WO2005103098A1 - 液浸露光プロセス用レジスト保護膜形成用材料、および該保護膜を用いたレジストパターン形成方法 - Google Patents

液浸露光プロセス用レジスト保護膜形成用材料、および該保護膜を用いたレジストパターン形成方法 Download PDF

Info

Publication number
WO2005103098A1
WO2005103098A1 PCT/JP2005/007846 JP2005007846W WO2005103098A1 WO 2005103098 A1 WO2005103098 A1 WO 2005103098A1 JP 2005007846 W JP2005007846 W JP 2005007846W WO 2005103098 A1 WO2005103098 A1 WO 2005103098A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist
group
protective film
forming
formula
Prior art date
Application number
PCT/JP2005/007846
Other languages
English (en)
French (fr)
Inventor
Keita Ishizuka
Kazumasa Wakiya
Kotaro Endo
Masaaki Yoshida
Original Assignee
Tokyo Ohka Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35196923&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005103098(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2004132081A external-priority patent/JP5301070B2/ja
Application filed by Tokyo Ohka Kogyo Co., Ltd. filed Critical Tokyo Ohka Kogyo Co., Ltd.
Priority to CN200580012969XA priority Critical patent/CN1946751B/zh
Priority to KR1020067022027A priority patent/KR100887202B1/ko
Priority to DE602005021212T priority patent/DE602005021212D1/de
Priority to US11/587,509 priority patent/US7846637B2/en
Priority to EP05734725A priority patent/EP1741730B1/en
Priority to TW094113279A priority patent/TW200606179A/zh
Publication of WO2005103098A1 publication Critical patent/WO2005103098A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means

