WO2005103569A1 - 加熱調理器及び加熱調理方法 - Google Patents

加熱調理器及び加熱調理方法 Download PDF

Info

Publication number
WO2005103569A1
WO2005103569A1 PCT/JP2005/007241 JP2005007241W WO2005103569A1 WO 2005103569 A1 WO2005103569 A1 WO 2005103569A1 JP 2005007241 W JP2005007241 W JP 2005007241W WO 2005103569 A1 WO2005103569 A1 WO 2005103569A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating chamber
heating
steam
temperature
fan
Prior art date
Application number
PCT/JP2005/007241
Other languages
English (en)
French (fr)
Inventor
Hideko Akashi
Ikuhiro Inada
Masato Matsuda
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05730528A priority Critical patent/EP1741986A4/en
Priority to US10/599,817 priority patent/US20070221070A1/en
Publication of WO2005103569A1 publication Critical patent/WO2005103569A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6473Aspects related to microwave heating combined with other heating techniques combined with convection heating
    • H05B6/6479Aspects related to microwave heating combined with other heating techniques combined with convection heating using steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/32Arrangements of ducts for hot gases, e.g. in or around baking ovens
    • F24C15/322Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation
    • F24C15/327Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation with air moisturising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a heating cooker and a heating cooking method for heating and cooking by supplying steam to a heating chamber.
  • heating cookers that can perform high-frequency heating and steam heating simultaneously or independently by adding a steam generation function to a microwave oven that can perform high-frequency heating have become widely used as mass-produced products.
  • Became When cooking by steam heating in this type of cooking device, ideally the steam density is close to 100% and the temperature is suitable for food (for example, 80 ° C for eggs, meat for meat) It is important to keep the temperature at 98 ° C or 100 ° C or more for steamed potatoes in order to ensure quick and reliable cooking.
  • Patent Document 1 discloses a steam heating cooker in which the ambient temperature in a heating chamber is set by adjusting the partial pressure of steam (volume ratio occupied by steam) in the heating chamber.
  • Patent Document 1 JP-A-63-254320
  • cooking the bowl crockfish 202 by oven heating that circulates high-temperature hot air in the heating chamber 201 requires a longer time than cooking by steam heating, and the finished state is not good.
  • the heating temperature is set at 150 ° C and the final temperature is about 96 ° C to 98 ° C when cooking (F)
  • the cooking is done by steam heating. (F) (see Fig. 7)
  • the central portion 205b is not solidified, resulting in insufficient heating.
  • heating is performed using air as a heat transfer medium, so that there is a limit to increasing the amount of heat transfer to the object 202 to be heated, and there is a large temperature difference between the surface and the inside of the object 202 to be heated. Is generated, and it is often difficult to quickly and uniformly heat the object to be heated 202.
  • the ambient temperature in the heating chamber is reduced to a temperature lower than 100 ° C, such as 90 ° C, by mixing outside air with steam at 100 ° C. Is set.
  • outside air is introduced through a hole (outside air communication part) provided in a part of the heating chamber, and diffusion with steam is only diffusion due to the rising action of the supplied steam. Had a small and difficult to obtain a sufficient diffusion state. Therefore, it has not been possible to quickly and accurately set the desired atmospheric temperature in the heating chamber, and it has been still difficult to stably and successfully carry out the above-mentioned cooking.
  • the present invention has been made in view of the above circumstances, and when heating an object to be heated using steam, the atmosphere temperature in the heating chamber is quickly and accurately set to a temperature suitable for cooking. It is an object of the present invention to provide a heating cooker and a heating cooking method capable of cooking an object to be heated by uniform steam heating.
  • a heating controller for supplying steam to a heating chamber for accommodating an object to be heated and heating the object to be heated comprising: steam supply means for supplying steam to the heating chamber; A fan for stirring the supplied steam; and a temperature control for controlling the ambient temperature in the heating chamber to a temperature lower than the temperature of the supplied steam by rotating the fan. And a cooking device.
  • the steam supplied into the heating chamber by the steam supply means is agitated by the rotation drive of the fan by the temperature control means, whereby the temperature of the atmosphere in the heating chamber is supplied.
  • the temperature can be controlled to be lower than the temperature of the steam. That is, it is possible to set the heating chamber to an arbitrary temperature suitable for cooking, and it is possible to quickly and reliably perform heating cooking such as egg cooking that requires accurate temperature setting.
  • the provision of the heating means for raising the ambient temperature in the heating chamber can reduce the dew condensation due to the generated steam, and also reduce the ambient temperature in the heating chamber. It can be maintained above the desired temperature.
  • the heating chamber is partitioned via a partition plate from a circulation fan chamber in which the fan is disposed, and the partition plate has a ventilation hole communicating the heating chamber and the circulation fan chamber.
  • the steam rising from the evaporating dish is sucked by the ventilation fan for the suction provided in the partition plate and circulated by the circulating fan, and is sent to the partition plate via the circulating fan chamber. It is blown out from the ventilation hole for wind into the heating chamber. The blown-out steam is stirred in the heating chamber, and is again sucked into the side of the circulation fan chamber for ventilation of the partition plate, thereby forming a circulation path between the heating chamber and the circulation fan chamber.
  • the outside air supply means is a blowing means for sucking outside air to generate a wind, an air supply ventilation passage for guiding the wind from the blowing means to the heating chamber, and an inside of the heating chamber.
  • the cooking device according to any one of (1) to (3), further comprising: an exhaust ventilation passage for discharging the air.
  • An air supply side shutter for limiting a flow rate is provided upstream of a connection position of the air supply ventilation passage with the heating chamber, the air supply side shutter being provided. Heating cooker.
  • the flow rate of the air supply ventilation path can be freely changed by providing the air supply side shutter on the upstream side of the flow path of the air supply ventilation path, and the outside air supply to the heating chamber is achieved.
  • the amount can be changed.
  • An exhaust-side shutter for limiting a flow rate is provided downstream of the connection position of the exhaust ventilation passage with the heating chamber, the exhaust-side shutter being provided (5) or (6). ).
  • An upper / lower dividing plate for vertically dividing the space in the heating chamber is provided, and a communicating portion connecting the upper and lower spaces is formed between the heating chamber and the upper / lower dividing plate.
  • the heating chamber is divided by the upper and lower partitioning plates, and steam is supplied to the lower space below, so that the steam supplied to the lower space rises, and the communication section Gather in the upper space through. This action promotes the agitation of the steam and makes the steam density in the space above the heating chamber uniform.
  • the heating and cooking method is characterized in that the steam supplied into the heating chamber is agitated to control the ambient temperature in the heating chamber to a temperature lower than the temperature of the supplied steam.
  • the steam supplied into the heating chamber is driven by rotating the fan.
  • the temperature of the atmosphere in the heating chamber can be controlled to be lower than the temperature of the supplied steam. That is, the heating chamber can be set to any temperature suitable for cooking, and heating cooking such as egg cooking that requires accurate temperature setting can be performed quickly and reliably.
  • the effect of lowering the ambient temperature in the heating chamber can be enhanced by increasing the rotation speed of the fan.
  • the rotation speed it becomes possible to control the ambient temperature in the heating chamber.
  • the effect of lowering the ambient temperature in the heating chamber is enhanced by shortening the rotation drive cycle of the fan.
  • the rotation drive cycle it becomes possible to control the ambient temperature in the heating chamber.
  • the temperature of the atmosphere in the heating chamber is set lower than the temperature of the supplied steam by stirring the steam supplied into the heating chamber.
  • the temperature of the atmosphere in the heating chamber can be quickly and accurately lowered to a temperature suitable for cooking the object to be heated.
  • FIG. 1 is a front view showing a state in which an open / close door of a cooking device according to the present invention is opened.
  • FIG. 2 is an explanatory diagram of a basic operation of the cooking device.
  • FIG. 3 is a block diagram of a control system of the cooking device.
  • FIG. 4 is a graph showing a time change of an ambient temperature in a heating chamber with respect to each rotation speed of a circulation fan.
  • FIG. 5 A chart showing a heating and cooking pattern of teacup steaming by “steam supply + heater heating”. It is.
  • FIG. 6 is an example in which the ambient temperature in a heating chamber is sequentially set to different temperatures by switching the rotation speed of a circulating fan, and is a chart in the case where the set temperature is gradually lowered as time passes.
  • FIG. 7 This is an example in which the ambient temperature in the heating chamber is sequentially set to different temperatures by switching the rotation speed of the circulating fan.
  • Fig. 7 is a chart diagram when an arbitrary set temperature is set according to the passage of time. It is.
  • FIG. 8 is a chart showing an example in which the ambient temperature in the heating chamber is set to a different temperature by switching the rotation driving cycle of the circulation fan.
  • FIG. 9 is an explanatory diagram showing a state of steam when a space in a heating chamber is divided into upper and lower portions by a tray.
  • FIG. 10 is a perspective view showing a modification of the tray.
  • FIG. 11 is a cross-sectional view illustrating a state in which the tray illustrated in FIG. 10 is accommodated in a heating chamber.
  • FIG. 12 is a plan view showing a schematic configuration of a supply / exhaust mechanism of the cooking device.
  • FIG. 13 is an explanatory diagram showing a case in which tea bowl steaming is regulated by oven heating in which high-temperature hot air is circulated in a conventional heating chamber.
  • Fig. 14 is a plan view of chawanmushi in which the surroundings of the bowl have been nested by conventional heating and cooking.
  • Fig. 15 is a plan view of steamed teacup in a state where the central portion is not solidified without being heated by conventional cooking.
  • FIG. 1 is a front view showing a state in which an opening / closing door of a heating cooker according to the present invention is opened
  • FIG. 2 is an explanatory diagram of a basic operation of the cooking device
  • FIG. 3 is a block diagram of a control system for controlling the cooking device. It is.
  • the heating cooker 100 is a heating cooker that supplies at least one of a high frequency wave (microwave) and steam S to a heating chamber 11 that accommodates an object to be heated, and heats the object to be heated.
  • a tray 22 which is detachably disposed on the upper side and serves as a partition plate for vertically dividing the heating chamber 11 into upper and lower portions.
  • the heating chamber 11 is formed inside a box-shaped main body case 10 having an open front, and a heated object outlet of the heating chamber 11 is provided on the front surface of the main body case 10.
  • Open and close An opening / closing door 21 with a translucent window 21a is provided.
  • the opening / closing door 21 can be opened and closed in the vertical direction by having its lower end hinged to the lower edge of the main body case 10.
  • a predetermined heat insulating space is secured between the wall surfaces of the heating chamber 11 and the main body case 10, and a heat insulating material is loaded in the space as needed.
  • the magnetron 13 is disposed, for example, in a space below the heating chamber 11, and a stirrer blade 33 (or a rotating antenna or the like) as a radio wave stirring means is provided at a position receiving the high frequency generated by the magnetron 13. Is provided. Then, by irradiating the rotating stirrer blades 33 with the high frequency from the magnetron 13, the high frequency is supplied into the caro heat chamber 11 while being stirred by the stirrer blades 33.
  • the magnetron 13 ⁇ stirrer blades 33 may be provided not only at the bottom of the heating chamber 11 but also at the upper surface or the side surface of the heating chamber 11.
  • a circulation fan chamber 25 containing a circulation fan 17 and its driving motor 23 is arranged, and a wall force on the rear surface of the heating chamber 11 is provided.
  • An inner wall surface 27 that defines the heating chamber 11 and the circulation fan chamber 25 is provided.
  • Each ventilation hole 29, 31 is formed as a number of punch holes.
  • the hot-air generator 14 includes a circulation fan 17 and a competition heater 19. That is, the circulation fan 17 is arranged at a substantially central position of the rectangular inner wall surface 27. In the circulation fan chamber 25, a rectangular annular competition heater 19 is provided so as to surround the circulation fan 17. Then, the ventilation holes 29 for intake formed in the rear side wall surface 27 are arranged on the front surface of the circulation fan 17, and the ventilation holes 31 for ventilation are arranged at a position along the rectangular annular competition heater 19. .
  • the steam supply unit 15 includes an evaporating dish 35 having a water recess 35a that generates steam S by heating, and an evaporating dish 35 provided below the evaporating dish 35.
  • An evaporating dish heating heater 37 for heating is provided.
  • the evaporating dish 35 is, for example, an elongated shape in which a concave portion is formed in a stainless steel plate material.
  • the evaporating dish 35 has a longitudinal direction along the back side wall surface 27 on the back side bottom surface of the heating chamber 11 opposite to the outlet of the object to be heated. It is arranged in the right direction.
  • the evaporating dish heating heater 37 has a configuration in which a heat block made of an aluminum die cast in which a heating element such as a force sheath heater not shown is embedded is brought into contact with the evaporating dish 35.
  • a plate heater or the like that can heat the evaporating dish 35 with radiant heat from a glass tube heater or a sheathed heater may be attached to the evaporating dish 35.
  • a water storage tank 53 for storing water to be supplied to the evaporating dish 35, a water pump 55, and a discharge port face the evaporating dish 35 in the main body case 10.
  • the water supply line 57 is located.
  • the water stored in the water storage tank 53 is appropriately supplied to the evaporating dish 35 via the water supply pipe 57 in a desired amount.
  • the water storage tank 53 is compactly buried in the side wall of the main body case 10 where the temperature is relatively low, so that the apparatus itself does not become large when assembled into the apparatus.
  • the water storage tank 53 is detachably attached by being pulled out from the side of the main body case 10 to the outside.
  • the water storage tank 53 may be configured to be disposed on the lower surface side which may be disposed on the upper surface side of the apparatus by performing heat insulation treatment.
  • the upper heater 16 is a plate heater, such as a my heater, for preheating the heating chamber 11 and heating for grill cooking, and is disposed above the heating chamber 11. Further, a sheathed heater may be used instead of the plate heater.
  • the thermistor 20 is provided on the wall surface of the heating chamber 11 and detects the temperature in the heating chamber 11. Further, on the wall surface of the heating chamber 11, an infrared sensor 18 capable of simultaneously measuring the temperature at a plurality of locations (for example, eight locations) is swingably disposed. The scanning operation in which the infrared sensor 18 is swung allows the temperature of a plurality of measurement points in the heating chamber 11 to be measured. The placement position can also be known.
  • a tray 22 as a partition plate for upper and lower divisions was formed on the side wall surface 11a, lib of the heating chamber 11. It is detachably supported by the locking portion 26.
  • the locking portions 26 are provided in a plurality of stages so as to support the tray 22 at a plurality of height positions of the heating chamber 11. By locking the tray 22 to the locking portion 26, the heating chamber 11 is divided into an upper space 11A and a lower space 11B.
  • FIG. 3 is a block diagram of a control system of the heating cooker 100.
  • This control system is mainly configured by a control unit 501 including, for example, a microphone processor.
  • the control unit 501 mainly exchanges signals with the input operation unit 507, the display panel 509, the high-frequency generation unit 12, the steam supply unit 15, the hot air generation unit 14, the upper heater 16, the shutter opening / closing drive unit 50, and the like. And control these parts.
  • the temperature control section 501 functions as a temperature control means for controlling an atmosphere temperature in the heating chamber 11 described later.
  • the input operation unit 507 is provided with various keys such as a start switch, a heating method switching switch, and an automatic cooking switch. And heat cook.
  • the high-frequency generator 12 is connected to a motor (not shown) for driving a magnetron 13 stirrer blade 33, and a cooling fan 32 for cooling the magnetron.
  • An evaporating dish heater 37 and a water pump 55 are connected to the steam supply section 15, and a circulation fan 17 and a competition heater 19 are connected to the hot air generation section 14.
  • the shutter opening / closing drive unit 50 is connected to an air supply-side shutter 51 and an exhaust-side shutter 52.
  • the food to be heated M is placed on a dish or the like, enters the heating chamber 11, and the opening / closing door 21 is closed.
  • Various settings such as a heating method, a heating time, and a heating temperature are performed by operating the input operation unit 507, and when the start button is pressed, the heating is automatically performed by the operation of the control unit 501.
  • the temperature of the steam S circulating in the heating chamber 11 can be set to a higher temperature. . Therefore, so-called superheated steam is obtained, and cooking with browning the surface of the object to be heated M is also possible.
  • the magnetron 13 is turned on, and the stirrer blades 33 are rotated to supply high-frequency waves into the heating chamber 11 while stirring uniformly, so that there is no unevenness and high-frequency heating cooking is performed. It can be carried out.
  • the heating cooker 100 uses the magnetron 13, the hot air generator 14, the steam supply unit 15, and the upper heater 16 individually or in combination to provide a heating method most suitable for cooking.
