reaktionsraums bzw. der Reaktionskammer bzw. des Kapillarspalts wird insbesondere der Abstand zwischen zweiter Fläche bzw. Detektionsebene und Oberfläche des Substrats bzw. des Mikroarrays bezeichnet. Üblicherweise weist ein Reaktionsraum im Rahmen der vorliegenden Erfindung eine geringe Dicke auf, beispielsweise eine Dicke von höchstens 1 cm, vorzugsweise von höchstens 5 mm, besonders bevorzugt von höchstens 3 mm und am meisten bevorzugt von höchstens 1 mm.
Unter dem Abstand zwischen dem Mikroarray und der zweiten Fläche wird im Rahmen der vorliegenden Erfindung der Abstand zwischen der Oberfläche des Mikroarray-Substrats, d.h. der dem Reaktionsraum zugewandten Seite des Mikroarrays, und der dem Reaktionsraum zugewandten Seite der zweiten Fläche verstanden. Ist der Abstand zwischen Mikroarray und zweiter Fläche etwa null, bedeutet dies, dass die Oberfläche des Substrats bündig auf der zweiten Fläche aufliegt.
Unter einem Kapillarspalt wird im Rahmen der vorliegenden Erfindung ein Reaktionsraum bezeichnet, der durch Kapillarkräfte, die zwischen dem Mikroarray und der zweiten Fläche wirken, befüllbar ist. Üblicherweise weist ein Kapillarspalt eine geringe Dicke z.B. von höchstens 1 mm, vorzugsweise von höchstens 750 μm und besonders bevorzugt von höchstens 500 μm auf. Als Dicke des Kapillarspalts ist erfindungsgemäß femer eine Dicke im Bereich von 10 bis 300 μm, von 15 μm bis 200 μm bzw. von 25 μm bis 150 μm bevorzugt. Bei speziellen Ausgestaltungen der vorliegenden Erfindung weist der Kapillarspalt eine Dicke von 50 μm, 60 μm, 70 μm, 80 μm oder 90 μm auf. Weist der Reaktionsraum bzw. die Reaktionskammer eine Dicke von mehr als 2 mm auf, wird der Reaktionsraum bzw. die Reaktionskammer im Rahmen der vorliegenden Erfindung nicht mehr als Kapillarspalt bezeichnet.
Unter einer Kartusche oder Reaktionskartusche wird im Rahmen der vorliegenden Erfindung eine Einheit aus der Reaktionskammer mit einem Kammerkörper und einer entsprechenden Umhausung verstanden.
Unter einem konfokalen Fluoreszenzdetektionssystem wird im Rahmen der vorliegenden Erfindung ein Fluoreszenzdetektionssystem verstanden, in der das Objekt in der Brennebene des Objektivs durch eine Punktlichtquelle beleuchtet wird. Punktlichtquelle, Objekt und Punktlichtdetektor liegen dabei in exakt optisch konjugierten Ebenen. Beispiele für konfokale Systeme sind in A. Diaspro, Confocal and 2-photon-microscopy: Foundations, Applications and Advances, Wiley-Liss, 2002 beschrieben.
Unter einem das gesamte Volumen der Reaktionskammer abbildenden fluoreszenzoptischen System wird im Rahmen der vorliegenden Erfindung ein nicht- konfokales Fluoreszenzdetektionssystem verstanden, also ein Fluoreszenzdetektionssystem, in der die Beleuchtung durch die Punktlichtquelle nicht auf das Objekt begrenzt ist. Ein derartiges Fluoreszenzdetektionssystem weist somit keine fokale Begrenzung auf.
Herkömmliche Arrays bzw. Mikroarrays im Rahmen der vorliegenden Erfindung umfassen etwa 50 bis 10.000, vorzugsweise 150 bis 2.000 unterschiedliche Spezies von Sondenmolekülen auf einer, vorzugsweise quadratischen, Fläche von z.B. 1 mm bis 4 mm x 1 mm bis 4 mm, vorzugsweise von 2 mm x 2 mm. In weiteren Ausgestaltungen umfassen Mikroarrays im Rahmen der vorliegenden Erfindung etwa 50 bis etwa 80.000, vorzugsweise etwa 100 bis etwa 65.000, besonders bevorzugt etwa 1.000 bis etwa 10.000 unterschiedliche Spezies von Sondenmolekülen auf einer •y -y 9 9
Fläche von mehreren mm bis mehreren cm , vorzugsweise etwa 1 mm bis 10 cm , 9 9 9 besonders bevorzugt 2 mm bis 1 cm und am meisten bevorzugt etwa 4 mm bis 6,25 mm2. Beispielsweise weist ein herkömmliches Mikroarray von 100 bis 65.000 unterschiedliche Spezies von Sondenmolekülen auf einer Fläche von 2 mm x 2 mm auf.
Eine Markierung oder ein Marker bezeichnet im Rahmen der vorliegenden Erfindung eine detektierbare Einheit, beispielsweise ein Fluorophor oder eine Ankergruppe, an die eine detektierbare Einheit gekoppelt werden kann.
Eine Vervielfältigungsreaktion bzw. eine Amplifikationsreaktion umfasst im Rahmen der vorliegenden Erfindung üblicherweise 10 bis 50 oder mehr Amplifikationszyklen, vorzugsweise etwa 25 bis 45 Zyklen, besonders bevorzugt etwa 40 Zyklen. Eine zyklische Amplifikationsreaktion ist im Rahmen der vorliegenden Erfindung vorzugsweise eine Polymerase-Kettenreaktion (polymerase chain reaction, PCR).
Als Amplifikationszyklus wird im Rahmen der vorliegenden Erfindung ein einzelner Verstärkungsschritt der zyklischen Amplifikationsreaktion bezeichnet. Ein Verstärkungsschritt der PCR wird auch als PCR-Zyklus bezeichnet.
Als Amplifikationsprodukt wird im Rahmen der vorliegenden Erfindung ein Produkt aus der Verstärkung bzw. Vervielfältigung bzw. Amplifikation der zu amplifizierenden Nukleinsäuremoleküle durch die zyklische Amplifikationsreaktion, vorzugsweise durch die PCR bezeichnet. Ein durch PCR vervielfältigtes Nukleinsäuremolekül wird auch als PCR-Produkt bezeichnet. Unter der Denaturierungstemperatur wird im Rahmen der vorliegenden Erfindung die Temperatur verstanden, bei der die doppelsträngige DNA im Amplifikationszyklus aufgetrennt wird. Die Denaturierungstemperatur beträgt, insbesondere bei einer PCR, üblicherweise mehr als 90°C, vorzugsweise etwa 95°C.
Unter der Annealing-Temperatur wird im Rahmen der vorliegenden Erfindung die Temperatur verstanden, bei der die Primer an die nachzuweisende Nukleinsäure hybridisieren. Die Annealing-Temperatur liegt, insbesondere bei einer PCR, üblicherweise im Bereich von 50°C bis 65°C und beträgt vorzugsweise etwa 60°C.
Unter der Kettenverlängerungs- bzw. Extensions-Temperatur wird im Rahmen der vorliegenden Erfindung die Temperatur verstanden, bei der die Nukleinsäure durch Einbau der Monomerbausteine synthetisiert wird. Die Extensionstemperatur liegt, insbesondere bei einer PCR, üblicherweise im Bereich von etwa 68°C bis etwa 75°C und beträgt vorzugsweise etwa 72°C.
Als Oligonukleotid-Primer bzw. Primer wird im Rahmen der vorliegenden Erfindung ein Oligonukleotid bezeichnet, das an die nachzuweisende DNA, auch Target-DNA genannt, bindet bzw. hybridisiert, wobei von der Bindungsstelle die Synthese des Gegenstrangs der nachzuweisenden DNA bei der zyklischen Amplifikationsreaktion startet. Insbesondere wird als Primer üblicherweise ein kurzes DNA- oder RNA- Oligonukleotid mit vorzugsweise etwa 12 bis 30 Basen bezeichnet, das komplementär zu einem Abschnitt eines größeren DNA- oder RNA-Moleküls ist und über eine freie 3-OH-Gruppe an seinem 3'-Ende verfugt. Aufgrund dieser freien 3'- OH-Gruppe kann der Primer als Substrat für beliebige DNA- oder RNA-
Polymerasen dienen, die in 5'-3'-Richtung Nukleotide an den Primer synthetisieren. Die Sequenz der neu synthetisierten Nukleotide ist dabei durch die Sequenz des mit dem Primer hybridisierten Templates vorgegeben, die jenseits der freien 3'-OH- Gruppe des Primers liegt. Primer üblicher Länge umfassen zwischen 12 bis 50 Nukleotide, bevorzugt zwischen 15 und 30 Nukleotide.
Als Template oder Template- Strang werden üblicherweise ein doppelsträngiges Nukleinsäuremolekül oder ein Nukleinsäurestrang bezeichnet, der als Vorlage zur Synthese von komplementären Nukleinsäuresträngen dient.
Unter einer molekularen Wechselwirkung bzw. einer Wechselwirkung wird im Rahmen der vorliegenden Erfindung insbesondere eine spezifische, kovalente oder nicht-kovalente Bindung zwischen einem Targetmolekül und einem immobilisierten Sondenmolekül verstanden. Bei einer bevorzugten Ausf hrungsform der vorliegenden Erfindung ist die Wechselwirkung zwischen Sonden- und Targetmolekülen eine Hybridisierung.
Als Hybridisiemng wird die Bildung von doppelsträngigen Nukleinsäuremolekülen oder Duplexmolekülen aus komplementären einzelsträngigen Nukleinsäuremolekülen bezeichnet. Dabei findet die Assoziation vorzugsweise immer zu Paaren von A und T bzw. G und C statt. Im Rahmen einer Hybridisierung können z.B. DNA-DNA-Duplexes, DNA-RNA- oder RNA-RNA-Duplexes gebildet werden. Durch eine Hybridisierung können auch Duplexes mit Nukleinsäureanaloga gebildet werden, wie z.B. DNA-PNA-Duplexes, RNA-PNA-Duplexes, DNA-LNA- Duplexes und RNA-LNA-Duplexes. Hybridisierungsexperimente werden üblicherweise benutzt, um die Sequenzkomplementarität und damit die Identität zwischen zwei verschiedenen Nukleinsäuremolekülen nachzuweisen.
Unter Prozessierung werden im Rahmen der vorliegenden Erfindung insbesondere Aufreinigungs-, Aufkonzentrierungs-, Markierungs-, Amplifikations-, Wechselwirkungs- bzw. Hybridisierungs- und/oder Wasch- und Spülschritte, sowie weitere zum Nachweis bzw. zur Detektion von Targets mit Hilfe von Substanzbibliotheken durchgeführte Verfahrensschritte verstanden. Die Detektion selbst fällt nicht unter den Begriff Prozessierung.
Als Probe bzw. Probenlösung bzw. Analyt bzw. Lösung wird im Rahmen der vorliegenden Erfindung eine zu analysierende Flüssigkeit bezeichnet, die insbesondere die nachzuweisenden und ggf. zu amplifizierenden Targetmoleküle enthält. Eine derartige Lösung kann femer u.a. neben üblichen Zusatzstoffen wie beispielsweise Puffern auch für die Durchführung von Amplifikationsreaktionen erforderliche Substanzen wie Primer enthalten.
Unter einem Austauschen von Lösungen in der Reaktionskammer aus der Reaktionskammer werden im Rahmen der vorliegenden Erfindung insbesondere Spül- bzw. Waschschritte verstanden. Das Austauschen von Lösungen dient z.B. zur Beseitigung von mit detektierbaren Markem versehenen Molekülen, welche nicht spezifisch mit Sonden auf dem Mikroarray wechselwirken, in dem nach erfolgter Wechselwirkung die Probenlösung gegen eine nicht markierte Lösung ausgetauscht wird. Moleküle, welche nicht spezifisch mit Sonden auf dem Mikroarray wechselwirken, sind z.B. mit einem detektierbaren Marker versehene Primem, die nicht während der Amplifikationsreaktion umgesetzt worden sind, oder mit einem detektierbaren Marker versehene Targetmoleküle, zu denen keine komplementäre Sonde auf dem Array vorliegt, die spezifisch mit diesem Targetmolekül wechselwirkt.
Unter einem Entfernen von Lösungen aus der Reaktionskammer werden im Rahmen der vorliegenden Erfindung Schritte verstanden, mit denen mit detektierbaren Markem versehene Moleküle, welche nicht spezifisch mit Sonden auf dem Mikroarray wechselwirken, aus der Reaktionskammer entfernt werden. Moleküle, welche nicht spezifisch mit Sonden auf dem Mikroarray wechselwirken, sind z.B. mit einem detektierbaren Marker versehene Primem, die nicht während der Amplifikationsreaktion umgesetzt worden sind, oder mit einem detektierbaren Marker versehene Targetmoleküle, zu denen keine komplementäre Sonde auf dem Array vorliegt, die spezifisch mit diesem Targetmolekül wechselwirkt.
Wenn im Rahmen der vorliegenden Erfindung zwischen dem Einbringen der Probe enthaltend Targetmoleküle in eine Reaktionskammer und dem Detektieren der Wechselwirkung kein Austauschen von Lösungen in der Reaktionskammer und/oder Entfernen von Lösungen aus der Reaktionskammer erfolgt, ist es jedoch denkbar, dass in diesem Zeitraum Lösungen zusätzlich in die Reaktionskammer eingebracht werden können, ohne dass ein Austausch bzw. ein Entfernen von bereits in der Reaktionskammer vorliegenden Lösungen erfolgt.
Ein erster Gegenstand der vorliegenden Erfindung umfasst somit ein Verfahren zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen, umfassend insbesondere die folgenden Schritte: a) Einbringen einer Probe enthaltend Targetmoleküle in eine Reaktionskammer, die einen Mikroarray aufweist, wobei der Mikroarray ein Substrat mit darauf auf Array-
Elementen immobilisierten Sondenmoleküle umfasst; b) Detektieren einer Wechselwirkung zwischen den Targetmolekülen und den auf dem Substrat immobilisierten Sondenmolekülen, wobei nach dem Einbringen der Probe enthaltend Targetmoleküle und vor bzw. während dem Detektieren kein Austauschen von Lösungen in der Reaktionskammer und/oder Entfernen von Lösungen aus der Reaktionskammer erfolgt. Ein wesentliches Merkmal des erfindungsgemäßen Verfahrens bei diesem Aspekt der vorliegenden Erfindung ist, dass die Detektion einer Wechselwirkung zwischen den nachzuweisenden Targetmolekülen und den auf dem Substrat des Mikroarrays immobilisierten Sondenmolekülen erfolgt, ohne dass ein Austauschen von Lösungen in der Reaktionskammer bzw. ein Entfernen von Lösungen aus der Reaktionskammer erfolgt. D.h., das Detektieren der Wechselwirkung zwischen Targets und Sonden kann erfolgen, ohne dass im Anschluss an die Wechselwirkungsreaktion Spül- bzw. Waschschritte erforderlich sind und/oder ohne dass im Anschluss an die Wechselwirkungsreaktion Moleküle aus der Reaktionskammer entfernt werden, die nicht spezifisch mit Sonden auf dem Mikroarray wechselwirken.
Dies kann insbesondere durch fokiselektive Detektionsmethoden bei dem erfindungsgemäßen Verfahren gewährleistet werden, wie z.B. durch konfokale Techniken oder durch auf der Anwendung einer tiefenselektiven Beleuchtung aufgmnd der z.B. auf totaler Reflexion beruhenden evaneszenten Auskopplung von Anregungslicht (TIRF) im Probensubstrat oder der Verwendung von Wellenleitern beruhende Methoden. Derartige fokiselektive Verfahren sind insbesondere dann zu bevorzugen, wenn eine weitere Ausgrenzung der durch die in der Flüssigkeit vorhandenen, d.h. nicht hybridsierten Fluoreszenzmoleküle verursachten Hintergmndsignale erforderlich ist, um die Sensitivität zu erhöhen. Bei Verwendung von fluoreszenzmarkierten Targetmolekülen können somit die spezifischen Wechselwirkungssignale von der Hintergrundfluoreszenz durch Einsatz von Verfahren wie Total Internal Reflection-Fluoreszenzmikroskopie (TIRF) oder konfokaler Fluoreszenzmikroskopie diskriminiert werden.
Beispiele hierfür sind CCD-basierte Detektoren, die zur Diskriminierung von optischen Effekten wie Streuung und Reflexionen die Anregung der Fluorophore im Dunkelfeld durch Auflicht oder Durchlicht realisieren (siehe z.B. C. E. Hooper et al., Quantitative Photone Imaging in the Life Sciences Using Intensified CCD Cameras, Journal of Bioluminescence and Chemoluminescence (1990), 337-344). Weitere Alternativen für Fluoreszenzdetektionssysteme, die bei dem erfindungsgemäßen Verfahren eingesetzt werden können, sind Weißlichtaufbauten wie sie z.B. in WO 00/12759, WO 00/25113 und WO 96/27025 beschrieben sind; konfokale Systeme, wie sie z.B. in US 5,324,633, US 6,027,880, US 5,585,639 und WO 00/12759 beschrieben sind; auf Nipkow-Scheiben basierende konfokale Anregungssysteme bei bildgebender konfokaler Abbildung, wie z.B. in US 5,760,950 beschrieben sind; auf strukturierter Anregungsverteilung basierende Systeme, wie sie z.B. in WO 98/57151 beschrieben sind;
Fluoreszenzdetektionssysteme in hoher Integration unter Verwendung von Mikrooptiken, wie sie z.B. in WO 99/27140 beschrieben sind; und Laserscanningsysteme, wie sie z.B. in WO 00/12759 beschrieben sind. Ein allgemeiner Ablauf von Fluoreszenzdetektionsverfahren unter Verwendung derartiger herkömmlicher Fluoreszenzdetektionssysteme ist z.B. in US 5,324,633 beschrieben.
Für die Durchführung eines erfindungsgemäßen Nachweisverfahren ohne Austauschen von Lösungen in der Reaktionskammer und/oder Entfernen von Lösungen aus der Reaktionskammer vor der Detektion sind insbesondere die in WO 2004/087951 beschriebenen Vorrichtungen geeignet, in denen die Reaktionskammer durch einen Kapillarspalt gebildet wird. Auf den diesbezüglichen Inhalt von WO 2004/087951 wird hiermit ausdrücklich Bezug genommen.
Bei einer weiteren Ausführungsform dieses Aspekts der vorliegenden Erfindung wird das Austauschen und/oder Entfernen von Lösungen aus der Reaktionskammer dadurch vermieden, dass der Nachweis durch Detektion der Massenänderung auf der Arrayoberfläche, wie z.B. in WO 03/004699 beschrieben, erfolgt. Auf den diesbezüglichen Inhalt von WO 03/004699 wird hiermit ausdrücklich Bezug genommen.
Bei einer weiteren Ausfühmngsform dieses Aspekts der vorliegenden Erfindung wird das Austauschen und/oder Entfernen von Lösungen aus der Reaktionskammer dadurch vermieden, dass der Nachweis durch Detektion von akustischen Oberflächenwellen, wie beispielsweise in Z. Guttenberg et al., Lab Chip. 2005; 5(3):308-17 beschrieben, erfolgt.
Bei einer weiteren Ausführungsform dieses Aspekts der vorliegenden Erfindung wird das Austauschen und/oder Entfernen von Lösungen aus der Reaktionskammer dadurch vermieden, dass der Nachweis durch elektrochemische Detektion mittels Elektroden auf der Oberfläche des Arrays erfolgt, wie beispielsweise durch Messung der Änderung von Redoxpotentialen (siehe z.B. X. Zhu et al., Lab Chip. 2004; 4(6):581-7) oder zyklische Voltometrie (siehe z.B. J. Liu et al., Anal Chem. 2005; 11 (9):2156-2161; J. Wang, Anal Chem. 2003; 75(15):3941-5) erfolgt.
Bei einer weiteren Ausführungsform dieses Aspekts der vorliegenden Erfindung wird das Austauschen und/oder Entfernen von Lösungen aus der Reaktionskammer dadurch vermieden, dass der Nachweis durch elektrische Detektion mittels Elektroden auf der Oberfläche des Arrays erfolgt, wie beispielsweise durch Impedanzmessung (siehe u.a. S.M. Radke et al., Biosens Bioelectron. 2005; 20(8): 1662-7).
Bei einer weiteren Ausfühmngsform dieses Aspekts der vorliegenden Erfindung wird das Austauschen und/oder Entfernen von Lösungen aus der Reaktionskammer dadurch vermieden, dass ein Mikroarray mit FRET-Sonden (¥RET,fluorescence resonance energy transfer) eingesetzt wird. Die Verwendung derartiger FRET- Sonden basiert auf der Bildung von Fluoreszenz-Quencher-Pärchen, so dass nur dann ein Fluroeszenzsignal entsteht, wenn ein Targetmolekül an die komplentäre Sonde auf der Oberfläche gebunden hat. Die Verwendung von FRET-Sonden ist beispielsweise beschrieben in B. Liu et al., PNAS 2005, 102, 3, 589-593; K. Usui et al., Mol Divers. 2004; 8(3):209-18; JA. Cruz-Aguado et al., Anal Chem. 2004; 76(14):4182-8 und J. Szollosi et al., J Biotechnol. 2002;82(3):251-66.
Bei einer weiteren besonders bevorzugten Ausführungsform dieses Aspekts der vorliegenden Erfindung wird das Austauschen und/oder Entfernen von Lösungen aus der Reaktionskammer dadurch vermieden, dass eine wie nachstehend im Detail beschriebene erfindungsgemäße Vorrichtung zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen eingesetzt wird, wobei die Vorrichtung umfasst: a) einen Mikroarray mit einem Substrat, auf dem auf Array-Elementen Sondenmoleküle immobilisiert sind, wobei der Mikroarray auf einer ersten Fläche der Vorrichtung angeordnet ist; und b) eine Reaktionskammer, die zwischen der ersten Fläche mit dem darauf angeordneten Mikroarray und einer zweiten Fläche gebildet ist, und wobei der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung von FRET-Sondenmolekülen wie vorstehend beschrieben und/oder Detektionsverfahren ausgewählt aus der Gruppe bestehend aus Total Intemal Reflection- Fluoreszenzmikroskopie (TIRF) wie vorstehend beschrieben, konfokaler
Fluoreszenzmikroskopie wie vorstehend beschrieben, Verfahren zur Detektion der Massenänderung wie vorstehend beschrieben, Verfahren zur Detektion von akustischen Oberflächenwellen wie vorstehend beschrieben, Verfahren zur elektrochemischen und/oder elektrischen Detektion wie vorstehend beschrieben, zur Vermeidung eines Austauschens von Lösungen in einer Reaktionskammer und/oder Entfemens von Lösungen aus einer Reaktionskammer zwischen bzw. nach dem Einbringen einer Probe enthaltend Targetmoleküle in die Reaktionskammer und vor bzw. während der Detektion bei einem Verfahren zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen, das insbesondere die folgenden Schritte umfasst: a) Einbringen einer Probe enthaltend Targetmoleküle in eine Reaktionskammer, die einen Mikroarray aufweist, wobei der Mikroarray ein Substrat mit darauf auf Array- Elementen immobilisierten Sondenmoleküle umfasst; b) Detektieren einer Wechselwirkung zwischen den Targetmolekülen und den auf dem Substrat immobilisierten Sondenmolekülen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist insbesondere eine Vorrichtung zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen, umfassend:
a) einen Mikroarray mit einem Substrat, auf dem auf Array-Elementen Sondenmoleküle immobilisiert sind, wobei der Mikroarray auf einer ersten Fläche der Vorrichtung angeordnet ist; und b) eine Reaktionskammer, die zwischen der ersten Fläche mit dem darauf angeordneten Mikroarray und einer zweiten Fläche gebildet ist, wobei der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
Nach erfolgter Wechselwirkung zwischen Sondenmolekülen und Targetmolekülen wird durch die in der Probenlösung vorliegenden markierten Moleküle, die nicht mit den Sondenmolekülen wechselwirken, ein unerwünschter Hintergrund verursacht. Handelt es sich bei den Sonden- und/oder Targetmolekülen um Nukleinsäuren und/oder Nukleinsäureanaloga, so wird dieser Hintergmnd insbesondere durch die in der Probenlösung vorliegenden markierten Primer und/oder markierten Nukleinsäuren verursacht, die nicht mit den Sondenmolekülen hybridisiert sind.
Eine bekannte Möglichkeit zur Entfernung störender Hintergmndsignale ist der Austausch der Probenlösung nach erfolgter Wechselwirkung gegen eine nicht markierte, beispielsweise nicht fluoreszierende Lösung. Diese Variante ist jedoch im Allgemeinen bedingt durch Korrosion, Alterung der Lösungen und Dichtigkeitsprobleme, aufwendig und störanfällig.
Wesentliches Merkmal der erfindungsgemäßen Vorrichtung ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist. Ein variabler Abstand zwischen Mikroarray und zweiter Fläche bedeutet, dass die Reaktionskammer der erfindungsgemäßen Vorrichtung komprimierbar ist. Insbesondere ist der Abstand zwischen Mikroarray und zweiter Fläche derart variabel, dass der Mikroarray bündig und/oder reversibel mit seiner aktiven Seite, d.h. der Seite, auf der die Nukleinsäuresonden immobilisiert sind, an der zweiten Fläche anliegen kann bzw. auf diese gedrückt werden kann.
Eine komprimierbare Reaktionskammer ermöglicht somit durch Verringerung des Abstands zwischen Mikroarray und Detektionsebene vor Durchführung der Detektion die Verdrängung von Probenlösung, die markierte Moleküle enthält, die nicht mit den Sondenmolekülen wechselwirken und somit einen unerwünschten Hintergmnd darstellen. Auf diese Weise ist eine Detektion von Wechselwirkungen zwischen Sonden- und Targetmolekülen mit beliebigen optischen Detektionssystemen möglich, ohne die Probenlösung vor der Detektion gegen eine nicht markierte Lösung auszutauschen. Beispielsweise ist eine einfache fluoreszenzmikroskopische Abbildung des DNA-Chips zur Detektion der Wechselwirkungssignale mit der erfindungsgemäßen Vorrichtung ohne Austausch der Probenlösung gegen eine nicht markierte, insbesondere fluoreszenzarme Flüssigkeit möglich.
Schließlich wird insbesondere durch die im Folgenden beschriebene Ausfuhrungsformen der erfindungsgemäßen Vorrichtung gewährleistet, dass eine Fokussierung von optischen Detektionssystemen nicht mehr erforderlich ist. Die erfindungsgemäße Vorrichtung ermöglicht somit beispielsweise, dass im Gegensatz zu den bislang verwendeten fluoreszenzoptischen Detektionssystemen zum Nachweis von Nukleinsäuren ein einfaches Fluoreszenzmikroskopgerät ohne Autofokus-Funktion als Auslesegerät für die Detektion der Hybridisiemng zwischen Targets und Sonden verwendet werden kann, ohne dass flüssigkeitshandhabende Schritte wie insbesondere Waschschritte zur Entfernung nicht an den Array gebundener Targetmoleküle, wie z.B. nicht hybridisierter Target-Nukleinsäuren, erforderlich sind.
Dadurch wird trotz der mit der erfindungsgemäßen Vorrichtung durchführbaren multifunktionalen Probenbehandlung und Analyse ein äußerst kostengünstiges System zum Nachweis und ggf. Amplifizieren von Targetmolekülen in einer Probe bereitgestellt. Die erfindungsgemäßen Vorrichtungen, insbesondere in Verbindung mit einem optischen Detektionssystem, sind femer derart robust, dass sie auch für den mobilen Einsatz verwendet werden können.
Durch die geeignete Wahl von Chip, Verarbeitungsprotokollen und
Analysechemikalien ist die erfindungsgemäße Vorrichtung für unterschiedlichste Arten von Genanalysen wie z.B. Prädispositionsdiagnostik, Erregerdiagnostik und Typisierung einsetzbar. In der erfindungsgemäßen Vorrichtung, die auch als Einweg- Kartusche ausgeführt sein kann, ist somit eine vollständige genetische Analyse mit geringem apparativem Aufwand durchfuhrbar. Die erfindungsgemäße Vorrichtung ermöglicht damit die Durchführung von Nachweisverfahren am Ort des Geschehens, z.B. bei einer Blutspende. Ein Messergebnis kann innerhalb kurzer Zeit, vorzugsweise innerhalb lΛ h bis 2 h, vorliegen. Sämtliche mit der erfindungsgemäßen Vorrichtung durchführbaren Schritte wie Aufreinigung, Aufarbeitung, Amplifikation von Nukleinsäuren und die eigentliche Hybridisierung sind automatisch durchführbar. Der Operator muss lediglich mit der Probenentnahme, der Aufgabe der Probe in die erfindungsgemäße Vorrichtung sowie der Kenntnisnahme der Analysenergebnisse vertraut sein.