Definitions

  • the present invention relates to a liquid immersion lithography (Liquid Immersion Lithography) process, in particular, a lithographic exposure light having a higher refractive index than air and a higher refractive index than air on at least the resist film in the path where the lithographic exposure light reaches the resist film.
  • a method of forming a resist pattern using the material for forming a protective film are examples of a resist pattern using the material for forming a protective film.
  • the first point is to develop an exposure apparatus and a corresponding resist.
  • F excimer For exposure equipment, F excimer
  • Common development points include shortening the wavelength of light sources such as EUV (extreme ultraviolet light), electron beam, X-ray, and soft X-ray, and increasing the numerical aperture (NA) of the lens. .
  • EUV extreme ultraviolet light
  • X-ray electron beam
  • X-ray soft X-ray
  • NA numerical aperture
  • Non-Patent Document 1 Qournal of Vacuum Science & Technology.
  • B Noya ⁇ Nano Leof Noun 1 ⁇ Musa Science Technology J. Vac. Sci. Technol. B) ((Issuing country) USA), 1999, Vol. 17, No. 6, pp. 3306-3309)
  • Non-Patent Document 2 Journal of Vacuum Science & Technology
  • B Journal of Vacuum Science Technology
  • J. Vac. Sci. Technol. B (Issuing country) United States), 2001, Vol. 19, No.
  • Non-Patent Document 3 Proceedings of SPIE Vol.4691 (Proceedings of SPIE Vol. 4691, Vol. 4691, pp. 459-465)
  • a liquid refractive index medium such as pure water or a fluorine-based inert liquid having a predetermined thickness
  • a light source having the same exposure wavelength can be used by replacing the exposure optical path space, which has conventionally been an inert gas such as air or nitrogen, with a liquid having a higher refractive index (n), for example, pure water.
  • n refractive index
  • Non-Patent Document 1 Journal of Vacuum Science & Technology B (J. Vac. Sci. Technol. B) (Amuri Power, (publishing country)), 1999, Volume 17, 6 No. 3306—3309
  • Non-Patent Document 2 Journal of Vacuum Science & Technology B (J. Vac. Sci. Technol. B) (Issued country: Amerili), 2001, Vol. 19, No. 6, 2353 — 2356 pages
  • Non-Patent Document 3 Proceedings of SPIE Vol.4691 (Procedings of SPIE Vol.4691 (publishing country) USA), Vol. 4691, pp. 459-465
  • the resist film comes into direct contact with the refractive index liquid (immersion liquid) at the time of exposure, so that the resist film is invaded by the liquid. Therefore, it is difficult to determine whether the resist composition conventionally used can be applied as it is. Need to be verified.
  • a commonly used resist composition is a composition that has already been extensively studied and established for possible resins from the most important property of having transparency to exposure light.
  • the present inventors have obtained a resist composition having characteristics suitable for immersion lithography from the presently proposed resist composition as it is or by slightly adjusting the composition.
  • An experimental study was conducted to determine if there was any. As a result, it was found that there was a resist composition that could be expected in practical use.
  • liquid immersion exposure deterioration due to the liquid occurs, and sufficient pattern resolution cannot be obtained! / ⁇
  • Such a resist composition is a composition that has been established by spending a large amount of development resources, and has excellent resist characteristics such as transparency to exposure light, developability, and storage stability.
  • resist compositions that have only poor resistance to the immersion liquid. Examples of compositions that are not suitable for such immersion exposure but exhibit high resolution in lithography in the air layer are shown in Examples and Comparative Examples of the present invention described later. And
  • the effect of the resist film on the immersion liquid in (ii) is that components of the resist film dissolve into the liquid and change the refractive index of the liquid. If the refractive index of the liquid changes, the optical resolution of the pattern exposure will change, as is clear from experiments. In this regard, it is sufficient to simply confirm that when the resist film is immersed in the liquid, the components are dissolved and the composition of the immersion liquid is changed or the refractive index is changed. Yes, it is not necessary to actually irradiate pattern light, develop and check the resolution
  • the phenomena ( ⁇ ) and (m) are two-sided phenomena, and can be grasped by confirming the degree of deterioration of the resist film due to the liquid.
  • the above-mentioned currently proposed resist film is evaluated for suitability for immersion exposure.
  • the present invention has been made in view of the problems of the prior art which is strong, and a resist film obtained from a conventional resist composition obtained by consuming a large amount of development resources can be used for immersion exposure. It is an object of the present invention to provide a technique that can be applied mutatis mutandis.Specifically, by forming a specific protective film on the surface of a conventional resist film, the quality of the resist film during liquid immersion exposure can be reduced and the It is an object of the present invention to simultaneously prevent deterioration of a liquid used and to enable formation of a high-resolution resist pattern using immersion exposure.
  • a material for forming a resist protective film for an immersion exposure process is provided on a resist film to protect the resist film for use in the immersion exposure process.
  • a material for forming a film which is characterized by having substantially no compatibility with water and being soluble in alkali.
  • the resist pattern forming method is a resist pattern forming method using an immersion exposure process, wherein a photoresist film is formed on a substrate, and the protection film is formed on the resist film.
  • a film-forming material a protective film having substantially no compatibility with water and having a property capable of being formed with alkali is formed, and the resist film and the protective film are laminated on the substrate.
  • At least the liquid for immersion exposure having a predetermined thickness is disposed directly on at least the protective film, and the resist film is irradiated with a predetermined pattern light through the liquid for immersion exposure and the protective film, if necessary.
  • a heat treatment is performed, and the protective film is removed by washing the protective film and the resist film using an alkaline developer. Developing the film to obtain a resist pattern.
  • the immersion exposure process may include, among other things, a refractive index larger than air and higher than that of air on at least the resist film in a path until the lithographic exposure light reaches the resist film. It is also preferable that the configuration is such that the resolution of the resist pattern is improved by exposing with the liquid for immersion exposure having a small refractive index and a predetermined thickness interposed therebetween.
  • the resist protective film when forming the resist protective film, it is preferable to add a specific fluorocarbon compound described later as a component thereof.
  • the material for forming a protective film according to the present invention can be formed directly on a resist film, does not inhibit the no-turn exposure, and the material for forming a protective film of the present invention is insoluble in water. Therefore, “The optical requirements of immersion lithography, ease of handling, and environmental pollution are low. Therefore, immersion liquids for immersion lithography are considered to be the most promising! / Ionic water) "can actually be used as an immersion liquid for immersion exposure. In other words, even if water that is easy to handle, has good refractive index characteristics, and has no environmental pollution is used as an immersion liquid for immersion lithography, resist films of various compositions are subjected to the immersion lithography process.
  • the protective film forming material according to the present invention is soluble in alkali, even when the exposure is completed and the developing process is performed, the formed protective film is removed from the resist film before the developing process. No need to do.
  • the protective film obtained by using the protective film forming material of the present invention is soluble in alkali, it is not necessary to provide a protective film removing step before the developing step after exposure, so that the alkali image of the resist film can be eliminated.
  • the developing process using the liquid can be performed while the protective film is left, so that the removal of the protective film and the development of the resist film can be realized at the same time. Therefore, the method for forming a pattern using the material for forming a protective film of the present invention provides a method for forming a resist film having good pattern characteristics. Can be carried out efficiently with extremely low environmental pollution and a reduced number of steps.
  • a specific fluorinated carbon compound described later when forming the protective film.
  • the coatability when the resist protective film forming material is applied as a coating liquid on the resist film is improved.
  • a protective film to which this specific fluorocarbon compound is added it is possible to improve the withstand resistance in a trace amine-containing atmosphere after pattern exposure of the resist film. .
  • the atmosphere of the normal resist exposure and development processes contains trace amounts of ppb-order amine. It is known that when this amine comes into contact with the resist film after the exposure step, the pattern size obtained by the subsequent development is deviated. After exposure, if the resist is continuously exposed to an atmosphere containing a small amount of amine, if the dimensions of the resist pattern obtained by the subsequent development do not significantly change, the resist resistance is high.
  • the protective film by adding a specific fluorocarbon compound described below to the protective film, the protective film has a characteristic of protecting the resist film after exposure from the action of amine. It is a feature.
  • immersion lithography can be performed by using substantially pure water, water having deionized hydraulic power, or a fluorine-based inert liquid as the immersion lithography liquid.
  • a fluorine-based inert liquid as the immersion lithography liquid.
  • any resist film obtained by using a conventional resist composition can be used, and there is no particular limitation. This is the most important feature of the present invention.
  • the essential properties of the protective film of the present invention are that it has no substantial compatibility with water and is soluble in alkali, and furthermore, it has a property of exposing to exposure light. It is transparent, does not mix with the resist film, has good adhesion to the resist film, and has As a protective film material capable of forming a protective film having such properties, a specific fluoropolymer is used, and the above fluoropolymer is not compatible with a resist film. A composition dissolved in a soluble solvent is used.
  • the fluoropolymer serving as the base polymer of the protective film of the present invention includes an aliphatic cyclic group having both (X-1) a fluorine atom or a fluorinated alkyl group and (X-2) an alcoholic hydroxyl group or an oxyalkyl group.
  • (X-1) a fluorine atom or a fluorinated alkyl group and (X-2) an alcoholic hydroxyl group or an alkyloxy group are respectively bonded to an aliphatic cyclic group. And the cyclic group constitutes the main chain.
  • the (X-1) fluorine atom or fluorinated alkyl group include those in which part or all of the hydrogen atoms of a fluorine atom or a lower alkyl group have been substituted with fluorine atoms.
  • the (X-2) alcoholic hydroxyl group or alkyloxy group is simply a hydroxy group, and the alkyloxy group is a chain, branched, or cyclic alkyloxyalkyl group having 1 to 15 carbon atoms, or It is an alkyloxy group.
  • the polymer having such a unit is formed by cyclopolymerization of a gen compound having a hydroxyl group and a fluorine atom.
  • a gen compound having a hydroxyl group and a fluorine atom As the gen compound, butadiene, which easily forms a polymer having a 5-membered or 6-membered ring having excellent transparency and dry etching resistance, is preferred, and 1,1,2,3,3 pentafluoro is preferred.
  • Rho 4 trifluoromethyl-1,4-hydroxy-1,6-butadiene (CF CFCF C (CF) (OH)
  • R 5 is a hydrogen atom or a chain, branched, or cyclic C1-C15 alkyloxy group or alkyloxyalkyl group, and x and y are each 10 to 90 mol. 0/0.
  • Such a polymer can be synthesized by a known method.
  • the weight average molecular weight in terms of polystyrene by GPC of the resin of the polymer component is not particularly limited, but is 5,000 to 80,000, and more preferably 8,000 to 50,000.
  • any solvent can be used as long as it is not compatible with the resist film and can dissolve the fluoropolymer.
  • a solvent examples include alcohol solvents, paraffin solvents, and fluorine solvents.
  • alcohol solvents conventional alcohol solvents such as isopropyl alcohol, 1-hexanol, 2-methyl-1 propanol and 4-methyl-2-pentanol can be used, and especially 2-methyl-1 propanol and 4 -Methyl-2-pentanol is preferred. It has been confirmed that n-heptane can be used as a paraffin solvent and perfluoro-2-butyltetrahydrofuran can be used as a fluorine solvent. Above all, alcohol-based solvents are preferred in view of alkali solubility during development.
  • fluorocarbon compounds are shown below. These fluorocarbon compounds are not subject to the Important New Regulations (SNUR) and can be used.
  • n is an integer of 1 to 5.
  • n is an integer of 10 to 15.
  • o is an integer of 2 to 3.
  • Rf is an alkyl group partially or wholly substituted by a fluorine atom, and is substituted by a hydroxyl group, an alkoxy group, a carboxyl group, or an amino group. You can also.
  • fluorocarbon compound represented by the general formula (202) include the following chemical formula (207)
  • fluorocarbon compound represented by the general formula (203) include the following chemical formula (208)
  • the protective film of the present invention is water-insoluble and has high resistance to water and other immersion liquids, so it can be applied to resist films of any composition including resist films having low resistance to immersion liquids. It is. Therefore, as the resist film material of the present invention, any of known resists can be used, and a conventional positive resist or negative photoresist can be used. Specific examples of these are described below.
  • a resin component used in a positive photoresist a fluorine resin, an acrylic resin, a cycloolefin resin, a silsesquioxane resin, or the like is used.
  • Examples of the fluorine-based resin include (A) (alkali-soluble structural units (aO-) including an aliphatic cyclic group having both a fluorine atom or a fluorinated alkyl group and a GO alcoholic hydroxyl group or an alkyloxy group. 1) has, alkali solubility changes by the action of acid Polymers are preferred.
  • A alkali-soluble structural units (aO-) including an aliphatic cyclic group having both a fluorine atom or a fluorinated alkyl group and a GO alcoholic hydroxyl group or an alkyloxy group.
  • the (0) an alkali-soluble structural unit (aO 1) containing an aliphatic cyclic group having both a fluorine atom or a fluorinated alkyl group and a GO alcoholic hydroxyl group or an alkyloxy group is the same as the above (0 and GO together) If the organic group possessed is bonded to the aliphatic cyclic group and the cyclic group is present in the structural unit,
  • the aliphatic cyclic group refers to a monocyclic or polycyclic hydrocarbon such as cyclopentane, cyclohexane, bicycloalkane, tricycloalkane, or teracycloalkane, in which one or more hydrogen atoms are removed. And the like. Polycyclic hydrocarbons are more specifically
  • a group obtained by removing one or more hydrogen atoms from polycycloalkanes such as adamantan, norbornane, isobornane, tricyclodecane, and tetracyclododecane.
  • groups derived from cyclopentane, cyclohexane and norbornane by removing a hydrogen atom are industrially preferable.
  • Examples of the (0 fluorine atom or fluorinated alkyl group include those in which part or all of the hydrogen atoms of a fluorine atom or a lower alkyl group have been substituted with fluorine atoms.
  • trifluoro is Industrially, a fluorine atom or a trifluoromethyl group is preferred, for example, a romethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group and the like.
  • the GO alcoholic hydroxyl group or alkyloxy group may be simply a hydroxyl group, an alkyloxy group having a hydroxy group, an alkyloxyalkyl group, or an alkyloxy group containing an alcoholic hydroxyl group such as an alkyl group. And an alcoholic hydroxyl group-containing alkyloxyalkyl group or an alcoholic hydroxyl group-containing alkyl group.
  • Examples of the alkyloxy group, the alkyloxyalkyl group or the alkyl group include a lower alkyloxy group, a lower alkyloxy lower alkyl group, and a lower alkyl group. Alkyl group.
  • the lower alkyloxy group include a methyloxy group, an ethyloxy group, a propyloxy group, and a butyloxy group.
  • Specific examples of the lower alkyloxy lower alkyl group include a methyloxymethyl group.
  • a lower alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group.
  • a part of the hydrogen atoms of the alkyloxy part thereof is replaced with a fluorine atom
  • the alkyl group in which a part of the hydrogen atoms has been substituted with a fluorine atom that is, an alcoholic hydroxyl group-containing fluoroalkyloxy group, an alcoholic hydroxyl group-containing fluoroalkyloxyalkyl group or an alcoholic hydroxyl group. Included are fluoroalkyl groups.
  • the alcoholic hydroxyl group-containing fluoroalkyloxy group includes (HO) C (CF)
  • Examples of the alcoholic hydroxyl group-containing fluoroalkyloxyalkyl group include pyroxy group and the like, and examples thereof include (HO) C (CF) CH O—CH group and (HO) C (CF) CH CH O—C
  • a pill group and the like.
  • the (aO-1) structural unit is an alcoholic hydroxyl group-containing fluoroalkyloxy group.
  • Alcoholic hydroxyl group-containing fluoroalkyloxyalkyl group or alcoholic hydroxyl group-containing group A unit represented by the following general formula (56), which is formed by a fluoroalkyl group bonded to a norbornene ring and the double bond of the norbornene ring is cleaved, has transparency, alkali solubility and dry etching resistance. It is preferable because it is excellent in industrial properties and easily available industrially.
  • Z represents an oxygen atom, an oxymethylene group (-0 (CH)-), or a single bond.
  • n ′ and m ′ are each independently an integer of 1 to 5.
  • the polymer unit used in combination with such a (aO-l) unit is not limited as long as it is a known polymer unit.
  • a structural unit (aO-2) having a known (meth) acrylic ester having an acid dissociable, dissolution inhibiting group and capable of inducing the power of Is preferred because of its excellent resolution.
  • Such structural units (aO-2) include tert-butyl (meth) acrylate, tert-amyl
  • the polymer (A) further comprises a fluorinated alkylene structural unit (aO-3) for improving the transparency of the polymer, and the polymer (A) having increased alkali solubility due to the action of an acid. —2).
  • aO-3 By including such a structural unit (aO-3), transparency is further improved.
  • the structural unit (aO-3) is preferably a unit derived from tetrafluoroethylene.
  • Z, ⁇ ′, and m ′ are the same as those in the general formula (56), R 3 is a hydrogen atom or a methyl group, and R 4 is acid dissociable, dissolution inhibiting. Group.
  • the polymer (A-1) containing the general formula (56) and the polymer (A-2) have different structural formulas (0 fluorine atom or fluorinated alkyl group and ( ii) Included in the concept of a polymer comprising an alkali-soluble structural unit (aO-1) containing an aliphatic cyclic group having both an alcoholic hydroxyl group and having alkali solubility changed by the action of an acid It may have the following structural units.
  • the polymer (A) having such a unit is formed by cyclopolymerization of a diene compound having a hydroxyl group and a fluorine atom.
  • a diene compound having a hydroxyl group and a fluorine atom As the genie conjugate, hebutadiene is preferred because it is easy to form a polymer having a 5- or 6-membered ring having excellent transparency and dry etching resistance.
  • the polymer formed is the most industrially preferred U
  • Polymers comprising 4) are preferred.
  • the acid dissociable, dissolution inhibiting group a linear, branched or cyclic alkyloxymethyl group having 115 carbon atoms is preferable from the viewpoint of acid dissociation, particularly a lower alkoxymethyl group such as a methoxymethyl group. Is preferred because of its excellent resolution and pattern.
  • the acid dissociable, dissolution inhibiting group is in the range of 1040%, preferably 1530%, based on the entire hydroxyl groups, the pattern forming ability is excellent, and it is preferable.
  • R 5 is an alkyl O carboxymethyl group hydrogen atom or a C1 C15, xy are each 10 90 mol 0/0.
  • Such a polymer (A) can be synthesized by a known method.
  • the weight average molecular weight in terms of polystyrene of the resin of component (A) by GPC is not particularly limited! /, Is 5000 80000, more preferably 8000 50000.
  • the polymer (A) can be composed of one or more resins, and for example, the above-mentioned (A-1), (A-2), and (A-3) A mixture of two or more of the selected powers Alternatively, a conventionally known resin for a photoresist composition may be mixed and used.
  • the acrylic resin includes, for example, a structural unit (al) derived from a (meth) acrylate ester cap having an acid dissociable, dissolution inhibiting group, and other than the structural unit (al).
  • the structural unit derived from the (meth) acrylic ester including the structural unit derived from the (meth) acrylic acid ester, is at least 80 mol%, preferably 90 mol% (100 mol% is the most preferable). Is preferred.
  • the resin component is a monomer unit having a plurality of different functions other than the (al) unit, for example, in order to satisfy resolution, dry etching resistance, and the shape of a fine pattern, for example, , And a combination of the following constituent units.
  • the constituent unit derived from methacrylate ester and the constituent unit derived from acrylate ester are the constituent unit derived from methacrylate ester and ester derived from acrylate ester. against total number of moles of the structural unit is, methacrylic acid ester or al the induced structural unit 10-85 mole 0/0, preferably 20 to 80 mole 0/0, also induced acrylic acid ester ether force that the structural unit 15-90 mole 0/0, preferably preferably used such that 20 to 80 mole 0/0.
  • the (al) unit is a structural unit derived from a (meth) acrylate ester having an acid dissociable, dissolution inhibiting group.
  • the acid dissociable, dissolution inhibiting group in (al) has an alkali dissolution inhibiting property that renders the entire resin component insoluble before exposure, and dissociates after the exposure due to the action of the generated acid. Can be used without any particular limitation as long as it can be converted to alkali-soluble.
  • a carboxyl group of (meth) acrylic acid and a group forming a cyclic or chain tertiary alkyl ester, a tertiary alkoxycarbol group, or a chain alkoxyalkyl group are widely known. Being done.
  • an acid dissociable, dissolution inhibiting group containing an aliphatic polycyclic group can be suitably used.
  • the polycyclic group may be substituted with a fluorine atom or a fluorinated alkyl group, or may or may not be substituted with one of bicycloalkane, tricycloalkane, teracycloalkane and the like.
  • Examples include groups excluding the hydrogen element. Specific examples include groups obtained by removing one hydrogen atom from polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane.
  • Suitable monomer units as (al) are shown in the following general formulas (1) to (7).
  • R is a hydrogen atom or a methyl group
  • R is a lower alkyl group
  • R is a lower alkyl group
  • R are each independently a lower alkyl group, R is a tertiary alkyl group, R is methyl
  • R is a lower alkyl group, and R is a lower alkyl group.
  • Each of the above R to R and R to R is a lower linear or branched chain having 1 to 5 carbon atoms.
  • Examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isopentyl group, and a neopentyl group, which are preferable for the alkyl group.
  • a methyl group or an ethyl group is preferred.
  • R is a tertiary alkyl group such as a tert-butyl group or a tert-amyl group;
  • t is preferably a butyl group industrially!
  • the (al) unit among the above-mentioned units, particularly, the units represented by the general formulas (1), (2), and (3)
  • the composition unit is more preferable because a pattern having high transparency, high resolution, and excellent dry etching resistance can be formed.
  • the (a2) unit has a rataton unit, it is effective for enhancing hydrophilicity with a developer.
  • Such a unit (a2) may be a unit having a rataton unit and copolymerizable with other constituent units of the resin component.
  • examples of the monocyclic rataton unit include a group excluding one hydrogen atom from ⁇ -petit mouth rataton force.
  • examples of the polycyclic rataton unit include groups excluding one hydrogen atom from a rataton-containing polycycloalkane hydrogen atom.
  • Suitable monomer units as (a2) are represented by the following general formulas (10) to (12). These one R is a hydrogen atom or a methyl group.
  • ⁇ -buty ratatone ester and norbornane ratatone ester represented by the general formulas (10) and (11) are particularly preferable because they are industrially available.
  • the unit (a3) is a structural unit from which ester (meth) acrylate having an alcoholic hydroxyl group-containing polycyclic group is also derived.
  • the hydroxyl group in the alcoholic hydroxyl group-containing polycyclic group is a polar group, its use increases the hydrophilicity of the entire resin component with the developer, and improves the alkali solubility in the exposed area. Therefore, when the resin component has (a3), the resolution is improved. Preferred.
  • polycyclic group in (a3) the same aliphatic polycyclic group as exemplified in the description of (al) can be appropriately selected and used.
  • the alcoholic hydroxyl group-containing polycyclic group in (a3) is not particularly limited !, for example, a hydroxyl group-containing adamantyl group is preferably used.
  • the hydroxyl group-containing adamantyl group be represented by the following general formula (13), since it has an effect of increasing dry etching resistance and increasing perpendicularity of a pattern cross-sectional shape.
  • 1 is an integer of 1 to 3.
  • the unit (a3) may have any of the above-described alcoholic hydroxyl group-containing polycyclic groups and may be copolymerizable with other structural units of the resin component.
  • R is a hydrogen atom or a methyl group.
  • the polycyclic group in the (a4) unit is "different from the acid dissociable, dissolution inhibiting group, the ratatone unit, and the alcoholic hydroxyl group-containing polycyclic group!
  • the (a4) unit polycyclic group is an (al) unit acid dissociable, dissolution inhibiting group
  • the (a2) unit is a rataton unit
  • the (a3) unit is an alcoholic hydroxyl group-containing polycyclic group.
  • (A4) is an acid dissociable, dissolution inhibiting group of (al) units, a rataton unit of (a2) units
  • (a3) means that the alcoholic hydroxyl group-containing polycyclic group of the unit is not deviated from any difference.
  • the polycyclic group in the unit (a4) is selected so as not to overlap with the structural units used as the units (al) to (a3) in one resin component. It is not particularly limited.
  • the polycyclic group in the (a4) unit the same aliphatic polycyclic group as that exemplified as the (al) unit can be used, and it has been conventionally known as an ArF positive resist material. Many are available.
  • At least one selected from the group consisting of a tricyclodecanyl group, an adamantyl group, and a tetracyclododetyl group is preferred in terms of industrial availability.
  • any unit having the above polycyclic group and copolymerizable with other constituent units of the resin component can be used.
  • composition of the acrylic ⁇ component is the total of the structural units constituting the ⁇ fat component, (al) units force 0-60 mole 0/0, preferably from 30 to 50 mole 0/0 Is excellent in resolution and preferred.
  • the content of the (a2) unit is from 20 to 60 mol%, preferably from 30 to 50 mol%, based on the total of the constitutional units constituting the resin component, the resolution is excellent and it is preferable.
  • the total of the structural units constituting the ⁇ component 5-50 mol 0/0, and preferably is 10 to 40 mole 0/0, excellent resist pattern shape , Preferred.
  • the total of the structural units constituting the ⁇ component 1 to 30 molar 0/0, and preferably is 5 to 20 mole 0/0, isolated patterns through to semi-dense patterns It has excellent resolution and is preferable.
  • the (al) unit and (a2), (a3) and (a4) at least one unit from which the unit force is also selected may be appropriately combined according to the purpose.
  • Unit terpolymer is preferable because of its excellent resist pattern shape, exposure latitude, heat resistance, and resolution.
  • the respective contents of the respective structural units (al) ⁇ (a3) during its, is (al) 20 to 60 mol%, (a2) a force 0-60 mole 0/0, and (a3) 5 preferably 50 mol 0/0.
  • the weight average molecular weight of the resin component resin in the present invention is particularly limited, and is preferably 5000 to 30000, more preferably ⁇ 8000 to 2000. It is set to 0. If it is larger than this range, the solubility in the resist solvent will be poor, and if it is smaller, the dry etching resistance and the cross-sectional shape of the resist pattern may be deteriorated.
  • the cycloolefin resin is preferably a resin obtained by copolymerizing a structural unit (a5) represented by the following general formula (18) and, if necessary, a structural unit obtained from the above (al). ⁇ .
  • the unit (a5) has an m force
  • silsesquioxane-based resin has a structural unit (a6) represented by the following general formula (19) and a structural unit (a7) represented by the following general formula (20) Things.
  • an acid dissociable, dissolution inhibiting group which is a hydrocarbon group containing an aliphatic monocyclic or polycyclic group
  • X is an alkyl group having 1 to 8 carbon atoms in which at least one hydrogen atom is substituted by a fluorine atom
  • m is Is an integer from 1 to 3)
  • R is a hydrogen atom or a linear, branched or cyclic alkyl group
  • 11 12 is a linear, branched or cyclic saturated aliphatic hydrocarbon group
  • X is an alkyl group having 1 to 8 carbon atoms in which at least one hydrogen atom is substituted by a fluorine atom.
  • This silsesquioxane resin is dissociated by the action of the acid generated from the acid generator after exposure, and at the same time has the alkali dissolution inhibiting property that renders the entire oxane resin alkali-insoluble. It is a group that changes the whole to alkali-soluble.
  • an acid dissociable, dissolution inhibiting group such as a hydrocarbon group containing a bulky aliphatic monocyclic or polycyclic group, such as the following general formulas (21) to (25), is used. No.
  • an acid dissociable, dissolution inhibiting group By using such an acid dissociable, dissolution inhibiting group, a degassing phenomenon in which the dissociation inhibiting group after dissociation is hardly gasified is prevented.
  • the acid dissociable, dissolution inhibiting group may be an acid dissociable, dissolution inhibiting group having a hydrocarbon group containing an aliphatic monocyclic or polycyclic group, depending on the light source used.
  • an acid dissociable, dissolution inhibiting group having a hydrocarbon group containing an aliphatic monocyclic or polycyclic group depending on the light source used.
  • many resins have been proposed for resins for resist compositions of ArF excimer lasers. Generally, those which form a cyclic tertiary alkyl ester with a carboxyl group of (meth) acrylic acid are widely known.
  • an acid dissociable, dissolution inhibiting group containing an aliphatic polycyclic group is preferable.
  • the aliphatic polycyclic group those proposed in ArF resists can be selected and used as appropriate.