  • Heated object M can be heated.
  • the temperature in the heating chamber 11 during cooking is measured by the infrared sensor 18 and the thermistor 20, and based on the measurement result, the control unit 501 controls the magnetron 13, the upper heater 16, and the competition.
  • the cushion heater 19 and the like are appropriately controlled. If the infrared sensor 18 that can measure the temperature of a plurality of locations at the same time is used, the temperature of a plurality of measurement points in the heating chamber 11 can be quickly measured by swinging the infrared sensor 18 and scanning the inside of the heating chamber 11. Accurate measurement is possible.
  • the infrared sensor 18 measures the temperature by the thermistor 20 in a case where the temperature in the heating chamber 11 may not be measured correctly when the heating chamber 11 is filled with the steam S.
  • the heating cooker 100 of the present invention drives the circulation fan 17 to rotate so that the ambient temperature in the heating chamber 11 is lower than the temperature of the supplied steam.
  • V has a function to control the temperature!
  • Figure 4 shows the change over time of the ambient temperature in the heating chamber for each rotation speed of the circulation fan.
  • the heating fan 11 Tends to decrease as the rotation speed increases.
  • the temperature of the steam S generated from the evaporating dish 35 is about 100 ° C. because the water is boiled and taken out, but the steam S and the air in the heating chamber 11 are stirred.
  • the temperature of the generated gas mixture G is below 100 ° C.
  • the circulating fan 17 is rotated, gaps formed on the wall and upper and lower surfaces of the heating chamber 11 (seam of sheet metal, gaps between the door 21 and the like), holes (holes for detecting the temperature of the infrared sensor 18). , Etc.), a small amount of outside air is introduced into the heating chamber 11, and the introduced outside air is stirred with the steam S in the heating chamber 11, so that the temperature of the mixed gas G decreases. Therefore, by rotating and driving the circulation fan 17, it becomes possible to control the ambient temperature in the heating chamber 11 to a desired temperature optimal for cooking at 100 ° C. or less.
  • the heating time when heating at an ambient temperature close to 100 ° C., if the heating time is not set correctly, cooking will end up failing, especially when temperature management of egg dishes or the like is difficult.
  • the rotation of the circulation fan 17 is controlled and the ambient temperature in the heating chamber 11 is set in advance to a temperature suitable for adjustment (a temperature lower than 100 ° C.)
  • the cooking time may be longer than a specified time. If you continue cooking, cooking will not fail.
  • Fig. 5 shows the cooking pattern of tea bowl steaming by “steam supply + heater heating”.
  • the bowl containing the material to be heated M is placed on the tray 22 (partitioning plate for upper and lower divisions), put into the heating chamber 11, and the opening / closing door 21 is closed.
  • the user operates the input operation unit 507 to set the heating method, heating time, heating temperature, and the like, and starts cooking by pressing the start button.
  • the circulation fan 17 is rotated to circulate hot air through the heating chamber 11 for a predetermined time (for example, one minute) while generating heat in the competition heater 19 as a preheating step.
  • a predetermined time for example, one minute
  • Preheating can also be carried out by means of the heater 13.
  • the upper heater 16 is heated to maintain a predetermined time (for example, 30 seconds). Thereby, the inside of the heating chamber 11 is heated to a preheating temperature of 45 ° C to 50 ° C.
  • the evaporating dish heater 37 is heated to heat and evaporate the water in the water recess 35a of the evaporating dish 35 to generate steam S. Then, the temperature inside the heating chamber 11 is gradually increased by the steam S supplied to the heating chamber 11, and the temperature of the bowl, which is the object to be heated M, is gradually increased accordingly. Note that, in order to make the temperature distribution uniform by heating, the circulation fan 17 may be intermittently rotated according to the temperature rise in the heating chamber 11 during this heating period.
  • heating set temperature here is set to a temperature lower than the temperature of the generated steam 100 ° C, and the generated steam S is cooled to a temperature of 100 ° C or less by the stirring of the steam by the rotation of the circulation fan 17.
  • the circulation fan 17 is rotationally driven by the drive motor 23 to generate a circulation airflow in the heating chamber 11.
  • the steam S filled in the heating chamber 11 is sucked into the circulation fan chamber 25 from the airflow introduced into the heating chamber 11 through the ventilation holes 31 on the back side wall surface 27 and the ventilation holes 29 on the suction side.
  • the air flow actively agitates and heat exchange takes place, causing the temperature to drop.
  • the supply amount of the steam S is reduced, and the upper heater 16 is instead heated. This prevents the amount of steam from becoming excessive and causing condensation on the door and the wall of the heating chamber. Further, the inside of the heating chamber 11 is maintained at a predetermined set temperature by compensating for the decrease in the steam supply amount by the heat generated from the upper heater 16.
  • the power supply amount of the steam supply at this time is set by a load distribution or duty control so that the sum of the power supply amount to the upper heater 16 and the power supply amount does not exceed the range of the rated power. It should be noted that a competition heater 19 may be used or used in place of the upper heater 16.
  • the heating by the upper heater 16 and the heating by the steam S are used together to While the heating process is continued, the temperature inside the heating chamber 11 is maintained at a predetermined set temperature by rotating the circulation fan 17.
  • the freezing point temperature of the egg is approximately 78 ° C to 82 ° C
  • the cooking is terminated when the temperature of the tea bowl steaming 90 exceeds the freezing point region.
  • the time required to complete the cooking of the chawanmushi 90 is about 20 minutes.
  • the main heat transfer medium is steam S, so that the amount of energy transferred when the heat transfer medium is air as in the case of oven heating is smaller. growing. Therefore, the object to be heated M can be heated more quickly, and further, the heat exchange effect is good, so that the object to be heated M can be uniformly heated from the periphery to the inside thereof. In this way, it is possible to prevent insufficient coagulation due to the occurrence of nesting and insufficient heating, particularly in the heating cooking of chawanmushi 90.
  • the heating set temperature is set to a temperature lower than the temperature of the generated steam 100 ° C, the temperature of the atmosphere in the heating chamber 11 becomes longer for the egg to pass through the freezing point region of the egg. As a result, heat penetrates into the object to be heated M, so that a good-quality tea bowl steaming can be stably obtained. Also, even if the cooking time is exceeded with heating, the temperature will not be excessively high, so it will not be affected by this and cooking will not fail.
  • Fig. 6 and Fig. 7 are charts showing examples in which the ambient temperature in the heating chamber is sequentially set to different temperatures by switching the rotation speed of the circulating fan, and Fig. 6 is an example in which the set temperature is gradually lowered over time.
  • FIG. 7 shows an example in which the temperature is set arbitrarily according to the passage of time.
  • the ambient temperature in the heating chamber 11 when the rotation speed of the circulation fan 17 is controlled to increase or decrease in the order of na, then nc, and then nb, the ambient temperature in the heating chamber 11 also changes accordingly.
  • the temperature is raised and lowered. That is, by changing the rotation speed of the circulation fan 17, the ambient temperature in the heating chamber 11 can be reduced to an arbitrary temperature.
  • the atmospheric temperature in the heating chamber 11 can be freely changed by controlling the rotation speed of the circulation fan 17 to increase or decrease. Can be quickly and accurately adjusted to the desired heating chamber temperature below 100 ° C
  • FIG. 8 is a chart showing an example in which the ambient temperature in the heating chamber is set to a different temperature by switching the rotation driving cycle of the circulation fan.
  • the rotation drive cycle means the time until the next ON time when the ON / OFF of the rotation of the circulation fan is duty-controlled.
  • the ambient temperature in the heating chamber will also rise accordingly. -Cool down. That is, by shortening the rotation driving cycle of the circulation fan 17, the effect of lowering the ambient temperature in the heating chamber 11 is enhanced. According to this method as well, the atmosphere temperature in the heating chamber 11 can be freely changed, as described above, and the desired heating room temperature of 100 ° C. or less can be quickly and accurately adjusted.
  • the vapor density means the occupied density of water vapor in a gas mixture of water vapor generated from the evaporation H35 and air.
  • the amount of water vapor present per unit volume increases as a result, the temperature of the gas mixture G approaches 100 ° C.
  • the vapor density decreases, the amount of water vapor per unit volume decreases, and the temperature of the mixed gas G decreases.
  • This steam density can be arbitrarily controlled by adjusting the rotation speed of the circulation fan 17.
  • the mixed gas G in which the steam S is mixed has a lower specific gravity than the outside air, and thus tends to move upward in the heating chamber 11. Therefore, the mixed gas G having a uniform vapor density generated in the lower space 11B of the heating chamber 11 flows between the edge of the tray 22 and the inner wall of the heating chamber 11 (sidewall surfaces 11a, lib and the inner wall surface 27). Gather in the upper space 11A through the gap. Therefore, in the upper space 11A above the tray 22, the mixed gas G having a predetermined temperature lower than 100 ° C. is collected by agitation, and substantially the whole of the space becomes a predetermined constant temperature atmosphere.
  • the lower space 11B mainly functions as a space for stirring the steam S
  • the upper space 11A is a conditioning space in which a uniform temperature is maintained.
  • the mixed gas G having a uniform vapor density in the lower space 11B is uniformly supplied to the upper space 11A along the gap between the tray 22 and the inner wall of the heating chamber.
  • the temperature in A is a uniform predetermined temperature regardless of the location.
  • the steam S is supplied into the heating chamber 11 while the circulation fan 17 blows the inside of the heating chamber 11, so that the heating chamber 11
  • the supplied steam S is actively stirred, and the inside of the heating chamber 11 can be set to a desired atmospheric temperature. That is, a mixed gas G in which the steam S is sufficiently diffused into the air in the heating chamber 11 is generated, and the mixed gas G becomes lower than the temperature of the supplied steam S. Therefore, the inside of the heating chamber 11 can be set to any temperature suitable for cooking, and heating cooking such as egg cooking that requires accurate temperature setting can be performed quickly and reliably.
  • a tray 22 that divides the heating chamber 11 into upper and lower portions is provided, and the steam S is supplied to the lower space 11B below the tray 22, so that the supplied steam S is supplied from the lower space 11B.
  • the steam S from the evaporating dish 35 provided in the heating chamber 11 is supplied. Is supplied into the heating chamber 11, the configuration can be simplified as compared with the case where a boiler device is provided outside the heating chamber 11, and dirt such as scale attached to the evaporating dish 35 can be easily wiped off. And maintain a sanitary environment easily.
  • the above-described tray 22 may have the following configuration!
  • FIG. 10 is a perspective view showing a modification of the tray
  • FIG. 11 is a cross-sectional view showing a state where the tray shown in FIG. 10 is housed in the heating chamber.
  • a plurality of opening holes 40b penetrating vertically are formed in an edge portion 40a on the back side and the front side.
  • the opening 40b need not be formed on both the back side and the near side as long as it is provided at a position facing the steam supply unit 15, but by providing the opening 40b on both sides, the direction of the tray 40 can be improved. It can be attached to the heating chamber 11 without being aware of the temperature, improving handling and performance.
  • the mixed gas G generated by stirring the steam and the outside air in the lower space 11B of the heating chamber 11 is reliably supplied to the upper space 11A through the opening 40b of the tray 40. Therefore, the object to be heated M placed on the tray 40 may be heated in an atmosphere in which the entire object to be heated M is enveloped in the vapor S without locally strongly blowing the mixed gas G to the object to be heated M. It will be possible. Further, the rising steam S flows through the upper and lower spaces due to the opening holes 40b of the tray 40, and the stagnation of the steam S in the upper space 11A is eliminated. In addition to the provision of the opening hole 40b in the tray 40, a concave portion may be formed in the wall surface of the heating chamber 11, and a flow may be formed from the concave portion through the upper and lower spaces.
  • the heating cooker 200 of the present embodiment is provided with a supply / exhaust mechanism that adds the configuration of the heating cooker 100 of the above-described first embodiment and actively introduces outside air and actively discharges air in the heating chamber. Have.
  • FIG. 12 is a plan view showing a schematic configuration of a supply / exhaust mechanism of the cooking device.
  • the heating cooker 200 of the present embodiment includes an air supply ventilation passage 81 for guiding outside air to the heating chamber 11, an exhaust ventilation passage 85 for exhausting the air in the heating chamber 11, It is equipped with an intake side shutter 51, an exhaust side shutter 52, and a shutter opening / closing drive unit 50 (see FIG. 3).
  • the configuration is provided with an exhaust unit that exhausts the steam supplied to the caro heat chamber 11 from the heating chamber 11. Yes.
  • the air supply port 82 connected to the air supply ventilation passage 81 is located at the lower side of the side wall surface 11a on the left side of the heating chamber 11 close to the opening / closing door 21 shown in FIG. And is open to the lower space 11B of the heating chamber 11. Further, an exhaust port 86 is provided at a lower end of the right side wall surface lib of the heating chamber 11 on the far side of the heating chamber 11 shown in FIG. 1 and opens to the lower space 11B of the heating chamber 11.
  • the air supply port 82 is provided between the outer surface of the main body case 10 and the side wall surface 11a of the heating chamber 11, and between the outer surface of the main body case 10 and the inner side wall surface 27.
  • an air supply-side shirt 51 that can be freely opened and closed is provided in the middle of the air supply ventilation passage 81. Then, the air from the cooling fan 32 for cooling the magnetron provided integrally with the magnetron 13 is blown into the heating chamber 11 from the air supply port 82 via the air supply ventilation passage 81 by switching the air supply side shutter 51. I can put it out.
  • the cooling fan 32 may be used by separately providing a blower fan 60 as shown in the block diagram of Fig. 3 which is not limited to the fan for magnetron cooling. If the outside air is directly supplied to the heating chamber 11 by the blower fan 60, the temperature in the heating chamber 11 may be rapidly cooled. The air heated by cooling the magnetron 13 with the heater is supplied to the heating chamber 11.
  • the exhaust port 86 communicates with an exhaust ventilation passage 85 secured between the outer surface of the main body case 10 and the side wall surface l ib of the heating chamber 11, and in the middle of the exhaust ventilation passage 85.
  • An openable / closable exhaust side shirt 52 is provided.
  • the exhaust ventilation passage 85 communicates with the outside through a discharge port 87. Then, by opening the exhaust-side shutter 52, the air in the heating chamber 11 can be exhausted to the outside together with the supply of air into the heating chamber 11!
  • the air supply side shutters 51 and the exhaust side shutters 52 are formed of, for example, dampers that are constantly urged in one direction by springs or the like, and the dampers are oscillated by electromagnetic force or the like, and the air supply ventilation passages 81 and The exhaust ventilation passage 85 can be selectively held in an open or shielded state.
  • the damper may be configured to be in the closed state and the open state by the wind pressure, and in this case, the shutter mechanism is further simplified.
  • Supply side shirt 51 and exhaust side shirt 52 In order to prevent the steam in the heating chamber 11 from suddenly leaking to the outside, the heating chamber 11 is closed except when air supply and exhaust are required.
  • the outside air sucked from the outside by the cooling fan 32 is blown into the heating chamber 11 from the air supply port 82 through the air supply ventilation passage 81 and the air supply side shutter 51.
  • the air in the heating chamber 11 is exhausted from the exhaust port 86 to the outside through the exhaust ventilation passage 85, the exhaust side shutter 52, and the discharge port 87.
  • the air in the heating chamber 11 flows on a substantially diagonal line of the heating chamber 11, so that the air is efficiently stirred and ventilated.
  • this heating cooker 200 while steam is supplied into the heating chamber 11, the air from the blowing means is introduced into the heating chamber 11 through the air supply ventilation passage 81, and the exhaust ventilation passage is provided. Since the air in the heating chamber 11 is discharged from 85, the steam supplied into the heating chamber 11 is positively stirred by the outside air, so that the inside of the heating chamber 11 can have a desired steam density. That is, a mixed gas G in which the steam is sufficiently diffused into the air in the heating chamber 11 is generated, and the temperature of the mixed gas G is lower than the temperature of the supplied steam. Therefore, even in the heating cooker 200 of the present embodiment, it is possible to more efficiently set the heating chamber 11 to an arbitrary temperature suitable for cooking at 100 ° C. or lower, and it is necessary to set an accurate temperature. Heating such as egg cooking can be performed quickly and reliably.
  • the air supply side shutter 51 and the exhaust side shutter 52 are not limited to those maintained in an open state or a shielded state, and the degree of opening of the air supply ventilation path 81 and the exhaust ventilation path 85 is arbitrary. It may be one that can be set to. In this case, fine temperature control can be realized, and the degree of freedom in cooking is further improved.
  • the ambient temperature in the heating chamber is reduced to a temperature lower than the temperature of the supplied steam.
  • the temperature in the heating chamber can be quickly and accurately lowered to a temperature suitable for cooking the object to be heated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)
  • Cookers (AREA)

