WO2005103670A1 - ラボオンチップ用基板 - Google Patents
ラボオンチップ用基板 Download PDFInfo
- Publication number
- WO2005103670A1 WO2005103670A1 PCT/JP2005/007587 JP2005007587W WO2005103670A1 WO 2005103670 A1 WO2005103670 A1 WO 2005103670A1 JP 2005007587 W JP2005007587 W JP 2005007587W WO 2005103670 A1 WO2005103670 A1 WO 2005103670A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- chip
- electrophoresis
- substrate
- solution
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 56
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 99
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 99
- 238000001962 electrophoresis Methods 0.000 claims abstract description 69
- 239000011347 resin Substances 0.000 claims abstract description 36
- 229920005989 resin Polymers 0.000 claims abstract description 36
- 229920001477 hydrophilic polymer Polymers 0.000 claims abstract description 33
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 19
- 238000002032 lab-on-a-chip Methods 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 230000020978 protein processing Effects 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 230000005251 gamma ray Effects 0.000 claims description 5
- 238000005370 electroosmosis Methods 0.000 claims description 4
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 2
- 229920006122 polyamide resin Polymers 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 24
- 239000000463 material Substances 0.000 abstract description 22
- 238000001514 detection method Methods 0.000 abstract description 19
- 230000000694 effects Effects 0.000 abstract description 7
- 238000004140 cleaning Methods 0.000 abstract 1
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 89
- 239000000243 solution Substances 0.000 description 41
- 238000000034 method Methods 0.000 description 34
- 239000000523 sample Substances 0.000 description 32
- 239000002202 Polyethylene glycol Substances 0.000 description 27
- 229920001223 polyethylene glycol Polymers 0.000 description 27
- 238000000926 separation method Methods 0.000 description 25
- 229920001577 copolymer Polymers 0.000 description 19
- 229920002401 polyacrylamide Polymers 0.000 description 19
- -1 polydimethylsiloxane Polymers 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 18
- 238000001179 sorption measurement Methods 0.000 description 18
- 230000014616 translation Effects 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 15
- 238000001243 protein synthesis Methods 0.000 description 15
- 239000000872 buffer Substances 0.000 description 13
- 238000005406 washing Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 12
- 239000004926 polymethyl methacrylate Substances 0.000 description 12
- 229920001519 homopolymer Polymers 0.000 description 11
- 239000012460 protein solution Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000004226 microchip electrophoresis Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000002090 nanochannel Substances 0.000 description 10
- 230000003595 spectral effect Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 150000001336 alkenes Chemical class 0.000 description 7
- 238000001742 protein purification Methods 0.000 description 7
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- 101710162629 Trypsin inhibitor Proteins 0.000 description 6
- 229940122618 Trypsin inhibitor Drugs 0.000 description 6
- 238000005251 capillar electrophoresis Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 239000002753 trypsin inhibitor Substances 0.000 description 6
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 5
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 5
- 235000001014 amino acid Nutrition 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 101710151387 Serine protease 1 Proteins 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 101710119665 Trypsin-1 Proteins 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N butyl alcohol Substances CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000307 polymer substrate Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000002331 protein detection Methods 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical class CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- CFBILACNYSPRPM-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]acetic acid Chemical compound OCC(N)(CO)CO.OCC(CO)(CO)NCC(O)=O CFBILACNYSPRPM-UHFFFAOYSA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- DGZSVBBLLGZHSF-UHFFFAOYSA-N 4,4-diethylpiperidine Chemical compound CCC1(CC)CCNCC1 DGZSVBBLLGZHSF-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 1
- 102000052866 Amino Acyl-tRNA Synthetases Human genes 0.000 description 1
- 108700028939 Amino Acyl-tRNA Synthetases Proteins 0.000 description 1
- 241000272875 Ardeidae Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- LVZWSLJZHVFIQJ-UHFFFAOYSA-N Cyclopropane Chemical compound C1CC1 LVZWSLJZHVFIQJ-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101710095439 Erlin Proteins 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- GJEPCLZVXSSTRW-UHFFFAOYSA-N F.F.F.Cl Chemical compound F.F.F.Cl GJEPCLZVXSSTRW-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920001543 Laminarin Polymers 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000277269 Oncorhynchus masou Species 0.000 description 1
- 241000287463 Phalacrocorax Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- HFHDHCJBZVLPGP-RWMJIURBSA-N alpha-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO HFHDHCJBZVLPGP-RWMJIURBSA-N 0.000 description 1
- 229940043377 alpha-cyclodextrin Drugs 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000003592 biomimetic effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000001818 capillary gel electrophoresis Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002038 chemiluminescence detection Methods 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 229920005565 cyclic polymer Polymers 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 238000000835 electrochemical detection Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- GDSRMADSINPKSL-HSEONFRVSA-N gamma-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO GDSRMADSINPKSL-HSEONFRVSA-N 0.000 description 1
- 229940080345 gamma-cyclodextrin Drugs 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- RSPZSDWVQWRAEF-UHFFFAOYSA-N hepta-1,6-diyne Chemical compound C#CCCCC#C RSPZSDWVQWRAEF-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- DBTMGCOVALSLOR-VPNXCSTESA-N laminarin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)OC1O[C@@H]1[C@@H](O)C(O[C@H]2[C@@H]([C@@H](CO)OC(O)[C@@H]2O)O)O[C@H](CO)[C@H]1O DBTMGCOVALSLOR-VPNXCSTESA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 238000001426 native polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- QYZLKGVUSQXAMU-UHFFFAOYSA-N penta-1,4-diene Chemical compound C=CCC=C QYZLKGVUSQXAMU-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229940034586 silk sericin Drugs 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 238000012929 ultra trace analysis Methods 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44747—Composition of gel or of carrier mixture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44756—Apparatus specially adapted therefor
Definitions
- the present invention relates to a lab-on-a-chip substrate for performing a flow or reaction or analysis of a protein solution, among devices used for protein structure / function analysis and a reaction using a protein.
- microchannels for performing various chemical reactions are attracting attention from the viewpoints of reaction efficiency, speed, and reagents, and are already called "lab-on-chips" having a size of several centimeters.
- the concept of a new analysis method that performs chemical reaction and analysis in a microchannel formed on a glass chip is generally established.
- the use of microchannels is an indispensable technology in the biochemistry field as biotechnology advances in the future.
- the use of microchannels for protein structure 'function analysis and reactions using proteins is essential. Application is expected.
- a major problem when flowing a protein solution through the microchannel is the adsorption of the protein to the surface of the microchannel, and the small protein is only affected by the decrease and the structural change due to the adsorption. If is used repeatedly, the adsorbed protein may prevent minute channels.
- a method is known in which a hydrophilic polymer such as a polyalkylene glycol is coated on the substrate surface in order to prevent protein adsorption.
- a technology in which a microchannel is formed on a chip having a channel coated with polyethylene glycol and Z or 2-methacryloyloxyphosphorylphosphorylcholine polymer, or a microchannel is formed on a resin substrate to perform protein synthesis' detection Patent Document 1.
- these have only the surface coated with a hydrophilic polymer, and have a disadvantage that the hydrophilic polymer is easily peeled off during washing, for example.
- a technique is known in which a hydrophilic monomer molecule is immersed in a resin substrate, and an initiator is applied and polymerized to suppress protein adsorption (Patent Document 2). Molecules are not covalently bonded As a result, the hydrophilic polymer on the wall surface of the substrate comes off.
- Non-Patent Document 1 As an example in which a hydrophilic polymer is covalently bonded to the surface, there is a method in which polyalkylene glycol is covalently bonded by irradiating the surface of polydimethylsiloxane with ultraviolet light (Non-Patent Document 1).
- Non-Patent Document 1 In order to covalently bond the polyalkylene glycol to the surface of the polymer having a low content of silicon, it is necessary to irradiate a higher energy ray, and in this case, the substrate is discolored and is not suitable for analysis.
- injection molding of polydimethylsiloxane is difficult and it is difficult to mass-produce chips with microchannels.
- most of the polymers that have been used for chip processing have low silicon contents, and in the case of these polymers, it is technically impossible to graft the surface by the conventional method of irradiating ultraviolet light. Difficult.
