WO2005117074A1 - 液浸露光プロセス用浸漬液および該浸漬液を用いたレジストパターン形成方法 - Google Patents

液浸露光プロセス用浸漬液および該浸漬液を用いたレジストパターン形成方法 Download PDF

Info

Publication number
WO2005117074A1
WO2005117074A1 PCT/JP2005/009477 JP2005009477W WO2005117074A1 WO 2005117074 A1 WO2005117074 A1 WO 2005117074A1 JP 2005009477 W JP2005009477 W JP 2005009477W WO 2005117074 A1 WO2005117074 A1 WO 2005117074A1
Authority
WO
WIPO (PCT)
Prior art keywords
immersion
group
resist
liquid
resist film
Prior art date
Application number
PCT/JP2005/009477
Other languages
English (en)
French (fr)
Inventor
Taku Hirayama
Kazumasa Wakiya
Kotaro Endo
Masaaki Yoshida
Original Assignee
Tokyo Ohka Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co., Ltd. filed Critical Tokyo Ohka Kogyo Co., Ltd.
Priority to US11/597,124 priority Critical patent/US20090011375A1/en
Publication of WO2005117074A1 publication Critical patent/WO2005117074A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means

Definitions

  • the present invention relates to a liquid immersion lithography (Liquid Immersion Lithography) process, in particular, a liquid of a predetermined thickness having a higher refractive index than air on at least the resist film in a path where lithographic exposure light reaches the resist film.
  • the liquid (hereinafter referred to as an immersion liquid) suitable for use in an immersion exposure process configured to improve the resolution of a resist pattern by exposing the resist film with a resist interposed therebetween, and the immersion liquid
  • the present invention relates to a method for forming a resist pattern used.
  • the first point is to develop an exposure apparatus and a corresponding resist.
  • development points such as shortening the wavelength of a light source such as F2 laser, EUV (extreme ultraviolet light), electron beam, X-ray, and increasing the numerical aperture (NA) of a lens are common.
  • Non-Patent Document 1 Non-Patent Document 2, Non-Patent Document 2).
  • Patent Document 3 This method uses a lens and a resist film on the substrate during exposure.
  • a liquid (immersion liquid) such as pure water or a fluorine-based inert liquid having a predetermined thickness is interposed at least on the resist film.
  • the light source having the same exposure wavelength is replaced by replacing the exposure optical path space, which was conventionally an inert gas such as air or nitrogen, with a larger refractive index (n)! / Liquid, for example, pure water.
  • n refractive index
  • Non-Patent Document 1 Journal of Vacuum Science & Technology B (J. Vac. Sci. Technol. B) (Amuri Power, (publishing country)), 1999, Volume 17, 6 No. 3306—p. 3309.
  • Non-Patent Document 2 Journal of Vacuum Science & Technology B (J. Vac. Sci. Technol. B) (Issued country: Amerili), 2001, Vol. 19, No. 6, 2353 — 2356 pages.
  • Non-Patent Document 3 Proceedings of SPIE Vol.4691 (Procedings of SPIE Vol.4691 (publishing country) USA), Vol. 4691, pp. 459-465.
  • an immersion liquid to be used includes an inert water such as pure water / deionized water and a fluorine-based inert water such as a perfluoroether compound. Liquids have been proposed, and inert water is promising because of its cost and ease of handling. As described above, the immersion exposure process is based on the premise that a liquid having a higher refractive index (n) than an inert gas such as air or nitrogen is used as the immersion liquid.
  • n refractive index
  • the ratio is 1.33 for water and 1.28 for fluorine-based inert solution: about L3 (measured at room temperature with visible light at room temperature using Abbe refractometer NAR-1T (manufactured by Atago Co., Ltd.)) .
  • NA convergence angle
  • Resolution resolution
  • kl constant
  • wavelength
  • refractive index
  • the value of the refractive index obtained is limited, and the development of a new immersion liquid with a higher refractive index is desired.
  • the immersion liquid needs to satisfy various conditions such as transparency to exposure light and compatibility with the resist composition in addition to the refractive index, and its development is not easy.
  • resist compositions are compositions in which a possible resin has been studied extensively and established because of the most important essential property of having transparency to exposure light.
  • Such resist compositions are excellent in various resist properties such as transparency to exposure light, pattern rectangularity, developability, storage stability, etc., and have been established by spending a large amount of development resources. It is. Therefore, when developing a new immersion liquid, it is important to be able to apply the currently proposed resist composition to the immersion lithography process, either as it is or by slightly adjusting the composition. Requirements.
  • the suitability for immersion exposure of the resist film can be evaluated by analyzing the following immersion exposure method.
  • the effect of the resist film on the immersion liquid in (ii) is that the components of the resist film dissolve into the liquid and change the refractive index of the liquid. If the refractive index of the liquid changes, the optical resolution of the pattern exposure will change, as is clear from experiments. In this regard, it is sufficient to simply confirm that when the resist film is immersed in the liquid, the components are dissolved and the composition of the immersion liquid is changed or the refractive index is changed. Yes, it is not necessary to actually irradiate pattern light, develop and check the resolution
  • the above-mentioned currently proposed resist film is evaluated for suitability for immersion exposure.
  • a quartz crystal method (a film that detects film thickness based on weight change due to Quarts Crystal Microbalance) is used. It can be confirmed by an evaluation test (thickness measurement method) (hereinafter referred to as “evaluation test 3”).
  • the present invention has been made in view of the problems of the prior art which is powerful, and is an immersion liquid having a high refractive index, which is based on a conventional resist composition which has been established by spending many development resources. It is an object of the present invention to provide an immersion liquid which can be applied mutatis mutandis to the obtained resist film. Specifically, the immersion liquid used in the immersion exposure method is transparent to exposure light having a high refractive index. Another object of the present invention is to provide an immersion liquid capable of preventing deterioration of a resist film during immersion exposure, thereby enabling formation of a high-resolution resist pattern using immersion exposure. Is what you do.
  • the immersion liquid for the immersion exposure process according to the present invention is an immersion liquid suitable for the immersion exposure process, On the other hand, it is characterized by being composed of a silicon-based liquid force that is transparent to the liquid.
  • the resist pattern forming method according to the present invention is a resist pattern forming method using an immersion exposure process, wherein at least a step of forming a photoresist film on a substrate, an exposure light used in the exposure process A step of directly disposing an immersion liquid composed of a silicon-based liquid force that is transparent to the resist film on the resist film, a step of selectively exposing the resist film via the immersion liquid, and, if necessary, The heat treatment of the resist film is followed by a step of developing the resist film to form a resist pattern.
  • the second method for forming a resist pattern uses an immersion exposure process. Forming at least a photoresist film on a substrate, forming a protective film on the resist film, and a silicon-based liquid transparent to exposure light used in the exposure process. A step of directly disposing the formed immersion liquid on the protective film, a step of selectively exposing the resist film via the immersion liquid and the protective film, and, if necessary, a heat treatment of the resist film. And forming a resist pattern by developing the resist film.
  • the liquid immersion exposure process involves, inter alia, interposing a liquid of a predetermined thickness having a refractive index larger than that of air on at least the resist film in a path until the lithography exposure light reaches the resist film. It is preferable to use a configuration in which the resolution of the resist pattern is improved by exposing the resist pattern in a state of being exposed.
  • a silicon-based liquid having a high refractive index is used, even if a light source having the same exposure wavelength is used, it is the same as when a shorter wavelength light source or a high NA lens is used.
  • high resolution can be achieved, and at the same time, a decrease in the depth of focus can be prevented, so that the present invention can be applied to formation of finer patterns.
  • the resist pattern surface becomes rough, such as a resist pattern strength ST—top shape during the liquid immersion exposure step, the pattern fluctuates, and the like. It is possible to obtain a highly accurate resist pattern having an excellent resist pattern profile shape free from the phenomenon of stringing and the like.
  • a protective film is formed on a resist film and the immersion liquid of the present invention is provided on the protective film, an excellent resist pattern can be formed.
  • the immersion liquid of the present invention it is possible to effectively form a resist pattern using an immersion exposure process.
  • FIG. 1 is a diagram showing a change in a thickness value of a resist film with respect to an immersion time.
  • the immersion liquid used in the present invention is transparent to exposure light used in the immersion exposure process, and also has a silicon-based liquid force that hardly alters or dissolves the resist film. Due to its molecular structure, silicon-based liquids have a higher refractive index than fluorine-based solutions and water. Because of this, the same Even if a light source with an exposure wavelength is used, high resolution can be achieved and a decrease in the depth of focus can be prevented, as in the case of using a light source of a shorter wavelength or using a high NA lens. And can be applied to formation of finer patterns.
  • the refractive index changes under the influence of the measurement wavelength and the measurement temperature, it is difficult to uniquely define the level of the refractive index required for the silicon-based liquid of the present invention.
  • the value is preferably at least 0.01 or more, preferably 0.1 or more, more preferably 0.2 or more higher than the value of the refractive index of water.
  • the refractive index level required for the silicon-based liquid of the present invention is 1.34 or more, more preferably 1.35 or more, even more preferably 1.35 or more, when measured at room temperature with visible light. Is 1.36 or more (measured using Abbe refractometer NAR-1T (manufactured by Atago Co., Ltd.)). Further, at a measurement wavelength of 156.2 nm and a measurement temperature of room temperature, it is 1.5 or more, more preferably 1.6 or more, and further preferably 1.65 or more. At a measurement wavelength of 192.8 nm and a measurement temperature of room temperature, it is 1.4 or more, more preferably 1.5 or more, and further preferably 1.55 or more. Further, at a measurement wavelength of 246.8 nm and a measurement temperature of room temperature, it is 1.35 or more, more preferably 1.4 or more, and further preferably 1.45 or more.
  • silicon-based liquid having such a refractive index examples include organic siloxanes.
  • Organic siloxanes have the following general formula
  • examples of the organic group R include a hydrocarbon group having 1 to 8 carbon atoms and a halogenated hydrocarbon group having 1 to 8 carbon atoms.
  • Specific examples of the organic group R include a methyl group, an ethyl group, and CHCHCF, and among them, a methyl group is preferable.
  • n is preferably 0 or more and 40 or less. It is more preferable that n is 0 or more and 5 or less. It is particularly preferable that it is 0 or more and 2 or less, and that n is most preferably 0.
  • the immersion liquid according to the present invention is a silicon-based liquid that is transparent to exposure light used in the immersion exposure process. This means that it has a level of transparency that does not interfere with the immersion exposure process.
  • the immersion liquid of the present invention is suitable for an immersion exposure process using, for example, an excimer laser having a wavelength of 157 nm, 193 nm, or 247 nm, and is particularly preferably applicable to an immersion exposure process using an excimer laser having a wavelength of 193 nm. .
  • a conventional resist composition can be used without particular limitation as long as the resist film can be used as long as it has a property that it is not altered or dissolved by a silicon-based liquid used as an immersion liquid. It is.
  • a conventional positive resist or negative photoresist can be used as the resist composition used in the immersion exposure process of the present invention. Specific examples of these are described below.
  • acrylic resin cycloolefin resin, silsesquioxane resin, fluorine-containing polymer and the like are used.
  • acrylic resin for example, a (meth) acryl having an acid dissociable, dissolution inhibiting group (Meth) acrylic acid having a structural unit derived from an acid ester (al), including structural units derived from a (meth) acrylic acid ester, other than the structural unit (al) Resins containing at least 80 mol%, preferably at least 90 mol% (100 mol% is most preferred) of constituent units derived from esters are preferred.
  • the resin component is a monomer unit having a plurality of different functions other than the (al) unit, for example, , And a combination of the following constituent units.
  • a structural unit (hereinafter, referred to as (a4) or (a4) unit) of the alcoholic hydroxyl group or cyano group-containing polycyclic group of the unit (a3) unit, which includes a different polycyclic group. is there.
  • the constituent unit derived from methacrylate ester and the constituent unit derived from acrylate ester are the same as the constituent unit derived from methacrylate ester and ester derived from acrylate ester. against total number of moles of the structural unit is, methacrylic acid ester or al the induced structural unit 10-85 mole 0/0, preferably 20 to 80 mole 0/0, also induced acrylic acid ester ether force that the structural unit 15-90 mole 0/0, preferably preferably used such that 20 to 80 mole 0/0.
  • the (al) unit is a structural unit derived from a (meth) acrylate ester having an acid dissociable, dissolution inhibiting group.
  • the acid dissociable, dissolution inhibiting group in (al) is a resin component before exposure. It can be used without particular limitation as long as it has an alkali dissolution inhibiting property that makes the whole alkali-insoluble, and is dissociated by the action of the generated acid after exposure to change the entire resin component to alkali-soluble. .
  • a carboxyl group of (meth) acrylic acid and a group forming a cyclic or chain tertiary alkyl ester, a tertiary alkoxycarbol group, or a chain alkoxyalkyl group are widely known. Being done.
  • an acid dissociable, dissolution inhibiting group containing an aliphatic polycyclic group can be suitably used.
  • one hydrogen atom may be excluded from bicycloalkane, tricycloalkane, teracycloalkane, etc. which may be substituted or unsubstituted with a fluorine atom or a fluorinated alkyl group. And the like. Specific examples include groups obtained by removing one hydrogen atom from polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane. A large number of such polycyclic groups have been proposed in ArF resists, and a neutral force can be appropriately selected and used. Of these, an adamantyl group, a norbornyl group, and a tetracyclododele group are industrially preferable.
  • R is a hydrogen atom or a methyl group
  • R is a lower alkyl group
  • R are each independently a lower alkyl group, R is a tertiary alkyl group, R is methyl
  • R are lower alkyl groups.
  • R to R and R is a lower linear or branched alkyl having 1 to 5 carbon atoms.
  • a methyl group or an ethyl group is preferred.
  • R is a tertiary alkyl group such as a tert-butyl group or a tert-amyl group;
  • t is preferably a butyl group industrially!
  • the structural units represented by the general formulas (1), (2), and (3) are particularly high in transparency, high resolution and dryness. It is more preferable because a pattern having excellent etching properties can be formed.
  • the unit (a2) has a rataton unit, and is therefore effective for enhancing hydrophilicity with a developer.
  • Such (a2) units have rataton units and can be copolymerized with other constituent units of the resin component. Anything can be used.
  • examples of the monocyclic rataton unit include a group excluding one hydrogen atom from ⁇ -petit mouth rataton force.
  • examples of the polycyclic rataton unit include groups excluding one hydrogen atom from a rataton-containing polycycloalkane hydrogen atom.
  • Monomer units suitable as (a2) are shown in the following general formulas (8) to (10).
  • R is a hydrogen atom or a methyl group.
  • ⁇ -butyrate ratatone ester and norbornane ratatone ester represented by the general formulas (8) and (9) are particularly preferred because they are industrially available.
  • the unit (a3) is a structural unit having an alcoholic hydroxyl group or a cyano group-containing polycyclic group, and from which a (meth) acrylate ester power is also derived.
  • the hydroxyl group and the cyano group in the alcoholic hydroxyl group-containing polycyclic group are polar groups, their use increases the hydrophilicity of the entire resin component with the developer and improves the alkali solubility in the exposed area. . Therefore, when the resin component has (a3), the resolution becomes poor. It is preferable for improvement.
  • polycyclic group in (a3) the same aliphatic polycyclic group as exemplified in the description of (al) can be appropriately selected and used.
  • the alcoholic hydroxyl group or the cyano group-containing polycyclic group in (a3) is not particularly limited.
  • a hydroxyl group-containing adamantyl group or a cyano group-containing adamantyl group is preferably used.
  • the hydroxyl group-containing adamantyl group be represented by the following general formula (11), since it has an effect of increasing dry etching resistance and increasing perpendicularity of a pattern cross-sectional shape.
  • 1 is an integer of 1 to 3.
  • the unit (a3) may have any of the above-described alcoholic hydroxyl group-containing polycyclic groups and may be copolymerizable with other structural units of the resin component.
  • R is a hydrogen atom or a methyl group.
  • the polycyclic group of (a4) unit is an acid dissociable, dissolution inhibiting group of (al) unit, a rataton unit of (a2) unit, and an alcoholic hydroxyl group or cyano group of (a3) unit.
  • (A4) is an acid dissociable, dissolution inhibiting group of the (al) unit, which constitutes the resin component, and (a2) a unit. This means that the rataton unit of (a) and the alcoholic hydroxyl group or the cyano group-containing polycyclic group of the (a3) unit are not retained.
  • the polycyclic group in the unit (a4) is selected so as not to overlap with the structural units used as the units (al) to (a3) in one resin component. It is not particularly limited.
  • the polycyclic group in the (a4) unit the same aliphatic polycyclic group as that exemplified as the (al) unit can be used, and it has been conventionally known as an ArF positive resist material. Many are available.
  • At least one selected from the group consisting of a tricyclodecanyl group, an adamantyl group, and a tetracyclododetyl group is preferred in terms of industrial availability.
  • any unit having the above polycyclic group and copolymerizable with other constituent units of the resin component can be used.
  • composition of the acrylic ⁇ component, with the total of the structural units constituting the ⁇ fat component, (al) units force 0-60 mole 0/0, preferably If it is 30 to 50 mole 0/0 Excellent in resolution and preferred. Further, when the content of the (a2) unit is from 20 to 60 mol%, preferably from 30 to 50 mol%, based on the total of the constitutional units constituting the resin component, the resolution is excellent and it is preferable.
  • the total of the structural units constituting the ⁇ component 5-50 mol 0/0, and preferably is 10 to 40 mole 0/0, excellent resist pattern shape , Preferred.
  • the total of the structural units constituting the ⁇ component 1 to 30 molar 0/0, and preferably is 5 to 20 mole 0/0, isolated patterns through to semi-dense patterns It has excellent resolution and is preferable.
  • the (al) unit and at least one unit from which the (a2), (a3) and (a4) unit forces are also selected are forces that can be appropriately combined according to the purpose.
  • the (al) unit and (a2) and (a3) ) Unit terpolymer is preferable because of its excellent resist pattern shape, exposure latitude, heat resistance, and resolution.
  • the respective contents of the respective structural units (al) ⁇ (a3) during its, is (al) 20 to 60 mol%, (a2) a force 0-60 mole 0/0, and (a3) 5 preferably 50 mol 0/0.
  • the weight average molecular weight of the resin component resin in the present invention is also particularly limited, and is preferably 5000 to 30000, more preferably ⁇ 8000 to 20000. Is done. If it is larger than this range, the solubility in the resist solvent will be poor, and if it is smaller, the dry etching resistance and the cross-sectional shape of the resist pattern may be deteriorated.
  • cycloolefin resin a resin obtained by copolymerizing a structural unit (a5) represented by the following general formula (16) and, if necessary, a structural unit obtained from the above (al) is preferable. ⁇ .
  • R is a substituent exemplified as the acid dissociable, dissolution inhibiting group in the (al) unit.
  • n is an integer from 0 to 3.
  • silsesquioxane-based resin has a structural unit (a6) represented by the following general formula (17) and a structural unit (a7) represented by the following general formula (18) Things.
  • an acid dissociable, dissolution inhibiting group which is a hydrocarbon group containing an aliphatic monocyclic or polycyclic group
  • X is an alkyl group having 1 to 8 carbon atoms in which at least one hydrogen atom is substituted by a fluorine atom
  • m is It is an integer of 1-3.
  • R is a hydrogen atom or a linear, branched or cyclic alkyl group
  • 11 12 is a linear, branched or cyclic saturated aliphatic hydrocarbon group, and X is an alkyl group having 1 to 8 carbon atoms in which at least one hydrogen atom is substituted by a fluorine atom.