Abstract

 本発明の課題は、蒸気を用いて被加熱物を加熱する場合に、加熱室内の雰囲気温度を調理に適した温度に迅速かつ正確に設定して、被加熱物を均一な蒸気加熱で調理することである。  被加熱物を収容する加熱室(11)に蒸気を供給して該被加熱物を加熱する加熱調理器であって、加熱室(11)に蒸気を供給する蒸気供給手段と、加熱室(11)内に供給された蒸気を撹拌するファン(17)と、ファン(17)を回転駆動することにより加熱室(11)内の雰囲気温度を、供給される蒸気の温度よりも低い温度に制御する温度制御手段とを備えた。

Description

明 細 書
加熱調理器及び加熱調理方法
技術分野
[0001] 本発明は、加熱室に蒸気を供給して加熱調理する加熱調理器及び加熱調理方法 に関する。
背景技術
[0002] 近年、高周波加熱が行える電子レンジに蒸気発生機能を付加することで、高周波 加熱と蒸気加熱とを同時あるいは独立して実施可能にした加熱調理器が量産品とし て広く普及されるようになった。この種の加熱調理器で蒸気加熱による調理を行う場 合、理想的には蒸気密度が 100%に近い状態で、かつ、食品に適した温度 (例えば 卵の場合は 80°C、肉まんの場合は 98°C、蒸かし芋の場合は 100°C以上)に保つこと が調理を迅速かつ確実に成功させる上で重要となる。
[0003] 特に卵料理は、正確な温度管理が調理の成功を左右する重要な要素となり、その ために、加熱調理を行う際の加熱室内の温度は、所望の温度となるように制御方法 が工夫されている。例えば、加熱室内の蒸気分圧 (蒸気の占める体積比率)を調整 することで加熱室内の雰囲気温度を設定する蒸気加熱調理器が特許文献 1に開示 されている。
特許文献 1:特開昭 63— 254320号公報
発明の開示
発明が解決しょうとする課題
[0004] ところで、従前よりオーブン加熱が行える電子レンジが存在する力 この種のオーブ ンレンジでは、以下に示すように蒸気加熱を行う場合と比較すると、調理に不具合が 生じる場合がある。
図 13に示すように、加熱室 201内に高温の熱風を循環させるオーブン加熱により 茶碗蒸し 202を調理する場合には、蒸気加熱により調理する場合より長い時間を要 し、また、仕上がり状態も思わしくない。つまり、 150°Cに加熱温度を設定した状態で 仕上がり温度を 96°C〜98°C程度にして調理したとき (F )は、蒸気加熱により調理し たとき (F ) (図 7参照)と比較して約 2倍もの時間を要し、し力も、その仕上がり状態は
0
、 Fの場合では、図 14に示すように器 206の周辺部 205aが巣立ち状態となってしま
1
う。一方、仕上がり温度を 70°C〜75°C程度と低く設定して調理したとき (F )は、図 15
2 に示すように、中心部 205bが固まっていない状態となり、加熱不足となる。このように 、オーブン加熱では、空気を伝熱媒体にして加熱を行うため、被加熱物 202への伝 熱量を大きくすることに限りがあり、被加熱物 202の表面と内部とでは大きな温度差 が発生し、被加熱物 202をいち早く均一に加熱することが困難な場合が多い。
[0005] 従って、特に温度管理が厳しくなる卵調理等においては、蒸気加熱機能の有無に より、出来映えと調理時間に大きな差が生じることになる。そして、蒸気加熱機能とし ても、加熱室内の雰囲気温度を、発生する蒸気の温度 100°Cから、所定温度だけ下 げることが求められる。
[0006] また、上記特許文献 1の上記加熱調理器においては、加熱室内の雰囲気温度を、 外気と 100°Cの蒸気とを混合することで、 90°C等の 100°Cより低い温度に設定してい る。しかし、外気の導入は加熱室の一部に設けられた孔 (外気連通部)から行い、蒸 気との拡散は、供給された蒸気の上昇作用に伴う拡散だけなので、その拡散効果は 実際には小さぐ十分な拡散状態が得にくい構成であった。従って、加熱室内を所望 の雰囲気温度に迅速かつ正確に設定するまでには至っておらず、依然として上記の 調理を安定して成功させることは困難であった。
[0007] 本発明は、上記状況に鑑みてなされたもので、蒸気を用いて被加熱物を加熱する 場合に、加熱室内の雰囲気温度を調理に適した温度に迅速かつ正確に設定して、 被加熱物を均一な蒸気加熱で調理可能とする加熱調理器及び加熱調理方法を提 供することを目的としている。
課題を解決するための手段
[0008] 上記目的は下記構成により達成される。
(1) 被加熱物を収容する加熱室に蒸気を供給して該被加熱物を加熱する加熱調 理器であって、前記加熱室に蒸気を供給する蒸気供給手段と、前記加熱室内に供 給された蒸気を撹拌するファンと、前記ファンを回転駆動することにより前記加熱室 内の雰囲気温度を前記供給される蒸気の温度よりも低い温度に制御する温度制御 手段とを備えたことを特徴とする加熱調理器。
[0009] この加熱調理器によれば、蒸気供給手段によって加熱室内に供給された蒸気を、 温度制御手段によるファンの回転駆動によって撹拌し、これにより、加熱室内の雰囲 気温度を、供給される蒸気の温度よりも低い温度に制御することができる。つまり、加 熱室を調理に適した任意の温度に設定することが可能となり、正確な温度設定を必 要とする卵調理等の加熱調理を迅速かつ確実に行うことが可能となる。
[0010] (2) 前記加熱室内の雰囲気温度を昇温させる加熱手段を備えたことを特徴とする( 1)項記載の加熱調理器。
[0011] この加熱調理器によれば、加熱室内の雰囲気温度を昇温させる加熱手段を備えた ことにより、発生した蒸気による結露を低減させることができ、また、加熱室内の雰囲 気温度を所望の温度以上に維持できる。
[0012] (3) 前記加熱室が、仕切板を介して前記ファンの配設された循環ファン室と仕切ら れており、前記仕切板に、加熱室と循環ファン室とを連通する通風孔が形成されてい ることを特徴とする(1)又は (2)記載の加熱調理器。
[0013] この加熱調理器によれば、蒸発皿から上昇する蒸気が、仕切板に設けた吸気用の 通風孔力 循環ファンにより吸引され、循環ファン室を経由して、仕切板に設けた送 風用の通風孔から加熱室内へ向けて吹き出される。吹き出された蒸気は、加熱室内 において撹拌されて、再度、仕切板の吸気用の通風孔力 循環ファン室側に吸引さ れ、これにより加熱室内と循環ファン室に循環経路が形成される。
[0014] (4) 前記加熱室に外気を供給する外気供給手段が接続されたことを特徴とする(1) 〜(3) ヽずれか 1項記載の加熱調理器。
[0015] この加熱調理器によれば、外気供給手段が加熱室に接続されることにより、加熱室 内に外気が積極的に供給されて加熱室内の雰囲気温度を一層早く下げることができ る。
[0016] (5) 前記外気供給手段が、外気を吸引して風を生成する送風手段と、前記送風手 段からの風を前記加熱室に導く給気用通風路と、前記加熱室の中の空気を排出す る排気用通風路と、を備えたことを特徴とする(1)〜(3)の ヽずれか 1項記載の加熱 調理器。 [0017] この加熱調理器によれば、加熱室内に蒸気が供給される一方、加熱室内に送風手 段からの風を給気用通風路を通じて導入するとともに、排気用通風路から加熱室内 の空気を排出することにより、加熱室内に供給された蒸気が外気とともに撹拌されて 、加熱室内を所望蒸気密度にすることができる。
[0018] (6) 前記給気用通風路の前記加熱室との接続位置より流路上流側に、通過流量を 制限するための給気側シャツタを設けたことを特徴とする(5)記載の加熱調理器。
[0019] この加熱調理器によれば、給気用通風路の流路上流側に給気側シャツタを設ける ことにより、給気用通風路の流量を自在に変更でき、加熱室への外気供給量を変更 できる。
[0020] (7) 前記排気用通風路の前記加熱室との接続位置より流路下流側に、通過流量を 制限するための排気側シャツタを設けたことを特徴とする(5)又は(6)記載の加熱調 理器。
[0021] この加熱調理器によれば、排気用通風路の流路下流側に排気側シャツタを設ける ことにより、排気用通風路の流量を自在に変更でき、加熱室力もの排気量を変更でき る。
[0022] (8) 前記加熱室内の空間を上下に分割する上下分割用仕切板を備え、前記加熱 室と前記上下分割用仕切板との間には前記上下の空間を接続する連通部が形成さ れ、前記蒸気供給手段が前記加熱室の下側空間から蒸気を供給することを特徴とす る(1)〜(7)のいずれか 1項記載の加熱調理器。
[0023] この加熱調理器によれば、加熱室を上下分割用仕切板により分割し、下方の下側 空間に蒸気を供給することで、下側空間に供給された蒸気が上昇し、連通部を通じ て上側空間に集まる。この作用により蒸気の撹拌が促進され、加熱室の上側空間に おける蒸気密度が均一化される。
[0024] (9) 被加熱物を収容する加熱室に蒸気を供給して該被加熱物を加熱する加熱調 理方法であって、前記加熱室に蒸気を供給しつつ被加熱物を加熱する一方、前記 加熱室内に供給された蒸気を撹拌して、前記加熱室内の雰囲気温度を前記供給さ れる蒸気の温度よりも低い温度に制御することを特徴とする加熱調理方法。
[0025] この加熱調理方法によれば、加熱室内に供給された蒸気を、ファンを回転駆動さ せることで撹拌し、これにより、加熱室内の雰囲気温度を、供給される蒸気の温度より も低い温度に制御することができる。つまり、加熱室を調理に適した任意の温度に設 定することが可能となり、正確な温度設定を必要とする卵調理等の加熱調理を迅速 かつ確実に行うことが可能となる。
[0026] (10) 前記蒸気の撹拌をファンの回転駆動により行い、前記加熱室内の雰囲気温 度を前記ファンの回転速度を増減制御して変更することを特徴とする(9)記載の加 熱調方法。
[0027] この加熱調理方法によれば、ファンの回転速度を増やすことにより、加熱室内の雰 囲気温度を低下させる効果が高められる。もって、回転速度を制御することで、加熱 室内の雰囲気温度を制御することが可能となる。
[0028] (11) 前記蒸気の撹拌をファンの回転駆動により行い、前記加熱室内の雰囲気温 度を前記ファンの回転駆動周期を制御して変更することを特徴とする(9)又は(11) 記載の加熱調方法。
[0029] この加熱調理方法によれば、ファンの回転駆動周期を短くすることにより、加熱室内 の雰囲気温度を低下させる効果が高められる。もって、回転駆動周期を制御すること で、加熱室内の雰囲気温度を制御することが可能となる。
発明の効果
[0030] 本発明の加熱調理器及び加熱調理方法によれば、加熱室内に供給した蒸気を撹 拌することにより、加熱室内の雰囲気温度を供給される蒸気の温度よりも低い温度に 設定することができ、加熱室内の雰囲気温度を被加熱物の調理に適した温度にまで 迅速かつ正確に降温させることができる。
図面の簡単な説明
[0031] [図 1]本発明に係る加熱調理器の開閉扉を開けた状態を示す正面図である。
[図 2]加熱調理器の基本動作説明図である。
[図 3]加熱調理器の制御系のブロック図である。
[図 4]循環ファンの各回転速度に対する加熱室内の雰囲気温度の時間変化を示すグ ラフである。