- Non-Patent Document 2 A method of suppressing protein adsorption by electrostatically coating a polyalkylene glycol on a polymer substrate surface is known (Non-Patent Document 2).
- this method more polyalkylene glycol is peeled off when washed with a solvent having a weak bonding force between the polyalkylene glycol and the substrate. Therefore, separation and migration of proteins cannot be performed only by electrostatically coating polyalkylene glycol on the flow path wall surface of a chip having a microchannel flow path made of a polymer substrate.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2003-334056
- Patent Document 2 Japanese Patent Publication No. 2001-500971
- Non-Patent Document 1 Hu Shuwen et al. And 5 others, "Surface Modification of Poly (d-methylsiloxane) Microfluidic Devices by Ultraviolet Polymer urafting", Analytical 'Chemistry (Analytical Chemistry) 2002, Vol. 74, No. 16, p4117-4123
- Non-Patent Document 2 Shi Lei, “Biomimetic surfaces oi Biomateriais Using Mucin—Type ucoproteins” Trend “In Glycoscience” Glycotechnology (Trends in Glycoscience and Glycotechnology) 2000, Vol. 12, No. 66, p229-239 [0007]
- the present invention is a lab-on-a-chip substrate comprising a resin having a silicon content of not more than 10% by weight as a base material and a hydrophilic polymer covalently bonded to the surface thereof.
- FIG. 1 is a schematic diagram of a protein migration chip having a microchannel.
- FIG. 2 is an electrophoretogram when a fluorescent label is electrophoresed using a protein migration chip to which polyethylene glycol is covalently bonded.
- FIG. 3 is an electrophoretogram when a fluorescently labeled protein is electrophoresed using a protein electrophoresis chip to which polyethylene glycol is covalently bonded.
- FIG. 4 is an electrophoretogram when a fluorescence-labeled protein is electrophoresed after washing a protein flow path on a chip for protein electrophoresis to which polyethylene glycol is covalently bonded, with 10 N hydrochloric acid.
- FIG. 5 is an electrophoretogram when a fluorescently labeled protein is electrophoresed after washing a chip channel for protein electrophoresis to which polyethylene glycol is covalently bonded with 10 N sodium hydroxide.
- FIG. 6 is an electrophoretogram when a fluorescence-labeled protein is electrophoresed using a protein electrophoresis chip in which polyethylene glycol is covalently bonded by irradiation with 5. OkGy gamma rays.
- FIG. 7 is an electropherogram when a fluorescently labeled protein is electrophoresed using a protein migration chip in which polyethylene glycol is covalently bonded by irradiating 10. OkGy gamma rays.
- the present invention is a lab-on-a-chip substrate comprising a resin having a silicon content of not more than 10% by weight as a base material and a hydrophilic polymer covalently bonded to the surface thereof.
- the resin in the present invention refers to a single polymer material, a mixed material or a modified material thereof, or a material obtained by mixing or combining these polymer materials with glass, metal, carbon material, or the like.
- the polymer material included is meant.
- the synthetic polymer a difference between a thermoplastic polymer and a thermosetting polymer can be used.
- Various methods are exemplified as the synthesis method, and the polymer material of the present invention includes a synthetic polymer obtained by any of these methods. For example, (1) addition polymer: Olefin, vinyl other than Olefin Compounds, vinylidene conjugates, and other compounds having a carbon-carbon double bond.
- Polyaddition products polyurethane, polyurea, etc., or mixtures or modified products of these polymers; (5) Ring-opening polymers: cyclopropane, ethylene oxide, Homopolymers or copolymers such as propylene oxide, ratatone, and ratatum, or mixtures or modifications of these homopolymers or copolymers , (6) Cyclic polymer: homopolymer or copolymer such as divinyl conjugate (eg, 1,4 pentadiene) ⁇ diyne conjugate (eg, 1,6 heptadiyne), or a mixture thereof Homopolymer or copolymer mixture or modified product, (7) Isomerized polymer: for example, alternating copolymer of ethylene and isobutene, (8) Electrolyte polymer: Pyrole, arin, acetylene, etc.
- the natural polymer include a single substance or a mixture of cellulose, protein, polysaccharide and the like, and a modified product thereof.
- the above-mentioned addition polymer is particularly preferably used as the resin used as the base material.
- the monomer constituting the addition polymer is not particularly limited, but examples of the olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl 1-pentene, and 1-otaten.
- a homopolymer of X-olefin, a copolymer of two or more of these, or a mixture of these homopolymers and Z or a copolymer can be used as appropriate.
- a vinylid conjugate other than olefin is used.
- Is a compound having a vinyl group for example, vinyl chloride, styrene, acrylic acid, methacrylic acid, esters of acrylic acid or methacrylic acid, vinyl acetate, butyl ethers, vinyl carbazole, acrylonitrile, etc.
- the bilidene compound other than the olefin is a compound containing a bilidene group, -Ridene, isobutylene, etc.
- Carbon-carbon other than olefins, vinyl compounds, vinylidene conjugates examples include maleic anhydride, pyromellitic anhydride, 2-butenoic acid, tetrafluoroethylene, trifluoride chloride, ethylene, and a compound containing two or more double bonds, such as butadiene. , Isoprene, black mouth prene, and the like.
- the addition polymer is a homopolymer of these monomers, a copolymer of two or more monomers, or a copolymer of these polymers. Mixtures can be used as appropriate. Particularly preferred are polyethylene, copolymers of ethylene and other a -olefins, polypropylene, and copolymers of propylene and other ⁇ -olefins.
- the copolymer includes a random copolymer and a block copolymer.
- the polymer material other than polyolefin include a belief compound other than olefin, a bilidene compound, and other compounds having a carbon-carbon double bond.
- Homopolymers or copolymers such as polymethacrylic acid ester resin, polyacrylic acid ester resin, polystyrene, polytetrafluoroethylene, Atari mouth-tolyl copolymer (acrylic fibers and their molding Substances, ABS resin, etc.), butadiene-containing copolymers (synthetic rubber), etc., and polyamides including aliphatic polyamides and aromatic polyamides such as silicone, polyesters (polyethylene terephthalate, aliphatic and wholly aromatic) Including polyester), polycarbonate, polyurethane, polybenzene, polyethersulfone, polo Acetal and various synthetic rubbers are preferably used.
- the base material of the present invention is preferably a polymethacrylic resin, polyamide, or polysulfone resin such as polyolefin, polyimide, polycarbonate, polyarylate, polyester, polyacrylonitrile, or polymethyl methacrylate.
- a chip containing a high molecular compound such as a cellulosic resin as a main component is preferable, and an effect is exhibited in a chip using the compound as a base material.
- it is particularly remarkably exhibited in a chip having a polysulfone resin, a polymethacrylic acid resin, a polyatali-tolyl, a polyamide, and a cellulose resin.
- the resin used as the base material in the present invention is processed into a micro channel or the like because the higher the content of silicon, the softer the resin becomes and the lower the rigidity of the chip.
- the content of silicon is 10% or less, since it may be deformed by external force such as pressure.
- the silicon content means the ratio when the denominator is the total molecular weight of the resin and the molecule is the total atomic weight of the silicon in the resin.
- the covalent bond in the present invention refers to a bond formed by two atoms sharing an electron, and has a sigma bond, a pi bond, another delocalized covalent bond, and Z or another covalent bond type. A thing.
- the lab-on-a-chip substrate of the present invention to which a hydrophilic polymer is covalently bonded, has the following effects.
- Chip molding methods include injection, reaction injection, vacuum, vacuum hot pressing, stamping, compression, extrusion, foaming, blowing, powdering, and casting. If these molding methods are used, impurities such as a release agent, a monomer, and an initiator may adhere to the microchannel, and when using a lab-on-a-chip, these impurities should be cleaned in advance. You need to remove things.
- coating the hydrophilic polymer coated on the surface is removed by washing. However, with a covalent bond, the hydrophilic polymer and the like on the surface will not peel off even after multiple washings.
- Second is the reduction of detection noise.
- a method for moving the test sample in the lab-on-a-chip of the present invention a method using a difference or a gradient of pressure, concentration, electric field, and magnetic field, a method using surface force, a method using inertial force, and a method using these are described. There are combinations.