Vorzugsweise ist der Abstand zwischen dem Mikroarray und der zweiten Fläche in einem Bereich von etwa 0 bis etwa 1 mm veränderbar. Weitere bevorzugte untere Grenzen für den Abstand zwischen Mikroarray und zweiter Fläche sind etwa 0, 1 μm, etwa 1 μm und etwa 10 μm. Weitere bevorzugte obere Grenzen für den Abstand zwischen Mikroarray und zweiter Fläche sind etwa 0,01 mm, etwa 0,5 mm, etwa 1 mm und am meisten bevorzugt etwa 0,3 mm. Überraschenderweise wird die Wechselwirkung zwischen Sonden und Targets auf der Array-Oberfläche auch dann nicht beeinträchtigt, wenn der Abstand zwischen Substrat-Oberfläche und zweiter Fläche nahezu null bzw. etwa null ist.
Vorzugsweise umfasst die erfindungsgemäße Vorrichtung femer ein Detektionssystem. Dabei ist es bevorzugt, dass das Detektionssystem ein optisches System ist. Beispiele für im Rahmen der vorliegenden Erfindung geeignete optische Systeme sind Detektionssysteme basierend auf Fluoreszenz, optischer Absorption, Resonanztransfer u. dgl.. Vorzugsweise ist das optische Detektionssystem ein fluoreszenzoptisches System. Besonders bevorzugt ist das fluoreszenzoptische System ein Fluoreszenzmikroskop ohne Autofokus, z.B. ein Fluoreszenzmikroskop mit Fixfokus.
In einer weiteren Ausfühmngsform ist das Detektionssystem mit mindestens einem Abstandshalter verbunden, der bei Auflage auf der zweiten Fläche einen Abstand zwischen dem Detektionssystem und der zweiten Fläche einstellt. Ist der Abstand zwischen Mikroarray und zweiter Fläche in etwa null, so legt der Abstandshalter auch den Abstand zwischen der Oberfläche des Chips und dem optischen System des Detektionsgerätes fest. Dies ermöglicht es, die Varianz des Abstands zwischen optischer Detektionsvorrichtung und Mikroarray-Oberfläche sehr gering zu halten. Die Varianz umfasst lediglich die Dickenvarianz der zweiten Fläche, im Allgemeinen eine Glasfläche, die Durchbiegung der zweiten Fläche sowie die Dicke einer durch etwaige Verunreinigungen an den Anpressflächen zwischen Chip und Detektionsebene bzw. zwischen Abstandshalter und Detektionsebene verursachten Schicht. Dadurch wird eine Nachfokussierung zur Scharfstellung der optischen Systems überflüssig, was die Handhabung des Gerätes erheblich vereinfacht und/oder eine kostspielige Autofokuseinrichtung überflüssig macht.
In einer weiteren Ausfühmngsform sind für den zwischen der ersten und zweiten Fläche gebildeten Reaktionsraum seitlich begrenzende Ausgleichsbereiche vorgesehen, die bei Verringerung des Abstands zwischen Mikroarray und zweiter Fläche das Volumen in der Reaktionskammer in Wesentlichen konstant halten.
Vorzugsweise ist femer der zwischen der ersten und zweiten Fläche gebildete Reaktionsraum seitlich durch elastische Dichtungen begrenzt. Bei den elastischen Dichtungen handelt es sich besonders bevorzugt um Silikonkautschuk. Um die Detektion von Wechselwirkungen zwischen Sonden- und Targetmolekülen zu gewährleisten, ist die zweite Fläche insbesondere aus einem optisch durchlässigen Material, vorzugsweise Glas ausgestaltet.
In einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung ist die erste Fläche zumindest im Bereich unterhalb des Mikroarrays derart ausgestaltet, dass der Mikroarray relativ zur zweiten Fläche so führbar ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
Dabei kann die erste Fläche zumindest im Bereich unterhalb des Mikroarrays derart ausgestaltet sein, dass der Mikroarray in Richtung der zweiten Fläche so fuhrbar ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche verringerbar ist und/oder dass der Mikroarray in einer Richtung entgegengesetzt zur zweiten Fläche so führbar ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche vergrößerbar ist.
Bei dieser Ausfühmngsform ist es bevorzugt, dass die erste Fläche zumindest im Bereich unterhalb des Mikroarrays elastisch verformbar ist. Besonders bevorzugt ist die erste Fläche aus einem elastischen Kunststoff, z.B. einer elastischen Membran, ausgestaltet.
Femer kann es bevorzugt sein, dass die erste Fläche mittels zweier übereinander liegender Schichten ausgestaltet ist, wobei eine äußere Schicht der beiden übereinander liegenden Schichten zumindest im Bereich unterhalb des Mikroarrays eine Ausspamng aufweist. Bei dieser Ausgestaltung ist es bevorzugt, dass eine innere der beiden übereinander liegenden Schichten aus einer elastischen Dichtung bzw. einer Dichtungsmembran gebildet ist, die üblicherweise auch den Reaktionsraum seitlich begrenzt (siehe Abbildung 6). Die Dichtungsmembran ist in Richtung der zweiten Fläche fuhrbar. Durch die Dichtungsmembran wird eine Aussparung der äußeren Schicht, die üblicherweise der Unterseite des Kammerkörpers entspricht, verschlossen. Bei Durchführung einer PCR in der Reaktionskammer entsteht durch die bei einer PCR vorliegenden höheren Temperaturen ein Innendruck, der dazu führt, dass die Reaktionskammer trotz der relativ labilen Dichtungsmembran druckfest ist. Diese Ausgestaltung entspricht somit einem selbst schließenden Ventil. Um die Elastizität der Dichtungsmembran zu gewährleisten, ist die Membran vorzugsweise mit einer Ausgleichsfalte versehen (siehe Abbildung 6).
Femer kann es vorgesehen sein, dass die Vorrichtung mindestens ein Mittel umfasst, mit dem der Mikroarray relativ zur zweiten Fläche führbar ist. Dieses Mittel wird im Folgenden auch als Mittel zur Führung der ersten Fläche bezeichnet. Das Mittel zur Führung der ersten Fläche wird vorzugsweise ausgewählt aus der Gmppe bestehend aus einem Stab, einem Stift, einem Stößel und einer Schraube.
Dabei kann die Vorrichtung mindestens ein Mittel zur Führung der ersten Fläche umfassen, mit dem der Mikroarray in Richtung zur zweiten Fläche so führbar ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche verringerbar ist, und/oder mit dem der Mikroarray in einer Richtung entgegengesetzt zur zweiten Fläche so führbar ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche vergrößerbar ist.
Besonders bevorzugt ist der Mikroarray durch Druck und/oder Zug des Mittels auf die erste Fläche relativ zur zweiten Fläche führbar.
Dabei können die vorstehend genannten auf der zweiten Fläche aufliegenden Abstandshalter als Widerlager für das Mittel zur Führung der ersten Fläche dienen. Femer kann es bevorzugt sein, dass die erste Fläche durch das Mittel zur Führung der ersten Fläche in Vibration, insbesondere in eine Vibration mit einer Frequenz von 10 bis 30 Hz, besonders bevorzugt von etwa 20 Hz versetzbar ist. Auf diese Weise können oberhalb des Chips vorliegende Blasen, die eine Detektion behindern würden, entfernt werden und/oder die Wechselwirkungsgeschwindigkeit, z.B. die Hybridisierungsgeschwindigkeit, durch eine durch die Vibration des Mittels zur Führung der ersten Fläche bedingte Durchmischung erhöht werden.
Ebenso kann es bevorzugt sein, dass die zweite Fläche relativ zur ersten Fläche so führbar ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
Dabei kann die zweite Fläche relativ zur ersten Fläche so führbar sein, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche verringerbar ist und/oder dass der Abstand zwischen dem Mikroarray und der zweiten Fläche vergrößerbar ist.
Dies kann insbesondere dadurch gewährleistet werden, indem die zweite Fläche durch Druck und/oder Zug des Abstandshalters auf die zweite Fläche relativ zur ersten Fläche so führbar ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
Bei einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung ist sowohl die erste Fläche als auch die zweite Fläche so führbar, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
Bei einer weiteren Ausfühmngsform ist die erfindungsgemäße Vorrichtung so ausgestaltet, dass der auf der ersten Fläche angebrachte Mikroarray bereits im ursprünglichen Zustand auf der die Detektionsebene bildenden zweiten Fläche aufliegt, vorzugsweise bündig aufliegt. Die erste Fläche ist so führbar, dass der der Abstand zwischen dem Mikroarray und der zweiten Fläche vergrößerbar ist. Vorzugsweise ist die erste Fläche dabei aus einem elastischen Material gebildet.
Bei einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung ist die erste Fläche um eine Drehachse schwenkbar ausgestaltet. Die Drehachse unterteilt die erste Fläche in zwei Schenkelabschnitte. Der Mikroarray ist bei dieser Ausgestaltung auf einem ersten Schenkelabschnitt der ersten Fläche angeordnet. Die Drehachse für die Schwenkbewegung verläuft vorzugsweise in der Mitte der ersten Fläche, d.h. die beiden Schenkelabschnitte sind vorzugsweise gleich groß. Die erste Fläche ist vorzugsweise aus einem elastischen Material ausgestaltet.
In einer ersten Position der schwenkbaren ersten Fläche ist die erste Fläche im Wesentlichen parallel zur zweiten Fläche angeordnet. Die Oberfläche des Mikroarrays liegt in der ersten Position im Wesentlichen bündig an der zweiten Fläche an, d.h. die Substratoberfläche mit den darauf immobilisierten Sondenmoleküle ist im Wesentlichen nicht von der Probenlösung benetzt. Zwischen dem zweiten Schenkelabschnitt der ersten Fläche und der zweiten Fläche ist in dieser ersten Position ein Raum gebildet, der im Folgenden auch als Prozessierungskammer bezeichnet ist. Diese Prozessierungskammer kann als Kammer für die Prozessiemng der Probenlösung dienen.
In einer zweiten Position der schwenkbaren ersten Fläche ist die erste Fläche in einem Winkel verschieden von 180° zu der zweiten Fläche angeordnet. Die Oberfläche des Mikroarrays liegt bei dieser zweiten Position nicht an der zweiten Fläche an, d.h. die auf dem Substrat des Mikroarrays immobilisierten Sondenmoleküle sind für die in der Probenlösung vorliegenden Targetmoleküle frei zugänglich und können so mit diesen wechselwirken. Die Prozessiemngskammer ist in der zweiten Position komprimiert.
Die schwenkbare erste Fläche ist vorzugsweise durch Zug auf den ersten Schenkelabschnitt der ersten Fläche und/oder durch Dmck auf den zweiten
Schenkelabschnitt der ersten Fläche schwenkbar. Der Zug und/oder Dmck kann durch ein wie vorstehend beschriebenes Mittel zur Führung der ersten Fläche ausgeübt werden.
Der Chip bzw. das Substrat bzw. die erste Fläche kann vorzugsweise aus Silizium, keramische Materialien wie Aluminiumoxid-Keramiken, Borofloat-Gläsern, Quarzglas, einkristallinem CaF2, Saphir-Scheiben, Topas, PMMA, Polycarbonat und/oder Polystyrol bestehen. Die Wahl der Materialien ist ebenfalls am späteren Verwendungszweck der Vorrichtung bzw. des Chips auszurichten. Wird der Chip zum Beispiel für die Charakterisierung von PCR-Produkten verwendet, dürfen nur solche Materialien eingesetzt werden, die einer Temperatur von 95 °C standhalten können.
Die Chips sind bevorzugt durch Nukleinsäuremoleküle, insbesondere durch DNA- oder RNA-Moleküle fünktionalisiert. Sie können aber auch durch Peptide und/oder Proteine, wie zum Beispiel Antikörper, Rezeptormoleküle, pharmazeutisch aktive Peptide und/oder Hormone, Kohlenhydrate und/oder Mischpolymere dieser Biopolymere fünktionalisiert sein.
Bei einer weiteren bevorzugten Ausfühmngsform sind die molekularen Sonden über einen Polymer-Linker, beispielsweise eine modifizierte Silanschicht, auf der Substratoberfläche immobilisiert. Ein derartiger polymerer Linker kann der Derivatisiemng der Substratoberfläche und somit der Immobilisierung der molekularen Sonden dienen. Im Falle einer kovalenten Anbindung der Sonden finden Polymere, z.B. Silane, Verwendung, die mit reaktiven Funktionalitäten wie Epoxiden oder Aldehyden fünktionalisiert bzw. modifiziert sind. Des Weiteren ist dem Fachmann auch die Aktiviemng einer Oberfläche durch Isothiocyanat, Succinimidester und Imidoester bekannt. Hierfür werden häufig aminofünktionalisierte Oberflächen entsprechend derivatisiert. Femer können durch die Zugabe von Kupplungsreagenzien, wie z.B. Dicyclohexylcarbodiimid, entsprechende Immobilisiemngen der molekularen Sonden gewährleistet werden.
Der Kammerkörper der Reaktionskammer besteht vorzugsweise aus Materialien wie Glas, Kunststoff und/oder Metallen wie Edelstahl, Aluminium und Messing. Zu seiner Herstellung können beispielsweise Spritzguss-geeignete Kunststoffe verwendet werden. Unter anderem sind Kunststoffe wie Makrolon, Nylon, PMMA und Teflon denkbar. Bei speziellen Ausgestaltungen sind elektrisch leitfähige Kunststoffe wie Polyamid mit 5-30% Kohlefasem, Polycarbonat mit 5-30% Kohlefasem, Polyamid mit 2-20% rostfreien Stahlfasem und PPS mit 5-40% Kohlenstofffaser und insbesondere 20-30% Kohlenstofffaser bevorzugt. Alternativ und/oder zusätzlich kann der Reaktionsraum zwischen erster und zweiter Fläche aber auch durch Septen abgeschlossen sein, die beispielsweise ein Befüllen des Reaktionsraums mittels Spritzen ermöglichen. Bei einer bevorzugten
Ausführungsform besteht der Kammerkörper aus optisch durchlässigen Materialien wie Glas, PMMA, Polycarbonat, Polystyrol und/oder Topas. Dabei ist die Wahl der Materialien dem Verwendungszweck der Vorrichtung anzupassen. Zum Beispiel sind die Temperaturen, denen die Vorrichtung ausgesetzt sein wird, bei der Wahl der Materialien zu beachten. Soll die Vorrichtung zum Beispiel für die Durchfühmng einer PCR verwendet werden, dürfen z.B. nur solche Kunststoffe eingesetzt werden, die über längere Zeiträume bei Temperaturen wie 95 °C stabil sind. Der Kammerkörper ist insbesondere so ausgestaltet, dass der Mikroarray mit seiner aktiven Seite, d.h. der Seite des Arrays, auf der die Nukleinsäuresonden immobilisiert sind, bündig und/oder reversibel an die zweite Fläche gedrückt werden kann.
Bei einer speziellen Ausführungsform umfasst die erfindungsgemäße Vorrichtung Module ausgewählt aus der Gmppe bestehend aus einem Kammerkörper, vorzugsweise aus Kunststoff; einem die Reaktionskammer abdichtenden Septum bzw. einer Dichtung; einem DNA-Chip und/oder einer zweiten optisch transparenten Fläche, vorzugsweise einer Glasplatte, wobei die zweite Fläche ggf. auch gleichzeitig als Chip dienen kann (siehe Abbildung 2 und Abbildung 3). Kammerkörper und Dichtung sind bei dieser Ausfühmngsform elastisch ausgeführt, so dass der DNA- Chip bündig und reversibel mit seiner aktiven Seite an den Glasdeckel gedrückt werden kann. Dadurch wird die zwischen DNA-Chip und Detektionsfläche befindliche markierte Analyseflüssigkeit komplett verdrängt (siehe Abbildung 5 und Abbildung 6). Auf diese Weise kann eine hochempfindliche Fluoreszenzdetektion, z.B. eine computerbildgebende Fluoreszenzmikroskopie durchgeführt werden, die nicht durch eine Hintergrundfluoreszenz der Probenlösung beeinträchtigt wird.
Die zweite Fläche des Kammerkörpers besteht vorzugsweise aus transparenten Materialien wie Glas und/oder optisch durchlässigen Kunststoffen, z.B. PMMA, Polycarbonat, Polystyrol oder Acryl.
Vorzugsweise ist die Reaktionskammer als Kapillarspalt mit variabler Dicke zwischen der zweiten Fläche und dem Mikroarray ausgestaltet. Durch die
Ausbildung eines Kapillarspalts zwischen Chip und Detektionsebene können Kapillarkräfte zur sicheren Befüllung der Reaktionkammer genutzt werden. Diese Kapillarkräfte liegen bereits im nicht komprimierten Zustand der Reaktionskammer vor, können jedoch durch Zusammendrücken der Reaktionskammer erhöht werden. Besonders bevorzugt weist der Kapillarspalt eine Dicke im Bereich von etwa 0 μm bis etwa 100 μm auf.
Durch die Möglichkeit, den Reaktionsraum komprimieren zu können und damit die Spaltbreite zwischen Mikroarray und Detetektionsebene verringern zu können, ergeben sich weitere Möglichkeiten für die Handhabung der Flüssigkeit innerhalb der Reaktionskammer. So sind bei einer weiteren Ausführungsform der vorliegenden Erfindung anstelle einer einzigen Kammer mehrere Unterkammem vorgesehen, wobei die Abtrennungen zwischen den Unterkammem nicht bis zur zweiten Fläche hochgezogen sind, so dass zwischen den Unterkammem im nicht komprimierten Zustand der Reaktionskammer eine fluidische Verbindung besteht. Durch Komprimiemng der Reaktionskammer können die Kammern voneinander abgetrennt werden. Damit lassen sich die Zwischenwände zwischen den Kammern durch Zusammenpressen wie Ventile handhaben.
Eine spezielle Ausgestaltung dieser durch Ventile getrennten Unterkammern ist die Unterteilung des Reaktionsraums der erfindungsgemäßen Vorrichtung in verschiedene PCR-Kammem. In jede Kammer werden individuelle Primer vorgelegt. Die Unterkammem werden zu Beginn mit dem Analyten gleichzeitig befüllt. Anschließend wird der Reaktionsraum komprimiert. Danach durchläuft der Reaktionsraum den Temperaturzyklus für die PCR. Da jede Unterkammer mit unterschiedlichen Primern befüllt ist, findet in jeder Kammer eine andere Amplifikationsreaktion statt. Ein Austausch zwischen den Kammern findet nicht statt.
Nachdem die PCR durchgeführt wurde, findet die Hybridisiemng statt. Dabei kann jede Unterkammer einen individuellen Chipbereich oder einen individuellen Chip beinhalten. Es ist aber auch möglich, durch Vergrößemng des Abstands zwischen Mikroarray und zweiter Fläche eine fluidische Verbindung zwischen den Unterkammem zu ermöglichen, so dass sich die verschiedenen Amplifikate miteinander vermischen und auf diese Weise an einer Chipoberfläche hybridisieren.
Der Vorteil dieser Ausfühmngsform mit durch Ventile getrennten Unterkammem besteht in der Erhöhung der Multiplexität der PCR, also der Anzahl von einander unabhängigen PCR's mit einer Probe, die bei einer Eintopfreaktion aus biochemischen Gründen limitiert ist. So ist es möglich, die Zahl der PCR's der möglichen Anzahl an Sonden auf der Chipoberfläche anzupassen.
In einer weiteren Ausfühmngsform der vorliegenden Erfindung umfasst die Reaktionskammer somit mindestens zwei Unterkammem, wobei in einem ersten nicht komprimierten Zustand die Unterkammem fluidisch miteinander verbunden sind und in einem zweiten komprimierten Zustand keine fluidische Verbindung zwischen den Unterkammem besteht.
Besonders bevorzugt ist jede Unterkammer einem definierten Bereich des Mikroarrays zugeordnet.
Die Unterkammem können insbesondere dadurch gebildet sein, indem der Mikroarray und/oder die zweite Fläche mit Kavitäten versehen sind, die als Wände zwischen den Unterkammem dienen.
Besonders bevorzugt sind die Wände zwischen den Unterkammem durch elastische Dichtungen gebildet. Selbstverständlich kann diese Ausgestaltung der Prozesseinheit mit durch Ventile getrennten Unterkammern mit sämtlichen vorstehend beschriebenen Kompressionsprinzipen beliebig kombiniert werden.
Bei einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung ist die erste Fläche aus einem teilweise deformierbaren elastischen Material gebildet, z.B. aus einer elastischen Membran. Indem nur ein Teil des Reaktionsraums zusammengedrückt werden kann, können unter anderem Unterkammem, in denen der Chip in Richtung der zweiten Fläche geführt wird, Unterkammem, die sich voneinander trennen lassen, sowie Unterkammem, die sich nicht verändern können, erzeugt werden. Dadurch lassen sich im Reaktionsraum einfache Pumpensysteme realisieren, die z.B. dafür verwendet werden können, am Ende einer Vervielfältigungsreaktion Salze in die Hybridisierungskammer zu pumpen. Dies kann vorteilhaft sein, um z.B. die chemischen Hybridisiemngsbedingungen des PCR- Puffers zu optimieren, wobei der PCR-Puffer nur für die Durchführung der PCR optimiert ist.
Bei Unterteilung der Reaktionskammer in mehrere Unterkammem ist es bevorzugt, mehrere Mittel zur Agitiemng einzusetzen. Üblicherweise sind die Mittel zur Agitiemng identisch mit den Mitteln zur Fühmng der ersten Fläche. Dadurch lassen sich einzelne Kammern gezielt agitieren. Dies kann z.B. sinnvoll sein, um getrennte Vervielfältigungsräume und/oder Hybridisiemngsräume zu realisieren.
Selbstverständlich kann auch diese Ausfühmngsform der erfindungsgemäßen Vorrichtung mit mehreren Agitationsmitteln mit sämtlichen vorstehend beschriebenen Kompressionsprinzipen beliebig kombiniert werden. Die vorstehend beschriebenen Bauteile bzw. Module der erfindungsgemäßen Vorrichtung ausgewählt aus der Gmppe bestehend aus einem Kammerkörper, den Reaktionsraum seitlich begrenzenden Dichtungen, Mikroarray und Detektionsebene, bilden die sog. Prozesseinheit der erfindungsgemäßen Vorrichtung. In der Prozesseinheit sind PCR, Hybridisiemngsreaktionen, Detektion und/oder Auswertung durchführbar.
Die Prozesseinheit der erfindungsgemäßen Vorrichtung ist vorzugsweise modular aufgebaut. Das heißt, die Prozesseinheit kann eine beliebige Kombination der Module umfassen. Die Module können auch während der Analyse ausgetauscht werden.
Bei einer weiteren bevorzugten Ausfühmngsform umfasst die erfindungsgemäße Vorrichtung zusätzlich eine Temperatursteuerungs- und/oder -regeleinheit zur Steuerung und/oder Regelung der Temperatur in der Reaktionskammer. Eine derartige Temperatursteuerungs- und/oder -regeleinheit zur Steuerung und/oder Regelung der Temperatur in der Reaktionskammer umfasst insbesondere Heiz- und/oder Kühlelemente bzw. Temperaturblöcke. Die Heiz- und/oder Kühlelemente bzw. die Temperaturblöcke können dabei so angeordnet sein, dass sie die erste Fläche und/oder die zweite Fläche kontaktieren. Durch einen Kontaktiemng sowohl der ersten als auch der zweiten Fläche wird eine besonders effektive Temperatursteuemng und- regelung gewährleistet.
Bei dieser Ausführungsform ist das Substrat des Mikroarrays bzw. die erste Fläche und/oder die zweite Fläche mit Heiz- und/oder Kühlelementen und/oder
Temperaturblöcken verbunden und sollte dann bevorzugt aus Materialien bestehen, die gut wärmeleitend sind. Derartige wärmeleitfähige Materialien bieten den wesentlichen Vorteil, dass sie ein homogenes Temperaturprofil über die gesamte Fläche des Reaktionsraums gewährleisten und somit temperaturabhängige Reaktionen wie beispielsweise eine PCR in der gesamten Reaktionskammer homogen, mit hoher Ausbeute und mit hoher Genauigkeit steuerbar bzw. regelbar durchführbar sind.
Somit bestehen das Substrat des Mikroarrays bzw. die erste Fläche bzw. die zweite Fläche bei einer bevorzugten Ausfühmngsform aus Materialien mit einer hohen Wärmeleitfähigkeit, vorzugsweise mit einer Wärmeleitfähigkeit im Bereich von 15 bis 500 Wπ 'K'1, besonders bevorzugt im Bereich von 50 bis 300 Wm"'K"' und am meisten bevorzugt im Bereich von 100 bis 200 Wm''K"', wobei die Materialien üblicherweise nicht optisch transparent sind. Beispiele für geeignete wärmeleitfähige Materialien sind Silizium, keramische Materialien wie Aluminiumoxid-Keramiken und/oder Metalle wie Edelstahl, Aluminium, Kupfer oder Messing.
Besteht das Substrat des Mikroarrays bzw. die erste Fläche bzw. die zweite Fläche der erfindungsgemäßen Vorrichtung im Wesentlichen aus keramischen Materialien, so werden vorzugsweise Aluminiumoxid-Keramiken eingesetzt. Beispiele für derartige Aluminiumoxid-Keramiken sind die Keramiken A-473, A-476 sowie A-493 der Firma Kyocera (Neuss, Deutschland).
Vorzugsweise ist das Substrat des Mikroarrays bzw. die erste Fläche bzw. die zweite Fläche auf der Rückseite, d.h. der der Reaktionskammer abgewandten Seite mit ggf. miniaturisierten Temperaturfühlern und/oder Elektroden versehen bzw. weist dort Heizerstrukturen auf, so dass ein Temperieren der Probenflüssigkeit sowie eine Durchmischung der Probenflüssigkeit durch einen induzierten elektroosmotischen Fluss möglich ist. Die Temperaturfühler können beispielsweise als Nickel-Chrom-Dünnfilm- Widerstandstemperaturfühler ausgeführt sein.
Die Elektroden können beispielsweise als Gold-Titan-Elektroden und insbesondere als Quadmpol ausgeführt sein.
Die Heiz- und/oder Kühlelemente können vorzugsweise so gewählt werden, dass ein schnelles Erhitzen und Abkühlen der Flüssigkeit in der Reaktionskammer möglich ist. Unter schnellem Erhitzen und Abkühlen wird dabei verstanden, dass durch die Heiz- und/oder Kühlelemente Temperaturändemngen in einem Bereich von 0,2 K/s bis 30 K/s, vorzugsweise von 0,5 K/s bis 15 K/s, besonders bevorzugt von 2 K/s bis 15 K/s und am meisten bevorzugt von 8 K/s bis 12 K/s oder etwa 10 K/s vermittelt werden können. Vorzugsweise können durch die Heiz- und/oder Kühlelemente auch Temperaturändemngen von 1 K/s bis 10 K/s vermittelt werden.
Die Heiz- und/oder Kühlelemente, z.B. Widerstandsheizer, können beispielsweise als Nickel-Chrom-Dünnfilm- Widerstandsheizer ausgeführt sein.