  • examples of the aliphatic polycyclic group include groups obtained by removing one hydrogen atom from bicycloalkane, tricycloalkane, teracycloalkane, and the like.More specifically, adamantane, norbornane, isobornane, Tricyclode Examples include groups in which one hydrogen atom has been removed from polycycloalkanes such as can and tetracyclododecane.
  • silsesquioxane resin having a 2-methyl-2 adamantyl group represented by the general formula (23) and / or a 2-ethyl-2 adamantyl group represented by the general formula (24) is It is preferable because it is excellent in resist characteristics such as degassing, resolution and heat resistance.
  • the number of carbon atoms in R and R is determined by the solubility in a resist solvent and the molecular size.
  • the point force for controlling the size is also preferably 1 to 20, and more preferably 5 to 12.
  • cyclic saturated aliphatic hydrocarbon groups have high transparency to high-energy light and a high glass transition point (Tg) of the obtained silsesquioxane resin, and are likely to be hardened during PEB (heating after exposure). It is preferable because it has advantages such as easy control of the generation of acid from the acid generator.
  • the cyclic saturated aliphatic hydrocarbon group may be a monocyclic group or a polycyclic group.
  • the polycyclic group include groups in which two hydrogen atoms have been removed from bicycloalkane, tricycloalkane, tetracycloalkane, and the like, and more specifically, adamantan, norbornane, isobornane, tricycloalkane, and tricycloalkane.
  • Examples include groups obtained by removing two hydrogen atoms from polycycloalkanes such as decane and tetracyclododecane.
  • Cyclic conjugates or their derivatives have a group in which two hydrogen atoms have been removed.
  • the derivative refers to the alicyclic conjugates of the chemical formulas (26) to (31), wherein at least one hydrogen atom is a lower alkyl group such as a methyl group or an ethyl group, an oxygen atom, a fluorine atom, It means those substituted with groups such as halogen atoms such as chlorine and bromine.
  • a group obtained by removing two hydrogen atoms from an alicyclic compound having a group power selected from the chemical formulas (26) to (31) has high transparency and is industrially available! / Like,.
  • R is preferably 1 to 10, more preferably
  • the alkyl group includes a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a cyclopentyl group, a cyclohexyl group, Examples thereof include an ethylhexyl group and an n-octyl group.
  • R is suitable for the desired alkali solubility of the candidate silsesquioxane resin.
  • the alkali solubility is highest when R is a hydrogen atom. Alkali dissolution
  • the alkali solubility of the silsesquioxane resin decreases as the number of carbon atoms in the alkyl group increases and as the volume increases.
  • the resistance to an alkali developing solution is improved, so that an exposure margin when forming a resist pattern using the silsesquioxane resin is improved, and a dimensional change due to exposure is reduced.
  • uneven development is eliminated, the roughness of the edge portion of the formed resist pattern is reduced. Is also improved.
  • X in the general formulas (19) and (20) is particularly preferably a linear alkyl group.
  • the carbon number of the alkyl group is 18, preferably 14, a lower alkyl group from the glass transition (Tg) point of the silsesquioxane resin and the solubility in the resist solvent.
  • Tg glass transition
  • all the hydrogen atoms are substituted because the greater the number of hydrogen atoms substituted by a fluorine atom, the higher the transparency to high-energy photoelectron beams of 200 nm or less.
  • Each X may be the same or different.
  • M in the general formula (19) is an integer of 13 and is preferably 1, because it dissociates and dissociates the acid dissociable, dissolution inhibiting group.
  • silsesquioxane-based resin examples include those represented by the following general formulas (32) and (33).
  • the amount of the structural units represented by (a 6) and (a7) it is,. 30 to: L00 mol%, preferably 70 to 100% , more preferably 100 mol 0/0.
  • the ratio of the structural unit represented by (a6) to the total of the structural units represented by (a6) and (a7) is preferably 570 mol 0, more preferably 10 40 mol 0 / 0 .
  • the proportion of the structural unit represented by (a7) is preferably 60 90 mol% is more preferably 30 95 mol 0.
  • a silsesquioxane resin used for an ArF excimer resin resist composition for example, a methyl group, an ethyl group, or a propyl group represented by the following general formula (34)
  • the mass average molecular weight (Mw) of the silsesquioxane-based resin is not particularly limited, but is preferably from 2,000 to 15,000, and more preferably from 3,000. ⁇ 8000. If it is larger than this range, the solubility in the resist solvent will be poor, and if it is smaller, the cross-sectional shape of the resist pattern may be poor.
  • the mass average molecular weight (Mw) and the Z number average molecular weight (Mn), that is, the polymer dispersity are not particularly limited, but are preferably 1.0 to 6.0, and more preferably 1.5 to 6.0. 2.5. If it is larger than this range, the resolution and the pattern shape may be deteriorated.
  • the silsesquioxane-based resin of the present invention is a polymer having a silsesquioxane composed of the structural units represented by (a6) and (a7) in its basic skeleton, High transparency to the following high energy light and electron beams. Therefore, the positive resist composition containing the silsesquioxane resin of the present invention is useful, for example, in lithography using a light source having a shorter wavelength than that of an ArF excimer laser, and in particular, even in a single-layer process. A fine resist pattern with a line width of 150 nm or less, or even 120 nm or less, can be formed. In addition, when used as the upper layer of the two-layer resist laminate, 120 nm or less It is also useful for the process of forming fine resist pattern of less than 100nm
  • the resin component used in the negative resist composition is not limited as long as it is commonly used, but specifically, the following are preferred.
  • Such a resin component is a resin component that becomes alkali-insoluble by an acid and has two types of functional groups capable of reacting with each other to form an ester in a molecule.
  • the resin (a8) which becomes alkali-insoluble by dehydration to form an ester by the action of an acid generated from an acid generator added simultaneously to the resist material, is preferably used.
  • the two kinds of functional groups capable of forming an ester by reacting with each other mean, for example, a hydroxyl group and a carboxyl group or a carboxylic acid ester for forming a carboxylic acid ester. .
  • a resin for example, a resin having a hydroxyalkyl group and at least one of a carboxy group and a carboxylic ester group in a side chain of the resin main skeleton is preferable.
  • a resin component (a9) composed of a polymer having a dicarboxylic acid monoester unit is also preferable.
  • (a8) is a resin component having at least a structural unit represented by the following general formula (35).
  • R is a hydrogen atom, a C1-C6 alkyl group, or a vol group, adamantyl
  • Examples of such a resin include a polymer (homopolymer or homopolymer) of at least one monomer selected from the group consisting of ⁇ - (hydroxyalkyl) acrylic acid and ⁇ - (hydroxyalkyl) acrylic acid alkyl ester. Copolymer) (a8-1), and a- (hydroxyalkyl) acrylic acid and ⁇ - (hydroxyalkyl) acrylic acid alkyl ester. At least one selected monomer and other ethylenically unsaturated Neutral force of carboxylic acid and ethylenically unsaturated carboxylic acid ester A copolymer (a8-2) with at least one selected monomer is preferred.
  • polymer (a8-1) a copolymer of ⁇ - (hydroxyalkyl) acrylic acid and an alkyl ester of ⁇ - (hydroxyalkyl) acrylate is preferred.
  • at least one selected from neutral acids of acrylic acid, methacrylic acid, alkyl acrylate and alkyl methacrylate is used as the other ethylenically unsaturated carboxylic acid or ethylenically unsaturated carboxylic acid ester. What was there is preferred! /.
  • Examples of the hydroxyalkyl group in the ⁇ - (hydroxyalkyl) acrylic acid and the ⁇ - (hydroxyalkyl) acrylic acid alkyl ester include a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, and a hydroxybutyl group.
  • a lower hydroxyalkyl group is exemplified. Among these, a hydroxyethyl group and a hydroxymethyl group are preferred because of ease of ester formation.
  • alkyl group in the alkyl ester portion of the alkyl ester of at- (hydroxyalkyl) acrylate examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an ⁇ butyl group, a sec butyl group, and a tert butyl group. group, a lower alkyl group such as an amyl group, bicyclo [2.2.1] heptyl, bornyl group, Adamanchiru group, tetracyclo [4. 4. 0. 1 2 ⁇ 5 .
  • alkyl group in the ester moiety is a polycyclic hydrocarbon group, it is effective for improving dry etching resistance.
  • a lower alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group is preferable because an inexpensive and easily available alcohol component for forming an ester is used. .
  • a hydroxyalkyl group is In the case of a lower alkyl ester, a hydroxyalkyl group is In the case of an ester with a cross-linked polycyclic hydrocarbon, such esterification is unlikely to occur. Therefore, when the ester with the bridged polycyclic hydrocarbon is introduced into the resin, it is preferable that the resin has a carboxyl group on the side chain at the same time.
  • examples of other ethylenically unsaturated carboxylic acids and ethylenically unsaturated carboxylic esters in the above (a8-2) include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and fumaric acid. Acids and alkyl esters of these unsaturated carboxylic acids such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, nxyl and octyl esters. Further, the alkyl group of the ester moiety, bicyclo [2.2 1.] Heptyl, Bol -. Group, Adamanchiru group, tetracyclo [4. 4. 0.
  • De decyl, tricyclo [5.2.2 1.0 2.6] can also be used esters of acrylic acid or methacrylic acid having a bridge power 4 Na-type polycyclic hydrocarbon groups such as decyl.
  • esters of acrylic acid or methacrylic acid having a bridge power 4 Na-type polycyclic hydrocarbon groups such as decyl.
  • acrylic acid and methacrylic acid, or their lower alkyl esters such as methyl, ethyl, propyl and n-butyl esters are preferred because they are inexpensive and readily available.
  • the resin of the resin component (a8-2) at least one monomer selected from the group consisting of ⁇ - (hydroxyalkyl) acrylic acid and alkyl ⁇ - (hydroxyalkyl) acrylate Units and other ethylenically unsaturated carboxylic acids and ethylenically unsaturated forces Neutral strength of rubonic esters
  • the ratio of at least one selected monomer unit is 20:80 in molar ratio! In particular, 50:50! And 90:10 is preferred! / ,. When the ratio of both units is within the above range, an ester can be formed easily within a molecule or between molecules, and a favorable resist pattern can be obtained immediately.
  • the resin component (a9) is a resin component having at least a structural unit represented by the following general formula (36) or (37). [0149] [Formula 24]
  • R and R represent an alkyl chain having 0 to 8 carbon atoms, and R represents at least 2
  • a negative resist composition using a resin component having such a dicarboxylic acid monoester monomer unit is preferable in that the resolution is high and the line edge roughness is reduced. Further, it is more preferable in the immersion exposure process in which swelling resistance is high.
  • Examples of such a dicarboxylic acid monoester compound include fumaric acid, itaconic acid, mesaconic acid, daltaconic acid, and traumatic acid.
  • dicarboxylic acid monoester units polymers or copolymers of dicarboxylic Sanmo Roh ester monomers (a 9-1), and a dicarboxylic acid monoester Terumonoma, alpha described above - ( Hydroxyalkyl) acrylic acid, ⁇ - (hydroxyalkyl) acrylic acid alkyl ester, other ethylenically unsaturated carboxylic acids and ethylenically unsaturated carboxylic acid ester copolymers with at least one selected monomer ( a9-2) and the like are preferred.
  • the resin component used in the negative resist may be used alone, or two or more kinds may be used in combination.
  • the weight average molecular weight of the resin component is 1,000 to 50,000, and preferably ⁇ 2,000 to 30,000.
  • a positive type resist using a fluorine resin or an acrylic resin ((al) to (a4)) is a resist containing a resin which is relatively resistant to immersion.
  • a certain force for immersion exposure As the size approaches the limit resolution, the resolution of the no-turn tends to deteriorate. It is extremely effective to form the protective film of the present invention and completely separate the immersion liquid and the resist film in order to remove such various factors, which is not one factor that promotes the resolution degradation.
  • a positive resist using a silsesquioxane resin ((a6) and (a7)) or a negative resist using a specific resin (a8) and Z or (a9) Therefore, it is considered that the immersion resistance is lower than that of the positive resist using the acrylic resin, and it is possible to improve the suitability for immersion exposure by using the protective film of the present invention. It becomes.
  • an arbitrary one is appropriately selected from those conventionally known as an acid generator in a chemically amplified resist. Can be used.
  • the acid generator include diphenyl trifluoromethanesulfonate, (4-methoxyphenyl) phenyl trifluoromethanesulfonate, and bis (4-methoxyphenyl) trifluoromethanesulfonate.
  • the triphenylsulfonium salt is preferably used because it is difficult to generate an organic gas upon decomposition.
  • triphenylsulfonium salts in particular, a triphenylsulfonium salt represented by the following general formula (38) and having a perfluoroalkylsulfonate ion as an arion is It is preferably used because it can increase the sensitivity.
  • R 1, R 2 and R 3 each independently represent a hydrogen atom, a carbon number of 1 to 8, preferably 1 to 4
  • the above acid generators may be used alone or in combination of two or more.
  • the mixing amount is 0.5 parts by mass, preferably 1 to 10 parts by mass, based on 100 parts by mass of the above-mentioned resin component. If the amount is less than 0.5 part by mass, pattern formation may not be sufficiently performed. If the amount exceeds 30 parts by mass, a uniform solution may not be obtained, which may cause a decrease in storage stability.
  • the positive type negative resist composition of the present invention comprises the above resin component and an acid generator. And any components described below are preferably dissolved in an organic solvent.
  • the organic solvent is not particularly limited as long as it can dissolve the resin component and the acid generator to form a uniform solution. One or more of them can be appropriately selected and used.
  • ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, and 2-heptanone
  • ethylene glycol ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoacetate
  • propylene Polyhydric alcohols such as glycolone, propylene glycol monoacetate, dipropylene glycol, or dipropylene glycol monoacetate monomethinoleate, monoethylenateate, monopropynoleate, monobutyl ether or monobutyl ether;
  • Derivatives, cyclic ethers such as dioxane, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methoxypro Methyl propionic acid, esters such as ethoxypropionate
  • esters such
  • a quencher is further used, for example, a known amine or a secondary lower aliphatic.
  • Organic acids such as amines—tertiary lower aliphatic amines and the like and oxo acids of organic carboxylic acid phosphoruss can be contained.
  • the lower aliphatic amine refers to an amine of alkyl or alkyl alcohol having 5 or less carbon atoms.
  • the secondary and tertiary amines include trimethylamine, getylamine, and triethynoleamine.
  • alkanolamines such as triethanolamine are preferred. These may be used alone or in combination of two or more.
  • These amines are usually used in the range of 0.01 to 2.0% by mass based on the resin component.
  • organic carboxylic acid examples include malonic acid, citric acid, malic acid, succinic acid, and ammonium. Preferred are benzoic acid, salicylic acid and the like.
  • Examples of the oxo acid of phosphorus or a derivative thereof include phosphoric acid, a derivative such as phosphoric acid such as di-n-butyl ester phosphate, and diphenyl phosphate ester, phosphonic acid, and dimethyl phosphonate.
  • Derivatives such as phosphonic acids and their esters, such as phosphonic acid-di-n-butyl ester, pheninolephosphonic acid, dipheninoleestenol phosphonate, dibenzinoleestenol phosphonate, phosphinic acid, phenylphosphinic acid, etc.
  • esters such as esters, of which phosphonic acid is particularly preferred.
  • the organic acid is used in an amount of 0.01 to 5.0 parts by mass per 100 parts by mass of the resin component. These may be used alone or in combination of two or more.
  • organic acids are preferably used in an equimolar range or less with respect to the amine.
  • the positive resist composition of the present invention may further contain, if desired, an additive which is miscible, for example, an additional resin for improving the performance of the resist film, and a surfactant for improving coatability. And a dissolution inhibitor, a plasticizer, a stabilizer, a coloring agent, an antihalation agent and the like.
  • a crosslinking agent may be added as necessary for the purpose of further improving the crosslink density and improving the shape and resolution of the resist pattern and the dry etching resistance. You can.
  • cross-linking agent an arbitrary one can be appropriately selected and used from known cross-linking agents which are not particularly limited and are conventionally used in a chemically amplified negative resist.
  • this crosslinker include 2,3 dihydroxy-5 hydroxymethylnorbornane, 2hydroxy-1,5 bis (hydroxymethyl) norbornane, cyclohexanedimethanol, 3,4,8 (or 9) -trihydroxytricyclone Aliphatic hydrocarbons having a hydroxyl group or a hydroxyalkyl group or both such as decane, 2-methyl 2-adamantanol, 1,4-dioxane-1,2,3-diol, 1,3,5 trihydroxycyclohexane or a mixture thereof.
  • An oxygen derivative and an amino group-containing conjugate such as melamine, acetoguanamine, benzoguanamine, urea, ethylene urea, and glycol peryl are reacted with formaldehyde or formaldehyde and a lower alcohol to form a hydrogen atom of the amino group.
  • Conjugates in which the substituent is substituted with a hydroxymethyl group or a lower alkoxymethyl group for example, hexamethoxymethylmelamine, bismethoxymethylurea, bismethoxymethylbismethoxyethyleneurea, tetramethoxymethyldalicholperyl, tetramethoxymethylurea
  • Butoxymethyldaricol peryl is particularly preferred. Tetrabutoxymethyldaricol peril is particularly preferred.
  • crosslinking agents may be used alone or in combination of two or more.
  • a conventional resist composition is applied to a substrate such as silicon wafer using a spinner or the like, and then pre-beta (PAB treatment) is performed.
  • PAB treatment pre-beta
  • a cyclic fluoroalcohol polymer represented by the following chemical formula (100) is coated with 2-methyl-1 propyl
  • a protective film forming material composition according to the present invention such as "a composition dissolved in alcohol", is uniformly applied, and then cured to form a resist protective film.
  • a refractive index liquid a liquid having a refractive index larger than the refractive index of air and smaller than the refractive index of the resist film: In cases specializing in water, immerse in pure water, deionized water, or fluorine-based solvents.
  • the resist film on the substrate in the immersed state is selectively applied through a desired mask pattern. Is exposed. Therefore, at this time, the exposure light passes through the refractive index liquid and the protective film and reaches the resist film.
  • the resist film is completely shielded from the refractive index liquid such as pure water by the protective film, and may undergo deterioration such as swelling due to invasion of the refractive index liquid, or conversely, the refractive index liquid. It does not elute components in pure water, deionized water, or fluorinated solvents, and alters the optical characteristics such as the refractive index of refractive index liquids.
  • the wavelength used for exposure is not particularly limited, and an ArF excimer laser, a KrF excimer laser, an F excimer laser, EUV (extreme ultraviolet), VUV (vacuum ultraviolet),
  • the refractive index of air is larger than the refractive index of air and the refractive index of the used resist film on the resist film via the protective film.
  • refractive index liquid Liquid with refractive index (refractive index liquid) is interposed.
  • refractive index liquid include water (pure water, deionized water), a fluorine-based inert liquid, and the like.
  • fluorine-based inert liquid include C HC1 F, C F OCH, C F OC
  • liquid examples include a liquid containing a fluorine compound such as H or CHF as a main component.
  • a fluorine compound such as H or CHF as a main component.
  • water pure water or deionized water
  • absorption of the exposure light is small.
  • fluorine-based solvent it is preferable to use a fluorine-based solvent.
  • the refractive index of the refractive index liquid to be used is not particularly limited as long as it is within a range "greater than the refractive index of air and smaller than the refractive index of the resist composition used".
  • the substrate is taken out of the refractive index liquid, and the liquid is removed from the substrate.
  • PEB post-exposure bake
  • an alkaline developing solution composed of an alkaline aqueous solution.
  • the protective film is first subjected to a solution flow, and subsequently, the soluble portion of the resist film is subjected to a solution flow.
  • post-beta may be performed subsequent to the development processing.
  • the water rinse for example, drops or sprays water on the substrate surface while rotating the substrate to wash away the developing solution on the substrate and the protective film components and the resist composition dissolved by the developing solution.
  • a resist pattern in which the resist film is patterned into a shape corresponding to the mask pattern is obtained.
  • the removal of the protective film and the development of the resist film are simultaneously realized by a single development step.
  • the pitch in the line and space pattern refers to the total distance of the resist pattern width and the space width in the line width direction of the pattern.
  • a protective film was formed on a substrate using the material for forming a protective film according to the present invention, and the water resistance and solubility of the protective film in an alkali developing solution were evaluated.
  • the structural unit force of annular fluoroalcohol shown in the general formula (100) supra also copolymer (a molecular weight 13800, are all R 5 is a hydrogen atom, x: y 50: 50 ( mol 0/0)) was used.
  • As solvents two types of 2-methyl-1-propanol and 4-methyl-2-pentanol were used to prepare 2% by mass solutions of each, and these were used as protective film forming compositions.
  • the two types of compositions for forming a protective film were applied on a semiconductor substrate using a spin coater under a coating condition of 1500 rpm. After the application, the coating was cured by heating at 90 ° C. for 90 seconds to obtain two types of protective films for evaluation.
  • the film thickness of the protective film using 2-methyl-1-propanol as a solvent (film 1) is 50.3 nm
  • the film thickness of the protective film using 4-methyl-2-pentanol as a solvent is 28.5 nm. Met.
  • the protective film was evaluated by (i) visually confirming the surface state, (ii) rinsing the film after rinsing for 90 seconds with pure water simulating immersion in a liquid (pure water) in an immersion exposure process. Measure reduction And (iii) the dissolution rate (thickness conversion: nmZ seconds) when immersed in an alkali developer (2.38% TMAH).
  • the visual surface condition was good for both Film 1 and Film 2.
  • the film thickness of Film 1 after water rinsing was 50.8 nm, and the film thickness of Film 2 was 28.8 nm. Remained good.
  • the dissolution rate by the developer was 3 nmZ seconds for the film 1 and 2 nmZ seconds for the film 2.
  • the resin component 100 parts by mass of the copolymer having the structural unit power shown in the following general formula (102) was used.
  • Examples of the acid generator include triphenylsulfo-dimethylnonafluorobutanesulfonate.
  • organic solvent a 5.5% aqueous solution of ethyl lactate was used. Further, 0.5 parts by mass of tri-n-octylamine is used as the nitrogen-containing organic compound.
  • a resist pattern was formed using the resist composition 1 produced as described above.
  • an organic anti-reflective coating composition “AR-19” (trade name, manufactured by Shipley) is applied to a silicon wafer using a spinner, baked on a hot plate at 215 ° C. for 60 seconds, and dried. Thus, an organic antireflection film having a thickness of 82 nm was formed. Then, on the antireflection film, the resist composition 1 was applied using a spinner, pre-betaed on a hot plate at 115 ° C. for 90 seconds, and dried to form a film having a thickness of 150 nm on the antireflection film. A resist film was formed.
  • an exposure apparatus NSR-S302 (-manufactured by Kon Company, NA (numerical aperture)) was passed through a mask pattern.
  • the substrate was subjected to PEB treatment at 115 ° C. for 90 seconds, and then developed with an alkaline developer at 23 ° C. for 60 seconds while the protective film was left.
  • an alkali developer a 2.38% by mass aqueous solution of tetramethylammonium hydroxide was used.
  • a resist pattern having a 300 nm line and space of 1: 1 was formed by exactly the same means except that no protective film was formed. Observation with a scanning electron microscope (SEM) revealed that the pattern fluctuated and swelled so strongly that the pattern could not be observed.
  • SEM scanning electron microscope
  • organic solvent a 6.0% aqueous solution of ethyl lactate was used. Further, as the nitrogen-containing organic compound, 1.20 parts by mass of tri-2- (2-methoxyethoxy) ethylamine was used.
  • a resist pattern is formed using the resist composition 2 produced as described above. It was.
  • an organic anti-reflective coating composition “AR-19” (trade name, manufactured by Shipley) is applied to a silicon wafer using a spinner, baked on a hot plate at 215 ° C. for 60 seconds, and dried. Thus, an organic antireflection film having a thickness of 82 nm was formed. Then, on the antireflection film, the resist composition 1 was applied using a spinner, pre-betaed on a hot plate at 115 ° C. for 90 seconds, and dried to form a film having a thickness of 150 nm on the antireflection film. A resist film was formed.
  • an exposure apparatus NSR-S302 (-manufactured by Kon Company, NA (numerical aperture)) was passed through a mask pattern.
  • the substrate was subjected to PEB treatment at 115 ° C. for 90 seconds, and then developed with an alkaline developer at 23 ° C. for 60 seconds while the protective film was left.
  • an alkali developer a 2.38% by mass aqueous solution of tetramethylammonium hydroxide was used.
  • the following resin component, acid generator, and nitrogen-containing organic compound were uniformly dissolved in an organic solvent to prepare a resist composition.
  • organic solvent a 7.0% concentration aqueous solution of a mixed solvent of propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate (mixing ratio: 6: 4) was used.
  • nitrogen-containing organic compound 0.25 parts by mass of triethanolamine was used. Further, 25 parts by mass of ⁇ -petit mouth ratatone was added as an additive.
  • a resist pattern was formed.
  • an organic anti-reflective coating composition “ARC29” (trade name, manufactured by Brewer) is applied to a silicon wafer using a spinner, and then baked on a hot plate at 205 ° C for 60 seconds and dried. From this, an organic antireflection film having a thickness of 77 nm was formed. Then, on the antireflection film, the resist composition was applied using a spinner, pre-betaed on a hot plate at 130 ° C. for 90 seconds, and dried to form a film having a thickness of 225 nm on the antireflection film. A resist film was formed.
  • a protective film material dissolved in 1-propyl alcohol and having a resin concentration of 2.6% was spin-coated and heated at 90 ° C for 60 seconds to form a protective film having a thickness of 70. Onm.
  • pattern light was irradiated (exposed) using an ArF excimer laser (wavelength: 193 nm) with an exposure apparatus Nikon-S302A (manufactured by Nikon Corporation) through the mask pattern.
  • immersion exposure treatment pure water was continuously dropped on the resist film at 23 ° C. for 2 minutes while rotating the silicon wafer provided with the resist film after the exposure.
  • the substrate was subjected to PEB treatment at 115 ° C for 90 seconds, and then developed with an alkaline developer at 23 ° C for 60 seconds while leaving the protective film.
  • an alkaline developer As the alkali developer, a 2.38% by mass aqueous solution of tetramethylammonium hydroxide was used.
  • the protective film was completely removed, and the development of the resist film was successfully realized.
  • the substrate on which the exposed and pure water was dropped was pulled and stored in an atmosphere having an amine concentration of 2. Oppb for 60 minutes, and then subjected to the same developing treatment as described above, and the resist pattern shape was similarly observed. As a result, it was found that there was no significant difference from the pattern profile.
  • the resist pattern in which the 130 nm line and space was 1: 1 had a good rectangular shape, regardless of whether the resist was kept for 60 minutes or not.
  • the resist pattern shape was observed in exactly the same manner as in Example 4 except that the resin was dissolved in chilled propyl alcohol and the resin concentration was changed to 2.6%.
  • the resist pattern in which the 130 nm line and space was 1: 1 was a good rectangular shape, regardless of whether the resist was left for 60 minutes or not.
  • the substrate on which pure water was dropped after exposure was pulled for 65 minutes in an atmosphere having an amine concentration of 2. Oppb. After the laying, the same development processing as described above was performed, and the resist pattern shape was observed in the same manner. As a result, no significant difference from the pattern profile was observed.
  • the substrate to which the exposed and pure water was dropped was set aside for 65 minutes in an atmosphere having an amine concentration of 2. Oppb, and then subjected to the same developing treatment as described above to observe the resist pattern shape in the same manner. As a result, it was found that there was no significant difference from the pattern profile.
  • the substrate on which the exposed and pure water was dropped was pulled and stored in an atmosphere having an amine concentration of 2. Oppb for 65 minutes, and then subjected to the same developing treatment as described above to observe the resist pattern shape in the same manner. As a result, it was found that there was no significant difference from the pattern profile.
  • a resist pattern was formed using the resist composition produced as described above.
  • an organic anti-reflective coating composition “ARC29” (trade name, manufactured by Brewer) is applied to a silicon wafer using a spinner, and then baked on a hot plate at 205 ° C for 60 seconds and dried. From this, an organic antireflection film having a thickness of 77 nm was formed. Then, on the antireflection film, the resist composition was applied using a spinner, pre-betaed on a hot plate at 130 ° C. for 90 seconds, and dried to form a film having a thickness of 225 nm on the antireflection film. A resist film was formed. This was used as evaluation substrate 1.
  • evaluation substrates 1 and 2 were exposed through a mask pattern to an exposure apparatus Nikon-S302A.
  • each substrate was extracted with 35 mL of pure water at room temperature for 5 minutes.
  • the present invention no matter what conventional resist composition is used to form a resist film, no matter what kind of immersion liquid is used in the immersion exposure step, and especially if water is used. Even when a fluorine-based medium is used, the resist pattern strength is high, such as a resist pattern force T—top shape, and the sensitivity is high. The resist pattern profile shape is excellent, and the depth of focus and exposure latitude are excellent. It is possible to obtain a highly accurate resist pattern having good stability over time. Therefore, when the protective film of the present invention is used, the formation of a resist pattern using an immersion exposure process can be effectively performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