- the surface is coated with a hydrophilic polymer, and in a case where the test sample is moved, it is peeled off. For this reason, when detecting a protein, substances other than the test sample are also detected as noise, and correct analysis cannot be performed.
- the hydrophilic polymer is covalently bonded, the noise can be reduced because the hydrophilic polymer does not peel off.
- the protein analysis time is usually preferably within 5 minutes, more preferably within 3 minutes. Since there is no particular limitation, analysis may be carried out for a long time, for example, 30 minutes or more.
- the hydrophilic polymer on the surface is peeled off after prolonged use. However, when they are covalently bonded as in the present invention, the hydrophilic polymer on the surface does not peel off even when used for a long time.
- the hydrophilic polymer in the present invention means a water-soluble polymer or a polymer that is not easily water-soluble but has hydrophilicity.
- polybutyl alcohol carboxymethyl cellulose, ethylene butyl alcohol copolymer, polyhydroxyethyl methacrylate, poly OC-hydroxy butyl alcohol, polyacrylic acid, poly OC-hydroxy acrylate, polybutylpyrrolidone, and polyethylene glycol.
- starches such as starch, corn starch, wheat starch, dalcomannan, silk fiber, silk sericin, agar, gelatin, egg white protein and sodium alginate. Also, use of these sulfone dangling objects is possible.
- polyalkylene glycol is preferable.
- the polyalkylene glycol is, for example, a chain polymer containing an oxygen atom in the main chain represented by polyethylene glycol or polypropylene glycol, but may be a polymer grafted with polyalkylene glycol.
- the molecular weight of the polyalkylene glycol is not particularly limited, but is preferably a number average molecular weight of 600 to 4,000,000, and in view of the ability to inhibit adsorption of a protein to a chip, a molecular weight of about 10,000 to 100,000 is preferably used.
- the lab-on-a-chip substrate of the present invention is preferably one in which a hydrophilic polymer is covalently bonded to the surface of a substrate by high energy.
- a chip in order to covalently bond a hydrophilic polymer to the surface of a substrate with a high energy beam, for example, first, a chip is immersed in a solution of a hydrophilic polymer, preferably a polyalkylene glycol, or After contact, high energy rays such as gamma rays and electron beams are irradiated.
- a hydrophilic polymer preferably a polyalkylene glycol
- the temperature of the polyalkylene glycol solution is not particularly limited, but is preferably from 0 ° C to 30 ° C, more preferably from 10 ° C to 25 ° C. Preferred.
- the solvent for preparing the polyalkylene glycol solution is not particularly limited, and water, methanol, ethanol, acetone, or the like is used as a good solvent.
- a high energy ray is an energy ray having a certain energy amount, and microwaves, infrared rays, visible rays, ultraviolet rays, X-rays, gamma rays, electron beams, proton rays, and neutron rays are also high energy rays. Included in the line.
- Gamma rays have a wavelength of 10_ 12 to: those of L0 _15 m, cormorants.
- the gamma ray capable of directly grafting the hydrophilic polymer to the resin substrate is used. Is preferred.
- the irradiation dose of the high energy beam is not particularly limited, and a gamma ray which is sufficient if the irradiation dose is sufficient to immobilize the polyalkylene glycol chain on the surface of the chip or microchannel on which protein adsorption suppression ability is to be imparted.
- the absorption energy is usually 100 kGy or less, preferably 40 kGy or less, more preferably 100 kGy or less, which has little effect on the detection of the test sample due to yellowing of the resin substrate.
- the lab-on-a-chip in the present invention refers to a solution sample that is integrated into a chip so that various scientific operations such as reaction, separation, purification, and detection can be performed on a substrate. These technologies can realize ultra-high sensitivity analysis, ultra-trace analysis, ultra-multiple simultaneous analysis, and so on.
- the lab-on-chip substrate in the present invention includes a lab-on-chip itself, a substrate including at least one of these portions, a substrate having only a micro flow channel, or a substrate having no micro flow channel.
- the position at which the hydrophilic polymer is bonded on the substrate is not particularly limited, but a protein synthesis unit, a protein purification unit, a protein detection unit, a microchannel wall surface, and the like. It is preferable that at least one of them is made hydrophilic.
- a hydrophilic polymer may be bound only to the flow path of the protein processing chip.
- the depth of the protein synthesis section is equal to or greater than the depth at which the reaction solution in the protein synthesis tank is sufficient and protein synthesis is possible, and the synthesis tank is provided on the substrate.
- the range is preferably not more than the depth, and the preferable range is not less than 1000 ⁇ m.
- the lower limit is more preferably 20 ⁇ m or more.
- the preferred range of the vertical and horizontal dimensions is 10 m or more and 5000 m or less.
- the lower limit is more preferably 50 m or more.
- a particularly preferred range is 200 / zm or more and 2000 / zm or less.
- Reaction solutions to be put into the protein synthesis tank include known Escherichia coli extracts, wheat germ extracts, and egret reticulocyte extracts (the ribosomes necessary for protein synthesis are contained in the extract). It contains aminoacyl-tRNA synthetase and various soluble translation factors), and can be obtained by adding a buffer, amino acids that are the raw materials for protein synthesis, and ATP and GTP that are energy sources.
- the preferred range of the width and depth of the protein purification section is not particularly limited, but may be any size as long as a carrier for purifying the protein can be accommodated.
- the type of carrier for protein purification is not particularly limited, but may be glass (including modified or functionalized ones), plastic (acrylic, polystyrene and copolymers of styrene and other materials, polypropylene, (Including polyethylene, polybutylene, polyurethane, fluorine resin), polysaccharides, nylon or trocellulose, resin, silica base material including silica or modified silicone, carbon, metal and the like.
- protein electrophoresis or the like can be used.
- Specific methods include agarose gel electrophoresis, capillary electrophoresis using the microchannel of the detection part as a capillary, isoelectric focusing, SDS-PAGE, Native-PAGE, ⁇ -CE, microchip Electrophoresis or the like can be used.
- SDS-PAGE is particularly preferably used in the present invention.
- the specific method is as follows: urea, SDS (sodium dodecyl sulfate), 2-methylcaptoethanol, etc. are added to the protein solution transported through the microchannel of the protein synthesis unit and the protein purification unit. This is achieved by disrupting and denaturing the 3D structure, and then performing PAGE (polyacrylamide gel electrophoresis) in a microchannel.
- the electrophoresis for detection is preferably performed by on-chip electrophoresis on the same chip as the chip having the protein synthesis unit and the protein purification unit. In this way, synthesis, purification, and detection can all be performed on a single chip. In addition, by using on-chip electrophoresis, the time for electrophoresis can be shortened, and a series of operations for synthesis and detection can be performed at high throughput.
- the microchannel is formed by joining a plate-shaped substrate having a concave portion to another substrate.
- A! / ⁇ can also be produced with a thin film having a slit shape penetrating it and at least two substrates sandwiching the thin film.
- the substrate may be a sheet, plate, film, rod, tube, coating, cylinder, or any other complicated shape, but is not limited thereto. Workability It is preferably in the form of a sheet, plate, or film from the viewpoint of ease of handling and handling.
- the protein processing chip in the present invention refers to a chip having a function of analyzing protein properties such as molecular weight, affinity, and electrical characteristics by electrophoresis of the protein.
- this chip can also be used for protein synthesis, purification, and staining, and can exhibit an adsorption suppression effect.
- a chip containing a microchannel in the chip is also included in the protein processing chip.
- Protein adsorption to a conventional glass or plastic protein-treated chip occurs in a short period of time, and its adsorption rate (in the protein solution contacted solution) in a low concentration region (about lng ⁇ : LOO / z gZml).
- the percentage of the protein adsorbed in the protein inside reaches up to about 50%, the protein once adsorbed undergoes irreversible structural change (denaturation), and the denatured protein induces secondary protein adsorption. As a result, a multilayer adsorption layer of proteins is formed.
- the surface that the protein solution comes into contact with is coated with a hydrophilic polymer, especially polyalkylene glycol, to reduce the hydrophobic interaction, which is the biggest factor that causes protein adsorption.
- Ff3 ⁇ 4 can be suppressed.
