WO2005104273A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2005104273A1
WO2005104273A1 PCT/JP2005/007730 JP2005007730W WO2005104273A1 WO 2005104273 A1 WO2005104273 A1 WO 2005104273A1 JP 2005007730 W JP2005007730 W JP 2005007730W WO 2005104273 A1 WO2005104273 A1 WO 2005104273A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
battery
lithium
film
Prior art date
Application number
PCT/JP2005/007730
Other languages
English (en)
French (fr)
Inventor
Akira Nagasaki
Hajime Nishino
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/587,261 priority Critical patent/US20070218362A1/en
Publication of WO2005104273A1 publication Critical patent/WO2005104273A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery having a positive electrode having a high degree of thermal stability and improved safety against short circuits, and particularly when a short circuit is generated in a nail penetration test or the like,
  • the present invention relates to a lithium-ion secondary battery that has greatly reduced the possibility that the battery temperature will exceed 80 ° C.
  • the present invention solves a problem unique to a case where a positive electrode having high thermal stability is used.
  • Lithium ion secondary batteries have a porous resin separator that electrically insulates the positive electrode and the negative electrode, and has a function of holding a nonaqueous electrolyte.
  • heat-deformed glass resin such as polyolefin resin is used.
  • the positive electrode includes a positive electrode current collector having a conductive material such as A1 and a positive electrode mixture layer supported thereon, and the negative electrode includes a negative electrode current collector including a conductive material such as Cu and a negative electrode supported thereon. A mixture layer is provided.
  • Patent Document 1 It is difficult to ensure a high degree of safety (for example, such that the maximum temperature of the battery can be kept below 80 ° C).
  • the positive electrode active material In a heating test assuming an abnormal mode, such as a 150 ° C heating test in the UL standard, the positive electrode active material is exposed to a thermally unstable temperature region. Therefore, the positive electrode active material having a crystal structure with low thermal stability causes a chain reaction involving heat generation, which also causes the separator to shrink, thereby promoting the heat generation of the battery.
  • Patent Document 1 JP-A-7-220759
  • the present invention includes a positive electrode having a high degree of thermal stability, and greatly increases the possibility that the battery temperature will exceed 80 ° C even when a short circuit occurs in a nail penetration test or the like. It is an object of the present invention to provide an extremely safe lithium ion secondary battery that can be reduced. Means for solving the problem
  • the present invention provides a positive electrode containing a composite lithium oxide, a negative electrode containing a material capable of electrochemically absorbing and releasing lithium, a separator interposed between the positive electrode and the negative electrode, a non-aqueous electrolyte, And at least one selected from the positive electrode surface, the negative electrode surface and the separator surface
  • a lithium ion secondary battery comprising a porous membrane bonded to one, wherein the porous membrane includes an inorganic oxide filler and a membrane binder, and the composite lithium oxide has a formula: Li (Co M 1
  • M 2 M 2 ) O, wherein the element M 1 is selected from the group consisting of Mg, Sr, Y, Zr, Ca and Ti.
  • At least one element, and the element M 2 is at least one element selected from the group forces of Al, Ga, In, and 11; the formula is 0 ⁇ a ⁇ l.05, 0.005 ⁇ x ⁇ 0 15. It relates to a lithium ion secondary battery that satisfies 0, 0 ⁇ y ⁇ 0.05 and 0.85 ⁇ b ⁇ l.1.
  • the positive electrode generally includes a positive electrode current collector and a positive electrode material mixture layer supported on both surfaces thereof.
  • the negative electrode generally includes a negative electrode current collector and a negative electrode mixture layer supported on both surfaces thereof.
  • the shapes of the positive electrode and the negative electrode are not particularly limited, but are usually band-like.
  • the composite lithium oxide is a positive electrode active material, and a material capable of electrochemically occluding and releasing lithium is a negative electrode active material.
  • Metal foils are usually used for the current collectors of the positive electrode and the negative electrode, and those conventionally known to those skilled in the art as current collectors for electrode plates for non-aqueous secondary batteries are used without any particular limitation. be able to.
  • the metal foil may be subjected to various surface treatments or may be mechanically processed.
  • the current collector usually has a band shape before winding or in a completed battery.
  • A1 or an A1 alloy is preferably used for the positive electrode current collector.
  • Cu or Cu alloy is preferably used for the negative electrode current collector.
  • the mixture layer of the positive electrode and the negative electrode is formed by laminating a mixture containing an active material as an essential component and a binder, a conductive material, a thickener and the like as optional components.
  • the mixture layer is generally composed of a liquid component such as water, N-methyl-2-pyrrolidone (hereinafter, NMP), cyclohexanol.
  • NMP N-methyl-2-pyrrolidone
  • a paste in which a mixture is dispersed in a paste or the like is formed by applying a paste on a current collector, drying the paste, and rolling the dried coating film.
  • the separator is usually obtained by molding a resin or a resin composition into a sheet and then stretching the sheet.
  • the resin used as a raw material of such a separator is not particularly limited, and for example, polyolefin such as polyethylene and polypropylene, polyamide, polyethylene terephthalate (PET), polyamide imide, and polyimide are used.
  • the non-aqueous electrolytic solution is composed of a non-aqueous solvent that dissolves the solute, and a lithium salt is used for the solute, and various organic substances are used for the non-aqueous solvent.
  • the porous film has electronic insulating properties and plays a common role as a conventional separator, but first, it is different from a separator in that it is supported or adhered on an electrode mixture layer.
  • the porous membrane has extremely high resistance to heat shrinkage and deformation.
  • the porous membrane is different from a separator obtained by stretching a resin sheet in that it has a structure in which particles of an inorganic oxide filler are bonded to each other with a film binder. Therefore, the tensile strength in the plane direction of the porous film is lower than that of the separator.
  • the porous film is excellent in that it does not thermally shrink unlike the separator even when exposed to a high temperature.
  • the porous membrane prevents the short circuit portion from expanding when a short circuit occurs or the battery is exposed to a high temperature, and prevents an abnormal rise in the battery temperature.
  • the present invention includes all cases where the porous membrane is disposed so as to be interposed between the positive electrode and the negative electrode.
  • the present invention provides a method for applying the porous film to both the positive electrode surface and the negative electrode surface when the porous film is bonded only to the positive electrode surface, when the porous film is bonded only to the negative electrode surface, or when only the separator surface is bonded.
  • This includes all cases where the electrodes are adhered, where the electrodes are adhered to the positive electrode surface and the separator surface, when they are adhered to the negative electrode surface and the separator surface, and when they are adhered to the positive electrode surface, the negative electrode surface and the separator surface.
  • the present invention provides a porous membrane, When bonded to both sides of the positive electrode !, when bonded to only one side of the negative electrode! When bonded to both sides of the negative electrode! And cases where it is adhered to both sides of the separator.
  • the inorganic oxidized product filler is a granular material or powder of the inorganic oxidized product, and is a main component of the porous film.
  • Inorganic stilt fillers the group strength of alumina and magnesia is also selected. It is also preferable to include one kind.
  • the content of the inorganic oxide filler in the total of the inorganic oxide filler and the film binder is,
  • It is preferably 50% by weight or more and 99% by weight or less.
  • the membrane binder is composed of a resin component and has a function of binding the particles of the inorganic oxide film to one another and further of bonding the porous membrane to the electrode surface.
  • the film binder has a decomposition onset temperature of 250 ° C. or higher.
  • the film binder preferably has a softening point of, for example, 150 to 200 ° C.
  • the softening point may be measured by any method. For example, the following method is preferable. First, the film binder is formed into a sheet. The obtained sheet is brought into contact with the tip of a needle-like terminal placed in the vertical direction, and the sheet is heated while applying a certain load in the vertical direction with a printing force tl. At this time, the temperature at which the tip of the terminal sinks greatly in the sheet can be defined as a softening point.
  • the film binder preferably contains a rubbery polymer containing acrylonitrile units.
  • the form of the lithium ion secondary battery according to the present invention is not particularly limited, and includes various types such as a cylindrical type, a square type, and a stacked type.
  • the positive electrode and the negative electrode are wound with a separator interposed therebetween. This is particularly effective for cylindrical or square batteries including a turned electrode group. That is, it is preferable that the positive electrode and the negative electrode are wound via a separator!
  • the crystal structure of the positive electrode active material is thermally stable, a high level of safety of the battery can be ensured in a heating test at a high temperature. High security can be ensured.
  • the mechanism of the effect will be described with consideration.
  • the element M 2 is at least one of Al, Ga, selected In and TU Li Cheng group forces et al, is, 0 ⁇ a ⁇ l. 05, 0. 005 ⁇ x
  • TU Li Cheng group forces et al is, 0 ⁇ a ⁇ l. 05, 0. 005 ⁇ x
  • the nail penetration test Safety shows the opposite tendency.
  • FIG. 1 is a longitudinal sectional view of an example of a cylindrical lithium ion secondary battery.
  • the addition amount of the element M 1 contained in the composite lithium Sani ⁇ and (X), is a diagram showing the relationship between the maximum temperature at the time of nailing.
  • the addition amount of the element M 2 contained in the composite lithium Sani ⁇ and (y), is a diagram showing the relationship between the maximum temperature at the time of nailing.
  • the present invention provides a positive electrode containing a composite lithium oxide, a negative electrode containing a material capable of electrochemically absorbing and releasing lithium, a separator interposed between the positive electrode and the negative electrode, a nonaqueous electrolyte, and
  • the present invention relates to a lithium ion secondary battery including a porous film adhered to at least one selected from a positive electrode surface and a negative electrode surface.
  • FIG. 1 is a longitudinal sectional view of an example of a general cylindrical lithium ion secondary battery.
  • the positive electrode 5 and the negative electrode 6 are wound with the separator 7 interposed therebetween, and constitute a columnar electrode plate group.
  • One end of a positive electrode lead 5a is connected to the positive electrode 5, and one end of a negative electrode lead 6a is connected to the negative electrode 6.
  • the electrode group impregnated with the nonaqueous electrolyte is accommodated in the inner space of the battery can 1 while being sandwiched between the upper insulating ring 8a and the lower insulating ring 8b.
  • a separator is interposed between the electrode plate group and the inner surface of the battery can 1.
  • FIG. 1 is merely an embodiment of the lithium ion secondary battery of the present invention, and the scope of the present invention is not limited to the case of FIG.
  • a porous film is bonded to at least one of the positive electrode surface, the negative electrode surface, and the separator surface.
  • the positive electrode and the negative electrode are wound with a separator interposed therebetween, it is particularly important to secure safety as soon as heat is accumulated in the battery due to the structure of the electrode plate group. Therefore, the present invention is particularly effective when the positive electrode and the negative electrode are wound via a separator.
  • composite lithium oxide contained as an active material for the positive electrode has the formula: Li (Co M 1 M 2 ) are O with a ⁇ - ⁇ -yxyb 2 represented.
  • the crystal structure of this composite oxidized product is similar to or similar to LiCoO.
  • the element M 1 is at least one member selected from the group consisting of Mg, Sr, Y, Zr, Ca and TU
  • the element M 2 is selected from the group consisting of Al, Ga, In and 11 At least one selected
  • the equation satisfies 0 ⁇ a ⁇ l.05, 0.005 ⁇ x ⁇ 0.15, 0 ⁇ y ⁇ 0.05 and 0.85 ⁇ b ⁇ l.1.
  • the positive electrode active material is a composite lithium oxide represented by the formula: Li (Co M 1 M 2 ) O
  • ao M 1 M 2 It is preferably a composite lithium oxidant represented by O.
  • the element M 1, Mg, Sr, Y , Zr, may be used in combination Yogu more can have use one kind alone, also selected Ca and TU Li Cheng group force.
  • Mg is particularly preferred in that it has a large effect of enhancing the thermal stability of the crystal structure of the composite lithium oxide.
  • the element M 1, an effect of increasing the conductivity of the lithium complex Sani ⁇ . Normally, when the conductivity of the composite lithium oxide increases, the temperature rise in the nail penetration test becomes severe, and it is extremely difficult to prevent the battery temperature from becoming 0 ° C or more. On the other hand, in the present invention, conversely, when the conductivity of the composite lithium oxide increases, an increase in the battery temperature in the nail penetration test is effectively suppressed.
  • the temperature of the highly conductive composite lithium oxide causes the film binder in the porous film to be instantly softened or partially eluted, and the positive electrode mixture layer It is considered that the adhesion of the positive electrode current collector was enhanced and the exposure of the positive electrode current collector was suppressed.
  • Al, Ga, In, and a group power of 11 may be used alone or in combination of two or more.