  • alkali dissolution inhibiting properties that make the entire oxane resin insoluble in alkali. It is a group that is dissociated by the action of an acid generated from an acid generator after light, and converts the entire silsesquioxane resin to alkali-soluble.
  • an acid dissociable, dissolution inhibiting group represented by the following general formulas (19) to (23), which is a hydrocarbon group containing a bulky aliphatic monocyclic or polycyclic group, is used. No. By using such an acid dissociable, dissolution inhibiting group, a degassing phenomenon in which the dissociation inhibiting group after dissociation is hardly gasified is prevented.
  • the carbon number of R is not easily gasified when dissociated, and simultaneously,
  • the acid dissociable, dissolution inhibiting group includes an aliphatic monocyclic or polycyclic group-containing hydrocarbon dissociative, dissolution-inhibiting group that also has the power of a hydrocarbon group.
  • resins for resist compositions of ArF excimer lasers Generally, those which form a cyclic tertiary alkyl ester with a carboxyl group of (meth) acrylic acid are widely known.
  • an acid dissociable, dissolution inhibiting group containing an aliphatic polycyclic group is preferable.
  • the aliphatic polycyclic group those proposed in ArF resists can be selected and used as appropriate.
  • examples of the aliphatic polycyclic group include groups obtained by removing one hydrogen atom from bicycloalkane, tricycloalkane, teracycloalkane, and the like.More specifically, adamantane, norbornane, isobornane, Tricyclode Examples include groups in which one hydrogen atom has been removed from polycycloalkanes such as can and tetracyclododecane.
  • a silyl having a 2-methyladamantyl group represented by the general formula (21) and / or a 2-ethyladamantyl group represented by the general formula (22) Sesquioxane resin is preferable because it is easily degassed and has excellent resist characteristics such as resolution and heat resistance.
  • the carbon number of R and R is determined by the solubility in a resist solvent and the molecular size.
  • the point force for controlling the size is also preferably 1 to 20, and more preferably 5 to 12.
  • cyclic saturated aliphatic hydrocarbon groups have high transparency to high-energy light and a high glass transition point (Tg) of the obtained silsesquioxane resin, and are likely to be hardened during PEB (heating after exposure). It is preferable because it has advantages such as easy control of the generation of acid from the acid generator.
  • the cyclic saturated aliphatic hydrocarbon group may be a monocyclic group or a polycyclic group.
  • the polycyclic group include groups obtained by removing two hydrogen atoms from bicycloalkane, tricycloalkane, teracycloalkane, and the like.More specifically, adamantan, norbornane, isobornane, tricyclodecane, Examples include groups in which two hydrogen atoms have been removed from a polycycloalkane such as tetracyclododecane.
  • Cyclic conjugates or their derivatives have a group in which two hydrogen atoms have been removed.
  • the derivative is an alicyclic compound represented by any one of the chemical formulas (24) to (29), wherein at least one hydrogen atom is a lower alkyl group such as a methyl group or an ethyl group, an oxygen atom, fluorine, chlorine, It means those substituted with a group such as a halogen atom such as bromine.
  • two hydrogen atoms are removed from the alicyclic compound which also has a group power represented by the chemical formulas (24) to (29), and the group is highly transparent and industrially easily available! Like,.
  • R is preferably 1 to 10, more preferably
  • the alkyl group includes a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a cyclopentyl group, a cyclohexyl group, Examples thereof include an ethylhexyl group and an n-octyl group.
  • R is appropriately selected according to the desired alkali solubility of the candidate silsesquioxane resin.
  • the alkali solubility is highest when R is a hydrogen atom. Alkali dissolution
  • the alkali solubility of the silsesquioxane resin decreases.
  • the resistance to an alkali developing solution is improved, so that an exposure margin when forming a resist pattern using the silsesquioxane resin is improved, and a dimensional change due to exposure is reduced. Further, since the development unevenness is eliminated, the roughness of the edge portion of the formed resist pattern is also improved.
  • X in the general formulas (17) and (18) is particularly preferably a linear alkyl group.
  • the carbon number of the alkyl group is a lower alkyl group of 1 to 8, preferably 1 to 4, from the glass transition (Tg) point of the silsesquioxane resin and the solubility in the resist solvent.
  • Tg glass transition
  • all the hydrogen atoms are substituted because the greater the number of hydrogen atoms substituted by a fluorine atom, the higher the transparency to high-energy photoelectron beams of 200 nm or less.
  • Each X may be the same or different.
  • m in the general formula (17) is an integer of 1 to 3, and is preferably 1, because the acid dissociable, dissolution inhibiting group is dissociated.
  • silsesquioxane-based resin is represented by the following general formulas (30) and (31). Are included.
  • the ratio of the constituent units represented by (a6) and (a7) is 30 to: LOO mol%, preferably 70 to 100%. , more preferably 100 mol 0/0.
  • the total of the structural units represented by (a6) and (a7), the proportion of the structural unit of which is represented by (a6) is preferably 5 to 70 mol 0/0, more preferably from 10 to 40 mol 0/0.
  • the proportion of the structural unit represented by (a7) is preferably 30 to 95 mole 0/0, more preferably 60 to 90 mol%.
  • the proportion of the structural unit represented by (a6) is determined naturally, and the change in alkali solubility of the silsesquioxane resin before and after exposure is changed.
  • silsesquioxane resin does not impair the effects of the present invention! / (A6) and (a)
  • silsesquioxane resins for ArF excimer-resist resist compositions for example, alkylsyl having an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group. Sesquioxane units and the like can be exemplified.
  • the mass average molecular weight (Mw) (in terms of polystyrene by gel permeation chromatography) of the silsesquioxane-based resin is not particularly limited, but is preferably 2000 to 15000, and more preferably 3000. ⁇ 8000. If it is larger than this range, the solubility in the resist solvent will be poor, and if it is smaller, the cross-sectional shape of the resist pattern may be deteriorated.
  • the mass average molecular weight (Mw) and the Z number average molecular weight (Mn) are not particularly limited, but are preferably 1.0 to 6.0, more preferably 1.5 to 2.5. is there. If it is larger than this range, resolution and pattern shape may be deteriorated.
  • the silsesquioxane-based resin of the present invention is a polymer having a silsesquioxane composed of the structural units represented by (a6) and (a7) in its basic skeleton. High transparency to the following high energy light and electron beams. Therefore, the positive resist composition containing the silsesquioxane resin of the present invention is useful, for example, in lithography using a light source having a shorter wavelength than that of an ArF excimer laser, and in particular, even in a single-layer process. A fine resist pattern with a line width of 150 nm or less, or even 120 nm or less, can be formed. Also, by using it as the upper layer of the two-layer resist laminate, it is useful for the process of forming a fine resist pattern of 120 nm or less, and even 100 nm or less.
  • the fluorine-containing polymer has hitherto been used as a resin component of an F-positive resist.
  • the "change in alkali solubility due to the action of an acid" in the polymer (a8) is a change in the polymer in the exposed portion. If the alkali solubility increases in the exposed portion, the exposed portion becomes alkali-soluble. Therefore, when the alkali solubility is reduced in the exposed area, the exposed area becomes alkali-insoluble and can be used as a negative resist.
  • the (0) alkali-soluble structural unit (a8-1) containing an aliphatic cyclic group having both a fluorine atom or a fluorinated alkyl group and a GO alcoholic hydroxyl group refers to both (0 and (ii) If the organic group possessed is bonded to an aliphatic cyclic group and the cyclic group is present in a constituent unit of the polymer, it may be used.
  • the aliphatic cyclic group includes cyclopentane, cyclohexane, bicycloalkane, tricyclo Examples thereof include groups obtained by removing one or more hydrogen atoms from a monocyclic or polycyclic hydrocarbon such as an alkane and a teracycloalkane.
  • examples of the polycyclic hydrocarbon include groups obtained by removing one or more hydrogen atoms from polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane.
  • Examples of the (0 fluorine atom or fluorinated alkyl group include those in which part or all of the hydrogen atoms of a fluorine atom or a lower alkyl group have been substituted with fluorine atoms.
  • a fluorine atom or a trifluoromethyl group is preferred, for example, a romethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group and the like.
  • the GO alcoholic hydroxyl group may be simply a hydroxyl group, an alkyloxy group having a hydroxyl group, an alkyloxy group containing an alcoholic hydroxyl group such as an alkyloxyalkyl group or an alkyl group, or a hydroxyl group containing an alcoholic hydroxyl group.
  • an alkyloxyalkyl group and an alkyl group containing an alcoholic hydroxyl group examples include an alkyloxyalkyl group and an alkyl group containing an alcoholic hydroxyl group.
  • the alkyloxy group, the alkyloxyalkyl group or the alkyl group include a lower alkyloxy group, a lower alkyloxy lower alkyl group, and a lower alkyl group.
  • the lower alkyloxy group include a methyloxy group, an ethyloxy group, a propyloxy group, and a butyloxy group.
  • Specific examples of the lower alkyloxy lower alkyl group include a methyloxymethyl group.
  • a lower alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group.
  • the alcoholic hydroxyl group-containing alkyloxy group or the alcoholic hydroxyl group-containing alkyloxyalkyl group those in which some of the hydrogen atoms of the alkyloxy part have been substituted with fluorine atoms, or the alcoholic hydroxyl group-containing alkyl group Is a compound in which a part of the hydrogen atoms of the alkyl group is substituted with a fluorine atom, that is, an alcoholic hydroxyl group-containing fluoroalkyloxy group, an alcoholic hydroxyl group-containing fluoroalkyloxyalkyl group or an alcoholic hydroxyl group. Included fluoroalkyl groups.
  • Examples of the alcoholic hydroxyl group-containing fluoroalkyloxy group include (HO) C (CF)
  • Examples of the alcoholic hydroxyl group-containing fluoroalkyloxyalkyl group include pyroxy group and the like, and examples thereof include (HO) C (CF) CH O—CH group and (HO) C (CF) CH CH O—C
  • a pill group and the like.
  • the (a8-1) structural unit may be an alcoholic hydroxyl group-containing fluoroalkyloxy group.
  • An alcoholic hydroxyl group-containing fluoroalkyloxyalkyl group or an alcoholic hydroxyl group-containing fluoroalkyl group is bonded to a norbornene ring, and the double bond of the norbornene ring is cleaved to form the following general formula (32)
  • the unit represented by is preferred because it is excellent in transparency, alkali solubility and dry etching resistance, and is easily available industrially.
  • Z is an oxygen atom, an oxymethylene group (1 0 (CH 2) —), or a single bond;
  • n are each independently an integer from 1 to 5.
  • the polymer unit used in combination with such a (a8-1) unit is not limited as long as it is a known polymer unit.
  • the structural unit (al) that also induces the (meth) ataryl ester power having an acid dissociable, dissolution inhibiting group described above has excellent resolution.
  • Examples of such a structural unit (al) include structural units that also induce the tertiary alkyl ester power of (meth) acrylic acid, such as tert-butyl (meth) acrylate and tert-amyl (meth) acrylate. Preferred and listed as things.
  • the polymer (a8) further comprises a fluorinated alkylene structural unit (a82) for improving the transparency of the polymer, and the alkali solubility of the polymer (a9) is increased by the action of an acid. It may be. By including such a structural unit (a8-2), transparency is further improved. As the structural unit (a8-2), a unit that also induces tetrafluoroethylene force is preferable.
  • R is a hydrogen atom or a methyl group
  • R 19 is an acid dissociable, dissolution inhibiting group.
  • the alkali solubility of which changes by the action of an acid It may have the following structural unit.
  • Examples of the (0 fluorine atom or fluorinated alkyl group include the same as those described above.
  • the GO alcoholic hydroxyl group is simply a hydroxyl group.
  • the polymer (alO) having such a unit is formed by cyclopolymerization of a gen compound having a hydroxyl group and a fluorine atom.
  • a gen compound having a hydroxyl group and a fluorine atom As the jenny conjugate, hebutadiene, which is easy to form a polymer having a 5-membered or 6-membered ring having excellent transparency and dry etching resistance, is preferable.
  • the polymer formed is most industrially preferred.
  • the structural unit (a8-3) in which the hydrogen atom of the alcoholic hydroxyl group is substituted with an acid dissociable, dissolution inhibiting group are preferred.
  • the acid dissociable, dissolution inhibiting group is preferably a linear, branched or cyclic alkyloxymethyl group having 1 to 15 carbon atoms. The group is preferred because of its excellent resolution and pattern.
  • the acid dissociable, dissolution inhibiting group is in the range of 10 to 40%, preferably 15 to 30%, based on the entire hydroxyl groups, the pattern forming ability is excellent and preferable.
  • R ° is an alkyl O carboxymethyl group hydrogen atom or C1 ⁇ C 15, x, and y Waso respectively 10 to 50 mol 0/0.
  • the polystyrene-equivalent mass average molecular weight of the resin (a8), (a9), (alO) and (all) component by GPC is not particularly limited, and the force is not limited to 000 to 80,000. Preferably, it is 8000 to 50,000.
  • the polymer (a8) can be composed of one kind or two or more kinds of resins. Two or more selected from the above (a8), (a9), (alO) and (all) may be used as a mixture of two or more, and further, a resin for a conventionally known photoresist composition may be used. It is common to use a mixture of these.
  • the resist for F excimer laser exposure is mainly used.
  • the resin component used in the negative resist composition is not particularly limited as long as it is a commonly used resin component. Specifically, the following are preferred.
  • Such a resin component is a resin component that becomes alkali-insoluble by an acid and has two types of functional groups capable of reacting with each other to form an ester in a molecule.
  • a resin (al2) force which becomes alkali-insoluble by dehydration to form an ester by the action of an acid generated from an acid generator added simultaneously to the resist material is preferably used.
  • the two kinds of functional groups capable of forming an ester by reacting with each other mean, for example, a hydroxyl group and a carboxyl group or a carboxylic acid ester for forming a carboxylic acid ester. .
  • a resin for example, a resin having a hydroxyalkyl group and at least one of a carboxy group and a carboxylic ester group in a side chain of the resin main skeleton is preferable.
  • a resin component (al 3) made of a polymer having a dicarboxylic acid monoester unit is also preferable.
  • (al2) is a resin component having at least a structural unit represented by the following general formula (36).
  • R is a hydrogen atom, a C1-C6 alkyl group, or a norbornyl group, an adaman
  • Examples of such a resin include a neutral polymer of a (hydroxyalkyl) acrylic acid and an alkyl ester of a (hydroxyalkyl) acrylate (a homopolymer or a homopolymer).
  • a copolymer with at least one selected monomer (al 2-2) is preferred.
  • polymer (al2-1) a copolymer of ⁇ (hydroxyalkyl) acrylic acid and an alkyl ester of ⁇ (hydroxyalkyl) acrylate is preferred, and the copolymer (al2-2)
  • the other ethylenically unsaturated carboxylic acid or the ethylenically unsaturated sulfonic acid ester at least one selected from neutral acids of acrylic acid, methacrylic acid, alkyl acrylate and alkyl methacrylate is used. The one that was there is preferred.
  • Examples of the hydroxyalkyl group in the ⁇ (hydroxyalkyl) acrylic acid and the ⁇ (hydroxyalkyl) acrylic acid alkyl ester include lower hydroxy groups such as hydroxymethyl group, hydroxyethyl group, hydroxypropyl group and hydroxybutyl group. And an alkyl group. Among these, the ability to form an ester hydroxyethyl group ⁇ hydroxymethyl group is preferred.
  • alkyl group in the alkyl ester portion of the alkyl ester of ⁇ - (hydroxyalkyl) acrylate examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an ⁇ -butyl group, a sec-butyl group, and a tert-butyl group.
  • group, a lower alkyl group such as an amyl group, bicyclo [2.2.1] heptyl group, a norbornyl group, Adamanchiru group, tetracyclo [4. 4. 0. I 2 ' 5.
  • dodecyl group a tricyclo [5.2.2 1.0 2.6], such as bridged polycyclic ring-shaped hydrocarbon group and a decyl group.
  • the alkyl group in the ester portion is a polycyclic cyclic hydrocarbon group, it is effective for improving dry etching resistance.
  • these alkyl groups especially those of lower alkyl groups such as methyl group, ethyl group, propyl group and butyl group
  • an inexpensive and easily available alcohol component is preferably used.
  • examples of the other ethylenically unsaturated carboxylic acids and ethylenically unsaturated carboxylic esters in the above (al2-2) include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and fumaric acid. And alkyl esters of these unsaturated carboxylic acids such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, nxyl and octyl esters. Further, the alkyl group of the ester moiety, bicyclo [2 2.1.] Heptyl, Bol - group, Adamanchiru group, tetracyclo [4. 4. 0. I 2 '.
  • esters of acrylic acid or methacrylic acid having a bridged polycyclic cyclic hydrocarbon group such as a decyl group can also be used esters of acrylic acid or methacrylic acid having a bridged polycyclic cyclic hydrocarbon group such as a decyl group.
  • acrylic acid and methacrylic acid, or their lower alkyl esters such as methyl, ethyl, propyl and n-butyl esters are preferred because they are inexpensive and readily available.
  • the resin of the resin component (al2-2) at least one monomer unit selected from ⁇ - (hydroxyalkyl) acrylic acid and ⁇ - (hydroxyalkyl) acrylic acid alkyl ester And the neutrality of other ethylenically unsaturated carboxylic acids and ethylenically unsaturated carboxylic acid esters
  • the ratio of at least one monomer unit selected is 20:80 in molar ratio! Especially 50:50! And 90:10 is preferred! / ⁇ . When the ratio of both units is within the above range, an ester can be easily formed in a molecule or between molecules, and a good resist pattern can be obtained.
  • the resin component (al3) is a resin component having at least a structural unit represented by the following general formula (37) or (38).
  • R and R represent an alkyl chain having 0 to 8 carbon atoms, and R represents at least 2
  • a negative resist composition using a resin component having such a dicarboxylic acid monoester monomer unit is preferable in that the resolution is high and the line edge roughness is reduced. Further, it is more preferable in the immersion exposure process in which swelling resistance is high.
  • Examples of such a dicarboxylic acid monoester compound include fumaric acid, itaconic acid, mesaconic acid, daltaconic acid, and traumatic acid.
  • the resin having a dicarboxylic acid monoester unit a polymer or copolymer (al 3-1) of a dicarboxylic acid monoester monomer, and a dicarboxylic acid monoester monomer, (Hydroxyalkyl) acrylic acid, ⁇ - (hydroxyalkyl) acrylic acid alkyl ester, other ethylenically unsaturated carboxylic acid and ethylenically unsaturated carboxylic acid ester Preferred examples include a polymer (al3-2).
  • the resin component used in the negative resist may be used alone, or two or more kinds may be used in combination.
  • the weight average molecular weight of the resin component is 1,000 to 50,000, and preferably ⁇ 2,000 to 30,000.
  • any one can be appropriately selected from those conventionally known as an acid generator in a chemically amplified resist. Can be used.
  • Specific examples of the above-mentioned acid generator include diphenol-trifluoromethanesulfone. , (4-methoxyphenyl) phenol-trifluoromethanesulfonate, bis
  • the triphenylsulfomyl salt is preferably used because it is difficult to generate an organic gas upon decomposition.
  • Bird whistle - Rusuruho - amount of ⁇ beam salts the total of the acid generator, preferably 50 to: LOO mol 0/0, more preferably 70 to: LOO mol 0/0, and most good Mashiku 100 mol % Is preferable.
  • triphenylsulfonium salts in particular, a triphenylsulfonium salt represented by the following general formula (39) and having a perfluoroalkylsulfonate ion as an arnone is It is preferably used because it can increase the sensitivity.
  • R, R, and R each independently represent a hydrogen atom, a carbon number of 1 to 8, preferably 1
  • P is an integer of 1 to 12, preferably 1 to 8, and more preferably 1 to 4, 21 22 23 to 4 lower alkyl groups or halogen atoms such as chlorine, fluorine and bromine.
  • the above acid generators may be used alone or in combination of two or more.
  • the compounding amount is 0.5 to 30 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the above-mentioned resin component. If the amount is less than 0.5 part by mass, pattern formation may not be sufficiently performed. If the amount exceeds 30 parts by mass, a uniform solution may not be obtained, which may cause a decrease in storage stability.
  • the positive resist composition of the present invention is produced by dissolving the above-mentioned resin component, acid generator and optional components described below, preferably in an organic solvent.
  • the organic solvent is not particularly limited as long as it can dissolve the resin component and the acid generator to form a uniform solution. One or more of them can be appropriately selected and used.
  • ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, and 2-heptanone
  • ethylene glycol ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoacetate
  • propylene Polyhydric alcohols such as glycolone, propylene glycol monoacetate, dipropylene glycol, or dipropylene glycol monoacetate, such as monomethinoleate, monoethylenate, monopropionate, monobutyl ether or monobutyl ether;
  • Derivatives, cyclic ethers such as dioxane, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyrupate, methoxypro Methyl propionic acid, esters such as ethoxypropionate Echiru