[図 5]「蒸気供給 +ヒータ加熱」による茶碗蒸しの加熱調理パターンを示すチャート図 である。
[図 6]循環ファンの回転速度を切り替えることで、加熱室内の雰囲気温度を順次異な る温度に設定した例であり、時間経過とともに設定温度を順次低くした場合のチヤ一 ト図である。
[図 7]循環ファンの回転速度を切り替えることで、加熱室内の雰囲気温度を順次異な る温度に設定した例であり、図 7は時間経過によらな 、任意の設定温度とした場合の チャート図である。
[図 8]循環ファンの回転駆動周期を切り替えることで、加熱室内の雰囲気温度を異な る温度に設定した例を示すチャートである。
[図 9]加熱室内の空間をトレイによって上下に 2分割した場合の蒸気の状態を示す説 明図である。
[図 10]トレイの変形例を示す斜視図である。
[図 11]図 10に示すトレイが加熱室に収容された状態を表す横断面図である。
[図 12]加熱調理器の給排気機構の概略構成を示す平面図である。
[図 13]従来の加熱室内に高温の熱風を循環させるオーブン加熱により茶碗蒸しを調 理する場合を示す説明図である。
[図 14]従来の加熱調理によって器の周辺が巣立ち状態となった茶碗蒸しの平面図で ある。
[図 15]従来の加熱調理によって中心部が加熱されずに固まっていない状態の茶碗 蒸しの平面図である。
符号の説明
10 本体ケース
11A 上側空間
11B 下側空間
11a, l ib 側壁面
11 加熱室
14 熱風発生部
15 蒸気供給部 上部加熱ヒータ (加熱手段) 循環ファン
コンペクシヨンヒータ (加熱手段) 卜レイ
駆動モータ
循環ファン室
係止部
奥側壁面
, 31 各通風孔
吸気用通風孔
送風用通風孔
マグネトロン冷却用ファン 冷却ファン
スタラー羽根
a 水溜凹所
蒸発皿
蒸発皿加熱ヒータ
シャツタ開閉駆動部
給気側シャツタ
排気側シャツタ
貯水タンク
送水ポンプ
給水管路
送風ファン
給気用通風路
給 5¾口
排気用通風路
排気口 100 加熱調理器
200 加熱調理器
501 制御部
507 入力操作部
509 表示パネル
G 混合気体
M 被加熱物
S 蒸気
発明を実施するための最良の形態
[0033] 以下、本発明の加熱調理器の好適な実施の形態について図面を参照して詳細に 説明する。
図 1は本発明に係る加熱調理器の開閉扉を開けた状態を示す正面図、図 2は加熱 調理器の基本動作説明図、図 3は加熱調理器を制御するための制御系のブロック図 である。
[0034] この加熱調理器 100は、被加熱物を収容する加熱室 11に、高周波(マイクロ波)と 蒸気 Sとの少なくともいずれかを供給して被加熱物を加熱処理する加熱調理器であ つて、高周波を発生する高周波発生部 12としてのマグネトロン 13と、加熱室 11内で 蒸気 Sを発生する蒸気供給部 15と、加熱室 11の上方に配置され加熱室を加熱する 加熱手段としての上部加熱ヒータ 16と、加熱室 11内の空気を撹拌 *循環させる循環 ファン 17と、加熱室 11内を循環する空気を加熱する他の加熱手段としてのコンベタ シヨンヒータ 19と、加熱室 11の壁面に設けた検出用孔を通じて加熱室 11内の温度を 測定する温度センサである赤外線センサ 18と、加熱室 11の壁面に配置されて被カロ 熱物 Mの温度を測定するサーミスタ 20と、加熱室 11の底面力 所定間隔をあけた上 方に着脱自在に配置され、加熱室 11を上下に分割する上下分割用仕切板としての トレイ 22とを備えている。
[0035] 図 1及び図 2に示すように、加熱室 11は、前面開放の箱形の本体ケース 10内部に 形成されており、本体ケース 10の前面に、加熱室 11の被加熱物取出口を開閉する 透光窓 21a付きの開閉扉 21が設けられている。開閉扉 21は、下端が本体ケース 10 の下縁にヒンジ結合されることで、上下方向に開閉可能となっている。加熱室 11と本 体ケース 10との壁面間には所定の断熱空間が確保されており、必要に応じてその空 間には断熱材が装填されて 、る。
[0036] マグネトロン 13は、例えば加熱室 11の下側の空間に配置されており、マグネトロン 13より発生した高周波を受ける位置には電波撹拌手段としてのスタラー羽根 33 (或 いは回転アンテナ等)が設けられている。そして、マグネトロン 13からの高周波を、回 転するスタラー羽根 33に照射することにより、該スタラー羽根 33によって高周波をカロ 熱室 11内に撹拌しながら供給するようになっている。なお、マグネトロン 13ゃスタラー 羽根 33は、加熱室 11の底部に限らず、加熱室 11の上面や側面側に設けることもで きる。
[0037] 図 2に示すように、加熱室 11の背後の空間には、循環ファン 17及びその駆動モー タ 23を収容した循環ファン室 25が配置されており、加熱室 11の後面の壁力 加熱室 11と循環ファン室 25とを画成する奥側壁面 27となっている。奥側壁面 27には、加熱 室 11側力も循環ファン室 25側への吸気を行う吸気用通風孔 29と、循環ファン室 25 側から加熱室 11側への送風を行う送風用通風孔 31とが形成エリアを区別して設けら れている。各通風孔 29, 31は、多数のパンチ孔として形成されている。
[0038] 熱風発生部 14は、循環ファン 17とコンペクシヨンヒータ 19とによって構成されてい る。即ち、循環ファン 17は、矩形の奥側壁面 27の略中央位置に配置されている。循 環ファン室 25内には、この循環ファン 17を取り囲むようにして矩形環状のコンペクシ ヨンヒータ 19が設けられている。そして、奥側壁面 27に形成された吸気用通風孔 29 は循環ファン 17の前面に配置され、送風用通風孔 31は矩形環状のコンペクシヨンヒ ータ 19に沿った位置に配置されて 、る。
[0039] 循環ファン 17を回転駆動すると、発生する風は循環ファン 17の前面側力も駆動モ ータ 23のある後面側に流れる。すると、加熱室 11内の空気力 吸気用通風孔 29を 通して循環ファン 17のあるコンペクシヨンヒータ 19の中心位置に吸い込まれ、放射状 に拡散し、コンペクシヨンヒータ 19の近傍を通過して加熱され、送風用通風孔 31から 加熱室 11内に送り出される。従って、この流れにより、加熱室 11内の空気力 撹拌さ れつつ循環ファン室 25を経由して循環されるようになって 、る。
[0040] 図 2に示すように、蒸気供給部 15は、加熱により蒸気 Sを発生する水溜凹所 35aを 有した蒸発皿 35と、蒸発皿 35の下側に配設され、蒸発皿 35を加熱する蒸発皿加熱 ヒータ 37とを有して構成している。蒸発皿 35は、例えばステンレス製の板材に凹部を 形成した細長形状のもので、加熱室 11の被加熱物取出口とは反対側の奥側底面に 、長手方向を奥側壁面 27に沿わせた向きで配設されている。なお、蒸発皿加熱ヒー タ 37としては、図示は省略する力 シーズヒータ等の発熱体を埋設したアルミダイ力 スト製のヒートブロックを蒸発皿 35に接触させた構成としている。この他にも、ガラス管 ヒータ、シーズヒータによる輻射熱で蒸発皿 35を加熱してもよぐプレートヒータ等を 蒸発皿 35に貼り付けた構成としてもよい。
[0041] また、図 1に示すように、本体ケース 10内には、蒸発皿 35に供給する水を貯留する ための貯水タンク 53、送水ポンプ 55、及び吐出口が蒸発皿 35に対向して配置され た給水管路 57とが配設されている。貯水タンク 53に貯留された水は、給水管路 57を 介して蒸発皿 35に所望の水量で適宜供給される。なお、貯水タンク 53は、装置に組 み込んだときに装置自体が大型化しないように、本体ケース 10の比較的高温になり にくい側壁部にコンパクトに埋設してある。この貯水タンク 53は、本体ケース 10の側 面側から外側に引き出すことで着脱自在に取り付けられている。なお、貯水タンク 53 は、この他にも、断熱処理を施して装置の上面側に配設してもよぐ下面側に配設す る構成としてちよい。
[0042] 上部加熱ヒータ 16は、グリル調理のための加熱や加熱室 11を予熱する例えばマイ 力ヒータ等のプレートヒータであって、加熱室 11の上方に配置される。また、プレート ヒータの代わりにシーズヒータで構成することもできる。サーミスタ 20は、加熱室 11の 壁面に設けられており、加熱室 11内の温度を検出するようになっている。加熱室 11 の壁面には更に、複数箇所 (例えば 8箇所)の温度を同時に測定可能な赤外線セン サ 18が揺動自在に配置されている。赤外線センサ 18を揺動させるスキャン動作によ り、加熱室 11内の複数の測定点の温度を測定することができ、さらに、測定点の温度 を経時的に監視することで被加熱物 Mの載置位置を知ることもできる。
[0043] 上下分割用仕切板としてのトレイ 22は、加熱室 11の側壁面 11a, l ibに形成した 係止部 26に着脱自在に支持される。係止部 26は、加熱室 11の複数の高さ位置でト レイ 22を支持可能に複数段設けられている。係止部 26にトレイ 22を係止させること により、加熱室 11は上側空間 11Aと下側空間 11Bとに 2分割される。
[0044] 図 3は、加熱調理器 100の制御系のブロック図であり、この制御系は、例えばマイク 口プロセッサを備えてなる制御部 501を中心に構成されている。制御部 501は、主に 入力操作部 507、表示パネル 509、高周波発生部 12、蒸気供給部 15、熱風発生部 14、上部加熱ヒータ 16、シャツタ開閉駆動部 50等との間で信号の授受を行い、これ ら各部を制御する。そして、温度制御部 501は後述する加熱室 11内の雰囲気温度 を制御する温度制御手段として機能する。
[0045] 入力操作部 507には、スタートスィッチ、加熱方法の切換スィッチ、自動調理スイツ チ等の各種キーが備えられており、表示パネル 509で確認しながら、加熱内容に応 じて適宜キー操作して加熱調理を行う。
[0046] 高周波発生部 12には、マグネトロン 13ゃスタラー羽根 33を駆動する図示しないモ ータ等が接続されており、さら〖こは、マグネトロン冷却用の冷却ファン 32も接続されて いる。蒸気供給部 15には、蒸発皿加熱ヒータ 37や送水ポンプ 55が接続され、熱風 発生部 14には、循環ファン 17やコンペクシヨンヒータ 19が接続されている。また、シ ャッタ開閉駆動部 50には、給気側シャツタ 51及び排気側シャツタ 52が接続されてい る。
[0047] 次に、加熱調理器 100の基本動作について説明する。
図 2に示すように、先ず、被加熱物 Mである食品を皿等に載せて加熱室 11内に入 れ、開閉扉 21を閉じる。入力操作部 507を操作して加熱方法、加熱時間、加熱温度 等の諸設定を行い、スタートボタンを押下すると、制御部 501の動作によって自動的 に加熱調理が行われる。