- protein refers to a compound having a structure in which a plurality of amino acids are linked by peptide bonds, and includes naturally occurring products, synthetic products, and short-chain peptides. means. May contain sugars, nucleic acids, and lipids in addition to amino acids as constituents
- Proteins that can be analyzed in the present invention include, but are not limited to, natural sources, synthetic products, and nucleoproteins, glycoproteins, lipoproteins, and the like containing components other than amino acids. Is particularly preferably used for water-soluble proteins. For the measurable molecular size, proteins of any size can be analyzed by appropriately setting the marker.
- the molecular weight range of the protein that can be separated using the chip of the present invention is not particularly limited, but is preferably from 10 kDa to 200 kDa, and more preferably from 14 kDa to 140 kDa. It is preferable that the membrane-bound proteins and the like are applied to the electrophoresis method of the present invention after being soluble.
- the solubilizing treatment is achieved by mechanical treatment such as ultrasonic treatment with a chelating agent such as salt solution or EDTA, or treatment with a surfactant. Is done.
- the carrier for separation used in the electrophoresis method of the present invention is not particularly limited, and the molecular size separation and analysis of proteins can be performed by ordinary capillary gel electrophoresis or microchip gel electrophoresis.
- Used for separation such as polyacrylamide, polyatanolamide, hydroxypropylcellulose, hydroxymethylpropylcellulose, hydroxyshethylcellulose, methylcellulose, j8-cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin. It is also applicable to curdlan, laminaran and seaweed extracts containing the
- SDS sodium dodecyl sulfate
- Triton X-100 Triton X-100
- ⁇ -aminocaproic acid 3-[(3-cholamidopropyl) -dimethylamino] -1-propane
- CHAPS 6-8M Urea
- TEMED tetramethylethylenediamine
- HTAB hexyltrimethylammonium-bromobromide
- DTAB dodecyl
- electrophoresis buffer examples include a tris-glycine buffer, a tris-borate buffer 1, a tris-hydrochloride buffer, a tris-tricine buffer, a tris-monophosphate sodium buffer, and the like.
- a buffer used as the electrophoresis buffer of the above, or a buffer provided in a commercially available kit for protein electrophoresis can be used.
- the electrophoresis buffer may be used at a concentration generally used as a protein electrophoresis buffer.
- the electrophoresis buffer contains the above-mentioned carrier for separation! By adding the separation carrier to the electrophoresis buffer, the operation can be simplified and the analysis can be performed at a higher speed.
- the pH of the electrophoresis buffer is preferably in the range of 2.0 to 9.0, more preferably 6.8 to 8.6, in view of appropriate electroosmotic flow and suitable electrophoresis of proteins. Masu! / ⁇ .
- sample preparation solution water, an SDS solution, or a solution obtained by adding 2-mercaptoethanol or dithiothreitol to a SDS-trisborate solution or the like can be used.
- Water is particularly preferred from the viewpoints of improving peak intensity, improving peak separation, improving detection limit, and improving measurement accuracy.
- Water includes ultrapure water, deionized water, MilliQ water, etc. Water commonly used for protein electrophoresis can be used, but MilliQ water is particularly preferred
- the concentration of the protein in the sample solution from the viewpoint of measurement accuracy, 0. 05 ⁇ 2000 ⁇ ⁇ / 1 force S
- concentration of the protein in the sample solution from the viewpoint of measurement accuracy, 0. 05 ⁇ 2000 ⁇ ⁇ / 1 force S
- from 0.1 to 200011 8/1 month Yori preferably, 0. 5 ⁇ 200ng Z 1 is particularly preferred.
- the electrophoresis method using the chip of the present invention can be preferably used.
- Examples of the form include capillary electrophoresis, microchip electrophoresis, and nanochannel electrophoresis.
- capillary electrophoresis usually, a capillary having an inner diameter of 1000 m or less is filled with a buffer solution for electrophoresis, a sample is introduced into one end, and a high voltage is applied between both ends to form a test sample. The material is developed in the capillary.
- the inner diameter, outer diameter, overall length, and effective length are not particularly limited, and those having commonly used sizes can be used.
- effective length a capillary with a short effective length can be used from the viewpoint of enabling high-speed analysis.
- the effective length of the capillary refers to the distance to the sample injection location detector.
- microchip electrophoresis an introduction channel, a separation channel intersecting with the introduction channel are provided, and a sample reservoir is arranged at one end of the introduction channel.
- a microchip having an outlet arranged at the other end of the input channel is used.
- the electrophoresis method of the present invention specifically includes a step of providing a sample to a sample reservoir without thermally denaturing a sample containing a protein; This is performed by a process including a step of introducing the sample into the separation channel and a step of migrating the sample in the separation channel.
- the step of supplying the sample to the sample reservoir is more specifically achieved by applying a voltage to the sample reservoir at one end of the introduction channel and the outlet at the other end.
- the voltage strength varies depending on the device. In the case of the SV1100 (manufactured by Hitachi Electronics), the voltage is 50 to 800V, usually 300V. Voltage is applied. Thus, the sample is provided at the intersection of the introduction channel and the separation channel.
- the step of introducing the sample in the sample reservoir into the separation channel is more specifically performed by applying a squeezing voltage to the sample reservoir at one end of the introduction channel and the outlet at the other end of the sample reservoir.
- the step of discharging the sample to the outlet of the sample reservoir and the other end and the step of applying a separation voltage to the outlet side of the separation channel and the opposite side are simultaneously achieved.
- the intensity of the voltage is a force appropriately selected depending on the device. For example, in the case of SV1100 (manufactured by Hitachi Electronics), the former is achieved at around 130 V, and the latter is achieved at 700 to 900 V.
- the method described in PCTZJPO 1Z04510 is also applicable.
- the size of the microchip is, for example, 10 to 120 mm in length, 10 to 120 mm in width, and 500 to 5000 ⁇ m in thickness.
- the shapes of the introduction channel and the separation channel in the microchip are not particularly limited. It is also possible to use a chip in which 3 to 96 channels are provided on one chip and which can simultaneously analyze multiple channels.
- the arrangement of the multi-channels includes parallel, radial, circular, and the like, but the shape is not particularly limited.
- the width and depth of the separation channel of the microchip can be appropriately set according to the size of the microchip, the purpose of use, and the like.
- the width of the microchannel is 0.1 ⁇ m or more, preferably 10 m or more from the viewpoint of obtaining sufficient analysis sensitivity, and 1000 ⁇ m from the viewpoint of obtaining sufficient analysis accuracy. Or less, preferably 500 ⁇ m or less.
- the depth of the microphone opening channel can be appropriately set depending on the size of the microchip, the purpose of use, and the like. Specifically, it is 0.1 ⁇ m or more, preferably 10 m or more from the viewpoint of obtaining sufficient analysis sensitivity, and 1000 m or less, preferably 500 m or less from the viewpoint of obtaining sufficient analysis accuracy. Desirably.
- the length of the separation channel can be appropriately selected according to the size of the microchip and the compound to be analyzed, but it is preferable that the effective length be longer.
- the effective length refers to the distance from the intersection of the flow passages to the polymer compound detection point (disposed on the separation flow passage). From the viewpoint of obtaining a sufficient separation ability, it is 0.1 mm or more, preferably 1 Omm or more, and from the viewpoint of high-speed separation, it is desirably 100 mm or less, preferably 50 mm or less.
- the size of the reservoir can be appropriately set according to the volume of the sample. Specifically, the diameter is preferably 0.05 mm or more, and more preferably 4 mm or less, from the viewpoint of sample introduction handling and electrode thickness.
- the electrophoresis electric field in the microchip electrophoresis is from 20 VZcm to 50 kVZcm, preferably from 50 V / cm to 20 kVZcm, more preferably from 100 VZcm, from the viewpoint of obtaining good separation ability and shortening the transfer time. Desirably, it is about 10 kVZcm.
- the nanochannel type electrophoresis refers to a chip having a channel having a channel width of LOOnm, which has a nanometer size, 1 nm to 1 ⁇ m, preferably 10 to 500 nm, and more preferably 50 to 50 V. Perform the electrophoresis that is performed separately. This includes those in which the nano-sized structures described above are formed in micrometer-sized channels.
- the shape of the nano-sized structure is not particularly limited. For example, a square, a circle, a triangle, or the like can be used, and the installation interval of the structures is not particularly limited.