  • a quencher is preferably used, which is a known amine or a secondary lower aliphatic.
  • Organic acids such as amines—tertiary lower aliphatic amines and the like and oxo acids of organic carboxylic acid phosphoruss can be contained.
  • the lower aliphatic amine refers to an amine of an alkyl or alkyl alcohol having 5 or less carbon atoms. Examples of the secondary and tertiary amines include trimethylamine, getylamine, and triethynoleamine.
  • dipropylamine tri-n-propylamine, tribentylamine, diethanolamine, triethanolamine and the like.
  • alkanolamines such as triethanolamine are preferred. These may be used alone or in combination of two or more.
  • These amines are usually used in the range of 0.01 to 5.0% by mass based on the resin component.
  • organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
  • Examples of the oxo acid of phosphorus or a derivative thereof include a derivative such as phosphoric acid such as phosphoric acid, di-n-butyl ester phosphate, and diphenyl phosphate, phosphonic acid, and dimethyl phosphonate. , Phosphonic acid-di-n-butyl ester, pheninolephosphonic acid, phosphonic acid dipheninoleestenole, phosphonic acid dibenzinoleestenole, etc., phosphonic acids and derivatives thereof such as esters, phosphinic acid, phenylphosphinic acid, etc. Derivatives such as phosphinic acids and their esters are preferred, of which phosphonic acids are particularly preferred.
  • the organic acid is used in an amount of 0.01 to 5.0 parts by mass per 100 parts by mass of the resin component. These may be used alone or in combination of two or more.
  • organic acids are preferably used in an equimolar range or less with respect to the amine.
  • the positive resist composition of the present invention may further contain, if desired, additives that are miscible, for example, an additional resin for improving the performance of the resist film, and a surfactant for improving coatability. And a dissolution inhibitor, a plasticizer, a stabilizer, a coloring agent, an antihalation agent and the like.
  • a crosslinking agent may be added as necessary for the purpose of further increasing the crosslink density and improving the shape and resolution of the resist pattern and the dry etching resistance. You can.
  • the cross-linking agent is not particularly limited, and is used in conventional chemically amplified negative resists. Any known crosslinking agent can be appropriately selected and used from the known crosslinking agents. Examples of this crosslinker include 2,3 dihydroxy-5 hydroxymethylnorbornane, 2hydroxy-1,5 bis (hydroxymethyl) norbornane, cyclohexanedimethanol, 3,4,8 (or 9) -trihydroxytricyclone Aliphatic hydrocarbons having a hydroxyl group or a hydroxyalkyl group or both such as decane, 2-methyl 2-adamantanol, 1,4-dioxane-1,2,3-diol, 1,3,5 trihydroxycyclohexane or a mixture thereof.
  • An oxygen derivative and an amino group-containing conjugate such as melamine, acetate guanamine, benzoguanamine, urea, ethylene urea, and glycol peryl are reacted with formaldehyde or formaldehyde and a lower alcohol to convert the hydrogen atom of the amino group to hydroxymethyl.
  • Group or lower alkoxymethyl group Substituted conjugates, specifically, hexamethoxymethyl melamine, bismethoxymethyl urea, bismethoxymethyl bismethoxyethylene urea, tetramethoxymethyl dalichol peryl, tetrabutoxymethyl dalichol peryl, and the like can be mentioned. Power Particularly preferred is tetrabutoxymethyldaricol peril.
  • crosslinking agents may be used alone or in combination of two or more.
  • a first resist pattern forming method is a resist pattern forming method using an immersion exposure process, wherein at least a step of forming a photoresist film on a substrate, A step of directly disposing an immersion liquid composed of a silicon-based liquid force that is transparent and transparent on the resist film, a step of selectively exposing the resist film via the immersion liquid, and, if necessary,
  • a resist pattern forming method is characterized by including a step of heating the film and a step of forming the resist pattern by developing the resist film.
  • the second method for forming a resist pattern according to the present invention is a method for forming a resist pattern using an immersion exposure process, wherein at least a step of forming a photoresist film on a substrate, A step of forming a protective film, a silicon-based liquid force that is transparent to exposure light used in the exposure process, and an immersion liquid configured on the protective film. A step of directly exposing the resist film through the immersion liquid and the protective film, a step of heating the resist film as necessary, and a step of developing the resist film.
  • a method for forming a resist pattern comprising a step of forming a resist pattern.
  • a conventional resist composition is applied on a substrate such as a silicon wafer by a spinner or the like, and then a pre-beta (PAB treatment) is performed.
  • PAB treatment pre-beta
  • the resist film on the substrate is brought into contact with an immersion liquid “a silicon-based liquid force that is also transparent to exposure light used in the immersion exposure process”.
  • immersion liquid a silicon-based liquid force that is also transparent to exposure light used in the immersion exposure process.
  • contact refers to, although not particularly limited to, immersing the substrate in the immersion liquid or disposing the immersion liquid directly on the resist film.
  • the resist film of the immersed substrate is selectively exposed through a desired mask pattern. Therefore, at this time, the exposure light passes through the immersion liquid and reaches the resist film.
  • the resist film is in direct contact with the immersion liquid, but the immersion liquid is inactive with respect to the resist film as described above, and does not cause any deterioration in the resist film. It does not alter its optical characteristics such as refractive index.
  • refractive index since it has a high refractive index, even if a light source with the same exposure wavelength is used, high resolution is achieved in the same way as when a light source with a shorter wavelength or a high NA lens is used, and at the same time, the depth of focus is increased. It is suitable for the formation of a fine pattern with a narrow width.
  • the wavelength used for exposure is not particularly limited, and an ArF excimer laser, a KrF excimer laser, an F laser, EUV (extreme ultraviolet), VUV (vacuum ultraviolet), an electron beam,
  • the immersion liquid of the present invention is transparent to these wavelength lights, and the wavelength of the light used is determined mainly by the characteristics of the resist film.
  • the substrate is taken out of the immersion liquid, or the substrate is dried at room temperature, spin-dried, heat-dried, nitrogen-produced, or the like.
  • the immersion liquid Since the boiling point of the immersion liquid is at most 200 ° C., it can be completely removed from the resist film by the above treatment.
  • PEB post-exposure baking
  • development processing is performed using an alkaline developing solution composed of an alkaline aqueous solution.
  • post-beta may be performed following the development processing.
  • rinsing is preferably performed using pure water.
  • the water rinse for example, drops or sprays water on the substrate surface while rotating the substrate to wash away the developing solution on the substrate and the resist composition dissolved by the developing solution.
  • by performing drying a resist pattern in which the resist film is patterned into a shape corresponding to the mask pattern is obtained.
  • the second resist pattern forming method is the same as the first resist pattern forming method except that a protective film is provided between the resist film and the immersion liquid.
  • the immersion liquid of the present invention is useful as a means for expanding the versatility to the immersion exposure process for a resist using a resin having low resistance to water immersion as described above. It can be suitably used also in a process of providing a protective film thereon.
  • the protective film forming coating liquid for forming the protective film an aqueous solution containing a water-soluble or alkali-soluble film-forming component is preferable.
  • any water-soluble or alkali-soluble component that is permeable to irradiation light may be used.
  • a uniform coating film can be formed by a conventional coating method such as a spin coating method.ii) Even if a coating film is formed on the photoresist film, It is preferable to use a material having characteristics such as not forming an altered layer between them, m) being capable of sufficiently transmitting actinic rays, and iv) being capable of forming a highly transparent film having a small absorption coefficient.
  • Examples of such a water-soluble film-forming component include hydroxypropyl methylcellulose phthalate, hydroxypropinolemethinolecellulose acetate phthalate, hydroxypropinolemethinoresenolerose acetate succinate, and hydroxypropinolemethinoresenorelose hexate.
  • acrylic acid polymers and polybutylpyrrolidone which are water-soluble polymers having no hydroxyl group in the molecule, are preferred.
  • These water-soluble film-forming components may be used alone or in combination of two or more.
  • alkali-soluble film-forming component examples include phenols (phenol, m-cresol, xylenol, trimethylphenol, etc.) and aldehydes (formaldehyde, formaldehyde precursor, propionaldehyde, 2-hydroxybenzaldehyde, Novolak resin obtained by condensing 3 hydroxybenzaldehyde, 4 hydroxybenzaldehyde, etc.) and Z or ketones (methylethyl ketone, acetone, etc.) in the presence of an acidic catalyst; a homopolymer of hydroxystyrene, Hydroxystyrene-based resins such as copolymers of hydroxystyrene and other styrene-based monomers, and copolymers of hydroxystyrene and acrylic acid or methacrylic acid, and the like, may be mentioned.
  • alkali-soluble film forming components may be used alone or in combination of two or more.
  • a water-soluble film-forming component is preferable.
  • the coating liquid for forming a protective film may contain at least one member selected from the group consisting of a bleaching powder, an acid generator and an acidic compound.
  • a bleaching powder an acid generator and an acidic compound.
  • an acid generator a known compound used for a chemically amplified resist can be used. Specific examples thereof include diphenyl trifluoromethanesulfonate, (4-methoxyphenyl) phenyl trifluoromethanesulfonate.
  • Examples of the acid conjugate include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, propionic acid, benzenesulfonic acid, and toluenesulfonic acid. These organic acids may be used alone or in combination of two or more.
  • an aliphatic compound in which some or all of the hydrogen atoms of a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms are replaced with fluorine atoms, rubonic acid or aliphatic acid And sulfonic acid and fluorine-substituted sulfonyl conjugates.
  • the fluorine-substituted carboxylic acid includes perfluoroheptanoic acid, perfluorooctanoic acid, and the like.
  • the fluorine-substituted sulfonic acid includes perfluoropropylpyrusulfonic acid, perfluorooctylsulfonic acid. Acid, perfluorodecylsulfonic acid and the like.
  • perfluoroheptanoic acid is commercially available as EF-201 and the like
  • perfluorooctylsulfonic acid is commercially available as EF-101 and the like (both manufactured by Tochem Product Co., Ltd.). These can be suitably used.
  • fluorine-substituted sulfonyl disulfide examples include tris (trifluoromethylsulfonyl) methane, bis (trifluoromethylsulfonyl) ammonium, and bis (heptafluoroethyl). Sulfonyl) ammonium and the like.
  • the coating liquid for forming a protective film is usually used in the form of an aqueous solution, and the content of the water-soluble and alkali-soluble film-forming components is preferably 0.5 to 10.0% by weight.
  • the content of the compound and / or the acid generator is preferably 1.0 to 15.0% by weight.
  • the pH of the protective film-forming coating solution is not particularly limited, but is preferably acidic.
  • the coating liquid for forming a protective film may further contain a nitrogen-containing compound.
  • Suitable nitrogen-containing compounds include, for example, quaternary ammonium hydroxide compounds, alkanolamine compounds, amino acid derivatives, and the like.
  • the pH of the protective film-forming material By adding the nitrogen-containing compound, the pH of the protective film-forming material can be adjusted, and the effect of improving the shape of the resist pattern can be obtained.
  • a resist pattern having a fine line width, particularly a line and space pattern having a small pitch can be manufactured with good resolution.
  • the pitch in the line and space pattern refers to the total distance of the resist pattern width and the space width in the line width direction of the pattern.
  • resin component 100 parts by mass of a fluoropolymer represented by the following formula was used. Its mass average molecular weight was 25,000.
  • x and y are each 50%, and R2Q is a hydrogen atom or a methoxymethyl group. When it is a hydrogen atom, the hydroxyl group is 75% and the methoxymethyl group is 25%.
  • an organic anti-reflective coating composition “AR-19” (trade name, manufactured by Shipley) is applied on a silicon wafer using a spin coater, baked on a hot plate at 215 ° C for 60 seconds, and dried.
  • an organic antireflection film having a thickness of 82 nm was formed.
  • the positive resist composition 1 was applied using a spinner, pre-beta at 95 ° C. for 90 seconds on a hot plate, and dried to form a film on the anti-reflection film.
  • a resist film having a thickness of 102 nm was formed.
  • the refractive index and extinction coefficient of xamethyldisiloxane were as follows.
  • the above-mentioned hexamethyldisiloxane was used as the immersion liquid, and the liquid immersion exposure apparatus was constructed such that "the pattern light for exposure was substituted by interference light from a prism, the sample was placed in an immersion state, and exposure was performed"
  • the resist film was subjected to immersion exposure using exposure light (ArF excimer laser) having a wavelength of 193 nm using a liquid immersion exposure experimental device manufactured by Nikon Corporation, which realizes “two-beam interference exposure method”.
  • the lower surface of the prism located at the bottom of the device has the following layer structure! Hexamethyldisiloxane, which is the upper layer immersion liquid, the protective film layer below it, and the resist film below that layer.
  • the Wor king Distance was 150 m.
  • the substrate was spin-dried to completely remove hexanemethyldisiloxane, which is an immersion liquid, from the resist film.
  • PEB treatment was performed at 115 ° C for 90 seconds, and development was further performed at 23 ° C with an alkaline developer for 60 seconds.
  • alkali developer 2.38 mass 0/0 tetramethylammonium - Umuhido port Kishido solution (trade name "NMD- 3", manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used.
  • organic solvent 1,600 parts by mass of a mixed solvent of ethyl acetate and PGMEA having a mass ratio of 6: 4 was used. Further, as the nitrogen-containing organic compound, 0.3 parts by mass of triethanolamine was used.
  • an organic anti-reflective coating composition “AR-19” (trade name, manufactured by Shipley) is applied to a silicon wafer using a spinner, baked on a hot plate at 215 ° C. for 60 seconds, and dried. Thus, an organic antireflection film having a thickness of 82 nm was formed. Then, on the antireflection film, the positive resist composition 2 was applied using a coater, pre-betaed at 125 ° C. for 90 seconds on a hot plate, and dried to form a film on the antireflection film. A 95 nm thick resist film was formed.
  • Example 2 immersion exposure was performed under the same conditions as in Example 1 except that the power was not applied using the protective film.
  • the lower surface of the prism located at the bottom of the device has the following layer structure. Hexamethyldisiloxane, which is the upper layer immersion liquid, and the resist film in the lower layer.
  • the Working Distance was 150 ⁇ m. After exposure is completed, the substrate is spin-dried to completely remove the immersion liquid, hexamethyldisiloxane, from the resist film. did.
  • the substrate was subjected to PEB treatment at 115 ° C for 90 seconds, and further developed at 23 ° C with an alkaline developer for 60 seconds.
  • an alkaline developer 2.38 mass 0/0 tetramethylammonium - Umuhido port Kishido solution (trade name "NMD- 3", manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used.
  • the following resin component, acid generator, and nitrogen-containing organic compound were uniformly dissolved in an organic solvent to prepare a positive resist composition F1.
  • x and y are each 50%, and R2Q is a hydrogen atom or a methoxymethyl group.
  • R2Q is a hydrogen atom
  • the hydroxyl group is 80% and the methoxymethyl group is 20%.
  • a resist pattern was formed using the positive resist composition Fl produced as described above.
  • an organic anti-reflective coating composition “AR-19” (trade name, manufactured by Shipley) is applied on a silicon wafer using a spinner, baked on a hot plate at 215 ° C for 60 seconds, and dried.
  • an organic antireflection film having a thickness of 82 nm was formed.
  • the positive resist composition F1 is applied using a spinner, pre-beta on a hot plate at 90 ° C. for 90 seconds, and dried to form a film on the antireflection film.
  • a 250 nm resist film was formed.
  • the coating liquid for forming a protective film was applied on the resist film and spin-dried (rotated and dried) to form a protective film having a thickness of 44 nm.
  • a silicon-based liquid was applied in the same manner except that the silicon wafer provided with the resist film after exposure was continuously dropped at 23 ° C. for 1 minute while rotating the silicon wafer at 1200 rpm.
  • a resist pattern was formed in the same manner as above except that the dropping treatment was performed between PEB and PEB.
  • the exposure itself in the optical system must be completely performed based on the analysis of the force immersion exposure method, which is the process of exposing in the complete immersion state. Is theoretically assured.Since the resist film is exposed first, the silicon that is the refractive index liquid (immersion liquid) is exposed after exposure so that only the effect of the immersion liquid on the resist film can be evaluated. It has a simple configuration in which a system liquid is loaded on the resist film.
  • the positive resist composition F1 used in Example 3 was vapor-deposited on one side of a quartz substrate having a diameter of 1 inch, and the substrate was rotated at about 2000 rpm, with the gold-deposited surface facing up. Then, apply it on a gold-deposited surface with a spinner so that the thickness after drying becomes 150 nm, dry at 90 ° C for 90 seconds, and partially remove the resist so that the substrate electrode and the socket electrode are in contact with each other. A 150 nm resist coating was formed. This is called an unexposed coating film.
  • the unexposed coating film was immersed in hexamethyldisiloxane, and a film thickness measuring device using a Quarts Crystal Microbalance (hereinafter referred to as QCM) manufactured by Lithotech Japan Co., Ltd.
  • QCM Quarts Crystal Microbalance
  • RDA-QZ3 the maximum measurement time was set to 300 seconds, and the change in the film thickness of the coating film was measured.
  • the frequency fluctuation of the quartz substrate was measured, and the obtained data was processed by the attached analysis software to make a graph of the film thickness value with respect to the immersion time. This graph in this example is shown in FIG.
  • the graph is based on the immersion time of 0 seconds, expressed as the difference from the film thickness value at that time, and again shown in the graph. Plotted. In other words, a value smaller than the initial film thickness indicates a negative value, and a value larger than the initial film thickness indicates a positive value. .
  • the maximum value of the film thickness variation in the positive direction and the maximum value in the negative direction were determined. If there was no positive or negative behavior, the value was set to Onm. The maximum increase in film thickness within 10 seconds from the start of measurement was 1.87 nm, and a slight swelling phenomenon was observed.However, there was no problem at all in the range used in a normal immersion exposure process. It was confirmed that there was. In addition, no dissolution phenomenon was observed.
  • the immersion liquid for the immersion lithography process which is effective in the present invention, is composed of a silicon-based liquid, and therefore has a higher refractive index.
  • the resist pattern in the liquid immersion exposure step it is useful in that a highly accurate resist pattern having an excellent resist pattern profile shape can be manufactured.
  • the resist pattern becomes rough in the T-top shape during the liquid immersion exposure step, the surface of the resist pattern fluctuates, the pattern fluctuates, and stringing occurs. It is suitable for resist pattern manufacturing because there are no defects such as phenomena.
  • the immersion liquid for the immersion exposure process according to the present invention has 1) sufficient transparency to exposure light, 2) a resist film and The protective film is chemically inactive with the protective film, and the resist pattern is not degraded in the formation of the resist pattern.3) Those components are leached into the immersion liquid from the resist film and the protective film. It became clear that there was no adverse effect of lowering the refractive index required to achieve high resolution of the immersion liquid. Regarding the refractive index, comparison with conventional immersion liquids such as water and a fluorine-based inert liquid is not made.However, from the above equation 1, if the immersion liquid has the physical property of a high refractive index, it is high. It is certain from theory that resolution can be obtained.
  • the method of forming a resist pattern using an immersion liquid for an immersion lithography process which is effective in the present invention, forms a protective film on the resist film even when the immersion liquid is directly disposed on the resist film. Even when the immersion liquid of the present invention is provided on the protective film, an excellent resist pattern can be formed. This is useful in that it can be manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 液浸露光プロセス、中でもリソグラフィー露光光がレジスト膜に到達する経路の少なくとも前記レジスト膜上に空気より屈折率が高い所定厚さの液体を介在させた状態で露光することによってレジストパターンの解像度を向上させる液浸露光プロセスにおいて、液浸露光中のレジスト膜の変質および使用液体の変質を同時に防止し、液浸露光を用いた高解像性レジストパターンの形成を可能とする。露光プロセスに用いる露光光に対して透明であるシリコン系液体から構成した液体を、液浸露光の浸漬液として使用する。