[0048] 例えば、「蒸気発生 +循環ファン ON」のモードが選択された場合には、蒸発皿カロ 熱ヒータ 37が ONされることで、蒸発皿 35の水が加熱され蒸気 Sが発生する。蒸発皿 35から上昇する蒸気 Sは、奥側壁面 27の略中央部に設けた吸気用通風孔 29から 循環ファン 17の中心部に吸引され、循環ファン室 25を経由して、奥側壁面 27の周 部に設けた送風用通風孔 31から加熱室 11内へ向けて吹き出される。吹き出された 蒸気は、加熱室 11内において撹拌されて、再度、奥側壁面 27の略中央部の吸気用 通風孔 29から循環ファン室 25側に吸引される。これにより加熱室 11内と循環ファン 室 25に循環経路が形成される。そして、図中白抜き矢印で示すように、蒸気 Sが加 熱室 11を循環することによって、被加熱物 Mに蒸気が吹き付けられる。
[0049] この際、コンペクシヨンヒータ 19を ONにすることによって、加熱室 11内の蒸気 Sを 加熱できるので、加熱室 11内を循環する蒸気 Sの温度をさらに高温に設定すること ができる。従って、いわゆる過熱蒸気が得られて、被加熱物 Mの表面に焦げ目を付 けた加熱調理も可能となる。また、高周波加熱を行う場合は、マグネトロン 13を ONに し、スタラー羽根 33を回転することで、高周波を加熱室 11内に均一に撹拌しながら 供給して、ムラのな!、高周波加熱調理を行うことができる。
[0050] 上記したように、加熱調理器 100は、マグネトロン 13、熱風発生部 14、蒸気供給部 15、上部加熱ヒータ 16を夫々単独で、或いは組み合わせて用いることにより、調理 に最適な加熱方法で被加熱物 M (食品)を加熱することが可能となる。
[0051] なお、上記した調理時の加熱室 11内の温度は、赤外線センサ 18ゃサーミスタ 20 によって測定されており、この測定結果に基づいて制御部 501がマグネトロン 13、上 部加熱ヒータ 16、コンペクシヨンヒータ 19等を適宜制御する。複数箇所の温度を同時 に測定可能な赤外線センサ 18を用いると、赤外線センサ 18を揺動させて加熱室 11 内をスキャンすることによって、加熱室 11内の複数の測定点の温度を短時間で精度 良く測定することができる。なお、赤外線センサ 18は、加熱室 11内に蒸気 Sが充満し ているときに加熱室 11内の正しい温度を測定しないことがある力 その場合には、サ 一ミスタ 20により温度測定を行う。
[0052] 本発明の加熱調理器 100は、以上説明した基本動作に加えて、循環ファン 17を回 転駆動することにより、加熱室 11内の雰囲気温度を、供給される蒸気の温度よりも低 V、温度に制御する機能を有して!/、る。
図 4に循環ファンの各回転速度に対する加熱室内の雰囲気温度の時間変化を示し た。
即ち、蒸気供給部 15から加熱室 11内に蒸気を供給し続け、且つ循環ファン 17の 回転速度を na, nb, nc (ただし、 naく nbく nc)として回転駆動すると、加熱室 11内 の雰囲気温度は、回転速度が速いほど低くなる傾向がある。この特性を利用して、加 熱室 11に供給される蒸気を循環ファン 17により撹拌することで、加熱室 11内の雰囲 気温度を意図的に低下させることができる。
[0053] つまり、蒸発皿 35から発生する蒸気 Sは、水を沸騰させて取り出しているため、その 温度は約 100°Cであるが、蒸気 Sと加熱室 11内の空気とを撹拌して生成される混合 気体 Gの温度は 100°C以下の温度となる。また、循環ファン 17を回転させると、加熱 室 11を構成する壁面や上下面に形成された隙間 (板金の継ぎ目や開閉扉 21との隙 間等)ゃ孔 (赤外線センサ 18の温度検出用孔等)等を通じて、若干の外気が加熱室 11内に導入され、この導入された外気が加熱室 11内で蒸気 Sとともに撹拌されること で混合気体 Gの温度が低下するようになる。従って、循環ファン 17を回転駆動するこ とにより加熱室 11内の雰囲気温度を 100°C以下の調理に最適な所望の温度に制御 することが可能となる。
[0054] 例えば、 100°Cに近い雰囲気温度で加熱するときには、加熱時間を正確に設定し なければ、特に卵料理等の温度管理が難しい場合に、調理が失敗に終わることにな る。この場合に、循環ファン 17を回転制御して、加熱室 11内の雰囲気温度を予め調 理に適した温度(100°Cより低い温度)に設定しておけば、仮に規定の時間より長く 調理を続けてしまった場合でも、調理が失敗に終わることがなくなる。
[0055] このような循環ファンを用いて加熱室内の雰囲気温度を制御しつつ調理を行う一例 として、茶碗蒸しを加熱調理する場合について図 5を用いて説明する。
図 5に「蒸気供給 +ヒータ加熱」による茶碗蒸しの加熱調理パターンを示した。 まず、被加熱物 Mである材料の入れられた茶碗をトレイ 22 (上下分割用仕切板)上 に載せて加熱室 11内に入れて開閉扉 21を閉じる。入力操作部 507を操作して加熱 方法、加熱時間、加熱温度等を設定し、スタートボタンを押下して調理をスタートさせ る。
[0056] 制御部 501からの指令に基づいて、予熱工程としてコンペクシヨンヒータ 19を発熱 させながら、循環ファン 17を回転させて熱風を加熱室 11内に所定時間(例えば 1分) 循環させる。なお、マイクロ波発熱体を有するトレイ 22を用いる場合には、循環ファン 17及びコンペクシヨンヒータ 19による熱風循環に代えて、或 、は併用してマグネトロ ン 13により予熱を行うこともできる。続いて、上部加熱ヒータ 16を発熱させて所定時 間(例えば 30秒)維持する。これにより、加熱室 11内が 45°C〜50°Cの予熱温度に昇 温される。その後、蒸発皿加熱ヒータ 37を発熱させて、蒸発皿 35の水溜凹所 35a内 の水を加熱し蒸発させて、蒸気 Sを発生させる。すると、加熱室 11に供給された蒸気 Sにより加熱室 11内は徐々に昇温して、被加熱物 Mである茶碗の温度もこれに追従 して次第に上昇される。なお、加熱による温度分布の均一化のため、この昇温期間 内に加熱室 11内の温度上昇に応じて循環ファン 17を断続的に回転させてもょ 、。
[0057] 具体的には、図 2に示すようにまず、貯水タンク力 送水ポンプを通じて蒸発皿 35 に水を供給して、蒸発皿加熱ヒータ 37を ONすると、蒸発皿 35の水が加熱されて蒸 気 Sが発生し、この蒸気 Sが加熱室 11内に拡散する。
[0058] やがて、加熱室 11内の温度は、予め設定された加熱設定温度に到達する。ここで の加熱設定温度は、発生する蒸気の温度 100°Cよりも低い温度に設定されており、 循環ファン 17の回転による蒸気撹拌によって、発生する蒸気 Sは 100°C以下の温度 に降温させられる。
つまり、循環ファン 17を駆動モータ 23により回転駆動し、加熱室 11内に循環気流 を生じさせる。これによつて加熱室 11内に充満した蒸気 Sは、奥側壁面 27の送風用 通風孔 31からの加熱室 11内に導入される気流と、吸気用通風孔 29から循環ファン 室 25へ吸い込まれる気流によって積極的に攪拌され、熱交換が行われて、温度が 低下する。
[0059] 加熱室 11内の雰囲気温度が加熱設定温度に到達すると、蒸気 Sの供給量を減少 させて、代わりに上部加熱ヒータ 16を発熱させる。これにより蒸気量が過剰となって 扉や加熱室壁面に結露を生じさせることが防止される。また、蒸気供給量の低下分を 上部加熱ヒータ 16からの発熱により補うことで、加熱室 11内が所定の設定温度に維 持される。このときの蒸気供給の給電量は、上部加熱ヒータ 16への給電量との総和 が定格電力の範囲を超えないように負荷を分配したり、デューティ制御により設定す る。なお、上部加熱ヒータ 16の代わりにコンペクシヨンヒータ 19を利用あるいは併用し てもよい。
[0060] このように、上部加熱ヒータ 16による加熱と蒸気 Sによる加熱を併用して、被加熱物 の加熱処理を続ける一方、循環ファン 17を回転駆動することで、加熱室 11内の温度 が所定の設定温度に維持される。本加熱調理の場合、卵の凝固点温度が概ね 78°C 〜82°Cであるので、茶碗蒸し 90の温度が凝固点領域を越えたところで調理を終了 する。この場合の茶碗蒸し 90の加熱調理終了までの時間は、約 20分程度である。
[0061] このように、蒸気加熱により調理する場合には、主な熱伝達媒体が蒸気 Sであるた め、オーブン加熱時のような熱伝達媒体が空気の場合よりも伝達されるエネルギー 量が大きくなる。従って、被加熱物 Mをより早く加熱することができ、さらには、熱交換 作用が良 、ために、被加熱物 Mの周辺から内部にかけて均一に加熱することができ る。これにより、特に茶碗蒸し 90の加熱調理においては、巣立ちの発生や加熱不足 によって凝固不十分となることを防止できる。
[0062] そして、加熱設定温度が、発生する蒸気の温度 100°Cより低い温度に設定されるた め、加熱室 11内の雰囲気温度は、卵の凝固点領域を通過する時間が長くなり、その 結果、被加熱物 Mの内部まで熱が浸透して良好な出来映えの茶碗蒸しが安定して 得られるようになる。また、仮に加熱したまま調理時間を超えることがあっても、過剰な 高温にはならないので、これによる影響を受けず、調理が失敗に終わることはない。
[0063] このような蒸気の撹拌によって加熱室内の雰囲気温度を降温制御する方法として は、単一の設定温度の加熱パターンのみならず、複数の設定温度に順次設定するこ とも可能である。
図 6,図 7は循環ファンの回転速度を切り替えることで、加熱室内の雰囲気温度を 順次異なる温度に設定した例を示すチャートであり、図 6は時間経過とともに設定温 度を順次低くした例で、図 7は時間経過によらな 、任意の設定温度とした例である。
[0064] まず、図 6に示すように、循環ファンの回転速度が naであるときには、蒸気供給部 1 5から供給される蒸気によって加熱室内の雰囲気温度が、循環ファンを回転させな!/、 場合よりも低い温度 Taまで上昇する。そして、循環ファンの回転速度を増加させて n bとすると、加熱室内の雰囲気温度は、温度 Taよりさらに低い温度 Tbとなる。さらに、 回転速度を増加させて ncとすると、温度は Tcに低下する。このように、循環ファンの 回転速度を順次速めていくことで、加熱室内の雰囲気温度を徐々に下げることがで き、調理内容に応じた温度設定が可能となる。 [0065] また、図 7に示すように、循環ファン 17の回転速度を最初に na,次に nc、その次に nbというように増減制御すると、加熱室 11内の雰囲気温度も、これに応じて昇温'降 温される。つまり、循環ファン 17の回転速度を変化させることで、加熱室 11内の雰囲 気温度を任意の温度に低下させることができる。
[0066] 以上説明したように、本実施形態の加熱調理器 100によれば、循環ファン 17の回 転速度を増減制御することにより、加熱室 11内の雰囲気温度を自在に変更すること ができ、 100°C以下の所望の加熱室温度に迅速にかつ正確に合わせることができる
[0067] ここで、循環ファン 17の回転速度に代えて、循環ファン 17の回転駆動周期を制御 して、所望の加熱温度に設定する変形例について説明する。
図 8は循環ファンの回転駆動周期を切り替えることで、加熱室内の雰囲気温度を異 なる温度に設定した例を示すチャートである。ここで、回転駆動周期とは、循環ファン の回転の ONZOFFをデューティ制御する際の、 ON時力 次の ON時までの時間を 意味する。