Für weitere Einzelheiten über die Spezifikation und Dimension der Temperaturfühler, Heiz- und/oder Kühlelemente bzw. Mittel zur
Temperaturbeaufschlagung und der Elektroden wird auf den Inhalt der internationalen Patentanmeldung WO 01/02094 verwiesen.
Bei einer bevorzugten Ausfühmngsform wird die Temperiemng der Reaktionskammer dadurch gewährleistet, dass ein Kammerkörper aus elektrisch leitfähigem Material eingesetzt wird. Ein derartig elektrisch leitfähiges Material ist vorzugsweise ein elektrisch leitfähiger Kunststoff, wie z.B. Polyamid, ggf. mit 5- 30% Kohlefasem, Polycarbonat, ggf. mit 5-30%» Kohlefasem und/oder Polyamid, ggf. mit 2-20%) rostfreien Stahlfasem. Vorzugsweise wird als elektrisch leitfähiger Kunststoff PPS (Polyphenylensulfid) mit 5-40% Kohlenstofffaser, besonders bevorzugt 20-30% Kohlenstofffaser eingesetzt. Femer ist es bevorzugt, dass der Kammerkörper so ausgestaltetet ist, dass er Verdickungen bzw. Verjüngungen aufweist. Derartige Verdickungen bzw. Verjüngungen im Kammerkörper ermöglichen eine gezielte Beheizung der Reaktionskammer bzw. der entsprechenden Flächen. Die Verwendung derartiger Volumenleiter hat femer den Vorteil, dass auch bei ggf. geringerer Wärmeleitfähigkeit des eingesetzten Materials eine homogene Temperiemng der Kammer bzw. der entsprechenden Flächen gewährleistet ist, da in jedem Volumenelement Wärme freigesetzt wird.
Die Einkopplung und Abführung der Wärme in den Reaktionsraum kann auf unterschiedliche Arten erfolgen. Es ist unter anderem vorgesehen, die Wärme über externe Mikrowellenstrahlung, interne oder externe Widerstandsheizung, interne Induktionsschleifen oder -flächen, durch Wasserkühlung und -heizung, durch Reibung, durch Bestrahlung mit Licht, insbesondere IR-Licht, durch Luftkühlung und/oder -heizung, durch Reibung, durch Temperaturstrahler sowie durch Peltierelemente einzubringen.
Die Temperaturmessung im Reaktionsraum kann auf unterschiedlichen Arten erfolgen, beispielsweise durch integrierte Widerstandssensoren, Halbleitersensoren, Lichtwellenleitersensoren, pyrochrome Farbstoffe, pyrochrome Flüssigkristalle, externe Pyrometer wie IR-Strahlung und/oder im Mittel zur Fühmng des Mikroarrays integrierte Temperatursensoren aller Art.
Die Messung der Temperatur in der Reaktionskammer kann femer vorgenommen werden durch Integration eines Temperatursensors in den Kammerkörper, z.B. durch Einspritzen im Laufe des Herstellungsprozesses der Kammerkörpers, durch berührungsfreie Messung mit Hilfe eines Pyrometers, eines IR-Sensors und/oder Thermopiles, durch berührende Messung, z.B. durch einen in der Vorrichtung integrierten und eine geeignete Fläche oder ein geeignetes Volumen des Kammerkörpers oder der Kammer kontaktierenden Temperatursensor, durch Messung der temperaturabhängigen Ändemng des Brechungsindex an der Detektionsfläche, durch Messung der temperaturabhängigen Ändemng der Farbe von speziellen Molekülen z.B. in der Lösung, auf dem Sondenarray bzw. in der Kammerdichtung und/oder durch Messung der temperaturabhängigen Ändemng des pH- Wertes der verwendeten Lösung durch Messung der Farbänderung eines pH- sensitiven Indikators bspw. durch Messung von dessen Absorption.
Außerdem kann eine selbsttätige Begrenzung der Temperatur durch einen sprunghaften Anstieg des Widerstandes des Heizers erfolgen, wobei die entsprechende Sprungtemperatur vorzugsweise in einem Bereich von 95 °C bis 110°C liegt. Bei der Sprungtemperatur ändert sich der Widerstand des Heizers spmngartig nach oben, wodurch nahezu kein Strom mehr fliest und demzufolge kaum mehr Wärme frei wird. Als Material für derartige Heizer können insbesondere Polymere wie elektrisch leitfähige Polyamide eingesetzt werden, deren Widerstand sich bei der Sprungtemperatur aufgmnd der Veränderung der Matrix des Polymers oder einer Phasenänderung erhöht.
Die Temperatursteuerungs- und -regeleinheit kann bei einer Ausgestaltung in die erste Fläche und/oder zweite Fläche integriert sein. Bei dieser Ausführungsform ist die Prozesseinheit insbesondere mit einem Heizer ausgestattet (siehe Abbildung 4), der zur Realisiemng der Temperaturwechsel bei PCR und Hybridisiemng dient.
Die Prozesseinheit weist vorzugsweise eine geringe Wärmekapazität auf, so dass bei geringem Energiebedarf maximale Temperaturwechselgeschwindigkeiten von z.B. mindestens 5 K/s realisierbar sind. Um eine schnelle Abkühlung der Prozesseinheit zu gewährleisten, ist bei einer weiteren bevorzugten Ausfühmngsform die Bereitstellung einer Kühlung, z.B. einer Luftkühlung, vorgesehen.
Die Abkühlung der Prozesseinheit kann bevorzugt auch dadurch erreicht werden, dass der die Prozesseinheit umgebende Raum permanent auf einer erniedrigten
Temperatur temperiert und die Kartusche dadurch passiv gekühlt wird. Dadurch wird eine aktive Kühlung der Reaktionskartusche unnötig.
Bei einer weiteren Ausgestaltung kann die Temperatursteuemngs- und -regeleinheit Temperaturblöcke umfassen, die jeweils auf eine definierte Temperatur vorgeheizt sind. Insbesondere weist die Prozesseinheit bei dieser Ausfühmngsform keinen integrierten Heizer auf. Durch den Wegfall einer integrierten Heizeinrichtung kann die Bereitstellung der Prozesseinheit noch kostengünstiger durchgeführt werden.
Die Wärmeübertragung zwischen den Temperaturblöcken der
Temperatursteuerungs- und -regeleinheit wird vorzugsweise dadurch gewährleistet, dass die Temperaturblöcke die erste Fläche und/oder zweite Fläche der erfindungsgemäßen Vorrichtung kontaktieren. Die Temperaturblöcke können vorzugsweise linear oder auf einem Drehteller angeordnet sein und so beispielsweise in der Detektionsvorrichtung integriert sein. Abbildung 7 zeigt einen Drehteller, der mehrere Temperaturblöcke aufweist, die jeweils auf eine definierte Temperatur eingestellt sind. Durch Wechsel der Temperaturblöcke unter der Prozesseinheit wird die Prozesseinheit auf eine jeweilige durch den Temperaturblock definierte Temperatur gebracht. Die Temperaturblöcke sind vorzugsweise so gefertigt, dass sie eine deutlich höhere Wärmekapazität als die Prozesseinheit aufweisen, so dass auch bei dieser Ausfühmngsform maximale Temperaturwechselgeschwindigkeiten von z.B. mindestens 5 K/s realisierbar sind. Vorzugsweise werden die Temperaturblöcke lediglich thermostatisiert und nicht geheizt oder gekühlt, so dass auch hier der Energiebedarf minimal ist. Auf eine Kühlung der Prozesseinheit kann bei dieser Ausfühmngsform verzichtet werden.
Bei einer weiteren Ausgestaltung ist die Temperatursteuemngs- und regeleinheit in das bzw. die Mittel zur Führung der ersten Fläche und/oder das bzw. die Mittel zur Agitierung und/oder den Abstandshalter integriert. Die Wärmeübertragung erfolgt bei dieser Ausgestaltung durch Kontaktiemng des Mittels und/oder des Abstandshalters mit der ersten Fläche und/oder der zweiten Fläche.
Vorzugsweise umfasst die Vorrichtung zusätzlich eine Aufarbeitungseinheit zur
Reinigung und/oder Aufkonzentration der Probenlösung und/oder Steuemng des Be- und/oder Entladens der Reaktionskammer mit Fluiden. Unter Fluiden werden im Rahmen der vorliegenden Erfindung Flüssigkeiten oder Gase verstanden. Darüber hinaus kann die Analysenlösung in der Aufarbeitungseinheit umgepuffert werden. Die Aufarbeitungseinheit kann schließlich auch zur Bereitstellung mit den notwendigen Analysenchemikalien genutzt werden. Die Verbindung der Fluidbehälter mit der Reaktionskammer kann beispielsweise wie in der internationalen Patentanmeldung WO 01/02094 ausgeführt sein.
Besonders bevorzugt sind bei dieser Ausführungsform die Reaktionskammer und die Aufarbeitungseinheit über zwei Kanülen miteinander verbunden, wobei die Kanülen so angeordnet sind, dass eine erste Kanüle die Zuführung von Fluiden aus der Aufarbeitungseinheit in die Reaktionskammer gewährleistet und eine zweite Kanüle das Entweichen der durch die zugeführten Fluide aus der Reaktionskammer verdrängten Luft gewährleistet. Eine in die Aufarbeitungseinheit gegebene Probe kann so über die Kanülen in die Reaktionskammer der Prozesseinheit gelangen. Zu diesem Zweck sind die Kanülen derart angeordnet, dass sie durch die Kanülenführung in die Reaktionskammer reichen. Die Aufarbeitungseinheit kann so ausgestaltet sein, dass sie von der Prozesseinheit abtrennbar ist. Nach Befüllung der Reaktionskammer mit der Probenlösung und ggf. weiteren Reaktionsflüssigkeiten kann so die Aufarbeitungseinheit von der Prozesseinheit getrennt, vorzugsweise abgezogen, und ggf. entsorgt werden.
Im Folgenden werden Ausführungsformen von integrierten oder nicht integrierten Einheiten zur Befüllung der Reaktionskammer beschrieben, die im Folgenden auch als Befülleinheit oder Aufarbeitungseinheit bezeichnet wird.
Üblicherweise wird die Reaktionslösung mit einem geeigneten Werkzeug, beispielsweise mit einer Pipette in eine bestimmte Öffnung der Befülleinheit eingebracht. Die Beförderung der Flüssigkeiten in die Vorrichtung erfolgt über den Dmck der Pipette, oder durch ein weiteres dmckerzeugendes Werkzeug wie z.B. eine Spritze oder einer automatisierten Einheit, die beispielsweise funktionaler Bestandteil eines Prozessiemngsautomaten ist.
Die Befülleinheit ist vorzugsweise in ergonomisch sinnvoller Weise für die manuelle Bedienbarkeit ausgestaltet. Femer weist sie vorzugsweise leicht zugängliche Öffnungen an den Außenseiten zur Einbringung der reaktiven Substanzen auf.
Eine Befülleinheit umfasst femer vorzugsweise ein geeignetes fluidisches Interface zum Durchdringen der Dichtung des Kammerkörpers. Hierzu werden insbesondere Kanülen verwendet, die beispielsweise aus Edelstahl oder Polymeren sind und üblicherweise Durchmesser von 0.05 mm bis 2 mm aufweisen. Vorzugsweise sind mindestens eine oder mehrere Kanülen angeordnet, besonders bevorzugt zwei, wobei eine zum Befüllen mit einer reaktiven Flüssigkeit und eine andere zum Entlüften des Reaktionsraumes und zur Aufnahme von Überschüssigen Flüssigkeiten Verwendung finden kann. Derartige Kanülen können fest oder austauschbar mit der Befülleinheit verbunden sein, wobei vorzugsweise eine vom Anwender nichtlösbare Verbindung zur Realisierung von Befüll-Einwegartikeln realisiert ist.
Die Befülleinheit kann femer eine Einheit zur Abdeckung der Kanülen umfassen, so dass nach der Trennung der Systeme verhindert werden kann, dass sich der Anwender an den Kanülen verletzt oder die Umgebung kontaminiert wird.
Die Befülleinheit umfasst femer vorzugsweise ein geeignetes mechanisches Interface zur passgenauen Kontaktiemng der Reaktionskartusche. Dieses Interface kann z.B. durch spezielle Schnappverschlüsse ausgeführt sein. Auf diese Art und Weise kann eine Durchdringung der Dichtung der Kammerkörpers an bevorzugten Stellen gewährleistet werden.
Bei der Prozessiemng der Reaktionskartusche in entsprechenden Prozessiemngsautomaten sind geeignete mechanische Vorkehrungen zu treffen, die eine Justage und lagegenaue Positioniemng in den Geräten zulassen. Dieses bezieht sich insbesondere auf die Positionierung für den Austausch und/oder die Zufuhr von Flüssigkeiten und die Positionierung der Reaktionskartusche zur Detektion der Signale nach der Durchführung der Reaktionen in der Reaktionskammer.
Die Vorrichtung bzw. die Befülleinheit kann femer einen integrierten Abfallbehälter umfassen, der zur Aufnahme überschüssiger oder verdrängter gasförmiger oder flüssiger Medien wie z.B. Schutzgasfüllungen oder Puffer dient. Der Abfallbehälter kann beispielsweise mit einem weiteren gasförmigen, flüssigem oder festem Medium gefüllt sein, welches die flüssigen oder gasförmigen Substanzen reversibel oder irreversibel bindet, wie z.B. Zellulose, Filtermaterialien, Silicagele. Des Weiteren kann der Abfallbehälter über eine Entlüftungsöffnung verfügen oder zur Verbesserung des Befüllverhaltens der Gesamteinheit mit einem Unterdmck ausgestattet sein.
Der Abfallbehälter kann alternativ auch als getrenntes Modul ausgeführt sein. In diesem Falle ist die Befülleinheit mit entsprechenden nach außen führenden fluidischen Interfaces, die kommerziellen Standards wie z.B. LuerLock entsprechen können, ausgestattet. Solche Interfaces können einen Form- oder Kraftschluß zu weiterführenden Systemen aufweisen.
Bei einer ersten speziellen Ausfühmngsform erfolgt die Befüllung mit einer abnehmbaren Befülleinheit mit integriertem Abfallbehälter. Die Befülleinheit dient insbesondere zur einmaligen Befüllung der Reaktionskammer. Die Befülleinheit ist beispielsweise so ausgeführt, dass diese an die Kartusche gesteckt oder vorübergehend befestigt wird, die Proben in den Reaktionsraum eingebracht werden, und nach erfolgter Befüllung die Befülleinheit wieder der Kartusche getrennt und entsorgt wird. Bei dieser speziellen ersten Ausführungsform umfasst die Befülleinheit femer einen integrierten Abfallbehälter, der wie vorstehend beschrieben ausgestaltet sein kann. Ein Beispiel für diese Ausfühmngsform ist in Abbildung 22 gezeigt. Der Ablauf zur Befüllung einer Reaktionskartusche mit einer modularen Befülleinheit ist in Abbildung 23 gezeigt.
Bei einer zweiten speziellen Ausfühmngsform erfolgt die Befüllung mit einer integrierten Befülleinheit. Hier ist die Befülleinheit integrativer Bestandteil der Reaktionskartusche und wird demzufolge nicht von dieser getrennt, die Entsorgung der Befülleinheit und der Kartusche erfolgt gleichzeitig. Die Befülleinheit wird dabei vorzugsweise zur einmaligen Befüllung der Reaktionskammer und möglicherweise für weitere prozessinteme Fluidschritte verwendet. Die Befülleinheit umfasst bei dieser Ausfühmngsform femer vorzugsweise eine technische Einrichtung, die eine Vorzugsstellung der Kanülen im System realisiert, insbesondere um ein unbeabsichtigtes Einstechen der Kanülen in die Dichtung des Kammerkörpers zu verhindern. Es ist aber auch denkbar, dass in dieser Vorzugsstellung die Kanülen in die Dichtung des Kammerkörpers einstechen. Diese technische Einrichtung kann beispielsweise durch das Einbringen von Federn, elastischen Elementen oder bestimmten Vertiefungen und Erhöhungen zur Realisiemng einer Rastung realisiert werden. Die Befülleinheit umfasst bei dieser Ausfühmngsform femer einen Befüll- und Abfallkanal, welcher entsprechende nach außen führende fluidische Interfaces umfasst, die auch kommerziellen Standards wie z.B. LuerLock entsprechen können. Solche Interfaces können einen Form- oder Kraftschluß zu weiterführenden
Systemen aufweisen und dienen der Zuführung und/oder Abführung gasförmiger und/oder flüssiger Medien. Ein Beispiel für diese Ausfühmngsform ist in Abbildung 24 gezeigt. Der Ablauf zur Befüllung einer Reaktionskartusche mit einer integrierten Befülleinheit ist in Abbildung 25 gezeigt.
Bei einer dritten speziellen Ausfühmngsform erfolgt die Befüllung mit einer integrierten Befülleinheit mit integriertem Abfallbehälter. Die Befülleinheit ist bei dieser Ausfühmngsform integrativer Bestandteil der Reaktionskartusche und wird demzufolge nicht von dieser getrennt, die Entsorgung der Befülleinheit und der Kartusche erfolgt gleichzeitig. Die Befülleinheit wird dabei vorzugsweise zur einmaligen Befüllung der Reaktionskammer und möglicherweise für weitere prozessinteme Fluidschritte verwendet. Die Befülleinheit umfasst auch bei dieser Ausführungsform femer vorzugsweise eine technische Einrichtung, die eine Vorzugsstellung der Kanülen im System realisiert, vorzugsweise um ein unbeabsichtigtes Einstechen der Kanülen in die Dichtung des Kammerkörpers zu verhindern. Es ist aber auch denkbar, dass in dieser Vorzugsstellung die Kanülen in die Dichtung des Kammerkörpers einstechen. Diese technische Einrichtung kann beispielsweise durch das Einbringen von Federn, elastischen Elementen oder bestimmten Vertiefungen und Erhöhungen zur Realisierung einer Rastung realisiert werden. Die Befülleinheit umfasst bei dieser Ausfühmngsform femer einen integrierten Abfallbehälter, der wie vorstehend beschrieben ausgestaltet sein kann. Ein Beispiel für diese Ausführungsform ist in Abbildung 26 gezeigt. Der Ablauf zur Befüllung einer Reaktionskartusche mit einer integrierten Befülleinheit und integriertem Abfallbehälter kann beispielsweise durch Kombination der in den Abbildungen 23 und 25 beschriebenen Vorgehensweisen erfolgen.
Im Folgenden wird eine spezielle Ausführungsform zur Anordnung von Kanülen zum Dmckausgleich während des Quetschvorgangs beschrieben. Die Kanülen eines Befülltools für die Kartusche können beispielsweise derart angeordnet sein, dass sowohl eine Befüllung im entspannten Zustand als auch die Überführung der überschüssigen Reaktionslösungen bei Zusammenquetschen des Reaktionsraumes möglich ist. Erreicht werden kann dies vorzugsweise durch eine angepasste Konstmktion der Dichtung und der Kanülenanordnung, bei der die Kanülen bevorzugt in die Ausgleichsbereiche innerhalb der Reaktionskammer einstechen. Eine solche Anordnung ist insbesondere sinnvoll, wenn das überschüssige Volumen nicht durch eine spezielle Dichtungsgestaltung aufgenommen werden kann. Ein Beispiel für eine mögliche vertikale Kanülenanordnung bei unveränderter Dichtungsform ist in Abbildung 27 gezeigt.
Die erfindungsgemäße Vorrichtung kann femer eine mit dem Detektionssystem verbundene Einheit zur Steuemng des Testablaufs und/oder zur Verarbeitung von durch das Detektionssystem aufgenommenen Signalen umfassen. Die Steuerungs- und/oder Verarbeitungseinheit kann ein Mikrocontroler oder Industrierechner sein. Diese Kopplung von Detektiereinheit und Verarbeitungseinheit, die die Umwandlung der Reaktionsergebnisse in das Analyseergebnis gewährleistet, erlaubt unter anderem den Einsatz der erfindungsgemäßen Vorrichtung als Handgerät beispielsweise in der medizinischen Diagnostik.
Femer weist die erfindungsgemäße Vorrichtung vorzugsweise zusätzlich eine Schnittstelle für externe Rechner auf. Dies erlaubt unter anderem die Übertragung von Daten zur Speichemng außerhalb der Vorrichtung.
In einer weiteren bevorzugten Ausfühmngsform ist die Vorrichtung mit einer Codierung, vorzugsweise einer Datenmatrix und/oder einem Barcode, versehen, die Informationen über die Substanzbibliothek und/oder die Durchführung der Vervielfältigungs- und/oder Nachweisreaktion enthält. Durch eine derartige individuelle Identifikationsnummer kann das Auslese- bzw. Detektionsgerät automatisch erkennen, welcher Test durchgeführt wurde. Dazu wird bei der Herstellung der erfindungsgemäßen Vorrichtung ein Datensatz in einer Datenbank gespeichert, welcher Informationen über die Substanzbibliothek, die Durchführung der Nachweisreaktion und dergleichen enthält. So kann der Datensatz insbesondere Informationen über die Anordnung der Sonden auf dem Array sowie Informationen darüber enthalten, wie die Auswertung am vorteilhaftesten zu erfolgen hat. Der Datensatz bzw. die Datenmatrix kann femer Informationen über das Temperatur- Zeit-Regime einer ggf. durchzuführenden PCR zur Vervielfältigung der
Zielmoleküle enthalten. Der so erstellte Datensatz erhält vorzugsweise eine Nummer, die in Form der Datenmatrix auf der Haltemng angebracht wird. Über die in der Datenmatrix verzeichnete Nummer kann dann ggf. beim Auslesen der Substanzbibliothek der angelegte Datensatz aufgemfen werden. Schließlich kann die Datenmatrix von der Temperatursteuemngs- bzw. -regeleinheit und anderen Controllern wie z.B. einer Steuerung für die Be- und Entfüllung der Reaktionskammer über die Fluidbehälter ausgelesen werden und so eine automatische Durchfühmng von Vervielfältigungs- und Nachweisreaktion gewährleistet werden.
Die Codierung wie eine Datenmatrix muss nicht zwingend die komplette Information beinhalten. Sie kann auch einfach eine Identifikation bzw. Kennung enthalten, mittels der der dann aus einem Rechner oder von einem Datenträger die erforderlichen Daten zugeladen werden.
Die erfindungsgemäße Vorrichtung ist äußerst fertigungsfreundlich. In Abbildung 3 ist gezeigt, dass die Prozesseinheit aus nur vier Einzelbauteilen bestehen kann, die auf einfache Weise ineinander gelegt werden. In den Abbildungen 10 und 11 sind Ausführungsformen dargestellt, die aufgrund der erfindungsgemäßen Konstmktion ebenfalls fertigungsfreundlich sind, obwohl sie aus mehreren Teilen bestehen. Die geometrischen Toleranzen der Abmessungen der Einzellbauteile können mit z.B. 1/10 bis 2/10 mm sehr groß ausfallen, so dass z.B. die Spritzgussfertigung von Dichtung und Kammerkörper großtechnisch äußerst kostengünstig durchgeführt werden kann. Die geringen Toleranzen werden durch das Anpressen des Chips an die Detektionsebene ermöglicht, da dadurch der optische Weg zum Detektionsmikroskop kaum durch die Bauteile der Prozesseinheit beeinflusst wird. Die einzigen geometrischen Größen, die eine geringe Toleranz aufweisen, sind die x,y-Lage des Chips und die Dicke der Detektionsebene. Hingegen spielt die Varianz der z-Lage des Chips nur eine untergeordnete Rolle. Trotz dieser geringen technischen Anfordemngen ist eine Fokussiemngseinrichtung am optischen System, z.B. einem Fluoreszenzdetektionsmikroskop, nicht erforderlich. Diese Eigenschaften verdeutlichen die Eignung der erfindungsgemäßen Vorrichtung für den mobilen Vororteinsatz.
Bei einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen bereitgestellt, dass die folgenden Schritte umfasst: a) Einbringen einer Probe, vorzugsweise einer Probenlösung umfassend Targetmoleküle in eine Reaktionskammer einer wie vorstehend beschriebenen erfindungsgemäßen Vorrichtung; und b) Detektieren einer Wechselwirkung zwischen den Targetmolekülen und den auf dem Substrat immobilisierten Sondenmolekülen.
Das erfindungsgemäße Verfahren ermöglicht den qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen in einer Reaktionskammer, ohne dass nach der erfolgten Wechselwirkung und vor der Detektion ein Austausch der Proben- bzw. Reaktionsflüssigkeiten zur Entfernung eines störenden Hintergmnds erforderlich ist.
Der Nachweis einer Wechselwirkung zwischen der Sonde und dem Targetmolekül erfolgt im Rahmen der vorliegenden Erfindung üblicherweise folgendermaßen: Nach der Fixiemng der Sonde bzw. der Sonden in vorgegebener Art und Weise an einer bestimmten Matrix in Form eines Mikroarrays bzw. nach dem Bereitstellen eines Mikroarrays werden die Targets in einer Lösung mit den Sonden in Kontakt gebracht und unter definierten Bedingungen inkubiert. Infolge der Inkubation findet zwischen Sonde und Target eine spezifische Wechselwirkung bzw. Hybridisiemng statt. Die dabei auftretende Bindung ist deutlich stabiler als die Bindung von Targetmolekülen an Sonden, die für das Targetmolekül nicht spezifisch sind.
Der Nachweis bzw. die Detektion der spezifischen Wechselwirkung zwischen einem Target und seiner Sonde kann dann durch eine Vielzahl von Methoden erfolgen, die in der Regel von der Art des Markers abhängen, der vor, während oder nach der Wechselwirkung des Targetmoleküls mit dem Mikroarray in Targetmoleküle eingebracht worden ist. Typischerweise handelt es sich bei solchen Markem um fluoreszierende Gmppen, so dass spezifische Target-Sonden- Wechselwirkungen mit hoher Ortsauflösung und im Vergleich zu anderen herkömmlichen Nachweismethoden, vor allem massensensitiven Methoden, mit geringem Aufwand fluoreszenzoptisch ausgelesen werden können (siehe z.B. A. Marshall, J. Hodgson, DNA chips: An array of possibilities, Nature Biotechnology 1998, 16, 27-31; G. Ramsay, DNA Chips: State of the art, Nature Biotechnology 1998, 16, 40-44).
In Abhängigkeit von der auf dem Mikroarray immobilisierten Substanzbibliothek und der chemischen Natur der Targetmoleküle können anhand dieses Testprinzips Wechselwirkungen zwischen Nukleinsäuren und Nukleinsäuren, zwischen Proteinen und Proteinen sowie zwischen Nukleinsäuren und Proteinen untersucht werden (zur Übersicht siehe F. Lottspeich, H. Zorbas, 1998, Bioanalytik, Spektmm Akademischer Verlag, Heidelberg/Berlin).
Als Substanzbibliotheken, die auf Mikroarrays oder Chips immobilisiert werden können, kommen dabei insbesondere Antikörper-Bibliotheken, Rezeptor- Bibliotheken, Peptid-Bibliotheken und Nukleinsäure-Bibliotheken in Frage.
Die Nukleinsäure-Bibliotheken nehmen die mit Abstand wichtigste Rolle ein. Es handelt sich dabei um Mikroarrays, auf denen Desoxyribonukleinsäure- (DNA) Moleküle oder Ribonukleinsäure- (RNA) Moleküle immobilisiert sind.
Bei einer bevorzugten Ausfühmngsform des erfindungsgemäßen Verfahrens wird der Abstand zwischen Mikroarray und zweiter Fläche vor dem Detektieren in Schritt b) in einer Position gehalten, die das Prozessieren der Probenlösung und/oder die Wechselwirkung zwischen den Targetmolekülen und den auf dem Substrat immobilisierten Sondenmolekülen, beispielsweise das Amplifizieren von nachzuweisenden Nukleinsäuren und/oder die Hybridisierung zwischen nachzuweisenden Nukleinsäuren und den auf dem Substrat immobilisierten Nukleinsäuresonden, ermöglicht.