Description

液浸露光プロセス用浸漬液および該浸漬液を用いたレジストパターン形 成方法
技術分野
[0001] 本発明は、液浸露光(Liquid Immersion Lithography)プロセスに、中でも、リソグラ フィー露光光がレジスト膜に到達する経路の少なくとも前記レジスト膜上に空気より屈 折率が大きい所定厚さの液体を介在させた状態で前記レジスト膜を露光することによ つてレジストパターンの解像度を向上させる構成の液浸露光プロセスに用いて好適 な前記液体 (以下、浸漬液と記す)、および該浸漬液を用いたレジストパターン形成 方法に関するものである。
背景技術
[0002] 半導体デバイス、液晶デバイス等の各種電子デバイスにおける微細構造の製造に は、リソグラフィ一法が多用されている力 デバイス構造の微細化に伴って、リソグラフ ィー工程におけるレジストパターンにも微細化が要求されている。
[0003] 現在では、リソグラフィ一法により、例えば、最先端の領域では、線幅が 90nm程度 の微細なレジストパターンを形成することが可能となっている力 今後はさらに微細な パターン形成が要求される。
[0004] このような 90nmより微細なパターン形成を達成させるためには、露光装置とそれに 対応するレジストの開発が第 1のポイントとなる。露光装置においては、 F2レーザー、 EUV (極端紫外光)、電子線、 X線等の光源波長の短波長化やレンズの開口数 (NA )の増大等が開発ポイントとしては一般的である。
[0005] し力しながら、光源波長の短波長化は高額な新たな露光装置が必要となるし、また 、高 NAィ匕では、解像度と焦点深度幅がトレードオフの関係にあるため、解像度を上 げても焦点深度幅が低下するという問題がある。
[0006] 最近、このような問題を解決可能とするリソグラフィー技術として、液浸露光(リキッド イマ一ジョンリソグラフィー)法という方法が報告されている(例えば、非特許文献 1、 非特許文献 2、非特許文献 3)。この方法は、露光時に、レンズと基板上のレジスト膜 との間の少なくとも前記レジスト膜上に所定厚さの純水またはフッ素系不活性液体等 の液体 (浸漬液)を介在させるというものである。この方法では、従来は空気や窒素等 の不活性ガスであった露光光路空間を屈折率 (n)のより大き!/、液体、例えば純水等 で置換することにより、同じ露光波長の光源を用いてもより短波長の光源を用いた場 合や高 NAレンズを用いた場合と同様に、高解像性が達成されると同時に焦点深度 幅の低下もない。
[0007] このような液浸露光を用いれば、現存の装置に実装されているレンズを用いて、低 コストで、より高解像性に優れ、かつ焦点深度にも優れるレジストパターンの形成を実 現できるため、大変注目されて 、る。
[0008] 非特許文献 1 Journal of Vacuum Science & Technology B (ジャーナル ォブバキュームサイエンステクノロジー)(J. Vac. Sci. Technol. B) ( (発行国)ァメリ 力)、 1999年、第 17卷、 6号、 3306— 3309頁.
非特許文献 2 Journal of Vacuum Science & Technology B (ジャーナル ォブバキュームサイエンステクノロジー)(J. Vac. Sci. Technol. B) ( (発行国)ァメリ 力)、 2001年、第 19卷、 6号、 2353— 2356頁.
非特許文献 3 : Proceedings of SPIE Vol.4691 (プロシーデイングスォブエスピ 一アイイ((発行国)アメリカ) 2002年、第 4691卷、 459—465頁.
発明の開示
発明が解決しょうとする課題
[0009] 上述のような液浸露光プロセスにお 、ては、使用する浸漬液としては、純水ゃ脱ィ オン水などの不活性水、およびパーフルォロエーテル化合物等のフッ素系不活性液 体とが提案され、コストや取り扱 、の容易性などから不活性水が有望視されて 1ヽる。 液浸露光プロセスは、上述のように、浸漬液として、空気や窒素等の不活性ガスより も屈折率 (n)のより大きい液体を用いることが前提であり、例えば、従来の浸漬液の 屈折率は、水で 1. 33、フッ素系不活性溶液で 1. 28〜: L 3程度である(アッベ屈折 計 NAR— 1T (株式会社あたご社製)を用いて波長可視光線、室温で測定)。
[0010] 液浸露光プロセスにおける屈折率とパターンの解像度との関係は、下記式によって 与えられる。 NA=nsin Θ
Resolution = kl λ /NA
=kl l / (nsin 0 )
=kl( l /n)/sin 0
NA:収束角、 Resolution:解像度、 kl:定数、 λ:波長、 η:屈折率
[0011] このように、液浸露光プロセスにおいては、屈折率の値が大きいほど解像性が向上 するため、使用する浸漬液の屈折率は高ければ高いほど好ましい。し力しながら、従 来浸漬液として使用されてきた不活性水、フッ素系不活性液体では、得られる屈折 率の値に限界があり、より高い屈折率を有する新しい浸漬液の開発が望まれている。 しかし、浸漬液は、屈折率のほかにも、露光光に対する透明性、レジスト組成物との 相性等、様々な条件を満たす必要があり、その開発は容易ではない。
[0012] 現在慣用のレジスト組成物は、まず露光光に対する透明性を有することという最重 要必須特性から可能な榭脂が既に広範に検討されて確立された組成物である。この ようなレジスト組成物は、露光光に対する透明性、パターンの矩形性、現像性、保存 安定性等の様々なレジスト特性に優れた組成物であり、多くの開発資源を費やして 確立されたものである。したがって、新しい浸漬液を開発する際にも、現在提案され ているレジスト組成物を、そのままの組成で、あるいは組成を若干調整することによつ て、液浸露光プロセスに適用できるかが重要な要件となる。
[0013] なお、レジスト膜の液浸露光適性は、次のような液浸露光方法に対する分析を踏ま えて、評価することができる。
[0014] すなわち、液浸露光によるレジストパターン形成性能を評価するには、(i)液浸露光 法による光学系の性能、(ϋ)浸漬液に対するレジスト膜からの影響、(m)浸漬液によ るレジスト膜の変質、の 3点が確認できれば、必要十分であると、判断される。
[0015] (i)の光学系の性能については、例えば、表面耐水性の写真用の感光板を水中に 沈めて、その表面にパターン光を照射する場合を想定すれば明らかなように、水面と 、水と感光板表面との界面とにおいて反射等の光伝搬損失がなければ、後は問題が 生じないことは、原理上、疑いがない。この場合の光伝搬損失は、露光光の入射角 度の適正化により容易に解決できる。したがって、露光対象であるものがレジスト膜で あろうと、写真用の感光版であろうと、あるいは結像スクリーンであろうと、それらが浸 漬液に対して不活性であるならば、すなわち、浸漬液から影響も受けず、浸漬液に 影響も与えないものであるならば、光学系の性能には、なんら変化は生じないと考え 得る。したがって、この点については、新たに確認実験するには及ばない。
[0016] (ii)の浸漬液に対するレジスト膜からの影響は、具体的には、レジスト膜の成分が液 中に溶け出し、液の屈折率を変化させることである。液の屈折率が変化すれば、バタ ーン露光の光学的解像性は、変化を受けるのは、実験するまでもなぐ理論から確実 である。この点については、単に、レジスト膜を液に浸漬した場合、成分が溶け出して 、浸漬液の組成が変化していること、もしくは屈折率が変化していることを確認できれ ば、十分であり、実際にパターン光を照射し、現像して解像度を確認するまでもない
[0017] これと逆に、液中のレジスト膜にパターン光を照射し、現像して解像性を確認した場 合には、解像性の良否は確認可能でも、浸漬液の変質による解像性への影響なの 力 レジスト材の変質による解像性の影響なのか、あるいは両方なのかが、区別でき なくなる。
[0018] (iii)の浸漬液によるレジスト膜の変質によって解像性が劣化する点については、「 露光後に浸漬液のシャワーをレジスト膜にかける処理を行い、その後、現像し、得ら れたレジストパターンの解像性を検査する」という評価試験で十分である。し力も、こ の評価方法では、レジスト膜に液体を直に振りかけることになり、液浸条件としては、 より過酷となる。力かる点についても、完全浸漬状態で露光を行う試験の場合には、 浸漬液の変質による影響なのか、レジスト組成物の浸漬液による変質が原因なのか 、あるいは双方の影響により、解像性が変化したのかが判然としない。
[0019] 前記現象 (ϋ)と (m)とは、表裏一体の現象であり、レジスト膜の液による変質程度を 確認することによって、把握できる。
[0020] このような分析に基づき、前述の現在提案されているレジスト膜の液浸露光適性を
、「露光後に浸漬液のシャワーをレジスト膜にかける処理を行い、その後、現像し、得 られたレジストパターンの解像性を検査する」 ヽぅ評価試験 (以下、「評価試験 1」と 記す)により、確認することができる。また、露光のパターン光をプリズムによる干渉光 をもって代用させて、試料を液浸状態に置き、露光させる構成の「2光束干渉露光法 」を用いて、実際の製造工程をシミュレートした評価試験 (以下、「評価試験 2」と記す )により、確認することができる。さらにレジスト膜と浸漬液との関係について、極微量 な膜厚変化を測定する方法として、水晶振動子法 (水晶天秤: Quarts Crystal Micr ◦balanceによる重量変化に基づ ヽて膜厚を検出する膜厚測定法)による評価試験( 以下、「評価試験 3」と記す)により、確認することができる。
[0021] 上述のように、液浸露光に適するレジスト膜を新たに製造するには、多くの開発資 源を必要とすることが確実であるため、新たな浸漬液を開発する際には、現在提案さ れているレジスト組成物に適用可能であるかを確認する必要がある。
[0022] 本発明は、力かる従来技術の問題点に鑑みてなされたものであり、高い屈折率を 有する浸漬液であって、多くの開発資源を費やして確立した従来のレジスト組成物か ら得られるレジスト膜にも準用できる浸漬液を提供することを課題とするものであり、 具体的には、液浸露光法に用いる浸漬液として、屈折率が高ぐ露光光に対して透 明で、かつ、液浸露光中のレジスト膜の変質を防止することができる浸漬液を提供し 、これによつて液浸露光を用いた高解像性レジストパターンの形成を可能とすること を課題とするものである。
課題を解決するための手段
[0023] 前記課題を解決するために、本発明に係る液浸露光プロセス用浸漬液は、液浸露 光プロセスに用いて好適な浸漬液であって、前記液浸露光プロセスに用いる露光光 に対して透明であるシリコン系液体力 構成されていることを特徴とする。
[0024] また、本発明に係るレジストパターン形成方法は、液浸露光プロセスを用いたレジス トパターン形成方法であって、基板上に少なくともフォトレジスト膜を形成する工程、 前記露光プロセスに用いる露光光に対して透明であるシリコン系液体力 構成されて いる浸漬液を、前記レジスト膜上に、直接配置する工程、前記浸漬液を介して選択 的に前記レジスト膜を露光する工程、必要に応じて前記レジスト膜を加熱処理するェ 程、次いで、前記レジスト膜を現像しレジストパターンを形成する工程を含むことを特 徴とする。
[0025] また、本発明に係る第 2のレジストパターン形成方法は、液浸露光プロセスを用い たレジストパターン形成方法であって、基板上に少なくともフォトレジスト膜を形成する 工程、前記レジスト膜上に保護膜を形成する工程、前記露光プロセスに用いる露光 光に対して透明であるシリコン系液体力 構成されている浸漬液を、前記保護膜上 に、直接配置する工程、前記浸漬液と保護膜を介して選択的に前記レジスト膜を露 光する工程、必要に応じて前記レジスト膜を加熱処理する工程、次いで、前記レジス ト膜を現像しレジストパターンを形成する工程を含むことを特徴とする。
なお、前記構成において、液浸露光プロセスは、中でも、リソグラフィー露光光がレ ジスト膜に到達するまでの経路の少なくとも前記レジスト膜上に、空気より屈折率が大 きい所定厚さの液体を介在させた状態で、露光することによってレジストパターンの 解像度を向上させる構成のものが好適である。
発明の効果
[0026] 本発明によれば、屈折率の高いシリコン系液体を用いるため、同じ露光波長の光 源を用いても、より短波長の光源を用いた場合や高 NAレンズを用いた場合と同様に 、高解像性を達成することができると同時に焦点深度幅の低下も防ぐことができ、より 微細なパターン形成に適用することができる。また、慣用のレジスト組成物を用いてレ ジスト膜を構成しても、液浸露光工程にぉ ヽてレジストパターン力 ST—トップ形状とな るなどレジストパターンの表面の荒れや、パターンのゆらぎ、糸引き現象等の不良化 現象がなぐレジストパターンプロファイル形状に優れる、精度の高いレジストパター ンを得ることができる。また、レジスト膜上に保護膜を形成し、該保護膜上に本発明の 浸漬液を設けた場合でも、優れたレジストパターンを形成できる。
従って、本発明の浸漬液を用いることにより、液浸露光プロセスを用いたレジストパ ターンの形成を効果的に行うことができる。
図面の簡単な説明
[0027] [図 1]図 1は、浸漬時間に対するレジスト膜の膜厚値の変動を示す図である。
発明を実施するための最良の形態
[0028] 本発明に力かる浸漬液は、液浸露光プロセスに用いる露光光に対して透明であつ て、レジスト膜を変質、溶解させにくいシリコン系液体力も構成される。シリコン系液体 は、その分子構造上、フッ素系溶液や水と比較して高屈折率を示す。このため、同じ 露光波長の光源を用いても、より短波長の光源を用いた場合や高 NAレンズを用い た場合と同様に、高解像性を達成することができると同時に焦点深度幅の低下も防 ぐことができ、より微細なパターン形成に適用することができる。
[0029] 屈折率は測定波長および測定温度の影響を受けて変化するため、本発明のシリコ ン系液体に要求される屈折率のレベルを一義的に規定することは難しいが、液浸露 光プロセスにおける露光波長および温度と同じ条件で測定した場合で、水の屈折率 の値より少なくとも 0. 01以上、好ましくは 0. 1以上、より好ましくは 0. 2以上高い値で あることが好ましい。
[0030] 本発明のシリコン系液体に要求される屈折率のレベルを具体的に示すと、可視光 線で室温で測定した場合は、 1. 34以上、より好ましくは 1. 35以上、さらに好ましくは 1. 36以上である (アッベ屈折計 NAR— 1T (株式会社あたご社製)を用いて測定)。 また、測定波長 156. 2nm、測定温度室温において、 1. 5以上、より好ましくは 1. 6 以上、さらに好ましくは 1. 65以上である。また、測定波長 192. 8nm、測定温度室温 において、 1. 4以上、より好ましくは 1. 5以上、さらに好ましくは 1. 55以上である。ま た、測定波長 246. 8nm、測定温度室温において、 1. 35以上、より好ましくは 1. 4 以上、さらに好ましくは 1. 45以上である。
[0031] このような屈折率を有するシリコン系液体としては、具体的には、有機シロキサン類 を挙げることができる。有機シロキサン類は、下記一般式
Figure imgf000008_0001
(Rは有機基を、 nは 0以上の整数を表す。 )
で表される。
[0032] 上記一般式において、有機基 Rとしては、炭素数 1〜8の炭化水素基、炭素数 1〜 8のハロゲンィ匕炭化水素基を例示することができる。有機基 Rの具体例としては、メチ ル基、ェチル基、 CH CH CF等を挙げることができ、中でもメチル基が好ましい。
2 2 3
また、上記一般式において、 nは 0以上 40以下であることが好ましぐ 0以上 10以下 であることがより好ましぐ 0以上 5以下であることがさらに好ましぐ 0以上 2以下である ことが特に好ましく、 nは 0であることが最も好まし 、。
[0033] このようなシリコン系液体として、巿販品を用いる場合は、例えば、「SIH6115. 0」 ( 屈折率 n= l.3774、沸点 100°C、(株)チッソ製)、「SIO6703. 0」(屈折率 n= 1.38 48、沸点 153。C、(株)チッソ製)、「SID2655. 0」(屈折率 n= 1.3895、沸点 195。C 、(株)チッソ製)、「DMS— T35」(屈折率 n= 1.4035、(株)チッソ製)、「LS7130」( 屈折率 n= 1.3774、沸点 100°C、信越シリコン株式会社製)、「KF— 96— 5000」 ( 屈折率 n= 1.4035、信越シリコン株式会社製)等を例示することができる (屈折率 n は、アッベ屈折計 NAR—1T (株式会社あたご社製)を用いて、可視光線、室温にて 測定)。
[0034] また、本発明にかかる浸漬液は、液浸露光プロセスに用いる露光光に対して透明 なシリコン系液体であるが、ここで「露光光に対して透明性を有する」とは、液浸露光 プロセスに支障のないレベルでの透明性を有するという意味である。具体的には露 光光に対する消衰係数 kの値力^〜 0. 1、好ましくは 0〜0. 05、より好ましくは 0〜0
. 01、特に好ましくは 0である。
[0035] 本発明の浸漬液は、例えば、 157nm波長、 193nm波長および 247nm波長のェキ シマレーザーにおける液浸露光プロセスに好適であり、特に 193nm波長のエキシマ レーザーにおける液浸露光プロセスに好ましく適用できる。
[0036] 本発明にお 、て使用可能なレジスト膜は、浸漬液として使用するシリコン系液体に よって変質、溶解させない特性を有するものであれば、従来慣用のレジスト組成物を 特に限定なく使用可能である。
[0037] 本発明液浸露光プロセスに用いられるレジスト組成物としては、慣用のポジ型レジ スト、ネガ型フォトレジスト用のレジスト組成物を使用することができる。これらの具体 例を以下に例示する。
[0038] まず、ポジ型フォトレジスト組成物に用いられるベースポリマー(榭脂成分)としては
、アクリル系榭脂、シクロォレフイン系榭脂、シルセスキォキサン系榭脂、フッ素含有 ポリマー等が用いられる。
[0039] 前記アクリル系榭脂としては、例えば、酸解離性溶解抑制基を有する (メタ)アクリル 酸エステルカゝら誘導される構成単位 (al)を有し、この構成単位 (al)以外の他の (メ タ)アクリル酸エステルカゝら誘導される構成単位をも含めて、(メタ)アクリル酸エステル から誘導される構成単位 80モル%以上、好ましくは 90モル% (100モル%が最も好 ましい)含む樹脂が好ましい。
[0040] また、前記榭脂成分は、解像性、耐ドライエッチング性、そして、微細なパターンの 形状を満足するために、前記 (al)単位以外の複数の異なる機能を有するモノマー 単位、例えば、以下の構成単位の組み合わせにより構成される。
[0041] すなわち、ラタトン単位を有する (メタ)アクリル酸エステルカゝら誘導される構成単位 ( 以下、(a2)または (a2)単位という。)、アルコール性水酸基又はシァノ基含有多環式 基を有する (メタ)アクリル酸エステルカゝら誘導される構成単位 (以下、(a3)または (a3 )単位という。)、前記 (al)単位の酸解離性溶解抑制基、前記 (a2)単位のラタトン単 位、および前記 (a3)単位のアルコール性水酸基又はシァノ基含有多環式基の 、ず れとも異なる多環式基を含む構成単位 (以下、(a4)または (a4)単位と 、う)などであ る。
[0042] これら (a2)、 (a3)および Zまたは (a4)は、要求される特性等によって適宜組み合 わせ可能である。好ましくは、(al)と (a2)、 (a3)および (a4)から選択される少なくと も一つの単位を含有していることにより、解像性およびレジストパターン形状が良好と なる。なお、(al)〜(a4)単位の内、それぞれについて、異なる単位を複数種を併用 してちよい。
[0043] そして、メタアクリル酸エステルカゝら誘導される構成単位とアクリル酸エステル力ゝら誘 導される構成単位は、メタアクリル酸エステルカゝら誘導される構成単位とアクリル酸ェ ステルカゝら誘導される構成単位のモル数の合計に対して、メタアクリル酸エステルか ら誘導される構成単位を 10〜85モル0 /0、好ましくは 20〜80モル0 /0、アクリル酸エス テル力も誘導される構成単位を 15〜90モル0 /0、好ましくは 20〜80モル0 /0となるよう に用いると好ましい。
[0044] ついで、上記(al)〜(a4)単位について詳細に説明する。
(al)単位は、酸解離性溶解抑制基を有する (メタ)アクリル酸エステルカゝら誘導され る構成単位である。この (al)における酸解離性溶解抑制基は、露光前は榭脂成分 全体をアルカリ不溶とするアルカリ溶解抑制性を有するとともに、露光後は発生した 酸の作用により解離し、この榭脂成分全体をアルカリ可溶性へ変化させるものであれ ば特に限定せずに用いることができる。一般的には、(メタ)アクリル酸のカルボキシ ル基と、環状または鎖状の第 3級アルキルエステルを形成する基、第 3級アルコキシ カルボ-ル基、または鎖状アルコキシアルキル基などが広く知られて 、る。
[0045] 前記 (al)における酸解離性溶解抑制基として、例えば、脂肪族多環式基を含有す る酸解離性溶解抑制基を好適に用いることができる。
前記多環式基としては、フッ素原子またはフッ素化アルキル基で置換されて ヽても よいし、されていなくてもよいビシクロアルカン、トリシクロアルカン、テロラシクロアル力 ンなどから 1個の水素原子を除いた基などを例示できる。具体的には、ァダマンタン、 ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロア ルカンから 1個の水素原子を除いた基などが挙げられる。この様な多環式基は、 ArF レジストにお 、て、多数提案されて 、るものの中力も適宜選択して用いることができる 。これらの中でもァダマンチル基、ノルボルニル基、テトラシクロドデ力-ル基が工業 上好ましい。
[0046] 前記 (al)として好適なモノマー単位を下記一般式(1)〜(7)に示す。なお、これら 一般式(1)〜(7)において、 Rは水素原子またはメチル基、 Rは低級アルキル基、 R
1 2 および Rはそれぞれ独立して低級アルキル基、 Rは第 3級アルキル基、 Rはメチル
3 4 5 基、 Rは低級アルキル基である。 )
6
上記 R〜Rおよび Rはそれぞれ、炭素数 1〜5の低級の直鎖または分岐状アルキ
1 3 6
ル基が好ましぐメチル基、ェチル基、プロピル基、イソプロピル基、 n—ブチル基、ィ ソブチル基、 tert ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などが 挙げられる。工業的にはメチル基またはェチル基が好ま 、。
また、 Rは、 tert ブチル基や tert—ァミル基のような第 3級アルキル基であり、 ter
4
t ブチル基である場合が工業的に好まし!/、。
[0047] [化 2]
Figure imgf000012_0001
[0048] [化 3]
Figure imgf000012_0002
[0049] (al)単位として、上記に挙げた中でも、特に、一般式(1)、 (2)、 (3)で表される構 成単位は、透明性が高く高解像性で対ドライエッチング性に優れるパターンが形成 できるため、より好ましい。
[0050] 前記 (a2)単位は、ラタトン単位を有するので、現像液との親水性を高めるために有 効である。
このような (a2)単位は、ラタトン単位を有し、榭脂成分の他の構成単位と共重合可 能なものであればよい。
例えば、単環式のラタトン単位としては、 γ -プチ口ラタトン力 水素原子 1つを除い た基などが挙げられる。また、多環式のラタトン単位としては、ラタトン含有ポリシクロア ルカン力 水素原子を 1つを除いた基などが挙げられる。
[0051] 前記 (a2)として好適なモノマー単位を下記一般式 (8)〜( 10)に示す。これら一般 式において、 Rは水素原子またはメチル基である。