循環ファン 17の回転駆動周期を、最初に fa、次に fc、そして次に fb (ただし、 fa>f b >fc)というように増減制御すると、加熱室内の雰囲気温度も、これに応じて昇温- 降温される。つまり、循環ファン 17の回転駆動周期を短くすることで、加熱室 11内の 雰囲気温度を低下させる効果が高められる。この方法によっても前述同様に、加熱 室 11内の雰囲気温度を自在に変更することができ、 100°C以下の所望の加熱室温 度に迅速にかつ正確に合わせることができる。
[0068] 次に、上下分割用仕切板としての被加熱物を載置するトレイ 22による効果につい て詳細に説明する。
本実施形態の加熱調理器 100で、加熱室 11内の空間をトレイ 22によって上下に 2 分割した場合においては、図 9に蒸気の状態を示すように、加熱室 11の下側空間 11 Bに配置された蒸発皿 35から発生した蒸気 Sは、下側空間 11Bで循環ファン 17によ つて十分に撹拌され、蒸気密度が均一となった混合気体 Gが生成される。ここで蒸気 密度とは、蒸発 H35から発生する水蒸気と、空気との混合気体に対する水蒸気の占 有密度を意味する。蒸気密度が高くなると水蒸気の単位体積当たりの存在量が増加 し、その結果、混合気体 Gの温度が 100°Cに近くなる。逆に蒸気密度が低くなると水 蒸気の単位体積当たりの存在量が減少して混合気体 Gの温度が低くなる。この蒸気 密度は、循環ファン 17の回転速度を調整することにより任意に制御することができる
[0069] 蒸気 Sの混在する混合気体 Gは外気と比較して比重が軽くなつているため、加熱室 11内では上方に移動する傾向がある。そのため、加熱室 11の下側空間 11Bで生成 された蒸気密度が均一の混合気体 Gは、トレイ 22の縁部と加熱室 11の内壁 (側壁面 11a, l ib及び奥側壁面 27)間の隙間を通って上側空間 11Aに集まる。従って、トレ ィ 22の上方の上側空間 11Aには、撹拌により 100°Cより低 、所定温度の混合気体 G が集まり、空間内の略全体が所定の一定温度の雰囲気となる。即ち、下側空間 11B が主に蒸気 Sの撹拌用空間として機能し、上側空間 11Aが均一温度に維持される調 理空間となる。しかも、上側空間 11Aには、下側空間 11Bで蒸気密度が均一にされ た混合気体 Gが、トレイ 22と加熱室内壁との間の隙間に沿って均等に供給されるの で、上側空間 11 A内の温度は、場所によらずに均一な所定の温度となる。
[0070] このように、本実施形態の加熱調理器 100によれば、加熱室 11内に蒸気 Sが供給 される一方、加熱室 11内を循環ファン 17により送風するので、加熱室 11内に供給さ れた蒸気 Sが積極的に撹拌されて、加熱室 11内を所望の雰囲気温度にすることがで きる。つまり、加熱室 11内の空気に蒸気 Sが十分に拡散された混合気体 Gが生成さ れ、この混合気体 Gは、供給された蒸気 Sの温度よりも低くなる。従って、加熱室 11内 を調理に適した任意の温度に設定でき、正確な温度設定を必要とする卵調理等の 加熱調理を迅速かつ確実に行うことができる。
[0071] また、加熱室 11を上下に分割するトレイ 22を設け、このトレィ 22より下方となる下側 空間 11Bに蒸気 Sを供給することで、供給された蒸気 Sは、下側空間 11Bから上昇し 、トレイ 2
2と加熱室 11壁面との間の連通部を通じて上側空間 11Aへと集まる。このような狭路 を通過させることにより蒸気 Sの撹拌が一層促進され、加熱室 11の上側空間 11Aに おける蒸気密度が均一化される。
[0072] そして、この加熱調理器 100では、加熱室 11内に配設された蒸発皿 35から蒸気 S を加熱室 11内に供給するため、加熱室 11外にボイラ装置を設ける場合と比較して構 成を簡略ィ匕でき、蒸発皿 35に付着するスケール等の汚れを簡単に払拭することがで き、衛生的な環境を容易に維持できる。
[0073] ここで、前述のトレイ 22は、次に示すような構成にしてもよ!、。
図 10にトレイの変形例を示す斜視図、図 11に図 10に示すトレイが加熱室に収容さ れた状態を表す横断面図を示した。
図 10及び図 11に示すように、トレイ 40は、加熱室 11に収容したときに、奥側と手前 側となる縁部 40aに上下を貫通する複数の開口孔 40bを形成して 、る。開口孔 40b は、蒸気供給部 15に対向する位置に設けられていればよぐ奥側と手前側の双方に 形成する必要は必ずしも無いが、開口孔 40bを双方に設けることによりトレイ 40の向 きを意識することなく加熱室 11に取り付けることができ、取り扱 、性が向上する。
[0074] これにより、加熱室 11の下側空間 11Bで蒸気と外気とが撹拌されて生成した混合 気体 Gがトレイ 40の開口孔 40bを通じて上側空間 11Aに確実に供給される。従って 、トレイ 40上に載置された被加熱物 Mに対し、混合気体 Gを局所的に強く吹き当てる ことなく、被加熱物 M全体が蒸気 Sに包まれるような雰囲気で加熱されることが可能と なる。また、上昇する蒸気 Sの流れがトレイ 40の開口孔 40bにより、上下空間を貫く流 れとなって、上側空間 11Aでの蒸気 Sの滞留がなくなる。また、トレイ 40に開口孔 40 bを設けること以外にも、加熱室 11の壁面に凹部を形成して、この凹部から上下空間 を貫く流れを形成するようにしてもょ ヽ。
[0075] 次に、本発明に係る加熱調理器の第 2実施形態を説明する。
本実施形態の加熱調理器 200は、前述の第 1実施形態における加熱調理器 100 の構成にカ卩えて、外気を積極的に導入するとともに加熱室内の空気を積極的に排出 する給排気機構を備えている。
図 12は加熱調理器の給排気機構の概略構成を示す平面図である。図 12に示すよ うに、本実施形態の加熱調理器 200は、外気を加熱室 11に導くための給気用通風 路 81、加熱室 11内の空気を排気するための排気用通風路 85、給気側シャツタ 51及 び排気側シャツタ 52、シャツタ開閉駆動部 50 (図 3参照)とを備えている。つまり、カロ 熱室 11に供給された蒸気を加熱室 11から排気する排気手段を備えた構成となって いる。
[0076] 本実施形態の加熱調理器 200は、給気用通風路 81に接続される給気口 82が、加 熱室 11左側の側壁面 11aの、図 1に示す開閉扉 21に近い下方に設けられて、加熱 室 11の下側空間 11Bに開口している。また、排気口 86が、加熱室 11右側の側壁面 l ibの、図 1に示す加熱室 11の奥側下端に設けられて、加熱室 11の下側空間 11B に開口している。
[0077] 給気口 82は、本体ケース 10外側面と加熱室 11の側壁面 11aとの間、及び本体ケ ース 10外側面と奥側壁面 27との間に確保した給気用通風路 81に連通されており、 その給気用通風路 81の途中には、開閉自在な給気側シャツタ 51が配設されている 。そして、マグネトロン 13に一体に設けられたマグネトロン冷却用の冷却ファン 32から の風を給気側シャツタ 51の切り替えにより、給気用通風路 81を介して給気口 82から 加熱室 11内に吹き出せるようになって 、る。
[0078] なお、冷却ファン 32は、マグネトロン冷却用のファンに限定されることなぐ図 3のブ ロック図に示すように、別途に送風ファン 60を設けて使用してもよい。送風ファン 60 によって外気を直接加熱室 11に給気すると、加熱室 11内の温度が急速に冷却され る虞がある場合には、送風ファン 60にヒータ等を取り付けたり、マグネトロン冷却用フ アン 32を用いてマグネトロン 13を冷却することで暖められた空気を加熱室 11に給気 する。
[0079] 排気口 86は、本体ケース 10外側面と加熱室 11の側壁面 l ibとの間に確保した排 気用通風路 85に連通されており、その排気用通風路 85の途中には、開閉自在な排 気側シャツタ 52が配設されている。排気用通風路 85は、吐出口 87によって外部に 連通している。そして、排気側シャツタ 52を開くことにより、加熱室 11内への給気に伴 つて、加熱室 11内の空気を外部に排気できるようになって!/、る。
[0080] 給気側シャツタ 51及び排気側シャツタ 52は、例えば、ばねなどにより常時一方向に 付勢されたダンバで構成され、電磁力等によってダンバを揺動させて給気用通風路 81及び排気用通風路 85を開放又は遮蔽した状態で選択的に保持可能としている。 或いは、風圧によりダンパを閉状態力 開状態とする構成としてもよぐこの場合には 、シャツタ機構の更なる簡略ィ匕が図られる。給気側シャツタ 51及び排気側シャツタ 52 は、加熱室 11内の蒸気が外部に不意に抜け出ることを防止するため、給気'排気の 必要時以外は閉状態とされる。
[0081] 冷却ファン 32によって外部から吸引された外気は、給気用通風路 81、給気側シャ ッタ 51を介して給気口 82から加熱室 11内に吹き出される。給気口 82からの給気に よって、加熱室 11内の空気は排気口 86から排気用通風路 85、排気側シャツタ 52、 吐出口 87を介して外部に排気される。このとき、加熱室 11内の空気は、加熱室 11の 略対角線上を流れるので、効率よく攪拌、換気される。
[0082] この加熱調理器 200によれば、加熱室 11内に蒸気が供給される一方、加熱室 11 内に送風手段からの風を給気用通風路 81を通じて導入するとともに、排気用通風路 85から加熱室 11内の空気を排出するため、加熱室 11内に供給された蒸気が外気 により積極的に撹拌されて、加熱室 11内を所望の蒸気密度にすることができる。つま り、加熱室 11内の空気に蒸気が十分に拡散された混合気体 Gが生成され、この混合 気体 Gの温度は、供給された蒸気の温度よりも低くなる。従って、本実施形態の加熱 調理器 200においても、加熱室 11を 100°C以下の調理に適した任意の温度に設定 することが一層効率よく行えるようになり、正確な温度設定を必要とする卵調理等の 加熱調理を迅速かつ確実に行うことができる。
[0083] ここで、給気側シャツタ 51及び排気側シャツタ 52は、開放状態又は遮蔽状態に保 持されるものに限らず、給気用通風路 81及び排気用通風路 85の開度を任意に設定 できるものであってもよい。この場合には、きめ細やかな温度制御が実現でき、調理 の自由度が一層向上する。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 4月 22日出願の日本特許出願、出願番号 2004-126434に基づく ものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0084] 本発明の加熱調理器及び加熱調理方法によれば、加熱室内に供給した蒸気を撹 拌することにより、加熱室内の雰囲気温度を供給される蒸気の温度よりも低い温度に 設定することができ、加熱室内の雰囲気温度を被加熱物の調理に適した温度にまで 迅速かつ正確に降温させることができる。