- a nanochannel chip on which these are formed is used.
- a chip capable of simultaneously analyzing multiple channels is also included.
- a flow channel in nanochannel electrophoresis can be designed in various ways, such as a channel having a feature of a size of nanometer with a curved shape, a meandering shape, a zigzag shape, or a combination thereof. .
- many channels can be formed in the minute scale.
- this allows a large number of samples to be processed at one time, and high throughput can be achieved.
- the shape can be freely changed, and there is an advantage that the installation interval can be freely changed. Simultaneous measurement of multiple channels is possible.
- nanochannel electrophoresis similarly to microchip electrophoresis, an introduction channel, a separation channel crossing the introduction channel, and a sample reservoir at one end of the introduction channel.
- an introduction channel similarly to microchip electrophoresis, an introduction channel, a separation channel crossing the introduction channel, and a sample reservoir at one end of the introduction channel.
- the shape is not particularly limited.
- the size of a nanochannel chip in nanochannel electrophoresis is the same as that of a microchip.
- the length is 10 to 120 mm
- the width is 10 to 120 mm
- the thickness is 500 to 5000 / zm.
- the depth of the flow channel, the length of the flow channel, and the size of the reservoir of the nanochannel chip are the same as those of the microchip.
- a method for detecting a protein subjected to electrophoresis for example, absorption by UV wavelength light, Detection by fluorescence, laser, lamp, LED, etc., electrochemical detection, chemiluminescence detection and the like.
- a protein or peptide measuring absorption at 200 nm, reacting SYPRO Orange with the protein or peptide, exciting at 460 to 550 nm, measuring fluorescence at 550 to 650 nm, React with a fluorescent marker (Agilent Technologies No.
- the protein or peptide can be detected by exciting at 650 nm and measuring the fluorescence at 640-700 nm, or by electrochemical measurement, chemiluminescence measurement and the like.
- a device capable of emitting UV wavelength light and a detector capable of emitting the UV wavelength light may be provided at the outlet of the capillary, and a device capable of emitting fluorescent wavelength may be provided.
- a detector capable of detecting the fluorescence wavelength may be provided.
- a detector for UV wavelength light may be installed at a detection point arranged on a separation channel, or a device capable of emitting a fluorescent wavelength and a fluorescent wavelength may be used. And a detector capable of detecting the At the same time, multiple channels can be detected.
- nanochannel electrophoresis the same detector and detection method as in microchip electrophoresis are applied. Furthermore, in nanochannel electrophoresis, it is possible to detect a larger number of samples at the same time in simultaneous multichannel detection than in microchip electrophoresis.
- identification of proteins, peptides, amino acids, and the like can be performed by UV absorption, molecular weight markers, comparison of migration time with a sample, analysis of mass spectrum, and the like.
- the protein-treated chip of the present invention may have not only an electrophoresis part but also a part for protein production, purification and staining in a cell-free system.
- a resin serving as a base material may contain or be coated with a black substance.
- the black color refers to a range of visible light (wavelength power of 800 nm and 800 ⁇ m), and the spectral reflectance of the black portion is a specific spectral pattern (a specific peak). ), And have a uniformly low value, and the spectral transmittance of the black portion is also uniformly low and has no specific vector pattern.
- the spectral reflectance in the visible light range is 7% or less, and the spectral transmittance in the same wavelength range is 2% or less. It is preferred that Note that the spectral reflectance referred to here is a spectral reflectance when the specular light of the substrate is taken in the light receiving optical system that meets the JIS Z 8722 condition C.
- the means for blackening can be achieved by adding a black substance to the base material and the insulating material.
- the black substance is not particularly limited as long as it hardly reflects or transmits light, but preferred examples include carbon black, graphite, titanium black, erlin black, or Ru, Mn, Ni, Black materials such as oxides of Cr, Fe, Co and Z or Cu, or carbides of Si, Ti, Ta, Zr and Z or Cr can be used.
- These black substances may be contained alone or in combination of two or more.
- the base material and the insulating material are polymers such as polyethylene terephthalate, cellulose acetate, polycarbonate, polystyrene, polymethinolemethallate, and silicone, carbon black, graphite, titanium Black and aryl black can be preferably contained, and carbon black can be particularly preferably used.
- oxides of Ru, Mn, Ni, Cr, Fe, Co and Z or Cu, and carbides of Si, Ti, Ta, Zr and Z or Cr can be preferably contained. .
- the electrophoresis in the present invention refers to a method in which a test substance uses a difference or gradient in pressure, concentration, electric field, and magnetic field in a microchannel, a method using surface force, a method using inertial force, and a method using these. It refers to a method of moving by combination.
- the properties of the protein such as the molecular weight, affinity, and electrical properties of the test substance can be analyzed.
- the electroosmotic flow in the present invention means that when the microchannel wall is charged with a charged substance, for example, sodium dodecyl sulfate, it tries to maintain electrical neutrality near the wall surface, Sign ions, for example, sodium ions, gather near the wall to form an electric double layer. At this time, when the electric charge is added to the microchannel, the ions in the channel become electric. The flow that repels the ions in the double layer.
- a charged substance for example, sodium dodecyl sulfate
- Sign ions for example, sodium ions
- the protein-treated chip of the present invention includes a sputum, saliva, urine, stool, semen, blood, tissue, organ, or other bodily fluid, or a bodily fluid that is a clinical specimen used for diagnosis of human disease.
- Food, drinking water, soil, drainage, river water, seawater, wipes, and cotton used for fractionation and microbial contamination testing can be used as test materials.
- a culture solution of bacterial cells or bacterial cells (colonies) cultured on a solid medium can be used.
- a substrate of polymethyl methacrylate having a size of 20 ⁇ 60 mm and a thickness of 0.2 mm was immersed in a polyethylene glycol aqueous solution having a molecular weight of 50,000 and 2000 ppm.
- the immersed polymethyl methacrylate plate was sealed, irradiated with 2.5 kGy gamma rays, and grafted.
- the substrate irradiated with gamma rays was dried, and affixed to a fluorescent plate having a hole in the light transmitting portion.
- FITC-labeled BSA protein and gZml diluted in gZml Comparative Example 1 was obtained by solidifying an aqueous solution of an IgG protein at room temperature for 10 minutes, removing the solution, and then washing with a phosphate buffer.
- Affixed to a fluorescent plate with a hole in the light-transmitting part without irradiating gamma rays on a substrate of 20 x 60 mm in size and 0.2 mm in thickness of polymethyl methacrylate, and lmgZml of serum albumin (BSA) phosphor Solidify the acid buffer solution for 1 hour at room temperature, wash with phosphate buffer solution, then 10 ⁇ g / m An aqueous solution of the FITC-labeled BSA protein and the IgG protein diluted to 1 was solidified at room temperature for 10 minutes, and the solution was removed and washed with a phosphate buffer.
- BSA serum albumin
- This reference example is a method of coating a hydrophilic polymer, which is not practical as a lab-on-a-chip because the hydrophilic polymer is peeled off, but compared with the present invention as an existing method that can suppress protein adsorption. did.
- Table 1 shows the results of measuring the protein remaining in the chip in Example 1, Comparative Example 1, and Reference Example.
- the numerical values in the table are the fluorescence intensities, and the lower the numerical value, the lower the protein adsorption.
- Example 1 in which polyethylene glycol was covalently bonded to a resin substrate with gamma rays, the protein adsorption was 1 Z4 to 1 Z6 compared to Comparative Example 1 when covalent bonding was performed with gamma rays. Was suppressed. From these results, it was confirmed that the present invention has a protein adsorption suppression effect comparable to that of the existing method used as the reference example.
- Table 2 shows the protein recovery rates when these materials were processed into microchannels having a channel diameter of 0.04 X 0.1 mm and a length of 10 cm, and passed through proteins. The larger the value in the table, the more the protein adsorption was suppressed, indicating that the recovered amount was improved.
- Example 1 in which polyethylene glycol was covalently bonded to a resin substrate with gamma rays, a covalent bond treatment was performed with gamma rays.
- the BSA protein recovery was improved by about 20%, and the recovery of fluorescently labeled IgG protein was improved by about 30%.