[0052] [化 4]
Figure imgf000013_0001
[0053] 前記一般式(10)に示したような α炭素にエステル結合を有する (メタ)アクリル酸の
Ύ -ブチ口ラタトンエステル、そして、一般式(8)や(9)のようなノルボルナンラタトンェ ステルが、特に工業上入手しやすく好ましい。
[0054] 前記 (a3)単位は、アルコール性水酸基又はシァノ基含有多環式基を有する (メタ) アクリル酸エステル力も誘導される構成単位である。
前記アルコール性水酸基含有多環式基における水酸基やシァノ基は極性基であ るため、これを用いることにより榭脂成分全体の現像液との親水性が高まり、露光部 におけるアルカリ溶解性が向上する。従って、榭脂成分が (a3)を有すると、解像性が 向上するため好ましい。
そして、(a3)における多環式基としては、前記 (al)の説明において例示したものと 同様の脂肪族多環式基力 適宜選択して用いることができる。
[0055] 前記 (a3)におけるアルコール性水酸基又はシァノ基含有多環式基は特に限定さ れないが、例えば、水酸基含有ァダマンチル基やシァノ基含有ァダマンチル基など が好ましく用いられる。
さらに、この水酸基含有ァダマンチル基が、下記一般式(11)で表されるものである と、耐ドライエッチング性を上昇させ、パターン断面形状の垂直性を高める効果を有 するため、好ましい。なお、一般式中、 1は 1〜3の整数である。
[0056] [化 5]
Figure imgf000014_0001
(11)
[0057] 前記 (a3)単位は、上記したようなアルコール性水酸基含有多環式基を有し、かつ 榭脂成分の他の構成単位と共重合可能なものであればよい。
具体的には、下記一般式(12)で表される構成単位が好ましい。なお、一般式(12) 中、 Rは水素原子またはメチル基である。
[0058] [化 6]
Figure imgf000014_0002
前記 (a4)単位において、「前記酸解離性溶解抑制基、前記ラタトン単位、および前 記アルコール性水酸基又はシァノ基含有多環式基の 、ずれとも異なる」多環式基と は、榭脂成分において、(a4)単位の多環式基が、(al)単位の酸解離性溶解抑制基 、(a2)単位のラタトン単位、および(a3)単位のアルコール性水酸基又はシァノ基含 有多環式基のいずれとも重複しない多環式基、という意味であり、(a4)が、榭脂成分 を構成している(al)単位の酸解離性溶解抑制基、(a2)単位のラタトン単位、および (a3)単位のアルコール性水酸基又はシァノ基含有多環式基を ヽずれも保持して 、 ないことを意味している。
[0060] 前記 (a4)単位における多環式基は、ひとつの榭脂成分にぉ 、て、前記 (al)〜(a 3)単位として用いられた構成単位と重複しないように選択されていればよぐ特に限 定されるものではない。例えば、(a4)単位における多環式基として、前記 (al)単位と して例示したものと同様の脂肪族多環式基を用いることができ、 ArFポジレジスト材 料として従来力 知られている多数のものが使用可能である。
特にトリシクロデカニル基、ァダマンチル基、テトラシクロドデ力-ル基力 選ばれる 少なくとも 1種以上であると、工業上入手し易いなどの点で好ましい。
(a4)単位としては、上記のような多環式基を有し、かつ榭脂成分の他の構成単位と 共重合可能なものであればょ 、。
[0061] 前記(a4)の好ましい例を下記一般式(13)〜(15)に示す。これらの一般式中、 R は水素原子またはメチル基である。
[0062] [化 7]
Figure imgf000015_0001
上記アクリル系榭脂成分の組成は、該榭脂成分を構成する構成単位の合計に対し て、(al)単位力 0〜60モル0 /0、好ましくは 30〜50モル0 /0であると、解像性に優れ、 好ましい。 また、榭脂成分を構成する構成単位の合計に対して、(a2)単位が 20〜60モル% 、好ましくは 30〜50モル%であると、解像度に優れ、好ましい。
また、(a3)単位を用いる場合、榭脂成分を構成する構成単位の合計に対して、 5 〜50モル0 /0、好ましくは 10〜40モル0 /0であると、レジストパターン形状に優れ、好ま しい。
(a4)単位を用いる場合、榭脂成分を構成する構成単位の合計に対して、 1〜30モ ル0 /0、好ましくは 5〜20モル0 /0であると、孤立パターンからセミデンスパターンの解像 性に優れ、好ましい。
[0064] (al)単位と (a2)、 (a3)および (a4)単位力も選ばれる少なくとも一つの単位は、目 的に応じ適宜組み合わせることができる力 (al)単位と(a2)および (a3)単位の 3元 ポリマーがレジストパターン形状、露光余裕度、耐熱性、解像製に優れ、好ましい。そ の際の各構成単位 (al)〜(a3)のそれぞれの含有量としては、 (al)が 20〜60モル %、(a2)力 0〜60モル0 /0、および(a3)が 5〜50モル0 /0が好ましい。
[0065] また、本発明における榭脂成分樹脂の質量平均分子量 (ポリスチレン換算、以下同 様) ίま特に限定するもので ίまな ヽカ 5000〜30000、さらに好まし < ίま 8000〜2000 0とされる。この範囲よりも大きいとレジスト溶剤への溶解性が悪くなり、小さいと耐ドラ ィエッチング性やレジストパターン断面形状が悪くなるおそれがある。
[0066] また、前記シクロォレフイン系榭脂としては、下記一般式(16)に示す構成単位 (a5 )と、必要に応じて前記 (al)から得られる構成単位を共重合させた榭脂が好ま ヽ。
[0067] [化 8]
Figure imgf000016_0001
(16)
(式中、 Rは前記 (al)単位において酸解離性溶解抑制基として例示した置換基で
8
あり、 mは 0〜3の整数である。 ) なお、前記 (a5)単位において m力^の場合は、(al)単位を有する共重合体として 用いることが好ましい。
[0068] さらに、前記シルセスキォキサン系榭脂としては、下記一般式(17)で表される構成 単位 (a6)、および下記一般式(18)で表される構成単位 (a7)を有するものが挙げら れる。
[0069] [化 9]
Figure imgf000017_0001
(17)
(式中、 R
9は脂肪族の単環または多環式基を含有する炭化水素基力 なる酸解離性 溶解抑制基であり、 R
10は直鎖状、分岐状または環状の飽和脂肪族炭化水素基であ り、 Xは少なくとも 1つの水素原子がフッ素原子で置換された炭素原子数 1〜8のアル キル基であり、 mは 1〜3の整数である。 )
[0070] [化 10]
Figure imgf000017_0002
(18)
(式中、 R は水素原子もしくは直鎖状、分岐状または環状のアルキル基であり、 R
11 12 は直鎖状、分岐状または環状の飽和脂肪族炭化水素基であり、 Xは少なくとも 1つの 水素原子がフッ素原子で置換された炭素原子数 1〜8のアルキル基である。 )
[0071] 上記 (a6)および (a7)にお 、て、 Rの酸解離性溶解抑制基は、露光前のシルセス
9
キォキサン榭脂全体をアルカリ不溶とするアルカリ溶解抑制性を有すると同時に、露 光後に酸発生剤から発生した酸の作用により解離し、このシルセスキォキサン榭脂 全体をアルカリ可溶性へ変化させる基である。
このようなものとして、例えば、下記一般式(19)〜(23)のような、嵩高い、脂肪族の 単環または多環式基を含有する炭化水素基力 なる酸解離性溶解抑制基が挙げら れる。このような酸解離性溶解抑制基を用いることにより、解離後の溶解抑制基がガ ス化しにくぐ脱ガス現象が防止される。
[0072] [化 11]
Figure imgf000018_0001
(22) (23)
[0073] 前記 Rの炭素数は、解離したときにガス化しにくいと同時に適度なレジスト溶媒へ
9
の溶解性や現像液への溶解性から好ましくは 7〜 15、より好ましくは 9〜 13である。
[0074] 前記酸解離性溶解抑制基としては、脂肪族の単環または多環式基を含有する炭 化水素基力もなる酸解離性溶解抑制基である力ぎり、使用する光源に応じて、例え ば ArFエキシマレーザーのレジスト組成物用の樹脂にぉ 、て、多数提案されて!、る ものの中力 適宜選択して用いることができる。一般的には、(メタ)アクリル酸のカル ボキシル基と環状の第 3級アルキルエステルを形成するものが広く知られている。
[0075] 特に、脂肪族多環式基を含有する酸解離性溶解抑制基であることが好ま ヽ。脂 肪族多環式基としては、 ArFレジストにおいて、多数提案されているものの中力 適 宜選択して用いることができる。例えば、脂肪族多環式基としては、ビシクロアルカン 、トリシクロアルカン、テロラシクロアルカン等から 1個の水素原子を除いた基を挙げる ことができ、より具体的には、ァダマンタン、ノルボルナン、イソボルナン、トリシクロデ カン、テトラシクロドデカンなどのポリシクロアルカンから 1個の水素原子を除いた基な どが挙げられる。
[0076] 上記一般式の中でも一般式(21)で表される 2—メチルァダマンチル基、および/ま たは一般式(22)で表される 2—ェチルァダマンチル基を有するシルセスキォキサン 榭脂は、脱ガスが生じにくぐさらに、解像性や耐熱性等のレジスト特性に優れている ので好ましい。
[0077] また、前記 R および R における炭素数は、レジスト溶媒に対する溶解性と分子サ
10 12
ィズの制御の点力も好ましくは 1〜20、より好ましくは 5〜12である。特に、環状の飽 和脂肪族炭化水素基は、得られるシルセスキォキサン樹脂の高エネルギー光に対 する透明性が高いこと、ガラス転移点 (Tg)が高くなり、 PEB (露光後加熱)時の酸発 生剤からの酸の発生をコントロールしやすくなること等の利点を有するので好ましい。
[0078] 前記環状の飽和脂肪族炭化水素基としては、単環式基であっても、多環式基であ つてもよい。多環式基としては、ビシクロアルカン、トリシクロアルカン、テロラシクロァ ルカン等から 2個の水素原子を除いた基を挙げることができ、より具体的には、ァダマ ンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリ シクロアルカンから 2個の水素原子を除いた基などが挙げられる。
[0079] これら R および R として、より具体的には、下記一般式(24)〜(29)で表される脂
10 12
環式ィ匕合物あるいはそれらの誘導体力 水素原子を 2つ除いた基を挙げることがで きる。
[0080] [化 12]
Figure imgf000019_0001
(28) (29) [0081] 前記誘導体とは、前記化学式(24)〜(29)の脂環式化合物において、少なくとも 1 つの水素原子が、メチル基、ェチル基等の低級アルキル基、酸素原子、フッ素、塩 素、臭素等のハロゲン原子等の基で置換されたものを意味する。中でも化学式 (24) 〜(29)なる群力も選択される脂環式ィ匕合物から水素原子を 2っ除 、た基が透明性 が高ぐまた工業的に入手しやす!/、点で好ま 、。
[0082] さらに、前記 R は、レジスト溶媒への溶解性から、好ましくは 1〜10、より好ましくは
11
1〜4の低級アルキル基である。このアルキル基としては、より具体的には、メチル基、 ェチル基、プロピル基、イソプロピル基、 n—ブチル基、 sec—ブチル基、 tert—ブチ ル基、シクロペンチル基、シクロへキシル基、 2—ェチルへキシル基、 n—ォクチル基 等を例示することができる。
[0083] R は、前記候補力 シルセスキォキサン樹脂の所望のアルカリ溶解性に応じて適
11
宜選択される。 R が水素原子の場合に最もアルカリ溶解性が高くなる。アルカリ溶解
11
性が高くなると、高感度化できるという利点がある。
[0084] 一方、前記アルキル基の炭素数が大きくなるほど、また、嵩高くなるほど、シルセス キォキサン樹脂のアルカリ溶解性が低くなる。アルカリ溶解性が低くなると、アルカリ 現像液に対する耐性が向上するので、該シルセスキォキサン榭脂を用いてレジスト ノ ターンを形成する際の露光マージンが良くなり、露光に伴う寸法変動が小さくなる 。また、現像むらがなくなるので、形成されるレジストパターンのエッジ部分のラフネス も改善される。
[0085] 前記一般式(17)、 (18)中の Xについては、特に直鎖状のアルキル基が好ましい。
アルキル基の炭素数は、シルセスキォキサン樹脂のガラス転移 (Tg)点やレジスト溶 媒への溶解性から、 1〜8、好ましくは 1〜4の低級アルキル基である。また、フッ素原 子で置換されて 、る水素原子の数が多 、ほど、 200nm以下の高エネルギー光ゃ電 子線に対する透明性が向上するので好ましぐ最も好ましくは、全ての水素原子がフ ッ素原子で置換されたパーフルォロアルキル基である。各 Xは、それぞれ同一であつ ても異なっていても良い。なお、一般式(17)中の mは、酸解離性溶解抑制基を解離 しゃすくするという理由で、 1〜3の整数であり、好ましくは 1である。
[0086] シルセスキォキサン系榭脂として、より具体的には、下記一般式(30)、(31)で表さ れるものが挙げられる。
[0087] [化 13]
Figure imgf000021_0001
(式中、 R , R , R ,および nは前出と同様である。 )
6 10 12
[0088] 本発明のシルセスキォキサン榭脂を構成する全構成単位中、(a6)および (a7)で 表される構成単位の割合は、 30〜: LOOモル%、好ましくは 70〜100%、より好ましく は 100モル0 /0である。
[0089] また、(a6)および (a7)で表される構成単位の合計に対し、(a6)で表される構成単 位の割合は、好ましくは 5〜70モル0 /0、より好ましくは 10〜40モル0 /0である。(a7)で 表される構成単位の割合は、好ましくは 30〜95モル0 /0、より好ましくは 60〜90モル %である。
[0090] (a6)で表される構成単位の割合を上記範囲内とすることにより、酸解離性溶解抑 制基の割合が自ずと決まり、シルセスキォキサン樹脂の露光前後のアルカリ溶解性 の変化が、ポジ型レジスト組成物のベース榭脂として好適なものとなる。
[0091] シルセスキォキサン系榭脂は、本発明の効果を損なわな!/、範囲で、(a6)および (a
7)で表される構成単位以外の構成単位を有して!/、ても良!、。例えば ArFエキシマレ 一ザ一のレジスト組成物用のシルセスキォキサン榭脂にお 、て用いられて 、るもの、 例えば、メチル基、ェチル基、プロピル基、ブチル基等のアルキル基を有するアルキ ルシルセスキォキサン単位等を例示することができる。
[0092] シルセスキォキサン系榭脂の質量平均分子量(Mw) (ゲルパーミエーシヨンクロマト グラフィ一によるポリスチレン換算)は、特に限定するものではないが、好ましくは 200 0〜15000、さらに好ましくは 3000〜8000とされる。この範囲よりも大きいとレジスト 溶剤への溶解性が悪くなり、小さいとレジストパターン断面形状が悪くなるおそれがあ る。
[0093] また、質量平均分子量 (Mw) Z数平均分子量 (Mn)は、特に限定するものではな いが、好ましくは 1. 0〜6. 0、さらに好ましくは 1. 5〜2. 5である。この範囲よりも大き いと解像度、パターン形状が劣化するおそれがある。
[0094] また、本発明のシルセスキォキサン系榭脂は、(a6)および (a7)で表される構成単 位によって構成されるシルセスキォキサンを基本骨格に有するポリマーであるので、 200nm以下の高エネルギー光や電子線に対する透明性が高い。そのため、本発明 のシルセスキォキサン榭脂を含むポジ型レジスト組成物は、例えば、 ArFエキシマレ 一ザ一より短波長の光源を用いたリソグラフィ一において有用であり、特に、単層プロ セスでも、線幅 150nm以下、さらには 120nm以下といった微細なレジストパターンを 形成することができる。また、 2層レジスト積層体の上層と用いることで、 120nm以下 、さらには lOOnm以下の微細なレジストパターンを形成するプロセスにも有用である
[0095] 前記フッ素含有ポリマーは、これまで Fポジレジストの榭脂成分として、様々なもの
2
が提案されており、これらの中から特に限定されず、任意に用いることができる。中で も、(a8) (0フッ素原子またはフッ素化アルキル基および GOアルコール性水酸基を 共に有する脂肪族環式基を含むアルカリ可溶性の構成単位 (a8- l)を含んでなる、 酸の作用によりアルカリ可溶性が変化するフッ素含有ポリマーが好ましい。
[0096] 重合体 (a8)における「酸の作用によりアルカリ可溶性が変化する」とは、露光部に おける該ポリマーの変化であり、露光部にてアルカリ可溶性が増大すれば、露光部 はアルカリ可溶性となるため、ポジ型レジストとして用いられ、他方、露光部にてアル カリ可溶性が減少すれば、露光部はアルカリ不溶性となるため、ネガ型レジストとして 用!/、ることができる。
[0097] 前記 (0フッ素原子またはフッ素化アルキル基および GOアルコール性水酸基を共に 有する脂肪族環式基を含むアルカリ可溶性の構成単位 (a8— 1)とは、前記 (0と (ii)を ともに有する有機基が脂肪族環式基に結合しており、該環式基をポリマーの構成単 位中に有するものであればょ 、。
[0098] 該脂肪族環式基とは、シクロペンタン、シクロへキサン、ビシクロアルカン、トリシクロ アルカン、テロラシクロアルカンなどの単環または多環式炭化水素から 1個または複 数個の水素原子を除 、た基などを例示できる。
多環式炭化水素は、より具体的には、ァダマンタン、ノルボルナン、イソボルナン、ト リシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから 1個または複数個の 水素原子を除 、た基などが挙げられる。
これらの中でもシクロペンタン、シクロへキサン、ノルボルナンから水素原子を除き 誘導される基が工業上好まし 、。
[0099] 前記 (0フッ素原子またはフッ素化アルキル基としては、フッ素原子または低級アル キル基の水素原子の一部または全部がフッ素原子で置換されたものが挙げられる。 具体的には、トリフルォロメチル基、ペンタフルォロェチル基、ヘプタフルォロプロピ ル基、ノナフルォロブチル基などが挙げられる力 工業的には、フッ素原子やトリフル ォロメチル基が好ましい。
[oioo] 前記 GOアルコール性水酸基とは、単にヒドロキシル基であってもよいし、ヒドロキシ 基を有するアルキルォキシ基、アルキルォキシアルキル基またはアルキル基のような アルコール性水酸基含有アルキルォキシ基、アルコール性水酸基含有アルキルォ キシアルキル基またはアルコール性水酸基含有アルキル基等が挙げられる。該アル キルォキシ基、該アルキルォキシアルキル基または該アルキル基としては、低級アル キルォキシ基、低級アルキルォキシ低級アルキル基、低級アルキル基が挙げられる
[0101] 前記低級アルキルォキシ基としては、具体的には、メチルォキシ基、ェチルォキシ 基、プロピルォキシ基、ブチルォキシ基等が挙げられ、低級アルキルォキシ低級アル キル基としては、具体的には、メチルォキシメチル基、ェチルォキシメチル基、プロピ ルォキシメチル基、ブチルォキシメチル基等が挙げられ、低級アルキル基としては、 具体的には、メチル基、ェチル基、プロピル基、ブチル基等が挙げられる。
[0102] また、前記 GOのアルコール性水酸基含有アルキルォキシ基、アルコール性水酸 基含有アルキルォキシアルキル基またはアルコール性水酸基含有アルキル基にお ける該アルキルォキシ基、該アルキルォキシアルキル基または該アルキル基の水素 原子の一部または全部がフッ素原子で置換されたものでもよい。 好ましくは、前記アルコール性水酸基含有アルキルォキシ基又はアルコール性水 酸基含有アルキルォキシアルキル基におけるそれらのアルキルォキシ部の水素原子 の一部がフッ素原子で置換されたもの、前記アルコール性水酸基含有アルキル基で は、そのアルキル基の水素原子の一部がフッ素原子で置換されたもの、すなわち、ァ ルコール性水酸基含有フルォロアルキルォキシ基、アルコール性水酸基含有フルォ 口アルキルォキシアルキル基又はアルコール性水酸基含有フルォロアルキル基が挙 げられる。
[0103] 前記アルコール性水酸基含有フルォロアルキルォキシ基としては、(HO) C (CF )
3 2
CH O 基(2—ビス(へキサフルォロメチル) 2—ヒドロキシーェチルォキシ基、(H
2
0) C (CF ) CH CH O 基(3—ビス(へキサフルォロメチル) 3—ヒドロキシ一プロ
3 2 2 2
ピルォキシ基等が挙げられ、アルコール性水酸基含有フルォロアルキルォキシアル キル基としては、(HO) C (CF ) CH O— CH 基、(HO) C (CF ) CH CH O— C
3 2 2 2 3 2 2 2
H一基等が挙げられ、アルコール性水酸基含有フルォロアルキル基としては、(HO
2
) C (CF ) CH一基(2—ビス(へキサフルォロメチル)ー2—ヒドロキシーェチル基、(
3 2 2
HO) C (CF ) CH CH—基(3—ビス(へキサフルォロメチル) 3—ヒドロキシ一プロ
3 2 2 2
ピル基、等が挙げられる。
[0104] これらの (0や GOの基は、前記脂肪族環式基に直接結合していればよい。特には、( a8— 1)構成単位がアルコール性水酸基含有フルォロアルキルォキシ基、アルコー ル性水酸基含有フルォロアルキルォキシアルキル基またはアルコール性水酸基含 有フルォロアルキル基がノルボルネン環に結合し、該ノルボルネン環の 2重結合が開 裂して形成される下記一般式 (32)で表される単位が、透明性とアルカリ可溶性およ び耐ドライエッチング性に優れ、また工業的に入手しやすいので、好ましい。
[0105] [化 14]
Figure imgf000025_0001
(式中、 Zは、酸素原子、ォキシメチレン基(一 0 (CH )―)、または単結合であり、 n
2
と m,はそれぞれ独立して 1〜5の整数である。 )
[0106] そして、そのような (a8— 1)単位と組み合わせて用いられる重合体単位は、これま で公知のものであれば、限定されない。ポジ型の酸の作用によりアルカリ可溶性が増 大する重合体として用いる場合、前記した酸解離性溶解抑制基を有する (メタ)アタリ ルエステル力も誘導される構成単位 (al)が解像性に優れるので好ま 、。
[0107] このような構成単位(al)としては、 tert ブチル (メタ)アタリレート、 tert ァミル (メ タ)アタリレートなどの (メタ)アクリル酸の第 3級アルキルエステル力も誘導される構成 単位が好まし 、ものとして挙げられる。
[0108] そして、重合体 (a8)は、さらに重合体の透明性を向上させるフッ素化アルキレン構 成単位 (a8 2)を含んでなる、酸の作用によりアルカリ可溶性が増大する重合体 (a9 )であってもよい。このような構成単位 (a8— 2)を含むことにより、透明性がさらに向上 する。該構成単位 (a8— 2)としては、テトラフルォロエチレン力も誘導される単位が好 ましい。
[0109] 以下に、重合体 (a8)と重合体 (a9)を表す一般式 (33)、(34)を示す。
[化 15]
Figure imgf000026_0001
(式中、 Z, η' , m'は前記一般式(32)の場合と同じであり、 Rは水素原子またはメチ ル基であり、 R19は酸解離性溶解抑制基である。 )
[0110] [化 16]
Figure imgf000026_0002
(式中、 Z, η' , m' , Rおよび R19は前記一般式(33)の場合と同じである。 )
[0111] また、前記した重合体 (a8)と重合体 (a9)とは異なる、別の前記構成単位 (a8— 1) を含んでなる、酸の作用によりアルカリ可溶性が変化する重合体として、以下のような 構成単位を有するものでもよ 、。
[0112] すなわち、構成単位 (a8— l)において、(0フッ素原子またはフッ素化アルキル基お よび GOアルコール性水酸基は脂肪族環式上にそれぞれ結合し、該環式基が主鎖を 構成しているものである。