Claims

請求の範囲
[1] 被加熱物を収容する加熱室に蒸気を供給して該被加熱物を加熱する加熱調理器 であって、
前記加熱室に蒸気を供給する蒸気供給手段と、
前記加熱室内に供給された蒸気を撹拌するファンと、
前記ファンを回転駆動することにより前記加熱室内の雰囲気温度を前記供給される 蒸気の温度よりも低い温度に制御する温度制御手段とを備えたことを特徴とする加 熱調理器。
[2] 前記加熱室内の雰囲気温度を昇温させる加熱手段を備えたことを特徴とする請求 項 1記載の加熱調理器。
[3] 前記加熱室が、仕切板を介して前記ファンの配設された循環ファン室と仕切られて おり、前記仕切板に、加熱室と循環ファン室とを連通する通風孔が形成されているこ とを特徴とする請求項 1又は請求項 2記載の加熱調理器。
[4] 前記加熱室に外気を供給する外気供給手段が接続されたことを特徴とする請求項
1〜請求項 3の 、ずれか 1項記載の加熱調理器。
[5] 前記外気供給手段が、
外気を吸引して風を生成する送風手段と、
前記送風手段からの風を前記加熱室に導く給気用通風路と、
前記加熱室の中の空気を排出する排気用通風路と、
を備えたことを特徴とする請求項 1〜請求項 3のいずれか 1項記載の加熱調理器。
[6] 前記給気用通風路の前記加熱室との接続位置より流路上流側に、通過流量を制 限するための給気側シャツタを設けたことを特徴とする請求項 5記載の加熱調理器。
[7] 前記排気用通風路の前記加熱室との接続位置より流路下流側に、通過流量を制 限するための排気側シャツタを設けたことを特徴とする請求項 5又は請求項 6記載の 加熱調理器。
[8] 前記加熱室内の空間を上下に分割する上下分割用仕切板を備え、前記加熱室と 前記上下分割用仕切板との間には前記上下の空間を接続する連通部が形成され、 前記蒸気供給手段が前記加熱室の下側空間から蒸気を供給することを特徴とする 請求項 1〜請求項 7のいずれか 1項記載の加熱調理器。
[9] 被加熱物を収容する加熱室に蒸気を供給して該被加熱物を加熱する加熱調理方 法であって、
前記加熱室に蒸気を供給しつつ被加熱物を加熱する一方、前記加熱室内に供給 された蒸気を撹拌して、前記加熱室内の雰囲気温度を前記供給される蒸気の温度よ りも低い温度に制御することを特徴とする加熱調理方法。
[10] 前記蒸気の撹拌をファンの回転駆動により行い、前記加熱室内の雰囲気温度を前 記ファンの回転速度を増減制御して変更することを特徴とする請求項 9記載の加熱 調理方法。
[11] 前記蒸気の撹拌をファンの回転駆動により行い、前記加熱室内の雰囲気温度を前 記ファンの回転駆動周期を制御して変更することを特徴とする請求項 9又は請求項 1 0記載の加熱調理方法。
PCT/JP2005/007241 2004-04-22 2005-04-14 加熱調理器及び加熱調理方法 WO2005103569A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05730528A EP1741986A4 (en) 2004-04-22 2005-04-14 COOKING APPARATUS AND COOKING METHOD
US10/599,817 US20070221070A1 (en) 2004-04-22 2005-04-14 Cooker and Cooking Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004126434A JP4472412B2 (ja) 2004-04-22 2004-04-22 加熱調理器
JP2004-126434 2004-04-22