Femer ist es bevorzugt, dass in Schritt b) der Abstand zwischen dem Mikroarray und der zweiten Fläche verändert, vorzugsweise verringert wird. D.h. die Detektion wird vorzugsweise bei einem verringerten Abstand zwischen Mikroarray und Detektionsebene durchgeführt. Besonders bevorzugt ist der Abstand zwischen Mikroarray und Detektionsebene bei der Detektion in etwa gleich null.
Bei einer Ausgestaltung wird zur Verringerung des Abstands zwischen Mikroarray und zweiter Fläche der Mikroarray in Richtung der zweiten Fläche geführt. Dies wird vorzugsweise durch Dmck mindestens eines Mittels zur Führung der ersten Fläche, beispielsweise eines Stößels, eines Stabs, eines Stifts und/oder einer Schraube, auf die erste Fläche gewährleistet, wobei der Druckpunkt des Mittels insbesondere unterhalb des Mikroarrays liegt.
Das Herandrücken des Mikroarrays an die zweite Fläche bzw. die Detektionsebene kann dadurch ermöglicht sein, dass die erste Fläche zumindest im Bereich unterhalb des Mikroarrays elastisch verformbar ist. Alternativ kann die erste Fläche mittels zweier übereinander liegender Schichten ausgestaltet sein, wobei eine äußere Schicht der beiden übereinander liegenden Schichten zumindest im Bereich unterhalb des Mikroarrays eine Ausspamng aufweist und eine innere der beiden übereinander liegenden Schichten aus einer elastischen Dichtung gebildet ist. Der Dmck wird dann mit dem Mittel zur Fühmng der ersten Fläche auf die innere Schicht im Bereich der Ausspamng ausgeübt. Das Mittel zur Führung der ersten Fläche, z.B. ein Stift, ein Stab, ein Stößel und/oder eine Schraube, kann aber nicht nur zur Ausübung eines Dmcks auf die erste Fläche dienen. Sollten auf dem DNA-Chip Blasen entstehen, die eine Detektion erschweren würden, so lassen sich diese durch Agitation durch das Mittel zur Fühmng der ersten Fläche, z.B. mit einer an der ersten Fläche, insbesondere in Form einer elastischen Membran, angelegten Vibrationsfrequenz von etwa 20 Hz, entfernen.
Femer besteht häufig das Problem, dass die Wechselwirkung, z.B. die Hybridisierung, an der Chipoberfläche sehr lange dauert. Dies liegt unter anderem daran, dass die Wechselwirkungs- bzw. Hybridisierungsgeschwindigkeit diffusionsbestimmt ist. Vorzugsweise lässt sich Wechselwirkungs- bzw. Hybridisiemngsgeschwindigkeit durch Agitation über das Mittel zur Fühmng der ersten Fläche, z.B. mit einer an der ersten Fläche, insbesondere in Form einer elastischen Membran, angelegten Vibrationsfrequenz von etwa 20 Hz, erhöhen, da die Agitation bzw. Vibration zu einer Durchmischung in der Reaktionskammer führt.
Bei einer weiteren Ausgestaltung wird zur Verringerung des Abstands zwischen Mikroarray und zweiter Fläche die zweite Fläche in Richtung der ersten Fläche geführt. Dies kann insbesondere dadurch gewährleistet werden, dass die zweite Fläche durch Dmck des Abstandshalters auf die zweite Fläche in Richtung der ersten Fläche geführt wird.
Bei einer weiteren Ausgestaltung wird zur Verringerung des Abstands zwischen Mikroarray und zweiter Fläche die erste Fläche in Richtung der zweiten Fläche und die zweite Fläche in Richtung der ersten Fläche geführt.
Im Folgenden werden weitere Ausführungsformen zum Führen der ersten Fläche relativ zur zweiten Fläche bzw. der zweiten Fläche relativ zur ersten Fläche beschrieben. Diese Ausführungsformen sind nicht nur zur Positionierung der ersten Fläche bzw. des Sondenarrays relativ zur zweiten Fläche bzw. der Detektionsfläche geeignet, sondern können insbesondere auch eingesetzt werden, um das Sondenarray relativ zur Detektionsfläche zu bewegen. Durch eine derartige Bewegung kann beispielsweise eine Agitation der Lösung in der Reaktionskammer erreicht werden.
In einer Ausfühmngsform wird das Sondenarray mit Hilfe eines Magnetfeldes gegen relativ zur Detektionsfläche geführt oder in der Kammer bewegt. Beispielsweise enthält das Sondenarray und/oder die zweite Fläche ein magnetisches Material bzw. enthält eine Komponente, der ein magnetisches Material beigemischt ist und/oder ist in einer Fassung aus einem ganz oder teilweise magnetischen Material eingefasst. Femer kann es bevorzugt sein, dass das Sondenarray und/oder die zweite Fläche passiv bewegt werden, indem mittels eines magnetischen Feldes ein magnetischer Körper bewegt wird, der unter der jeweiligen Fläche angeordnet ist und beispielsweise mit dieser verbunden ist.
In einer weiteren Ausfühmngsform wird das Sondenarray durch Einwirken der Schwerkraft relativ zur Detektionsfläche bewegt und/oder positioniert.
In einer weiteren Ausfühmngsform wird das Sondenarray durch eine in der Reaktionskammer erzeugte Strömung relativ zur Detektionsfläche bewegt und/oder positioniert. Dazu kann die Vorrichtung beispielsweise so ausgestaltet sein, dass, wenn das Sondenarray von einer Flüssigkeit umströmt wird, auf einer Seite der Reaktionskammer ein Unterdmck und auf der gegenüberliegenden Seite ein Überdmck entsteht, wodurch eine Bewegung des Sondenarrays in der Reaktionskammer erfolgt. Eine solche Strömung kann z.B. durch eine
Wärmeströmung, welche durch lokale Temperaturunterschiede in der Kammer hervorgerufen wird, realisiert werden. In einer weiteren Ausfühmngsform wird das Sondenarray durch Einwirken eines elektrischen Feldes relativ zur Detektionsfläche bewegt und/oder positioniert.
In einer weiteren Ausfühmngsform wird durch lokale Überhitzung unter dem Sondenarray eine Gasblase erzeugt, welche dazu führt, dass der Chip in der Kammer bewegt bzw. gegen die Detektionsfläche geführt wird.
Durch die Verringerung des Abstands zwischen Mikroarray und zweiter Fläche vor der Detektion wird die Probenlösung aus dem Bereich zwischen Mikroarray und Detektionsebene vorzugsweise im Wesentlichen vollständig entfernt. Dadurch werden die Hintergmndsignale, die durch nicht an die Arrayoberfläche gebundene markierte Moleküle, z.B. durch markierte Primer und/oder nicht an die Arrayoberfläche gebundene markierte Targetnukleinsäuren, verursacht werden, vermindert.
Besonders bevorzugt wird somit bei der Detektion in Schritt b) der Abstand zwischen dem Mikroarray und der zweiten Fläche so verändert, dass die Probenlösung zwischen dem Mikroarray und der zweiten Fläche im Wesentlichen entfernt ist. Der Mikroarray liegt dann im Wesentlichen in der Detektionsebene und ein störender Hintergmnd wird nahezu vollständig vermieden.
Bei einer weiteren alternativen Ausfühmngsform liegt der Mikroarray bereits im ursprünglichen Zustand der Vorrichtung bündig an der die Detektionsebene bildenden zweiten Fläche an und wird nicht erst durch Führen der ersten Fläche in Richtung der zweiten Fläche und/oder Führen der zweiten Fläche in Richtung der ersten Fläche in die Detektionsebene gebracht. Während der Prozessierungsschritte ist der Mikroarray bei dieser Ausgestaltung nicht von der Probenlösung benetzt. Zur Durchfühmng der Wechselwirkungsreaktion, z.B. einer Hybridisierung, wird die erste Fläche, die vorzugsweise aus einem elastischen Material, z.B. einer elastischen Membran, gebildet ist, von der Detektionsfläche weggeführt. Dadurch wird die Chipoberfläche von der Detektionsfläche entfernt und von der Probenlösung benetzt. Die Wechselwirkung, z.B. eine Hybridisiemng, kann stattfinden. Zur Durchführung der Detektion und der weiteren Prozessierung wird die erste Fläche, z.B. in Form einer elastischen Membran, wieder freigelassen, wodurch sie in ihre ursprünglich eingestellte Position zurückschnellt, was durch Druck mit einem Mittel zur Fühmng der ersten Fläche, z.B. einem Stift, einem Stab, einer Schraube und/oder einem Stößel, beschleunigt werden kann. Dadurch wird der Mikroarray wieder an die Detektionsebene gedrückt und die Detektion kann hintergrundfrei durchgeführt werden.
Bei einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird eine wie vorstehend beschriebene erfindungsgemäße Vorrichtung eingesetzt, deren erste Fläche um eine Drehachse schwenkbar ausgestaltet ist.
In einer ersten Position, die auch als Ausgangstellung bezeichnet wird, liegt die Oberfläche des auf dem ersten Schenkelabschnitt angeordneten Mikroarrays im Wesentlichen bündig an der zweiten Fläche an, d.h. die Substratoberfläche mit den darauf immobilisierten Sondenmoleküle ist im Wesentlichen nicht von der Probenlösung benetzt. In dem in der ersten Position zwischen dem zweiten Schenkelabschnitt der ersten Fläche und der zweiten Fläche gebildeten Raum, der Prozessiemngskammer, erfolgt vorzugsweise in dieser ersten Position die Prozessiemng der Reaktionslösung, d.h. insbesondere Aufreinigungs-, Aufkonzentrierungs-, Wasch- und Spül- und/oder Amplifikationsschritte.
Anschließend wird die schwenkbare erste Fläche in eine zweite Position gebracht, in der die erste Fläche in einem Winkel verschieden von 180°, vorzugsweise in einem Winkel von 45°, zu der zweiten Fläche angeordnet ist. Dies erfolgt vorzugsweise durch Zug auf den ersten Schenkelabschnitt der ersten Fläche und/oder durch Dmck auf den zweiten Schenkelabschnitt der ersten Fläche durch ein wie vorstehend beschriebenes Mittel zur Führung der ersten Fläche. Durch Führen der ersten Fläche in die zweite Position wird der Mikroarray von der zweiten Fläche weggeführt und die Probenlösung dringt in den entstehenden Hohlraum zwischen Mikroarray und zweiter Fläche ein. Die auf dem Substrat des Mikroarrays immobilisierten Sondenmoleküle sind für die in der Probenlösung vorliegenden Targetmoleküle frei zugänglich, so dass eine Wechselwirkungsreaktion zwischen Sonden- und Targetmolekülen stattfinden kann. Die Ausübung eines Dmcks und/oder Zugs auf die erste Fläche hat bei dieser Ausfühmngsform des erfindungsgemäßen Verfahrens den Vorteil, dass auf diese Weise die Probenlösung bewegt wird und so die Wechselwirkungsreaktion beschleunigt werden kann.
Zur Durchführung der Detektion und ggf. einer weiteren Prozessierung wird die schwenkbare erste Fläche wieder in die erste Position geführt, beispielsweise durch Dmck auf den ersten Schenkelabschnitt der ersten Fläche und/oder durch Zug an dem zweiten Schenkelabschnitt der ersten Fläche bzw. bei elastischer Ausgestaltung der ersten Fläche durch Freilassen des ersten Schenkelabschnitts. Das Mikroarray liegt nun wiedemm im Wesentlichen bündig an der zweiten Fläche an, so dass die Probenlösung zwischen der zweiten Fläche und dem Mikroarray in dieser Position im Wesentlichen verdrängt wird und eine im Wesentlichen hintergrundsfreie Detektion erfolgen kann.
Die zu untersuchenden Targets können in jeder Art von Probe, vorzugsweise in einer biologischen Probe vorliegen. Vorzugsweise werden die Targets vor ihrer Detektion und Quantifizierung durch das erfindungsgemäße Verfahren isoliert, gereinigt, kopiert und/oder amplifiziert.
Das erfindungsgemäße Verfahren ermöglicht femer die Amplifikation und den qualitativen und/oder quantitativen Nachweis von Nukleinsäuren in einer
Reaktionskammer, wobei der Nachweis von molekularen Wechselwirkungen bzw. Hybridisiemngen nach Abschluss einer zyklischen Amplifikationsreaktion erfolgen kann, ohne dass ein Austausch der Proben- bzw. Reaktionsflüssigkeiten erforderlich ist. Femer gewährleistet das erfindungsgemäße Verfahren auch eine zyklische Detektion von Hybridisiemngsereignissen bei der Amplifikation, d.h. einen
Nachweis der Hybridisiemng auch während der zyklischen Amplifikationsreaktion. Schließlich können mit Hilfe des erfindungsgemäßen Verfahrens die Amplifikationsprodukte während der Amplifikationsreaktion sowie nach Ablauf der Amplifikationsreaktion quantifiziert werden.
Die Amplifikation erfolgt üblicherweise durch herkömmliche PCR-Methoden oder durch ein wie vorstehend beschriebenes Verfahren zur parallelen Durchführung von Amplifikation der zu analysierenden Zielmoleküle durch PCR und Nachweis durch Hybridisiemng der Zielmoleküle mit dem Substanzbibliothekenträger.
Bei einer weiteren Ausführungsform wird die Amplifikation als Multiplex-PCR in einem zweistufigen Prozess ausgeführt (siehe auch WO 97/45559). In einer ersten Stufe wird eine Multiplex-PCR durchgeführt, indem Fusionsprimer eingesetzt werden, deren 3 '-Enden genspezifisch sind und deren 5 '-Enden eine universelle Region darstellen. Letztere ist bei allen in der Multiplex-Reaktion eingesetzten forward- und reverse-Primem gleich. In dieser ersten Stufe ist die Primermenge limitierend. Dadurch können alle Multiplex-Produkte bis zu einem einheitlichen molaren Niveau amplifiziert werden, vorausgesetzt, dass die Zyklenzahl hinreichend ist, um für alle Produkte Primerlimitation zu erreichen. In einer zweiten Stufe sind universelle Primer zugegen, die identisch mit den 5 '-Regionen der Fusionsprimer sind. Es erfolgt Amplifikation bis zur gewünschten DNA-Menge.
Bei einer weiteren bevorzugten Ausfühmngsform des erfindungsgemäßen
Verfahrens erfolgt die Detektion während der zyklischen Amplifikationsreaktion und/oder nach Abschluss der zyklischen Amplifikationsreaktion. Vorzugsweise erfolgt die Detektion während der Amplifikationsreaktion bei jedem Amplifikationszyklus. Alternativ kann die Detektion aber auch bei jedem zweiten Zyklus oder jedem dritten Zyklus oder in beliebigen anderen Intervallen bestimmt werden.
Bei der Durchfühmng einer linearen Vervielfältigungsreaktion, bei der sich die Target-Menge mit jedem Schritt um ein bestimmte Menge erhöht, oder einer exponentiellen Vervielfältigungsreaktion, z.B. einer PCR, bei der sich die DNA- Target-Menge mit jedem Schritt vervielfältigt, in der Prozesseinheit kann somit nach jedem Vervielfältigungsschritt der Chip an die Detektionsebene gedrückt werden und damit die Detektion durchgeführt werden. Damit ist es möglich, eine Online- Überwachung der Vervielfältigungsreaktion durchzuführen. Insbesondere bei nichtlinearen Vervielfältigungsreaktionen ist es dadurch möglich, die Ausgangskonzentration der DNA-Target-Menge zu bestimmen.
Des Weiteren lässt sich so die Anzahl der Vervielfältigungsschritte online optimieren. Hat die DNA-Target-Menge eine bestimmte Konzentration erreicht, bricht man die Vervielfältigung ab. Ist die Target- Start-Konzentration klein, erhöht man die Zahl der Vervielfältigungsschritte, um eine sichere Analyse der Produkte durchführten zu können. Bei verminderter Reaktionszeit von Positiv-Kontrollen kann der Analyseprozess sehr früh abgebrochen werden. Die für die Durchfühmng einer Amplifikationsreaktion erforderlichen Chemikalien wie z.B. Polymerase, Puffer, Magnesiumchlorid, Primer, markierte, insbesondere fluoreszenzmarkierte Primer, dNTP's etc. können in die Reaktionskammer beispielsweise gefriergetrocknet vorgelegt werden.
Vorzugsweise ist die zyklische Amplifikationsreaktion eine PCR. Bei der PCR werden für jeden PCR-Zyklus herkömmlicherweise drei Temperaturen durchfahren. Vorzugsweise lösen sich die hybridisierten Nukleinsäuren bei der höchsten Temperatur, d.h. der Denaturierungstemperatur von dem Mikroarray ab. Ein bevorzugter Wert für die Denaturierungstemperatur beträgt 95°C. Somit kann bei dieser Denaturierungstemperatur ein Hybridisierungssignal bestimmt werden, der als Nullwert bzw. Bezugswert für die bei dem jeweiligen PCR-Zyklus detektierten Nukleinsäuren dienen.
Bei der im PCR-Zyklus nachfolgenden Temperatur, einer Annealing-Temperatur von beispielsweise etwa 60°C, wird eine Hybridisierung zwischen nachzuweisenden Nukleinsäuren und den auf dem Substrat des Mikroarrays immobilisierten Nukleinsäuren ermöglicht. Bei einer Ausführungsform des erfindungsgemäßen Verfahrens erfolgt deswegen der Nachweis bzw. die Detektion von bei einem PCR- Zyklus vorliegenden Targetnukleinsäuren bei der Annealing-Temperatur.
Um die Empfindlichkeit des erfindungsgemäßen Verfahrens zu erhöhen, kann es femer vorteilhaft sein, die Temperatur unter die Annealing-Temperatur zu senken, so dass die Detektion bevorzugt bei einer Temperatur unterhalb der Annealing- Temperatur eines Amplifikationszyklus erfolgt. Beispielsweise kann die Detektion bei einer Temperatur im Bereich von 25°C bis 50°C und vorzugsweise im Bereich von 30°C bis 45°C erfolgen. Bei einer weiteren alternativen Ausfühmngsform des erfindungsgemäßen Verfahrens wird die Hybridisierung zwischen nachzuweisenden Nukleinsäuren und den auf dem Substrat des Mikroarrays immobilisierten Nukleinsäuren zunächst bei einer niedrigen Temperatur durchgeführt, um anschließend die Hybridisierungstemperatur zu erhöhen. Eine derartige Ausführungsform bietet den Vorteil, dass die Hybridisiemngszeit gegenüber Hybridisiemngen bei Temperaturen von über 50°C vermindert wird, ohne dabei an Spezifität in den Wechselwirkungen einzubüßen.
Wird von dem bei der bzw. unterhalb der Annealing-Temperatur bestimmten Messwert der bei der Denaturierungstemperatur bestimmte Nullwert bzw. Bezugswert abgezogen, so erhält man ein von Störeinflüssen freies Messergebnis, in dem Schwankungen und Drift eliminiert sind.
Üblicherweise werden die nachzuweisenden Targetmoleküle mit einem detektierbaren Marker versehen. Der Nachweis erfolgt bei dem erfindungsgemäßen Verfahren somit vorzugsweise dadurch, dass die gebundenen Targets mit mindestens einer Markiemng versehen sind, die in Schritt b) detektiert wird.
Wie bereits vorstehend erwähnt, ist die Markiemng, die an die Targets oder Sonden gekoppelt ist, vorzugsweise eine detektierbare Einheit oder eine über eine Ankergruppe an die Targets oder Sonden gekoppelte detektierbare Einheit. Hinsichtlich der Möglichkeiten der Detektion bzw. der Markiemng ist das erfindungsgemäße Verfahren äußerst flexibel. So ist das erfindungsgemäße Verfahren mit einer Vielzahl physikalischer, chemischer oder biochemischer Detektionsverfahren kompatibel. Voraussetzung ist lediglich, dass die zu detektierende Einheit bzw. Struktur direkt an eine Sonde oder ein Target, beispielsweise ein Oligonukleotid gekoppelt bzw. über eine mit dem Oligonukleotid koppelbare Ankergruppe verknüpft werden kann.
Die Detektion der Markierung kann auf Fluoreszenz, Magnetismus, Ladung, Masse, Affinität, enzymatischer Aktivität, Reaktivität, einer Goldmarkiemng u.dgl. bemhen. So basiert die Markiemng vorzugsweise auf der Verwendung von Fluorophor- markierten Strukturen bzw. Bausteinen. In Verbindung mit der Fluoreszenz- Detektion kann die Markiemng ein beliebiger an Targets oder Sonden während oder nach deren Synthese koppelbarer Farbstoff sein. Beispiele hierfür sind Cy-Farbstoffe (Amersham Pharmacia Biotech, Uppsala, Schweden), Alexa-Farbstoffe, Texas-Rot, Fluorescein, Rhodamin (Molecular Probes, Eugene, Oregon, USA), Lanthanide wie Samarium, Ytterbium und Europium (EG&G, Wallac, Freiburg, Deutschland).
Besonders bevorzugt ist dieser detektierbare Marker ein Fluoreszenzmarker. Wie bereits vorstehend erwähnt, gewährleistet der Einsatz der erfindungsgemäßen Vorrichtung in dem erfindungsgemäßen Verfahren das Detektieren der Fluoreszenzmarker mittels eines Fluoreszenzmikroskops ohne Autofokus, z.B. eines Fluoreszenzmikroskops mit Fixfokus.
Neben Fluoreszenz-Markem können im Rahmen der vorliegenden Erfindung als
Markiemng bzw. als Detektiereinheit, die mit den Targets bzw. Sonden gekoppelt ist, auch Lumineszenz-Marker, Metall-Marker, Enzym-Marker, radioaktive Marker und/oder polymere Marker eingesetzt werden.
Ebenso kann eine Nukleinsäure als Markiemng (Tag) genutzt werden, die durch Hybridisiemng mit einem markierten Reporter detektiert werden kann (Sandwich- Hybridisierung). Einsatz zum Nachweis des Tags finden diverse molekularbiologische Nachweisreaktionen wie Primer-Extension, Ligation und RCA.
Bei einer alternativen Ausfühmngsform des erfindungsgemäßen Verfahrens ist die detektierbare Einheit über eine Ankergmppe mit den Targets oder Sonden gekoppelt. Bevorzugt verwendete Ankergmppen sind Biotin, Digoxygenin u.dgl. Die Ankergmppe wird in einer anschließenden Reaktion mit spezifisch bindenden Komponenten, beispielsweise Streptavidin-Konjugaten oder Antikörper-Konjugaten umgesetzt, die selbst detektierbar sind oder eine detektierbare Reaktion auslösen. Bei Einsatz von Ankergmppen kann die Umsetzung der Ankergmppen in detektierbare Einheiten vor, während oder nach Zugabe der Probe umfassend die Targets bzw. ggf. vor, während oder nach der Spaltung einer selektiv spaltbaren Bindung in den Sonden erfolgen. Derartige selektiv spaltbare Bindungen in den Sonden sind z.B. in der internationalen Patentanmeldung WO 03/018838 beschrieben, auf deren diesbezüglichen Inhalt hiermit ausdrücklich Bezug genommen wird.
Die Markiemng kann erfindungsgemäß auch durch Wechselwirkung eines markierten Moleküls mit den Sonden-Molekülen erfolgen. Beispielsweise kann die Markiemng durch Hybridisierung eines wie vorstehend beschrieben markierten Oligonukleotids mit einer Oligonukleotid-Sonde bzw. einem Oligonukleotid-Target erfolgen.
Weitere im Rahmen der vorliegenden Erfindung geeignete Markierungsverfahren und Nachweissysteme sind beispielsweise in Lottspeich und Zorbas, Bioanalytik, Spektrum Akademischer Verlag, Heidelberg, Berlin, 1998, Kapitel 23.3 und 23.4 beschrieben. Bei einer bevorzugten Ausfühmngsform des erfindungsgemäßen Verfahrens werden Nachweisverfahren eingesetzt, die im Ergebnis ein Addukt mit einem bestimmten Löslichkeitsprodukt, das eine Präzipitation zur Folge hat, liefern. Zur Markierung werden insbesondere Substrate bzw. Edukte eingesetzt, die in ein schwer lösliches, üblicherweise gefärbtes Produkt umgesetzt werden können. Beispielsweise können bei dieser Markiemngsreaktion Enzyme verwendet werden, die den Umsatz eines Substrats in ein schwer lösliches Produkt katalysieren. Reaktionen, die geeignet sind, um zu einem Niederschlag an Array-Elementen zu führen, sowie Möglichkeiten für die Detektion des Niederschlags sind beispielsweise in der internationalen Patentanmeldung WO 00/72018 und in der internationalen Patentanmeldung
WO 02/02810 beschrieben, auf deren diesbezüglichen Inhalt hiermit ausdrücklich Bezug genommen wird.
Bei einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens sind die gebundenen Targets mit einer Markierung versehen, die die Reaktion eines löslichen Substrats bzw. Edukts zu einem schwer löslichen Niederschlag auf dem Array-Element katalysiert, an dem eine Sonden/Target- Wechselwirkung stattgefunden hat bzw. die als Kristallisationskeim für die Umwandlung eines löslichen Substrats bzw. Edukts zu einem schwer löslichen Niederschlag auf dem Array-Element wirkt, an dem eine Sonden/Target- Wechselwirkung stattgefunden hat.
Der Einsatz des erfindungsgemäßen Verfahrens erlaubt auf diese Weise die simultane qualitative und quantitative Analyse einer Vielzahl von Sonden/Target- Wechselwirkungen, wobei einzelne Array-Elemente mit einer Größe von < 1000 μm, vorzugsweise von < 100 μm und besonders bevorzugt von < 50 μm realisiert werden können. In der Immunzytochemie und bei immunologischen Mikrotiterplatten-basierten Tests ist der Einsatz von enzymatischen Markiemngen bekannt (siehe E. Lidell und I. Weeks, Antibody Technology, BIOS Scientific Publishers Limited, 1995). So katalysieren beispielsweise Enzyme den Umsatz eines Substrats in ein schwerlösliches, in aller Regel gefärbtes Produkt.
Besonders bevorzugt ist die zur Bildung eines Niederschlags an den Array- Elementen führende Reaktion eine durch ein Enzym katalysierte Umsetzung eines löslichen Substrats bzw. Edukts in ein schwer lösliches Produkt. Bei einer speziellen Ausführungsform ist die zur Bildung eines Niederschlags an den Array-Elementen führende Reaktion eine durch eine Peroxidase katalysierte Oxidation von 3,3',5,5'- Tetramethylbenzidin.
Vorzugsweise wird als Peroxidase für die Oxidation von 3,3', 5,5'- Tetramethylbenzidin Meerrettichperoxidase eingesetzt. Dem Fachmann sind jedoch weitere Peroxidasen bekannt, die zur Oxidation von 3,3',5,5'-Tetramethylbenzidin eingesetzt werden können.
Es wird angenommen, dass 3,3',5,5'-Tetramethylbenzidin unter der katalytischen Einwirkung einer Peroxidase in einem ersten Schritt zu einem blau gefärbten Radikalkation oxidiert wird (siehe z.B. Gallati und Pracht, J. Clin. Chem. Clin. Biochem. 1985, 23, 8, 454). Dieses blau gefärbte Radikalkation wird mittels eines Polyanions wie z.B. Dextransulfat als Komplex ausgefällt. Die Fällungsreaktion durch Peroxidase-katalysierte Oxidation von 3,3',5,5'-Tetramethylbenzidin ist beispielsweise in EP 0456 782 beschrieben.