 液浸露光プロセス、中でもリソグラフィー露光光がレジスト膜に到達する経路の少なくとも前記レジスト膜上に空気より屈折率が高くかつ前記レジスト膜よりも屈折率が低い所定厚さの液体を介在させた状態で露光することによってレジストパターンの解像度を向上させる液浸露光プロセスにおいて、水を始めとした各種浸漬液を用いた液浸露光中のレジスト膜の変質および使用浸漬液の変質を同時に防止し、かつ処理工程数の増加を来すことなく、液浸露光を用いた高解像性レジストパターンの形成を可能とする。レジスト膜を浸漬させる液体、特に水に対して実質的に相溶性を持たず、かつアルカリに可溶である特性を有する保護膜を、使用するレジスト膜の表面に形成する。

Description

明 細 書
液浸露光プロセス用レジスト保護膜形成用材料、および該保護膜を用い たレジストパターン形成方法
技術分野
[0001] 本発明は、液浸露光(Liquid Immersion Lithography)プロセスに、中でも、リソグラ フィー露光光がレジスト膜に到達する経路の少なくとも前記レジスト膜上に空気より屈 折率が高くかつ前記レジスト膜よりも屈折率が低い所定厚さの液体を介在させた状 態で前記レジスト膜を露光することによってレジストパターンの解像度を向上させる構 成の液浸露光プロセスに用いて好適なレジスト保護膜形成用材料、および前記保護 膜形成用材料を用いたレジストパターン形成方法に関するものである。
背景技術
[0002] 半導体デバイス、液晶デバイス等の各種電子デバイスにおける微細構造の製造に は、リソグラフィ一法が多用されている力 デバイス構造の微細化に伴って、リソグラフ ィー工程におけるレジストパターンの微細化が要求されている。
[0003] 現在では、リソグラフィ一法により、例えば、最先端の領域では、線幅が 90nm程度 の微細なレジストパターンを形成することが可能となっている力 今後はさらに微細な パターン形成が要求される。
[0004] このような 90nmより微細なパターン形成を達成させるためには、露光装置とそれに 対応するレジストの開発が第 1のポイントとなる。露光装置においては、 Fエキシマレ
2 一ザ一、 EUV (極端紫外光)、電子線、 X線、軟 X線等の光源波長の短波長化やレン ズの開口数 (NA)の増大等が開発ポイントとしては一般的である。
[0005] し力しながら、光源波長の短波長化は高額な新たな露光装置が必要となるし、また 、高 NAィ匕では、解像度と焦点深度幅がトレードオフの関係にあるため、解像度を上 げても焦点深度幅が低下するという問題がある。
[0006] 最近、このような問題を解決可能とするリソグラフィー技術として、液浸露光(リキッド イマ一ジョンリソグラフィー)法という方法が報告されている(例えば、非特許文献 1 Qo urnal of Vacuum Science & Technology B ノヤ ~~ナノレオフノ ャュ1 ~~ムサ ィエンステクノロジー)(J. Vac. Sci. Technol. B) ( (発行国)アメリカ)、 1999年、第 17卷、 6号、 3306— 3309頁)、非特許文献 2 (Journal of Vacuum Science & Technology B (ジャーナルォブバキュームサイエンステクノロジー)(J. Vac. S ci. Technol. B) ( (発行国)アメリカ)、 2001年、第 19卷、 6号、 2353— 2356頁)、 非特許文献 3 (Proceedings of SPIE Vol.4691 (プロシーデイングスォブエスピ 一アイイ((発行国)アメリカ) 2002年、第 4691卷、 459— 465頁))。この方法は、露 光時に、レンズと基板上のレジスト膜との間の少なくとも前記レジスト膜上に所定厚さ の純水またはフッ素系不活性液体等の液状屈折率媒体 (屈折率液体、浸漬液)を介 在させるというものである。この方法では、従来は空気や窒素等の不活性ガスであつ た露光光路空間を屈折率 (n)のより大きい液体、例えば純水等で置換することにより 、同じ露光波長の光源を用いてもより短波長の光源を用いた場合や高 NAレンズを 用いた場合と同様に、高解像性が達成されると同時に焦点深度幅の低下もない。
[0007] このような液浸露光を用いれば、現存の装置に実装されているレンズを用いて、低 コストで、より高解像性に優れ、かつ焦点深度にも優れるレジストパターンの形成を実 現できるため、大変注目されて 、る。
[0008] 非特許文献 1 Journal of Vacuum Science & Technology B (ジャーナル ォブバキュームサイエンステクノロジー)(J. Vac. Sci. Technol. B) ( (発行国)ァメリ 力)、 1999年、第 17卷、 6号、 3306— 3309頁
非特許文献 2 Journal of Vacuum Science & Technology B (ジャーナル ォブバキュームサイエンステクノロジー)(J. Vac. Sci. Technol. B) ( (発行国)ァメリ 力)、 2001年、第 19卷、 6号、 2353— 2356頁
非特許文献 3 : Proceedings of SPIE Vol.4691 (プロシーデイングスォブエスピ 一アイイ((発行国)アメリカ) 2002年、第 4691卷、 459—465頁
発明の開示
発明が解決しょうとする課題
[0009] しかしながら、上述のような液浸露光プロセスにおいては、露光時にレジスト膜が直 接に屈折率液体 (浸漬液)に接触するので、レジスト膜は液体による侵襲を受けること になる。したがって、従来使用されてきたレジスト組成物をそのまま適用可能力否かを 検証する必要がある。
[0010] 現在慣用のレジスト組成物は、露光光に対する透明性を有することという最重要必 須特性から可能な榭脂が既に広範に検討されて確立された組成物である。本発明 者等は、このような現在提案されているレジスト組成物のうち、そのままの組成で、あ るいは組成を若干調整することによって、液浸露光に適する特性を持つレジスト組成 物が得られないかを実験検討した。その結果、実用上、期待のできるレジスト組成物 が存在することが判明した。その一方で、液浸露光では、液による変質が生じて十分 なパターン解像性が得られな!/ヽレジスト組成物でも、通常の空気層を介した露光によ るリソグラフィーでは微細かつ高い解像性を示すものが多く存在することも確認された 。このようなレジスト組成物は、多くの開発資源を費やして確立された組成物であり、 露光光に対する透明性、現像性、保存安定性等の様々なレジスト特性に優れた組成 物であり、力かるレジスト組成物には浸漬液に対する耐性のみが劣るというもの力 多 数存在する。このような液浸露光に適さないが、空気層でのリソグラフィーでは高い解 像性を示す組成物の!、くつかの例は、後述の本発明の実施例および比較例にぉ ヽ て示すこととする。
[0011] なお、前述の液浸露光に適するレジスト膜を用いた場合であっても、液浸露光を行 つた場合、空気層を介した露光に比べて、幾分品質および良品収率が落ちることも 確認されている。
[0012] なお、前述の従来のレジスト膜の液浸露光適性は、次のような液浸露光方法に対 する分析を踏まえて、評価したものである。
[0013] すなわち、液浸露光によるレジストパターン形成性能を評価するには、(i)液浸露光 法による光学系の性能、(ϋ)浸漬液に対するレジスト膜からの影響、(m)浸漬液によ るレジスト膜の変質、の 3点が確認できれば、必要十分であると、判断される。
[0014] (i)の光学系の性能については、例えば、表面耐水性の写真用の感光板を水中に 沈めて、その表面にパターン光を照射する場合を想定すれば明らかなように、水面と 、水と感光板表面との界面とにおいて反射等の光伝搬損失がなければ、後は問題が 生じないことは、原理上、疑いがない。この場合の光伝搬損失は、露光光の入射角 度の適正化により容易に解決できる。したがって、露光対象であるものがレジスト膜で あろうと、写真用の感光版であろうと、あるいは結像スクリーンであろうと、それらが浸 漬液に対して不活性であるならば、すなわち、浸漬液から影響も受けず、浸漬液に 影響も与えないものであるならば、光学系の性能には、なんら変化は生じないと考え 得る。したがって、この点については、新たに確認実験するには及ばない。
[0015] (ii)の浸漬液に対するレジスト膜からの影響は、具体的には、レジスト膜の成分が液 中に溶け出し、液の屈折率を変化させることである。液の屈折率が変化すれば、バタ ーン露光の光学的解像性は、変化を受けるのは、実験するまでもなぐ理論から確実 である。この点については、単に、レジスト膜を液に浸漬した場合、成分が溶け出して 、浸漬液の組成が変化していること、もしくは屈折率が変化していることを確認できれ ば、十分であり、実際にパターン光を照射し、現像して解像度を確認するまでもない
[0016] これと逆に、液中のレジスト膜にパターン光を照射し、現像して解像性を確認した場 合には、解像性の良否は確認可能でも、浸漬液の変質による解像性への影響なの 力 レジスト材の変質による解像性の影響なのか、あるいは両方なのかが、区別でき なくなる。
[0017] (iii)の浸漬液によるレジスト膜の変質によって解像性が劣化する点については、「 露光後に浸漬液のシャワーをレジスト膜にかける処理を行い、その後、現像し、得ら れたレジストパターンの解像性を検査する」という評価試験で十分である。し力も、こ の評価方法では、レジスト膜に液体を直に振りかけることになり、液浸条件としては、 より過酷となる。力かる点についても、完全浸漬状態で露光を行う試験の場合には、 浸漬液の変質による影響なのか、レジスト組成物の浸漬液による変質が原因なのか 、あるいは双方の影響により、解像性が変化したのかが判然としない。
[0018] 前記現象 (ϋ)と (m)とは、表裏一体の現象であり、レジスト膜の液による変質程度を 確認することによって、把握できる。
[0019] このような分析に基づき、前述の現在提案されているレジスト膜の液浸露光適性を
、「露光後に浸漬液のシャワーをレジスト膜にかける処理を行い、その後、現像し、得 られたレジストパターンの解像性を検査する」という評価試験により、確認した。なお、 露光のパターン光をプリズムによる干渉光をもって代用させて、試料を液浸状態に置 き、露光させる構成の「2光束干渉露光法」を用いて、実際の製造工程をシミュレート した評価も可能である。
[0020] 上述のように、液浸露光に適するレジスト膜を新たに製造するには、多くの開発資 源を必要とすることが確実である反面、現在提案されているレジスト組成物のうちには 、そのままの組成で、あるいは組成に若干の調整をすることによって、品質上幾分か の劣化は生じるものの、液浸露光に適する特性を持つレジスト組成物が存在すること 、その一方で、液浸露光では、浸漬液による変質が生じて十分なパターン解像性が 得られな ヽレジスト膜でも、通常の空気層を介した露光によるリソグラフィーでは微細 かつ高い解像性を示すものが多く存在することも確認された。
[0021] 本発明は、力かる従来技術の問題点に鑑みてなされたものであり、多くの開発資源 を費やして確立した従来のレジスト組成物カゝら得られるレジスト膜を液浸露光にも準 用できる技術を提供することを課題とするものであり、具体的には、従来のレジスト膜 の表面に特定の保護膜を形成することによって、液浸露光中のレジスト膜の変質およ び使用液体の変質を同時に防止し、液浸露光を用いた高解像性レジストパターンの 形成を可能とすることを課題とするものである。
課題を解決するための手段
[0022] 前記課題を解決するために、本発明に係る液浸露光プロセス用レジスト保護膜形 成用材料は、レジスト膜上に設けられて液浸露光プロセスに供する前記レジスト膜を 保護するレジスト保護膜を形成するための材料であって、水に対して実質的な相溶 性を持たず、かつアルカリに可溶である特性を有することを特徴とする。
[0023] さらに、本発明に係るレジストパターン形成方法は、液浸露光プロセスを用いたレジ ストパターン形成方法であって、基板上にフォトレジスト膜を形成し、前記レジスト膜 の上に、前記保護膜形成材料を用いて、水に対して実質的な相溶性を持たず、かつ アルカリに可能である特性を有する保護膜を形成し、前記レジスト膜と保護膜とが積 層された前記基板の少なくとも前記保護膜上に直接所定厚みの前記液浸露光用液 体を配置し、前記液浸露光用液体および前記保護膜を介して所定のパターン光を 前記レジスト膜に照射し、必要に応じて加熱処理を行い、アルカリ現像液を用いて前 記保護膜とレジスト膜とを洗浄することにより前記保護膜を除去すると同時にレジスト 膜を現像し、レジストパターンを得ることを含むことを特徴とする。
[0024] なお、前記構成において、液浸露光プロセスは、中でも、リソグラフィー露光光がレ ジスト膜に到達するまでの経路の少なくとも前記レジスト膜上に、空気より屈折率が大 きくかつ前記レジスト膜よりも屈折率が小さい所定厚さの前記液浸露光用液体を介在 させた状態で、露光することによってレジストパターンの解像度を向上させる構成のも のが好適である。
[0025] さらに、本発明においては、レジスト保護膜を形成するに際しては、その成分として 後述の特定の炭化フッ素化合物を添加することが好ましい。
発明の効果
[0026] 本発明にかかる保護膜形成用材料は、レジスト膜の上に直接形成することができ、 ノターン露光を阻害することない、そして、本発明の保護膜形成用材料は、水に不 溶であるので、「液浸露光の光学的要求、取り扱いの容易性、および環境汚染性が な!、ことから液浸露光用浸漬液の最有力視されて!/、る水(純水あるいは脱イオン水) 」を実際に液浸露光用浸漬液として使用することを可能にする。換言すれば、扱い容 易で、屈折率特性も良好で、環境汚染性のない水を液浸露光用の浸漬液として用い ても、様々な組成のレジスト膜を液浸露光プロセスに供している間、十分に保護し、 良好な特性のレジストパターンを得ることを可能にする。また、前記液浸露光用浸漬 液として、 157nmの露光波長を用いた場合は、露光光の吸収という面からフッ素系 媒体が有力視されており、このようなフッ素系溶剤を用いた場合であっても、前記した 水と同様に、レジスト膜を液浸露光プロセスに供している間、十分に保護し、良好な 特性のレジストパターンを得ることを可能とする。さら〖こ、本発明にかかる保護膜形成 材料は、アルカリに可溶であるので、露光が完了し、現像処理を行う段階になっても 、形成した保護膜を現像処理前にレジスト膜から除去する必要がない。すなわち、本 発明の保護膜形成材料を用いて得られた保護膜は、アルカリに可溶であるので、露 光後の現像工程前に保護膜除去工程を設ける必要がなぐレジスト膜のアルカリ現 像液による現像処理を、保護膜を残したまま行なうことができ、それによつて、保護膜 の除去とレジスト膜の現像とが同時に実現できる。したがって、本発明の保護膜形成 用材料を用いて行うパターン形成方法は、パターン特性の良好なレジスト膜の形成 を、環境汚染性が極めて低ぐかつ工程数を低減して効率的に行うことができる。
[0027] 前述のように、本発明では、保護膜を形成するに際して後述の特定の炭化フッ素化 合物を添加することが好ましい。この特定の炭化フッ素化合物の添カ卩により、レジスト 保護膜形成材料を塗液としてレジスト膜上に塗布する場合の塗布性が向上する。そ して、さらに重要なことに、この特定の炭化フッ素化合物を添加した保護膜を用いた 場合、レジスト膜をパターン露光した後の微量アミン含有雰囲気中での引き置き耐性 を向上させることができる。
[0028] この引き置き耐性について簡単に触れておくと、次のようである。すなわち、通常の レジストの露光、現像工程の雰囲気中には、 ppbオーダーの微量なァミンが含まれて いる。このァミンが露光工程後のレジスト膜に接触すると、その後の現像によって得ら れるパターン寸法に狂いが生じることが知られている。露光後、レジストを引き続き微 量ァミン含有雰囲気中にさらしても、その後の現像によって得られるレジストパターン の寸法に大きな乱れが生じない場合、引き置き耐性が高いということになる。
[0029] 本発明では、保護膜に後述の特定の炭化フッ素化合物を添加しておくことにより、 保護膜は露光後のレジスト膜をァミンの作用から保護する特性を持つことが一つの大 きな特徴となっている。
発明を実施するための最良の形態
[0030] 前記構成の本発明において、液浸露光用液体としては、実質的に純水もしくは脱 イオン水力 なる水あるいはフッ素系不活性液体を用いることにより液浸露光が可能 である。先に説明したように、コスト性、後処理の容易性、環境汚染性の低さなどから 考慮して、水がより好適な液浸露光用液体である力 157nmの露光光を使用する場 合には、より露光光の吸収が少ないフッ素系溶剤を用いることが好適である。
[0031] 本発明において使用可能なレジスト膜は、従来慣用のレジスト組成物を用いて得ら れたあらゆるレジスト膜が使用可能であり、特に限定して用いる必要はない。この点 が本発明の最大の特徴でもある。
[0032] また、本発明の保護膜として必須の特性は、前述のように、水に対して実質的な相 溶性を持たず、かつアルカリに可溶であることであり、さらには露光光に対して透明で 、レジスト膜との間でィキシングを生じず、レジスト膜への密着性がよぐかつ現像液 に対する溶解性が良いことであり、そのような特性を具備する保護膜を形成可能な保 護膜材料としては、特定のフッ素ポリマーを、レジスト膜と相溶性を有さず、前記フッ 素ポリマーを溶解し得る溶剤に溶解してなる組成物を用いる。
[0033] 本発明の保護膜のベースポリマーであるフッ素ポリマーは、(X— 1)フッ素原子また はフッ素化アルキル基および (X— 2)アルコール性水酸基またはォキシアルキル基 を共に有する脂肪族環式基を含む非水溶性かつアルカリ可溶性の構成単位 (X)を 含んでなる重合体の概念の中に含まれる以下のような構成単位を有するものが好適 である。
[0034] すなわち、構成単位 (X)にお 、て、(X— 1)フッ素原子またはフッ素化アルキル基 および (X— 2)アルコール性水酸基またはアルキルォキシ基は脂肪族環式上にそれ ぞれ結合し、該環式基が主鎖を構成しているものである。該 (X— 1)フッ素原子また はフッ素化アルキル基としては、フッ素原子または低級アルキル基の水素原子の一 部または全部がフッ素原子で置換されたものが挙げられる。具体的には、トリフルォ ロメチル基、ペンタフルォロェチル基、ヘプタフルォロプロピル基、ノナフルォロブチ ル基などが挙げられる力 工業的には、フッ素原子やトリフルォロメチル基が好ましい 。また、(X— 2)アルコール性水酸基またはアルキルォキシ基としては、単にヒドロキ シル基であり、アルキルォキシ基とは鎖状、分岐状、または環状の炭素数 1〜15のァ ルキルォキシアルキル基、またはアルキルォキシ基である。
[0035] このような単位を有する重合体 (本発明の保護膜のベースポリマー)は、水酸基とフ ッ素原子を有するジェン化合物の環化重合により形成される。該ジェン化合物として は、透明性、耐ドライエッチング性に優れる 5員環や 6員環を有する重合体を形成し やすいへブタジエンが好ましぐさらには、 1, 1, 2, 3, 3 ペンタフルオロー 4 トリ フルォロメチル一 4 ヒドロキシ一 1, 6 へブタジエン(CF =CFCF C (CF ) (OH)
2 2 3
CH CH=CH )の環化重合により形成される重合体が工業上最も好ましい。
2 2
[0036] 以下に、前記重合体を表す一般式(100)を示す。
[化 1]
Figure imgf000010_0001
[0037] 一般式(100)中、 R5は水素原子または鎖状、分岐状、あるいは環状の C1〜C15 のアルキルォキシ基、またはアルキルォキシアルキル基であり、 x、 yはそれぞれ 10 〜90モル0 /0である。
[0038] このような重合体は、公知の方法によって、合成できる。また、該重合体成分の榭脂 の GPCによるポリスチレン換算質量平均分子量は、特に限定するものではないが 50 00〜80000、さらに好ましくは 8000〜50000とされる。
[0039] 前記フッ素ポリマーを溶解する溶剤としては、レジスト膜と相溶性を有さず、前記フ ッ素ポリマーを溶解し得る溶剤であれば 、ずれも使用可能である。このような溶剤とし てはアルコール系溶剤、パラフィン系溶剤、フッ素系溶剤等が挙げられる。アルコー ル系溶剤としては、イソプロピルアルコール、 1一へキサノール、 2—メチルー 1 プロ パノール、 4 メチル - 2-ペンタノール等の慣用のアルコール系溶剤が使用可能で あり、特に 2—メチルー 1 プロパノール、 4ーメチルー 2 ペンタノールが好適である 。パラフィン系溶剤としては n—ヘプタン、フッ素系溶剤としてはパーフルオロー 2— プチルテトラヒドロフランが使用可能であることが確認されている。中でも、現像時の アルカリ溶解性の観点力 アルコール系溶剤が好ましい。
[0040] 本発明の保護膜形成用材料には、前述のように、炭化フッ素化合物を添加すること が望ましい。それは、液浸露光をした後、現像する前にレジスト膜が微量のアミンを含 有する雰囲気中に引き置きされても、保護膜の介在によってァミン悪影響を抑制する ことができ、その後の現像によって得られるレジストパターンには寸法に大きな狂!、が 生じることないからである。
このような炭化フッ素化合物を以下に示すが、これら炭化フッ素化合物は、重要新 規利用規則 (SNUR)の対象となっておらず、使用可能である。
[0041] 力かる炭化フッ素化合物としては、下記一般式 (201)
(C F SO ) NH (201)
n 2n+l 2 2 (式中、 nは、 1〜5の整数である。 )
で示される炭化フッ素化合物と、
下記一般式(202)
C F COOH (202)
m 2m+l
(式中、 mは、 10〜15の整数である。 )
で示される炭化フッ素化合物と、
下記一般式(203)
[0042] [化 2]
Figure imgf000011_0001
(式中、 oは、 2〜3の整数である。 )
で示される炭化フッ素化合物と、
下記一般式(204)
[0043] [化 3]
Figure imgf000011_0002
( 2。4 )
(式中、 pは、 2〜3の整数であり、 Rfは 1部もしくは全部がフッ素原子により置換され ているアルキル基であり、水酸基、アルコキシ基、カルボキシル基、アミノ基により置 換されていてもよい。 )
で示される炭化フッ素化合物とが、好適である。
[0044] 前記一般式(201)で示される炭化フッ素化合物としては、具体的には、下記化学 式(205)
(C F SO ) NH (205)
4 9 2 2
で表される化合物、または下記化学式(206)
(C F SO ) NH (206)
3 7 2 2
で表される炭化フッ素化合物が好適である。 [0045] また、前記一般式(202)で示される炭化フッ素化合物としては、具体的には、下記 化学式(207)
C F COOH (207)
10 21
で表される炭化フッ素化合物が好適である。
[0046] また、前記一般式(203)で示される炭化フッ素化合物としては、具体的には、下記 化学式(208)
[0047] [化 4]
Figure imgf000012_0001
で表される炭化フッ素化合物が好適である。
[0048] 前記一般式(204)で示される炭化フッ素化合物としては、具体的には、下記化学 式(209)
[0049] [化 5]
Figure imgf000012_0002
で表される炭化フッ素化合物が好適である。
[0050] 本発明の保護膜は、非水溶性であり、しカゝも他の浸漬液にも耐性が高いので、浸 漬液に耐性の低いレジスト膜を含めてあらゆる組成のレジスト膜に適用可能である。 したがって、本発明レジスト膜材料としては、公知のレジストのいずれも使用可能であ り、慣用のポジ型レジスト、ネガ型ホトレジストを使用することができる。これらの具体 例を以下に例示する。
[0051] まず、ポジ型ホトレジストに用いられる榭脂成分としては、フッ素系榭脂、アクリル系 榭脂、シクロォレフイン系榭脂、シルセスキォキサン系榭脂等が用いられる。
[0052] 前記フッ素系榭脂としては、 (A) (0フッ素原子またはフッ素化アルキル基および GO アルコール性水酸基またはアルキルォキシ基を共に有する脂肪族環式基を含むァ ルカリ可溶性の構成単位 (aO—1)有し、酸の作用によりアルカリ可溶性が変化する 重合体が好ましい。
[0053] 前述の「酸の作用によりアルカリ可溶性が変化する」とは、露光部における該重合 体の変化であり、露光部にてアルカリ可溶性が増大すれば、露光部はアルカリ可溶 性となるため、ポジ型レジストとして用いられ、他方、露光部にてアルカリ可溶性が減 少すれば、露光部はアルカリ不溶性となるため、ネガ型レジストとして用いることがで きる。
[0054] 前記 (0フッ素原子またはフッ素化アルキル基および GOアルコール性水酸基または アルキルォキシ基を共に有する脂肪族環式基を含むアルカリ可溶性の構成単位 (aO 1)とは、前記 (0と GOをともに有する有機基が脂肪族環式基に結合しており、該環 式基を構成単位中に有するものであればょ 、。
[0055] 該脂肪族環式基とは、シクロペンタン、シクロへキサン、ビシクロアルカン、トリシクロ アルカン、テロラシクロアルカンなどの単環または多環式炭化水素から 1個または複 数個の水素原子を除いた基などを例示できる。多環式炭化水素は、より具体的には
、ァダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンな どのポリシクロアルカンから 1個または複数個の水素原子を除いた基などが挙げられ る。これらの中でもシクロペンタン、シクロへキサン、ノルボルナンから水素原子を除き 誘導される基が工業上好まし 、。
[0056] 前記 (0フッ素原子またはフッ素化アルキル基としては、フッ素原子または低級アル キル基の水素原子の一部または全部がフッ素原子で置換されたものが挙げられる。 具体的には、トリフルォロメチル基、ペンタフルォロェチル基、ヘプタフルォロプロピ ル基、ノナフルォロブチル基などが挙げられる力 工業的には、フッ素原子やトリフル ォロメチル基が好ましい。
[0057] 前記 GOアルコール性水酸基またはアルキルォキシ基とは、単にヒドロキシル基であ つてもよいし、ヒドロキシ基を有するアルキルォキシ基、アルキルォキシアルキル基ま たはアルキル基のようなアルコール性水酸基含有アルキルォキシ基、アルコール性 水酸基含有アルキルォキシアルキル基またはアルコール性水酸基含有アルキル基 等が挙げられる。該アルキルォキシ基、該アルキルォキシアルキル基または該アルキ ル基としては、低級アルキルォキシ基、低級アルキルォキシ低級アルキル基、低級ァ ルキル基が挙げられる。
[0058] 前記低級アルキルォキシ基としては、具体的には、メチルォキシ基、ェチルォキシ 基、プロピルォキシ基、ブチルォキシ基等が挙げられ、低級アルキルォキシ低級アル キル基としては、具体的には、メチルォキシメチル基、ェチルォキシメチル基、プロピ ルォキシメチル基、ブチルォキシメチル基等が挙げられ、低級アルキル基としては、 具体的には、メチル基、ェチル基、プロピル基、ブチル基等が挙げられる。
[0059] また、前記 GOのアルコール性水酸基含有アルキルォキシ基、アルコール性水酸基 含有アルキルォキシアルキル基またはアルコール性水酸基含有アルキル基における 該アルキルォキシ基、該アルキルォキシアルキル基または該アルキル基の水素原子 の一部または全部がフッ素原子で置換されたものでもよい。好ましくは、前記アルコ ール性水酸基含有アルキルォキシ基又はアルコール性水酸基含有アルキルォキシ アルキル基におけるそれらのアルキルォキシ部の水素原子の一部がフッ素原子で置 換されたもの、前記アルコール性水酸基含有アルキル基では、そのアルキル基の水 素原子の一部がフッ素原子で置換されたもの、すなわち、アルコール性水酸基含有 フルォロアルキルォキシ基、アルコール性水酸基含有フルォロアルキルォキシアル キル基又はアルコール性水酸基含有フルォロアルキル基が挙げられる。
[0060] 前記アルコール性水酸基含有フルォロアルキルォキシ基としては、(HO) C (CF )
3 2
CH O 基(2—ビス(へキサフルォロメチル) 2—ヒドロキシーェチルォキシ基、(H
2
0) C (CF ) CH CH O 基(3—ビス(へキサフルォロメチル) 3—ヒドロキシ一プロ
3 2 2 2
ピルォキシ基等が挙げられ、アルコール性水酸基含有フルォロアルキルォキシアル キル基としては、(HO) C (CF ) CH O— CH 基、(HO) C (CF ) CH CH O— C
3 2 2 2 3 2 2 2
H一基等が挙げられ、アルコール性水酸基含有フルォロアルキル基としては、(HO
2
) C (CF ) CH一基(2—ビス(へキサフルォロメチル)ー2—ヒドロキシーェチル基、(
3 2 2
HO) C (CF ) CH CH—基(3—ビス(へキサフルォロメチル) 3—ヒドロキシ一プロ
3 2 2 2
ピル基、等が挙げられる。
[0061] これらの (0や GOの基は、前記脂肪族環式基に直接結合していればよい。特には、( aO— 1)構成単位がアルコール性水酸基含有フルォロアルキルォキシ基、アルコー ル性水酸基含有フルォロアルキルォキシアルキル基またはアルコール性水酸基含 有フルォロアルキル基がノルボルネン環に結合し、該ノルボルネン環の 2重結合が開 裂して形成される下記一般式 (56)で表される単位が、透明性とアルカリ可溶性およ び耐ドライエッチング性に優れ、また工業的に入手しやすいので、好ましい。
[0062] [化 6]
Figure imgf000015_0001
[0063] 一般式(56)中、 Zは、酸素原子、ォキシメチレン基(-0 (CH )―)、または単結合
2
であり、 n'と m'はそれぞれ独立して 1〜 5の整数である。
[0064] そして、そのような (aO—l)単位と組み合わせて用いられる重合体単位は、これま で公知のものであれば、限定されない。ポジ型の酸の作用によりアルカリ可溶性が増 大する重合体 (A— 1)として用いる場合、公知の酸解離性溶解抑制基を有する (メタ )アクリルエステル力も誘導される構成単位 (aO- 2)が解像性に優れるので好ま ヽ
[0065] このような構成単位(aO— 2)としては、 tert—ブチル (メタ)アタリレート、 tert—ァミル
(メタ)アタリレートなどの (メタ)アクリル酸の第 3級アルキルエステル力も誘導される構 成単位が挙げられる。
[0066] そして、重合体 (A)は、さらに重合体の透明性を向上させるフッ素化アルキレン構 成単位 (aO- 3)を含んでなる、酸の作用によりアルカリ可溶性が増大する重合体 (A —2)であってもよい。このような構成単位 (aO— 3)を含むことにより、透明性がさらに 向上する。該構成単位 (aO— 3)としては、テトラフルォロエチレン力 誘導される単位 が好ましい。
[0067] 以下に、重合体 (A— 1)と重合体 (A— 2)を表す一般式 (57) (58)を示す。 [0068] [化 7]
Figure imgf000016_0001
[0069] 一般式(57)中、 Z, η', m'は前記一般式(56)の場合と同じであり、 R3は水素原子 またはメチル基であり、 R4は酸解離性溶解抑制基である。
[0070] [化 8]
Figure imgf000016_0002
[0071] 一般式(58)中、 Z, η', m', R3および R4は前記一般式(57)の場合と同じである。
[0072] また、前記した一般式 (56)を含む重合体 (A—1)と重合体 (A— 2)とは、異なる構 造式である力 (0フッ素原子またはフッ素化アルキル基および (ii)アルコール性水酸 基を共に有する脂肪族環式基を含むアルカリ可溶性の構成単位 (aO— 1)を含んで なる、酸の作用によりアルカリ可溶性が変化する重合体の概念の中に含まれる以下 のような構成単位を有するものでもよ 、。
[0073] すなわち、構成単位 (aO—l)において、(0フッ素原子またはフッ素化アルキル基お よび GOアルコール性水酸基は脂肪族環式上にそれぞれ結合し、該環式基が主鎖を 構成しているものである。該、(0フッ素原子またはフッ素化アルキル基としては、前記 したものと同様なものが挙げられる。また、 GOアルコール性水酸基とは、単にヒドロキ シル基である。
[0074] このような単位を有する重合体 (A)は、水酸基とフッ素原子を有するジェン化合物 の環化重合により形成される。該ジェンィ匕合物としては、透明性、耐ドライエッチング 性に優れる 5員環や 6員環を有する重合体を形成しやすいへブタジエンが好ましぐ さらには、 1, 1, 2, 3, 3—ペンタフルオロー 4—トリフルォロメチル一 4—ヒドロキシ一 1, 6—へブタジエン(CF =CFCF C (CF ) (OH) CH CH=CH )の環化重合により
2 2 3 2 2
形成される重合体が工業上最も好ま U
[0075] ポジ型の酸の作用によりアルカリ可溶性が増大する重合体 (A— 3)として用いる場 合、そのアルコール性水酸基の水素原子が酸解離性溶解抑制基で置換された構成 単位 (aO— 4)を含んでなる重合体が好ましい。その酸解離性溶解抑制基としては、 鎖状、分岐状または環状の炭素数 1 15のアルキルォキシメチル基が、酸の解離性 から好ましぐ特にはメトキシメチル基のような低級アルコキシメチル基が解像性とバタ ーン形状に優れ好ましい。なお、該酸解離性溶解抑制基は全体の水酸基に対して、 10 40%、好ましくは 15 30%の範囲であると、パターン形成能に優れ好ましい。
[0076] 以下に、重合体 (A— 3)を表す一般式 (59)を示す。
[化 9]
Figure imgf000017_0001
[0077] 一般式(59)中、 R5は水素原子または C1 C15のアルキルォキシメチル基であり、 x yはそれぞれ 10 90モル0 /0である。
[0078] このような重合体 (A)は、公知の方法によって、合成できる。また、該 (A)成分の榭 脂の GPCによるポリスチレン換算質量平均分子量は、特に限定するものではな!/、が 5000 80000、さらに好ましくは 8000 50000とされる。
[0079] また、重合体 (A)は、 1種または 2種以上の榭脂から構成することができ、例えば、 上述の (A— 1)、(A— 2)、および (A— 3)力も選ばれる幾つかを 2種以上混合して用 いてもよいし、さらに、他に従来公知のホトレジスト組成物用榭脂を混合して用いるこ とちでさる。
[0080] 前記アクリル系榭脂としては、例えば、酸解離性溶解抑制基を有する (メタ)アクリル 酸エステルカゝら誘導される構成単位 (al)を有し、この構成単位 (al)以外の他の (メ タ)アクリル酸エステルカゝら誘導される構成単位をも含めて、(メタ)アクリル酸エステル から誘導される構成単位 80モル%以上、好ましくは 90モル% (100モル%が最も好 ましい)含む樹脂が好ましい。
[0081] また、前記榭脂成分は、解像性、耐ドライエッチング性、そして、微細なパターンの 形状を満足するために、前記 (al)単位以外の複数の異なる機能を有するモノマー 単位、例えば、以下の構成単位の組み合わせにより構成される。
[0082] すなわち、ラタトン単位を有する (メタ)アクリル酸エステルカゝら誘導される構成単位 ( 以下、(a2)または (a2)単位という。)、アルコール性水酸基含有多環式基を有する( メタ)アクリル酸エステル力 誘導される構成単位 (以下、(a3)または(a3)単位と 、う 。;)、前記 (al)単位の酸解離性溶解抑制基、前記 (a2)単位のラタトン単位、および 前記 (a3)単位のアルコール性水酸基含有多環式基の 、ずれとも異なる多環式基を 含む構成単位 (以下、(a4)または (a4)単位と 、う)などである。
[0083] これら (a2)、 (a3)および Zまたは (a4)は、要求される特性等によって適宜組み合 わせ可能である。好ましくは、(al)と (a2)、(a3)および (a4)から選択される少なくと も一つの単位を含有していることにより、解像性およびレジストパターン形状が良好と なる。なお、(al)〜(a4)単位の内、それぞれについて、異なる単位を複数種を併用 してちよい。
[0084] そして、メタアクリル酸エステルカゝら誘導される構成単位とアクリル酸エステル力ゝら誘 導される構成単位は、メタアクリル酸エステルカゝら誘導される構成単位とアクリル酸ェ ステルカゝら誘導される構成単位のモル数の合計に対して、メタアクリル酸エステルか ら誘導される構成単位を 10〜85モル0 /0、好ましくは 20〜80モル0 /0、アクリル酸エス テル力も誘導される構成単位を 15〜90モル0 /0、好ましくは 20〜80モル0 /0となるよう に用いると好ましい。
[0085] ついで、上記(al)〜(a4)単位について詳細に説明する。 (al)単位は、酸解離性溶解抑制基を有する (メタ)アクリル酸エステルカゝら誘導され る構成単位である。この (al)における酸解離性溶解抑制基は、露光前は榭脂成分 全体をアルカリ不溶とするアルカリ溶解抑制性を有するとともに、露光後は発生した 酸の作用により解離し、この榭脂成分全体をアルカリ可溶性へ変化させるものであれ ば特に限定せずに用いることができる。一般的には、(メタ)アクリル酸のカルボキシ ル基と、環状または鎖状の第 3級アルキルエステルを形成する基、第 3級アルコキシ カルボ-ル基、または鎖状アルコキシアルキル基などが広く知られて 、る。
[0086] 前記 (al)における酸解離性溶解抑制基として、例えば、脂肪族多環式基を含有す る酸解離性溶解抑制基を好適に用いることができる。前記多環式基としては、フッ素 原子またはフッ素化アルキル基で置換されて 、てもよ 、し、されて 、なくてもょ ヽビシ クロアルカン、トリシクロアルカン、テロラシクロアルカンなどから 1個の水素元素を除い た基などを例示できる。具体的には、ァダマンタン、ノルボルナン、イソボルナン、トリ シクロデカン、テトラシクロドデカンなどのポリシクロアルカンから 1個の水素原子を除 いた基などが挙げられる。この様な多環式基は、 ArFレジストにおいて、多数提案さ れて 、るものの中力も適宜選択して用いることができる。これらの中でもァダマンチル 基、ノルボルニル基、テトラシクロドデ力-ル基が工業上好ましい。
[0087] 前記 (al)として好適なモノマー単位を下記一般式(1)〜(7)に示す。なお、これら 一般式(1)〜(7)において、 Rは水素原子またはメチル基、 Rは低級アルキル基、 R
1 2 および Rはそれぞれ独立して低級アルキル基、 Rは第 3級アルキル基、 Rはメチル
3 4 5 基、 Rは低級アルキル基、 Rは低級アルキル基である。 )
6 7
上記 R〜Rおよび R〜Rはそれぞれ、炭素数 1〜5の低級の直鎖または分岐状ァ
1 3 6 7
ルキル基が好ましぐメチル基、ェチル基、プロピル基、イソプロピル基、 n—ブチル 基、イソブチル基、 tert ブチル基、ペンチル基、イソペンチル基、ネオペンチル基 などが挙げられる。工業的にはメチル基またはェチル基が好ま U、。
また、 Rは、 tert ブチル基や tert—ァミル基のような第 3級アルキル基であり、 ter
4
t ブチル基である場合が工業的に好まし!/、。 [0088] [化 10]
Figure imgf000020_0001
[0090] (al)単位として、上記に挙げた中でも、特に、一般式(1)、(2)、(3)で表される構 成単位は、透明性が高く高解像性で対耐ドライエッチング性に優れるパターンが形 成できるため、より好ましい。
[0091] 前記 (a2)単位は、ラタトン単位を有するので、現像液との親水性を高めるために有 効である。
このような (a2)単位は、ラタトン単位を有し、榭脂成分の他の構成単位と共重合可 能なものであればよい。
例えば、単環式のラタトン単位としては、 γ -プチ口ラタトン力 水素原子 1つを除い た基などが挙げられる。また、多環式のラタトン単位としては、ラタトン含有ポリシクロア ルカン力 水素原子を 1つを除いた基などが挙げられる。
[0092] 前記 (a2)として好適なモノマー単位を下記一般式(10)〜(12)に示す。これら一
Figure imgf000021_0001
、て、 Rは水素原子またはメチル基である。
[0093] [化 12]
Figure imgf000022_0001
[0094] 前記一般式(12)に示したような α炭素にエステル結合を有する (メタ)アクリル酸の
Ύ -ブチ口ラタトンエステル、そして、一般式(10)や(11)のようなノルボルナンラタトン エステルが、特に工業上入手しやすく好ましい。
[0095] 前記 (a3)単位は、アルコール性水酸基含有多環式基を有する (メタ)アクリル酸ェ ステルカも誘導される構成単位である。
前記アルコール性水酸基含有多環式基における水酸基は極性基であるため、これ を用いることにより榭脂成分全体の現像液との親水性が高まり、露光部におけるアル カリ溶解性が向上する。従って、榭脂成分が(a3)を有すると、解像性が向上するた め好ましい。
そして、(a3)における多環式基としては、前記 (al)の説明において例示したものと 同様の脂肪族多環式基力 適宜選択して用いることができる。
[0096] 前記 (a3)におけるアルコール性水酸基含有多環式基は特に限定されな!、が、例 えば、水酸基含有ァダマンチル基などが好ましく用いられる。
さらに、この水酸基含有ァダマンチル基が、下記一般式(13)で表されるものである と、耐ドライエッチング性を上昇させ、パターン断面形状の垂直性を高める効果を有 するため、好ましい。なお、一般式中、 1は 1〜3の整数である。
[0097] [化 13]
Figure imgf000023_0001
(13)
[0098] 前記 (a3)単位は、上記したようなアルコール性水酸基含有多環式基を有し、かつ 榭脂成分の他の構成単位と共重合可能なものであればよい。
具体的には、下記一般式(14)で表される構成単位が好ましい。なお、一般式(14) 中、 Rは水素原子またはメチル基である。
[0099] [化 14]
Figure imgf000024_0001
[0100] 前記 (a4)単位にお ヽて、「前記酸解離性溶解抑制基、前記ラタトン単位、および前 記アルコール性水酸基含有多環式基の!ヽずれとも異なる」多環式基とは、榭脂成分 において、(a4)単位の多環式基が、(al)単位の酸解離性溶解抑制基、(a2)単位 のラタトン単位、および (a3)単位のアルコール性水酸基含有多環式基の ヽずれとも 重複しない多環式基、という意味であり、(a4)が、榭脂成分を構成している(al)単位 の酸解離性溶解抑制基、(a2)単位のラタトン単位、および (a3)単位のアルコール性 水酸基含有多環式基を ヽずれも保持して ヽな ヽことを意味して ヽる。
[0101] 前記 (a4)単位における多環式基は、ひとつの榭脂成分にぉ 、て、前記 (al)〜(a 3)単位として用いられた構成単位と重複しないように選択されていればよぐ特に限 定されるものではない。例えば、(a4)単位における多環式基として、前記 (al)単位と して例示したものと同様の脂肪族多環式基を用いることができ、 ArFポジレジスト材 料として従来力 知られている多数のものが使用可能である。
特にトリシクロデカニル基、ァダマンチル基、テトラシクロドデ力-ル基力 選ばれる 少なくとも 1種以上であると、工業上入手し易いなどの点で好ましい。
(a4)単位としては、上記のような多環式基を有し、かつ榭脂成分の他の構成単位と 共重合可能なものであればょ 、。
[0102] 前記(a4)の好ましい例を下記一般式(15)〜(17)に示す。これらの一般式中、 R は水素原子またはメチル基である。 [0103] [化 15]
Figure imgf000025_0001
[0104] 上記アクリル系榭脂成分の組成は、該榭脂成分を構成する構成単位の合計に対し て、 (al)単位力 0〜60モル0 /0、好ましくは 30〜50モル0 /0であると、解像性に優れ、 好ましい。
また、榭脂成分を構成する構成単位の合計に対して、(a2)単位が 20〜60モル% 、好ましくは 30〜50モル%であると、解像度に優れ、好ましい。
また、(a3)単位を用いる場合、榭脂成分を構成する構成単位の合計に対して、 5 〜50モル0 /0、好ましくは 10〜40モル0 /0であると、レジストパターン形状に優れ、好ま しい。
(a4)単位を用いる場合、榭脂成分を構成する構成単位の合計に対して、 1〜30モ ル0 /0、好ましくは 5〜20モル0 /0であると、孤立パターンからセミデンスパターンの解像 性に優れ、好ましい。
[0105] (al)単位と(a2)、 (a3)および(a4)単位力も選ばれる少なくとも一つの単位は、目 的に応じ適宜組み合わせることができる力 (al)単位と(a2)および (a3)単位の 3元 ポリマーがレジストパターン形状、露光余裕度、耐熱性、解像製に優れ、好ましい。そ の際の各構成単位 (al)〜(a3)のそれぞれの含有量としては、 (al)が 20〜60モル %、(a2)力 0〜60モル0 /0、および(a3)が 5〜50モル0 /0が好ましい。
[0106] また、本発明における榭脂成分樹脂の質量平均分子量 (ポリスチレン換算、以下同 様) ίま特に限定するもので ίまな ヽカ 5000〜30000、さらに好まし < ίま 8000〜2000 0とされる。この範囲よりも大きいとレジスト溶剤への溶解性が悪くなり、小さいと耐ドラ ィエッチング性やレジストパターン断面形状が悪くなるおそれがある。
[0107] また、前記シクロォレフイン系榭脂としては、下記一般式(18)に示す構成単位 (a5 )と、必要に応じて前記 (al)から得られる構成単位を共重合させた榭脂が好ま ヽ。
[0108] [化 16]
Figure imgf000026_0001
(式中、 R
8は前記 (al)単位において酸解離性溶解抑制基として例示した置換基で あり、 mは 0〜3の整数である)
なお、前記 (a5)単位において m力^の場合は、(al)単位を有する共重合体として 用いることが好ましい。
[0109] さらに、前記シルセスキォキサン系榭脂としては、下記一般式(19)で表される構成 単位 (a6)、および下記一般式 (20)で表される構成単位 (a7)を有するものが挙げら れる。
[0110] [化 17]
Figure imgf000027_0001
(式中、 R
9は脂肪族の単環または多環式基を含有する炭化水素基力 なる酸解離性 溶解抑制基であり、 R
10は直鎖状、分岐状または環状の飽和脂肪族炭化水素基であ り、 Xは少なくとも 1つの水素原子がフッ素原子で置換された炭素原子数 1〜8のアル キル基であり、 mは 1〜3の整数である)
[0111] [化 18]
Figure imgf000027_0002
(20)
(式中、 R は水素原子もしくは直鎖状、分岐状または環状のアルキル基であり、 R
11 12 は直鎖状、分岐状または環状の飽和脂肪族炭化水素基であり、 Xは少なくとも 1つの 水素原子がフッ素原子で置換された炭素原子数 1〜8のアルキル基である)
[0112] 上記 (a6)および (a7)において、 Rの酸解離性溶解抑制基は、露光前のシルセス
9
キォキサン榭脂全体をアルカリ不溶とするアルカリ溶解抑制性を有すると同時に、露 光後に酸発生剤から発生した酸の作用により解離し、このシルセスキォキサン榭脂 全体をアルカリ可溶性へ変化させる基である。
このようなものとして、例えば、下記一般式(21)〜(25)のような、嵩高い、脂肪族の 単環または多環式基を含有する炭化水素基力 なる酸解離性溶解抑制基が挙げら れる。このような酸解離性溶解抑制基を用いることにより、解離後の溶解抑制基がガ ス化しにくぐ脱ガス現象が防止される。
[0113] [化 19]
Figure imgf000028_0001
[0114] 前記 Rの炭素数は、解離したときにガス化しにくいと同時に適度なレジスト溶媒へ
9
の溶解性や現像液への溶解性から好ましくは 7〜 15、より好ましくは 9〜 13である。
[0115] 前記酸解離性溶解抑制基としては、脂肪族の単環または多環式基を含有する炭 化水素基力もなる酸解離性溶解抑制基である力ぎり、使用する光源に応じて、例え ば ArFエキシマレーザーのレジスト組成物用の樹脂にぉ 、て、多数提案されて!、る ものの中力 適宜選択して用いることができる。一般的には、(メタ)アクリル酸のカル ボキシル基と環状の第 3級アルキルエステルを形成するものが広く知られている。
[0116] 特に、脂肪族多環式基を含有する酸解離性溶解抑制基であることが好ましい。脂 肪族多環式基としては、 ArFレジストにおいて、多数提案されているものの中力 適 宜選択して用いることができる。例えば、脂肪族多環式基としては、ビシクロアルカン 、トリシクロアルカン、テロラシクロアルカン等から 1個の水素原子を除いた基を挙げる ことができ、より具体的には、ァダマンタン、ノルボルナン、イソボルナン、トリシクロデ カン、テトラシクロドデカンなどのポリシクロアルカンから 1個の水素原子を除いた基な どが挙げられる。
[0117] 上記一般式の中でも一般式(23)で表される 2—メチルー 2 ァダマンチル基、およ び/または一般式(24)で表される 2 ェチル 2 ァダマンチル基を有するシルセス キォキサン榭脂は、脱ガスが生じにくぐさら〖こ、解像性や耐熱性等のレジスト特性に 優れているので好ましい。
[0118] また、前記 R および R における炭素数は、レジスト溶媒に対する溶解性と分子サ
10 11
ィズの制御の点力も好ましくは 1〜20、より好ましくは 5〜12である。特に、環状の飽 和脂肪族炭化水素基は、得られるシルセスキォキサン樹脂の高エネルギー光に対 する透明性が高いこと、ガラス転移点 (Tg)が高くなり、 PEB (露光後加熱)時の酸発 生剤からの酸の発生をコントロールしやすくなること等の利点を有するので好ましい。
[0119] 前記環状の飽和脂肪族炭化水素基としては、単環式基であっても、多環式基であ つてもよい。多環式基としては、ビシクロアルカン、トリシクロアルカン、テトラシクロアル カン等から 2個の水素原子を除いた基を挙げることができ、より具体的には、ァダマン タン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシ クロアルカンから 2個の水素原子を除いた基などが挙げられる。
[0120] これら R および R として、より具体的には、下記一般式(26)〜(31)で表される脂