  • A1 is particularly preferred. Lithium complex Sani ⁇ containing elemental M 2 is at high temperature, believed to adhesion between the film binder is increased is believed that the effect of suppressing the exposure of the positive electrode current collector is increased. A1 is also considered to have an effect of improving the heat resistance and cycle characteristics of the composite oxidized product.
  • Li (Co M 1 M 2 ) O is 0 ⁇ a ⁇ l.05, 0.005 ⁇ x ⁇ 0.15, 0 ⁇ y ⁇ 0.05.
  • the value a varies in the range of 0 ⁇ a ⁇ l.05 depending on the charging and discharging of the lithium ion secondary battery. However, it is preferable that 0.95 ⁇ a ⁇ 1.05 immediately after the production of the composite lithium oxide (that is, in a completely discharged state). If the value of a is less than 0.95, the battery capacity decreases, and if the value of a exceeds 1.05, the rate characteristics deteriorate.
  • the b value is usually 1, but depending on the production conditions of the composite lithium oxide and other factors, 0. It may fluctuate in the range of 85 ⁇ b ⁇ l.1. Therefore, the b value rarely falls below 0.85 or exceeds 1.1.
  • X value corresponds to the content of the element M 1 in the composite lithium Sani ⁇ , 0. 005 ⁇ x ⁇ 0.
  • the X value is less than 0.005, the thermal stability of the crystal structure of the composite lithium oxide film cannot be increased, and safety cannot be ensured in a heating test performed under severe conditions. In the nail penetration test, it is difficult to ensure safety regardless of the presence or absence of the porous membrane. On the other hand, when the X value exceeds 0.15, the battery capacity is significantly reduced.
  • y value corresponds to the content of the element M 2 in the composite lithium Sani ⁇ , 0 ⁇ y ⁇ 0. 05 the full plus must satisfy the 0. 01 ⁇ y ⁇ 0. 03 Is preferred.
  • Elements M 2 is an optional component, a small amount of elements M 2, at a high temperature, believed to adhesion to the lithium complex oxide and Makuyui binder increases, the positive current collector strength also positive electrode mixture layer Is peeling off.
  • the y value exceeds 0.05, the battery capacity is significantly reduced.
  • composite lithium oxide is what may be produced by the method, and for example, a lithium salt, a cobalt salt, a salt of the element M 1, by mixing a salt of the element M 2, oxide It can be obtained by firing at a high temperature in an atmosphere.
  • the raw material for synthesizing the composite lithium oxide is not particularly limited, and for example, the following materials can be used.
  • lithium salt lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, lithium oxide, and the like can be used.
  • cobalt salt cobalt oxide, cobalt hydroxide and the like can be used.
  • Salt of the element M 1 as for example magnesium salts, Sani ⁇ Ma Guneshiumu, basic magnesium carbonate, magnesium chloride, magnesium fluoride, magnesium nitrate, magnesium sulfate, magnesium acetate, magnesium oxalate, ⁇ I ⁇ magnetic Shiumu, hydroxyl Magnesium magnesium or the like can be used.
  • Salt of the element M 2 for example aluminum - The ⁇ unsalted, aluminum hydroxide, aluminum oxide, aluminum nitrate, fluoride Kaa Lumi - ⁇ beam, or the like can be used aluminum sulfate.
  • the composite lithium oxide is by co-precipitation method, after preparing the Mizusani ⁇ cobalt containing an element M 1 and the element M 2, that firing is mixed with a lithium salt such as this You can also get it.
  • a lithium salt such as this You can also get it.
  • the composite lithium oxidized product represented by the formula: Li (Co M 1 M 2 ) O, the positive a ⁇ 2
  • the positive electrode active material that can be contained in the electrode is not particularly limited, but may be lithium cobaltate (LiCoO), a modified lithium cobaltate, lithium nickelate (LiNiO), nickel
  • an oxide a material obtained by substituting a part of Co, Ni or Mn of these oxides with another transition metal element or a typical metal, or a compound containing iron as a main constituent element which is widely called olivic acid. These may be used alone or in combination of two or more.
  • the positive electrode contains, for example, a positive electrode binder, a conductive material, and the like as optional components.
  • the positive electrode binder is not particularly limited.
  • polytetrafluoroethylene PTFE
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • BM-500B trade name
  • BM-500B acrylonitrile derivative rubber particles
  • BM-720H modified acrylonitrile rubber
  • conductive agent acetylene black, Ketjen black, various graphites and the like can be used. These may be used alone or in combination of two or more.
  • the negative electrode contains a material capable of inserting and extracting lithium ions as the negative electrode active material.
  • the negative electrode active material is not particularly limited, but includes various natural graphites, various artificial graphites, petroleum coatas, carbon materials such as carbon fibers, organic polymer fired products, oxide-containing silicon-containing composite materials such as silicon, tin and silicide, and tin. Containing composite materials, various metals or alloy materials, and the like can be used. These may be used alone or in combination of two or more.
  • the negative electrode contains, as optional components, for example, a negative electrode binder, a thickener, and the like.
  • the negative electrode binder is not particularly limited, but those containing a styrene unit and a butadiene unit, which are preferred by rubber particles, are particularly preferable from the viewpoint of exhibiting the binding property with a small amount.
  • a styrene-butadiene copolymer (SBR), a modified SBR containing an acrylic acid unit or an acrylate unit, and the like can be used. These can be used alone. May be used in combination.
  • SBR styrene-butadiene copolymer
  • a modified SBR containing an acrylic acid unit or an acrylate unit, and the like can be used. These can be used alone. May be used in combination.
  • a thickener which also has a water-soluble high molecular weight.
  • CMC is particularly preferable, since cell-based resin is preferred.
  • the amounts of the rubber particles and the thickener contained in the negative electrode are each preferably 0.1 to 5 parts by weight per 100 parts by weight of the negative electrode active material.
  • the negative electrode binder PVDF, a modified form of PVDF, or the like can also be used.
  • the porous membrane contains an inorganic oxide film and a membrane binder, and has a pore structure.
  • the pore structure is formed by the gaps between the inorganic oxide film fillers.
  • the content of the inorganic oxide filler in the total of the inorganic oxide film filler and the film binder is preferably not less than 50% by weight and not more than 99% by weight. % Or more, more preferably 90% by weight or more and 97% by weight or less. If the content of the inorganic oxide filler is too small, the content of the membrane binder becomes large, and it becomes difficult to control the pore structure, and the movement of ions is hindered by the membrane binder. May drop. On the other hand, if the content of the inorganic oxide film is too high, the content of the membrane binder is reduced, the strength of the porous film and the adhesion to the electrode surface are reduced, and the porous film is dropped. Sometimes.
  • the viewpoint of obtaining a porous film having high heat resistance is that the inorganic oxide film has a heat resistance of 250 ° C or more and is electrochemically resistant within the potential window of the nonaqueous electrolyte secondary battery. It is hoped that it is stable.
  • Many inorganic oxidizing films satisfy these conditions, but among inorganic oxidizing materials, alumina, magnesia, silica, zirconia, titer and the like are particularly preferable, and alumina-magnesia is particularly preferable.
  • One kind of the inorganic acid ridden filler may be used alone, or two or more kinds may be used in combination.
  • the bulk density (power strips density) of the inorganic oxide filler is 0. 2 g / cm 3 or more 0. 8 g / cm 3 that less is Is desirable. If the bulk density is less than 0.2 gZcm 3 , the inorganic oxide film may become too bulky, and the structure of the porous membrane may become weak. On the other hand, if the bulk density exceeds 0.8 g / cm 3 , it may be difficult to form suitable voids between the filler particles.
  • the particle size of the inorganic acid irrigating film is not particularly limited! /, But the particle size is small! /, And the bulk density tends to be low! /.
  • the particle shape of the inorganic oxidized product filler is not particularly limited, but it should be an irregular particle in which a plurality (for example, about 2 to 10, preferably 3 to 5) of primary particles are connected and fixed. Is desirable Yes. Since the primary particles usually consist of a single crystal, the irregular particles always become polycrystalline particles.
  • the irregular particles preferably include polycrystalline particles having a shape such as a dendritic, coral, or tufted shape. Such polycrystalline particles are not suitable for forming an excessively dense packed structure in the porous film, and thus are suitable for forming appropriate voids.
  • the polycrystalline particles include, for example, particles in which about 2 to 10 primary particles are connected by melting, and particles in which about 2 to 10 crystal growing grains come into contact with each other and coalesce.
  • the average particle size of the primary particles constituting the polycrystalline particles is more preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less. If the average particle size of the primary particles exceeds 3 ⁇ m, the membrane binder becomes excessive due to the decrease in the surface area of the filler, and the swelling of the porous membrane by the nonaqueous electrolyte may easily occur. When the primary particles cannot be clearly identified in the polycrystalline particles, the particle size of the primary particles is defined by the thickest part of the knot of the polycrystalline particles.
  • the average particle size of the primary particles can be determined as an average by measuring the particle size of at least 10 primary particles using, for example, an SEM image or a TEM image of polycrystalline particles.
  • the average particle size (median diameter on a volume basis: D50) of the primary particles of the raw material is adjusted to the primary particle constituting the polycrystalline particles. It can be handled as the average particle size of the particles. With such a heat treatment that promotes diffusion bonding, the average particle size of the primary particles hardly fluctuates.
  • the average particle size of the polycrystalline particles is more than twice the average particle size of the primary particles, and is more preferably 3 m or less, more preferably 10 m or less.
  • the average particle size (volume-based median diameter: D50) of the polycrystalline particles can be measured, for example, by a wet laser-type particle size distribution analyzer manufactured by Microtrac. If the average particle size of the polycrystalline particles is less than twice the average particle size of the primary particles, the porous film may have an excessively dense packing structure. If the average particle size exceeds, the porosity of the porous film becomes excessive. The structure of the porous membrane may become brittle.
  • the method for obtaining polycrystalline particles is not particularly limited. For example, it can be obtained by sintering an inorganic oxide into a lump and pulverizing the lump appropriately.
  • polycrystalline particles can be directly obtained by bringing the particles that are undergoing crystal growth into contact with each other without passing through the pulverizing step.
  • the sintering temperature is preferably 800 to 1300 ° C, and the sintering time is 3 to 30 minutes. Is preferred.
  • the pulverization can be performed using a wet equipment such as a ball mill or a dry equipment such as a jet mill and a jaw crusher. In that case, those skilled in the art can control the polycrystalline particles to an arbitrary average particle size by appropriately adjusting the grinding conditions.
  • the film binder is required to be excellent in heat resistance to some extent and to have an action of increasing the adhesiveness of the active material particles in the positive electrode mixture layer at a high temperature.
  • the thermal decomposition temperature of the film binder is preferably 250 ° C. or higher. In the nail penetration test, depending on the conditions, the exothermic temperature may locally exceed several hundred ° C. At such high temperatures, film binders with decomposition onset temperatures below 250 ° C can cause excessive softening and burning, deforming the porous membrane and making it difficult to ensure safety.
  • the melting point or decomposition start temperature of the membrane binder is determined by differential scanning calorimetry (DSC) of a sample of the membrane binder or thermogravimetry-differential thermal analysis (TG-DTA). analysis) to determine the temperature of the inflection in DSC3 ⁇ 4J or the temperature at the start of the weight change in TG-DTA measurement.
  • DSC differential scanning calorimetry
  • TG-DTA thermogravimetry-differential thermal analysis
  • the film binder examples include styrene-butadiene rubber (SBR), a modified SBR containing an acrylic acid unit or a phthalate unit, polyethylene, polytetrafluoroethylene (PTF E), and polyvinyl fluoride.
  • SBR styrene-butadiene rubber
  • PVF E polytetrafluoroethylene
  • PVDF Lidene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • copolymers containing acrylonitrile units especially rubbery polymers containing acrylonitrile units
  • polyacrylic acid derivatives Polyacrylonitrile derivatives
  • CMC carboxymethylcellulose
  • copolymers containing acrylonitrile units for example, modified acrylic rubber such as BM-720H (trade name) manufactured by Zeon Corporation) and polyacrylic acid derivatives (for example, manufactured by Zeon Corporation) Preferred are polyacrylic acid derivative rubber particles such as BM-500B (trade name), and polyacrylonitrile derivatives.
  • the copolymer containing an acrylonitrile unit may have, in addition to the acrylonitrile unit, — (CH)-
  • the polyacrylic acid derivative preferably contains at least one member selected from the group consisting of acrylonitrile units, methyl acrylate units, ethyl acrylate units, methyl methacrylate units, and ethyl methacrylate units.
  • the polyataryl-tolyl derivative preferably contains at least one member selected from the group consisting of acrylic acid units, methyl acrylate units, ethyl acrylate units, methyl methacrylate units and ethyl methacrylate units.
  • the film binder has rubber elasticity, the impact resistance of the porous film is improved, and in particular, when the positive electrode and the negative electrode are wound through a separator, cracks and the like may occur. This is advantageous in that a high battery production yield can be maintained.
  • a rubbery polymer containing an acrylo-tolyl unit is particularly preferable.
  • the thickness of the porous membrane is not particularly limited, but should be 0.5 to 20 / ⁇ from the viewpoint of sufficiently exerting the effect of improving safety by the porous membrane and maintaining the design capacity of the battery. Is preferred.
  • the porous membrane may include a plurality of layers having different compositions, but preferably has a total thickness of 0.5 to 20 ⁇ m. Further, the total thickness of the separator and the porous membrane is preferably 10 to 30 ⁇ m.