Die nachfolgende Tabelle 1 gibt, ohne den Anspruch zu erheben, vollständig zu sein, einen Überblick über eine Reihe von in Frage kommenden Reaktionen, die geeignet sind, um zu einem Niederschlag an Array-Elementen zu führen, an denen eine Wechselwirkung zwischen Target und Sonde erfolgt ist:
Tabelle 1
Figure imgf000075_0001
Der Nachweis und/oder die Detektion von Sonde/Target- Wechselwirkungen über unlösliche Präzipitate sind insbesondere in WO 02/02810 beschrieben. Im Folgenden werden Ausführungsformen der vorliegenden Erfindung beschrieben, die zur Überwindung von generell bei der Detektion von molekularen Wechselwirkungen auf festen Trägem möglicherweise auftretenden Problemen wie beispielsweise zur Verhindemng der etwaigen Ausbildung von Newtonschen Ringen zwischen Detektionsebene und Sondenarray dienen können. Die Ausprägung von Newtonschen Ringen wird im Wesentlichen durch die Art der Beleuchtung, die Wellenlänge des zur Detektion eingesetzten Lichtes, den Abstand zwischen Detektionsebene und Sondenarray sowie den Brechungsindex der in der Kammer befindlichen Lösung bestimmt. Derartige Newtonsche Ringe können beispielsweise vermieden werden durch Ändemng der Wellenlänge des zur Detektion eingesetzten Lichtes, Verwendung einer Lösung mit gleichem oder ähnlichem Brechungsindex wie dem der Detektionsebene und/oder des Sondenarrays und/oder die Verwendung einer Immersionsflüssigkeit zwischen Detektionsebene und Sondenarray.
Femer können Newtonsche Ringe durch Aufbringen von Abstandshaltem auf dem Chip und/oder der dem Chip zugewandten Seite der Detektionsfläche verhindert werden.
Femer können Newtonsche Ringe durch Aufbringen des Sondenarrays auf eine raue Trägeroberfläche verhindert werden.
Femer können Newtonsche Ringe durch Aufbringen des Sondenarrays auf eine lichtabsorbierende Oberfläche verhindert werden.
Als weitere Möglichkeit kann während der Detektion der Anpressdmck, mit welchem der Chip relativ zur Detektionsfläche geführt wird, permanent variiert werden. Dadurch wird die Spaltdicke zwischen Chip und Detektionsfläche und so auch die Lage der Newtonschen Ringe verändert. Durch die Integration des zu detektierenden Fluoreszenzsignals über die Zeit wird auf diese Weise eine Verfälschung der Messwerte der Spots relativ zueinander vermieden. Eine weitere besonders bevorzugte Möglichkeit zur Verhinderung von Newtonschen Ringen ist die Verwendung mehrerer Lichtquellen aus unterschiedlichen Richtungen zur Beleuchtung und damit zur Anregung der Fluorophore der gebundenen Targets.
Hintergrundfluoreszenz, die durch die Fluorophore ungebundener Targets in der verdrängten Flüssigkeit hervorgerufen wurde, kann zu einer Verfälschung des detektierten Signals führen. Dies kann vorzugsweise durch Einsatz einer Blende verhindert werden, die z.B. auf die Detektionsfläche oder den Chip aufgebracht und/oder um den Chip hemm oder in der Abbildungsoptik angeordnet wird und derart ausgestaltet ist, dass nur die Fläche des Sondenarrays beleuchtet bzw. abgebildet wird.
Bei der Verwendung entsprechender Beleuchtungsquellen wie z.B. Laser kann es, bedingt durch die Kohärenz des Lichtes, zu Inhomogenitäten in der Beleuchtung kommen. Derartige Inhomogenitäten können durch Einsatz von Wellenleitern und/oder Mischfiltern und/oder Licht verschiedener Wellenlängen verringert bzw. vermieden werden. Ebenso ist eine Bewegung der Beleuchtungsquelle zur Beseitigung derartiger Effekte denkbar.
Durch Einsatz einer organischen oder anorganischen lichtabsorbierenden und im gewählten Wellenlängenbereich nicht fluoreszierenden Schicht auf dem Träger des Sondenarrays kann Fluoreszenzhintergrundsignal, das durch den Sondenträger und/oder dahinter befindliche Elemente verursacht wird, verringert bzw. verhindert werden. Vorzugsweise wird eine Schwarzchromschicht als Schutzschicht eingesetzt.
Bei sämtlichen vorstehend beschriebenen Ausführungsformen des erfindungsgemäßen Verfahrens ist eine Voramplifikation des zu analysierenden Materials nicht erforderlich. Von dem aus Bakterien, Blut oder anderen Zellen extrahierten Probenmaterial können gezielte Teilbereiche mit Hilfe einer PCR (Polymerase- Kettenreaktion) insbesondere in Anwesenheit der erfindungsgemäßen Vorrichtung bzw. des Substanzbibliothekenträgers wie in DE 102 53 966 beschrieben amplifiziert und an den Träger hybridisiert werden. Dies stellt eine wesentliche Vereinfachung des Arbeitsaufwands dar.
Das erfindungsgemäße Verfahren ist somit insbesondere zur parallelen Durchfühmng von Amplifikation der zu analysierenden Zielmoleküle durch PCR und Nachweis durch Hybridisiemng der Zielmoleküle mit dem Substanzbibliothekenträger geeignet. Dabei wird die nachzuweisende Nukleinsäure zunächst durch eine PCR amplifiziert, wobei der Reaktion zu Anfang vorzugsweise mindestens ein Kompetitor zugesetzt wird, der die Bildung eines der beiden durch die PCR amplifizierten Template- Stränge inhibiert. Insbesondere wird bei der PCR ein DNA-Molekül zugesetzt, das mit einem der zur PCR-Amplifikation des Templates verwendeten Primer um die Bindung an das Template konkurriert, und nicht enzymatisch verlängert werden kann. Die durch die PCR amplifizierten einzelsträngigen Nukleinsäuremoleküle werden dann durch Hybridisierung mit einer komplementären Sonde nachgewiesen. Alternativ wird die nachzuweisende Nukleinsäure zunächst im Einzelstrangüberschuss durch eine PCR amplifiziert und durch eine anschließende Hybridisiemng mit einer komplementären Sonde nachgewiesen, wobei der PCR-Reaktion zu Anfang ein Kompetitor zugesetzt wird, bei dem es sich um ein DNA-Molekül oder ein Molekül eines Nukleinsäure- Analogons handelt, das an einen der beiden Stränge des Templates hybridisieren kann, aber nicht an den Bereich, der durch die Sonden-Hybridisierung nachgewiesen wird, und das enzymatisch nicht verlängerbar ist.
Als Kompetitor in der PCR kann jedes Molekül eingesetzt werden, das eine bevorzugte Amplifikation nur eines der beiden in der PCR-Reaktion vorhandenen Template-Stränge bewirkt. Bei Kompetitoren kann es sich daher erfindungsgemäß um Proteine, um Peptide, um DNA-Liganden, um Interkalatoren, um Nukleinsäuren oder deren Analoga handeln. Als Kompetitoren werden bevorzugt Proteine bzw. Peptide eingesetzt, die in der Lage sind, einzelsträngige Nukleinsäuren mit Sequenz- Spezifität zu binden und über die oben definierten Eigenschaften verfügen.
Besonders bevorzugt werden als Sekundärstmkturbrecher Nukleinsäuremoleküle und Nukleinsäure- Analoga-Moleküle eingesetzt.
Durch anfängliche Zugabe des Kompetitors zur PCR während der Amplifikation wird die Bildung eines der beiden Template-Stränge im Wesentlichen inhibiert. "Im Wesentlichen inhibiert" bedeutet, dass im Rahmen der PCR ein ausreichender Einzelstrangüberschuss und eine ausreichende Menge des anderen Template-Strangs hergestellt werden, um einen effizienten Nachweis des amplifizierten Strangs durch die Hybridisierung zu gewährleisten. Die Amplifikation erfolgt damit nicht einer exponentiellen Kinetik der Form 2n (mit n = Anzahl der Zyklen), sondern einer gedämpften Amplifikationskinetik der Form <2n.
Der durch die PCR erzielte Einzelstrangüberschuss beträgt gegenüber dem nicht- amplifizierten Strang den Faktor 1,1 bis 1000, bevorzugt den Faktor 1,1 bis 300, ebenfalls bevorzugt den Faktor 1,1 bis 100, besonders bevorzugt den Faktor 1,5 bis 100, ebenfalls besonders bevorzugt den Faktor 1,5 bis 50, insbesondere bevorzugt den Faktor 1,5 bis 20 und am meisten bevorzugt den Faktor 1,5 bis 10.
Typischerweise wird die Funktion eines Kompetitors darin bestehen, dass er selektiv an einen der beiden Template- Stränge bindet und damit die Amplifikation des entsprechenden komplementären Stranges behindert. Als Kompetitoren kommen daher einzelsträngige DNA- oder RNA-bindende Proteine mit Spezifität für einen der beiden in einer PCR zu amplifizierenden Template-Stränge in Frage. Ebenso kann es sich um Aptamere handeln, die Sequenz-spezifisch nur an bestimmte Bereiche eines der beiden zu amplifizierenden Template-Stränge binden.
Bevorzugt werden Nukleinsäuren oder Nukleinsäure-Analoga als Kompetitoren eingesetzt. Üblicherweise werden die Nukleinsäuren bzw. Nukleinsäure-Analoga dadurch als Kompetitor der PCR wirken, dass sie entweder mit einem der zur PCR verwendeten Primer um die Primer-Bindungsstelle konkurrieren oder, aufgmnd einer Sequenz-Komplementarität mit einem Bereich eines nachzuweisenden Template- Strangs hybridisieren können. Bei diesem Bereich handelt es sich nicht um die Sequenz, die durch die Sonde nachgewiesen wird. Solche Nukleinsäure- Kompetitoren sind enzymatisch nicht verlängerbar.
Bei den Nukleinsäure-Analoga kann es sich z.B. um sogenannte Peptid- Nukleinsäuren (peptide nucleic acids, PNA) handeln. Bei Nukleinsäure-Analoga kann es sich aber auch um Nukleinsäuremoleküle handeln, bei denen die Nukleotide über eine Phosphothioat-Bindung anstelle einer Phosphat-Bindung miteinander verknüpft sind. Ebenso kann es sich um Nukleinsäure-Analoga handeln, bei denen die natürlich vorkommenden Zuckerbausteine Ribose bzw. Deoxyribose gegen alternative Zucker wie z.B. Arabinose oder Trehalose etc. ausgetauscht wurden. Weiterhin kann es sich bei dem Nukleinsäurederivat um „locked nucleic acid" (LNA) handeln. Weitere übliche Nukleinsäure-Analoga sind dem Fachmann bekannt.
Bevorzugt werden als Kompetitoren DNA- oder RNA-Moleküle, insbesondere bevorzugt DNA- oder RNA-Oligonukleotide bzw. deren Analoga eingesetzt.
Abhängig von der Sequenz der als Kompetitoren eingesetzten Nukleinsäuremoleküle bzw. Nukleinsäure-Analoga bemht die Inhibierung der Amplifikation eines der beiden Template-Stränge im Rahmen der PCR-Reaktion auf unterschiedlichen Mechanismen. Dies wird im Folgenden beispielhaft anhand eines DNA-Moleküls diskutiert.
Wenn als Kompetitor z.B. ein DNA-Molekül verwendet wird, kann dies eine Sequenz aufweisen, die mit der Sequenz eines der zu PCR verwendeten Primer zumindest teilweise derart identisch ist, dass eine spezifische Hybridisiemng des DNA-Kompetitor-Moleküls mit dem entsprechenden Template-Strang unter stringenten Bedingungen möglich ist. Da das zur Kompetition verwendete DNA- Molekül erfindungsgemäß in diesem Fall nicht durch eine DNA-Polymerase verlängerbar ist, kompetiert das DNA-Molekül mit dem jeweiligen Primer während der PCR-Reaktion um die Bindung an das Template. Je nach Mengenverhältnis des DNA-Kompetitor-Moleküls zum Primer kann auf diese Weise die Amplifikation des durch den Primer definierten Template- Strangs derart inhibiert werden, dass die Herstellung dieses Template-Strangs deutlich reduziert ist. Die PCR verläuft dabei nach einer exponentiellen Kinetik, die höher ist, als bei den verwendeten Kompetitor-Mengen zu erwarten wäre. Auf diese Weise entsteht ein Einzelstrangüberschuss in einer Menge, die ausreichend für einen effizienten Nachweis der amplifizierten Target-Moleküle durch Hybridisierung ist.
Bei dieser Ausführungsform dürfen die zur Kompetition verwendeten Nukleinsäuremoleküle bzw. Nukleinsäureanaloga enzymatisch nicht verlängerbar sein. "Enzymatisch nicht verlängerbar" bedeutet, dass die zur Amplifikation verwendete DNA- oder RNA-Polymerase den Nukleinsäure-Kompetitor nicht als Primer verwenden kann, d.h. nicht in der Lage ist, 3' von der durch den Kompetitor definierten Sequenz den jeweiligen Gegenstrang zum Template zu synthetisieren. Alternativ zu der oben dargestellten Möglichkeit kann das DNA-Kompetitor- Molekül auch über eine Sequenz verfügen, die zu einem Bereich des nachzuweisenden Template-Strangs komplementär ist, der nicht durch eine der Primer-Sequenzen adressiert wird, und die enzymatisch nicht verlängerbar ist. Im Rahmen der PCR wird das DNA-Kompetitor-Molekül dann an diesem Template- Strang hybridisieren und die Amplifikation dieses Stranges entsprechend blockieren.
Dem Fachmann ist bekannt, dass die Sequenzen von DNA-Kompetitor-Molekülen oder allgemein Nukleinsäure-Kompetitor-Molekülen entsprechend gewählt werden können. Wenn die Nukleinsäure-Kompetitor-Moleküle eine Sequenz aufweisen, die nicht mit der Sequenz eines der zur PCR verwendeten Primer im Wesentlichen identisch, sondern zu einem anderen Bereich des nachzuweisenden Template-Strangs komplementär ist, ist diese Sequenz so zu wählen, dass sie nicht in den Bereich der Template-Sequenz fällt, der im Rahmen der Hybridisierung mit einer Sonde nachgewiesen wird. Dies ist deswegen notwendig, da zwischen der PCR und der Hybridisiemngsreaktion keine Aufarbeitungsreaktion stattfinden muss. Würde als Kompetitor ein Nukleinsäuremolekül verwendet, das in den nachzuweisenden Bereich fällt, würde dies mit dem einzelsträngigen Target-Molekül um die Bindung an die Sonde kompetieren.
Bevorzugt hybridisieren solche Kompetitoren in der Nähe der Template-Sequenz, die durch die Sonde nachgewiesen wird. Die Positionsangabe "in der Nähe" ist dabei erfindungsgemäß so zu verstehen, wie sie für Sekundärstmkturbrecher angegeben ist. Allerdings können die erfindungsgemäßen Kompetitoren auch in unmittelbarer Nachbarschaft der nachzuweisenden Sequenz hybridisieren, d.h. exakt ein Nukleotid von der nachzuweisenden Target-Sequenz entfernt. Wenn als kompetitierende Moleküle enzymatisch nicht verlängerbare Nukleinsäuren oder Nukleinsäure-Analoga verwendet werden, sind diese hinsichtlich ihrer Sequenz oder Struktur so zu wählen, dass sie nicht enzymatisch durch DNA- oder RNA- Polymerasen verlängert werden können. Bevorzugt ist das 3'-Ende eines Nukleinsäure-Kompetitors so ausgelegt, dass es keine Komplementarität zum Template aufweist und/oder anstelle der 3-OH-Gruppe am 3 '-Ende einen anderen Substituenten trägt.
Weist das 3 '-Ende des Nukleinsäure-Kompetitors keine Komplementarität zum Template auf, unabhängig davon, ob der Nukleinsäure-Kompetitor an eine der Primer-Bindungsstellen des Templates oder an eine der durch die PCR zu amplifizierenden Sequenzen des Templates bindet, kann der Nukleinsäure- Kompetitor wegen der fehlenden Basen-Komplementarität am 3 '-Ende nicht durch die gängigen DNA-Polymerasen verlängert werden. Diese Art der Nicht- Verlängerbarkeit von Nukleinsäure-Kompetitoren durch DNA-Polymerasen ist dem Fachmann bekannt. Bevorzugt weist der Nukleinsäure-Kompetitor an seinem 3'- Ende bezüglich der letzten 4 Basen, besonders bevorzugt bezüglich der letzten 3 Basen, insbesondere bevorzugt bezüglich der letzten 2 Basen und am meisten bevorzugt bezüglich der letzten Base keine Komplementarität zu seiner Zielsequenz auf. Solche Kompetitoren können an den genannten Positionen auch nicht-natürliche Basen aufweisen, die keine Hybridisiemng erlauben.
Nukleinsäure-Kompetitoren, die enzymatisch nicht verlängerbar sind, können auch eine 100%-ige Komplementarität zu ihrer Zielsequenz aufweisen, wenn sie in ihrem Rückgrat oder an ihrem 3'-Ende derart modifiziert sind, dass sie enzymatisch nicht verlängerbar sind. Weist der Nukleinsäure-Kompetitor an seinem 3 '-Ende eine andere Gruppe als die OH-Gruppe auf, handelt es sich bei diesen Substituenten bevorzugt um eine Phosphat-Gruppe, um ein Wasserstoff-Atom (Dideoxynukleotid), eine Biotingmppe oder eine Aminogmppe. Diese Gmppen können durch die gängigen Polymerasen nicht verlängert werden.
Besonders bevorzugt wird bei einem derartigen Verfahren als Kompetitor ein DNA- Molekül verwendet, das mit einem der beiden zur PCR verwendeten Primer um die Bindung an das Template kompetiert und welches am 3'-Ende während der chemischen Synthese mit einem Aminolink versehen wurde. Solche Kompetitoren können 100%-ige Komplementarität zu ihrer Zielsequenz haben.
Nukleinsäure- Analoga-Kompetitoren wie z.B. PNAs müssen dagegen nicht über eine blockierte 3 '-OH-Gruppe oder eine nicht-komplementäre Base an ihrem 3 '-Ende verfügen, da sie aufgmnd des durch die Peptid-Bindung veränderten Rückgrats nicht durch die DNA-Polymerasen erkannt und somit auch nicht verlängert werden. Entsprechende andere Modifikationen der Phosphatgruppe, die durch die DNA- Polymerasen nicht erkannt werden, sind dem Fachmann bekannt. Dazu gehören u.a. Nukleinsäuren mit Rückgratmodifikationen wie z.B. 2 '-5' Amid-Bindungen (Chan et al. (1999) J. Chem. Soc, Perkin Trans. 1, 315-320), Sulfid-Bindungen (Kawai et al. (1993) Nucleic Acids Res., 1 (6), 1473-1479), LNA (Sorensen et al. (2002) J. Am. Chem. Soc, 124 (10), 2164-2176) und TNA (Schoning et al. (2000) Science, 290 (5495), 1347-1351).
Es können auch mehrere Kompetitoren, die an unterschiedliche Bereiche des
Templates (z.B. u.a. die Primer-Bindungsstelle) hybridisieren, gleichzeitig in einer PCR eingesetzt werden. Wenn die Kompetitoren über Sekundärstmkturbrecher- eigenschaften verfügen, kann dadurch die Effizienz der Hybridisierung zusätzlich gesteigert werden.
In einer alternativen Ausfühmngsform kann das DNA-Kompetitor-Molekül über eine zu einem der Primer komplementäre Sequenz verfügen. Solche z.B. Antisense-DNA- Kompetitor-Moleküle können dann je nach Mengenverhältnis zwischen Antisense- DNA-Kompetitor-Molekül und Primer dazu verwendet werden, den Primer in der PCR-Reaktion zu titrieren, so dass dieser nicht mehr mit dem jeweiligen Template- Strang hybridisiert und entsprechend nur der durch den anderen Primer definierte Template-Strang amplifiziert wird. Dem Fachmann ist bewusst, dass bei dieser Ausführungsform der Erfindung der Nukleinsäure-Kompetitor enzymatisch verlängerbar sein kann, aber nicht muss.
Wenn im Rahmen dieser Erfindung von Nukleinsäure-Kompetitoren gesprochen wird, schließt dies Nukleinsäure- Analoga-Kompetitoren mit ein, wenn sich nicht aus dem Kontext etwas anderes ergibt. Der Nukleinsäure-Kompetitor kann an den entsprechenden Strang des Templates reversibel oder irreversibel binden. Die Bindung kann durch kovalente bzw. nicht kovalente Wechselwirkungen erfolgen.
Bevorzugt erfolgt die Bindung des Nukleinsäure-Kompetitors über nicht-kovalente Wechselwirkungen und ist reversibel. Insbesondere bevorzugt erfolgt die Bindung an das Template durch Ausbildung von Watson-Crick Basenpaarungen.
Die Sequenzen der Nukleinsäure-Kompetitoren richten sich in der Regel nach der Sequenz des Template-Strangs, der nachgewiesen werden soll, bei antisense-Primem dagegen nach den zu titrierenden Primer-Sequenzen, die aber wiederum durch die Template-Sequenzen definiert sind. Bei der PCR-Amplifikation von Nukleinsäuren handelt es sich um eine Labor- Standardmethode, mit deren vielfältigen Variations- und
Ausgestaltungsmöglichkeiten der Fachmann vertraut ist. Prinzipiell ist eine PCR dadurch charakterisiert, dass das doppelsträngige Nukleinsäure-Template, üblicherweise ein doppelsträngiges DNA-Molekül, zuerst einer Hitze-Denaturiemng für 5 Minuten bei 95° C unterworfen wird, wodurch die beiden Stränge voneinander getrennt werden. Nach einer Abkühlung auf die sogenannte "annealing"-Temperatur (definiert durch den Primer mit der niedrigeren Schmelztemperatur) lagern sich die in der Reaktionslösung vorhandenen "forward"- und "reverse"-Primer an die zu ihrer Sequenz komplementären Stellen in den jeweiligen Template-Strängen an. Die "annealing" -Temperatur der Primer richtet sich dabei nach der Länge und Basenzusammensetzung der Primer. Sie kann aufgmnd theoretischer Überlegungen kalkuliert werden. Angaben zur Kalkulation von "annealing "-Temperaturen finden sich z.B. in Sambrook et al. (vide supra).
Nach dem Annealen der Primer, das typischerweise in einem Temperaturbereich von 40-75 °C, bevorzugt von 45-72 °C und insbesondere bevorzugt von 50-72 °C erfolgt, folgt ein Elongationsschritt, bei dem durch die Aktivität der in der Reaktionslösung vorhandenen DNA-Polymerase Desoxyribonukleotide mit dem 3'-Ende der Primer verknüpft werden. Die Identität der eingefügten dNTPs richtet sich dabei nach der Sequenz des mit dem Primer hybridisierten Template-Strangs. Da in der Regel thermostabile DNA-Polymerasen eingesetzt werden, läuft der Elongationsschritt üblicherweise zwischen 68-72° C ab.
Bei der symmetrischen PCR wird durch eine Wiederholung dieses beschriebenen Zyklus aus Denaturierung, Annealing der Primer und Elongation der Primer eine exponentielle Vermehrung des durch die Primersequenzen definierten Nukleinsäureabschnitts des Targets erreicht. Hinsichtlich der Pufferbedingungen bei der PCR, der verwendbaren DNA-Polymerasen, der Herstellung von doppelsträngigen DNA-Templates, des Designs von Primem, der Wahl der Annealing-Temperatur und Variationen der klassischen PCR steht dem Fachmann zahlreiche Literatur zur Verfügung.
Dem Fachmann ist geläufig, dass als Template auch z.B. einzelsträngige RNA, wie z.B. mRNA, eingesetzt werden kann. Diese wird in der Regel vorher durch eine Reverse Transkription in eine doppelsträngige cDNA überführt.
In einer bevorzugten Ausführungsform wird als Polymerase eine thermostabile DNA-abhängige DNA-Polymerase verwendet. In einer besonders bevorzugten Ausführungsform wird eine thermostabile DNA-abhängige DNA-Polymerase ausgewählt aus der Gruppe bestehend aus Taq-DNA-Polymerase (Eppendorf, Hamburg, Deutschland sowie Qiagen, Hilden, Deutschland), Pfu-DNA-Polymerase (Stratagene, La Jolla, USA), Tth-DNA-Polymerase (Biozym Epicenter Technol., Madison, USA), Vent-DNA-Polymerase, DeepVent-DNA-Polymerase (New England Biolabs, Beverly, USA), Expand-DNA-Polymerase (Röche, Mannheim, Deutschland) verwendet.
Die Verwendung von Polymerasen, die aus natürlich vorkommenden Polymerasen durch gezielte oder evolutive Verändemng optimiert worden sind, ist ebenfalls bevorzugt. Bei der Durchfühmng der PCR in Gegenwart des Substanzbibliothekenträgers ist insbesondere die Verwendung der Taq-Polymerase der Firma Eppendorf (Hamburg, Deutschland) bzw. des Advantage-cDNA- Polymerase-Mix von Clontech (Palo Alto, CA, USA) bevorzugt.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft die Verwendung der erfindungsgemäßen Vorrichtung zur Durchfühmng von Mikroarray-basierten Tests. Im Folgenden sind spezielle Ausgestaltungen der erfindungsgemäßen Vorrichtung bzw. des erfindungsgemäßen Verfahren dargestellt.
In Abbildung 5 wird gezeigt, dass die erste Fläche, hier eine elastische Membran, in die vorzugsweise eine Heizvorrichtung integriert ist, durch einen Stift bzw. einen Stößel deformiert und dadurch der Chip in Richtung der Detektionsebene gedrückt wird. Femer wird durch einen Abstandshalter auf der zweiten Fläche die Detektionsebene in die Reaktionskammer gedrückt und nähert sich damit von oben dem DNA-Chip, bis die Flüssigkeit zwischen DNA-Chip und Detektionsebene nahezu vollständig verdrängt wird. Durch das Führen der Detektionsfläche in Richtung des Chips werden die die Reaktionskammer abdichtenden elastischen Dichtungen komprimiert. Die verdrängte Flüssigkeit deformiert die Dichtung derart, dass die Luft in Dmckausgleichskammem komprimiert wird.
Die Prozesseinheit kann aber auch so gestaltet werden, dass entweder nur die erste Fläche, z.B. in Form einer elastischen Membran, verformt wird oder aber nur die Detektionsebene in die Kammer gedrückt wird.
In Abbildung 6 ist eine weitere technische Ausgestaltung zur Kompression der Prozesseinheit dargestellt. Die Reaktionskammer ist seitlich und auf der der Detektionsebene gegenüberliegenden Seite von einer Dichtungsmembran umschlossen, auf der der DNA-Chip befestigt ist. Die Dichtungsmembran verschließt auf der Höhe des DNA-Chips ein Loch an der Unterseite des Kammerkörpers. Das Loch ist etwas kleiner als der DNA-Chip. Bei der Durchfühmng einer PCR in der Reaktionskammer wird durch den aufgmnd der mit der PCR verbundenen höheren Temperaturen entstehenden Innendruck in der Kammer das Loch fest verschlossen. Die Kammer ist also trotz labiler Dichtungsmembran dmckfest (Prinzip des selbstschließenden Ventils). Zur Detektion wird ein Stift bzw. ein Stößel durch das Unterseitenloch geschoben. Die Dichtungsmembran wird angehoben und der DNA- Chip gegen die Detektionsebene gedrückt. Um die notwendige Elastizität der Dichtungsmembran zu gewährleisten, kann die Membran mit einer Ausgleichsfalte versehen werden. Durch die verdrängte Flüssigkeit werden auch bei dieser Ausgestaltung die Dmckausgleichskammem komprimiert.
Die folgenden Beispiele dienen der Erläutemng der Erfindung und sollen in nicht einschränkender Weise ausgelegt werden.
Beispiele
Beispiel 1 : Aufbau einer Reaktionskartusche ohne integrierte Heizung
In den Abbildungen 8 und 9 ist ein Ausfühmngsbeispiel einer Prozessiemngseinheit ohne integrierte Heizung sowie eine Vorrichtung zum Führen des DNA-Chips gegen die Detektionsebene dargestellt. Der DNA-Chip in der gezeigten Vorrichtung kann durch ein konventionelles Fluoreszenzmikroskop (z.B. Axioskop, Zeiss, Jena, Deutschland) ausgelesen werden.
Beispiel 2: Aufbau einer Reaktionskartusche mit Silizium-Heizsubstrat