10 12
環式ィ匕合物あるいはそれらの誘導体力 水素原子を 2つ除いた基を挙げることがで きる。
[0121] [化 20]
Figure imgf000030_0001
(30) (31)
[0122] 前記誘導体とは、前記化学式(26)〜(31)の脂環式ィ匕合物において、少なくとも 1 つの水素原子が、メチル基、ェチル基等の低級アルキル基、酸素原子、フッ素、塩 素、臭素等のハロゲン原子等の基で置換されたものを意味する。中でも化学式 (26) 〜(31)なる群力も選択される脂環式ィ匕合物から水素原子を 2つ除いた基が、透明性 が高ぐまた工業的に入手しやす!/、点で好ま 、。
[0123] さらに、前記 R は、レジスト溶媒への溶解性から、好ましくは 1〜10、より好ましくは
11
1〜4の低級アルキル基である。このアルキル基としては、より具体的には、メチル基、 ェチル基、プロピル基、イソプロピル基、 n—ブチル基、 sec—ブチル基、 tert—ブチ ル基、シクロペンチル基、シクロへキシル基、 2—ェチルへキシル基、 n—ォクチル基 等を例示することができる。
[0124] R は、前記候補力 シルセスキォキサン樹脂の所望のアルカリ溶解性に応じて適
11
宜選択される。 R が水素原子の場合に最もアルカリ溶解性が高くなる。アルカリ溶解
11
性が高くなると、高感度化できるという利点がある。
[0125] 一方、前記アルキル基の炭素数が大きくなるほど、また、嵩高くなるほど、シルセス キォキサン樹脂のアルカリ溶解性が低くなる。アルカリ溶解性が低くなると、アルカリ 現像液に対する耐性が向上するので、該シルセスキォキサン榭脂を用いてレジスト ノ ターンを形成する際の露光マージンが良くなり、露光に伴う寸法変動が小さくなる 。また、現像むらがなくなるので、形成されるレジストパターンのエッジ部分のラフネス も改善される。
[0126] 前記一般式(19)、 (20)中の Xについては、特に直鎖状のアルキル基が好ましい。
アルキル基の炭素数は、シルセスキォキサン樹脂のガラス転移 (Tg)点やレジスト溶 媒への溶解性から、 1 8、好ましくは 1 4の低級アルキル基である。また、フッ素原 子で置換されて 、る水素原子の数が多 、ほど、 200nm以下の高エネルギー光ゃ電 子線に対する透明性が向上するので好ましぐ最も好ましくは、全ての水素原子がフ ッ素原子で置換されたパーフルォロアルキル基である。各 Xは、それぞれ同一であつ ても異なっていても良い。なお、一般式(19)中の mは、酸解離性溶解抑制基を解離 しゃすくするという理由で、 1 3の整数であり、好ましくは 1である。
[0127] シルセスキォキサン系榭脂として、より具体的には、下記一般式(32)、 (33)で表さ れるものが挙げられる。
[0128] [化 21]
Figure imgf000031_0001
(式中、 R , R , R ,および nは前出と同様である。 )
5 10 12
[0129] 本発明のシルセスキォキサン榭脂を構成する全構成単位中、 (a6)および (a7)で 表される構成単位の割合は、 30〜: L00モル%、好ましくは 70 100%、より好ましく は 100モル0 /0である。
[0130] また、(a6)および (a7)で表される構成単位の合計に対し、(a6)で表される構成単 位の割合は、好ましくは 5 70モル0 より好ましくは 10 40モル0 /0である。(a7)で 表される構成単位の割合は、好ましくは 30 95モル0 より好ましくは 60 90モル %である。
[0131] (a6)で表される構成単位の割合を上記範囲内とすることにより、酸解離性溶解抑 制基の割合が自ずと決まり、シルセスキォキサン樹脂の露光前後のアルカリ溶解性 の変化が、ポジ型レジスト組成物のベース榭脂として好適なものとなる。
[0132] シルセスキォキサン系榭脂は、本発明の効果を損なわな!/、範囲で、(a6)および (a
7)で表される構成単位以外の構成単位を有して!/、ても良!、。例えば ArFエキシマレ 一ザ一のレジスト組成物用のシルセスキォキサン榭脂にお 、て用いられて 、るもの、 例えば、下記一般式(34)で表される、メチル基、ェチル基、プロピル基、ブチル基等 のアルキル基 (R')を有するアルキルシルセスキォキサン単位等を例示することがで きる。
[0133] [化 22]
Figure imgf000032_0001
[0134] シルセスキォキサン系榭脂の質量平均分子量(Mw) (ゲルパーミエーシヨンクロマト グラフィ一によるポリスチレン換算)は、特に限定するものではないが、好ましくは 200 0〜15000、さらに好ましくは 3000〜8000とされる。この範囲よりも大きいとレジスト 溶剤への溶解性が悪くなり、小さいとレジストパターン断面形状が悪くなるおそれがあ る。
[0135] また、質量平均分子量 (Mw) Z数平均分子量 (Mn)、すなわちポリマー分散度は 、特に限定するものではないが、好ましくは 1. 0〜6. 0、さらに好ましくは 1. 5〜2. 5 である。この範囲よりも大きいと解像度、パターン形状が劣化するおそれがある。
[0136] また、本発明のシルセスキォキサン系榭脂は、(a6)および (a7)で表される構成単 位によって構成されるシルセスキォキサンを基本骨格に有するポリマーであるので、 200nm以下の高エネルギー光や電子線に対する透明性が高い。そのため、本発明 のシルセスキォキサン榭脂を含むポジ型レジスト組成物は、例えば、 ArFエキシマレ 一ザ一より短波長の光源を用いたリソグラフィ一において有用であり、特に、単層プロ セスでも、線幅 150nm以下、さらには 120nm以下といった微細なレジストパターンを 形成することができる。また、 2層レジスト積層体の上層と用いることで、 120nm以下 、さらには lOOnm以下の微細なレジストパターンを形成するプロセスにも有用である
[0137] さらに、前記ネガ型レジスト組成物に用いられる榭脂成分としては、慣用されるもの であれば限定されないが、具体的には以下のようなものが好ましい。
[0138] このような榭脂成分としては、酸によりアルカリ不溶性となる榭脂成分であって、分 子内に、たがいに反応してエステルを形成しうる 2種の官能基を有し、これがレジスト 材料に同時添加する酸発生剤より発生した酸の作用により、脱水してエステルを形 成することによりアルカリ不溶性となる榭脂(a8)が、好ましく用いられる。ここでいう、 たがいに反応してエステルを形成しうる 2種の官能基とは、例えば、カルボン酸エステ ルを形成するための、水酸基とカルボキシル基またはカルボン酸エステルのようなも のを意味する。換言すれば、エステルを形成するための 2種の官能基である。このよう な榭脂としては、例えば、榭脂主骨格の側鎖に、ヒドロキシアルキル基と、カルボキシ ル基およびカルボン酸エステル基の少なくとも一方とを有するものが好ましい。
さら〖こは、前記榭脂成分としては、ジカルボン酸モノエステル単位を有する重合体 からなる榭脂成分 (a9)も好まし ヽ。
[0139] 前記 (a8)は、換言すれば、下記一般式 (35)で表される構成単位を少なくとも有す る榭脂成分である。
[0140] [化 23]
Figure imgf000033_0001
13
(35)
(式中、 R は水素原子、 C1〜C6のアルキル基、もしくはボル-ル基、ァダマンチル
13
基、テトラシクロドデシル基、トリシクロデシル基等の多環式環骨格を有するアルキル 基である。 ) [0141] このような榭脂の例としては、 α - (ヒドロキシアルキル)アクリル酸および α - (ヒドロキ シアルキル)アクリル酸アルキルエステルの中力 選ばれる少なくとも 1種のモノマー の重合体 (単独重合体または共重合体)(a8— 1 )、および a - (ヒドロキシアルキル)ァ クリル酸および α - (ヒドロキシアルキル)アクリル酸アルキルエステルの中力 選ばれ る少なくとも 1種のモノマーと、他のエチレン性不飽和カルボン酸およびエチレン性不 飽和カルボン酸エステルの中力 選ばれる少なくとも 1種のモノマーとの共重合体(a 8— 2)などが好ましく挙げられる。
[0142] 上記重合体(a8— 1)としては、 α - (ヒドロキシアルキル)アクリル酸と α - (ヒドロキシ アルキル)アクリル酸アルキルエステルとの共重合体が好ましぐまた、共重合体(a8 - 2)としては、前記他のエチレン性不飽和カルボン酸やエチレン性不飽和カルボン 酸エステルとして、アクリル酸、メタクリル酸、アクリル酸アルキルエステルおよびメタク リル酸アルキルエステルの中力 選ばれる少なくとも 1種を用いたものが好まし!/、。
[0143] 前記 α - (ヒドロキシアルキル)アクリル酸や α - (ヒドロキシアルキル)アクリル酸アル キルエステルにおけるヒドロキシアルキル基の例としては、ヒドロキシメチル基、ヒドロ キシェチル基、ヒドロキシプロピル基、ヒドロキシブチル基などの低級ヒドロキシアルキ ル基が挙げられる。これらの中でもエステルの形成しやすさからヒドロキシェチル基や ヒドロキシメチル基が好まし 、。
[0144] また、 at - (ヒドロキシアルキル)アクリル酸アルキルエステルのアルキルエステル部 分のアルキル基の例としては、メチル基、ェチル基、プロピル基、イソプロピル基、 η ブチル基、 sec ブチル基、 tert ブチル基、アミル基などの低級アルキル基、ビ シクロ [2. 2. 1 ]ヘプチル基、ボルニル基、ァダマンチル基、テトラシクロ [4. 4. 0. 1 2·5. 17'1Q]ドデシル基、トリシクロ [5. 2. 1. 02·6]デシル基などの橋かけ型多環式環状 炭化水素基などが挙げられる。エステル部分のアルキル基が多環式環状炭化水素 基のものは、耐ドライエッチング性を高めるのに有効である。これらのアルキル基の中 で、特にメチル基、ェチル基、プロピル基、ブチル基などの低級アルキル基の場合、 エステルを形成するアルコール成分として、安価で容易に入手しうるものが用いられ るので好ましい。
[0145] 低級アルキルエステルの場合は、カルボキシル基と同様にヒドロキシアルキル基と のエステルイ匕が起こる力 橋かけ型多環式環状炭化水素とのエステルの場合は、そ のようなエステルイ匕が起こりにくい。そのため、橋かけ型多環式環状炭化水素とのェ ステルを榭脂中に導入する場合、同時に榭脂側鎖にカルボキシル基があると好まし い。
[0146] 一方、前記(a8— 2)における他のエチレン性不飽和カルボン酸やエチレン性不飽 和カルボン酸エステルの例としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸 などの不飽和カルボン酸、これらの不飽和カルボン酸のメチル、ェチル、プロピル、ィ ソプロピル、 n—ブチル、イソブチル、 n キシル、ォクチルエステルなどのアルキ ルエステルなどが挙げられる。また、エステル部分のアルキル基として、ビシクロ [2. 2 . 1]ヘプチル基、ボル-ル基、ァダマンチル基、テトラシクロ [4. 4. 0. I2'5. 17 1。]ド デシル基、トリシクロ [5. 2. 1. 02·6]デシル基などの橋力 4ナ型多環式環状炭化水素基 を有するアクリル酸またはメタクリル酸のエステルも用いることができる。これらの中で 、安価で容易に入手できることから、アクリル酸およびメタクリル酸、あるいは、これら のメチル、ェチル、プロピル、 n—ブチルエステルなどの低級アルキルエステルが好 ましい。
[0147] 前記榭脂成分 (a8— 2)の榭脂においては、 α - (ヒドロキシアルキル)アクリル酸お よび α—(ヒドロキシアルキル)アクリル酸アルキルエステルの中力 選ばれる少なくと も 1種のモノマー単位と他のエチレン性不飽和カルボン酸およびエチレン性不飽和力 ルボン酸エステルの中力 選ばれる少なくとも 1種のモノマー単位との割合は、モル 比で 20: 80な!、し 95: 5の範囲、特に 50: 50な!、し 90: 10の範囲が好まし!/、。両単 位の割合が上記範囲にあれば、分子内または分子間でエステルを形成しやすぐ良 好なレジストパターンが得られる。
[0148] また、前記榭脂成分 (a9)は、下記一般式(36)または(37)で表される構成単位を 少なくとも有する榭脂成分である。 [0149] [化 24]
Figure imgf000036_0001
(式中、 R および R は炭素数 0〜8のアルキル鎖を表し、 R は少なくとも 2以上の脂
14 15 16
環式構造を有する置換基を表し、 R および R は水素原子、または炭素数 1〜8のァ
17 18
ルキル基を表す。 )
[0150] このようなジカルボン酸モノエステルモノマー単位を有する榭脂成分を用いたネガ 型レジスト組成物は、解像性が高ぐラインエッジラフネスが低減される点で好ましい 。また、膨潤耐性が高ぐ液浸露光プロセスにおいてはより好ましい。
このようなジカルボン酸モノエステル化合物としては、フマル酸、ィタコン酸、メサコ ン酸、ダルタコン酸、トラウマチン酸等が挙げられる。
[0151] さらに、上記ジカルボン酸モノエステル単位を有する榭脂としては、ジカルボン酸モ ノエステルモノマーの重合体または共重合体(a9— 1)、およびジカルボン酸モノエス テルモノマーと、前述した α - (ヒドロキシアルキル)アクリル酸、 α - (ヒドロキシアルキ ル)アクリル酸アルキルエステル、他のエチレン性不飽和カルボン酸およびエチレン 性不飽和カルボン酸エステルの中力 選ばれる少なくとも 1種のモノマーとの共重合 体 (a9— 2)などが好ましく挙げられる。
上記ネガ型レジストに用いられる榭脂成分は、単独で用いてもよいし、 2種以上を組 み合わせて用いてもよい。また榭脂成分の重量平均分子量は 1000〜50000、好ま し <は 2000〜30000である。
[0152] 上記樹脂の中で、フッ素系榭脂、アクリル系榭脂((al)〜(a4) )を用いたポジ型レ ジストについては、比較的液浸耐性のある榭脂を含むレジストである力 液浸露光に おける限界解像の寸法に近づくほど、ノターンの解像性が劣化しやすくなる。この解 像性劣化を促す要因は一つではなぐそのような種々の要因を除去するために、本 発明保護膜を形成して浸漬液とレジスト膜を完全に分離することは極めて有効である
[0153] また、シルセスキォキサン系榭脂((a6)および (a7) )を用いたポジ型レジスト、ある いは特定の榭脂(a8)および Zまたは(a9)を用いたネガ型レジストにっ 、ては、上記 アクリル系榭脂を用いたポジ型レジストに比べ、液浸耐性が低いものと考えられ、本 発明保護膜を用いることにより液浸露光への適正を向上せしめることが可能となる。
[0154] さらには、シクロォレフイン系榭脂を用いた場合、本願比較例にもあるように、液浸 露光耐性が非常に低いことが知られており、パターン形成自体が不可能となる。この ような榭脂を含むポジ型レジストを用いた場合であっても、本発明保護膜を用いること により液浸露光への適用を可能とすることができる。
[0155] また、上記ポジ型あるいはネガ型レジスト用の榭脂成分と組み合わせて用いる酸発 生剤としては、従来化学増幅型レジストにおける酸発生剤として公知のものの中から 任意のものを適宜選択して用いることができる。
[0156] 前記酸発生剤の具体例としては、ジフエ-ルョードニゥムトリフルォロメタンスルホネ ート、(4—メトキシフエ-ル)フエ-ルョードニゥムトリフルォロメタンスルホネート、ビス
(p—tert ブチルフエ-ル)ョード -ゥムトリフルォロメタンスルホネート、トリフエ-ル スルホ -ゥムトリフルォロメタンスルホネート、(4—メトキシフエ-ル)ジフエ-ルスルホ -ゥムトリフルォロメタンスルホネート、(4—メチルフエ-ル)ジフエ-ルスルホ-ゥムト リフルォロメタンスルホネート、(4 メチルフエ-ル)ジフエ-ルスルホ-ゥムノナフル ォロブタンスルホネート、(p—tert ブチルフエ-ル)ジフエ-ルスルホ -ゥムトリフル ォロメタンスルホネート、ジフエ-ルョードニゥムノナフルォロブタンスルホネート、ビス (p—tert ブチルフエ-ル)ョードニゥムノナフルォロブタンスルホネート、トリフエ- ルスルホ-ゥムノナフルォロブタンスルホネート、(4 トリフルォロメチルフエ-ル)ジ フエ-ルスルホ -ゥムトリフルォロメタンスルホネート、(4 トリフルォロメチルフエ-ル )ジフエ-ルスルホ-ゥムノナフルォロブタンスルホネート、トリ(p—tert ブチルフエ -ル)スルホ -ゥムトリフルォロメタンスルホネートなどのォ-ゥム塩などが挙げられる [0157] ォ -ゥム塩のなかでも、トリフエニルスルホ-ゥム塩は、分解しに《有機ガスを発生 しにくいので、好ましく用いられる。トリフエ-ルスルホ -ゥム塩の配合量は、酸発生剤 の合計に対し、好ましくは 50〜: LOOモル0 /0、より好ましくは 70〜: LOOモル0 /0、最も好 ましくは 100モル%とすることが好ましい。
[0158] また、トリフエ-ルスルホ -ゥム塩のうち、特に、下記一般式(38)で表される、パー フルォロアルキルスルホン酸イオンをァ-オンとするトリフエ-ルスルホ-ゥム塩は、 高感度化できるので、好ましく用いられる。
[0159] [化 25]
Figure imgf000038_0001
(式中、 R 、R 、R は、それぞれ独立に、水素原子、炭素数 1〜8、好ましくは 1〜4
19 20 21
の低級アルキル基、または塩素、フッ素、臭素等のハロゲン原子であり; pは 1〜12、 好ましくは 1〜8、より好ましくは 1〜4の整数である。 )
[0160] 上記酸発生剤は単独で用いてもよいし、 2種以上を組み合わせて用いてもよい。
その配合量は、前述の榭脂成分 100質量部に対し、 0. 5質量部、好ましくは 1〜1 0質量部とされる。 0. 5質量部未満ではパターン形成が十分に行われないし、 30質 量部を超えると、均一な溶液が得られにくぐ保存安定性が低下する原因となるおそ れがある。
[0161] また、本発明のポジ型ある ヽはネガ型レジスト組成物は、前記榭脂成分と酸発生剤 と、後述する任意の成分を、好ましくは有機溶剤に溶解させて製造される。
[0162] 有機溶剤としては、前記榭脂成分と酸発生剤を溶解し、均一な溶液とすることがで きるものであればよぐ従来化学増幅型レジストの溶剤として公知のものの中から任 意のものを 1種または 2種以上適宜選択して用いることができる。
[0163] 例えば、アセトン、メチルェチルケトン、シクロへキサノン、メチルイソアミルケトン、 2 一へプタノンなどのケトン類や、エチレングリコール、エチレングリコールモノァセテ一 ト、ジエチレングリコール、ジエチレングリコーノレモノアセテート、プロピレングリコーノレ 、プロピレングリコールモノアセテート、ジプロピレングリコール、またはジプロピレング リコーノレモノアセテートのモノメチノレエーテノレ、モノェチノレエーテノレ、モノプロピノレエ 一テル、モノブチルエーテルまたはモノフエ-ルエーテルなどの多価アルコール類お よびその誘導体や、ジォキサンのような環式エーテル類や、乳酸メチル、乳酸ェチル 、酢酸メチル、酢酸ェチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸ェチル、メト キシプロピオン酸メチル、エトキシプロピオン酸ェチルなどのエステル類などを挙げる ことができる。これらの有機溶剤は単独で用いてもよぐ 2種以上の混合溶剤として用 いてもよい。
[0164] また、このようなポジ型あるいはネガ型レジストにおいては、レジストパターン形状、 経時安定性などを向上させるために、さらに、クェンチヤ一として、公知のァミン好ま しくは、第 2級低級脂肪族アミンゃ第 3級低級脂肪族ァミン等や、有機カルボン酸ゃリ ンのォキソ酸などの有機酸を含有させることができる。
[0165] 前記低級脂肪族ァミンとは、炭素数 5以下のアルキルまたはアルキルアルコールの アミンを言い、この第 2級や第 3級ァミンの例としては、トリメチルァミン、ジェチルアミ ン、トリエチノレアミン、ジ プロピルァミン、トリ一 n—プロピルァミン、トリペンチル ァミン、ジエタノールァミン、トリエタノールァミンなどが挙げられる力 特にトリエタノー ルァミンのようなアルカノールァミンが好ましい。これらは単独で用いてもよいし、 2種 以上を組み合わせて用いてもょ 、。
これらのアミンは、前記榭脂成分に対して、通常 0. 01〜2. 0質量%の範囲で用い られる。
[0166] 前記有機カルボン酸としては、例えば、マロン酸、クェン酸、リンゴ酸、コハク酸、安 息香酸、サリチル酸などが好適である。
[0167] 前記リンのォキソ酸若しくはその誘導体としては、リン酸、リン酸ジー n—ブチルエス テル、リン酸ジフエ-ルエステルなどのリン酸またはそれらのエステルのような誘導体 、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸-ジー n ブチルエステル、フ ェニノレホスホン酸、ホスホン酸ジフエニノレエステノレ、ホスホン酸ジベンジノレエステノレな どのホスホン酸およびそれらのエステルのような誘導体、ホスフィン酸、フエ-ルホス フィン酸などのホスフィン酸およびそれらのエステルのような誘導体が挙げられ、これ らの中で特にホスホン酸が好ましい。
[0168] 前記有機酸は、榭脂成分 100質量部当り 0. 01〜5. 0質量部の割合で用いられる 。これらは単独で用いてもよいし、 2種以上を組み合わせて用いてもよい。
これらの有機酸は、好ましくは前記ァミンと等モル以下の範囲で用いられる。
[0169] 本発明のポジ型レジスト組成物には、さらに所望により混和性のある添加剤、例え ばレジスト膜の性能を改良するための付加的榭脂、塗布性を向上させるための界面 活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤などを添加含 有させることができる。
[0170] さらには、本発明ネガ型レジスト組成物においては、いっそう架橋密度を向上させ、 レジストパターンの形状や解像性ゃ耐ドライエッチング性を向上させる目的で、必要 に応じて架橋剤を配合しても良 、。
[0171] この架橋剤としては、特に制限はなぐ従来化学増幅型のネガ型レジストにおいて 使用されて ヽる公知の架橋剤の中から、任意のものを適宜選択して用いることができ る。この架橋剤の例としては、 2, 3 ジヒドロキシ 5 ヒドロキシメチルノルボルナン 、 2 ヒドロキシ一 5, 6 ビス(ヒドロキシメチル)ノルボルナン、シクロへキサンジメタノ ール、 3, 4, 8 (または 9)—トリヒドロキシトリシクロデカン、 2—メチル 2 ァダマンタ ノール、 1, 4 ジォキサン一 2, 3 ジオール、 1, 3, 5 トリヒドロキシシクロへキサン などのヒドロキシル基またはヒドロキシアルキル基あるいはその両方を有する脂肪族 環状炭化水素またはその含酸素誘導体、およびメラミン、ァセトグアナミン、ベンゾグ アナミン、尿素、エチレン尿素、グリコールゥリルなどのアミノ基含有ィ匕合物にホルム アルデヒドまたはホルムアルデヒドと低級アルコールを反応させ、該ァミノ基の水素原 子をヒドロキシメチル基または低級アルコキシメチル基で置換したィ匕合物、具体的に はへキサメトキシメチルメラミン、ビスメトキシメチル尿素、ビスメトキシメチルビスメトキ シエチレン尿素、テトラメトキシメチルダリコールゥリル、テトラブトキシメチルダリコール ゥリルなどを挙げることができる力 特に好まし ヽのはテトラブトキシメチルダリコール ゥリルである。
これら架橋剤は単独で用いてもょ 、し、 2種以上を組み合わせて用いてもょ 、。
[0172] 次に、本発明の保護膜を用いた液浸露光法によるレジストパターン形成方法につ いて、説明する。
まず、シリコンゥエーハ等の基板上に、慣用のレジスト組成物をスピンナーなどで塗 布した後、プレベータ(PAB処理)を行う。
なお、基板とレジスト組成物の塗布層との間には、有機系または無機系の反射防止 膜を設けた 2層積層体とすることもできる。
[0173] ここまでの工程は、周知の手法を用いて行うことができる。操作条件等は、使用する レジスト組成物の組成や特性に応じて適宜設定することが好ましい。
[0174] 次に、上記のようにして硬化されたレジスト膜 (単層、複数層)の表面に、例えば、「 下記化学式(100)で示される環状フッ素アルコール重合体を 2—メチルー 1 プロピ ルアルコールに溶解せしめた組成物」などの本発明にかかる保護膜形成材料組成 物を均一に塗布した後、硬化させることによって、レジスト保護膜を形成する。
[0175] [化 26]
Figure imgf000041_0001
[0176] このようにして保護膜により覆われたレジスト膜が形成された基板を、屈折率液体( 空気の屈折率よりも大きくかつレジスト膜の屈折率よりも小さい屈折率を有する液体: 本発明に特化するケースでは純水、脱イオン水、あるいはフッ素系溶剤)中に、浸漬 する。
[0177] この浸漬状態の基板のレジスト膜に対して、所望のマスクパターンを介して選択的 に露光を行う。したがって、このとき、露光光は、屈折率液体と保護膜とを通過してレ ジスト膜に到達することになる。
[0178] このとき、レジスト膜は保護膜によって、純水などの屈折率液体から完全に遮断され ており、屈折率液体の侵襲を受けて膨潤等の変質を被ることも、逆に屈折率液体 (純 水、脱イオン水、もしくはフッ素系溶剤など)中に成分を溶出させて屈折率液体の屈 折率等の光学的特性を変質させることもな ヽ。