  • a paint (hereinafter, referred to as a porous film paint) containing an inorganic oxide film and a film binder is prepared, and this is applied to the electrode surface. It is obtained by drying the coating.
  • the porous film paint is obtained by mixing the inorganic oxide film filler and the film binder with a dispersion medium of the filler.
  • organic solvents such as N-methyl-2-pyrrolidone (NMP) and cyclohexanone and water are preferably used, but not limited thereto.
  • the mixing of the inorganic oxide film filler, the film binder and the dispersion medium can be performed using a double-armed stirrer such as a planetary mixer or a wet disperser such as a bead mill.
  • a method for applying the porous film coating to the electrode surface include a comma roll method, a gravure roll method, and a die coating method.
  • the concentration of the lithium salt dissolved in the non-aqueous solvent is generally 0.5 to 2 molZL.
  • lithium salts lithium hexafluorophosphate (LiPF), lithium perchlorate
  • LiCIO 3 lithium borofluoride (LiBF 3) or the like is preferably used. These are used alone Two or more types may be used in combination.
  • the non-aqueous solvent is not particularly limited, and examples thereof include ethylene carbonate (EC), propylene carbonate (PC), dimethinolecarbonate (DMC), ethynolecarbonate (DEC), and ethyl methyl carbonate (EMC).
  • Carboxylic acid esters such as ⁇ -butyrate ratatone, y valerolatatone, methyl formate, methyl acetate and methyl propionate; ethers such as dimethyl ether, getyl ether and tetrahydrofuran.
  • the non-aqueous solvent one kind may be used alone, or two or more kinds may be used in combination. Of these, carbonates are particularly preferably used.
  • Non-aqueous electrolysis of bene carbonate (VC), cyclohexylbenzene (CHB), modified VC or CHB, etc. to form a good film on the electrode and secure stability during overcharge, etc. It may be added to the liquid.
  • the material of the separator is not particularly limited, but as the separator, a polyolefin having a melting point of 200 ° C or less is preferably used, and polyolefin is particularly preferable. Of these, polyethylene, polypropylene, ethylene-propylene copolymer, and a composite of polyethylene and polypropylene are preferred. Polyolefin separators with a melting point of 200 ° C or less can easily melt when a battery short-circuits due to external factors, and have the ability to exhibit a so-called shutdown effect.
  • the separator may be a single-layer film made of one kind of polyolefin resin or a multilayer film made of two or more kinds of polyolefin resin.
  • the thickness of the separator is not particularly limited, but is preferably 8 to 30 ⁇ m from the viewpoint of maintaining the design capacity of the battery.
  • Preliminary baking was performed at 500 ° C for 12 hours in an atmosphere to obtain a predetermined oxide.
  • the oxide obtained by the preliminary calcination and lithium carbonate are mixed so that the mono ktt force of lithium, cobalt and magnesium is 1: 0.95: 0.05, and the mixture is tentatively maintained at 600 ° C for 10 hours. Fired and ground.
  • the pulverized calcined material is calcined again at 900 ° C. for 10 hours (final calcining), crushed and classified to obtain a composite lithium oxide (positive electrode active material) represented by the chemical formula Li (CoMg) O. Was.
  • the positive electrode mixture paste was applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m, dried, and then rolled to form a positive electrode mixture layer. At this time, the total thickness of the electrode plate composed of the aluminum foil and the positive electrode mixture layer was set to 160 m. Then, the electrode plate was cut into a width that could be inserted into a battery case (diameter 18 mm, height 65 mm) for a cylindrical battery, and a positive electrode hoop was obtained.
  • BM-400B (trade name)” manufactured by Zeon Corporation as a binder, and 30 g of carboxymethyl cellulose (CMC) as a thickener And water were stirred by a double-arm kneading machine to prepare a negative electrode mixture paste.
  • CMC carboxymethyl cellulose
  • Japanese Ze ON Co., Ltd. BM- 400B is an aqueous dispersion containing 40 weight 0/0 of styrene-butadiene copolymer.
  • the negative electrode mixture paste was applied to both surfaces of a 10- ⁇ m-thick copper foil (negative electrode current collector), dried, and then rolled to form a negative electrode mixture layer. At this time, the total thickness of the electrode plate composed of the copper foil and the negative electrode mixture layer was set to 180 m. Thereafter, the electrode plate was cut into a width that could be inserted into the battery case, to obtain a negative electrode hoop.
  • Li PF Lithium hexafluorophosphate
  • DMC dimethinorecarbonate
  • MEC methinoolethienolecarbonate
  • BM-720H (trade name) manufactured by ZEON CORPORATION as a film binder
  • NMP a double-arm kneading machine
  • a film paint was prepared.
  • BM-720H manufactured by ZEON CORPORATION is an NMP solution containing 8% by weight of modified acrylonitrile rubber (membrane binder).
  • the obtained porous membrane paint was applied on both sides of the negative electrode hoop and dried to form a porous membrane having a thickness of 6 ⁇ m.
  • a cylindrical lithium ion secondary battery as shown in FIG. 1 was produced.
  • a positive electrode hoop and a negative electrode hoop having a porous membrane were wound through a separator made of a 20 / zm-thick microporous polyethylene film to form an electrode plate group.
  • the obtained electrode group was inserted into the battery case.
  • 5.5 g of a nonaqueous electrolyte was injected into the battery case, and the opening of the case was sealed.
  • a cylindrical battery with a diameter of 18 mm, a height of 65 mm, and a design capacity of 2000 mAh was completed.
  • aqueous solution containing cobalt sulfate at a concentration of 0.090 molZl, containing magnesium nitrate at a concentration of 0.05 molZl, and containing aluminum nitrate at a concentration of 0.05 molZl was prepared.
  • a hydroxide which is a precursor of the active material, that is, Co Mg Al (OH) was synthesized according to Example 1. Put this precursor in a firing furnace and air
  • Preliminary baking was performed at 500 ° C. for 12 hours in an atmosphere to obtain a predetermined oxide.
  • the oxide obtained by the preliminary firing and lithium carbonate were mixed such that lithium, cobalt, magnesium, and anoremium had a mono-Kb territory S, 1: 0.90: 0.05: 0.05: 0.05. Except for the above, the same operation as in Example 1 was performed to obtain a composite lithium acid represented by Li (Co Mg Al) 0. (Positive electrode active material) was obtained. Next, a cylindrical battery was produced in the same manner as in Example 1, except that this positive electrode active material was used.
  • Example 1 Same as Example 1 except that magnesium-free LiCoO was used as the positive electrode active material.
  • a cylindrical battery was produced in the same manner as in Example 1, except that a porous film was formed on the negative electrode mixture layer and a negative electrode was used.
  • a cylindrical battery was produced in the same manner as in Example 1, except that the porous film was formed on the positive electrode mixture layer instead of on the negative electrode mixture layer.
  • the battery capacity of the produced battery was measured in the following manner.
  • a nail penetration test and a 180-degree peel test were performed in the following manner. The results are shown in Table 1.
  • each battery was preliminarily charged / discharged in the following pattern. Thereafter, each battery was stored in a 45 ° C environment for 7 days.
  • each battery was preliminarily charged / discharged in the following pattern. Thereafter, each battery was stored in a 45 ° C environment for 7 days.
  • the 180 degree peeling test was performed in accordance with JIS Z0237. Specifically, an adhesive tape was attached to the surface of a 15 mm-wide electrode as a test piece, and then the adhesive tape was pulled in a direction of 180 degrees with respect to the electrode surface, so that the electrode mixture layer was separated from the current collector. Peel strength (gZf) at the time of peeling was measured.
  • a cylindrical battery was produced and evaluated in the same manner as in Example 1, except that the following oxidized territories were used instead of alumina as the inorganic irritant filler. Table 2 shows the results.
  • Example 2 The same operation as in Example 1 was carried out except that strontium nitrate, yttrium nitrate, zirconium nitrate, calcium nitrate or titanium nitrate was used instead of magnesium nitrate when preparing a hydroxide as a precursor of the positive electrode active material.
  • strontium nitrate, yttrium nitrate, zirconium nitrate, calcium nitrate or titanium nitrate was used instead of magnesium nitrate when preparing a hydroxide as a precursor of the positive electrode active material.
  • a composite lithium oxide positive electrode active material having the composition shown in Table 1.
  • a cylindrical battery was prepared and evaluated in the same manner as in Example 1, except that these positive electrode active materials were used. Table 3 shows the results.
  • Example 4 When preparing a hydroxide as a precursor of the positive electrode active material, the same operation as in Example 1 was performed except that the concentration ratio of cobalt sulfate and magnesium nitrate in the aqueous solution was changed, and the results are shown in Table 4. A composite lithium oxide (a positive electrode active material) having a composition was obtained. Next, a cylindrical battery was prepared and evaluated in the same manner as in Example 1, except that these positive electrode active materials were used. Table 4 shows the results.
  • a cylindrical battery was prepared and evaluated in the same manner as in Example 6, except that a negative electrode having no porous film formed on the negative electrode mixture layer was used. Table 4 shows the results.
  • Example 2 When preparing a hydroxide as a precursor of the positive electrode active material, the same operation as in Example 2 was performed, except that gallium nitrate, indium nitrate, or tantalum nitrate was used instead of aluminum nitrate. A composite lithium oxide (positive electrode active material) having the composition shown was obtained. Next, a cylindrical battery was prepared and evaluated in the same manner as in Example 1 except that these positive electrode active materials were used. Table 5 shows the results.
  • Example 2 As in Example 2, except that the concentration of magnesium nitrate in the aqueous solution was fixed and the concentration ratio between cobalt sulfate and aluminum nitrate was changed when preparing the hydroxide as a precursor of the positive electrode active material. By performing the above operation, a composite lithium oxide (positive electrode active material) having the composition shown in Table 6 was obtained. Next, a cylindrical battery was fabricated and evaluated in the same manner as in Example 1, except that these positive electrode active materials were used. Table 6 shows the results.
  • a cylindrical battery was prepared and evaluated in the same manner as in Example 8, except that the porous film was formed on the negative electrode mixture layer, and the negative electrode was used. Table 6 shows the results.
  • Example 7 When preparing a hydroxide that is a precursor of the positive electrode active material, instead of aluminum nitrate, except for using indium nitrate and changing the concentration ratio of cobalt sulfate and indium nitrate in the aqueous solution, the same operation as in Example 8 was performed to obtain a composite lithium oxide having a composition shown in Table 7 (a positive electrode active material). Substance). Next, a cylindrical battery was produced and evaluated in the same manner as in Example 1, except that these positive electrode active materials were used. The results are shown in Table 7
  • a cylindrical battery was produced and evaluated in the same manner as in Example 9, except that a negative electrode having no porous film formed on the negative electrode mixture layer was used. Table 7 shows the results.
  • a cylindrical battery was prepared and evaluated in the same manner as in Example 1 except that the following resin was used instead of BM-720H manufactured by Zeon Corporation as a membrane binder. Table 8 shows the results.
  • PVDF polyvinylidene fluoride
  • a cylindrical battery was prepared and evaluated in the same manner as in Example 1, except that the thickness of the porous film formed on the negative electrode mixture layer was changed as shown in Table 10. Table 10 shows the results.
  • Alumina AA03 (trade name)” manufactured by Sumitomo Chemical Co., Ltd. (primary particles of Hi-Alumina with a volume-based average particle diameter (median diameter) of 0.3 / m) at 900 ° C for 1 hour Upon heating, the primary particles were connected by diffusion bonding to obtain polycrystalline particles. The volume-based average particle diameter (median diameter) of the obtained polycrystalline particles was 2.6 m.
  • a cylindrical battery was produced and evaluated in the same manner as in Example 1, except that the polycrystalline particles thus obtained were used as an inorganic oxide film filter. Table 11 shows the results.
  • Table 2 summarizes the results of the nail penetration test shown in Table 4.
  • FIG. 2 shows the relationship between the added amount (X) of the element M 1 (Mg) contained in the composite lithium oxide and the maximum attained temperature during nail penetration.
  • FIG. 3 shows the addition amount of the element M 1 contained in the composite lithium Sani ⁇ and (X), electrostatic This shows the relationship with pond capacity.
  • Plot A mouth shows the relationship of the battery with the porous membrane, and plot () shows the relationship of the battery without the porous membrane.
  • FIG. 4 shows the relationship between the addition amount (y) of the element M 2 (A1, In) contained in the composite lithium oxide sulfide and the maximum temperature at the time of nail penetration.
  • FIG. 5 shows the elements M 2 contained in the composite lithium oxides ⁇ Ka ⁇ and (y), shows the relationship between the battery capacity.
  • Plot A ( ⁇ ) shows the relationship for batteries where element M 2 is A1
  • plot B (mouth) shows the relationship for batteries where element M 2 is In.
  • the present invention is useful for imparting an extremely high level of safety to a lithium ion secondary battery, which can suppress thermal runaway even in a nail penetration test and a heating test at a high temperature. is there. Since the lithium ion secondary battery of the present invention has a high degree of safety, it can be applied to all fields, particularly notebook computers, mobile phones, digital phones, and the like. It is useful as a drive power supply for electronic devices such as digital cameras.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 高度な熱安定性を有する正極を具備するとともに、釘刺し試験においても熱暴走に至る可能性を大きく低減できるリチウムイオン二次電池を提供する。複合リチウム酸化物を含む正極、正極表面および負極表面より選ばれる少なくとも一方に接着された多孔膜を具備し、多孔膜は、無機酸化物フィラーおよび膜結着剤を含み、複合リチウム酸化物は、式:Lia(Co1-x-yM1 xM2 y)bO2(式中、元素M1は、Mg、Sr、Y、Zr、CaおよびTiよりなる群から選ばれる少なくとも1種、元素M2は、Al、Ga、InおよびTlよりなる群から選ばれる少なくとも1種、0<a≦1.05、0.005≦x≦0.15、0≦y≦0.05および0.85≦b≦1.1)で表されるリチウムイオン二次電池。                                                                         