Bei der in den Abbildungen 10 und 11 dargestellten Variante der Prozessiemngseinheit der erfindungsgemäßen Vorrichtung handelt es sich um eine miniaturisierte Reaktionskartusche mit einem integrierten Sonden-Array (DNA- Chip), einem Silizium-Heizsubstrat mit integriertem Temperatursensor ("Heizsubstrat") zur Einstellung distinkter Temperaturen in der Reaktionskammer sowie einer Leiterplatte mit optionalem EPROM zur elektrischen Kontaktiemng des Heizsubstrates. Die einzelnen Bestandteile sind in zwei aus Kunststoff gefertigten Halbschalen eingebettet. Die gesamte Einheit stellt ein räumlich geschlossenes System dar, in dem alle erforderlichen Reaktionen (z.B. PCR) z.B. temperaturgesteuert vorgenommen werden können.
In die untere Halbschale wird als erstes die Leiterplatte (mit dem EPROM nach unten) in den vorgesehenen Schacht eingelegt. Auf der Oberseite der Leiterplatte sind drei elektrische Kontaktierungsflächen ("Kontaktpads") angeordnet, welche die elektrische Verbindung mit dem nachfolgend eingelegten Heizsubstrat gewährleisten, welches ebenfalls drei Kontaktpads trägt. Dieses Heizsubstrat hat eine Größe 8 mm x 6 mm und eine Dicke von etwa 0,6 mm. Das Heizsubstrat gewährleistet eine genaue Einstellung verschiedener Temperaturen (z.B. von 40°C- 95 °C) innerhalb der durchgeführten Untersuchung. Die Messung der Temperatur in der Reaktionskammer kann dabei entweder über den im Heizsubstrat integrierten Sensor oder aber über eine externe Messeinheit, welche die Temperatur direkt auf der Oberfläche des Heizsubstrates misst, erfolgen. In letzterem Falle kann auf den integrierten Sensor im Heizsubstrat verzichtet werden. Die zum Heizen und/oder zur Temperaturmessung verwendeten integrierten Bauelemente können zum Beispiel Dioden oder auch Transistoren sein. Die dem Reaktionsraum zugewandte Fläche des Silizium-Heizsubstrates enthält keinerlei elektrische Systeme und ist mit einer SiO2-Passivierungsschicht überzogen.
Als nächstes Bauteil folgt eine elastische Dichtung, welche den Reaktionsraum seitlich begrenzt.
In der Mitte des Reaktionsraumes wird der DNA-Chip so befestigt, dass das Sonden- Array der Detektionsebene zugewandt ist. Nach dem Einbau der Detektionsebene in Form einer Glasfläche ragt diese noch 0,2 mm aus der unteren Halbschale hervor. Durch das nachfolgende Anfügen der von Passstiften geführten oberen Halbschale wird die Glasfläche gegen die Dichtung gepresst und gewährleistet auf diese Weise eine optimale Abdichtung der Reaktionskammer.
Anschließend kann die Reaktionskammer mit Reaktionslösung befüllt werden. Dabei ist zu beachten, dass nur der Innenraum mit dem Chip, nicht aber die äußeren Kammern befüllt werden. Die benötigten Flüssigkeiten werden mit Kanülen über die vorgesehene Kanülenführung in den Reaktionsraum eingespritzt. Anschließend können über das Silizium-Heizsubstrat gesteuerte biochemische Reaktionen, wie z.B. PCR und/ oder Hybridisiemng in der Reaktionskammer durchgeführt werden.
Zur Detektion der Zwischenergebnisse oder des Endresultats wird die
Detektionsebene mittels der Abstandshalter der Detektionseinheit von oben gegen den DNA-Chip gedrückt, bis der Abstand zwischen Detektionsebene und Sondenarray etwa null ist. Dabei wird die umliegende Flüssigkeit in die äußeren Kammern verdrängt, wo sie die dortige Luft komprimiert. Dieser Vorgang ist reversibel und kann zum Beispiel nach jedem PCR-Zyklus vorgenommen werden.
Durch das kompakte Design sowie die interne Leiterplatte mit EPROM und das integrierte Heizsubstrat ist diese Variante der erfindungsgemäßen Vorrichtung besonders für den mobilen Einsatz geeignet.
Beispiel 3: Nachweis der Abnahme des Hintergmndsignals durch Verdrängung des Analyten
Alle in diesem Beispiel beschriebenen Fluoreszenzmessungen wurden mit einem Fluoreszenzmikroskop (Zeiss, Jena, Deutschland) vorgenommen. Die Anregung erfolgte im Auflicht mit einer Weißlichtquelle und einem für Cyanine 3 geeigneten Filtersatz. Die Signale wurden mit einer CCD-Kamera (PCO-Sensicam, Kehlheim, Deutschland) aufgezeichnet. Die Spaltbreite bezeichnet im Folgenden den Abstand zwischen Mikroarray und Detektionsebene. a) Messung des Fluoreszenzsignals des Analyten in Abhängigkeit von der Spaltbreite
Es wurden Kanalmasken mit definierter Kanaltiefe (5 μm, 10 μm, 28 μm) aus Sylgard abgegossen. Die Kanäle wiesen eine Breite von 125 μm auf. Ein Glaschip wurde über die unterschiedlich tiefen Kanäle gelegt. Die Kanäle wurden dann mit einer 200 nM-Lösung eines Cy 3 -markierten Oligonukleotidesin 2 x SSC + 0,2 %SDS- befüllt und das Signal bei einer Belichtungszeit von 1,5 s gemessen.
In Abbildung 12 sind die Messergebnisse dargestellt. Mit steigender Kanaltiefe steigt das Signal linear an. Es konnte eine Regressionsgerade errechnet werden (Gleichung 1)
(Gleichung 1) F(x) = 6,2468x + 50,016
Mit Hilfe der erhaltenen Regressionsgleichung (Gleichung 1) können nun die Schichtdicken zwischen DNA-Chip und Detektionsfläche anhand des Hintergrundfluoreszenzsignals bestimmt werden.
Dies wurde überprüft, indem zwei Glasflächen (Chips) aufeinander gelegt wurden, die auf ihrer Oberseite strukturierte Marken trugen (Kreuze, Zahlen und Datamatrix in Abbildung 14), aufweiche fokussiert werden konnte. Die Chips wurden so aufeinander gelegt, dass die strukturierten Marken zueinander orientiert und nur durch eine dünne Flüssigkeitsschicht voneinander getrennt waren. Als Flüssigkeit wurde eine 200 nM-Lösung eines Cy 3 -markierten Oligonukleotides in 2 x SSC + 0,2 %SDS verwendet. Mit Hilfe der mit einer Skalierung versehenen Fokussiemngseinrichtung des Mikroskops konnten der Abstand zwischen den Marken und damit die Schichtdicke des Flüssigkeitfilms direkt bestimmt werden. Die Intensität des Hintergmndes beträgt 158 Grauwerte bei einer Belichtungszeit von 0,75 s. Die am Fluoreszenzmikroskop gemessene Spaltbreite beträgt 40 μm. Unter der Annahme, dass sich die Messgrauwerte linear zur Belichtungszeit verhalten (siehe Abbildung 13), erhält man mit Gleichung 1 eine Spaltbreite von 42,6 μm. Die so ermittelten Werte für die Dicke der Flüssigkeitsschicht stimmen gut überein.
b) Experimente zur Verringerung beziehungsweise Eliminierung der Hintergrundfluoreszenz durch Komprimiemng der Prozesseinheit
Bei diesen Experimenten wurde das Hybridisiemngssignal in Abhängigkeit der Verdrängung des fluoreszierenden Analyten durch Andrücken eines Stößels gemessen. Der experimentelle Aufbau ist in Abbildung 15 skizziert. Durch das Andrücken des Stößels wurde der Silizium-Chip (3,15 x 3,15 mm) gegen einen Sonden-Chip (DNA-Chip) gedrückt und dabei die zwischen den beiden Flächen liegende Flüssigkeit verdrängt.
Zur Durchfühmng des Experimentes wurde die Kammer mit einer Hybridisiemngslösung befüllt, die ein Modellsystem für die Verhälnisse bei einer PCR-Hybridisiemng darstellt. Die Hybridisiemngslösung enthielt ein Cy3-markiertes Oligonukleotid (Endkonzentration 2 nM in 2 x SSC + 0,2 % SDS), welches Komplementarität zum Sonden-Array aufwies. Zusätzlich enthielt die Hybridisiemngslösung ein ebenfalls Cy3 -markiertes Oligonukleotid, welches nicht mit dem Sondenarray hybridisiert und daher lediglich zum Fluoreszenz- Hintergrundsignal in der Lösung, nicht aber zu den spezifischen Signalen an den Spots beiträgt.
Die Hybridisiemng erfolgte für 10 min. Beim anschließenden Auslesen der Hybridisiemngssignale wurde eine feste Belichtungszeit von 1,5 s gewählt. Am Versuchsaufbau wurde zwischen jeder Aufnahme der Stößel weiter an den Sonden- Array (Detektionsfläche) gedrückt, so dass sich der mit Hybridisiemngslösung gefüllte Spalt zwischen Array und 2. Fläche verringerte.
Abbildung 16 zeigt eine Aufnahme des Hybridisierungssignals bei einer Spaltbreite von 10 μm. Die Messergebnisse für Hintergmndsignal und Hybridisiemngssignal an den Spots sind in Abbildung 17 dargestellt. Beide Signale verhalten sich erwartungsgemäß linear zur Spaltbreite. Daher verändert sich das um den Hintergmnd korrigierte Spotsignal nicht mit der Spaltbreite.
Bei Erreichen eines Grauwertes von 255 ist das Messinstrument übersteuert. Das heißt, mit einer Spaltbreite von etwa 17 μm ist eine Messung der Spotintensität nur durch Verringerung der Belichtungszeit möglich. Damit sinkt dann die Messempfindlichkeit.
Durch Verringerung der Spaltbreite erhöht sich somit der dynamische Meßbereich. Durch Hintergrundbereinigung der Spotsignale (Differenzbildung) kann die Spaltbreite über einen weiten Bereich ohne eine Beeinträchtigung der Messung und Messergebnisse. variiert werden Bei sehr großen Spaltbreiten (>20 μm) wird die Messung durch Übersteuerung des Detektors stark beeinträchtigt.
c) Amplifikation, Hybridisierung und Detektion als Eintopfreaktion
Es wurden zwei Prozesseinheiten mit einem Aufbau entsprechend Abbildung 15 montiert und durchnumeriert.
Es wurden zwei identische Reaktionsansätze mit folgender Zusammensetzung hergestellt: Reaktionsansatz:
20mM dNTPs 0,5 μl I M Kaliumacetat (Kaac) 3 μl
25mM Mg-acetat Eppendorf 5 μl
Clontech C-DNA PCR Puffer 5 μl
Eppendorf Taq-Polymerase 3 μl
1 OμM Primer CMV_DP_Cy3 1 μl Cy3_5'TGAGGCTGGGAARCTGACA3'
1 OμM Primer CMV_UP_NH2 0,66 μl
5 ' GGGYGAGGA YAACGAAATC3 '_NH2 1 OμM Primer CMV_UP 0,33 μl
5 ' GGGYGAGGA YAACGAAATC3 ' 1 OμM Primer Entero_DP_Cy3 1 μl
Cy3_5'CCCTGAATGCGGCTAAT3' 1 OμM Primer Entero_UP_NH2 0,66 μl
5 'ATTGTC ACC ATAAGC AGCC3 '_NH2 1 OμM Primer EnteroJJP 0,33 μl 5' ATTGTC ACCATAAGCAGCC3'
10μM Prime HSVl_DP_Cy3 1 μl
Cy3_5 ' CTCGTAAA ATGGCCCCTCC3 ' lOμM Primer HSV1_UP_NH2 0,66 μl
5 ' CGGCCGTGTGAC ACTATCG3 '_NH2 lOμM Primer HSV1 JP 0,33 μl
5 ' CGGCCGTGTGAC ACTATCG 1 OμM Primer HS V2_UP_Cy3 1 μl
Cy3_5 ' CGCTCTCGTA AATGCTTCCCT3 ' 1 OμM Primer HSV2_DP_NH2 0,66 μl
5'TCTACCCACAACAGACCCACG3'_NH2 lOμM Primer HSV2_DP 0,33 μl
5'TCTACCCACAACAGACCCACG3' 1 OμM Primer VZV_DP_Cy3 1 μl
Cy3_5'TCGCGTGCTGCGGC 1 OμM Primer VZV_UP_NH2 0,66 μl
5 ' CGGC ATGGCCCGTCTAT3 '_NH2 lOμM Primer VZV_UP 0,33 μl 5'CGGCATGGCCCGTCTAT
Template CMV 1 μl
PCR-Grade Water 22,5 μl total 50 μl
Die Prozesseinheiten wurden mit je 50 μl Reaktionsansatz befüllt, und nach folgendem Temperatur-Zeit-Regime prozessiert.
1 Denaturieren 95 °C Dauer 300 s
2 Denaturieren 95 °C Dauer 10 s
3 Annealing/Extension 60 °C Dauer 20 s
Wiederholung von Schritt 2 bis 3 35 mal
4 Denaturierung 95 °C Dauer 300 s
5 Hybridisiemng 40 °C Dauer 3600 s
Anschließend wurden die beiden Prozesseinheiten unterschiedlichen Behandlungen unterzogen. Im ersten Fall (Prozesseinheit 1) wurde die Hintergrundfluoreszenz durch Verdrängung des Analyten verringert. Dies wurde gewährleistet, indem der Stößel nach oben in Richtung der Detektionsfläche gedrückt wurde, so dass sich der mit der Reaktionslösung gefüllte Spalt weitestgehend verkleinert.
Im zweiten Fall (Prozesseinheit 2) wurde der Analyt gegen eine nicht fluoreszierende Lösung ausgetauscht. Der Austausch der Lösung erfolgte mit 2 x SSC-Puffer bei einer Flussrate von 300 μl/min und einem Spülvolumen von 900 μl. Diese Vorgehens weise entspricht dem Stand der Technik.
Anschließend wurden die beiden Strategien zur Verringerung der Hintergrundfluoreszenz miteinander verglichen. Dazu wurden die Hybridisiemngssignale in beiden Prozesseinheiten mit Hilfe des beschriebenen Fluoreszenzmikroskop-Kamera-Aufbaus detektiert.
Die Belichtungszeit betmg 5 s (siehe Abbildung 18 und Abbildung 19). Der Vergleich der Spotintensitäten erfolgte anhand des Spots mit der Substanz CMV_S_21-3 (5' -NH2TGTTGGGCAACCACCGCACTG-3'). Der Ort der Sonden ist in den Abbildungen 18 und 19 gekennzeichnet.
In Abbildung 20 ist das Ergebnis des Experimentes zusammengefasst. Durch die Spülung der Reaktionskammer in der Prozesseinheit 2 verringert sich das Hybridisiemngssignal gegenüber der Verdrängung in Prozesseinheit 1. Es wird angenommen, dass eine Ausblutung der Sonden dafür verantwortlich ist. Die Methode der Analytverdrängung durch das erfindungsgemäße Verfahren ist somit dem Austausch der Lösungen vorzuziehen.
Um einen Nachweis über Menge und Integrität des Amplifikationsproduktes zu erhalten, wurden zusätzlich 5 μl jeder Reaktionslösung auf einem 2 %-igen Agarosegel analysiert. Das Ergebnis (Ethidiumbromid-gefärbtes Gel detektiert auf eine UV Transilluminator) ist in Abbildung 21 zu sehen.
Beispiel 4: Gerät zur Prozessierung und Detektion von erfindungs emäßen Reaktionskartuschen
Ein Gerät zur Prozessierung und Detektion von erfindungsgemäßen Reaktionskartuschen gemäß diesem Ausfühmngsbeispiel ist in Abbildung 28 gezeigt. Das Gerät zur Durchfühmng von Mikroarray-basierten Tests mit erfindungsgemäßen Reaktionskartuschen besteht üblicherweise aus mehreren Komponenten, welche in einem Gerät vereint, aber auch modular aus mehreren Teilgeräten zusammengestellt sein können. Die Vorrichtung kann dabei wahlweise über einen integrierten Rechner oder eine Schnittstelle zu einem externen Rechner angesteuert werden. Der Aufbau der Vorrichtung ist in Abbildung 28 veranschaulicht.
Ein beispielhafter Ablauf findet wie folgt statt:
Das Fluid-Interface der Reaktionskartusche wird vom Anwender manuell in die Befüllstellung gebracht, bei der die Kanülen die Dichtung des Kammerkörpers durchstechen. Anschließend füllt der Anwender das Reaktionsgemisch mit Hilfe einer Standard-Laborpipette in die Reaktionskammer ein. Beide Schritte können auch von einer entsprechend ausgeführten Vorrichtung übernommen werden. Das Fluidinterface wird nun wieder in die Ausgangsstellung bewegt, wobei auch dieser Vorgang von einer entsprechend ausgeführten Vorrichtung durchgeführt werden kann.
Die Reaktionskartusche wird daraufhin in das Gerät eingelegt. Ein in der Vorrichtung angeordneter Datamatrix-Reader erkennt die auf der Reaktionskartusche angebrachte eineindeutige Datamatrix und lädt anhand eines vom Nutzer übermittelten Datensatzes die Kenndaten für die Kartusche sowie für den durchzuführenden Test in den Steuerrechner. Dieser steuert dann die einzelnen Prozessschritte, welche beispielsweise eine Amplifikation und Hybridisiemng umfassen können. Über den integrierten Drückmechanismus wird anschließend zur Detektion der Kapillarspalt in der Reaktionskammer erfindungsgemäß verringert.
Die Detektion kann mit herkömmlichen fluoreszenzoptischen bild- oder nichtbildgebenden Systemen erfolgen. Die gewonnenen Daten werden anschließend an einen Steuerrechner übermittelt, welcher diese auswertet und auf einer internen oder externen Schnittstelle präsentiert oder speichert.
Anschließend kann die Reaktionskartusche durch den Anwender aus dem Gerät entnommen und entsorgt werden.
Beispiel 5: Reaktionskartusche aus elektrisch leitfähigem Kunststoff
Eine wie in Abbildung 29 dargestellte Reaktionskartusche wird hergestellt.
Die untere Halbschale (1) der Reaktionskartusche besteht aus elektrisch leitfähigem Kunststoff als Boden der Reaktionskammer (Conduct 2, RKT, Deutschland). Auf der Unterseite des Kammerbodens wird ein Folien-PtlOO Temperatursensor mit Hilfe eines geeigneten Klebers, z.B. Loctite 401 (Loctite, Deutschland) fixiert. Die untere Halbschale bildet gemeinsam mit der Dichtung (3) und dem Deckglas (4) die Reaktionskammer der erfindungsgemäßen Kartusche.
Die Kartusche weist femer eine Gewindebohmng (2) zum Einsetzen von Schrauben zur elektrischen Kontaktiemng, eine obere Halbschale (5) der Reaktionskartusche, z.B. aus Acryl, eine Bohrung (6) zur Befestigung der oberen Halbschale sowie ein Detektionsfenster (7) in der oberen Halbschale auf.
Ein Standard-PCR-Reaktionsmix wird hergestellt: 30,5 μl deionisiertes Wasser 5 μl lOxPCR-Puffer (z.B. 10 x cDNA PCR Reaction Buffer, Clontech, Deutschland) 5 μl Mg-Acetat, 25 raM (z.B. Eppendorf, Deutschland) 0,5 μl dNTP, 20 mM each 1 μl 16sfDl (5'-AGAGTTTGATCCTGGCTCAG-3'), 10 mM 1 μl 16sRa (5'-TACCGTCACCATAAGGCTTCGTCCCTA-3'), 10 mM 3 μl Taq DNA Polymerase (z.B. Genaxxon, Deutschland) 1 μl Template
Mit Hilfe einer Insulinspritze (Becton Dickinson, Deutschland) wird die Reaktionskammer mit dem Reaktionsgemisch gefüllt. Zum Entlüften während des Befüllvorganges wird eine zweite Kanüle durch die Dichtung des Kammerkörpers gestochen. Nach der Befüllung werden Entlüftungskanüle und Insulinspritze fachgerecht entsorgt. Die Kammer wird anschließend über die beiden dafür vorgesehenen Schrauben an einer Regeleinheit angeschlossen (CLONDIAG chip technologies GmbH, Deutschland) Ebenso wird der Temperatursensor auf der Unterseite der unteren Halbschale an diese Regeleinheit angeschlossen. Diese Regeleinheit ist in der Lage, nach einem vorgegebenen Programm bestimmte Temperaturen in der unteren Halbschale zu regeln.
Auf diese Weise wird das nachfolgende PCR-Programm durchgeführt: 5 min 95°C, 30 x (30 s 95°C, 30 s 62°C, 50 s 72°C).
Abbildung 30 zeigt eine Aufnahme der Reaktionskartusche mit einer Wärmebildkamera bei einer Temperatur von 95°C.
Nach Abschluss des Programms wird das Reaktionsprodukt mit Hilfe einer Insulinspritze aus der Reaktionskammer entfernt. Zur Belüftung während der Leemng der Reaktionskammer wird analog zur Befüllung eine Kanüle durch die Dichtung des Kammerkörpers gestochen.
Das Reaktionsprodukt wird nun durch Agarosegel-Elektrophorese analysiert. Dazu werden 5μl der Reaktionslösung mit einem geeigneten Puffer (z.B. 5 μl 250 mM in 50%) Glycerin, Bromphenolblau) in die Tasche eines 2% Agarosegels aufgetragen und eine Elektrophorese durchgeführt. Das Resultat ist in Abbildung 31 dargestellt.
Wie deutlich zu erkennen ist, konnte in allen Fällen ein Amplifikationsprodukt der korrekten Größe und in zur Positivkontrolle vergleichbarer Menge erhalten werden. Abbildungen
Abbildung 1 :
Übersicht über die erfindungsgemäße Vorrichtung umfassend eine Auslesegerät und die Prozesseinheit.
Abbildung 2:
Darstellung der erfindungsgemäßen Prozesseinheit.
Abbildung 3:
Explosionszeichung der erfindungsgemäßen Prozesseinheit umfassend die Detektionsfläche, Dichtung, DNA-Chip und Kammerkörper. Der Kammerkörper weist eine reversibel deformierbare elastische Membran auf.
Abbildung 4:
Darstellung des Kammerkörpers mit kunstoffumspritzten Heizmeander in der elastischen Membran.
Abbildung 5: Darstellung des Zustandes der erfindungsgemäßen Prozesseinheit im Auslesegerät A) während der PCR, B) vor der Detektion, und C) während der Detektion.
Abbildung 6:
Darstellung der Funktionsweise der erfindungsgemäßen Prozesseinheit mit Membrandichtung, Ausgleichsfalte und Unterseitenloch. In A) ist die Prozesseinheit in der Normalstellung zu sehen. In B) ist die Prozesseinheit in der komprimierten Form zu sehen, bei der die fluoreszierende Lösung zwischen DNA-Chip und Detektionsfläche verdrängt ist. Abbildung 7:
Darstellung eines Drehtellers, auf dem vier Temperaturblöcke installiert sind. Die Temperaturblöcke sind auf jeweils eine Temperatur thermostatisiert. Durch Drehbewegung des Tellers und/oder der Prozesseinheit lässt sich die Temperatur in der Reaktionskammer wechseln.
Abbildung 8:
Abbildung eines Ausführungsbeispiels einer gefrästen und verschraubten Prozesseinheit.
Abbildung 9:
Abbildung eines Ausführungsbeispiels einer Komprimierungs- bzw. Verquetschungsapparatur für die erfindungsgemäße Prozesseinheit zur Detektion der Hybridisiemngssignale in einem konventionellen Fluoreszenzmikroskop.
Abbildung 10:
Darstellung einer erfindungsgemäßen Prozesseinheit mit einer Platine als elektrischem Anschluss für Heizer und Temperatursensor. Der Heizer ist als Halbleiterbauteil ausgeführt.
Abbildung 11 :
Explosionzeichnung der in Abbildung 10 gezeigten Prozesseinheit.
Abbildung 12:
Darstellung der Regressionsgeraden zur Ermittlung der Breite eines mit Fluorophor befüllten Spaltes. Abbildung 13:
Darstellung des linearen Verlaufs des Fluoreszenzsignals mit steigender
Belichtungszeit über den gemessenen Bereich.
Abbildung 14:
Fluoreszenz-Aufnahme zweier übereinander gelegter, im Zwischenraum mit 200 nM Cy3-Fluorophor befüllter Chips. Die Intensität des Hintergrundes beträgt 158 Grauwerte bei einer Belichtungszeit von 0,75 s. Die am Fluoreszenzmikroskop gemessene Spaltbreite beträgt 40,00 μm. Unter der Annahme, dass sich die Messgrauwerte linear zur Belichtungszeit verhalten (siehe Abbildung 13), erhält man mit Gleichung 1 eine Spaltbreite von 42,6 μm. Die so ermittelten Schichtdicken werte stimmen gut überein.
Abbildung 15: Darstellung des Versuchsaufbaus zur spülungsfreien Detektion von DNA- Arrays.
Abbildung 16:
Fluoreszenzaufnahme eines Arrays mit angedrücktem Chip. An den weißen Rändern ist die Hintergmndstrahlung durch die verdrängte Probenlösung zu erkennen.
Abbildung 17:
Abnahme der absoluten Intensitäten von Signal und Hintergmnd bei Verringerung der Spaltbreite. Die Differenz beider Werte bleibt über den Messbereich konstant.
Abbildung 18.
Detektion der Sondensignale durch Verdrängung der Hintergrundfluoreszenz. Am linken Rand ist die nicht verdrängte Flüssigkeit zu erkennen. Abbildung 19:
Detektion der Sondensignale eines durch Spülung hintergrundbereinigten DNA-
Arrays.
Abbildung 20:
Zusammenfassung der Messergebnisse zum experimentellen Vergleich zwischen dem Verdrängen und dem Austausch des Analyten.
Abbildung 21 : Referenzanalytik der PCR in einer Prozesseinheit mittels Gelelektrophorese.
Abbildung 22:
Schematische Darstellung einer abnehmbaren Befülleinheit zur Befüllung von Reaktionskartuschen mit reaktiven Substanzen oder Puffern. Hierfür werden folgende Bezugszeichen verwendet:
1 Befülleinheit
1.1 mechanisches Interface Befülleinheit- Kartusche
2 Kartusche
2.1 mechanisches Interface Kartusche-Befülleinheit 2.2 Dichtung
2.3 Reaktionskammer
2.4 Bevorzugte Öffnung für die Kanülen in der Kartusche
3 Befüllungskanal
3.1 Fluidisches und mechanisches Interface zu probenbeaufschlagenden Werkzeugen
3.2 Befüllungskanüle
4 Abfallkanal mit Abfallbehälter 4.1 Entlüftungsloch 4.2 Abfallkanüle
Abbildung 23:
Darstellung des Ablaufs zur Befüllung einer Reaktionskartusche mit einer modularen Befülleinheit.
Abbildung 24:
Schematische Darstellung einer integrierten Befülleinheit zur Befüllung von Reaktionskartuschen mit reaktiven Substanzen oder Puffern in der Vorzugsstellung ohne Penetration der Dichtung des Kammerkörpers. Hierfür werden folgende Bezugszeichen verwendet:
1 Befülleinheit- Kartusche
1.1 mechanisches Interface Kartusche-Befülleinheit
2 Reaktionskartusche 2.1 mechanisches Interface Kartusche-Befülleinheit
2.2 Dichtung
2.3 Reaktionsraum
2.4 Bevorzugte Öffnung für die Kanülen im Kartuschengehäuse-Gehäuse
3 Befüllungskanal 3.1 Fluidisches und mechanisches Interface zu probenzuführenden Werkzeugen 3.2 Befüllungskanüle
4 Abfallkanal mit Abfallbehälter
4.1 Fluidisches und mechanisches Interface zu probenabführenden Einheiten
4.2 Abfallkanüle 5 Einrichtung für Vorzugsstellung, hier Feder
Abbildung 25:
Darstellung des Ablaufs zur Befüllung einer Reaktionskartusche mit einer integrierten Befülleinheit. Abbildung 26:
Schematische Darstellung einer integrierten Befülleinheit mit integriertem Abfallbehälter zur Befüllung von Reaktionskartuschen mit reaktiven Substanzen oder Puffern in der Vorzugsstellung ohne Penetration der Dichtung des Kammerkörpers. Hierfür werden zusätzlich zu den Bezugszeichen aus Abbildung 24 folgende Bezugszeichen verwendet: 4 Abfallkanal mit Abfallbehälter
4.1 Entlüftungsloch
Abbildung 27: a) Befüllung des Reaktionsraumes bei Abfühmng der überschüssigen Flüssigkeit in einen Abfallbehälter oder -kanal b) Abfühmng überschüssiger Flüssigkeit bei der Verringemng des Reaktionsraumes zur Detektion
Hierbei werden folgende Bezugszeichen verwendet:
1 Reaktionskammer
2 Dichtung
3 Drückmechanismus
4 Fluidinterface
4.1 abführende Kanüle
4.2 zuführende Kanüle
Abbildung 28: Gerät zur Prozessiemng und Detektion von erfindungsgemäßen Reaktionskartuschen gemäß dem Ausführungsbeispiel 4. Hierbei werden folgende Bezugszeichen verwendet: 1 Reaktionkartusche 1.1 Reaktionskammer mit Micro- Array
1.2 Fluidsystem-Interface
1.3 Dichtung des Kammerkörpers
1.4 Elektrische Anschlüsse für Heizsystem, evtl. auch Temperatursensoren 1.5 Chip
1.6 Lagesicherungssystem zur Realisiemng einer Vorzugslage und Fühmng der Kanülen
1.7 Kanülen
2 Drückmechanismus 3 Identifikationssystem, z.B. Barcode oder Datamatrix
3.1 Identifikationsoptik, z.B. Barcode- oder Datamatrix-Reader
4 Detektionsoptik
5 Fluidanschlüsse
Abbildung 29:
Reaktionskartusche gemäß Ausführungsbeispiel 5.
Abbildung 30:
Aufnahme der Reaktionskartusche gemäß Ausführungsbeispiel 5 mit einer Wärmebildkamera bei einer Temperatur von 95 °C.
Abbildung 31 :
Analyse des Reaktionsprodukts gemäß Ausführungsbeispiel 5 durch Agarosegel- Elektrophorese. Dabei bedeuten: 1, 5: Positivkontrolle aus dem Thermocycler 2-4: Reaktionsprodukten aus Kartuschen 6: lOObp Standard