[0179] この場合の露光に用いる波長は、特に限定されず、 ArFエキシマレーザー、 KrFェ キシマレーザー、 Fエキシマレーザー、 EUV (極紫外線)、 VUV (真空紫外線)、電
2
子線、 X線、軟 X線などの放射線を用いて行うことができる。それは、主に、レジスト膜 の特性によって決定される。
[0180] 上記のように、本発明のレジストパターン形成方法においては、露光時に、レジスト 膜上に、保護膜を介して、空気の屈折率よりも大きくかつ使用されるレジスト膜の屈折 率よりも小さ!ヽ屈折率を有する液体 (屈折率液体)を介在させる。このような屈折率液 体としては、例えば、水(純水、脱イオン水)、またはフッ素系不活性液体等が挙げら れる。該フッ素系不活性液体の具体例としては、 C HC1 F、 C F OCH、 C F OC
3 2 5 4 9 3 4 9 2
H、 C H F等のフッ素系化合物を主成分とする液体が挙げられる。これらのうち、コ
5 5 3 7
スト、安全性、環境問題及び汎用性の観点からは、水(純水もしくは脱イオン水)を用 いることが好ましいが、 157nmの波長の露光光を用いた場合は、露光光の吸収が少 な 、と 、う観点から、フッ素系溶剤を用いることが好まし 、。
[0181] また、使用する屈折率液体の屈折率としては、「空気の屈折率よりも大きくかつ使用 されるレジスト組成物の屈折率よりも小さい」範囲内であれば、特に制限されない。
[0182] 前記液浸状態での露光工程が完了したら、基板を屈折率液体から取り出し、基板 から液体を除去する。
[0183] 次 、で、露光したレジスト膜上に保護膜を付けたまま、該レジスト膜に対して PEB ( 露光後加熱)を行い、続いて、アルカリ性水溶液からなるアルカリ現像液を用いて現 像処理する。この現像処理に使用される現像液はアルカリ性であるので、まず、保護 膜が溶力 流され、引き続いて、レジスト膜の可溶部分が溶力 流される。なお、現像 処理に続いてポストベータを行っても良い。そして、好ましくは純水を用いてリンスを 行う。この水リンスは、例えば、基板を回転させながら基板表面に水を滴下または噴 霧して、基板上の現像液および該現像液によって溶解した保護膜成分とレジスト組 成物を洗い流す。そして、乾燥を行うことにより、レジスト膜がマスクパターンに応じた 形状にパターユングされた、レジストパターンが得られる。このように本発明では、単 回の現像工程により保護膜の除去とレジスト膜の現像とが同時に実現される。
[0184] このようにしてレジストパターンを形成することにより、微細な線幅のレジストパターン 、特にピッチが小さいラインアンドスペースパターンを良好な解像度により製造するこ とができる。なお、ここで、ラインアンドスペースパターンにおけるピッチとは、パターン の線幅方向における、レジストパターン幅とスペース幅の合計の距離をいう。
実施例
[0185] 以下、本発明の実施例を説明するが、これら実施例は本発明を好適に説明するた めの例示に過ぎず、なんら本発明を限定するものではない。なお、以下の説明にお V、ては、実施例とともに比較例も記載して 、る。
[0186] (実施例 1)
本実施例では、本発明にかかる保護膜形成用材料を用いて基板上に保護膜を形 成し、この保護膜の耐水性およびアルカリ現像液に対する溶解性を評価した。
ベースポリマーとして、前出の一般式(100)に示した環状フッ素アルコールの構成 単位力もなる共重合体 (分子量 13800であり、 R5は全て水素原子であり、 x:y= 50 : 50 (モル0 /0)である)を用いた。溶媒として、 2種類、 2—メチル 1—プロパノールと、 4ーメチルー 2 ペンタノールとを用い、それぞれの 2質量%溶液を調製し、それらを 保護膜形成用組成物とした。
[0187] 前記 2種の保護膜形成用組成物を半導体基板上にスピンコーターを用いて 1500r pmのコート条件で塗布した。塗布後、 90°C、 90秒間、加熱処理して硬化させて、評 価用の保護膜 2種を得た。 2—メチル—1—プロパノールを溶剤として用いた保護膜( 膜 1)の膜厚は、 50. 3nmであり、 4—メチル 2 ペンタノールを溶剤として用いた 保護膜の膜厚は、 28. 5nmであった。
[0188] 保護膜の評価は、(i)目視による表面状態の確認、(ii)液浸露光プロセスにおける 液 (純水)中への浸漬をシミュレートした純水による 90秒間のリンス後の膜減りを測定 、(iii)アルカリ現像液 (2. 38%濃度の TMAH)に浸漬した場合の溶解速度 (膜厚換 算: nmZ秒)の 3項目につ!/、て実施した。
その結果、目視による表面状態は、膜 1も膜 2も良好であった、水リンス後の膜 1の 膜厚は 50. 8nmであり、膜 2の膜厚は 28. 8nmであり、表面状態は良好なままであ つた。さらに現像液による溶解速度は、膜 1では 3nmZ秒であり、膜 2では 2nmZ秒 であった。
膜 1も膜 2も 90秒間の純水のリンスを受けても表面状態に変化がなぐ膜厚も水によ る影響はないと判断された。
[0189] (実施例 2)
下記の榭脂成分、酸発生剤、および含窒素有機化合物を有機溶剤に均一に溶解 し、レジスト組成物 1を調製した。
榭脂成分としては、下記一般式(102)に示した構成単位力もなる共重合体 100質 量部を用いた。榭脂成分の調製に用いた各構成単位 1, mの比は、 1= 50モル%、 m = 50モル0 /0とした。
[0190] [化 27]
Figure imgf000044_0001
[0191] 前記酸発生剤としては、トリフエ-ルスルホ-ゥムノナフルォロブタンスルホネート 5.
0質量部を用いた。
また、前記有機溶媒としては、乳酸ェチルの 5. 5%濃度水溶液を用いた。 さらに、前記含窒素有機化合物としては、トリ— n—ォクチルァミン 0. 5質量部を用 いた。
[0192] 上記のようにして製造したレジスト組成物 1を用いて、レジストパターンの形成を行つ た。
まず、有機系反射防止膜組成物「AR— 19」(商品名、 Shipley社製)をスピナ一を 用いてシリコンウェハー上に塗布し、ホットプレート上で 215°C、 60秒間焼成して乾燥 させること〖こより、膜厚 82nmの有機系反射防止膜を形成した。そして、この反射防止 膜上に、前記レジスト組成物 1をスピナ一を用いて塗布し、ホットプレート上で 115°C 、 90秒間プレベータして、乾燥させることにより、反射防止膜上に膜厚 150nmのレジ スト膜を形成した。
[0193] 該レジスト膜上に、前記化学式(100)に示した環状フッ素アルコールを構成単位と した共重合体(分子量 13800であり、 R5は全て水素原子であり、 x:y= 50 : 50 (^/V %)である)を 2—メチル—1—プロピルアルコールに溶解させ、榭脂濃度を 2. 5wt% とした保護膜材料を回転塗布し、 90°Cにて 60秒間加熱し、膜厚 72. lnmの保護膜 を形成した。
[0194] 次に、マスクパターンを介して、露光装置 NSR—S302 (-コン社製、 NA (開口数)
=0. 60、 σ =0. 75)により、 ArFエキシマレーザー(波長 193nm)を用いて、パタ 一ン光を照射 (露光)した。そして、液浸露光処理として、該露光後のレジスト膜を設 けたシリコンウェハーを回転させながら、レジスト膜上に 23°Cにて純水を 2分間滴下し 続けた。この部分の工程は、実際の製造プロセスでは、完全浸漬状態にて露光する 工程である力 先の液浸露光法に対する分析に基づいて、光学系における露光自 体は完全に行われることは理論的にも保証されるので、先にレジスト膜を露光してお き、浸漬液のレジスト膜への影響のみを評価できるように、露光後に屈折率液体 (浸 漬液)である純水をレジスト膜に負荷させると 、う簡略的な構成として 、る。
[0195] 前記純水の滴下工程の後、 115°C、 90秒間の条件で PEB処理した後、保護膜を 残したまま、 23°Cにてアルカリ現像液で 60秒間現像した。アルカリ現像液としては、 2. 38質量%テトラメチルアンモ-ゥムヒドロキシド水溶液を用いた。この現像工程に より保護膜が完全に除去され、レジスト膜の現像も良好に実現できた。
[0196] このようにして得た 300nmのラインアンドスペースが 1: 1となるレジストパターンを走 查型電子顕微鏡 (SEM)により観察したところ、このパターンプロファイルは良好なも のであり、ゆらぎ等は全く観察されな力つた。
[0197] (比較例 1)
上記実施例 2にて示したポジ型ホトレジストを用いて、保護膜を形成しなカゝつた以外 は全く同様の手段で、 300nmのラインアンドスペースが 1: 1となるレジストパターンを 形成したものの、走査型電子顕微鏡 (SEM)により観察したところ、パターンのゆらぎ 、膨潤等が激しくパターンは観察できな力つた。
[0198] (実施例 3)
下記の榭脂成分、酸発生剤、および含窒素有機化合物を有機溶剤に均一に溶解 し、レジスト組成物 1を調製した。
榭脂成分としては、下記化学式(103)に示した構成単位力もなる共重合体 100質 量部を用いた。榭脂成分の調製に用いた各構成単位 1, m, nの比は、 1=40モル%、 m=40モル0 /0、 n= 20モル0 /0とした。
[0199] [化 28]
Figure imgf000046_0001
[0200] 前記酸発生剤としては、トリフエ-ルスルホ-ゥムノナフルォロブタンスルホネート 53 . 50質量咅と、トリフエ-ノレスノレホニゥム一 TFO. 75質量咅を用!/、た。
また、前記有機溶媒としては、乳酸ェチルの 6. 0%濃度水溶液を用いた。 さらに、前記含窒素有機化合物としては、トリ— 2— (2—メトキシエトキシ)ェチルァ ミン 1. 20質量部を用いた。
[0201] 上記のようにして製造したレジスト組成物 2を用いて、レジストパターンの形成を行つ た。
まず、有機系反射防止膜組成物「AR— 19」(商品名、 Shipley社製)をスピナ一を 用いてシリコンウェハー上に塗布し、ホットプレート上で 215°C、 60秒間焼成して乾燥 させること〖こより、膜厚 82nmの有機系反射防止膜を形成した。そして、この反射防止 膜上に、前記レジスト組成物 1をスピナ一を用いて塗布し、ホットプレート上で 115°C 、 90秒間プレベータして、乾燥させることにより、反射防止膜上に膜厚 150nmのレジ スト膜を形成した。
[0202] 該レジスト膜上に、前記化学式(100)に示した環状フッ素アルコールを構成単位と した共重合体(分子量 13800であり、 R5は全て水素原子であり、 x:y= 50 : 50 (^/V %)である)を 2—メチル—1—プロピルアルコールに溶解させ、榭脂濃度を 2. 5wt% とした保護膜材料を回転塗布し、 90°Cにて 60秒間加熱し、膜厚 72. lnmの保護膜 を形成した。
[0203] 次に、マスクパターンを介して、露光装置 NSR—S302 (-コン社製、 NA (開口数)
=0. 60、 σ =0. 75)により、 ArFエキシマレーザー(波長 193nm)を用いて、パタ 一ン光を照射 (露光)した。そして、液浸露光処理として、該露光後のレジスト膜を設 けたシリコンウェハーを回転させながら、レジスト膜上に 23°Cにて純水を 2分間滴下し 続けた。この部分の工程は、実際の製造プロセスでは、完全浸漬状態にて露光する 工程である力 先の液浸露光法に対する分析に基づいて、光学系における露光自 体は完全に行われることは理論的にも保証されるので、先にレジスト膜を露光してお き、浸漬液のレジスト膜への影響のみを評価できるように、露光後に屈折率液体 (浸 漬液)である純水をレジスト膜に負荷させると 、う簡略的な構成として 、る。
[0204] 前記純水の滴下工程の後、 115°C、 90秒間の条件で PEB処理した後、保護膜を 残したまま、 23°Cにてアルカリ現像液で 60秒間現像した。アルカリ現像液としては、 2. 38質量%テトラメチルアンモ-ゥムヒドロキシド水溶液を用いた。この現像工程に より保護膜が完全に除去され、レジスト膜の現像も良好に実現できた。
[0205] このようにして得た 130nmのラインアンドスペースが 1: 1となるレジストパターンを走 查型電子顕微鏡 (SEM)により観察したところ、このパターンプロファイルは良好なも のであり、ゆらぎ等は全く観察されな力つた。 [0206] (実施例 4)
下記の榭脂成分、酸発生剤、および含窒素有機化合物を有機溶剤に均一に溶解 し、レジスト組成物を調製した。
榭脂成分としては、下記化学式(104)に示した構成単位力もなる共重合体 100質 量部を用いた。榭脂成分の調製に用いた各構成単位 1, m, nの比は、 1= 20モル%、 m=40モル0 /0、 n=40モル0 /0とした。
[0207] [化 29]
Figure imgf000048_0001
[0208] 前記酸発生剤としては、トリフエ-ルスルホ-ゥムノナフルォロブタンスルホネート 2.
0質量部と、トリ(tertブチルフエ-ル)スルホ -ゥムトリフルォロメタンスルホネート 0. 8 質量部を用いた。
[0209] また、前記有機溶媒としては、プロピレングリコールモノメチルエーテルとプロピレン グリコールモノメチルエーテルアセテートの混合溶剤(混合比 6 :4)の 7. 0%濃度水 溶液を用いた。また、前記含窒素有機化合物としては、トリエタノールァミン 0. 25質 量部を用いた。さらに、添加剤として γ—プチ口ラタトン 25質量部を配合した。
[0210] 上記のようにして製造したレジスト組成物を用いて、レジストパターンの形成を行つ た。まず、有機系反射防止膜組成物「ARC29」(商品名、 Brewer社製)をスピナ一 を用いてシリコンウェハー上に塗布し、ホットプレート上で 205°C、 60秒間焼成して乾 燥させること〖こより、膜厚 77nmの有機系反射防止膜を形成した。そして、この反射防 止膜上に、前記レジスト組成物をスピナ一を用いて塗布し、ホットプレート上で 130°C 、 90秒間プレベータして、乾燥させることにより、反射防止膜上に膜厚 225nmのレジ スト膜を形成した。 [0211] 該レジスト膜上に、前記化学式(100)に示した環状フッ素アルコールを構成単位と した共重合体(分子量 13800であり、 R5は全て水素原子であり、 x:y= 50 : 50 (^/V %)である)、および前記共重合体に対して 10 %のじ F COOHを、 2—メチルー
10 21
1 プロピルアルコールに溶解させ、榭脂濃度を 2. 6%とした保護膜材料を回転塗 布し、 90°Cにて 60秒間加熱し、膜厚 70. Onmの保護膜を形成した。
[0212] 次に、マスクパターンを介して、露光装置 Nikon— S302A (ニコン社製)により、 Ar Fエキシマレーザー(波長 193nm)を用いて、パターン光を照射 (露光)した。そして、 液浸露光処理として、該露光後のレジスト膜を設けたシリコンウェハーを回転させな がら、レジスト膜上に 23°Cにて純水を 2分間滴下し続けた。この部分の工程は、実際 の製造プロセスでは、完全浸漬状態にて露光する工程であるが、先の液浸露光法に 対する分析に基づいて、光学系における露光自体は完全に行われることは理論的に も保証されるので、先にレジスト膜を露光しておき、浸漬液のレジスト膜への影響のみ を評価できるように、露光後に屈折率液体 (浸漬液)である純水をレジスト膜に負荷さ せると 、う簡略的な構成として 、る。
[0213] 前記純水の滴下工程の後、 115°C、 90秒間の条件で PEB処理した後、保護膜を 残したまま、 23°Cにてアルカリ現像液で 60秒間現像した。アルカリ現像液としては、 2. 38質量%テトラメチルアンモ-ゥムヒドロキシド水溶液を用いた。この現像工程に より保護膜が完全に除去され、レジスト膜の現像も良好に実現できた。
[0214] このようにして得た 130nmのラインアンドスペースが 1: 1となるレジストパターンを走 查型電子顕微鏡 (SEM)により観察したところ、このパターンプロファイルは良好な矩 形形状であった。
[0215] また、露光して純水を滴下した基板を、ァミン濃度 2. Oppbの雰囲気下で 60分間引 き置きしたのち、上記と同様の現像処理を行って、同様にレジストパターン形状を観 察したところ、前記パターンプロファイルと大きな差は見られな力つた。
[0216] このときのアミン濃度 2. Oppb雰囲気下における露光後引き置きに対する寸法変動 量は 0. 53nmZminであった。
[0217] (実施例 5)
保護膜形成用材料を、前記化学式 (100)に示した環状フッ素アルコールを構成単 位とした共重合体 (分子量 13800であり、 R5は全て水素原子であり、 x:y= 50 : 50 ( モル%)である)、および前記共重合体に対して 10wt%の下記化学式(105)で示さ れる化合物を 2—メチルー 1 プロピルアルコールに溶解させ、榭脂濃度を 2. 6%と した以外は、上記実施例 4と全く同様の手法にてレジストパターン形状を観察した。
[0218] [化 30]
Figure imgf000050_0001
[0219] 結果、 60分間の引き置きを行ったものも、行わなかったものも、 130nmラインアンド スペースが 1: 1となるレジストパターンは良好な矩形形状であった。
[0220] (実施例 6)
保護膜形成用材料を、前記化学式 (100)に示した環状フッ素アルコールを構成単 位とした共重合体 (分子量 13800であり、 R5は全て水素原子であり、 x:y= 50 : 50 ( モル0 /0)である)、および前記共重合体に対して 10wt%の(C F SO ) NHを、 2—メ
4 9 2 2
チルー 1 プロピルアルコールに溶解させ、榭脂濃度を 2. 6%とした以外は、上記実 施例 4と全く同様の手法にてレジストパターン形状を観察した。
[0221] 結果、 60分間の引き置きを行ったものも、行わな力つたものも、 130nmラインアンド スペースが 1: 1となるレジストパターンは良好な矩形形状であった。
[0222] (実施例 7)
保護膜形成用材料を、前記化学式 (100)に示した環状フッ素アルコールを構成単 位とした共重合体 (分子量 13800であり、 R5は全て水素原子であり、 x:y= 50 : 50 ( モル0 /0)である)、および前記共重合体に対して 10wt%の C F COOH、さらには
10 21
前記共重合体に対して 0.
Figure imgf000050_0002
(105)に示される化合物を、 2—メチ ルー 1 プロピルアルコールに溶解させ、榭脂濃度を 2. 6%とした以外は、上記実施 例 4と全く同様の手法にて露光し純水の滴下を行った直後に現像処理を施し、このレ ジストパターン形状を観察した。結果、 130nmラインアンドスペースが 1 : 1となるレジ ストパターンは良好な矩形形状であり、かつ、膜厚の減少も見られな力つた。
[0223] また、露光して純水を滴下した基板を、ァミン濃度 2. Oppbの雰囲気下で 65分間引 き置きしたのち、上記と同様の現像処理を行って、同様にレジストパターン形状を観 察したところ、前記パターンプロファイルと大きな差は見られな力つた。
[0224] (実施例 8)
保護膜形成用材料を、前記化学式 (100)に示した環状フッ素アルコールを構成単 位とした共重合体 (分子量 13800であり、 R5は全て水素原子であり、 x:y= 50 : 50 ( モル0 /0)である)、および前記共重合体に対して 10wt%の C F COOH、さらには
10 21
前記共重合体に対して 0. 4wt%の前記化学式(105)に示される化合物を、 2—メチ ルー 1 プロピルアルコールに溶解させ、榭脂濃度を 2. 6%とした以外は、上記実施 例 4と全く同様の手法にて露光し純水の滴下を行った直後に現像処理を施し、このレ ジストパターン形状を観察した。結果、 130nmラインアンドスペースが 1 : 1となるレジ ストパターンは良好な矩形形状であり、かつ、膜厚の減少も見られな力つた。
[0225] また、露光して純水を滴下した基板を、ァミン濃度 2. Oppbの雰囲気下で 65分間引 き置きしたのち、上記と同様の現像処理を行って、同様にレジストパターン形状を観 察したところ、前記パターンプロファイルと大きな差は見られな力つた。
[0226] (実施例 9)
保護膜形成用材料を、前記化学式 (100)に示した環状フッ素アルコールを構成単 位とした共重合体 (分子量 13800であり、 R5は全て水素原子であり、 x:y= 50 : 50 ( モル0 /0)である)、および前記共重合体に対して 10wt%の C F COOH、さらには
10 21
前記共重合体に対して 0. 8wt%の前記化学式(105)に示される化合物を、 2—メチ ルー 1 プロピルアルコールに溶解させ、榭脂濃度を 2. 6%とした以外は、上記実施 例 4と全く同様の手法にて露光し純水滴下を行った直後に現像処理を施し、このレジ ストパターン形状を観察した。結果、 130nmラインアンドスペースが 1 : 1となるレジス トパターンは良好な矩形形状であり、かつ、膜厚の減少も見られな力つた。
[0227] また、露光して純水を滴下した基板を、ァミン濃度 2. Oppbの雰囲気下で 65分間引 き置きしたのち、上記と同様の現像処理を行って、同様にレジストパターン形状を観 察したところ、前記パターンプロファイルと大きな差は見られな力つた。
[0228] (実施例 10)
下記の榭脂成分、酸発生剤、および含窒素有機化合物を有機溶剤に均一に溶解 し、レジスト組成物を調製した。
[0229] 榭脂成分としては、下記化学式(106)に示した構成単位力もなる共重合体 100質 量部を用いた。榭脂成分の調製に用いた各構成単位 1, m, nの比は、 1= 50モル%、 m= 30モル0 /0、 n= 20モル0 /0とした。
[0230] [化 31]
Figure imgf000052_0001
( 1 0 6 )
[0231] 前記酸発生剤としては、トリフエ-ルスルホ-ゥムノナフルォロブタンスルホネート 3.
5質量部と、ジフエ-ルモノメチルフエ-ルスルホ -ゥムトリフルォロメタンスルホネート 1. 0質量部を用いた。また、前記有機溶媒としては、乳酸ェチルとプロピレングリコー ルモノメチルエーテルアセテートの混合溶剤(混合比 4: 6)の 7. 0%濃度水溶液を用 いた。さらに、前記含窒素有機化合物としては、トリエタノールァミン 0. 3質量部を用 いた。
[0232] 上記のようにして製造したレジスト組成物を用いて、レジストパターンの形成を行つ た。まず、有機系反射防止膜組成物「ARC29」(商品名、 Brewer社製)をスピナ一 を用いてシリコンウェハー上に塗布し、ホットプレート上で 205°C、 60秒間焼成して乾 燥させること〖こより、膜厚 77nmの有機系反射防止膜を形成した。そして、この反射防 止膜上に、前記レジスト組成物をスピナ一を用いて塗布し、ホットプレート上で 130°C 、 90秒間プレベータして、乾燥させることにより、反射防止膜上に膜厚 225nmのレジ スト膜を形成した。これを評価用基板 1とした。
[0233] 前記評価用基板 1上のレジスト膜上に、前記化学式(100)に示した環状フッ素アル コールを構成単位とした共重合体 (分子量 13800であり、 R5は全て水素原子であり 、 = 50 : 50 (モル%)でぁる)、ぉょび前記共重合体に対して10 %のじ F C OOHを、 2—メチルー 1 プロピルアルコールに溶解させ、榭脂濃度を 2. 6%とした 保護膜材料を回転塗布し、 90°Cにて 60秒間加熱し、膜厚 70. Onmの保護膜を形成 した。これを評価用基板 2とした。
[0234] 次に、前記評価用基板 1, 2をマスクパターンを介して、露光装置 Nikon— S302A
(ニコン社製)により、 ArFエキシマレーザー(波長 193nm)を用いて、パターン光を 照射 (露光)した後、それぞれの基板を 35mLの純水で室温にて 5分間抽出した。
[0235] 抽出液を濃縮後(50倍濃縮)、キヤビラリ一電気泳動 質量分析法により、抽出アミ ン濃度、および抽出した酸発生在起因と思われる陽イオンおよび陰イオン濃度を定 量した。この結果を下記表 1に示した。
[0236] [表 1]
(表 1 )
Figure imgf000053_0001
(単 H:ng/ cm )
(評価基板 2における各数値は、結果が本分析法による定量限界以下の数値であ つたことを示す)
[0237] この結果より、液浸露光プロセスにおいて、本発明保護膜成分を設けたことによりレ ジスト成分の浸漬媒体への溶出量が抑えられることが明らかであることが分力つた。 産業上の利用可能性
[0238] 以上説明したように、本発明によれば、慣用のどのようなレジスト組成物を用いてレ ジスト膜を構成しても、液浸露光工程においていかなる浸漬液を用いても、特に水や フッ素系媒体を用いた場合であっても、レジストパターン力T—トップ形状となるなど レジストパターンの表面の荒れがなぐ感度が高ぐレジストパターンプロファイル形状 に優れ、かつ焦点深度幅や露光余裕度、引き置き経時安定性が良好である、精度 の高いレジストパターンを得ることができる。従って、本発明の保護膜を用いると、液 浸露光プロセスを用いたレジストパターンの形成を効果的に行うことができる。