Description

明 細 書
リチウムイオン二次電池
技術分野
[0001] 本発明は、高度な熱安定性を有する正極を具備するとともに、短絡に対する安全 性を向上させたリチウムイオン二次電池に関し、特に、釘刺し試験などで短絡を発生 させた場合に、電池温度が 80°Cを超える可能性を大きく低減させたリチウムイオン二 次電池に関する。本発明は、高度な熱安定性を有する正極を用いる場合に特有の 課題を解決するものである。
背景技術
[0002] 近年、ポータブル電子機器用電源として、高容量、かつ軽量な非水系二次電池、 特にリチウムイオン二次電池が広く使用されている。リチウムイオン二次電池は、正極 と負極とを電気的に絶縁し、さらに非水電解液を保持する役目をもつ多孔質な榭脂 製セパレータを有している。榭脂製セパレータには、ポリオレフイン榭脂などの熱変形 しゃすい榭脂が用いられている。正極は、 A1などの導電性材料力もなる正極集電体 およびこれに担持された正極合剤層を具備し、負極は Cuなどの導電性材料からなる 負極集電体およびこれに担持された負極合剤層を具備する。
[0003] 榭脂製セパレータは、比較的低温で熱変形を起こしやす!、ため、電池が過充電状 態になった場合や、微小短絡などが生じた場合に、電池温度が上昇すると、収縮な どの熱変形を起こし、正極や負極よりも幅が小さくなることがある。その場合、反応性 の高められた正極と負極とが接触し、加熱が促進される可能性がある。
[0004] 一方、リチウムイオン二次電池の安全性を向上させるために、電極上に無機微粒子 と榭脂結着剤カゝらなる多孔膜を形成することが提案されている (例えば、特許文献 1 参照)。このような多孔膜は、電池温度が上昇しても収縮しないため、反応性の高め られた正極と負極とが接触する可能性は低減する。
[0005] しかし、釘刺し試験などでは、極板の構造が複雑に破壊されるため、導電性の高 ヽ 正極集電体と、同じく導電性の高い負極集電体もしくは負極合剤層とが接触して、大 電流が流れる内部短絡が発生することがある。このような場合、特許文献 1の技術で は、高度な安全性 (例えば電池の最高到達温度を 80°C以下に抑えることができる程 度の安全性)を確保することは困難である。
[0006] また、 UL規格にある 150°C加熱試験など、異常モードを想定した加熱試験にぉ ヽ ては、正極活物質が熱的に不安定な温度領域に暴露される。そのため、熱安定性の 低い結晶構造を有する正極活物質は、発熱を伴う連鎖反応を起こし、セパレータの 収縮なども誘発されて、電池の発熱が促進される。
特許文献 1:特開平 7— 220759号公報
発明の開示
発明が解決しょうとする課題
[0007] 上述のように、多孔膜を電極上に形成したとしても、釘刺し試験および高温での加 熱試験では、高度な安全性を確保することは、容易ではない。更に、加熱試験にお ける安全性を確保する観点からは、熱安定性に優れた正極活物質を用いることが望 まれるが、釘刺し試験における安全性を確保する観点からは、熱安定性に優れた正 極活物質を用いることが却って不利となる。本発明者らの知見によると、熱安定性を 高めるために正極活物質に異種元素を添加した場合、活物質の粉体抵抗が低下す る。そのため、釘刺し試験においては、短絡部の抵抗が低下することになり、過剰に 電流が流れ、安全性が低下する傾向が見出されている。すなわち、高度な熱安定性 を有する正極を用いると、釘刺し試験における安全性を確保することが逆に困難な状 況となる。
[0008] 本発明は、上記を鑑み、高度な熱安定性を有する正極を具備するとともに、釘刺し 試験などで短絡を発生させた場合にも、電池温度が 80°Cを超える可能性を大きく低 減できる、極めて安全性の高いリチウムイオン二次電池を提供することを目的とする。 課題を解決するための手段
[0009] 多孔膜を電極表面に接着した場合でも、釘刺し試験にお!ヽては、高度な安全性 ( 例えば電池の最高到達温度を 80°C以下に抑えることができる程度の安全性)を確保 することは非常に困難である。よって、釘刺し試験における安全性を低下させる正極 活物質、すなわち熱安定性に優れた正極活物質を用いた場合には、釘刺し試験に おける安全性の確保は著しく困難となることが予測される。ところが、熱安定性に優れ た正極活物質が、特定の組成を有する場合には、電極表面に多孔膜を接着すること により、多孔膜を接着しない場合とは逆に、釘刺し試験における安全性が向上する 傾向がある。本発明は、このような知見に基づくものであり、特定の組成を有する熱的 安定性の高い正極活物質を用いるとともに、電極表面に多孔膜を接着することを提 案している。
[0010] すなわち、本発明は、複合リチウム酸化物を含む正極、リチウムを電気化学的に吸 蔵および放出しうる材料を含む負極、正極と負極との間に介在するセパレータ、非水 電解液、ならびに正極表面、負極表面およびセパレータ表面より選ばれる少なくとも
1つに接着された多孔膜を具備するリチウムイオン二次電池であって、多孔膜は、無 機酸化物フィラーおよび膜結着剤を含み、複合リチウム酸化物は、式: Li (Co M1
a Ι
M2 ) Oで表され、式中、元素 M1は、 Mg、 Sr、 Y、 Zr、 Caおよび Tiよりなる群から選
2
ばれる少なくとも 1種であり、元素 M2は、 Al、 Ga、 Inおよび 11ょりなる群力も選ばれる 少なくとも 1種であり、式は、 0< a≤l. 05、 0. 005≤x≤0. 15、 0≤y≤0. 05およ び 0. 85≤b≤l. 1を満たすリチウムイオン二次電池に関する。
[0011] 正極は、一般に、正極集電体およびその両面に担持された正極合剤層を具備する 。負極は、一般に、負極集電体およびその両面に担持された負極合剤層を具備する 。正極および負極の形状は、特に限定されないが、通常は帯状である。複合リチウム 酸化物は、正極活物質であり、リチウムを電気化学的に吸蔵および放出しうる材料は 、負極活物質である。
[0012] 正極および負極の集電体には、通常、金属箔が用いられるが、従来から非水系二 次電池用電極板の集電体として当業者に知られているものを特に制限なく用いること ができる。金属箔には、様々な表面処理が施されていてもよぐ機械的に加工されて いてもよい。集電体は、捲回前や完成された電池内においては、通常、帯状の形態 を有する。正極集電体には、 A1や A1合金が好ましく用いられる。負極集電体には、 C uや Cu合金が好ましく用いられる。
[0013] 正極および負極の合剤層は、活物質を必須成分として含み、結着剤、導電材、増 粘剤などを任意成分として含む合剤を、層状に成形したものである。合剤層は、一般 に、液状成分、例えば水、 N—メチルー 2—ピロリドン(以下、 NMP)、シクロへキサノ ンなどに合剤を分散させたペーストを、集電体上に塗布し、乾燥させ、乾燥塗膜を圧 延することにより、形成される。
[0014] セパレータは、通常、榭脂もしくは榭脂組成物をシート状に成形し、さらに延伸して 得られる。このようなセパレータの原料となる榭脂は、特に限定されないが、例えばポ リエチレンやポリプロピレンなどのポリオレフイン榭旨、ポリアミド、ポリエチレンテレフタ レート(PET)、ポリアミドイミド、ポリイミド等が用いられる。
[0015] 非水電解液は、溶質を溶解する非水溶媒からなり、溶質にはリチウム塩が用いられ 、非水溶媒には、様々な有機物質が用いられる。
[0016] 多孔膜は、電子絶縁性を有し、従来のセパレータと共通の役割を果たすが、第 1に 、電極合剤層上に担持もしくは接着されている点で、セパレータとは異なる。多孔膜 は、熱収縮や熱変形に対する耐性が極めて高い。また、多孔膜は、第 2に、無機酸 化物フィラーの粒子同士を膜結着剤で結合した構造を有する点で、榭脂シートを延 伸加工して得られるセパレータとは異なる。よって、多孔膜の面方向における引張強 度はセパレータよりも低くなる力 多孔膜は、高温に曝されてもセパレータのように熱 収縮しない点で優れている。多孔膜は、短絡の発生時や電池が高温に曝された時に 、短絡部の拡大を防ぎ、電池温度の異常昇温を防止する。
[0017] 本発明は、多孔膜が、正極と負極との間に介在するように配置される場合を全て含 む。すなわち、本発明は、多孔膜が、正極表面だけに接着されている場合、負極表 面だけに接着されている場合、セパレータ表面だけに接着されている場合、正極表 面と負極表面の両方に接着されて 、る場合、正極表面とセパレータ表面に接着され ている場合、負極表面とセパレータ表面に接着されている場合、正極表面と負極表 面とセパレータ表面に接着されている場合を全て含む。また、本発明は、多孔膜が、
Figure imgf000006_0001
、る場合と正極の両面に接着されて!、る場合、負極の 片面だけに接着されて!ヽる場合と負極の両面に接着されて!ヽる場合、セパレータの 片面だけに接着されて ヽる場合とセパレータの両面に接着されて ヽる場合を含む。
[0018] 無機酸ィ匕物フイラ一は、無機酸ィ匕物の粒状物もしくは粉末であり、多孔膜の主成分 である。
無機酸ィ匕物フイラ一は、アルミナおよびマグネシアよりなる群力も選択される少なくと も 1種を含むことが好ましい。
無機酸化物フィラーと膜結着剤との合計に占める無機酸化物フィラーの含有率は、
50重量%以上、 99重量%以下であることが好まし 、。
[0019] 膜結着剤は、榭脂成分からなり、無機酸ィ匕物フイラ一の粒子同士を結着させ、更に 多孔膜を電極表面に接着させる作用を有する。
膜結着剤は、 250°C以上の分解開始温度を有することが好ましい。
膜結着剤は、例えば 150〜200°Cの軟ィ匕点を有することが好ましい。なお、軟化点 は、どのような方法で測定してもよいが、例えば次のような方法が好ましい。まず、膜 結着剤をシート状に成形する。得られたシートに、鉛直方向に設置された針状端子 の先端を接触させ、一定の荷重を鉛直方向に印力 tlしながら、シートを加温する。その 際、端子の先端がシート内に大きく沈み込む温度を軟ィ匕点と定義することができる。 膜結着剤は、アクリロニトリル単位を含むゴム性状高分子を含むことが好ま 、。
[0020] 本発明に係るリチウムイオン二次電池の形態は、特に限定されず、円筒型、角型、 積層型など、様々なタイプを包含するが、正極と負極とを、セパレータを介して捲回し た極板群を含む円筒型や角型の電池において特に有効である。すなわち、正極と負 極とは、セパレータを介して捲回されて 、ることが好まし!/、。
発明の効果
[0021] 本発明によれば、正極活物質の結晶構造が熱的に安定であるため、高温での加熱 試験において、電池の高度な安全性を確保できることに加え、釘刺し試験において も、電池の高度な安全性を確保することができる。以下、効果の発現機構について考 察を含めて説明する。
[0022] 式: Li (Co M1 M2 ) Oで表され、元素 M1が、 Mg、 Sr、 Y、 Zr、 Caおよび TUり a Ι-χ-y x y b 2
なる群力も選ばれる少なくとも 1種であり、元素 M2が、 Al、 Ga、 Inおよび TUりなる群 力ら選ば、れる少なくとも 1種であり、 0< a≤l. 05、 0. 005≤x≤0. 15、 0≤y≤0. 0 5および 0. 85≤b≤l. 1を満たす複合リチウム酸化物を正極活物質として用いる場 合には、多孔膜の有無により、釘刺し試験における安全性が逆の傾向を示す。
[0023] すなわち、通常は、元素 M1を 0. 005≤x≤0. 15の範囲で含有する複合リチウム 酸ィ匕物を正極活物質として用いると、釘刺し試験における安全性の確保は困難であ る。その理由は明らかではないが、元素 M1により、複合リチウム酸化物の結晶構造の 熱的安定性が高められるとともに、複合リチウム酸化物の導電性が高まり、釘刺し時 に流れる過剰電流が促進されるためと考えられる。
[0024] 一方、元素 M1を 0. 005≤x≤0. 15の範囲で含有する複合リチウム酸化物を正極 活物質として用いる場合でも、電極表面に多孔膜が接着されている場合には、予測 に反して、釘刺し試験における安全性が顕著に向上する。その理由は明らかではな V、が、正極合剤層における正極活物質同士の密着性が関連して 、るものと考えられ る。
[0025] 正極活物質同士の密着性が高まり、正極集電体の露出が抑制されると、釘刺し試 験における電池温度の上昇は抑制される。これは、導電性の高い正極集電体と、同 じく導電性の高い負極集電体もしくは負極合剤層との接触が主要因となって発生す ることと関連している。すなわち、釘刺し試験における安全性の向上には、正極活物 質同士の密着性が大きく影響して 、る。
[0026] 釘刺し試験において、電池が高温まで昇温した際には、膜結着剤の一部が溶出し て、正極合剤層に侵入していると考えられる。正極合剤層に侵入した膜結着剤は、 正極活物質同士の密着性を高め、正極集電体力 正極合剤層が剥離するのを抑制 すると考えられる。このような効果により、電池の昇温を抑止するためには、迅速に正 極活物質同士の密着性を高めることが要求される。正極活物質が導電性に優れる場 合には、一定温度まで迅速に電池温度が上昇し、膜結着剤の溶出が起こり、迅速に 正極活物質同士の密着性が高められるものと考えられる。
図面の簡単な説明
[0027] [図 1]円筒型のリチウムイオン二次電池の一例の縦断面図である。
[図 2]複合リチウム酸ィ匕物に含まれる元素 M1の添加量 (X)と、釘刺し時における最高 到達温度との関係を示す図である。
[図 3]複合リチウム酸ィ匕物に含まれる元素 M1の添加量 (X)と、電池容量との関係を示 す図である。
[図 4]複合リチウム酸ィ匕物に含まれる元素 M2の添加量 (y)と、釘刺し時における最高 到達温度との関係を示す図である。 [図 5]複合リチウム酸ィ匕物に含まれる元素 M2の添加量 (y)と、電池容量との関係を示 す図である。