Claims

Ansprüche
1. Vorrichtung zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen, enthaltend:
a) einen Mikroarray mit einem Substrat, auf dem auf Array-Elementen Sondenmoleküle immobilisiert sind, wobei der Mikroarray auf einer ersten Fläche der Vorrichtung angeordnet ist; und b) eine Reaktionskammer, die zwischen der ersten Fläche mit dem darauf angeordneten Mikroarray und einer zweiten Fläche gebildet ist, wobei der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
2. Vorrichtung nach Anspmch 1 , wobei der Abstand zwischen dem Mikroarray und der zweiten Fläche in einem Bereich von etwa 0 bis etwa 1 mm veränderbar ist
3. Vorrichtung nach Anspmch 1 oder 2, wobei die Vorrichtung zusätzlich eine Temperatursteuemngs- und/oder -regeleinheit zur Steuemng und/oder Regelung der Temperatur in der Reaktionskammer umfasst.
4. Vorrichtung nach Anspmch 3, wobei die Temperatursteuemngs- und -regeleinheit in die erste Fläche integriert ist.
5. Vorrichtung nach Anspmch 3, wobei die Vorrichtung Temperatursteuerungs- und regeleinheit Temperaturblöcke umfasst, die jeweils auf eine definierte Temperatur vorgeheizt sind.
6. Vorrichtung nach Anspmch 5, wobei die Temperaturblöcke linear oder auf einem Drehteller angeordnet sind.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung ein Detektionssystem umfasst.
8. Vorrichtung nach Anspmch 7, wobei das Detektionssystem ein optisches System, vorzugsweise ein fluoreszenzoptisches System ist.
9. Vorrichtung nach Anspmch 8, wobei das fluoreszenzoptische System ein Fluoreszenzmikroskop ohne Autofokus ist.
10. Vorrichtung nach einem der Ansprüche 7 bis 9, wobei das Detektionssystem mit einem Abstandshalter verbunden ist, der bei Auflage auf der zweiten Fläche einen Abstand zwischen dem Detektionssystem und der zweiten Fläche einstellt.
11. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei für den zwischen der ersten und zweiten Fläche gebildeten Reaktionsraum seitlich begrenzende Ausgleichsbereiche vorgesehen sind, die bei Verringerung des Abstands zwischen Mikroarray und zweiter Fläche das Volumen in der Reaktionskammer im Wesentlichen konstant halten.
12. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die zweite Fläche aus einem optisch durchlässigen Material, vorzugsweise Glas ausgestaltet ist.
13. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei der zwischen der ersten und zweiten Fläche gebildete Reaktionsraum seitlich durch elastische Dichtungen begrenzt ist.
14. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die erste Fläche zumindest im Bereich unterhalb des Mikroarrays derart ausgestaltet ist, dass der Mikroarray relativ zur zweiten Fläche so führbar ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
15. Vorrichtung nach Anspmch 14, wobei die erste Fläche zumindest im Bereich unterhalb des Mikroarrays elastisch verformbar ist.
16. Vorrichtung nach Anspmch 15 , wobei die erste Fläche aus einem elastischen Kunststoff ausgestaltet ist.
17. Vorrichtung nach einem der Ansprüche 12 bis 14, wobei die erste Fläche mittels zweier übereinander liegender Schichten ausgestaltet ist, wobei eine äußere Schicht der beiden übereinander liegenden Schichten zumindest im Bereich unterhalb des Mikroarrays eine Ausspamng aufweist.
18. Vorrichtung nach Anspmch 17, wobei eine innere der beiden übereinander liegenden Schichten aus einer elastischen Dichtung gebildet ist.
19. Vorrichtung nach einem der Ansprüche 14 bis 18, wobei die Vorrichtung mindestens ein Mittel umfasst, mit dem der Mikroarray relativ zur zweiten Fläche führbar ist.
20. Vorrichtung nach Anspmch 19, wobei der Mikroarray durch Dmck und/oder Zug des Mittels auf die erste Fläche relativ zur zweiten Fläche führbar ist.
21. Vorrichtung nach Anspmch 19 oder 20, wobei die erste Fläche durch das Mittel in Vibration versetzbar ist.
22. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die zweite Fläche relativ zur ersten Fläche so führbar ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
23. Vorrichtung nach einem der Ansprüche 10 bis 22, wobei die zweite Fläche durch Dmck und/oder Zug des Abstandshalters auf die zweite Fläche relativ zur ersten Fläche so führbar ist, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
24. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die erste Fläche und die zweite Fläche so führbar sind, dass der Abstand zwischen dem Mikroarray und der zweiten Fläche veränderbar ist.
25. Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Reaktionskammer ein Kapillarspalt zwischen dem Kammerträger und dem Mikroarray ist.
26. Vorrichtung nach Anspmch 25, wobei der Kapillarspalt eine Dicke im Bereich von etwa 0 μm bis etwa 100 μm aufweist.
27. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Reaktionskammer mindestens zwei Unterkammem umfasst, wobei in einem ersten nicht komprimierten Zustand die Unterkammem fluidisch miteinander verbunden sind und in einem zweiten komprimierten Zustand keine fluidische Verbindung zwischen den Unterkammem besteht.
28. Vorrichtung nach Anspmch 27, wobei jede Unterkammer einem definierten Bereich des Mikroarrays zugeordnet ist.
29. Vorrichtung nach Anspmch 27 oder 28, wobei der Mikroarray und/oder die zweite Fläche mit Kavitäten versehen sind, die als Wände zwischen den Unterkammem dienen.
30. Vorrichtung nach einem der Ansprüche 27 bis 29, wobei die Wände zwischen den Unterkammem durch elastische Dichtungen gebildet sind.
31. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung zusätzlich eine Befülleinheit und/oder Aufarbeitungseinheit zur Reinigung und/oder Aufkonzentration einer Probenlösung und/oder Steuemng des Be- und/oder Entladens der Reaktionskammer mit Fluiden umfasst.
32. Vorrichtung nach Anspmch 31 , wobei die Reaktionskammer und die Befüll- bzw. Aufarbeitungseinheit über zwei Kanülen miteinander verbunden sind, wobei die Kanülen so angeordnet sind, dass eine erste Kanüle die Zuführung von Fluiden aus der Befüll- bzw. Aufarbeitungseinheit in die Reaktionskammer gewährleistet und eine zweite Kanüle das Entweichen der durch die zugeführten Fluide aus der Reaktionskammer verdrängten Luft gewährleistet.
33. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung eine mit dem Detektionssystem verbundene Einheit zur Verarbeitung von durch das Detektionssystem aufgenommenen Signalen umfasst.
34. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung zusätzlich eine Schnittstelle für externe Rechner aufweist.
35. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung mit einer Codiemng, vorzugsweise einer Datenmatrix oder einem Barcode, versehen ist, die Informationen über die Substanzbibliothek und/oder die Durchführung der Vervielfältigungs- und/oder Nachweisreaktion enthält.
36. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Sonden- und/oder Targetmoleküle Biopolymere sind, die ausgewählt sind aus der Gmppe bestehend aus Nukleinsäuren, Peptiden, Proteinen, Antigenen, Antikörpern, Kohlenhydraten und/oder deren Analoga und/oder Mischpolymeren der vorstehend genannten Biopolymere.
37. Vorrichtung nach Anspmch 36, wobei die Sonden- und/oder Targetmoleküle Nukleinsäuren und/oder Nukleinsäureanaloga sind.
38. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung einen Kammerkörper aus elektrisch leitfähigem Material aufweist.
39. Vorrichtung nach Anspmch 38, wobei das elektrisch leitfähige
Material elektrisch leitfähiger Kunststoff ist.
40. Vorrichtung nach Anspmch 39, wobei der elektrisch leitfähige Kunststoff ausgewählt ist aus der Gmppe bestehend aus Polyamid mit 5-30%) Kohlefasem, Polycarbonat mit 5-30%» Kohlefasem, Polyamid mit 2-20% rostfreien Stahlfasem und PPS mit 5-40% Kohlenstofffaser.
41. Verfahren zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen, umfassend die folgenden Schritte: a) Einbringen einer Probe enthaltend Targetmoleküle in eine Reaktionskammer einer Vorrichtung nach einem der Ansprüche 1 bis 40; b) Detektieren einer Wechselwirkung zwischen den Targetmolekülen und den auf dem Substrat immobilisierten Sondenmolekülen.
42. Verfahren nach Anspmch 41 , wobei der Abstand zwischen Mikroarray und zweiter Fläche vor dem Detektieren in einer Position gehalten wird, die die Wechselwirkung zwischen den Targetmolekülen und den auf dem Substrat immobilisierten Sondenmolekülen ermöglicht.
43. Verfahren nach Anspmch 41 oder 42, wobei in Schritt b) der Abstand zwischen dem Mikroarray und der zweiten Fläche verändert, vorzugsweise verringert wird.
44. Verfahren nach Anspmch 43, wobei in Schritt b) der Abstand zwischen dem Mikroarray und der zweiten Fläche so verändert wird, dass die Probenlösung zwischen dem Mikroarray und der zweiten Fläche im Wesentlichen entfernt ist.
45. Verfahren nach einem der Ansprüche 41 bis 44, wobei die Targetmoleküle mit einem detektierbaren Marker versehen werden.
46. Verfahren nach Anspmch 45, wobei der detektierbare Marker ein Fluoreszenzmarker ist.
47. Verfahren nach Anspmch 46, wobei das Detektieren der Fluoreszenzmarker mittels eines Fluoreszenzmikroskops ohne Autofokus erfolgt.
48. Verfahren nach Anspmch 47, wobei das Detektieren der Fluoreszenzmarker mittels eines Fluoreszenzmikroskops mit Fixfokus erfolgt.
49. Verfahren nach einem der Ansprüche 41 bis 48, wobei die Sonden- und/oder Targetmoleküle Nukleinsäuren und/oder Nukleinsäureanaloga sind.
50. Verfahren nach Anspmch 49, wobei die Targetmoleküle in der Reaktionskammer mittels einer zyklischen Amplifikationsreaktion amplifiziert werden.
51. Verfahren nach Anspmch 50, wobei das Detektieren nach einem oder mehreren Zyklen während der zyklischen Amplifikationsreaktion und/oder nach Abschluss der zyklischen Amplifikationsreaktion erfolgt.
52. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 40 zur Durchfühmng von Mikroarray-basierten Tests.
53. Verfahren zum qualitativen und/oder quantitativen Nachweis von molekularen Wechselwirkungen zwischen Sonden- und Targetmolekülen, umfassend die folgenden Schritte: a) Einbringen einer Probe enthaltend Targetmoleküle in eine Reaktionskammer, die einen Mikroarray aufweist, wobei der Mikroarray ein Substrat mit darauf auf Array- Elementen immobilisierten Sondenmoleküle umfasst; b) Detektieren einer Wechselwirkung zwischen den Targetmolekülen und den auf dem Substrat immobilisierten Sondenmolekülen, wobei zwischen dem Einbringen der Probe enthaltend Targetmoleküle in die Reaktionskammer und dem Detektieren kein Austauschen von Lösungen in der Reaktionskammer und/oder Entfernen von Lösungen aus der Reaktionskammer erfolgt.
54. Verfahren nach Anspmch 53, wobei das Verfahren femer wie in einem der Ansprüche 41 bis 51 beschrieben ausgeführt wird.
PCT/EP2005/004923 2004-05-06 2005-05-06 Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen WO2005108604A2 (de)

Priority Applications (18)

Application Number Priority Date Filing Date Title
CA2565679A CA2565679C (en) 2004-05-06 2005-05-06 Device and method for detecting molecular interactions
JP2007512036A JP4958770B2 (ja) 2004-05-06 2005-05-06 分子相互作用を検出する装置および方法
EP18189028.6A EP3527287A1 (de) 2004-05-06 2005-05-06 Verfahren zum nachweis von molekularen wechselwirkungen
EP10180879.8A EP2280267B1 (de) 2004-05-06 2005-05-06 Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen
CN2005800143517A CN1981188B (zh) 2004-05-06 2005-05-06 用于检测分子相互作用的装置和方法
EP05739547A EP1761641B1 (de) 2004-05-06 2005-05-06 Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen
DK05739547.7T DK1761641T3 (da) 2004-05-06 2005-05-06 Indretning og fremgangsmåde til påvisning af molekylære vekselvirkninger
EP10172432.6A EP2256478B1 (de) 2004-05-06 2005-05-06 Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen
AU2005240757A AU2005240757B2 (en) 2004-05-06 2005-05-06 Device and method for detecting molecular interactions
EP10180859.0A EP2299257B1 (de) 2004-05-06 2005-05-06 Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen
NZ551229A NZ551229A (en) 2004-05-06 2005-05-06 Device and method for detecting molecular interactions
AT05739547T ATE477338T1 (de) 2004-05-06 2005-05-06 Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen
BRPI0510680A BRPI0510680B8 (pt) 2004-05-06 2005-05-06 dispositivo e método para detecção qualitativa e/ou quantitativa de interações moleculares entre moléculas de sonda e moléculas alvo, e, uso de um dispositivo
DE502005010078T DE502005010078D1 (de) 2004-05-06 2005-05-06 Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen
US11/593,021 US8916348B2 (en) 2004-05-06 2006-11-06 Method and device for the detection of molecular interactions
HK07106972.2A HK1102610A1 (en) 2004-05-06 2007-06-29 Device and method for detecting molecular interactions
US14/580,137 US20160237482A1 (en) 2004-05-06 2014-12-22 Method and device for the detection of molecular interactions
US17/154,749 US20210172010A1 (en) 2004-05-06 2021-01-21 Method and device for the detection of molecular interactions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004022263A DE102004022263A1 (de) 2004-05-06 2004-05-06 Vorrichtung und Verfahren zum Nachweis von molekularen Wechselwirkungen
DE102004022263.0 2004-05-06

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/068153 Continuation WO2007051861A1 (en) 2004-05-06 2006-11-06 Device and method for the detection of particles

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2006/068153 Continuation-In-Part WO2007051861A1 (en) 2004-05-06 2006-11-06 Device and method for the detection of particles
US11/593,021 Continuation-In-Part US8916348B2 (en) 2004-05-06 2006-11-06 Method and device for the detection of molecular interactions

Publications (2)

Publication Number Publication Date
WO2005108604A2 true WO2005108604A2 (de) 2005-11-17
WO2005108604A3 WO2005108604A3 (de) 2006-04-13

Family

ID=35169865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/004923 WO2005108604A2 (de) 2004-05-06 2005-05-06 Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen

Country Status (14)

Country Link
EP (7) EP3527287A1 (de)
JP (1) JP4958770B2 (de)
CN (3) CN102127595B (de)
AT (1) ATE477338T1 (de)
AU (2) AU2005240757B2 (de)
BR (1) BRPI0510680B8 (de)
CA (2) CA2565679C (de)
DE (2) DE102004022263A1 (de)
DK (1) DK1761641T3 (de)
ES (1) ES2350638T3 (de)
HK (1) HK1102610A1 (de)
NZ (1) NZ551229A (de)
PT (1) PT2299257T (de)
WO (1) WO2005108604A2 (de)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007051863A3 (en) * 2005-11-04 2007-06-28 Clondiag Chip Tech Gmbh Method and device for the detection of molecular interactions
JP2007278789A (ja) * 2006-04-05 2007-10-25 Aida Eng Ltd マイクロ流体チップ
WO2008062048A2 (en) 2006-11-22 2008-05-29 Clondiag Gmbh Methods for optically detecting multiple analytes in a liquid sample with a compressible microfluidic device
WO2008064865A2 (de) * 2006-11-28 2008-06-05 Zenteris Gmbh Vorrichtung zur durchführung und untersuchung biologischer proben mit temperaturgesteuerten biologischen reaktionen
WO2009056350A1 (de) * 2007-11-02 2009-05-07 Zenteris Gmbh Einschritt-multiplex-immuntest
DE102008054313A1 (de) 2008-11-03 2010-05-12 Zenteris Gmbh Kartusche und Vorrichtung zur Untersuchung biologischer Proben mit temperaturgesteuerten biologischen Reaktionen
JP2010516281A (ja) * 2007-01-22 2010-05-20 ウェハージェン,インコーポレイテッド 高スループット化学反応用装置
WO2010088496A1 (en) * 2009-01-30 2010-08-05 Gen-Probe Incorporated Systems and methods for detecting a signal and applying thermal energy to a signal transmission element
JP2011502605A (ja) * 2007-11-13 2011-01-27 エフ.ホフマン−ラ ロシュ アーゲー モジュール式センサカセット
WO2012072795A2 (en) 2010-12-03 2012-06-07 ALERE TECHNOLOGIES GmbH Transformation of material into an optically modulating state via laser radiation
CN103173346A (zh) * 2006-11-06 2013-06-26 科隆迪亚戈有限公司 使用结合元件用于分析的装置和方法
WO2013174942A1 (de) * 2012-05-23 2013-11-28 Albert-Ludwigs-Universität Freiburg Vorrichtung und verfahren zur echtzeit-detektion von molekülanlagerungen und/oder überwachung des herstellungsprozesses eines molekül-mikroarrays
US8633013B2 (en) 2007-05-03 2014-01-21 Clondiag Gmbh Assays
US9097671B2 (en) 2006-11-22 2015-08-04 Clondiag Gmbh Assays
US9480982B2 (en) 2007-12-24 2016-11-01 Honeywell International Inc. Reactor for the quantitative analysis of nucleic acids
US9539571B2 (en) 2010-01-20 2017-01-10 Honeywell International Inc. Method to increase detection efficiency of real time PCR microarray by quartz material
WO2017220483A1 (en) * 2016-06-21 2017-12-28 Koninklijke Philips N.V. Analyte detection system and method
US9909171B2 (en) 2004-05-28 2018-03-06 Takara Bio Usa, Inc. Thermo-controllable high-density chips for multiplex analyses
US9925536B2 (en) 2007-07-23 2018-03-27 Clondiag Gmbh Assays for measuring nucleic acids
WO2018065108A3 (en) * 2016-10-07 2018-05-24 Boehringer Ingelheim Vetmedica Gmbh Analysis system for testing a sample
WO2018235073A1 (en) 2017-06-21 2018-12-27 Gyntools Ltd ANALYSIS DEVICES AND ANALYSIS APPARATUS FOR USE WITH THE SAME
WO2019081259A1 (de) * 2017-10-23 2019-05-02 Robert Bosch Gmbh Reaktionsträger für eine mikrofluidische vorrichtung und verfahren zur bestimmung einer nukleotidsequenz
CN110161003A (zh) * 2019-05-17 2019-08-23 深圳市刚竹医疗科技有限公司 光学检测装置及实时荧光定量核酸扩增检测系统
US10641772B2 (en) 2015-02-20 2020-05-05 Takara Bio Usa, Inc. Method for rapid accurate dispensing, visualization and analysis of single cells
US10753927B2 (en) 2006-09-22 2020-08-25 ALERE TECHNOLOGIES GmbH Methods for detecting an analyte
EP3800269A1 (de) 2014-02-21 2021-04-07 Alere Technologies GmbH Verfahren zur erkennung von mehreren nukleinsäuren in einer probe
US11346850B2 (en) 2017-06-21 2022-05-31 Gyntools Ltd Assay system including assay apparatus and handheld single use assay devices for use therewith
US11454576B2 (en) 2019-06-12 2022-09-27 Gyntools Ltd Assay apparatus and handheld specimen collection tools therefor
US11460405B2 (en) 2016-07-21 2022-10-04 Takara Bio Usa, Inc. Multi-Z imaging and dispensing with multi-well devices
US11549956B2 (en) 2019-10-30 2023-01-10 Gyntools Ltd Assay system including assay apparatus and handheld single use assay devices for use therewith
WO2024126241A1 (de) * 2022-12-12 2024-06-20 Robert Bosch Gmbh Mikrofluidische vorrichtung, insbesondere kartusche, mit einem pad zur wärmeübertragung auf ein analysesubstrat