該、(0フッ素原子またはフッ素化アルキル基としては、前記したものと同様なものが 挙げられる。また、 GOアルコール性水酸基とは、単にヒドロキシル基である。
[0113] このような単位を有する重合体 (alO)は、水酸基とフッ素原子を有するジェン化合 物の環化重合により形成される。該ジェンィ匕合物としては、透明性、耐ドライエツチン グ性に優れる 5員環や 6員環を有する重合体を形成しやすいへブタジエンが好ましく 、さらには、 1, 1, 2, 3, 3—ペンタフルオロー 4—トリフルォロメチル一 4—ヒドロキシ - 1, 6—へブタジエン(CF =CFCF C (CF ) (OH) CH CH=CH )の環化重合に
2 2 3 2 2
より形成される重合体が工業上最も好ましい。
[0114] ポジ型の酸の作用によりアルカリ可溶性が増大する重合体 (al 1)として用いる場合 、そのアルコール性水酸基の水素原子が酸解離性溶解抑制基で置換された構成単 位 (a8— 3)を含んでなる重合体が好ましい。その酸解離性溶解抑制基としては、鎖 状、分岐状または環状の炭素数 1〜15のアルキルォキシメチル基力 酸の解離性か ら好ましぐ特にはメトキシメチル基のような低級アルコキシメチル基が解像性とバタ ーン形状に優れ好ましい。なお、該酸解離性溶解抑制基は全体の水酸基に対して、 10〜40%、好ましくは 15〜30%の範囲であると、パターン形成能に優れ好ましい。
[0115] 以下に、重合体 (al l)を表す一般式 (35)を示す。
Figure imgf000027_0001
(式中、 R °は水素原子または C1〜C 15のアルキルォキシメチル基であり、 x、 yはそ れぞれ 10〜50モル0 /0である。)
[0116] これらの重合体 (a8)、(a9)、(alO)及び (al l)は、公知の、非特許文献である、例 は、 b. Kodama et al., Synthesis of Novel Fluoropolymer for 157 nm Pho toresists by Cyclo- polymerization" Proceedings of SPIE, Vol. 4690, (2002) p P76-83や特許文献、例えば、国際公開第 WO 00Z67072号パンフレット、国際公 開第 WO 02Z65212号パンフレット、国際公開第 WO 02/64648号パンフレツ トに記載の方法によって、合成できる。
[0117] また、該 (a8)、(a9)、(alO)及び (al l)成分の榭脂の GPCによるポリスチレン換算 質量平均分子量は、特〖こ限定するものではない力 000〜80000、さらに好ましくは 8000〜50000とされる。
[0118] また、重合体 (a8)は、 1種または 2種以上の榭脂から構成することができ、例えば、 上述の(a8)、(a9)、(alO)及び (al l)から選ばれる幾つかを 2種以上混合して用い てもよいし、さらに、他に従来公知のフォトレジスト組成物用榭脂を混合して用いるこ とちでさる。
[0119] フッ素含有ポリマーを用いたレジストの場合、主に Fエキシマレーザー露光用レジ
2
ストとして用いられる。
[0120] さらに、前記ネガ型レジスト組成物に用いられる榭脂成分としては、慣用されるもの であれば限定されないが、具体的には以下のようなものが好ましい。
[0121] このような榭脂成分としては、酸によりアルカリ不溶性となる榭脂成分であって、分 子内に、たがいに反応してエステルを形成しうる 2種の官能基を有し、これがレジスト 材料に同時添加する酸発生剤より発生した酸の作用により、脱水してエステルを形 成することによりアルカリ不溶性となる榭脂(al2)力 好ましく用いられる。ここでいう、 たがいに反応してエステルを形成しうる 2種の官能基とは、例えば、カルボン酸エステ ルを形成するための、水酸基とカルボキシル基またはカルボン酸エステルのようなも のを意味する。換言すれば、エステルを形成するための 2種の官能基である。このよう な榭脂としては、例えば、榭脂主骨格の側鎖に、ヒドロキシアルキル基と、カルボキシ ル基およびカルボン酸エステル基の少なくとも一方とを有するものが好ましい。
さら〖こは、前記榭脂成分としては、ジカルボン酸モノエステル単位を有する重合体 からなる榭脂成分 (al 3)も好まし ヽ。
[0122] 前記 (al2)は、換言すれば、下記一般式 (36)で表される構成単位を少なくとも有 する榭脂成分である。
[化 18]
Figure imgf000028_0001
(式中、 R は水素原子、 C1〜C6のアルキル基、もしくはノルボル-ル基、ァダマン チル基、テトラシクロドデシル基、トリシクロデシル基等の多環式環骨格を有するアル キル基であり、 nは 1〜5の整数である。 )
[0123] このような榭脂の例としては、 a (ヒドロキシアルキル)アクリル酸および a (ヒド ロキシアルキル)アクリル酸アルキルエステルの中力 選ばれる少なくとも 1種のモノマ 一の重合体 (単独重合体または共重合体)(al2— 1)、および α (ヒドロキシアルキ ル)アクリル酸および α (ヒドロキシアルキル)アクリル酸アルキルエステルの中から 選ばれる少なくとも 1種のモノマーと、他のエチレン性不飽和カルボン酸およびェチ レン性不飽和カルボン酸エステルの中力 選ばれる少なくとも 1種のモノマーとの共 重合体 (al 2— 2)などが好ましく挙げられる。
[0124] 上記重合体(al2— 1)としては、 α (ヒドロキシアルキル)アクリル酸と α (ヒドロ キシアルキル)アクリル酸アルキルエステルとの共重合体が好ましぐまた、共重合体 (al2- 2)としては、前記他のエチレン性不飽和カルボン酸やエチレン性不飽和力 ルボン酸エステルとして、アクリル酸、メタクリル酸、アクリル酸アルキルエステルおよ びメタクリル酸アルキルエステルの中力 選ばれる少なくとも 1種を用いたものが好ま しい。
[0125] 前記 α (ヒドロキシアルキル)アクリル酸や α (ヒドロキシアルキル)アクリル酸ァ ルキルエステルにおけるヒドロキシアルキル基の例としては、ヒドロキシメチル基、ヒド ロキシェチル基、ヒドロキシプロピル基、ヒドロキシブチル基などの低級ヒドロキシアル キル基が挙げられる。これらの中でもエステルの形成しやすさ力 ヒドロキシェチル基 ゃヒドロキシメチル基が好まし 、。
[0126] また、 α—(ヒドロキシアルキル)アクリル酸アルキルエステルのアルキルエステル部 分のアルキル基の例としては、メチル基、ェチル基、プロピル基、イソプロピル基、 η ブチル基、 sec ブチル基、 tert ブチル基、アミル基などの低級アルキル基、ビ シクロ [2. 2. 1]ヘプチル基、ノルボルニル基、ァダマンチル基、テトラシクロ [4. 4. 0 . I2'5. 17'1Q]ドデシル基、トリシクロ [5. 2. 1. 02·6]デシル基などの橋かけ型多環式環 状炭化水素基などが挙げられる。エステル部分のアルキル基が多環式環状炭化水 素基のものは、耐ドライエッチング性を高めるのに有効である。これらのアルキル基の 中で、特にメチル基、ェチル基、プロピル基、ブチル基などの低級アルキル基の場合 、エステルを形成するアルコール成分として、安価で容易に入手しうるものが用いら れるので好ましい。
[0127] 低級アルキルエステルの場合は、カルボキシル基と同様にヒドロキシアルキル基と のエステルイ匕が起こる力 橋かけ型多環式環状炭化水素とのエステルの場合は、そ のようなエステルイ匕が起こりにくい。そのため、橋かけ型多環式環状炭化水素とのェ ステルを榭脂中に導入する場合、同時に榭脂側鎖にカルボキシル基があると好まし い。
[0128] 一方、前記(al2— 2)における他のエチレン性不飽和カルボン酸やエチレン性不 飽和カルボン酸エステルの例としては、アクリル酸、メタクリル酸、マレイン酸、フマル 酸などの不飽和カルボン酸、これらの不飽和カルボン酸のメチル、ェチル、プロピル 、イソプロピル、 n—ブチル、イソブチル、 n キシル、ォクチルエステルなどのアル キルエステルなどが挙げられる。また、エステル部分のアルキル基として、ビシクロ [2 . 2. 1]ヘプチル基、ボル-ル基、ァダマンチル基、テトラシクロ [4. 4. 0. I2'5. I7'10] ドデシル基、トリシクロ [5. 2. 1. 02·6]デシル基などの橋かけ型多環式環状炭化水素 基を有するアクリル酸またはメタクリル酸のエステルも用いることができる。これらの中 で、安価で容易に入手できることから、アクリル酸およびメタクリル酸、あるいは、これ らのメチル、ェチル、プロピル、 n—ブチルエステルなどの低級アルキルエステルが好 ましい。
[0129] 前記榭脂成分 (al2— 2)の榭脂においては、 α—(ヒドロキシアルキル)アクリル酸 および α—(ヒドロキシアルキル)アクリル酸アルキルエステルの中力 選ばれる少な くとも 1種のモノマー単位と他のエチレン性不飽和カルボン酸およびエチレン性不飽 和カルボン酸エステルの中力 選ばれる少なくとも 1種のモノマー単位との割合は、 モル比で 20: 80な!、し 95: 5の範囲、特に 50: 50な!、し 90: 10の範囲が好まし!/ヽ。 両単位の割合が上記範囲にあれば、分子内または分子間でエステルを形成しやすく 、良好なレジストパターンが得られる。
[0130] また、前記榭脂成分 (al 3)は、下記一般式(37)または(38)で表される構成単位を 少なくとも有する榭脂成分である。
[化 19]
Figure imgf000031_0001
(式中、 R および R は炭素数 0〜8のアルキル鎖を表し、 R は少なくとも 2以上の脂
14 15 16
環式構造を有する置換基を表し、 R および R は水素原子、または炭素数 1〜8のァ
17 18
ルキル基を表す。 )
[0131] このようなジカルボン酸モノエステルモノマー単位を有する榭脂成分を用いたネガ 型レジスト組成物は、解像性が高ぐラインエッジラフネスが低減される点で好ましい 。また、膨潤耐性が高ぐ液浸露光プロセスにおいてはより好ましい。
このようなジカルボン酸モノエステル化合物としては、フマル酸、ィタコン酸、メサコ ン酸、ダルタコン酸、トラウマチン酸等が挙げられる。
[0132] さらに、上記ジカルボン酸モノエステル単位を有する榭脂としては、ジカルボン酸モ ノエステルモノマーの重合体または共重合体(al 3— 1)、およびジカルボン酸モノエ ステルモノマーと、前述した α—(ヒドロキシアルキル)アクリル酸、 α—(ヒドロキシァ ルキル)アクリル酸アルキルエステル、他のエチレン性不飽和カルボン酸およびェチ レン性不飽和カルボン酸エステルの中力 選ばれる少なくとも 1種のモノマーとの共 重合体 (al3— 2)などが好ましく挙げられる。
[0133] 上記ネガ型レジストに用いられる榭脂成分は、単独で用いてもよいし、 2種以上を組 み合わせて用いてもよい。また榭脂成分の重量平均分子量は 1000〜50000、好ま し <は 2000〜30000である。
[0134] また、上記ポジ型あるいはネガ型レジスト用の榭脂成分と組み合わせて用いる酸発 生剤としては、従来化学増幅型レジストにおける酸発生剤として公知のものの中から 任意のものを適宜選択して用いることができる。
[0135] 前記酸発生剤の具体例としては、ジフエ-ルョードニゥムトリフルォロメタンスルホネ ート、(4—メトキシフエ-ル)フエ-ルョードニゥムトリフルォロメタンスルホネート、ビス
(p— tert ブチルフエ-ル)ョード -ゥムトリフルォロメタンスルホネート、トリフエ-ル スルホ -ゥムトリフルォロメタンスルホネート、(4—メトキシフエ-ル)ジフエ-ルスルホ -ゥムトリフルォロメタンスルホネート、(4—メチルフエ-ル)ジフエ-ルスルホ-ゥムノ ナフルォロブタンスルホネート、(p— tert ブチルフエ-ル)ジフエ-ルスルホ -ゥム トリフルォロメタンスルホネート、ジフエ-ルョードニゥムノナフルォロブタンスルホネー ト、ビス(p— tert ブチルフエ-ル)ョードニゥムノナフルォロブタンスルホネート、トリ フエ-ルスルホ-ゥムノナフルォロブタンスルホネート、(4 トリフルォロメチルフエ- ル)ジフエ-ルスルホ -ゥムトリフルォロメタンスルホネート、(4 トリフルォロメチルフ ェ -ル)ジフエ-ルスルホ-ゥムノナフルォロブタンスルホネート、トリ(p— tert ブチ ルフエ-ル)スルホ -ゥムトリフルォロメタンスルホネートなどのォ-ゥム塩などが挙げ られる。
[0136] ォ -ゥム塩のなかでも、トリフエ-ルスルホ-ゥム塩は、分解しに《有機ガスを発生 しにくいので、好ましく用いられる。トリフエ-ルスルホ -ゥム塩の配合量は、酸発生剤 の合計に対し、好ましくは 50〜: LOOモル0 /0、より好ましくは 70〜: LOOモル0 /0、最も好 ましくは 100モル%とすることが好ましい。
[0137] また、トリフエ-ルスルホ -ゥム塩のうち、特に、下記一般式(39)で表される、パー フルォロアルキルスルホン酸イオンをァ-オンとするトリフエ-ルスルホ-ゥム塩は、 高感度化できるので、好ましく用いられる。
[0138] [化 20]
Figure imgf000032_0001
(式中、 R、R、R は、それぞれ独立に、水素原子、炭素数 1〜8、好ましくは 1
21 22 23 〜4 の低級アルキル基、または塩素、フッ素、臭素等のハロゲン原子であり; pは 1〜12、 好ましくは 1〜8、より好ましくは 1〜4の整数である。 )
[0139] 上記酸発生剤は単独で用いてもよいし、 2種以上を組み合わせて用いてもよい。そ の配合量は、前述の榭脂成分 100質量部に対し、 0. 5〜30質量部、好ましくは 1〜 10質量部とされる。 0. 5質量部未満ではパターン形成が十分に行われないし、 30質 量部を超えると、均一な溶液が得られにくぐ保存安定性が低下する原因となるおそ れがある。
[0140] また、本発明のポジ型ある ヽはネガ型レジスト組成物は、前記榭脂成分と酸発生剤 と、後述する任意の成分を、好ましくは有機溶剤に溶解させて製造される。
[0141] 有機溶剤としては、前記榭脂成分と酸発生剤を溶解し、均一な溶液とすることがで きるものであればよぐ従来化学増幅型レジストの溶剤として公知のものの中から任 意のものを 1種または 2種以上適宜選択して用いることができる。
[0142] 例えば、アセトン、メチルェチルケトン、シクロへキサノン、メチルイソアミルケトン、 2 一へプタノンなどのケトン類や、エチレングリコール、エチレングリコールモノァセテ一 ト、ジエチレングリコール、ジエチレングリコーノレモノアセテート、プロピレングリコーノレ 、プロピレングリコールモノアセテート、ジプロピレングリコール、またはジプロピレング リコーノレモノアセテートのモノメチノレエーテノレ、モノェチノレエーテノレ、モノプロピノレエ 一テル、モノブチルエーテルまたはモノフエ-ルエーテルなどの多価アルコール類お よびその誘導体や、ジォキサンのような環式エーテル類や、乳酸メチル、乳酸ェチル 、酢酸メチル、酢酸ェチル、酢酸ブチル、ピルピン酸メチル、ピルピン酸ェチル、メト キシプロピオン酸メチル、エトキシプロピオン酸ェチルなどのエステル類などを挙げる ことができる。これらの有機溶剤は単独で用いてもよぐ 2種以上の混合溶剤として用 いてもよい。
[0143] また、このようなポジ型あるいはネガ型レジストにおいては、レジストパターン形状、 経時安定性などを向上させるために、さらに、クェンチヤ一として、公知のァミン好ま しくは、第 2級低級脂肪族アミンゃ第 3級低級脂肪族ァミン等や、有機カルボン酸ゃリ ンのォキソ酸などの有機酸を含有させることができる。 [0144] 前記低級脂肪族ァミンとは、炭素数 5以下のアルキルまたはアルキルアルコールの アミンを言い、この第 2級や第 3級ァミンの例としては、トリメチルァミン、ジェチルアミ ン、トリエチノレアミン、ジ プロピルァミン、トリ一 n—プロピルァミン、トリベンチル ァミン、ジエタノールァミン、トリエタノールァミンなどが挙げられる力 特にトリエタノー ルァミンのようなアルカノールァミンが好ましい。これらは単独で用いてもよいし、 2種 以上を組み合わせて用いてもょ 、。
これらのアミンは、前記榭脂成分に対して、通常 0. 01〜5. 0質量%の範囲で用い られる。
[0145] 前記有機カルボン酸としては、例えば、マロン酸、クェン酸、リンゴ酸、コハク酸、安 息香酸、サリチル酸などが好適である。
[0146] 前記リンのォキソ酸若しくはその誘導体としては、リン酸、リン酸ジー n—ブチルエス テル、リン酸ジフエ-ルエステルなどのリン酸またはそれらのエステルのような誘導体 、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ージー n—ブチルエステル、 フエ二ノレホスホン酸、ホスホン酸ジフエ二ノレエステノレ、ホスホン酸ジベンジノレエステノレ などのホスホン酸およびそれらのエステルのような誘導体、ホスフィン酸、フエ-ルホ スフイン酸などのホスフィン酸およびそれらのエステルのような誘導体が挙げられ、こ れらの中で特にホスホン酸が好まし 、。
[0147] 前記有機酸は、榭脂成分 100質量部当り 0. 01〜5. 0質量部の割合で用いられる 。これらは単独で用いてもよいし、 2種以上を組み合わせて用いてもよい。
これらの有機酸は、好ましくは前記ァミンと等モル以下の範囲で用いられる。
[0148] 本発明のポジ型レジスト組成物には、さらに所望により混和性のある添加剤、例え ばレジスト膜の性能を改良するための付加的榭脂、塗布性を向上させるための界面 活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤などを添加含 有させることができる。
[0149] さらには、本発明ネガ型レジスト組成物においては、いっそう架橋密度を向上させ、 レジストパターンの形状や解像性ゃ耐ドライエッチング性を向上させる目的で、必要 に応じて架橋剤を配合しても良 、。
[0150] この架橋剤としては、特に制限はなぐ従来化学増幅型のネガ型レジストにおいて 使用されて ヽる公知の架橋剤の中から、任意のものを適宜選択して用いることができ る。この架橋剤の例としては、 2, 3 ジヒドロキシ 5 ヒドロキシメチルノルボルナン 、 2 ヒドロキシ一 5, 6 ビス(ヒドロキシメチル)ノルボルナン、シクロへキサンジメタノ ール、 3, 4, 8 (または 9)—トリヒドロキシトリシクロデカン、 2—メチル 2 ァダマンタ ノール、 1, 4 ジォキサン一 2, 3 ジオール、 1, 3, 5 トリヒドロキシシクロへキサン などのヒドロキシル基またはヒドロキシアルキル基あるいはその両方を有する脂肪族 環状炭化水素またはその含酸素誘導体、およびメラミン、ァセトグアナミン、ベンゾグ アナミン、尿素、エチレン尿素、グリコールゥリルなどのアミノ基含有ィ匕合物にホルム アルデヒドまたはホルムアルデヒドと低級アルコールを反応させ、該ァミノ基の水素原 子をヒドロキシメチル基または低級アルコキシメチル基で置換したィ匕合物、具体的に はへキサメトキシメチルメラミン、ビスメトキシメチル尿素、ビスメトキシメチルビスメトキ シエチレン尿素、テトラメトキシメチルダリコールゥリル、テトラブトキシメチルダリコール ゥリルなどを挙げることができる力 特に好まし ヽのはテトラブトキシメチルダリコール ゥリルである。
これら架橋剤は単独で用いてもょ 、し、 2種以上を組み合わせて用いてもょ 、。
[0151] 次に、本発明の浸漬液を用いた液浸露光法によるレジストパターン形成方法につ いて、説明する。
本発明に係る第 1のレジストパターン形成方法は、液浸露光プロセスを用いたレジ ストパターン形成方法であって、基板上に少なくともフォトレジスト膜を形成する工程、 前記露光プロセスに用いる露光光に対して透明であるシリコン系液体力 構成されて いる浸漬液を、前記レジスト膜上に、直接配置する工程、前記浸漬液を介して選択 的に前記レジスト膜を露光する工程、必要に応じて前記レジスト膜を加熱処理するェ 程、次いで、前記レジスト膜を現像しレジストパターンを形成する工程を含むことを特 徴とするレジストパターン形成方法である。
[0152] また、本発明に係る第 2のレジストパターン形成方法は、液浸露光プロセスを用い たレジストパターン形成方法であって、基板上に少なくともフォトレジスト膜を形成する 工程、前記レジスト膜上に保護膜を形成する工程、前記露光プロセスに用いる露光 光に対して透明であるシリコン系液体力 構成されている浸漬液を、前記保護膜上 に、直接配置する工程、前記浸漬液と保護膜を介して選択的に前記レジスト膜を露 光する工程、必要に応じて前記レジスト膜を加熱処理する工程、次いで、前記レジス ト膜を現像しレジストパターンを形成する工程を含むことを特徴とするレジストパター ン形成方法である。
[0153] 第 1のレジストパターン形成方法は、まず、シリコンウェハー等の基板上に、慣用の レジスト組成物をスピンナーなどで塗布した後、プレベータ(PAB処理)を行う。
なお、基板とレジスト組成物の塗布層との間には、有機系または無機系の反射防止 膜を設けた 2層積層体とすることもできる。
[0154] ここまでの工程は、周知の手法を用いて行うことができる。操作条件等は、使用する レジスト組成物の組成や特性に応じて適宜設定することが好ましい。
[0155] 次に、基板上のレジスト膜を、「液浸露光プロセスに用いる露光光に対して透明で あるシリコン系液体力も構成されている」浸漬液と接触させる。接触とは、特に限定さ れないが、基板を前記浸漬液中に浸漬したり、レジスト膜上に前記浸漬液を直接配 置したりすることをいう。
[0156] この浸漬状態の基板のレジスト膜に対して、所望のマスクパターンを介して選択的 に露光を行う。したがって、このとき、露光光は、浸漬液を通過してレジスト膜に到達 すること〖こなる。
[0157] このとき、レジスト膜は浸漬液に直接触れているが、浸漬液は、前述のようにレジスト 膜に対して不活性であり、レジスト膜に変質を起こさず、自身もレジスト膜によって変 質することもなぐその屈折率等の光学的特性を変質させることもない。また、高屈折 率を有するため、同じ露光波長の光源を用いてもより短波長の光源を用いた場合や 高 NAレンズを用いた場合と同様に高解像性が達成されると同時に焦点深度幅の低 下もなぐ微細パターンの形成に好適である。
[0158] この場合の露光に用いる波長は、特に限定されず、 ArFエキシマレーザー、 KrFェ キシマレーザー、 Fレーザー、 EUV (極端紫外線)、 VUV (真空紫外線)、電子線、
2
X線、軟 X線などの放射線を用いて行うことができる。本発明の浸漬液は、これらの波 長光に対して透明であり、いずれの波長の光を用いるかは、主に、レジスト膜の特性 によって決定される。 [0159] 前記浸漬液を用いた液浸状態での露光工程が完了したら、例えば、基板を浸漬液 力 取り出す、又は基板から、例えば、室温乾燥、スピンドライ、加熱乾燥、窒素プロ 一等の手段により浸漬液を除去する。浸漬液の沸点は、高くとも 200°Cであるので、 上記処理によって完全にレジスト膜から除去することができる。
[0160] 次 、で、露光したレジスト膜に対して PEB (露光後加熱)を行 、、続、て、アルカリ 性水溶液カゝらなるアルカリ現像液を用いて現像処理する。また、現像処理に続いて ポストベータを行っても良い。そして、好ましくは純水を用いてリンスを行う。この水リン スは、例えば、基板を回転させながら基板表面に水を滴下または噴霧して、基板上 の現像液および該現像液によって溶解したレジスト組成物を洗い流す。そして、乾燥 を行うことにより、レジスト膜がマスクパターンに応じた形状にパターユングされた、レ ジストパターンが得られる。
[0161] 第 2のレジストパターン形成方法は、第 1のレジストパターン形成方法において、レ ジスト膜と浸漬液の間に保護膜を設ける以外は同様である。