発明を実施するための最良の形態
[0028] 本発明は、複合リチウム酸化物を含む正極、リチウムを電気化学的に吸蔵および放 出しうる材料を含む負極、正極と負極との間に介在するセパレータ、非水電解液、な らびに正極表面および負極表面より選ばれる少なくとも一方に接着された多孔膜を 具備するリチウムイオン二次電池に関する。
[0029] 図 1は、一般的な円筒型のリチウムイオン二次電池の一例の縦断面図である。正極 5および負極 6は、セパレータ 7を介して捲回された状態であって、柱状の極板群を 構成している。正極 5には、正極リード 5aの一端が接続されており、負極 6には、負極 リード 6aの一端が接続されている。非水電解液を含浸させた極板群は、上部絶縁リ ング 8aおよび下部絶縁リング 8bで挟まれた状態で、電池缶 1の内空間に収容されて いる。極板群と電池缶 1の内面との間には、セパレータを介装させてある。正極リード 5aの他端は、電池蓋 2の裏面に溶接されており、負極リード 6aの他端は、電池缶 1の 内底面に溶接されている。電池缶 1の開口は、周縁に絶縁パッキン 3が配された電池 蓋 2で塞がれている。なお、図 1は、本発明のリチウムイオン二次電池の一形態に過 ぎず、本発明の適用範囲が図 1の場合に限定されるわけではない。
[0030] 図 1には図示されないが、正極表面、負極表面およびセパレータ表面の少なくとも 1 つには、多孔膜が接着されている。正極および負極が、セパレータを介して捲回され ている場合、極板群の構造上、電池内で熱が蓄積されやすぐ安全性の確保が特に 重要である。よって、本発明は、正極および負極が、セパレータを介して捲回されて いる場合に、特に有効である。
[0031] 正極に活物質として含まれる複合リチウム酸化物は、式: Li (Co M1 M2 ) Oで a Ι-χ-y x y b 2 表される。この複合酸ィ匕物の結晶構造は、 LiCoOと同様か、これに近似しており、 Li
2
CoOの結晶構造において、 Coの一部を元素 M1または元素 M1と元素 M2により置換
2
した構造であると考えられる。
[0032] 式中、元素 M1は、 Mg、 Sr、 Y、 Zr、 Caおよび TUりなる群から選ばれる少なくとも 1 種であり、元素 M2は、 Al、 Ga、 Inおよび 11よりなる群から選ばれる少なくとも 1種であ り、式は、 0< a≤l. 05、 0. 005≤x≤0. 15、 0≤y≤0. 05および 0. 85≤b≤l. 1 を満たす。正極活物質は、式: Li (Co M1 M2 ) Oで表される複合リチウム酸化物
a Ι 2
だけを用いてもょ 、が、リチウムイオン二次電池の正極活物質として用いることのでき る他の材料を併用してもよい。ただし、正極活物質全体の 50重量%以上は式: Li (C
a o M1 M2 ) Oで表される複合リチウム酸ィ匕物であることが好ま 、。
Ι 2
[0033] 元素 M1には、 Mg、 Sr、 Y、 Zr、 Caおよび TUりなる群力も選ばれる 1種を単独で用 いてもよぐ複数種を組み合わせて用いてもよい。これらのうちでは、特に、 Mgが、複 合リチウム酸ィ匕物の結晶構造の熱的な安定性を高める効果が大き 、点で好ま U、。 なお、元素 M1には、複合リチウム酸ィ匕物の導電性を高める効果がある。通常、複合リ チウム酸化物の導電性が高まると、釘刺し試験における昇温が激しくなり、電池温度 力 ¾0°C以上になるのを抑止することは極めて困難になる。一方、本発明においては 、逆に、複合リチウム酸化物の導電性が高まると、釘刺し試験における電池温度の上 昇が効果的に抑止される。その理由は明らかではないが、導電性の高い複合リチウ ム酸化物の昇温により、多孔膜中の膜結着剤が瞬時に軟ィ匕し、もしくは一部が溶出 して、正極合剤層の密着性が高められ、正極集電体の露出が抑制されるためと考え られる。
[0034] 元素 M2には、 Al、 Ga、 Inおよび 11ょりなる群力 選ばれる 1種を単独で用いてもよ ぐ複数種を組み合わせて用いてもよい。これらのうちでは、特に、 A1が好ましい。元 素 M2を含む複合リチウム酸ィ匕物は、高温時において、膜結着剤との密着性が高まる と考えられ、正極集電体の露出を抑制する効果が大きくなると考えられる。また、 A1に は、複合酸ィ匕物の耐熱性およびサイクル特性を向上させる作用もあると考えられる。
[0035] 式:: Li (Co M1 M2 ) Oは、 0< a≤l. 05、 0. 005≤x≤0. 15、 0≤y≤0. 05
a Ι 2
および 0. 85≤b≤l. 1を満たす。
a値は、リチウムイオン二次電池の充放電により、 0< a≤l. 05の範囲で変化する。 ただし、複合リチウム酸化物の製造直後 (すなわち完全放電状態)では、 0. 95≤a≤ 1. 05であることが好ましい。 a値が 0. 95未満では、電池容量が小さくなり、 a値が 1. 05を超えると、レート特性が低下する。
[0036] b値は、通常は 1であるが、複合リチウム酸ィ匕物の製造条件やその他の要因により、 0. 85≤b≤l. 1の範囲で変動する場合がある。よって、 b値が 0. 85未満となったり、 1. 1を超えることは、ほとんどない。
[0037] X値は、複合リチウム酸ィ匕物における元素 M1の含有率に相当し、 0. 005≤x≤0.
15を満たす必要があり、 0. 01≤x≤0. 10を満たすことが好ましい。 X値が 0. 005未 満では、複合リチウム酸ィ匕物の結晶構造の熱安定性を高めることができず、過酷な 条件で行われる加熱試験では、安全性を確保することができなくなり、釘刺し試験に おいても、多孔膜の有無に関わらず、安全性の確保が困難になる。一方、 X値が 0. 1 5を超えると、電池容量が顕著に低下する。
[0038] y値は、複合リチウム酸ィ匕物における元素 M2の含有率に相当し、 0≤y≤0. 05を満 たす必要があり、 0. 01≤y≤0. 03を満たすことが好ましい。元素 M2は、任意成分で あるが、少量の元素 M2により、高温時において、複合リチウム酸化物と膜結着剤との 密着性が高まると考えられ、正極集電体力も正極合剤層が剥がれに《なる。ただし 、 y値が 0. 05を超えると、電池容量が顕著に低下する。
[0039] 複合リチウム酸化物は、どのような方法で製造してもよいが、例えば、リチウム塩と、 コバルト塩と、元素 M1の塩と、元素 M2の塩とを混合して、酸化雰囲気下で、高温で 焼成することにより、得ることができる。複合リチウム酸化物を合成するための原料は 、特に限定されないが、例えば以下のものを用いることができる。
[0040] リチウム塩としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウム、酸 ィ匕リチウムなどを用いることができる。コバルト塩としては、酸化コバルト、水酸化コバ ルトなどを用いることができる。元素 M1の塩、例えばマグネシウム塩としては、酸ィ匕マ グネシゥム、塩基性炭酸マグネシウム、塩化マグネシウム、フッ化マグネシウム、硝酸 マグネシウム、硫酸マグネシウム、酢酸マグネシウム、蓚酸マグネシウム、硫ィ匕マグネ シゥム、水酸ィ匕マグネシウムなどを用いることができる。元素 M2の塩、例えばアルミ- ゥム塩としては、水酸化アルミニウム、酸化アルミニウム、硝酸アルミニウム、フッ化ァ ルミ-ゥム、硫酸アルミニウムなどを用いることができる。
[0041] また、複合リチウム酸化物は、共沈法により、元素 M1や元素 M2を含有する水酸ィ匕 コバルトを調製した後、これをリチウム塩等と混合して焼成することによつても得ること ができる。 [0042] 式: Li (Co M1 M2 ) Oで表される複合リチウム酸ィ匕物以外に、本発明に係る正 a Ι 2
極に含ませることのできる正極活物質としては、特に限定されないが、コバルト酸リチ ゥム(LiCoO )、コバルト酸リチウムの変性体、ニッケル酸リチウム(LiNiO )、二ッケ
2 2 ル酸リチウムの変性体、マンガン酸リチウム(LiMn O )、マンガン酸リチウムの変性
2 4
体、これら酸化物の Co、 Niもしくは Mnの一部を他の遷移金属元素や典型金属で置 換したもの、あるいは広くオリビン酸と称される鉄を主構成元素とする化合物等が好ま しい。これらは単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。
[0043] 正極は、任意成分として、例えば、正極結着剤、導電材などを含む。
正極結着剤は、特に限定されないが、例えば、ポリテトラフルォロエチレン (PTFE) 、 PTFEの変性体、ポリフッ化ビ-リデン(PVDF)、 PVDFの変性体、変性アタリ口- トリルゴム粒子、ポリアクリロニトリル誘導体ゴム粒子 (例えば日本ゼオン (株)製の「B M— 500B (商品名)」)などを用いることができる。これらは単独で用いてもよぐ 2種 以上を組み合わせて用いてもよい。 PTFEや BM— 500Bは、増粘剤と併用すること が好ましい。増粘剤には、カルボキシメチルセルロース(CMC)、ポリエチレンォキシ ド(PEO)、変性アクリロニトリルゴム(例えば日本ゼオン (株)製の「BM— 720H (商 品名)」)などが適している。導電剤としては、アセチレンブラック、ケッチェンブラック、 各種黒鉛などを用いることができる。これらは単独で用いてもよぐ 2種以上を組み合 わせて用いてもよい。
[0044] 負極は、リチウムイオンの吸蔵および放出が可能な材料を負極活物質として含む。
負極活物質は、特に限定されないが、各種天然黒鉛、各種人造黒鉛、石油コータス 、炭素繊維、有機高分子焼成物等の炭素材料、酸化物、シリコン、スズ、シリサイド等 のシリコン含有複合材料、スズ含有複合材料、各種金属もしくは合金材料等を用いる ことができる。これらは単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。
[0045] 負極は、任意成分として、例えば、負極結着剤、増粘剤などを含む。
負極結着剤は、特に限定されないが、少量で結着性を発揮できる観点からゴム粒 子が好ましぐ特にスチレン単位およびブタジエン単位を含むものが好ましい。例え ばスチレン ブタジエン共重合体(SBR)、アクリル酸単位もしくはアタリレート単位を 含む SBRの変性体などを用いることができる。これらは単独で用いてもよぐ 2種以上 を組み合わせて用いてもよい。負極結着剤としてゴム粒子を用いる場合には、水溶 性高分子力もなる増粘剤を併用することが望ましい。水溶性高分子としては、セル口 一ス系榭脂が好ましぐ特に CMCが好ましい。負極に含まれるゴム粒子および増粘 剤の量は、負極活物質 100重量部あたり、それぞれ 0. 1〜5重量部であることが好ま しい。負極結着剤には、他に PVDF、 PVDFの変性体などを用いることもできる。
[0046] 多孔膜は、無機酸ィ匕物フイラ一および膜結着剤を含み、細孔構造を有する。細孔 構造は、無機酸ィ匕物フイラ一の間隙により形成される。無機酸ィ匕物フイラ一と膜結着 剤との合計に占める無機酸化物フィラーの含有率は、 50重量%以上、 99重量%以 下であることが好ましぐ 80重量%以上、 99重量%以下更に好ましぐ 90重量%以 上、 97重量%以下が特に好ましい。無機酸化物フィラーの含有率が少なすぎると、 膜結着剤の含有率が大きくなり、細孔構造の制御が困難となり、イオンの移動が膜結 着剤で妨げられ、電池の充放電特性が低下することがある。一方、無機酸ィ匕物フイラ 一の含有率が多すぎると、膜結着剤の含有率力 、さくなり、多孔膜の強度や、電極 表面に対する密着性が低下し、多孔膜の脱落が生じることがある。
[0047] 耐熱性の高い多孔膜を得る観点力もは、無機酸ィ匕物フイラ一が 250°C以上の耐熱 性を有し、かつ非水電解液二次電池の電位窓内で電気化学的に安定であることが 望まれる。多くの無機酸ィ匕物フイラ一はこれらの条件を満たすが、無機酸ィ匕物のなか でも、アルミナ、マグネシア、シリカ、ジルコユア、チタ-ァなどが好ましぐ特にアルミ ナゃマグネシアが好ましい。無機酸ィ匕物フイラ一は 1種を単独で用いてもよぐ 2種以 上を混合して用いてもよい。
[0048] イオン伝導性の良好な多孔膜を得る観点カゝらは、無機酸化物フィラーの嵩密度 (タ ップ密度)が 0. 2g/cm3以上 0. 8g/cm3以下であることが望ましい。嵩密度が 0. 2 gZcm3未満では、無機酸ィ匕物フイラ一が嵩高くなり過ぎて、多孔膜の構造が脆弱に なることがある。一方、嵩密度が 0. 8g/cm3を超えると、フィラー粒子間に好適な空 隙を形成することが困難になることがある。無機酸ィ匕物フイラ一の粒子径は、特に限 定されな!/、が、粒子径が小さ!/、方が嵩密度が低くなりやす!/、。
[0049] 無機酸ィ匕物フイラ一の粒子形状は、特に限定されないが、複数個(例えば 2〜10個 程度、好ましくは 3〜5個)の一次粒子が連結固着した不定形粒子であることが望まし い。一次粒子は、通常、単一の結晶からなるため、不定形粒子は、必ず多結晶粒子 となる。不定形粒子は、樹枝状、珊瑚状、房状などの形状を有する多結晶粒子を含 むことが好ましい。このような多結晶粒子は、多孔膜内で過度に緻密な充填構造を形 成しにくいため、適度な空隙を形成するのに適している。多結晶粒子には、例えば 2 〜10個程度の一次粒子が溶融により連結した粒子や、 2〜10個程度の結晶成長中 の粒子が途中で接触して合体した粒子等が含まれる。
[0050] 多結晶粒子を構成する一次粒子の平均粒径は、 3 μ m以下であることが望ましぐ 1 μ m以下であることが更に望ましい。一次粒子の平均粒径が、 3 μ mを超えると、フィ ラーの表面積低下に伴って膜結着剤が過剰となり、非水電解液による多孔膜の膨潤 が起こりやすくなることがある。なお、多結晶粒子において一次粒子を明確に識別で きない場合には、一次粒子の粒径は、多結晶粒子の節部 (knot)の最も太い部分で 定義される。