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110157B2 (en) 2006-06-27 2012-02-07 Zenteris Gmbh Heated reaction chamber for processing a biochip and method for controlling said reaction chamber
EP2078189B1 (de) * 2006-10-20 2012-10-10 Clondiag GmbH Testvorrichtungen und -verfahren zum nachweis von analyten
JP2009168508A (ja) * 2008-01-11 2009-07-30 Toppan Printing Co Ltd Dnaチップ装置、携帯端末装置、及び情報連絡システム
US20140152801A1 (en) 2009-10-28 2014-06-05 Alentic Microscience Inc. Detecting and Using Light Representative of a Sample
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
AU2011237729B2 (en) * 2010-04-05 2014-04-03 Prognosys Biosciences, Inc. Spatially encoded biological assays
JP2011250714A (ja) * 2010-05-31 2011-12-15 Sanyo Electric Co Ltd 増幅装置、検出装置
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
USRE50065E1 (en) 2012-10-17 2024-07-30 10X Genomics Sweden Ab Methods and product for optimising localised or spatial detection of gene expression in a tissue sample
US9518920B2 (en) 2013-06-26 2016-12-13 Alentic Microscience Inc. Sample processing improvements for microscopy
US10502666B2 (en) 2013-02-06 2019-12-10 Alentic Microscience Inc. Sample processing improvements for quantitative microscopy
CN105849275B (zh) 2013-06-25 2020-03-17 普罗格诺西斯生物科学公司 检测样品中生物靶标的空间分布的方法和系统
DE102014018535A1 (de) * 2014-12-12 2016-06-16 Nanotemper Technologies Gmbh System und Verfahren für ein abdichtungsfreies Temperieren von Kapillaren
WO2016132738A1 (ja) * 2015-02-19 2016-08-25 パナソニックIpマネジメント株式会社 検出セルおよびこれを用いたセンサ装置
ES2935860T3 (es) 2015-04-10 2023-03-13 Spatial Transcriptomics Ab Análisis de ácidos nucleicos múltiplex, espacialmente distinguidos de especímenes biológicos
CN105842234B (zh) * 2016-05-11 2018-10-02 四川理工学院 自标定式二氧化氮连续在线检测装置及检测方法
CN105738354B (zh) * 2016-05-11 2018-10-02 四川理工学院 气液相化学发光检测装置及检测方法
CN108690875A (zh) * 2017-04-05 2018-10-23 杭州丹威生物科技有限公司 用来筛查传染病基因和遗传改变的带有条码的微阵列芯片及使用方法
EP3560593B1 (de) * 2018-04-25 2024-06-05 OPTOLANE Technologies Inc. Kartusche für digitale echtzeit-pcr
CN108896495B (zh) * 2018-09-14 2024-04-12 贵州电网有限责任公司 一种环保绝缘气体与金属相容性试验模拟装置及试验方法
WO2020123320A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Imaging system hardware
US11768175B1 (en) 2020-03-04 2023-09-26 10X Genomics, Inc. Electrophoretic methods for spatial analysis
CN111220588B (zh) * 2020-03-24 2023-05-16 哈尔滨工业大学(威海) 一种基于油膜荧光亮度的流场辐聚辐散测量方法
EP4414459A3 (de) 2020-05-22 2024-09-18 10X Genomics, Inc. Simultane räumlich-zeitliche messung der genexpression und der zellaktivität
US12031177B1 (en) 2020-06-04 2024-07-09 10X Genomics, Inc. Methods of enhancing spatial resolution of transcripts
WO2021252499A1 (en) 2020-06-08 2021-12-16 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
AU2021409136A1 (en) 2020-12-21 2023-06-29 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
WO2022178267A2 (en) 2021-02-19 2022-08-25 10X Genomics, Inc. Modular assay support devices
CN113514415B (zh) * 2021-04-25 2023-03-10 中国科学技术大学 一种基于红外光谱成像的液态样品的分子间相互作用表征方法
EP4347879A1 (de) 2021-06-03 2024-04-10 10X Genomics, Inc. Verfahren, zusammensetzungen, kits und systeme zur verbesserung der analyterfassung zur räumlichen analyse

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863502A (en) * 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US20040018523A1 (en) * 1999-12-15 2004-01-29 Amersham Biosciences Ab Method and apparatus for performing biological reactions on a substrate surface

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2035058A1 (de) * 1969-03-19 1970-12-18 American Optical Corp
US4038030A (en) * 1975-04-10 1977-07-26 American Hospital Supply Corporation Profile analysis pack and method
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5013646A (en) 1989-11-03 1991-05-07 Transgenic Sciences, Inc. TMB Formulation for soluble and precipitable HRP-ELISA
GB9014263D0 (en) 1990-06-27 1990-08-15 Dixon Arthur E Apparatus and method for spatially- and spectrally- resolvedmeasurements
GB9015793D0 (en) 1990-07-18 1990-09-05 Medical Res Council Confocal scanning optical microscope
US5412087A (en) 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
US5324633A (en) * 1991-11-22 1994-06-28 Affymax Technologies N.V. Method and apparatus for measuring binding affinity
US5364790A (en) * 1993-02-16 1994-11-15 The Perkin-Elmer Corporation In situ PCR amplification system
US6027880A (en) 1995-08-02 2000-02-22 Affymetrix, Inc. Arrays of nucleic acid probes and methods of using the same for detecting cystic fibrosis
US5578832A (en) * 1994-09-02 1996-11-26 Affymetrix, Inc. Method and apparatus for imaging a sample on a device
US5459325A (en) 1994-07-19 1995-10-17 Molecular Dynamics, Inc. High-speed fluorescence scanner
US5510621A (en) * 1994-10-03 1996-04-23 Optical Solutions, Inc. Apparatus and method for measuring components in a bag
AU5171696A (en) 1995-02-27 1996-09-18 Ely Michael Rabani Device, compounds, algorithms, and methods of molecular characterization and manipulation with molecular parallelism
US5585639A (en) 1995-07-27 1996-12-17 Hewlett-Packard Company Optical scanning apparatus
WO1997045559A1 (en) 1996-05-29 1997-12-04 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions
US5760950A (en) 1996-07-25 1998-06-02 Advanced Scanning, Ltd. Scanning confocal microscope
DE19706570C1 (de) 1997-02-19 1998-02-26 Inst Physikalische Hochtech Ev Verfahren zur Herstellung von strukturierten, selbstorganisierten molekularen Monolagen einzelner molekularer Spezies, insbesondere von Substanzbibliotheken
DE19711281C1 (de) * 1997-03-18 1998-04-16 Inst Chemo Biosensorik Vorrichtung und Verfahren zur Durchführung von Fluoreszenzimmunotests
DE19725050C2 (de) 1997-06-13 1999-06-24 Fraunhofer Ges Forschung Anordnung zur Detektion biochemischer oder chemischer Substanzen mittels Fluoreszenzlichtanregung und Verfahren zu deren Herstellung
US6043506A (en) * 1997-08-13 2000-03-28 Bio-Rad Laboratories, Inc. Multi parameter scanner
WO2000005336A2 (en) * 1998-07-22 2000-02-03 Ljl Biosystems, Inc. Devices and methods for sample analysis
US6197503B1 (en) 1997-11-26 2001-03-06 Ut-Battelle, Llc Integrated circuit biochip microsystem containing lens
CN1143134C (zh) * 1998-06-24 2004-03-24 陈氏有限责任公司 流体样本测试系统及化验方法
WO2000014281A2 (en) * 1998-08-21 2000-03-16 Naxcor Assays using crosslinkable immobilized nucleic acids
US6271042B1 (en) 1998-08-26 2001-08-07 Alpha Innotech Corporation Biochip detection system
AU5855699A (en) 1998-08-28 2000-03-21 Jerini Biotools Gmbh Method for producing polymeric solid phase supporting materials
US6948843B2 (en) * 1998-10-28 2005-09-27 Covaris, Inc. Method and apparatus for acoustically controlling liquid solutions in microfluidic devices
AT410718B (de) 1998-10-28 2003-07-25 Schindler Hansgeorg Dr Vorrichtung zur visualisierung von molekülen
CA2255850C (en) * 1998-12-07 2000-10-17 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Agriculture And Agri-Food Rotary thermocycling apparatus
AU779752B2 (en) 1999-05-19 2005-02-10 Eppendorf Array Technologies S.A. Method for the identification and/or the quantification of a target compound
ES2219374T3 (es) 1999-07-02 2004-12-01 Clondiag Chip Technologies Gmbh Dispositivo de matriz de microchip para la multiplicacion y la caracterizacion de acidos nucleicos.
DE19941905C2 (de) * 1999-09-02 2002-06-06 Max Planck Gesellschaft Probenkammer zur Flüssigkeitsbehandlung biologischer Proben
EP1235932A2 (de) * 1999-10-08 2002-09-04 Protogene Laboratories, Inc. Verfahren und vorrichtung zur durchführung von hohen zahlen von reaktionen unter benutzung von arrays
US6471916B1 (en) * 1999-11-09 2002-10-29 Packard Instrument Company Apparatus and method for calibration of a microarray scanning system
US6569674B1 (en) * 1999-12-15 2003-05-27 Amersham Biosciences Ab Method and apparatus for performing biological reactions on a substrate surface
US6428749B1 (en) * 1999-12-15 2002-08-06 Hitachi, Ltd. Advanced thermal gradient DNA chip (ATGC), the substrate for ATGC, method for manufacturing for ATGC, method and apparatus for biochemical reaction, and storage medium
WO2001044515A2 (en) * 1999-12-15 2001-06-21 Motorola, Inc. Apparatus for performing biological reactions
JP3871846B2 (ja) * 2000-03-10 2007-01-24 日立ソフトウエアエンジニアリング株式会社 ハイブリダイゼーション反応検出方法及び検出装置
DE10027524A1 (de) * 2000-06-02 2001-12-13 Max Planck Gesellschaft Vorrichtung und Verfahren zur Bearbeitung von substratgebundenen Proben
WO2002002810A2 (de) 2000-07-01 2002-01-10 Clondiag Chip Technologies Gmbh Verfahren zum qualitativen und/oder quantitativen nachweis von molekularen wechselwirkungen auf sonden-arrays
DE10058394C1 (de) * 2000-11-24 2002-07-11 Siemens Ag Verfahren für die biochemische Analytik und zugehörige Anordnung
US6905816B2 (en) * 2000-11-27 2005-06-14 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US20040043479A1 (en) * 2000-12-11 2004-03-04 Briscoe Cynthia G. Multilayerd microfluidic devices for analyte reactions
CN2473211Y (zh) * 2001-02-05 2002-01-23 徐荣臻 一种蛋白芯片反应器
US7223363B2 (en) * 2001-03-09 2007-05-29 Biomicro Systems, Inc. Method and system for microfluidic interfacing to arrays
US7201833B2 (en) * 2001-06-04 2007-04-10 Epocal Inc. Integrated solid-phase hydrophilic matrix circuits and micro-arrays
JP4244534B2 (ja) * 2001-06-12 2009-03-25 横河電機株式会社 バイオチップ
DE10132785A1 (de) 2001-07-06 2003-01-16 Clondiag Chip Tech Gmbh Verfahren zum Nachweis von in einer Polymerase-Kettenreaktion amplifizierten Nukleinsäuremolekülen
DE10142643A1 (de) 2001-08-31 2003-04-24 Clondiag Chip Tech Gmbh Detektion von Wechselwirkungen auf Sonden-Arrays
AU2002341644B2 (en) * 2001-09-11 2008-02-28 Iquum, Inc. Sample vessels
WO2003031952A1 (fr) * 2001-09-28 2003-04-17 Hitachi, Ltd. Dispositif de detection de luminescence et plaque de jeux ordonnes de microechantillons
KR100442822B1 (ko) * 2001-10-23 2004-08-02 삼성전자주식회사 전단응력 측정을 이용한 생분자들간의 결합 여부 검출 방법
CA2470163A1 (en) * 2001-12-19 2003-07-03 Affymetrix, Inc. Array plates and method for constructing array plates
CN1202263C (zh) * 2002-02-25 2005-05-18 财团法人工业技术研究院 高效核酸杂交装置及方法
ATE467115T1 (de) * 2002-03-15 2010-05-15 Affymetrix Inc System und verfahren zur abtastung von biologischen materialien
JP2004003888A (ja) * 2002-05-31 2004-01-08 Olympus Corp 生体関連物質の検査装置とその反応ステージ
AU2003270832A1 (en) * 2002-09-24 2004-04-19 U.S. Government As Represented By The Secretary Of The Army Portable thermocycler
DE10253966B4 (de) 2002-11-19 2005-03-24 Clondiag Chip Technologies Gmbh Microarray-basiertes Verfahren zur Amplifikation und Detektion von Nukleinsäuren in einem kontinuierlichen Prozess
DE10315074A1 (de) 2003-04-02 2004-10-14 Clondiag Chip Technologies Gmbh Vorrichtung zur Vervielfältigung und zum Nachweis von Nukleinsäuren

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863502A (en) * 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US20040018523A1 (en) * 1999-12-15 2004-01-29 Amersham Biosciences Ab Method and apparatus for performing biological reactions on a substrate surface

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10718014B2 (en) 2004-05-28 2020-07-21 Takara Bio Usa, Inc. Thermo-controllable high-density chips for multiplex analyses
US9909171B2 (en) 2004-05-28 2018-03-06 Takara Bio Usa, Inc. Thermo-controllable high-density chips for multiplex analyses
EP2330215A1 (de) * 2005-11-04 2011-06-08 CLONDIAG GmbH Verfahren und Vorrichtung zum Nachweis molekularer Wechselwirkungen
WO2007051863A3 (en) * 2005-11-04 2007-06-28 Clondiag Chip Tech Gmbh Method and device for the detection of molecular interactions
JP2007278789A (ja) * 2006-04-05 2007-10-25 Aida Eng Ltd マイクロ流体チップ
US10753927B2 (en) 2006-09-22 2020-08-25 ALERE TECHNOLOGIES GmbH Methods for detecting an analyte
CN109055495A (zh) * 2006-11-06 2018-12-21 美艾利尔技术公司 使用结合元件用于分析的装置和方法
CN103173346A (zh) * 2006-11-06 2013-06-26 科隆迪亚戈有限公司 使用结合元件用于分析的装置和方法
AU2007324494B2 (en) * 2006-11-22 2013-08-22 Clondiag Gmbh Methods for optically detecting multiple analytes in a liquid sample with a compressible microfluidic device
WO2008062048A2 (en) 2006-11-22 2008-05-29 Clondiag Gmbh Methods for optically detecting multiple analytes in a liquid sample with a compressible microfluidic device
US9097671B2 (en) 2006-11-22 2015-08-04 Clondiag Gmbh Assays
EP2458382A1 (de) * 2006-11-22 2012-05-30 CLONDIAG GmbH Analysevorrichtung mit mehreren Testzonen, Verfahren mit der Vorrichtung
US8349616B2 (en) 2006-11-22 2013-01-08 Clondiag Gmbh Assays
WO2008062048A3 (en) * 2006-11-22 2008-07-10 Clondiag Gmbh Methods for optically detecting multiple analytes in a liquid sample with a compressible microfluidic device
WO2008064865A3 (de) * 2006-11-28 2008-09-12 Zenteris Gmbh Vorrichtung zur durchführung und untersuchung biologischer proben mit temperaturgesteuerten biologischen reaktionen
WO2008064865A2 (de) * 2006-11-28 2008-06-05 Zenteris Gmbh Vorrichtung zur durchführung und untersuchung biologischer proben mit temperaturgesteuerten biologischen reaktionen
DE112007000683B4 (de) * 2006-11-28 2012-11-15 Zenteris Gmbh Vorrichtung zur Durchführung und Untersuchung biologischer Proben mit temperaturgesteuerten biologischen Reaktionen
US11643681B2 (en) 2007-01-22 2023-05-09 Takara Bio Usa, Inc. Apparatus for high throughput chemical reactions
US9951381B2 (en) 2007-01-22 2018-04-24 Takara Bio Usa, Inc. Apparatus for high throughput chemical reactions
JP2010516281A (ja) * 2007-01-22 2010-05-20 ウェハージェン,インコーポレイテッド 高スループット化学反応用装置
US9132427B2 (en) 2007-01-22 2015-09-15 Wafergen, Inc. Apparatus for high throughput chemical reactions
US8633013B2 (en) 2007-05-03 2014-01-21 Clondiag Gmbh Assays
US9925536B2 (en) 2007-07-23 2018-03-27 Clondiag Gmbh Assays for measuring nucleic acids
WO2009056350A1 (de) * 2007-11-02 2009-05-07 Zenteris Gmbh Einschritt-multiplex-immuntest
US9229000B2 (en) 2007-11-02 2016-01-05 Zenteris Gmbh Single-step multiplex immunoassay
JP2011502605A (ja) * 2007-11-13 2011-01-27 エフ.ホフマン−ラ ロシュ アーゲー モジュール式センサカセット
US9480982B2 (en) 2007-12-24 2016-11-01 Honeywell International Inc. Reactor for the quantitative analysis of nucleic acids
DE102008054313A1 (de) 2008-11-03 2010-05-12 Zenteris Gmbh Kartusche und Vorrichtung zur Untersuchung biologischer Proben mit temperaturgesteuerten biologischen Reaktionen
AU2010208085B2 (en) * 2009-01-30 2014-02-06 Gen-Probe Incorporated Systems and methods for detecting a signal and applying thermal energy to a signal transmission element
US8368882B2 (en) 2009-01-30 2013-02-05 Gen-Probe Incorporated Systems and methods for detecting a signal and applying thermal energy to a signal transmission element
WO2010088496A1 (en) * 2009-01-30 2010-08-05 Gen-Probe Incorporated Systems and methods for detecting a signal and applying thermal energy to a signal transmission element
US9539571B2 (en) 2010-01-20 2017-01-10 Honeywell International Inc. Method to increase detection efficiency of real time PCR microarray by quartz material
WO2012072795A2 (en) 2010-12-03 2012-06-07 ALERE TECHNOLOGIES GmbH Transformation of material into an optically modulating state via laser radiation
US9675954B2 (en) 2012-05-23 2017-06-13 Albert-Ludwigs-Universitaet Freiburg Device and method for real-time detection of molecular accumulations and/or monitoring the production process of a molecular microarray
WO2013174942A1 (de) * 2012-05-23 2013-11-28 Albert-Ludwigs-Universität Freiburg Vorrichtung und verfahren zur echtzeit-detektion von molekülanlagerungen und/oder überwachung des herstellungsprozesses eines molekül-mikroarrays
EP4400600A2 (de) 2014-02-21 2024-07-17 Abbott Rapid Diagnostics Jena GmbH Verfahren zur erkennung von mehreren nukleinsäuren in einer probe
EP3800269A1 (de) 2014-02-21 2021-04-07 Alere Technologies GmbH Verfahren zur erkennung von mehreren nukleinsäuren in einer probe
US11125752B2 (en) 2015-02-20 2021-09-21 Takara Bio Usa, Inc. Method for rapid accurate dispensing, visualization and analysis of single cells
US10641772B2 (en) 2015-02-20 2020-05-05 Takara Bio Usa, Inc. Method for rapid accurate dispensing, visualization and analysis of single cells
CN109328302B (zh) * 2016-06-21 2022-06-07 西门子医疗系统荷兰有限公司 分析物检测系统和方法
WO2017220483A1 (en) * 2016-06-21 2017-12-28 Koninklijke Philips N.V. Analyte detection system and method
US11519923B2 (en) 2016-06-21 2022-12-06 Siemens Healthineers Nederland B.V. Analyte detection system and method
CN109328302A (zh) * 2016-06-21 2019-02-12 皇家飞利浦有限公司 分析物检测系统和方法
US11460405B2 (en) 2016-07-21 2022-10-04 Takara Bio Usa, Inc. Multi-Z imaging and dispensing with multi-well devices
US10675621B2 (en) 2016-10-07 2020-06-09 Boehringer Ingelheim Vetmedica Gmbh Anlaysis system for testing a sample
WO2018065108A3 (en) * 2016-10-07 2018-05-24 Boehringer Ingelheim Vetmedica Gmbh Analysis system for testing a sample
US12078647B2 (en) 2017-06-21 2024-09-03 Gyntools Ltd Assay system including assay apparatus and handheld single use assay devices for use therewith
US11346850B2 (en) 2017-06-21 2022-05-31 Gyntools Ltd Assay system including assay apparatus and handheld single use assay devices for use therewith
WO2018235073A1 (en) 2017-06-21 2018-12-27 Gyntools Ltd ANALYSIS DEVICES AND ANALYSIS APPARATUS FOR USE WITH THE SAME
EP3642590A4 (de) * 2017-06-21 2021-03-24 GynTools Ltd Testeinrichtung und testvorrichtung zur verwendung damit
WO2019081259A1 (de) * 2017-10-23 2019-05-02 Robert Bosch Gmbh Reaktionsträger für eine mikrofluidische vorrichtung und verfahren zur bestimmung einer nukleotidsequenz
CN110161003A (zh) * 2019-05-17 2019-08-23 深圳市刚竹医疗科技有限公司 光学检测装置及实时荧光定量核酸扩增检测系统
US11454576B2 (en) 2019-06-12 2022-09-27 Gyntools Ltd Assay apparatus and handheld specimen collection tools therefor
US11549956B2 (en) 2019-10-30 2023-01-10 Gyntools Ltd Assay system including assay apparatus and handheld single use assay devices for use therewith
WO2024126241A1 (de) * 2022-12-12 2024-06-20 Robert Bosch Gmbh Mikrofluidische vorrichtung, insbesondere kartusche, mit einem pad zur wärmeübertragung auf ein analysesubstrat

Also Published As

Publication number Publication date
AU2011201671A1 (en) 2011-05-12
EP2280267A2 (de) 2011-02-02
DK1761641T3 (da) 2010-12-06
NZ551229A (en) 2010-03-26
CN102121054A (zh) 2011-07-13
AU2005240757B2 (en) 2011-02-03
BRPI0510680B1 (pt) 2017-07-11
EP2299257A3 (de) 2011-10-05
EP3527287A1 (de) 2019-08-21
DE502005010078D1 (de) 2010-09-23
EP2280267A3 (de) 2011-10-05
EP2299257B1 (de) 2018-08-15
AU2005240757A1 (en) 2005-11-17
EP2299257A2 (de) 2011-03-23
CA2565679C (en) 2019-08-20
AU2011201671B2 (en) 2012-10-18
CA3041596A1 (en) 2005-11-17
DE102004022263A1 (de) 2005-12-15
BRPI0510680A (pt) 2007-12-26
BRPI0510680B8 (pt) 2021-07-27
EP2256478A3 (de) 2011-08-17
HK1102610A1 (en) 2007-11-30
EP2280267B1 (de) 2018-08-15
EP2290351B1 (de) 2016-12-21
EP3171155A1 (de) 2017-05-24
EP2256478A2 (de) 2010-12-01
PT2299257T (pt) 2018-11-26
EP2256478B1 (de) 2018-08-15
EP2290351A3 (de) 2011-10-05
EP1761641A2 (de) 2007-03-14
EP2290351A2 (de) 2011-03-02
JP2007536541A (ja) 2007-12-13
WO2005108604A3 (de) 2006-04-13
CN102121054B (zh) 2013-01-30
CN102127595B (zh) 2013-04-17
CN1981188A (zh) 2007-06-13
ES2350638T3 (es) 2011-01-25
CN1981188B (zh) 2011-02-02
ATE477338T1 (de) 2010-08-15
JP4958770B2 (ja) 2012-06-20
EP1761641B1 (de) 2010-08-11
CN102127595A (zh) 2011-07-20
CA2565679A1 (en) 2005-11-17

Similar Documents

Publication Publication Date Title
EP1761641B1 (de) Vorrichtung und verfahren zum nachweis von molekularen wechselwirkungen
DE102005052752A1 (de) Vorrichtung und Verfahren zum Nachweis von molekularen Wechselwirkungen
EP1943360B1 (de) Verfahren und vorrichtung zum nachweis molekularer wechselwirkungen
EP2266699B1 (de) Vorrichtung zur Vervielfältigung und zum Nachweis von Nukleinsäuren
DE10201463B4 (de) Reaktionsgefäß zur Durchführung von Array-Verfahren
US20160237482A1 (en) Method and device for the detection of molecular interactions
EP2809803B1 (de) Gemultiplexte digital pcr
DE102004056735A1 (de) Vorrichtung für die Durchführung und Analyse von Mikroarray-Experimenten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 6335/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007512036

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2565679

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11593021

Country of ref document: US

Ref document number: 200580014351.7

Country of ref document: CN

Ref document number: 2005240757

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 551229

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2005240757

Country of ref document: AU

Date of ref document: 20050506

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005240757

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005739547

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005739547

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11593021

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0510680

Country of ref document: BR