本発明浸漬液は、上記したように水液浸耐性の低い榭脂を用いたレジストに対して、 液浸露光プロセスへの汎用性を広げる手段として有用なものである力 このようなレ ジスト膜上に保護膜を設けるプロセスにおいても、好適に用いることができる。該保護 膜を設ける保護膜形成塗布液としては、水溶性若しくはアルカリ可溶性膜形成成分 を含有してなる水溶液が好まし ヽ。
[0162] この水溶性膜形成成分につ!ヽては、水溶性又はアルカリ可溶性を有し、かつ照射 光に対して透過性を有するものであれば、どのようなものを用いてもよぐ特に限定さ れないが、例えば、 0スピン塗布法など慣用的な塗布手段により均一な塗膜を形成す ることができること、 ii)フォトレジスト膜上に塗膜しても、フォトレジスト膜との間に変質 層を形成しないこと、 m)活性光線を十分に透過することができること、 iv)吸収係数の 小さい透明性の高い被膜を形成できること等の特性を有するものを用いるのが好まし い。
[0163] このような水溶性膜形成成分としては、例えばヒドロキシプロピルメチルセルロース フタレート、ヒドロキシプロピノレメチノレセルロースアセテートフタレート、ヒドロキシプロピ ノレメチノレセノレロースアセテートサクシネート、ヒドロキシプロピノレメチノレセノレロースへキ サヒドロフタレート、ヒドロキシプロピノレメチノレセノレロース、ヒドロキシプロピノレセノレロー ス、ヒドロキシェチノレセノレロース、セノレロースアセテートへキサヒドロフタレート、カノレボ キシメチノレセノレロース、ェチノレセノレロース、メチノレセノレロース等のセノレロース系重合 体; N, N ジメチルアクリルアミド、 N, N ジメチルァミノプロピルメタクリルアミド、 N , N ジメチルァミノプロピルアクリルアミド、 N—メチルアクリルアミド、ジアセトンアタリ ルアミド、 N, N ジメチルアミノエチルメタタリレート、 N, N ジェチルアミノエチルメ タクリレート、 N, N ジメチルアミノエチルアタリレート、アタリロイルモルホリン、アタリ ル酸等を単量体とするアクリル酸系重合体;ポリビュルアルコール、ポリビュルピロリド ン等のビニル系重合体;等を挙げることができる。これらの中でも、分子中に水酸基を 有しない水溶性ポリマーであるアクリル酸系重合体やポリビュルピロリドン等が好適で ある。これら水溶性膜形成成分は単独で用いてもよぐあるいは 2種以上を組み合わ せて用いてもよい。
[0164] また、アルカリ可溶性膜形成成分としては、例えば、フエノール類 (フエノール、 m— クレゾール、キシレノール、トリメチルフエノールなど)と、アルデヒド類(ホルムアルデヒ ド、ホルムアルデヒド前駆体、プロピオンアルデヒド、 2—ヒドロキシベンズアルデヒド、 3 ヒドロキシベンズアルデヒド、 4 ヒドロキシベンズアルデヒドなど)及び Z又はケト ン類 (メチルェチルケトン、アセトンなど)とを、酸性触媒存在下に縮合して得られるノ ボラック榭脂;ヒドロキシスチレンの単独重合体や、ヒドロキシスチレンと他のスチレン 系単量体との共重合体、ヒドロキシスチレンとアクリル酸又はメタクリル酸ある 、はその 誘導体との共重合体などのヒドロキシスチレン系榭脂が挙げられる。これらアルカリ可 溶性膜形成成分は単独で用いてもよぐあるいは 2種以上を組み合わせて用いてもよ い。
[0165] 水溶性膜形成成分とアルカリ可溶性膜形成成分のうち、好ましくは、水溶性膜形成 成分である。
[0166] 保護膜形成塗布液は、さら〖こ、酸発生剤および酸性化合物の中から選ばれる少な くとも 1種を含有してもよい。酸発生剤は化学増幅型レジストに用いられる公知の化合 物を用いることができる。その具体例としては、ジフエ-ルョードニゥムトリフルォロメタ ンスルホネート、 (4—メトキシフエ-ル)フエ-ルョードニゥムトリフルォロメタンスルホ ネート、ビス(p— tert ブチルフエ-ル)ョード -ゥムトリフルォロメタンスルホネート、 トリフエ-ルスルホ -ゥムトリフルォロメタンスルホネート、(4—メトキシフエ-ル)ジフエ ニルスルホ -ゥムトリフルォロメタンスルホネート、(4 メチルフエ-ル)ジフエ-ルス ルホ -ゥムトリフルォロメタンスルホネート、(4—メチルフエ-ル)ジフエ-ルスルホ- ゥムノナフルォロブタンスルホネート、(p—tert ブチルフエ-ル)ジフエ-ルスルホ -ゥムトリフルォロメタンスルホネート、ジフエ-ルョードニゥムノナフルォロブタンスル ホネート、ビス(p—tert ブチルフエ-ル)ョードニゥムノナフルォロブタンスルホネー ト、トリフエ-ルスルホ-ゥムノナフルォロブタンスルホネート、(4 トリフルォロメチル フエ-ル)ジフエ-ルスルホ -ゥムトリフルォロメタンスルホネート、(4 トリフルォロメ チルフエ-ル)ジフエ-ルスルホ-ゥムノナフルォロブタンスルホネート、トリ(p—tert ブチルフエ-ル)スルホ -ゥムトリフルォロメタンスルホネートなどのォ-ゥム塩など が挙げられる。
[0167] 酸性ィ匕合物としては、例えば塩酸、硫酸、硝酸、リン酸などの無機酸、ギ酸、酢酸、 プロピオン酸、ベンゼンスルホン酸、トルエンスルホン酸などの有機酸を挙げることが できる。これら有機酸は単独で用いてもよぐあるいは 2種以上を組み合わせて用い てもよい。
上記酸性ィ匕合物の中でも好ましい酸として、炭素原子数 1〜20の飽和または不飽 和の炭化水素基の水素原子の一部または全部をフッ素原子で置き換えた脂肪族力 ルボン酸又は脂肪族スルホン酸および、フッ素置換スルホ二ルイ匕合物等が挙げられ る。
[0168] ここで、上記フッ素置換カルボン酸としては、パーフルォロヘプタン酸、パーフルォ 口オクタン酸等が挙げられ、また上記フッ素置換スルホン酸としては、パーフルォロプ 口ピルスルホン酸、パーフルォロォクチルスルホン酸、パーフルォロデシルスルホン 酸等が挙げられる。具体的には、例えばパーフルォロヘプタン酸は EF— 201等とし て、パーフルォロォクチルスルホン酸は EF— 101等として(いずれもトーケムプロダク ッ (株)製)市販されており、これらを好適に用いることができる。
[0169] 上記フッ素置換スルホ二ルイ匕合物としては、トリス(トリフルォロメチルスルホニル)メ タン、ビス(トリフルォロメチルスルホ -ル)アンモ-ゥム、ビス(ヘプタフルォロェチル スルホニル)アンモ-ゥムなどが挙げられる。
[0170] このような酸性ィ匕合物及び Z又は酸発生剤を添加することにより、レジストパターン の形状改善の効果、さらには保護膜形成用材料の経時安定ィ匕効果を得ることができ る。
[0171] 保護膜形成塗布液は、通常水溶液の形で用いられ、水溶性およびアルカリ可溶性 膜形成成分の含有量は 0. 5〜10. 0重量%であるのが好ましぐまた、上記酸性ィ匕 合物及び/又は酸発生剤の含有量は、 1. 0〜15. 0重量%であるのが好ましい。保 護膜形成塗布液の pHは、特に限定されないが、好ましくは酸性である。
保護膜形成塗布液はさらに含窒素化合物を含有してもよ ヽ。好適な含窒素化合物 として、例えば第 4級アンモ-ゥム水酸ィ匕物、アル力ノールアミンィ匕合物、アミノ酸誘 導体などが挙げられる。
含窒素化合物を添加することにより保護膜形成材料の pHを調整することができ、ひ いてはレジストパターンの形状改善の効果を得ることができる。
[0172] このようにしてレジストパターンを形成することにより、微細な線幅のレジストパターン 、特にピッチが小さいラインアンドスペースパターンを良好な解像度により製造するこ とができる。なお、ここで、ラインアンドスペースパターンにおけるピッチとは、パターン の線幅方向における、レジストパターン幅とスペース幅の合計の距離をいう。
実施例
[0173] 以下、本発明の実施例を説明するが、これら実施例は本発明を好適に説明するた めの例示に過ぎず、なんら本発明を限定するものではない。なお、以下の説明にお V、ては、実施例とともに比較例も記載して 、る。
[0174] (実施例 1:フッ素ポリマーを用いたレジストの評価試験 3)
下記の榭脂成分、酸発生剤、および含窒素有機化合物を有機溶剤に均一に溶解 し、ポジ型レジスト組成物 1を調整した。
榭脂成分としては、下記式で表されるフッ素ポリマー 100質量部を用いた。その質 量平均分子量は 25000であった。
[0175] [化 21]
Figure imgf000041_0001
x、 yはそれぞれ 50%で、 R2Qは水素原子またはメトキシメチル基であり、水素原子で あるときの水酸基 75%、メトキシメチル基 25%である。
[0176] 前記酸発生剤としては、トリフエ-ルスルホ -ゥムパーフルォロブタンスルホネート 2.
0質量部を用いた。また、前記有機溶媒としては、プロピレングリコールモノメチルェ 一テルアセテート (PGMEA) 1600質量部を用いた。さらに、前記含窒素有機化合 物としては、トリイソプロパノールァミン 0. 3質量部を用いた。
[0177] 上記のようにして製造したポジ型レジスト組成物 1を用いて、レジストパターンの形 成を行った。
まず、有機系反射防止膜組成物「AR— 19」(商品名、 Shipley社製)をスピンコー ターを用いてシリコンウェハー上に塗布し、ホットプレート上で 215°C、 60秒間焼成し て乾燥させること〖こより、膜厚 82nmの有機系反射防止膜を形成した。そして、この反 射防止膜上に、前記ポジ型レジスト組成物 1をスピナ一を用いて塗布し、ホットプレー ト上で 95°C、 90秒間プレベータして、乾燥させることにより、反射防止膜上に膜厚 10 2nmのレジスト膜を形成した。
[0178] 一方、パーフルォロォクチルスルホン酸(C F SO H)である EF— 101 (トーケムプ
8 17 3
口ダクッ (株)製)の 20重量%水溶液 500gとモノエタノールァミンの 20重量%水溶液 80gを混合した。その混合溶液 25gを 10重量%ポリビュルピロリドン水溶液 20gに添 加し、得られた水溶液に純水を加えて全体を 200gとして保護膜形成用塗布液を調 整した。なお、この塗布液の pHは 2. 7であった。前記レジスト膜上に前記保護膜形 成用塗布液を塗布し、スピンドライし、膜厚 35nmの保護膜を形成した。
[0179] 浸漬液として、へキサメチルジシロキサン (商品名「LS7130」、信越シリコン株式会 社製、屈折率 n= l.3774、沸点 100°C)を用いた。なお、 N雰囲気下で測定したへ
2
キサメチルジシロキサンの屈折率および消衰係数は、下記のとおりであった。
[0180] 測定波長え 屈折率 n 消衰係数 k 156. 2nm 1. 690 0. 093
192. 8nm 1. 560 0
246. 8nm 1. 468 0
[0181] 浸漬液として、上記へキサメチルジシロキサンを用い、液浸露光装置として、「露光 のパターン光をプリズムによる干渉光をもって代用させて、試料を液浸状態に置き、 露光させる構成の「2光束干渉露光法」を実現させる株式会社ニコン製の液浸露光 実験装置」を用いて、波長 193nmの露光光 (ArFエキシマレーザー)により、前記レ ジスト膜に対して浸漬露光を行った。この時、装置の最下部に位置するプリズム下面 は次のような層構造となって!/、る。上層浸漬液である上記へキサメチルジシロキサン 、その下層に上記保護膜の層、その下層にレジスト膜の順。実施例 1において、 Wor king Distance (プリズム下面とレジスト膜との距離)は 150 mであった。
[0182] 露光終了後、基板をスピンドライ乾燥させて、レジスト膜から浸漬液であるへキサメ チルジシロキサンを完全に除去した。
[0183] その後、 115°C、 90秒間の条件で PEB処理し、さらに 23°Cにてアルカリ現像液で 6 0秒間現像した。アルカリ現像液としては、 2. 38質量0 /0テトラメチルアンモ-ゥムヒド 口キシド水溶液 (商品名「NMD— 3」、東京応化製)を用いた。
[0184] このようにして得た 65nmのラインアンドスペースが 1: 1となるレジストパターンを走 查型電子顕微鏡 (SEM)により観察したところ、このパターンプロファイルは良好なも のであり、ゆらぎ (ラインの部分的狭隘化)現象等の不良化現象は全く観察されなか つた。さらに得られたパターンに対して、集束イオンビーム SEM (FEI社製 Altural2 35)にて断面形状を観察したところ、断面形状は矩形の良好なものであることが分か つた o
[0185] (実施例 2:アクリル系ポリマーを用いたレジストの評価試験 3)
下記の榭脂成分、酸発生剤、および含窒素有機化合物を有機溶剤に均一に溶解 し、ポジ型レジスト組成物 2を調整した。
榭脂成分としては、下記化学式 (41a)、(41b)、(41c)に示した 3種の構成単位か らなるメタクリル酸エステル ·アクリル酸エステルの共重合体 100質量部を用いた。榭 脂成分の調製に用いた各構成単位 p、 q、 rの比は、榭脂成分の調製に用いた各構 成単位 p、 q、 rの比は、 p = 50モル0 /0、 q = 30モル0 /0、 r = 20モル0 /0とした。調製した 榭脂成分の質量平均分子量は 10000であった。
[0186] [化 22]
Figure imgf000043_0001
[0187] 前記酸発生剤としては、下記一般式 (42a)で表されるトリフエ-ルスルホニム塩 3.5 質量部と、下記一般式 (42b)で表されるトリフ ニルスルホニム塩 1.0質量部を用い た。
[化 23]
Figure imgf000044_0001
Figure imgf000044_0002
また、前記有機溶媒としては、乳酸ェチルと PGMEAが質量比 6 :4の混合溶媒 16 00質量部を用いた。さらに、前記含窒素有機化合物としては、トリエタノールァミン 0 . 3質量部を用いた。
[0188] 上記のようにして製造したポジ型レジスト組成物 2を用いて、レジストパターンの形 成を行った。
まず、有機系反射防止膜組成物「AR— 19」(商品名、 Shipley社製)をスピナ一を 用いてシリコンウェハー上に塗布し、ホットプレート上で 215°C、 60秒間焼成して乾燥 させること〖こより、膜厚 82nmの有機系反射防止膜を形成した。そして、この反射防止 膜上に、前記ポジ型レジスト組成物 2をコーターを用いて塗布し、ホットプレート上で 1 25°C、 90秒間プレベータして、乾燥させることにより、反射防止膜上に膜厚 95nmの レジスト膜を形成した。
[0189] 次いで、実施例 1と同様の条件で、保護膜を用いな力つた以外は、浸漬露光を行つ た。この時、装置の最下部に位置するプリズム下面は次のような層構造となっている。 上層浸漬液である上記へキサメチルジシロキサン、その下層にレジスト膜の順。実施 例 2において、 Working Distanceは 150 μ mであった。露光終了後、基板をスピンド ライ乾燥させて、レジスト膜から浸漬液であるへキサメチルジシロキサンを完全に除去 した。
[0190] その後、 115°C、 90秒間の条件で PEB処理し、さらに 23°Cにてアルカリ現像液で 6 0秒間現像した。アルカリ現像液としては、 2. 38質量0 /0テトラメチルアンモ-ゥムヒド 口キシド水溶液 (商品名「NMD— 3」、東京応化製)を用いた。
[0191] このようにして得た 65nmのラインアンドスペースが 1: 1となるレジストパターンを走 查型電子顕微鏡 (SEM)により観察したところ、このパターンプロファイルは良好なも のであり、ゆらぎ (ラインの部分的狭隘化)現象等の不良化現象は全く観察されなか つた。さらに得られたパターンに対して、集束イオンビーム SEM (FEI社製 Altural2 35)にて断面形状を観察したところ、断面形状は矩形の良好なものであることが分か つた o
[0192] (実施例 3 :フッ素ポリマーを用いたレジストの評価試験 1)
下記の榭脂成分、酸発生剤、および含窒素有機化合物を有機溶剤に均一に溶解 し、ポジ型レジスト組成物 F1を調製した。榭脂成分としては、下記化学式に示した 3 種の構成単位力もなる共重合体 100質量部を用いた。榭脂成分の調製に用いた各 構成単位 m、 nの比は、 1= 10モル0 /0、 m=40モル0 /0、 n= 50モル0 /0とした。調製 した榭脂成分の質量平均分子量は 25000であった。
[0193] [化 24]
Figure imgf000045_0001
x、 yはそれぞれ 50%で、 R2Qは水素原子またはメトキシメチル基であり、水素原子で あるときの水酸基 80%、メトキシメチル基 20%である。
[0194] 前記酸発生剤としては、トリフエ-ルスルホ -ゥムパーフルォロブタンスルホネート 5 . 0質量部を用いた。また、前記有機溶媒としては、プロピレングリコールモノメチルェ 一テルアセテート (PGMEA)を用いた。さらに、前記含窒素有機化合物としては、トリ イソプロパノールァミン 0. 4質量部、およびサリチル酸 0. 1質量部を用いた。また、溶 解抑制剤として、次の化学式 (44)で表されるフッ素化合物 5質量部用いた。 [0195] [化 25]
Figure imgf000046_0001
[0196] 上記のようにして製造したポジ型レジスト組成物 Flを用いて、レジストパターンの形 成を行った。まず、有機系反射防止膜組成物「AR— 19」(商品名、 Shipley社製)を スピンナーを用いてシリコンウェハー上に塗布し、ホットプレート上で 215°C、 60秒間 焼成して乾燥させることにより、膜厚 82nmの有機系反射防止膜を形成した。そして、 この反射防止膜上に、前記ポジ型レジスト組成物 F1をスピンナーを用いて塗布し、 ホットプレート上で 90°C、 90秒間プレベータして、乾燥させることにより、反射防止膜 上に膜厚 250nmのレジスト膜を形成した。
[0197] 一方、パーフルォロォクチルスルホン酸(C F SO H)である EF— 101 (トーケムプ
8 17 3
口ダクッ (株)製)の 20重量%水溶液 500gとモノエタノールァミンの 20重量%水溶液 80gを混合した。その混合溶液 25gを 10重量%ポリビュルピロリドン水溶液 20gに添 加し、得られた水溶液に純水を加えて全体を 200gとして保護膜形成用塗布液を調 製した。なお、この塗布液の pHは 2. 7であった。
前記レジスト膜上に、前記保護膜形成用塗布液を塗布し、スピンドライ (回転して乾 燥)し、膜厚 44nmの保護膜を形成した。
[0198] 次に、マスクパターンを介して、露光装置 NSR—S302B (ニコン社製、 NA (開口 数) =0. 60、 2Z3輪帯)により、 ArFエキシマレーザー(波長 193nm)を用いて、パ ターン光を照射(露光)した。その後、 120°Cで 90秒間 PEBし、さらに 23°Cにて NM D— 3 (2. 38質量0 /0テトラメチルアンモ -ゥム水溶液力 なるアルカリ現像液)で 60 秒間現像した。この現像時に保護膜も同時に除去された。
[0199] このようにして得た 130nmのラインアンドスペースが 1: 1となるレジストパターンを走 查型電子顕微鏡 (SEM)により観察したところ、このパターンプロファイルは良好なも のであり、ゆらぎ等は全く観察されな力つた。
[0200] 他方、上記パターン形成において、液浸露光処理として、へキサメチルジシロキサ ン(商品名「LS7130」、信越シリコン株式会社製、屈折率 n= 1.3774、沸点 100°C) 力もなるシリコン系液体を、該露光後のレジスト膜を設けたシリコンウェハーを 1200rp mで回転させながら、レジスト膜上に 23°Cにて 1分間滴下し続けた以外は、同様にし て、即ち露光と PEBの間に該滴下処理を施した以外は、同様にしてレジストパターン を形成した。
なお、この部分の工程は、実際の製造プロセスでは、完全液浸状態にて露光する 工程である力 先の液浸露光法に対する分析に基づいて、光学系における露光自 体は完全に行われることは理論的にも保証されるので、先にレジスト膜を露光してお き、液浸液のレジスト膜への影響のみを評価できるように、露光後に屈折率液体 (液 浸液)であるシリコン系液体をレジスト膜に負荷させるという簡略的な構成としている。
[0201] 得られた 130nmのラインアンドスペースが 1: 1となるレジストパターンを走査型電子 顕微鏡(SEM)により観察したところ、このパターンプロファイルは良好なものであり、 ゆらぎ等は全く観察されな力つた。これにより、へキサメチルジシロキサン力もなるシリ コン系溶媒は液浸プロセスにお 、て、レジスト膜に何ら悪影響を及ぼさな 、と言える。
[0202] (実施例 4:フッ素ポリマーを用いたレジストの評価試験 2)
実施例 3で用 ヽたポジ型レジスト糸且成物 F 1を直径 1インチの水晶基板の片面に金 を蒸着し、この基板を金蒸着面を上にして具体的には 2000rpm程度で回転させ、金 蒸着面上にスピンナ一により乾燥後の厚さが 150nmとなるように塗布し、 90°Cで 90 秒乾燥し、基板電極とソケット電極が接触する様にレジストを部分的に剥離して、 150 nmのレジスト塗膜を形成した。これを未露光塗膜という。
[0203] 次いで、上記未露光塗膜をへキサメチルジシロキサンに浸漬し、浸漬した状態で水 晶天秤(Quarts Crystal Microbalance以下 QCMと言う)を用いた膜厚測定器である リソテックジャパン社製「RDA— QZ3」により、最大測定時間を 300秒間とし該塗膜の 膜厚の変化を測定した。なお、クォーツ基板の周波数変動を測定し、得られたデータ は、付属の解析ソフトにて処理を行い、浸漬時間に対する膜厚値のグラフとした。本 実施例におけるこのグラフを図 1に示した。
[0204] なお、試料における、未露光での膜厚変動の違いを明らかにするため、グラフは浸 漬時間 0秒を基準とし、そのときの膜厚値からの差分で表記し、再度グラフにプロット した。つまり、初期膜厚より薄くなれば負の値を、厚くなれば正の値を示すことになる 。膜厚変動値の正の方向で示した最大値および負の方向で示した最大値を求めた。 正あるいは負への挙動がなかった場合は、その値を Onmとした。測定開始から 10秒 間以内の最大の膜厚増加量は 1. 87nmであり、若干の膨潤現象が見られたが、通 常の液浸露光プロセスで使用する範囲では全く問題のな 、レベルであることが確認 できた。また、溶解現象等は全く観察されな力つた。
[0205] 実施例 4の結果から、浸漬液としてへキサメチルジシロキサンを用いても、レジスト 膜を変質させる心配はな 、ことが分力つた。
産業上の利用可能性
[0206] 以上説明したように、本発明に力かる液浸露光プロセス用浸漬液は、シリコン系液 体から構成されるため屈折率が高ぐ同じ露光波長の光源を用いてもより短波長の光 源を用いた場合や高 NAレンズを用いた場合と同様に、高解像性が達成されると同 時に焦点深度幅の低下もない。したがって、液浸露光工程に用いることにより、レジ ストパターンプロファイル形状に優れた精度の高いレジストパターンを製造することが できる点で有用である。また、慣用のレジスト組成物を用いてレジスト膜を構成しても 、液浸露光工程にぉ 、てレジストパターンが T トップ形状となるなどレジストパター ンの表面の荒れや、パターンのゆらぎ、糸引き現象等の不良化現象がないので、レ ジストパターンの製造に適して 、る。
[0207] また、本実施例 1〜4より、本発明にかかる液浸露光プロセス用浸漬液は、 1)露光 光に対して、十分な透明性を有すること、 2)レジスト膜と又その上の保護膜とも化学 的に不活性であり、レジストパターンの形成において、レジストパターン形状の悪ィ匕を 引き起こさないこと、及び 3)レジスト膜や保護膜からそれらの成分が液浸液に滲出し て液浸液高解像性を達成するために必要なその屈折率を低下させたりすることの悪 影響がないことが明ら力となった。屈折率においては、従来の液浸液である水、フッ 素系不活性液体との比較は行っていないが、上記数式 1から、液浸液が高屈折率と いう物性をもてば、高解像性が得られることは、理論から確実である。
[0208] また、本発明に力かる液浸露光プロセス用浸漬液を用いたレジストパターン形成方 法は、レジスト膜上に直接上記浸漬液を配置した場合でも、レジスト膜上に保護膜を 形成し、該保護膜上に本発明の浸漬液を設けた場合でも、優れたレジストパターンを 製造することができる点で有用である。