[0051] 一次粒子の平均粒径は、例えば多結晶粒子の SEM像や TEM像で、少なくとも 10 個の一次粒子の粒径を測定することにより、それらの平均として求めることができる。 また、一次粒子を加熱処理して拡散結合させることにより、多結晶粒子を得る場合に は、原料の一次粒子の平均粒径 (体積基準のメディアン径: D50)を、多結晶粒子を 構成する一次粒子の平均粒径として取り扱うことができる。このような拡散結合を促す 程度の加熱処理では、一次粒子の平均粒径は、ほとんど変動しない。
[0052] 多結晶粒子の平均粒径は、一次粒子の平均粒径の 2倍以上であり、かつ 10 μ m以 下であることが望ましぐ 3 m以下であることが更に望ましい。なお、多結晶粒子の 平均粒径 (体積基準のメディアン径: D50)は、例えばマイクロトラック社製の湿式レ 一ザ一粒度分布測定装置等により測定することができる。多結晶粒子の平均粒径が 、一次粒子の平均粒径の 2倍未満では、多孔膜が過度に緻密な充填構造をとること があり、 を超えると、多孔膜の多孔度が過剰となって多孔膜の構造が脆くなる ことがある。
[0053] 多結晶粒子を得る方法は特に限定されないが、例えば無機酸ィ匕物を焼結して塊状 物とし、塊状物を適度に粉砕すれば得られる。また、粉砕工程を経ずに、結晶成長 中の粒子を途中で接触させることにより、多結晶粒子を直接得ることもできる。例えば a—アルミナを焼結して塊状物とし、塊状物を適度に粉砕して、多結晶粒子を得る場 合、焼結温度は 800〜1300°Cが好ましぐ焼結時間は 3〜30分が好ましい。また、 塊状物を粉砕する場合、ボールミル等の湿式設備やジェットミル ·ジョークラッシャー 等の乾式設備を用いて粉砕を行うことができる。その場合、当業者であれば、粉砕条 件を適宜調整することにより、多結晶粒子を任意の平均粒径に制御することができる
[0054] 膜結着剤は、ある程度耐熱性に優れ、かつ、高温では、正極合剤層における活物 質粒子の密着性を高める作用を有するものであることが要求される。耐熱性の観点 力もは、膜結着剤の熱分解温度が 250°C以上であることが好ましい。釘刺し試験で は、条件によって、発熱温度が局所的に数百 °Cを超える場合がある。このような高温 においては、分解開始温度が 250°C未満の膜結着剤は、過度の軟化や焼失を起こ し、多孔膜を変形させ、安全性の確保を困難にすることがある。
[0055] 膜結着剤の融点もしくは分解開始温度は、膜結着剤の試料の示差走査熱量測定( DSC : differential scanning calorimetry)や、熱重量測定 示差熱分析(TG— DTA: thermogravimetry— differential thermal analysis)を行い、 DSC¾J定におけ 変曲 、の 温度もしくは TG— DTA測定における重量変化の始点の温度として求めることができ る。
[0056] 膜結着剤には、例えば、スチレンブタジエンゴム(SBR)、アクリル酸単位もしくはァ タリレート単位を含む SBRの変性体、ポリエチレン、ポリテトラフルォロエチレン(PTF E)、ポリフッ化ビ-リデン(PVDF)、テトラフルォロエチレン一へキサフルォロプロピ レン共重合体 (FEP)、アクリロニトリル単位を含む共重合体 (特にアクリロニトリル単 位を含むゴム性状高分子)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体、カル ボキシメチルセルロース(CMC)などを用いることができる。これらは単独で用いても よぐ 2種以上を組み合わせて用いてもよい。これらのうちでは、特にアクリロニトリル 単位を含む共重合体 (例えば日本ゼオン (株)製の BM— 720H (商品名)などの変 性アクリルゴム)、ポリアクリル酸誘導体 (例えば日本ゼオン (株)製の BM— 500B (商 品名)などのポリアクリル酸系誘導体ゴム粒子)、ポリアクリロニトリル誘導体などが好 ましい。 [0057] アクリロニトリル単位を含む共重合体は、アクリロニトリル単位の他に、—(CH ) -
2 n 構造 (4≤n)を含むことが好ましい。ポリアクリル酸誘導体は、アクリロニトリル単位、ァ クリル酸メチル単位、アクリル酸ェチル単位、メタクリル酸メチル単位およびメタクリル 酸ェチル単位よりなる群力 選ばれる少なくとも 1種を含むことが好ましい。ポリアタリ 口-トリル誘導体は、アクリル酸単位、アクリル酸メチル単位、アクリル酸ェチル単位、 メタクリル酸メチル単位およびメタクリル酸ェチル単位よりなる群カゝら選ばれる少なくと も 1種を含むことが好ましい。
[0058] なお、膜結着剤がゴム弾性を有する場合、多孔膜の耐衝撃性が向上するため、特 に、正極と負極とをセパレータを介して捲回する際に、ひび割れなどが生じに《なり 、電池の生産歩留を高く維持できる点で有利である。このような観点力もは、特にァク リロ-トリル単位を含むゴム性状高分子が好まし 、。
[0059] 多孔膜の厚みは、特に限定されないが、多孔膜による安全性向上の効果を十分に 発揮させるとともに、電池の設計容量を維持する観点から、 0. 5〜20 /ζ πιであること が好ましい。多孔膜は、組成の異なる複数層を含んでもよいが、合計厚みは 0. 5〜2 0 μ mであることが好ましい。また、セパレータと多孔膜との合計厚みは 10〜30 μ m であることが好ましい。
[0060] 例えば電極表面に接着された多孔膜は、無機酸ィ匕物フイラ一および膜結着剤を含 む塗料 (以下、多孔膜塗料)を調製し、これを電極表面に塗布し、その塗膜を乾燥す ることで得られる。多孔膜塗料は、無機酸ィ匕物フイラ一および膜結着剤を、フィラーの 分散媒と混合することにより得られる。分散媒には、 N—メチルー 2—ピロリドン (NM P)、シクロへキサノン等の有機溶媒や水が好ましく用いられるが、これらに限定され ない。無機酸ィ匕物フイラ一、膜結着剤および分散媒の混合は、プラネタリミキサ等の 双腕式攪拌機やビーズミル等の湿式分散機を用いて行うことができる。多孔膜塗料 を電極表面に塗布する方法としては、コンマロール法、グラビアロール法、ダイコート 法等を挙げることができる。
[0061] 非水電解液において、非水溶媒に溶解させるリチウム塩の濃度は、一般に 0. 5〜2 molZLである。リチウム塩としては、 6フッ化燐酸リチウム(LiPF )、過塩素酸リチウム
6
(LiCIO )、ホウフッ化リチウム (LiBF )等を用いることが好ましい。これらは単独で用 いてもよぐ 2種以上を組み合わせて用いてもよい。
[0062] 非水溶媒としては、特に限定されないが、例えば、エチレンカーボネート (EC)、プ ロピレンカーボネート(PC)、ジメチノレカーボネート (DMC)、ジェチノレカーボネート ( DEC)、ェチルメチルカーボネート(EMC)等の炭酸エステル; γ—ブチ口ラタトン、 y バレロラタトン、蟻酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸ェ ステル;ジメチルエーテル、ジェチルエーテル、テトラヒドロフラン等のエーテル等が 用いられる。非水溶媒は、 1種を単独で用いてもよぐ 2種以上を組み合わせて用い てもよい。これらのうちでは、特に炭酸エステルが好ましく用いられる。電極上に良好 な皮膜を形成させ、過充電時の安定性等を確保するために、ビ-レンカーボネート( VC)、シクロへキシルベンゼン(CHB)、 VCもしくは CHBの変性体等を非水電解液 に添カ卩してもよい。
[0063] セパレータの材質は特に限定されないが、セパレータは、 200°C以下の融点を有 する榭脂材料をベースとするものが望ましぐ特にポリオレフインが好ましく用いられる 。なかでも、ポリエチレン、ポリプロピレン、エチレン プロピレン共重合体、ポリエチレ ンとポリプロピレンとの複合物などが好まし 、。 200°C以下の融点を有するポリオレフ イン製のセパレータは、電池が外的要因で短絡した場合に容易に溶融し、いわゆる シャットダウン効果を発揮できる力もである。セパレータは、 1種のポリオレフイン榭脂 力もなる単層膜であってもよぐ 2種以上のポリオレフイン榭脂からなる多層膜であつ てもよい。セパレータの厚みは、特に限定されないが、電池の設計容量を維持する観 点から 8〜30 μ mであることが好ましい。
実施例
[0064] 次に、本発明を実施例に基づいて具体的に説明する力 以下の実施例は本発明 を限定するものではない。
《実施例 1》
(i)正極の作製
0. 95molZリットルの濃度で硫酸コバルト(CoSO )を含み、 0. 05molZリットルの
4
濃度で硝酸マグネシウムを含む水溶液を、反応槽に連続供給し、水の pHが 10〜13 になるように反応槽に水酸ィ匕ナトリウムを滴下しながら、活物質の前駆体である水酸 化物、すなわち Co Mg (OH)を合成した。この前駆体を焼成炉に入れ、空気雰
0.95 0.05 2
囲気中で、 500°Cで 12時間予備焼成し、所定の酸化物を得た。
予備焼成で得られた酸化物と、炭酸リチウムとを、リチウムとコバルトとマグネシウム とのモノ ktt力 1 : 0. 95 : 0. 05になるように混合し、混合物を 600°Cで 10時間仮焼 成し、粉砕した。
次いで、粉砕された焼成物を 900°Cで再度 10時間焼成 (本焼成)し、紛砕、分級し 、化学式 Li (Co Mg ) Oで表される複合リチウム酸化物(正極活物質)を得た。
0.95 0.05 2
[0065] 得られた複合リチウム酸ィ匕物を 3kgと、結着剤として呉羽化学 (株)製の「# 1320 ( 商品名)」を lkgと、アセチレンブラックを 90gと、適量の N—メチノレ一 2 ピロリドン(N MP)とを、双腕式練合機にて攪拌し、正極合剤ペーストを調製した。なお、呉羽化学 (株)製の # 1320は、ポリフッ化ビ-リデン(PVDF)を 12重量0 /0含む NMP溶液であ る。
[0066] 正極合剤ペーストを、厚み 15 μ mのアルミニウム箔(正極集電体)の両面に塗布し 、乾燥後、圧延して、正極合剤層を形成した。この際、アルミニウム箔および正極合 剤層からなる極板の合計厚みを 160 mとした。その後、極板を、円筒形電池用の 電池ケース(直径 18mm、高さ 65mm)に挿入可能な幅に裁断し、正極フープを得た
[0067] (ii)負極の作製
人造黒鉛 (負極活物質)を 3kgと、結着剤として日本ゼオン (株)製の「BM—400B (商品名)」を 75gと、増粘剤としてのカルボキシメチルセルロース(CMC) 30gと、適 量の水とを、双腕式練合機にて攪拌し、負極合剤ペーストを調製した。なお、 日本ゼ オン (株)製の BM— 400Bは、スチレン ブタジエン共重合体を 40重量0 /0含む水性 分散液である。
[0068] 負極合剤ペーストを、厚み 10 μ mの銅箔 (負極集電体)の両面に塗布し、乾燥後、 圧延して、負極合剤層を形成した。この際、銅箔および負極合剤層からなる極板の 合計厚みを 180 mとした。その後、極板を、前記電池ケースに挿入可能な幅に裁 断し、負極フープを得た。
[0069] (ii)非水電解液の調製 エチレンカーボネート (EC)と、ジメチノレカーボネート (DMC)と、メチノレエチノレカー ボネート (MEC)とを、体積比 2 : 3 : 3で含む混合溶媒に、六フッ化リン酸リチウム (Li PF ) ン
6を ImolZリットルの濃度で溶解し、さらに添加剤として、ビ-レ カーボネートを 全体の 3重量%加え、非水電解液を調製した。
[0070] (iv)多孔膜の形成
無機酸化物フィラー 960gと、膜結着剤として日本ゼオン (株)製の「BM— 720H ( 商品名)」 500gと、適量の NMPとを、双腕式練合機にて攪拌し、多孔質膜塗料を調 製した。なお、日本ゼオン (株)製の BM— 720Hは、変性アクリロニトリルゴム (膜結 着剤)を 8重量%含む NMP溶液である。無機酸ィ匕物フイラ一には、体積基準の平均 粒径 (メディアン径)が 0. 5 m、 BET比表面積 7m2/gのアルミナ (住友化学 (株)製 の AES— 12)を用いた。得られた多孔質膜塗料を、負極フープの両面に塗布し、乾 燥させ、厚さ 6 μ mの多孔膜をそれぞれ形成した。
[0071] (e)電池の組立
図 1に示すような円筒形リチウムイオン二次電池を作製した。
正極フープと、多孔膜を具備する負極フープとを、厚み 20 /z mのポリエチレン製微 多孔フィルムカゝらなるセパレータを介して捲回し、極板群を構成した。得られた極板 群は、電池ケース内に挿入した。次に、 5. 5gの非水電解液を電池ケース内に注液し 、ケースの開口部を封口した。こうして、直径 18mm、高さ 65mm、設計容量 2000m Ahの円筒形電池を完成させた。
[0072] 《実施例 2》
0. 90molZリットルの濃度で硫酸コバルトを含み、 0. 05molZリットルの濃度で硝 酸マグネシウムを含み、 0. 05molZリットルの濃度で硝酸アルミニウムを含む水溶液 を調製した。この水溶液を用いて、実施例 1に準じて、活物質の前駆体である水酸ィ匕 物、すなわち Co Mg Al (OH)を合成した。この前駆体を焼成炉に入れ、空気
0.90 0.05 0.05 2
雰囲気中で、 500°Cで 12時間予備焼成し、所定の酸化物を得た。
予備焼成で得られた酸化物と、炭酸リチウムとを、リチウムとコバルトとマグネシウム とァノレミニゥムとのモノ Kb匕力 S、 1 : 0. 90 : 0. 05 : 0. 05になるように混合したこと以外、 実施例 1と同様の操作を行って、 Li (Co Mg Al ) 0で表される複合リチウム酸 化物 (正極活物質)を得た。次いで、この正極活物質を用いたこと以外、実施例 1と同 様にして、円筒形電池を作製した。