Publications (1)

Publication Number Publication Date
WO2005103569A1 true WO2005103569A1 (ja) 2005-11-03

Family

ID=35197063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007241 WO2005103569A1 (ja) 2004-04-22 2005-04-14 加熱調理器及び加熱調理方法

Country Status (5)

Country Link
US (1) US20070221070A1 (ja)
EP (1) EP1741986A4 (ja)
JP (1) JP4472412B2 (ja)
CN (1) CN1942711A (ja)
WO (1) WO2005103569A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975515A1 (en) * 2006-01-17 2008-10-01 Matsushita Electric Industrial Co., Ltd. High-frequency heating device

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881039B2 (ja) * 2006-03-01 2012-02-22 株式会社東芝 加熱調理器
SI22689A (sl) * 2007-12-17 2009-06-30 Gorenje Gospodinjski Aparati, D.D. Vgradna pečica s prisilnim prezračevanjem
JP2010054173A (ja) * 2008-08-29 2010-03-11 Sharp Corp 加熱調理器
KR20100046735A (ko) * 2008-10-28 2010-05-07 엘지전자 주식회사 조리기기 및 그 제어방법
WO2010126027A1 (ja) * 2009-04-28 2010-11-04 シャープ株式会社 加熱調理器
US8950319B2 (en) * 2010-09-30 2015-02-10 Lg Electronics Inc. Cooking appliance
DE102010062505A1 (de) * 2010-12-07 2012-06-14 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Behandeln einer Speise unter Dampf, Einschub-Gargutträger und Gargeräte zum Betrieb eines Einschub-Gargutträgers
US20130156906A1 (en) * 2011-12-14 2013-06-20 J.K. Raghavan Salamander Element for Closed System Oven
JP5899452B2 (ja) * 2012-02-13 2016-04-06 パナソニックIpマネジメント株式会社 加熱調理器
JP2014031948A (ja) * 2012-08-03 2014-02-20 Panasonic Corp 加熱調理器
JP6089224B2 (ja) * 2012-10-30 2017-03-08 パナソニックIpマネジメント株式会社 高周波加熱調理装置
EP2754355B1 (en) * 2013-01-11 2020-03-11 Electrolux Home Products Corporation N.V. Steam cooking method and steam cooking oven
FR3014665B1 (fr) * 2013-12-13 2016-02-05 Seb Sa Procede et appareil de chauffage et/ou de cuisson d'aliments a la vapeur
JP6446672B2 (ja) * 2014-03-18 2019-01-09 パナソニックIpマネジメント株式会社 加熱調理器
DE102014111021B4 (de) * 2014-08-04 2016-06-16 Miele & Cie. Kg Gargerät und Verfahren zum Betreiben
DE102014112423B4 (de) * 2014-08-29 2017-09-28 Miele & Cie. Kg Garsystem
JP6579301B2 (ja) 2014-10-10 2019-09-25 パナソニックIpマネジメント株式会社 加熱調理器
KR102379989B1 (ko) * 2015-01-23 2022-03-29 발뮤다 가부시키가이샤 가열 조리 장치
EP3282195B1 (en) * 2015-04-06 2022-01-12 Nisshin Seifun Group Inc. Food cooking system
CN106136955A (zh) * 2015-04-24 2016-11-23 浙江绍兴苏泊尔生活电器有限公司 炸锅
CN105351980B (zh) * 2015-11-18 2017-10-31 广东格兰仕微波炉电器制造有限公司 一种蒸汽微波炉
CA3032452A1 (en) * 2016-08-02 2018-02-08 Spectrum Brands, Inc. Air frying systems and methods
CN108245037B (zh) * 2016-12-28 2020-12-01 浙江绍兴苏泊尔生活电器有限公司 空气炸锅
CN111527348B (zh) * 2017-08-11 2023-03-07 布拉瓦家居公司 可配置的烹饪系统和方法
CN111820726B (zh) * 2019-04-17 2021-07-23 宁波方太厨具有限公司 一种烹饪装置的水箱推出结构
CN114174724A (zh) * 2019-07-31 2022-03-11 夏普株式会社 加热烹调器
WO2021046613A1 (en) * 2019-09-12 2021-03-18 Breville Pty Limited An oven
CN114451779B (zh) * 2020-11-09 2023-06-09 佛山市顺德区美的电热电器制造有限公司 烹饪器具的蒸汽阀、盖体、烹饪器具及其控制方法
US20230172383A1 (en) * 2021-12-08 2023-06-08 Electrolux Home Products, Inc. Systems and methods for steam heating
WO2024039304A1 (en) * 2022-06-03 2024-02-22 Femas Metal San. Ve Tic. A.S. A steam-assisted oven with a water reservoir

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241622Y2 (ja) * 1973-12-18 1977-09-20
JPS5912483Y2 (ja) * 1978-08-04 1984-04-16 三菱電機株式会社 高周波加熱装置
JPS6223625U (ja) * 1985-07-25 1987-02-13
JPH0694241A (ja) * 1992-09-10 1994-04-05 Matsushita Electric Ind Co Ltd 加熱調理器
JPH06288550A (ja) * 1993-04-02 1994-10-11 Rinnai Corp 加熱調理方法およびこれを実施する蒸気式加熱器
JPH08178298A (ja) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH09511326A (ja) * 1994-10-10 1997-11-11 ウベルト ガストロテクニク ゲーエムベーハー 食材を調製するためのホットエアオーブン
JP2003050015A (ja) * 2001-08-06 2003-02-21 Sharp Corp 加熱調理装置
JP2003329246A (ja) * 2002-03-07 2003-11-19 Eloma Gmbh Grosskuechentechnik 食品を処理して準備する装置内の湿度を検出する方法、及び、食品を処理して準備する装置
JP2003336849A (ja) * 2002-03-12 2003-11-28 Matsushita Electric Ind Co Ltd 蒸気発生機能付き高周波加熱装置
JP2004044994A (ja) * 2002-03-12 2004-02-12 Matsushita Electric Ind Co Ltd 蒸気発生機能付き高周波加熱装置
JP2004044993A (ja) * 2002-03-12 2004-02-12 Matsushita Electric Ind Co Ltd 蒸気発生機能付き高周波加熱装置
JP2004061011A (ja) * 2002-07-30 2004-02-26 Matsushita Electric Ind Co Ltd 蒸気発生装置及び蒸気発生装置を備えた加熱調理装置
JP2004184053A (ja) * 2002-12-06 2004-07-02 Sharp Corp 加熱調理器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3510680A1 (de) * 1985-03-23 1986-10-02 Buderus Ag, 6330 Wetzlar Verfahren zum langzeit-niedertemperatur-garen
IT213940Z2 (it) * 1988-03-23 1990-03-01 Trevigiana Apparecchi Riscald Forno di cottura plurifunzionale ad ambienti separati.
US5839356A (en) * 1994-07-15 1998-11-24 American Harvest, Inc. Automatic bread making machine
DE50200543D1 (de) * 2002-02-25 2004-07-29 Eloma Gmbh Groskuechentechnik Verfahren zur Behandlung und Zubereitung von Nahrungsmitteln in einem Gargerät, Bedienfeld für ein Gargerät sowie Gargerät mit Bedienfeld
US7488919B2 (en) * 2004-09-01 2009-02-10 Western Industries, Inc. Warming apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241622Y2 (ja) * 1973-12-18 1977-09-20
JPS5912483Y2 (ja) * 1978-08-04 1984-04-16 三菱電機株式会社 高周波加熱装置
JPS6223625U (ja) * 1985-07-25 1987-02-13
JPH0694241A (ja) * 1992-09-10 1994-04-05 Matsushita Electric Ind Co Ltd 加熱調理器
JPH06288550A (ja) * 1993-04-02 1994-10-11 Rinnai Corp 加熱調理方法およびこれを実施する蒸気式加熱器
JPH09511326A (ja) * 1994-10-10 1997-11-11 ウベルト ガストロテクニク ゲーエムベーハー 食材を調製するためのホットエアオーブン
JPH08178298A (ja) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2003050015A (ja) * 2001-08-06 2003-02-21 Sharp Corp 加熱調理装置
JP2003329246A (ja) * 2002-03-07 2003-11-19 Eloma Gmbh Grosskuechentechnik 食品を処理して準備する装置内の湿度を検出する方法、及び、食品を処理して準備する装置
JP2003336849A (ja) * 2002-03-12 2003-11-28 Matsushita Electric Ind Co Ltd 蒸気発生機能付き高周波加熱装置
JP2004044994A (ja) * 2002-03-12 2004-02-12 Matsushita Electric Ind Co Ltd 蒸気発生機能付き高周波加熱装置
JP2004044993A (ja) * 2002-03-12 2004-02-12 Matsushita Electric Ind Co Ltd 蒸気発生機能付き高周波加熱装置
JP2004061011A (ja) * 2002-07-30 2004-02-26 Matsushita Electric Ind Co Ltd 蒸気発生装置及び蒸気発生装置を備えた加熱調理装置
JP2004184053A (ja) * 2002-12-06 2004-07-02 Sharp Corp 加熱調理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1741986A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975515A1 (en) * 2006-01-17 2008-10-01 Matsushita Electric Industrial Co., Ltd. High-frequency heating device
EP1975515A4 (en) * 2006-01-17 2011-03-23 Panasonic Corp HIGH FREQUENCY HEATING DEVICE

Also Published As

Publication number Publication date
EP1741986A1 (en) 2007-01-10
JP4472412B2 (ja) 2010-06-02
JP2005308312A (ja) 2005-11-04
CN1942711A (zh) 2007-04-04
US20070221070A1 (en) 2007-09-27
EP1741986A4 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
WO2005103569A1 (ja) 加熱調理器及び加熱調理方法
JP3835804B2 (ja) 加熱調理器及び加熱調理方法
JP3827303B2 (ja) 蒸気発生機能付き高周波加熱装置
WO2005103570A1 (ja) 加熱調理器
JP2019020122A (ja) 加熱調理器
JP6761977B2 (ja) 加熱調理器
JP5517736B2 (ja) 加熱調理器
JP4483653B2 (ja) 加熱調理装置
JPWO2015141206A1 (ja) 加熱調理器
JP2010272211A (ja) 誘導加熱調理器
JP2007003042A (ja) 加熱調理器
JP2006317019A (ja) 高周波加熱調理装置
JP2014031948A (ja) 加熱調理器
JP5798993B2 (ja) 加熱調理器
JP2011080666A (ja) 蒸気調理器
JP4576296B2 (ja) 加熱調理器
JP2014035108A (ja) 加熱調理器
JP2004044994A (ja) 蒸気発生機能付き高周波加熱装置
JP4987570B2 (ja) 加熱調理器
JP2010127545A (ja) 加熱調理器
JP2009085517A (ja) 加熱調理器
JP2004184053A (ja) 加熱調理器
JP2021193327A (ja) 高周波加熱調理器
JP2002364853A (ja) 加熱調理器
JP2014054341A (ja) 加熱調理器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10599817

Country of ref document: US

Ref document number: 2007221070

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580011676.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005730528

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005730528

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10599817

Country of ref document: US