Claims

請求の範囲
[1] レジスト膜上に設けられて、液浸露光プロセスに供する前記レジスト膜を保護するレ ジスト保護膜形成用材料であって、
露光光に対して透明で、水に対して実質的な相溶性を持たず、かつアルカリに可 溶である特性を有することを特徴とする液浸露光プロセス用レジスト保護膜形成用材 料。
[2] 前記液浸露光プロセスが、リソグラフィー露光光がレジスト膜に到達するまでの経路 の少なくとも前記レジスト膜上に、空気より屈折率が大きくかつ前記レジスト膜よりも屈 折率が小さ!ヽ所定厚さの液浸露光用液体を介在させた状態で、前記レジスト膜を露 光することによってレジストパターンの解像度を向上させる構成であることを特徴とす る請求項 1に記載のレジスト保護膜形成用材料。
[3] 前記露光光が、 157nmあるいは 193nmを主波長とする光であることを特徴とする 請求項 1に記載のレジスト保護膜形成用材料。
[4] 前記レジスト膜を形成するレジスト組成物のベースポリマーが (メタ)アクリル酸エス テル単位カゝらなるポリマーであることを特徴とする請求項 1に記載のレジスト保護膜形 成用材料。
[5] 前記レジスト膜を形成するレジスト組成物のベースポリマーがジカルボン酸の酸無 水物含有構成単位を有するポリマーであることを特徴とする請求項 1に記載のレジス ト保護膜形成用材料。
[6] 前記レジスト膜を形成するレジスト組成物のベースポリマーがフエノール性水酸基 含有構成単位を有するポリマーであることを特徴とする請求項 1に記載のレジスト保 護膜形成用材料。
[7] 前記レジスト膜を形成するレジスト組成物のベースポリマーがシルセスキォキサン榭 脂であることを特徴とする請求項 1に記載のレジスト保護膜形成用材料。
[8] 前記レジスト膜を形成するレジスト組成物のベースポリマーが a - (ヒドロキシアル キル)アクリル酸単位を有するポリマーであることを特徴とする請求項 1に記載のレジ スト保護膜形成用材料。
[9] 前記レジスト膜を形成するレジスト組成物のベースポリマーがジカルボン酸モノエス テル単位を有するポリマーであることを特徴とする請求項 1に記載のレジスト保護膜 形成用材料。
[10] 前記レジスト膜を形成するレジスト組成物のベースポリマーが、 (i)フッ素原子また はフッ素化アルキル基および (ii)アルコール性水酸基またはアルキルォキシ基を共 に有する脂肪族環式基を含むアルカリ可溶性の構成単位を有するポリマーであるこ とを特徴とする請求項 1に記載のレジスト保護膜形成用材料。
[11] 前記保護膜形成用材料がフッ素ポリマーと溶剤とを少なくとも含有する組成物であ ることを特徴とする請求項 1に記載のレジスト保護膜形成用材料。
[12] 前記フッ素ポリマーが下記一般式(100)
[化 1]
Figure imgf000055_0001
( 1 0 0 ) で示される環状フッ素アルコールを構造単位とするポリマーであることを特徴とする請 求項 11に記載のレジスト保護膜形成用材料。
[13] 前記環状フッ素アルコールを構造単位とするポリマーがアルコール系溶剤に溶解 して組成物とされていることを特徴とする請求項 12に記載のレジスト保護膜形成用材 料。
[14] さらに炭化フッ素化合物を含有していることを特徴とする請求項 11に記載のレジス ト保護膜形成用材料。
[15] 前記炭化フッ素化合物が下記一般式 (201)
(C F SO ) NH ••(201)
(式中、 nは、 1〜5の整数である。 )
で示される炭化フッ素化合物であることを特徴とする請求項 14に記載のレジスト保護 膜形成用材料。
[16] 前記炭化フッ素化合物が下記一般式 (202)
C F COOH (202)
m 2m+l (式中、 mは、 10〜15の整数である。 )
で示される炭化フッ素化合物であることを特徴とする請求項 14に記載のレジスト保護 膜形成用材料。
前記炭化フッ素化合物が下記一般式 (203)
[化 2]
Figure imgf000056_0001
(式中、 oは、 2〜3の整数である。 )
で示される炭化フッ素化合物であることを特徴とする請求項 14に記載のレジスト保護 膜形成用材料。
前記炭化フッ素化合物が下記一般式 (204)
[化 3]
Figure imgf000056_0002
(式中、 pは、 2〜3の整数であり、 Rfは 1部若しくは全部がフッ素原子により置換され ているアルキル基であり、水酸基、アルコキシ基、カルボキシル基、アミノ基により置 換されていてもよい。 )
で示される炭化フッ素化合物であることを特徴とする請求項 14に記載のレジスト保護 膜形成用材料。
前記一般式 (201)で示される炭化フッ素化合物が下記化学式 (205)
(C F SO ) NH (205)
4 9 2 2
で表される化合物、または下記化学式(206)
(C F SO ) NH (206)
3 7 2 2
で表される炭化フッ素化合物であることを特徴とする請求項 15に記載のレジスト保護 膜形成用材料。
前記一般式 (202)で示される炭化フッ素化合物が下記化学式 (207)
C F COOH (7)
10 21
で表される炭化フッ素化合物であることを特徴とする請求項 16に記載のレジスト保護 膜形成用材料。
[21] 前記一般式 (203)で示される炭化フッ素化合物が下記化学式 (208)
[化 4]
Figure imgf000057_0001
で表される炭化フッ素化合物であることを特徴とする請求項 17に記載のレジスト保護 膜形成用材料。
[22] 前記一般式 (204)で示される炭化フッ素化合物が下記化学式 (209)
[化 5]
Figure imgf000057_0002
で表される炭化フッ素化合物であることを特徴とする請求項 18に記載のレジスト保護 膜形成用材料。
[23] 前記液浸露光用液体が実質的に純水もしくは脱イオン水力 なる水、あるいはフッ 素系溶剤であることを特徴とする請求項 1に記載のレジスト保護膜形成用材料。
[24] 液浸露光プロセスを用いたレジストパターン形成方法であって、
基板上にフォトレジスト膜を形成し、
前記レジスト膜の上に、請求項 1から 23のいずれか 1項に記載の保護膜形成用材 料を用いて、保護膜を形成し、
前記レジスト膜と前記保護膜とが積層された前記基板の少なくとも前記保護膜上に 直接所定厚みの前記液浸露光用液体を配置し、
前記液浸露光用液体および前記保護膜を介して前記レジスト膜に選択的に光を照 射し、必要に応じて加熱処理を行い、
アルカリ現像液を用いて前記保護膜と前記レジスト膜とを現像処理することにより前 記保護膜を除去すると同時に、レジストパターンを得ることを含むレジストパターン形 成方法。
PCT/JP2005/007846 2004-04-27 2005-04-25 液浸露光プロセス用レジスト保護膜形成用材料、および該保護膜を用いたレジストパターン形成方法 WO2005103098A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200580012969XA CN1946751B (zh) 2004-04-27 2005-04-25 用于形成液浸曝光工艺用光刻胶保护膜的材料、以及使用该保护膜的光刻胶图案形成方法
KR1020067022027A KR100887202B1 (ko) 2004-04-27 2005-04-25 액침 노광 프로세스용 레지스트 보호막 형성용 재료, 및 이보호막을 이용한 레지스트 패턴 형성 방법
DE602005021212T DE602005021212D1 (de) 2004-04-27 2005-04-25 Material zur bildung eines resistschutzfilms für das eintauchbelichtungsverfahren und verfahren zur bildung eines resistmusters unter verwendung des schutzfilms
US11/587,509 US7846637B2 (en) 2004-04-27 2005-04-25 Material for forming resist protective film for use in liquid immersion lithography process and method for forming resist pattern using the protective film
EP05734725A EP1741730B1 (en) 2004-04-27 2005-04-25 Resist protecting film forming material for immersion exposure process and resist pattern forming method using the protecting film
TW094113279A TW200606179A (en) 2004-04-27 2005-04-26 Material for forming resist protection film for liquid immersion lithography and method for forming resist pattern by using the protection film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004132081A JP5301070B2 (ja) 2004-02-16 2004-04-27 液浸露光プロセス用レジスト保護膜形成用材料、および該保護膜を用いたレジストパターン形成方法
JP2004-132081 2004-04-27

Publications (1)

Publication Number Publication Date
WO2005103098A1 true WO2005103098A1 (ja) 2005-11-03

Family

ID=35196923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007846 WO2005103098A1 (ja) 2004-04-27 2005-04-25 液浸露光プロセス用レジスト保護膜形成用材料、および該保護膜を用いたレジストパターン形成方法

Country Status (7)

Country Link
US (1) US7846637B2 (ja)
EP (1) EP1741730B1 (ja)
KR (2) KR100887202B1 (ja)
CN (1) CN1946751B (ja)
DE (1) DE602005021212D1 (ja)
TW (1) TW200606179A (ja)
WO (1) WO2005103098A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1594004A2 (en) * 2004-02-25 2005-11-09 Matsushita Electric Industrial Co., Ltd. Barrier film material and pattern formation method using the same
JP2008047612A (ja) * 2006-08-11 2008-02-28 Tokyo Electron Ltd 液浸露光用塗布膜の処理条件決定方法および処理条件決定装置、ならびにコンピュータプログラム
US20100104978A1 (en) * 2007-02-15 2010-04-29 Atsushi Sawano Composition for antireflection film formation and method of forming resist pattern with the same
US8076053B2 (en) 2005-10-27 2011-12-13 Jsr Corporation Upper layer-forming composition and photoresist patterning method
JP2013073124A (ja) * 2011-09-28 2013-04-22 Jsr Corp 液浸上層膜形成用組成物
JP7456416B2 (ja) 2021-04-30 2024-03-27 信越半導体株式会社 環境雰囲気中のアルカリイオン濃度の評価方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070085214A (ko) 2004-11-11 2007-08-27 가부시키가이샤 니콘 노광 방법, 디바이스 제조 방법, 및 기판
JP5151038B2 (ja) * 2006-02-16 2013-02-27 富士通株式会社 レジストカバー膜形成材料、レジストパターンの形成方法、半導体装置及びその製造方法
US7771913B2 (en) * 2006-04-04 2010-08-10 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process using the same
SG170760A1 (en) * 2006-04-05 2011-05-30 Asahi Glass Co Ltd Method for washing device substrate
JP5024293B2 (ja) * 2006-09-27 2012-09-12 Jsr株式会社 上層膜形成用組成物およびフォトレジストパターン形成方法
WO2008047678A1 (fr) 2006-10-13 2008-04-24 Jsr Corporation Composition pour la formation d'un film de couche supérieure et procédé de formation d'un motif en photorésine
JP4435196B2 (ja) * 2007-03-29 2010-03-17 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP5035560B2 (ja) * 2007-07-04 2012-09-26 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP4993138B2 (ja) * 2007-09-26 2012-08-08 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP2009164441A (ja) * 2008-01-09 2009-07-23 Panasonic Corp パターン形成方法
JP4650644B2 (ja) * 2008-05-12 2011-03-16 信越化学工業株式会社 レジスト材料及びパターン形成方法
JP5381298B2 (ja) * 2008-05-12 2014-01-08 信越化学工業株式会社 レジスト保護膜材料及びパターン形成方法
TWI424994B (zh) * 2008-10-30 2014-02-01 Shinetsu Chemical Co 具有環狀縮醛構造之含氟單體、高分子化合物、光阻保護膜材料、光阻材料、圖型之形成方法
JP4822028B2 (ja) * 2008-12-02 2011-11-24 信越化学工業株式会社 レジスト保護膜材料及びパターン形成方法
JP4748331B2 (ja) * 2008-12-02 2011-08-17 信越化学工業株式会社 レジスト材料及びパターン形成方法
JP5170456B2 (ja) 2009-04-16 2013-03-27 信越化学工業株式会社 レジスト材料及びパターン形成方法
KR101247830B1 (ko) * 2009-09-15 2013-03-26 도오꾜오까고오교 가부시끼가이샤 보호막 형성용 재료 및 포토레지스트 패턴 형성 방법
JP5131488B2 (ja) * 2009-12-22 2013-01-30 信越化学工業株式会社 含フッ素単量体及び含フッ素高分子化合物
TWI457318B (zh) 2010-10-05 2014-10-21 Shinetsu Chemical Co 含氟酯單體及其製造方法、與含氟酯高分子化合物
US8597869B2 (en) * 2010-10-25 2013-12-03 Shin-Etsu Chemical Co., Ltd. Sulfonium salt, resist composition, and patterning process
JP5898985B2 (ja) 2011-05-11 2016-04-06 東京応化工業株式会社 レジストパターン形成方法
US9017934B2 (en) 2013-03-08 2015-04-28 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist defect reduction system and method
US9543147B2 (en) 2013-03-12 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist and method of manufacture
US9256128B2 (en) 2013-03-12 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing semiconductor device
US9110376B2 (en) 2013-03-12 2015-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US9245751B2 (en) 2013-03-12 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-reflective layer and method
US8932799B2 (en) 2013-03-12 2015-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US9175173B2 (en) 2013-03-12 2015-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Unlocking layer and method
US9354521B2 (en) 2013-03-12 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US9502231B2 (en) 2013-03-12 2016-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist layer and method
US9117881B2 (en) 2013-03-15 2015-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive line system and process
US9341945B2 (en) 2013-08-22 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist and method of formation and use
US10036953B2 (en) 2013-11-08 2018-07-31 Taiwan Semiconductor Manufacturing Company Photoresist system and method
US10095113B2 (en) 2013-12-06 2018-10-09 Taiwan Semiconductor Manufacturing Company Photoresist and method
US9761449B2 (en) 2013-12-30 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Gap filling materials and methods
US9599896B2 (en) 2014-03-14 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US9581908B2 (en) 2014-05-16 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist and method
US10274847B2 (en) 2017-09-19 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Humidity control in EUV lithography
JP2020067547A (ja) * 2018-10-24 2020-04-30 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 半導体水溶性組成物およびその使用
US11327398B2 (en) * 2019-04-30 2022-05-10 Samsung Electronics Co., Ltd. Photoresist compositions and methods for fabricating semiconductor devices using the same
CN115826362A (zh) * 2023-01-06 2023-03-21 Tcl华星光电技术有限公司 光刻方法及集成电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348315A (ja) * 2001-05-07 2002-12-04 Ausimont Spa 非晶質の(パー)フッ素化されたポリマー
WO2004068242A1 (ja) * 2003-01-31 2004-08-12 Tokyo Ohka Kogyo Co., Ltd. レジスト組成物
WO2004076535A1 (ja) * 2003-02-26 2004-09-10 Tokyo Ohka Kogyo Co., Ltd. シルセスキオキサン樹脂、ポジ型レジスト組成物、レジスト積層体及びレジストパターン形成方法
JP2004325466A (ja) * 2003-03-04 2004-11-18 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用レジスト材料および該レジスト材料を用いたレジストパターン形成方法
EP1493761A1 (en) 2003-07-02 2005-01-05 3M Innovative Properties Company Fluoropolymer of fluorinated short chain acrylates or methacrylates and oil- and water repellent compositions based thereon
JP2005099646A (ja) * 2003-03-28 2005-04-14 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用レジスト組成物および該レジスト組成物を用いたレジストパターン形成方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4387222A (en) * 1981-01-30 1983-06-07 Minnesota Mining And Manufacturing Company Cyclic perfluoroaliphaticdisulfonimides
US4491628A (en) * 1982-08-23 1985-01-01 International Business Machines Corporation Positive- and negative-working resist compositions with acid generating photoinitiator and polymer with acid labile groups pendant from polymer backbone
DE3817012A1 (de) * 1988-05-19 1989-11-30 Basf Ag Positiv und negativ arbeitende strahlungsempfindliche gemische sowie verfahren zur herstellung von reliefmustern
JP2871710B2 (ja) * 1989-03-17 1999-03-17 株式会社きもと 画像形成方法
EP0440374B1 (en) * 1990-01-30 1997-04-16 Wako Pure Chemical Industries Ltd Chemical amplified resist material
GB2250549B (en) * 1990-11-30 1995-01-11 Ntn Toyo Bearing Co Ltd Rolling bearing with solid lubricant
JP2643056B2 (ja) * 1991-06-28 1997-08-20 インターナショナル・ビジネス・マシーンズ・コーポレイション 表面反射防止コーティング形成組成物及びその使用
JP3000745B2 (ja) * 1991-09-19 2000-01-17 富士通株式会社 レジスト組成物とレジストパターンの形成方法
JP2587158B2 (ja) * 1991-10-21 1997-03-05 工業技術院長 モノヒドリル化ペルフルオロ第3級アミンの製造方法
DE69733469T2 (de) 1996-03-07 2006-03-23 Sumitomo Bakelite Co. Ltd. Photoresist zusammensetzungen mit polycyclischen polymeren mit säurelabilen gruppen am ende
US5843624A (en) 1996-03-08 1998-12-01 Lucent Technologies Inc. Energy-sensitive resist material and a process for device fabrication using an energy-sensitive resist material
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
US5994005A (en) * 1998-02-05 1999-11-30 Eastman Kodak Company Stain resistant protective overcoat for imaged photographic elements
US6365322B1 (en) * 1999-12-07 2002-04-02 Clariant Finance (Bvi) Limited Photoresist composition for deep UV radiation
US6447980B1 (en) * 2000-07-19 2002-09-10 Clariant Finance (Bvi) Limited Photoresist composition for deep UV and process thereof
US6451510B1 (en) * 2001-02-21 2002-09-17 International Business Machines Corporation Developer/rinse formulation to prevent image collapse in resist
US6555510B2 (en) * 2001-05-10 2003-04-29 3M Innovative Properties Company Bis(perfluoroalkanesulfonyl)imides and their salts as surfactants/additives for applications having extreme environments and methods therefor
JP4083399B2 (ja) * 2001-07-24 2008-04-30 セントラル硝子株式会社 含フッ素重合性単量体およびそれを用いた高分子化合物
JP3666807B2 (ja) * 2001-12-03 2005-06-29 東京応化工業株式会社 ホトレジストパターンの形成方法およびホトレジスト積層体
JP4010160B2 (ja) * 2002-03-04 2007-11-21 旭硝子株式会社 レジスト組成物
US6754460B2 (en) * 2002-03-05 2004-06-22 Static Control Components, Inc. Method of remanufacturing a toner cartridge
JP3856122B2 (ja) * 2002-04-05 2006-12-13 信越化学工業株式会社 レジスト材料及びパターン形成方法
US6866983B2 (en) * 2002-04-05 2005-03-15 Shin-Etsu Chemical Co., Ltd. Resist compositions and patterning process
CA2381128A1 (en) * 2002-04-09 2003-10-09 Quantiscript Inc. Plasma polymerized electron beam resist
CN1678646A (zh) * 2002-07-26 2005-10-05 E·I·内穆尔杜邦公司 氟化聚合物、光致抗蚀剂和显微平版印刷法
US20040166434A1 (en) * 2003-02-21 2004-08-26 Dammel Ralph R. Photoresist composition for deep ultraviolet lithography
US20050202351A1 (en) * 2004-03-09 2005-09-15 Houlihan Francis M. Process of imaging a deep ultraviolet photoresist with a top coating and materials thereof
US7473512B2 (en) 2004-03-09 2009-01-06 Az Electronic Materials Usa Corp. Process of imaging a deep ultraviolet photoresist with a top coating and materials thereof
US7811748B2 (en) * 2004-04-23 2010-10-12 Tokyo Ohka Kogyo Co., Ltd. Resist pattern forming method and composite rinse agent
JP4368267B2 (ja) * 2004-07-30 2009-11-18 東京応化工業株式会社 レジスト保護膜形成用材料、およびこれを用いたレジストパターン形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348315A (ja) * 2001-05-07 2002-12-04 Ausimont Spa 非晶質の(パー)フッ素化されたポリマー
WO2004068242A1 (ja) * 2003-01-31 2004-08-12 Tokyo Ohka Kogyo Co., Ltd. レジスト組成物
WO2004076535A1 (ja) * 2003-02-26 2004-09-10 Tokyo Ohka Kogyo Co., Ltd. シルセスキオキサン樹脂、ポジ型レジスト組成物、レジスト積層体及びレジストパターン形成方法
JP2004325466A (ja) * 2003-03-04 2004-11-18 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用レジスト材料および該レジスト材料を用いたレジストパターン形成方法
JP2005099646A (ja) * 2003-03-28 2005-04-14 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用レジスト組成物および該レジスト組成物を用いたレジストパターン形成方法
EP1493761A1 (en) 2003-07-02 2005-01-05 3M Innovative Properties Company Fluoropolymer of fluorinated short chain acrylates or methacrylates and oil- and water repellent compositions based thereon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1741730A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1594004A2 (en) * 2004-02-25 2005-11-09 Matsushita Electric Industrial Co., Ltd. Barrier film material and pattern formation method using the same
EP1594004A3 (en) * 2004-02-25 2011-03-30 Panasonic Corporation Barrier film material and pattern formation method using the same
US8076053B2 (en) 2005-10-27 2011-12-13 Jsr Corporation Upper layer-forming composition and photoresist patterning method
JP2008047612A (ja) * 2006-08-11 2008-02-28 Tokyo Electron Ltd 液浸露光用塗布膜の処理条件決定方法および処理条件決定装置、ならびにコンピュータプログラム
US20100104978A1 (en) * 2007-02-15 2010-04-29 Atsushi Sawano Composition for antireflection film formation and method of forming resist pattern with the same
US8158328B2 (en) * 2007-02-15 2012-04-17 Tokyo Ohka Kogyo Co., Ltd. Composition for formation of anti-reflection film, and method for formation of resist pattern using the same
JP2013073124A (ja) * 2011-09-28 2013-04-22 Jsr Corp 液浸上層膜形成用組成物
JP7456416B2 (ja) 2021-04-30 2024-03-27 信越半導体株式会社 環境雰囲気中のアルカリイオン濃度の評価方法

Also Published As

Publication number Publication date
EP1741730A4 (en) 2008-06-25
DE602005021212D1 (de) 2010-06-24
TW200606179A (en) 2006-02-16
US7846637B2 (en) 2010-12-07
KR20080103111A (ko) 2008-11-26
EP1741730B1 (en) 2010-05-12
TWI334421B (ja) 2010-12-11
KR100960838B1 (ko) 2010-06-07
EP1741730A1 (en) 2007-01-10
CN1946751B (zh) 2010-12-08
KR100887202B1 (ko) 2009-03-06
US20080032202A1 (en) 2008-02-07
KR20070007156A (ko) 2007-01-12
CN1946751A (zh) 2007-04-11

Similar Documents

Publication Publication Date Title
WO2005103098A1 (ja) 液浸露光プロセス用レジスト保護膜形成用材料、および該保護膜を用いたレジストパターン形成方法
JP5301070B2 (ja) 液浸露光プロセス用レジスト保護膜形成用材料、および該保護膜を用いたレジストパターン形成方法
JP4368266B2 (ja) レジスト保護膜形成用材料、およびこれを用いたレジストパターン形成方法
TWI359176B (ja)
KR100853063B1 (ko) 액침 노광 프로세스용 레지스트 보호막 형성용 재료,복합막 및 레지스트 패턴 형성 방법
KR100722044B1 (ko) 액침 노광 프로세스용 침지액 및 상기 침지액을 이용한레지스트 패턴 형성 방법
JP2006227632A (ja) 液浸露光プロセス用レジスト保護膜形成用材料、複合膜、およびレジストパターン形成方法
WO2006011607A1 (ja) レジスト保護膜形成用材料、およびこれを用いたレジストパターン形成方法
WO2005085954A1 (ja) 液浸露光用ポジ型レジスト組成物およびレジストパターンの形成方法
JP2005250511A (ja) 液浸露光プロセス用レジスト保護膜形成用材料、該保護膜形成材料による保護膜を有するレジスト膜、および該保護膜を用いたレジストパターン形成方法
WO2005117074A1 (ja) 液浸露光プロセス用浸漬液および該浸漬液を用いたレジストパターン形成方法
KR100702730B1 (ko) 액침 노광 프로세스용 레지스트 재료 및 상기 레지스트재료를 이용한 레지스트 패턴 형성 방법
JP5507601B2 (ja) レジストパターン形成方法
JP2006048075A (ja) 液浸露光プロセス用レジスト保護膜除去用溶剤およびこれを用いたレジストパターン形成方法
JP2006309257A (ja) 液浸露光プロセス用レジスト保護膜除去用溶剤およびこれを用いたレジストパターン形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067022027

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580012969.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005734725

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005734725

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067022027

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11587509

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11587509

Country of ref document: US