[0073] 《比較例 1》
マグネシウムを含まない LiCoOを正極活物質として用いたこと以外、実施例 1と同
2
様にして、円筒形電池を作製した。
[0074] 《比較例 2》
多孔膜を負極合剤層上に形成して ヽな ヽ負極を用いたこと以外、実施例 1と同様 にして、円筒形電池を作製した。
[0075] 《実施例 3》
多孔膜を負極合剤層上に形成する代わりに、正極合剤層上に形成したこと以外、 実施例 1と同様にして、円筒形電池を作製した。
[0076] [評価]
作製した電池について、以下の要領で、電池容量を測定した。また、以下の要領で 、釘刺し試験、 180度引き剥がし試験を行った。結果を表 1に示す。
[0077] [電池容量]
まず、以下に示すパターンで、各電池の予備充放電を行った。その後、各電池を 4 5°C環境下で 7日間保存した。
1)定電流充電: 400mA (終止電圧 4. 0V)
2)定電流放電: 400mA (終止電圧 3. 0V)
3)定電流充電: 400mA (終止電圧 4. 0V)
4)定電流放電: 400mA (終止電圧 3. 0V)
5)定電流充電: 400mA (終止電圧 4. 0V)
[0078] その後、以下の充放電を行った。
6)定電流予備放電: 400mA (終止電圧 3. 0)
7)定電流充電: 1400mA (終止電圧 4. 20V)
8)定電圧充電: 4. 20V (終止電流 100mA)
9)定電流放電: 400mA (終止電圧 3. 0V)
最後の放電において、放電容量を求めた。 [0079] [釘刺し試験]
まず、以下に示すパターンで、各電池の予備充放電を行った。その後、各電池を 4 5°C環境下で 7日間保存した。
1)定電流充電: 400mA (終止電圧 4. OV)
2)定電流放電: 400mA (終止電圧 3. 0V)
o
3)定電流充電: 400mA (終止電圧 4. 0V)
_J
4)定電流放電: 400mA (終止電圧 3. 0V)
o
<
5)定電流充電: 400mA (終止電圧 4. 0V)
[0080] その後、以下の充電を行った。
6)定電流予備放電: 400mA (終止電圧 3. 0)
7)定電流充電: 1400mA (終止電圧 4. 25V)
8)定電圧充電: 4. 25V (終止電流 100mA)
[0081] このような充電後の電池を、各電池につ!、て 5個ずつ用意し、その側面から、直径 2 . 7mmの鉄製丸釘を、 20°C環境下で、 5mmZ秒の速度で貫通させ、そのときの発 熱状態を観測した。釘刺し点から 2cm離れた電池表面に熱電対を貼付けて、最高到 達温度を測定し、 5個の電池の平均値を求めた。
[0082] [180度引き剥がし試験]
180度引き剥がし試験は、 JIS Z 0237に準拠して行った。具体的には、試験片と しての幅 15mmの電極表面に粘着テープを貼り付け、その後、粘着テープを電極表 面に対して 180度の方向に引っ張り、電極合剤層が集電体から剥がれるときの剥離 強度 (gZf)を測定した。
[0083] [表 1] 釘刺し時 180度 電池容量
組成 到達温度 引き剥がし
(mAh)
CO 試験 (g/f) 実施例 1 L i Co0 95Mg0 0502 2004 74 2 実施例 2 1992 53 5 実施例 3 L ' Co0- 95 g0 0502 2005 72 2 比較例 1 2016 120 2 比較例 2 L i Co0 95 g0 0502 2007 135 2 [0084] 《実施例 4》
無機酸ィ匕物フイラ一として、アルミナを用いる代わりに、以下の酸ィ匕物を用いたこと 以外、実施例 1と同様にして、円筒形電池を作製し、同様に評価した。結果を表 2に 示す。
<a>体積基準の平均粒径 (メディアン径)が 0. 5 μ mのマグネシア
〈b〉体積基準の平均粒径 (メディアン径)が 0. 5 μ mのシリカ
〈c〉体積基準の平均粒径 (メディアン径)力 . 5 mのジルコユア
<d>体積基準の平均粒径 (メディアン径)が 0. 5 μ mのチタ-ァ
[0085] [表 2]
Figure imgf000022_0001
[0086] 《実施例 5》
正極活物質の前駆体である水酸化物を調製する際、硝酸マグネシウムの代わりに 、硝酸ストロンチウム、硝酸イットリウム、硝酸ジルコニウム、硝酸カルシウムまたは硝 酸チタンを用いたこと以外、実施例 1と同様の操作を行って、表 1に示す組成を有す る複合リチウム酸ィ匕物(正極活物質)を得た。次いで、これらの正極活物質を用いたこ と以外、実施例 1と同様にして、円筒形電池を作製し、同様に評価した。結果を表 3 に示す。
[0087] [表 3] 釘刺し時 180度
電池容量
組成 到達温度 引き剥がし
(mAh)
(。c) 試験 (g/f)
LiCo0 95 g0 0502 2004 74 2
LiCo0 95Sr0 0502 2001 76 2
LiCOo.g5Yo.05O2 2002 78 2 実施例 5
L i Co0.95Zr0.05°2 2001 75 2
LiCop g5Ca0 0502 2000 77 2
L i Co0.95Ti0.05°2 2001 76 2
[0088] 《実施例 6》
正極活物質の前駆体である水酸化物を調製する際、水溶液における硫酸コバルト と硝酸マグネシウムとの濃度比を変化させたこと以外、実施例 1と同様の操作を行つ て、表 4に示す組成を有する複合リチウム酸化物(正極活物質)を得た。次いで、これ らの正極活物質を用いたこと以外、実施例 1と同様にして、円筒形電池を作製し、同 様に評価した。結果を表 4に示す。
[0089] 《比較例 3》
多孔膜を負極合剤層上に形成していない負極を用いたこと以外、実施例 6と同様 にして、円筒形電池を作製し、同様に評価した。結果を表 4に示す。
[0090] [表 4]
Figure imgf000024_0001
[0091] 《実施例 7》
正極活物質の前駆体である水酸化物を調製する際、硝酸アルミニウムの代わりに、 硝酸ガリウム、硝酸インジウムまたは硝酸タンタルを用いたこと以外、実施例 2と同様 の操作を行って、表 5に示す組成を有する複合リチウム酸化物(正極活物質)を得た 。次いで、これらの正極活物質を用いたこと以外、実施例 1と同様にして、円筒形電 池を作製し、同様に評価した。結果を表 5に示す。
[0092] [表 5] 釘刺し時 180度
電池容量
組成 到達温度 引き剥がし
(mAh)
(。C) 試験 (g/f) 実施例 2 LiCo0 90Mg0 05AI0 0502 1992 53 5
LiCo0 90Mg0 05Ga0 0502 1990 57 4 実施例 7 Li o0 90 g0 05ln0 0502 1989 59 4
LiCo0 90 g0 05TI 0 05O2 1991 60 4
[0093] 《実施例 8》
正極活物質の前駆体である水酸化物を調製する際、水溶液における硝酸マグネシ ゥムの濃度を固定し、硫酸コバルトと硝酸アルミニウムとの濃度比を変化させたこと以 外、実施例 2と同様の操作を行って、表 6に示す組成を有する複合リチウム酸化物( 正極活物質)を得た。次いで、これらの正極活物質を用いたこと以外、実施例 1と同 様にして、円筒形電池を作製し、同様に評価した。結果を表 6に示す。
[0094] 《比較例 4》
多孔膜を負極合剤層上に形成してレ、な 、負極を用レ、たこと以外、実施例 8と同様 にして、円筒形電池を作製し、同様に評価した。結果を表 6に示す。
[0095] [表 6]
Figure imgf000025_0001
[0096] 《実施例 9》
正極活物質の前駆体である水酸化物を調製する際、硝酸アルミニウムの代わりに 硝酸インジウムを用い、水溶液における硫酸コバルトと硝酸インジウムとの濃度比を 変化させたこと以外、実施例 8と同様の操作を行って、表 7に示す組成を有する複合 リチウム酸ィ匕物(正極活物質)を得た。次いで、これらの正極活物質を用いたこと以外 、実施例 1と同様にして、円筒形電池を作製し、同様に評価した。結果を表 7に示す
[0097] 《比較例 5》
多孔膜を負極合剤層上に形成していない負極を用いたこと以外、実施例 9と同様 にして、円筒形電池を作製し、同様に評価した。結果を表 7に示す。
[0098] [表 7]
Figure imgf000026_0001
[0099] 《実施例 10》
膜結着剤として、日本ゼオン (株)製の BM— 720Hを用いる代わりに、以下の樹脂 を用いたこと以外、実施例 1と同様にして、円筒形電池を作製し、同様に評価した。 結果を表 8に示す。
<a> PVDF (ポリフッ化ビ-リデン)
〈b〉FEP (テトラフルォロエチレン一へキサフルォロプロピレン共重合体)
[0100] [表 8] 釘刺し時 180度
電池容量
膜結着剤 到達温度 引き剥がし
(mAh)
(。c) 試験 (g/f) 実施例 1 B -720H 2004 74 2
PVDF 2004 78 2
実施例 10
FEP 2004 79 2
[0101] 《実施例 11》
無機酸化物フィラーと、日本ゼオン (株)製の BM— 720H500gに含まれる変性ァ クリロ-トリルゴム (膜結着剤)成分との重量比を、表 9のように変化させたこと以外、実 施例 1と同様にして、円筒形電池を作製し、同様に評価した。結果を表 9に示す。
[0102] [表 9]
Figure imgf000027_0001
[0103] 《実施例 12》
負極合剤層上に形成する多孔膜の厚みを、表 10のように変化させたこと以外、実 施例 1と同様にして、円筒形電池を作製し、同様に評価した。結果を表 10に示す。
[0104] [表 10] 钉刺し時 180度 多孔膜の厚み 電池容量
到達温度 引き剥がし
( m) (mAh)
CO 試験 (g/f)
0. 5 2005 78 2
1 2005 77 2
3 2004 75 2
実施例 1 2
10 2002 70 2
15 2000 68 2
20 1997 65 2
[0105] 《実施例 13》
住友化学工業 (株)製の「アルミナ AA03 (商品名)」(体積基準の平均粒径 (メディ アン径)が 0. 3 / mのひ一アルミナの一次粒子)を、 900°Cで 1時間加熱して、一次 粒子を拡散結合により連結させて、多結晶粒子を得た。得られた多結晶粒子の体積 基準の平均粒径 (メディアン径)は 2. 6 mであった。こうして得られた多結晶粒子を 無機酸ィ匕物フイラ一として用いたこと以外、実施例 1と同様にして、円筒形電池を作 製し、同様に評価した。結果を表 11に示す。
[0106] [表 11]
Figure imgf000028_0001
[0107] [考察]
表 1より明らかなように、実施例 1〜3では、比較例 1、 2に比べ、釘刺し試験におけ る最高到達温度が顕著に低くなつた。また、正極活物質として一定量の Mgなどの元 素 M1を含む複合リチウム酸ィヒ物を用い、負極または正極上に多孔膜を形成した場 合には、いずれも良好な結果が得られた。
[0108] 表 4が示す釘刺し試験の結果を図 2にまとめて示す。図 2は、複合リチウム酸化物に 含まれる元素 M1 (Mg)の添加量 (X)と、釘刺し時における最高到達温度との関係を 示している。また、図 3は、複合リチウム酸ィ匕物に含まれる元素 M1の添加量 (X)と、電 池容量との関係を示している。プロット A (口)は多孔膜を具備する電池の関係を示し 、プロット ば)は多孔膜を具備しない電池の関係を示している。
[0109] 図 2より、多孔膜を具備しない電池の場合、元素 M^Mg)の量が増加し、複合リチ ゥム酸ィ匕物の熱的安定性が高められ、導電性が高められるに従い、釘刺し時におけ る最高到達温度が上昇し、安全性が低下する傾向があることがわかる。一方、多孔 膜を具備する電池の場合、全く逆の傾向が見られることがわかる。すなわち、元素 (Mg)の量が増加し、複合リチウム酸ィ匕物の導電性が高められるに従い、釘刺し時に おける最高到達温度が降下し、安全性が向上する傾向が見られる。更に、
Figure imgf000029_0001
Mg)の量が少なすぎる場合 (x< 0. 005)、多孔膜の有無に関わらず、安全性が低 下することがわかる。ただし、図 3より、 0. 15く Xになると、電池容量が急激に小さくな ることがゎカゝる。
[0110] 表 6、 7が示す釘刺し試験の結果のうち、多孔膜を具備する電池の結果を図 4にまと めて示す。図 4は、複合リチウム酸ィ匕物に含まれる元素 M2 (A1、 In)の添加量 (y)と、 釘刺し時における最高到達温度との関係を示している。また、図 5は、複合リチウム酸 化物に含まれる元素 M2の添カ卩量 (y)と、電池容量との関係を示している。プロット A( Δ)は元素 M2が A1である電池の関係を示し、プロット B (口)は元素 M2が Inである電 池の関係を示す。
[0111] 図 4より、元素 M2 (A1、 In)の添カ卩により、釘刺し試験における電池の安全性が更に 高められることと、その効果は元素 M2の添加量 (y)が増加するほど大きくなることが わかる。ただし、図 5より、 0. 05く yになると、電池容量が急激に小さくなることがわか る。
[0112] なお、上記実施例では、負極または正極上に多孔膜を形成した場合について説明 したが、両方の電極上に多孔膜を形成しても、同様の効果が得られる。
産業上の利用可能性
[0113] 本発明は、釘刺し試験および高温での加熱試験においても、熱暴走を抑制するこ とが可能な、極めて高レベルの安全性をリチウムイオン二次電池に付与する上で有 用である。本発明のリチウムイオン二次電池は、高度の安全性を有することから、あら ゆる分野に適用することが可能であり、特にノートパソコン、携帯電話、デジタルスチ ルカメラなどの電子機器の駆動電源として有用である。