- the micro flow channel of the polymeta- lylate substrate having a micro flow channel of 100m wide x 60m deep x 50cm long was washed with purified water. After injecting the cell-free protein synthesis reaction solution derived from Escherichia coli into the microchannel, it was left at 30 ° C for 1 hour to synthesize CAT protein. The CAT protein synthesized in the microchannel was recovered and quantified by ELISA.
- Table 3 shows the results of comparing the amounts of the proteins synthesized in Example 2 and Comparative Example 2.
- Example 2 in which polyethylene glycol was covalently bonded to a resin substrate with gamma rays, the amount of protein synthesis was about 2 times smaller than that in Comparative Example 2 by performing covalent bonding with gamma rays. Doubled.
- FIG. Figure 1 A schematic diagram of a protein electrophoresis chip having a microchannel with a diameter of 100 m using polymethyl methacrylate as a raw material and used in Example 3, Reference Example 3, and Examples 4 to 7 below is shown in FIG. Figure 1 shows.
- An electrophoresis chip having a flow path with a diameter of 100 ⁇ m and immersed in an aqueous solution of polyethylene glycol having a molecular weight of 500,000 and 2000 ppm was prepared from polymethylmethacrylate.
- the immersed electrophoresis chip was sealed, irradiated with 2.5 kGy gamma rays, and grafted.
- the polyethylene glycol in the flow path is removed, and 5% polyacrylamide (molecular weight 600,000 to 1,000,000) is filled with 0.1M Tris-Aspartic Acid (pH 8) solution, and 5% polyacrylamide is added to parts A, B, and C in Fig. 3. (Molecular weight 600,000-1,000,000) 0.
- lMTris- Aspartic Acid (pH8) solution is added.
- D part contains fluorescently labeled trypsin inhibitor and 1% SDS of fluorescently labeled BSA.
- MTris-HCl (pH8) solution was put. Electrodes were inserted into sections A, B, C, and D of the electrophoresis chip filled with polyacrylamide and protein solution, and a voltage of 350 V was applied to B for 1 minute. After that, a voltage of 500 V was applied to C, and a voltage of 150 V was applied to B and D, and this was used as Example 3.
- a 5% polyacrylamide (molecular weight: 600,000-1,000,000) solution was filled into an electrophoresis chip made of polymethyl methacrylate and having a flow path with a diameter of 100 ⁇ m.
- 0. lMTris-Aspartic Acid (pH8) Place 5% polyacrylamide (molecular weight 600,000 to 1,000,000) in parts A, B, and C.
- Electrodes were inserted into sections A, B, C, and D of the electrophoresis chip filled with polyacrylamide and protein solution, and a voltage of 350 V was applied to B for 1 minute. Thereafter, a voltage of 500 V was applied to C, and a voltage of 150 V was applied to B and D, and electrophoresis was performed.
- Example 3 The results of observing the proteins migrated in Example 3 and Comparative Example 3 are shown in Figs.
- the resin substrate was treated with polyethylene glycol by gamma rays.
- the protein was not electrophoresed (Fig. 2), whereas in Example 2 in which the protein was covalently bound by gamma rays, the protein became a band. It was confirmed that they were separated and electrophoresed (Fig. 3).
- An electrophoresis chip having a flow path with a diameter of 100 ⁇ m and immersed in an aqueous solution of polyethylene glycol having a molecular weight of 500,000 and 2000 ppm was prepared from polymethylmethacrylate.
- the immersed electrophoresis chip was sealed, irradiated with 2.5 kGy gamma rays, and grafted.
- the polyethylene glycol in the channel was removed, and the channel was washed with 10N hydrochloric acid. After washing, 5% polyacrylamide (molecular weight 600,000 to 1,000,000) is filled with 0.
- Electrodes were inserted into sections A, B, C, and D of the electrophoresis chip filled with polyacrylamide and protein solution, and a voltage of 350 V was applied to B for 1 minute. Thereafter, a voltage of 500 V was applied to C, and a voltage of 150 V was applied to B and D, and electrophoresis was performed.
- An electrophoresis chip having a flow path with a diameter of 100 ⁇ m and immersed in an aqueous solution of polyethylene glycol having a molecular weight of 500,000 and 2000 ppm was prepared from polymethylmethacrylate.
- the immersed electrophoresis chip was sealed, irradiated with 2.5 kGy gamma rays, and grafted.
- the polyethylene glycol in the flow path was removed, and the flow path was washed with a 10N aqueous sodium hydroxide solution.
- An electrophoresis chip having a flow path with a diameter of 100 ⁇ m and immersed in an aqueous solution of polyethylene glycol having a molecular weight of 500,000 and 2000 ppm was prepared from polymethylmethacrylate.
- the immersed electrophoresis chip was sealed, and irradiated with 5. OkGy gamma rays to graft it.
- the polyethylene glycol in the channel was removed, and the channel was washed with a 10N aqueous sodium hydroxide solution. After washing, 5% polyacrylamide (Molecular weight 600,000 to 1,000,000) 0.
- An electrophoresis chip having a flow path with a diameter of 100 ⁇ m and immersed in an aqueous solution of polyethylene glycol having a molecular weight of 500,000 and 2000 ppm was prepared from polymethylmethacrylate.
- the immersed electrophoresis chip was sealed, irradiated with 10. OkGy gamma rays, and grafted.
- the polyethylene glycol in the flow path was removed, and the flow path was washed with a 10N aqueous sodium hydroxide solution. After washing, 5% polyacrylamide (Molecular weight 600,000 to 1,000,000) 0.
- the present invention it is possible to provide a lab-on-a-chip substrate that has a washing-resistant effect in which a protein is not adsorbed to the surface of a substrate and can be used for a long time. Since the detection noise is reduced, it is possible to analyze a minute amount of protein with high accuracy, and a polymer electrophoresis chip having a microchannel can be provided.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006512578A JP4853285B2 (ja) | 2004-04-21 | 2005-04-21 | ラボオンチップ用基板 |
CA002560758A CA2560758A1 (en) | 2004-04-21 | 2005-04-21 | Lab-on-chip substrate |
EP05734482A EP1739418A4 (en) | 2004-04-21 | 2005-04-21 | SUPPORT FOR LABO-ON-CHIP |
US11/587,024 US20070178240A1 (en) | 2004-04-21 | 2005-04-21 | Substrate for labo-on-a-chip |
US12/540,832 US20090297733A1 (en) | 2004-04-21 | 2009-08-13 | Substrate for lab-on-a-chip |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-125127 | 2004-04-21 | ||
JP2004125127 | 2004-04-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/540,832 Division US20090297733A1 (en) | 2004-04-21 | 2009-08-13 | Substrate for lab-on-a-chip |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005103670A1 true WO2005103670A1 (ja) | 2005-11-03 |
Family
ID=35197097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/007587 WO2005103670A1 (ja) | 2004-04-21 | 2005-04-21 | ラボオンチップ用基板 |
Country Status (7)
Country | Link |
---|---|
US (2) | US20070178240A1 (ja) |
EP (1) | EP1739418A4 (ja) |
JP (1) | JP4853285B2 (ja) |
KR (1) | KR20070006754A (ja) |
CN (1) | CN1942761A (ja) |
CA (1) | CA2560758A1 (ja) |
WO (1) | WO2005103670A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007248373A (ja) * | 2006-03-17 | 2007-09-27 | Univ Of Fukui | 免疫測定用ブロッキング剤組成物およびそれを用いたブロッキング方法 |
WO2008059848A1 (fr) * | 2006-11-14 | 2008-05-22 | Japan Science And Technology Agency | Structure de micro/nanostructure, puce de bioinspection utilisant celle-ci et procédé de fabrication correspondant |
JP2008128918A (ja) * | 2006-11-24 | 2008-06-05 | National Institute Of Advanced Industrial & Technology | 唾液成分のオンチップ分析方法 |
JP2008170351A (ja) * | 2007-01-12 | 2008-07-24 | Sekisui Chem Co Ltd | 電気泳動装置 |
JP2008170350A (ja) * | 2007-01-12 | 2008-07-24 | Sekisui Chem Co Ltd | ヘモグロビン類の測定方法 |
JP2008256460A (ja) * | 2007-04-03 | 2008-10-23 | Sekisui Chem Co Ltd | 電気泳動用キャピラリー |
JP2009270963A (ja) * | 2008-05-08 | 2009-11-19 | Toppan Printing Co Ltd | 電気泳動用カセット |
US20100068740A1 (en) * | 2006-11-03 | 2010-03-18 | Trustees Of Tufts College | Microfluidic device with a cylindrical microchannel and a method for fabricating same |
JP2010216964A (ja) * | 2009-03-16 | 2010-09-30 | Toyama Prefecture | 機能性マイクロチップおよびその製造方法 |
JP2013117522A (ja) * | 2011-10-31 | 2013-06-13 | Arkray Inc | 基材の修飾方法 |
US9017536B2 (en) | 2006-12-26 | 2015-04-28 | Sekisui Chemical Co., Ltd. | Hemoglobin measurement method and electrophoresis apparatus |
US9513405B2 (en) | 2006-11-03 | 2016-12-06 | Tufts University | Biopolymer photonic crystals and method of manufacturing the same |
US9802374B2 (en) | 2006-11-03 | 2017-10-31 | Tufts University | Biopolymer sensor and method of manufacturing the same |
US9969134B2 (en) | 2006-11-03 | 2018-05-15 | Trustees Of Tufts College | Nanopatterned biopolymer optical device and method of manufacturing the same |
US10040834B2 (en) | 2006-11-03 | 2018-08-07 | Tufts University | Biopolymer optofluidic device and method of manufacturing the same |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2201136B1 (en) * | 2007-10-01 | 2017-12-06 | Nabsys 2.0 LLC | Nanopore sequencing by hybridization of probes to form ternary complexes and variable range alignment |
US9599891B2 (en) | 2007-11-05 | 2017-03-21 | Trustees Of Tufts College | Fabrication of silk fibroin photonic structures by nanocontact imprinting |
US20110135697A1 (en) * | 2008-06-18 | 2011-06-09 | Trustees Of Tufts College | Edible holographic silk products |
US9650668B2 (en) | 2008-09-03 | 2017-05-16 | Nabsys 2.0 Llc | Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels |
US8262879B2 (en) | 2008-09-03 | 2012-09-11 | Nabsys, Inc. | Devices and methods for determining the length of biopolymers and distances between probes bound thereto |
EP2342362B1 (en) | 2008-09-03 | 2017-03-01 | Nabsys 2.0 LLC | Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels |
EP2396276B1 (en) | 2009-02-12 | 2016-08-31 | Trustees Of Tufts College | Nanoimprinting of silk fibroin structures for biomedical and biophotonic applications |
US8455260B2 (en) | 2009-03-27 | 2013-06-04 | Massachusetts Institute Of Technology | Tagged-fragment map assembly |
US9016875B2 (en) | 2009-07-20 | 2015-04-28 | Tufts University/Trustees Of Tufts College | All-protein implantable, resorbable reflectors |
EP2474054A4 (en) | 2009-08-31 | 2013-03-13 | Tufts University Trustees Of Tufts College | SILK TRANSISTOR DEVICES |
US8715933B2 (en) | 2010-09-27 | 2014-05-06 | Nabsys, Inc. | Assay methods using nicking endonucleases |
JP5998148B2 (ja) | 2010-11-16 | 2016-09-28 | ナブシス 2.0 エルエルシー | ハイブリダイズされたプローブの相対位置を検出することによる生体分子のシークエンシングのための方法 |
WO2012109574A2 (en) | 2011-02-11 | 2012-08-16 | Nabsys, Inc. | Assay methods using dna binding proteins |
EP3202918B1 (en) | 2011-04-07 | 2021-10-20 | Abbott Diagnostics Scarborough, Inc. | Monitoring recombinase polymerase amplification mixtures |
US9914966B1 (en) | 2012-12-20 | 2018-03-13 | Nabsys 2.0 Llc | Apparatus and methods for analysis of biomolecules using high frequency alternating current excitation |
US10294516B2 (en) | 2013-01-18 | 2019-05-21 | Nabsys 2.0 Llc | Enhanced probe binding |
CN107398094A (zh) * | 2016-05-19 | 2017-11-28 | 青岛大学 | 一种抗蛋白吸附的毛细管柱及其制备方法 |
CN110511265B (zh) * | 2019-09-10 | 2021-04-20 | 西安交通大学 | 一种基于液体弹珠的等电聚焦装置及方法 |
GB201916379D0 (en) | 2019-11-11 | 2019-12-25 | Biocrucible Ltd | Biochemical reaction methods and reagents |
CN113675129B (zh) * | 2021-07-24 | 2023-07-28 | 福州大学 | 粘附力可调控衬底及其在转移方面的应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001500971A (ja) * | 1996-09-18 | 2001-01-23 | アクラーラ バイオサイエンシス インコーポレイテッド | 表面改質した電気泳動チャンバー |
JP2002503331A (ja) * | 1995-12-05 | 2002-01-29 | ガメラ バイオサイエンス コーポレイション | 機内に搭載された情報科学を備えた超微量液体素子工学システムにおいて液体移動を推進するために求心性加速を使用するための装置及び方法 |
JP2003334056A (ja) * | 2001-10-29 | 2003-11-25 | Toray Ind Inc | タンパク質合成チップおよび膜が設けられたマイクロチップ |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US160139A (en) * | 1875-02-23 | Improvement in churns | ||
US5290548A (en) * | 1987-04-10 | 1994-03-01 | University Of Florida | Surface modified ocular implants, surgical instruments, devices, prostheses, contact lenses and the like |
US4880548A (en) * | 1988-02-17 | 1989-11-14 | Pall Corporation | Device and method for separating leucocytes from platelet concentrate |
US5153072A (en) * | 1989-08-31 | 1992-10-06 | The Board Of Regents Of The University Of Washington | Method of controlling the chemical structure of polymeric films by plasma deposition and films produced thereby |
EP0522083A4 (en) * | 1990-03-30 | 1993-05-19 | Iit Research Institute | Method and apparatus for rendering medical materials safe |
JPH06265447A (ja) * | 1993-03-16 | 1994-09-22 | Hitachi Ltd | 微量反応装置およびこれを使用する微量成分測定装置 |
US5391274A (en) * | 1993-10-18 | 1995-02-21 | Beckman Instruments, Inc. | Methods for controlling electroosmotic flow in coated capillary electrophoresis columns |
US5599863A (en) * | 1994-06-17 | 1997-02-04 | Cyro Industries | Gamma radiation sterilizable acrylic polymer |
US20010055812A1 (en) * | 1995-12-05 | 2001-12-27 | Alec Mian | Devices and method for using centripetal acceleration to drive fluid movement in a microfluidics system with on-board informatics |
US5993972A (en) * | 1996-08-26 | 1999-11-30 | Tyndale Plains-Hunter, Ltd. | Hydrophilic and hydrophobic polyether polyurethanes and uses therefor |
US6664044B1 (en) * | 1997-06-19 | 2003-12-16 | Toyota Jidosha Kabushiki Kaisha | Method for conducting PCR protected from evaporation |
EP1387390B1 (en) * | 1997-06-20 | 2009-02-18 | Bio - Rad Laboratories, Inc. | Retentate chromatography and protein chip arrays with applications in biology and medicine |
EP1004621B1 (en) * | 1998-06-11 | 2004-09-15 | Teijin Chemicals, Ltd. | Gamma-ray stabilizer and thermoplastic polymer composition containing the same |
CA2314398A1 (en) * | 2000-08-10 | 2002-02-10 | Edward Shipwash | Microarrays and microsystems for amino acid analysis and protein sequencing |
US6899707B2 (en) * | 2001-01-29 | 2005-05-31 | Intralase Corp. | Applanation lens and method for ophthalmic surgical applications |
WO2002081183A1 (en) * | 2001-04-06 | 2002-10-17 | Fluidigm Corporation | Polymer surface modification |