Claims

請求の範囲
[1] 複合リチウム酸化物を含む正極、
リチウムを電気化学的に吸蔵および放出しうる材料を含む負極、
前記正極と負極との間に介在するセパレータ、
非水電解液、ならびに
前記正極の表面、前記負極の表面および前記セパレータの表面より選ばれる少な くとも 1つに接着された多孔膜、を具備するリチウムイオン二次電池であって、 前記多孔膜は、無機酸化物フィラーおよび膜結着剤を含み、
前記複合リチウム酸化物は、式: Li (Co M1 M2 ) Oで表され、
a Ι-χ-y x y b 2
前記式中、元素 M1は、 Mg、 Sr、 Y、 Zr、 Caおよび TUりなる群から選ばれる少なく とも 1種であり、元素 M2は、 Al、 Ga、 Inおよび 11よりなる群力も選ばれる少なくとも 1種 であり、
前記式は、 0< a≤l. 05、 0. 005≤x≤0. 15、 0≤y≤0. 05および 0. 85≤b≤l
. 1を満たす、リチウムイオン二次電池。
[2] 前記無機酸ィ匕物フイラ一が、アルミナおよびマグネシアよりなる群力 選択される少 なくとも 1種を含み、前記無機酸ィ匕物フイラ一と前記膜結着剤との合計に占める前記 無機酸ィ匕物フイラ一の含有率が、 50重量%以上、 99重量%以下である、請求項 1に 記載のリチウムイオン二次電池。
[3] 前記膜結着剤は、アクリロニトリル単位を含むゴム性状高分子を含む、請求項 1記 載のリチウムイオン二次電池。
[4] 前記正極と前記負極とが、前記セパレータを介して捲回されている、請求項 1記載 のリチウムイオン二次電池。
PCT/JP2005/007730 2004-04-23 2005-04-22 リチウムイオン二次電池 WO2005104273A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/587,261 US20070218362A1 (en) 2004-04-23 2005-04-22 Lithium Ion Secondary Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004127853A JP5061417B2 (ja) 2004-04-23 2004-04-23 リチウムイオン二次電池
JP2004-127853 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005104273A1 true WO2005104273A1 (ja) 2005-11-03

Family

ID=35197294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007730 WO2005104273A1 (ja) 2004-04-23 2005-04-22 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20070218362A1 (ja)
JP (1) JP5061417B2 (ja)
KR (1) KR100770518B1 (ja)
CN (1) CN100505390C (ja)
WO (1) WO2005104273A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188777A (ja) * 2006-01-13 2007-07-26 Sony Corp セパレータおよび非水電解質電池
JP2009164130A (ja) * 2008-01-08 2009-07-23 Samsung Sdi Co Ltd 電極組立体及びそれを含むリチウム二次電池
JP2009302051A (ja) * 2008-06-13 2009-12-24 Samsung Sdi Co Ltd 電極組立体、および二次電池
JP2010520095A (ja) 2007-03-07 2010-06-10 エルジー・ケム・リミテッド 有機/無機複合分離膜及びこれを備えた電気化学素子
CN101449418B (zh) * 2006-03-17 2012-07-25 三洋电机株式会社 非水电解质电池及其制造方法
CN105826553A (zh) * 2016-05-17 2016-08-03 湖南杉杉能源科技股份有限公司 一种高温倍率型钴酸锂正极材料及其制备方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929701B2 (ja) * 2005-12-16 2012-05-09 パナソニック株式会社 非水電解液二次電池
WO2007108426A1 (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. 非水電解質電池及びその製造方法
WO2007108424A1 (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. 非水電解質電池及びその製造方法
JP5172138B2 (ja) * 2006-12-19 2013-03-27 パナソニック株式会社 アルカリ蓄電池
KR100971345B1 (ko) 2007-10-08 2010-07-20 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 이차 전지
CN101911368B (zh) 2007-12-26 2014-07-02 松下电器产业株式会社 非水电解质二次电池
KR101428710B1 (ko) * 2008-01-08 2014-08-08 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 이차전지
KR100983161B1 (ko) * 2008-01-11 2010-09-20 삼성에스디아이 주식회사 전극조립체 및 이를 구비한 이차전지
KR101438696B1 (ko) * 2008-01-31 2014-09-05 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 이차전지
WO2011041468A1 (en) * 2009-09-29 2011-04-07 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same
JP5721334B2 (ja) * 2010-03-11 2015-05-20 三洋電機株式会社 非水電解質二次電池
JP5961922B2 (ja) * 2010-05-31 2016-08-03 日産自動車株式会社 二次電池用負極およびその製造方法
CN101916877A (zh) * 2010-08-03 2010-12-15 徐敖奎 一种卷绕式二次锂离子电池及其制造工艺
EP2634839B1 (en) * 2010-10-28 2018-02-21 Zeon Corporation Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
US20140322576A1 (en) * 2012-02-29 2014-10-30 Shin-Kobe Electric Machinery Co., Ltd. Lithium Ion Battery
EP3101711B1 (en) * 2014-01-29 2018-12-05 Toppan Printing Co., Ltd. Terminal film for electricity storage devices, and electricity storage device
JP2015219971A (ja) * 2014-05-14 2015-12-07 トヨタ自動車株式会社 二次電池の製造方法
CN105024079B (zh) * 2015-06-05 2017-09-08 蒋吉平 一种氧化铝包覆锂离子电池正极材料的制备方法
CN107851850B (zh) * 2015-07-01 2021-08-10 远景Aesc能源元器件有限公司 制造锂离子二次电池的方法和评估锂离子二次电池的方法
CN105470500A (zh) * 2016-01-13 2016-04-06 四川富骅新能源科技有限公司 高电压钴酸锂正极材料及其制备方法
CN113066978B (zh) * 2021-03-16 2022-04-29 中国科学院化学研究所 一种Ta表面掺杂的高镍单晶正极材料及制备方法
CN113281369B (zh) * 2021-04-23 2022-07-26 浙江超威创元实业有限公司 一种铝塑膜可靠性检验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (ja) * 1994-01-31 1995-08-18 Sony Corp 非水電解液二次電池
JP2001052704A (ja) * 1999-08-10 2001-02-23 Hitachi Ltd リチウム二次電池
WO2001059871A1 (fr) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Procede de fabrication de pile a electrolyte non aqueux et pile ainsi obtenue
JP2002319398A (ja) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2003022843A (ja) * 2001-05-02 2003-01-24 Ngk Insulators Ltd 電極体の評価方法及びそれを用いたリチウム二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920001311B1 (ko) * 1989-05-04 1992-02-10 대우전자부품 주식회사 탄탈륨 고체 전해 콘덴서 및 그 제조방법
JP3244314B2 (ja) * 1991-11-13 2002-01-07 三洋電機株式会社 非水系電池
US6525521B2 (en) * 2000-08-18 2003-02-25 Texas Instruments Incorporated Sample and hold phase detector having low spurious performance and method
KR100406816B1 (ko) * 2001-06-05 2003-11-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법
US6806679B2 (en) * 2001-06-20 2004-10-19 Tai-Her Yang Low internal impedance current pool for a charging/discharging device
JP3654592B2 (ja) * 2001-10-29 2005-06-02 松下電器産業株式会社 リチウムイオン二次電池
US7179565B2 (en) * 2001-12-06 2007-02-20 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell
KR100567112B1 (ko) * 2002-07-08 2006-03-31 마쯔시다덴기산교 가부시키가이샤 음극 및 그것을 사용한 리튬이온이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (ja) * 1994-01-31 1995-08-18 Sony Corp 非水電解液二次電池
JP2001052704A (ja) * 1999-08-10 2001-02-23 Hitachi Ltd リチウム二次電池
WO2001059871A1 (fr) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Procede de fabrication de pile a electrolyte non aqueux et pile ainsi obtenue
JP2002319398A (ja) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2003022843A (ja) * 2001-05-02 2003-01-24 Ngk Insulators Ltd 電極体の評価方法及びそれを用いたリチウム二次電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188777A (ja) * 2006-01-13 2007-07-26 Sony Corp セパレータおよび非水電解質電池
CN101449418B (zh) * 2006-03-17 2012-07-25 三洋电机株式会社 非水电解质电池及其制造方法
EP2698844A3 (en) * 2007-03-07 2016-11-30 LG Chem, Ltd. Organic/Inorganic Composite Separator and electrochemical Device containing the same
JP2010520095A (ja) 2007-03-07 2010-06-10 エルジー・ケム・リミテッド 有機/無機複合分離膜及びこれを備えた電気化学素子
EP2132807A4 (en) * 2007-03-07 2011-07-06 Lg Chemical Ltd ORGANIC / INORGANIC COMPOSITE SEPARATOR AND ELECTROCHEMICAL DEVICE CONTAINING SAID SEPARATOR
EP2693530A3 (en) * 2007-03-07 2016-11-30 LG Chem, Ltd. Organic/Inorganic Composite Separator and electrochemical Device containing the same
EP3457461A1 (en) * 2007-03-07 2019-03-20 Lg Chem, Ltd. Organic/inorganic composite separator and electrochemical device containing the same
EP3611780A1 (en) * 2007-03-07 2020-02-19 Lg Chem, Ltd. Organic/inorganic composite separator and electrochemical device containing the same
EP3832788A1 (en) * 2007-03-07 2021-06-09 Lg Chem, Ltd. Organic/inorganic composite separator and electrochemical device containing the same
JP2009164130A (ja) * 2008-01-08 2009-07-23 Samsung Sdi Co Ltd 電極組立体及びそれを含むリチウム二次電池
JP2009302051A (ja) * 2008-06-13 2009-12-24 Samsung Sdi Co Ltd 電極組立体、および二次電池
US8518577B2 (en) 2008-06-13 2013-08-27 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery having the same
US8795871B2 (en) 2008-06-13 2014-08-05 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery having the same
CN105826553A (zh) * 2016-05-17 2016-08-03 湖南杉杉能源科技股份有限公司 一种高温倍率型钴酸锂正极材料及其制备方法
CN105826553B (zh) * 2016-05-17 2018-07-31 湖南杉杉能源科技股份有限公司 一种高温倍率型钴酸锂正极材料及其制备方法

Also Published As

Publication number Publication date
CN100505390C (zh) 2009-06-24
KR20070001282A (ko) 2007-01-03
KR100770518B1 (ko) 2007-10-25
US20070218362A1 (en) 2007-09-20
JP2005310622A (ja) 2005-11-04
JP5061417B2 (ja) 2012-10-31
CN1947287A (zh) 2007-04-11

Similar Documents

Publication Publication Date Title
KR100770518B1 (ko) 리튬이온 이차전지
US8163425B2 (en) Secondary battery
JP4695074B2 (ja) 捲回型非水系二次電池およびそれに用いる電極板
JP4781263B2 (ja) 二次電池およびその製造方法
JP4667373B2 (ja) リチウムイオン二次電池およびその充放電制御システム
US9166251B2 (en) Battery separator and nonaqueous electrolyte battery
JP4847861B2 (ja) 非水電解液二次電池
JP5219387B2 (ja) 非水電解質二次電池
JP2022009746A (ja) リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
JP2010262826A (ja) 活物質、電池および電極の製造方法
JP5103961B2 (ja) リチウムイオン二次電池
JP2971403B2 (ja) 非水溶媒二次電池
JP2008226537A (ja) 非水電解質二次電池及びその製造方法
JP2004134207A (ja) 正極活物質及び非水電解質二次電池
JP2023015188A (ja) 非水電解質二次電池用正極活物質の製造方法
JP2011181386A (ja) 非水電解質二次電池
JP3582823B2 (ja) 非水系二次電池用正極および非水系二次電池
JP2008103181A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP2007200827A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580012379.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11587261

Country of ref document: US

Ref document number: 2007218362

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067024476

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067024476

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11587261

Country of ref document: US