CA2443562A1 (en) * | 2001-04-20 | 2002-10-31 | Emembrane, Inc. | High capacity methods for separation, purification, concentration, immobilization and synthesis of compounds and applications based thereupon |
US6919046B2 (en) * | 2001-06-07 | 2005-07-19 | Nanostream, Inc. | Microfluidic analytical devices and methods |
JP4587606B2 (ja) * | 2001-06-27 | 2010-11-24 | 株式会社カネカ | ポリカーボネート系難燃性樹脂組成物 |
JP2005516114A (ja) * | 2002-01-25 | 2005-06-02 | サイファージェン バイオシステムズ, インコーポレイテッド | 被分析物の脱離/イオン化に有用なエネルギー吸収部分を有するモノマーおよびポリマー |
JP4063614B2 (ja) * | 2002-08-30 | 2008-03-19 | 日東電工株式会社 | 再剥離用水分散型アクリル系粘着剤組成物及び粘着シート |
-
2005
- 2005-04-21 WO PCT/JP2005/007587 patent/WO2005103670A1/ja not_active Application Discontinuation
- 2005-04-21 US US11/587,024 patent/US20070178240A1/en not_active Abandoned
- 2005-04-21 CA CA002560758A patent/CA2560758A1/en not_active Abandoned
- 2005-04-21 KR KR1020067017353A patent/KR20070006754A/ko not_active Ceased
- 2005-04-21 JP JP2006512578A patent/JP4853285B2/ja not_active Expired - Fee Related
- 2005-04-21 CN CNA2005800116670A patent/CN1942761A/zh active Pending
- 2005-04-21 EP EP05734482A patent/EP1739418A4/en not_active Withdrawn
-
2009
- 2009-08-13 US US12/540,832 patent/US20090297733A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002503331A (ja) * | 1995-12-05 | 2002-01-29 | ガメラ バイオサイエンス コーポレイション | 機内に搭載された情報科学を備えた超微量液体素子工学システムにおいて液体移動を推進するために求心性加速を使用するための装置及び方法 |
JP2001500971A (ja) * | 1996-09-18 | 2001-01-23 | アクラーラ バイオサイエンシス インコーポレイテッド | 表面改質した電気泳動チャンバー |
JP2003334056A (ja) * | 2001-10-29 | 2003-11-25 | Toray Ind Inc | タンパク質合成チップおよび膜が設けられたマイクロチップ |
Non-Patent Citations (2)
Title |
---|
HU S. ET AL: "Surface Modification of Poly(dimethylsiloxane) Microfluidic Devices by Ultraviolet Polymer Grafting.", ANALYTICAL CHEMISTRY., vol. 74, no. 16, 2002, pages 4117 - 4123, XP002990870 * |
See also references of EP1739418A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007248373A (ja) * | 2006-03-17 | 2007-09-27 | Univ Of Fukui | 免疫測定用ブロッキング剤組成物およびそれを用いたブロッキング方法 |
US10280204B2 (en) | 2006-11-03 | 2019-05-07 | Tufts University | Electroactive biopolymer optical and electro-optical devices and method of manufacturing the same |
US10040834B2 (en) | 2006-11-03 | 2018-08-07 | Tufts University | Biopolymer optofluidic device and method of manufacturing the same |
US9969134B2 (en) | 2006-11-03 | 2018-05-15 | Trustees Of Tufts College | Nanopatterned biopolymer optical device and method of manufacturing the same |
US20100068740A1 (en) * | 2006-11-03 | 2010-03-18 | Trustees Of Tufts College | Microfluidic device with a cylindrical microchannel and a method for fabricating same |
US9802374B2 (en) | 2006-11-03 | 2017-10-31 | Tufts University | Biopolymer sensor and method of manufacturing the same |
US9513405B2 (en) | 2006-11-03 | 2016-12-06 | Tufts University | Biopolymer photonic crystals and method of manufacturing the same |
WO2008059848A1 (fr) * | 2006-11-14 | 2008-05-22 | Japan Science And Technology Agency | Structure de micro/nanostructure, puce de bioinspection utilisant celle-ci et procédé de fabrication correspondant |
JP2008128918A (ja) * | 2006-11-24 | 2008-06-05 | National Institute Of Advanced Industrial & Technology | 唾液成分のオンチップ分析方法 |
US9017536B2 (en) | 2006-12-26 | 2015-04-28 | Sekisui Chemical Co., Ltd. | Hemoglobin measurement method and electrophoresis apparatus |
JP2008170350A (ja) * | 2007-01-12 | 2008-07-24 | Sekisui Chem Co Ltd | ヘモグロビン類の測定方法 |
JP2008170351A (ja) * | 2007-01-12 | 2008-07-24 | Sekisui Chem Co Ltd | 電気泳動装置 |
JP2008256460A (ja) * | 2007-04-03 | 2008-10-23 | Sekisui Chem Co Ltd | 電気泳動用キャピラリー |
JP2009270963A (ja) * | 2008-05-08 | 2009-11-19 | Toppan Printing Co Ltd | 電気泳動用カセット |
JP2010216964A (ja) * | 2009-03-16 | 2010-09-30 | Toyama Prefecture | 機能性マイクロチップおよびその製造方法 |
JP2013117522A (ja) * | 2011-10-31 | 2013-06-13 | Arkray Inc | 基材の修飾方法 |
Also Published As
Publication number | Publication date |
---|---|
US20070178240A1 (en) | 2007-08-02 |
US20090297733A1 (en) | 2009-12-03 |
KR20070006754A (ko) | 2007-01-11 |
EP1739418A1 (en) | 2007-01-03 |
JP4853285B2 (ja) | 2012-01-11 |
CN1942761A (zh) | 2007-04-04 |
EP1739418A4 (en) | 2009-04-08 |
CA2560758A1 (en) | 2005-11-03 |
JPWO2005103670A1 (ja) | 2008-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005103670A1 (ja) | ラボオンチップ用基板 | |
US6509059B2 (en) | Surface coating for microfluidic devices that incorporate a biopolymer resistant moiety | |
Viefhues et al. | Physisorbed surface coatings for poly (dimethylsiloxane) and quartz microfluidic devices | |
JP4814944B2 (ja) | キャピラリー電気泳動法による試料の分析方法 | |
Tu et al. | Surface modification of poly (dimethylsiloxane) and its applications in microfluidics-based biological analysis | |
CN106662549B (zh) | 采样单元和生物传感器 | |
Liu et al. | Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood | |
KR20040074066A (ko) | 활성 전자 매트릭스 장치상에서 사용하기 위한 메조포러스투과층 | |
WO2003102133A2 (en) | Chemical modifications to polymer surfaces and the application of polymer grafting to biomaterials | |
WO2008029685A1 (fr) | Procédé pour analyse d'échantillon par électrophorèse capillaire | |
Dang et al. | Hybrid dynamic coating with n-dodecyl β-d-Maltoside and methyl cellulose for high-performance carbohydrate analysis on poly (methyl methacrylate) chips | |
CA2996062A1 (en) | A microfluidic device and methods for manufacturing same | |
Yamamoto et al. | On-line microchip electrophoresis-mediated preconcentration of cationic compounds utilizing cationic polyacrylamide gels fabricated by in situ photopolymerization | |
CN103232613B (zh) | 双亲性寡肽对聚甲基丙烯酸甲酯微流控芯片表面改性方法 | |
US7517441B2 (en) | Electrophoretic buffer | |
Liang et al. | Surface modification of poly (dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine | |
JPWO2002097421A1 (ja) | 電気泳動法 | |
Mourzina et al. | Electrophoretic separations of neuromediators on microfluidic devices | |
Hao et al. | Highly sensitive poly-N-isopropylacrylamide microgel-based electrochemical biosensor for the detection of SARS-COV-2 spike protein | |
JP2015188861A (ja) | マイクロチャネル内表面の真空乾燥ポリマー修飾方法 | |
Okada et al. | Rinse and evaporation coating of poly (methyl methacrylate) microchip for separation of sodium dodecyl sulfate–protein complex | |
Draghiciu et al. | Testing and characterization of a biosensor for the detection of infections in tissue based on Rh6G and AuNP functionalized with BSA | |
CN116698541A (zh) | 一种面向亚纳米孔微流控生物芯片的待测序蛋白质预处理方法 | |
Shimizu et al. | Biofouling control by phospholipid polymer on microchannel DNA separation | |
JP2006071433A (ja) | 電気泳動方法、電気泳動媒体及び被覆材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020067017353 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2560758 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006512578 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580011667.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005734482 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11587024 Country of ref document: US Ref document number: 2007178240 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005734482 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067017353 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 11587024 Country of ref document: US |