Claims

請求の範囲
[1] 液体を介してレジスト膜を露光する液浸露光プロセスに用いられる浸漬液であって 前記液浸露光プロセスに用いる露光光に対して透明であるシリコン系液体力 構成 されていることを特徴とする液浸露光プロセス用浸漬液。
[2] 前記液浸露光プロセスが、リソグラフィー露光光がレジスト膜に到達するまでの経路 の少なくとも前記レジスト膜上に、空気より屈折率が大きい所定厚さの該浸漬液を介 在させた状態で、前記レジスト膜を露光する構成であることを特徴とする請求項 1に 記載の液浸露光プロセス用浸漬液。
[3] 前記シリコン系液体の屈折率力 水の屈折率よりも少なくとも 0. 01大きいことを特 徴とする請求項 1に記載の液浸露光プロセス用浸漬液。
[4] 前記シリコン系液体が、下記式
[化 26]
Figure imgf000050_0001
(Rは有機基を、 nは 0以上の整数を表す。 )
によって表される有機シロキサンであることを特徴とする請求項 1に記載の液浸露光 プロセス用浸漬液。
[5] 前記レジスト膜を形成するレジスト組成物のベースポリマーが (メタ)アクリル酸エス テル単位力 なるポリマーであることを特徴とする請求項 1に記載の液浸露光プロセ ス用浸漬液。
[6] 前記レジスト膜を形成するレジスト組成物のベースポリマーがフッ素含有ポリマーで あることを特徴とする請求項 1に記載の液浸露光プロセス用浸漬液。
[7] 前記レジスト膜を形成するレジスト組成物のベースポリマーが (0フッ素原子またはフ ッ素化アルキル基および GOアルコール性水酸基を共に有する脂肪族環式基を含む アルカリ可溶性の構成単位を含んでなる、酸の作用によりアルカリ可溶性が変化する フッ素含有ポリマーであることを特徴とする請求項 6に記載の液浸露光プロセス用浸 漬液。
[8] 液浸露光プロセスを用いたレジストパターン形成方法であって、
基板上に少なくともレジスト膜を形成するレジスト膜形成工程、
前記液浸露光プロセスに用いる露光光に対して透明であるシリコン系液体力 構成 されている浸漬液を、前記レジスト膜上に、直接配置する浸漬工程、
前記浸漬液を介して選択的に前記レジスト膜を露光する露光工程、
次 、で、前記レジスト膜を現像しレジストパターンを形成する現像工程を含むレジス トパターン形成方法。
[9] 液浸露光プロセスを用いたレジストパターン形成方法であって、
基板上に少なくともレジスト膜を形成するレジスト膜形成工程、
前記レジスト膜上に保護膜を形成する保護膜形成工程、
前記液浸露光プロセスに用いる露光光に対して透明であるシリコン系液体力 構成 されている浸漬液を、前記保護膜上に、直接配置する浸漬工程、
前記浸漬液と保護膜を介して選択的に前記レジスト膜を露光する露光工程、 次 、で、前記レジスト膜を現像しレジストパターンを形成する現像工程を含むレジス トパターン形成方法。
[10] 前記露光工程の後に、前記レジスト膜を加熱処理する露光後加熱工程をさらに含 むことを特徴とする請求項 8または 9に記載のレジストパターン形成方法。
[11] 前記液浸露光プロセスが、リソグラフィー露光光がレジスト膜に到達するまでの経路 の少なくとも前記レジスト膜上に、空気より屈折率が大きい所定厚さの浸漬液を介在 させた状態で、前記レジスト膜を露光する構成であることを特徴とする請求項 8または 9に記載のレジストパターン形成方法。
[12] 前記シリコン系液体の屈折率力 水の屈折率よりも少なくとも 0. 01大きいことを特 徴とする請求項 8または 9に記載のレジストパターン形成方法。
[13] 前記シリコン系液体が、下記式
[化 27]
Figure imgf000052_0001
(Rは有機基を、 nは 0以上の整数を表す。 )
によって表される有機シロキサンであることを特徴とする請求項 8または 9に記載のレ ジストパターン形成方法。
[14] 前記レジスト膜を形成するレジスト組成物のベースポリマーが (メタ)アクリル酸エス テル単位力もなるポリマーであることを特徴とする請求項 8または 9に記載のレジスト パターン形成方法。
[15] 前記レジスト膜を形成するレジスト組成物のベースポリマーがフッ素含有ポリマーで あることを特徴とする請求項 8または 9に記載のレジストパターン形成方法。
[16] 前記レジスト膜を形成するレジスト組成物のベースポリマーが (0フッ素原子またはフ ッ素化アルキル基および GOアルコール性水酸基を共に有する脂肪族環式基を含む アルカリ可溶性の構成単位 (al)を含んでなる、酸の作用によりアルカリ可溶性が変 化するフッ素含有ポリマーであることを特徴とする請求項 15に記載の液浸露光レジス トパターン形成方法。
PCT/JP2005/009477 2004-05-25 2005-05-24 液浸露光プロセス用浸漬液および該浸漬液を用いたレジストパターン形成方法 WO2005117074A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/597,124 US20090011375A1 (en) 2004-05-25 2005-05-24 Immersion liquid for liquid immersion lithography process and method for forming resist pattern using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004155274A JP2005340397A (ja) 2004-05-25 2004-05-25 液浸露光プロセス用浸漬液および該浸漬液を用いたレジストパターン形成方法
JP2004-155274 2004-05-25

Publications (1)

Publication Number Publication Date
WO2005117074A1 true WO2005117074A1 (ja) 2005-12-08

Family

ID=35451133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009477 WO2005117074A1 (ja) 2004-05-25 2005-05-24 液浸露光プロセス用浸漬液および該浸漬液を用いたレジストパターン形成方法

Country Status (4)

Country Link
US (1) US20090011375A1 (ja)
JP (1) JP2005340397A (ja)
TW (1) TW200602441A (ja)
WO (1) WO2005117074A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115268A1 (ja) * 2005-04-26 2006-11-02 Mitsui Chemicals, Inc. 液浸式露光用液体、液浸式露光用液体の精製方法および液浸式露光方法
WO2007140012A2 (en) * 2006-05-26 2007-12-06 Massachusetts Institute Of Technology Immersion fluids for lithography
US7586103B2 (en) 2006-09-09 2009-09-08 E. I. Du Pont De Nemours And Company High refractive index fluids for immersion lithography
US7771919B2 (en) 2006-09-09 2010-08-10 E. I. Du Pont De Nemours And Company High refractive index fluids for immersion lithography

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140429A (ja) * 2004-10-13 2006-06-01 Asahi Glass Co Ltd 液浸型露光方法および液浸型露光用媒体
JP4485994B2 (ja) * 2005-06-03 2010-06-23 パナソニック株式会社 パターン形成方法
JP4934043B2 (ja) * 2005-08-29 2012-05-16 三井化学株式会社 液浸式ArFレーザー露光用液体および液浸式ArFレーザー露光方法
US9468251B2 (en) * 2012-05-30 2016-10-18 Nike, Inc. Sole assembly including a central support structure for an article of footwear
JP2020118743A (ja) * 2019-01-21 2020-08-06 セイコーエプソン株式会社 偏光素子の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138408A (ja) * 1990-09-28 1992-05-12 Olympus Optical Co Ltd 顕微鏡用液浸油
JPH07220990A (ja) * 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JP2003029410A (ja) * 2001-07-19 2003-01-29 Showa Denko Kk 化学増幅型レジスト用難溶化層形成防止材料及び防止方法
JP2004335821A (ja) * 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd パターン形成方法及び露光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69905959T2 (de) * 1998-04-06 2003-12-04 Fuji Photo Film Co., Ltd. Lichtempfindliche Harzzusammensetzung
US7432042B2 (en) * 2003-12-03 2008-10-07 United Microelectronics Corp. Immersion lithography process and mask layer structure applied in the same
US7125652B2 (en) * 2003-12-03 2006-10-24 Advanced Micro Devices, Inc. Immersion lithographic process using a conforming immersion medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138408A (ja) * 1990-09-28 1992-05-12 Olympus Optical Co Ltd 顕微鏡用液浸油
JPH07220990A (ja) * 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JP2003029410A (ja) * 2001-07-19 2003-01-29 Showa Denko Kk 化学増幅型レジスト用難溶化層形成防止材料及び防止方法
JP2004335821A (ja) * 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd パターン形成方法及び露光装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115268A1 (ja) * 2005-04-26 2006-11-02 Mitsui Chemicals, Inc. 液浸式露光用液体、液浸式露光用液体の精製方法および液浸式露光方法
WO2007140012A2 (en) * 2006-05-26 2007-12-06 Massachusetts Institute Of Technology Immersion fluids for lithography
WO2007140012A3 (en) * 2006-05-26 2008-09-18 Massachusetts Inst Technology Immersion fluids for lithography
US7745102B2 (en) 2006-05-26 2010-06-29 Massachusetts Institute Of Technology Immersion fluids for lithography
US7586103B2 (en) 2006-09-09 2009-09-08 E. I. Du Pont De Nemours And Company High refractive index fluids for immersion lithography
US7771919B2 (en) 2006-09-09 2010-08-10 E. I. Du Pont De Nemours And Company High refractive index fluids for immersion lithography

Also Published As

Publication number Publication date
JP2005340397A (ja) 2005-12-08
TW200602441A (en) 2006-01-16
TWI299518B (ja) 2008-08-01
US20090011375A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP4265766B2 (ja) 液浸露光プロセス用レジスト保護膜形成用材料、該保護膜形成材料からなるレジスト保護膜、および該レジスト保護膜を用いたレジストパターン形成方法
US7371510B2 (en) Material for forming resist protecting film for use in liquid immersion lithography process, composite film, and method for forming resist pattern
KR100722044B1 (ko) 액침 노광 프로세스용 침지액 및 상기 침지액을 이용한레지스트 패턴 형성 방법
JP4368266B2 (ja) レジスト保護膜形成用材料、およびこれを用いたレジストパターン形成方法
JP5301070B2 (ja) 液浸露光プロセス用レジスト保護膜形成用材料、および該保護膜を用いたレジストパターン形成方法
US7846637B2 (en) Material for forming resist protective film for use in liquid immersion lithography process and method for forming resist pattern using the protective film
US8617800B2 (en) Patterning process
US20070190448A1 (en) Positive-type resist composition for liquid immersion lithography and method for forming resist pattern
JP2006227632A (ja) 液浸露光プロセス用レジスト保護膜形成用材料、複合膜、およびレジストパターン形成方法
WO2005117074A1 (ja) 液浸露光プロセス用浸漬液および該浸漬液を用いたレジストパターン形成方法
WO2006011607A1 (ja) レジスト保護膜形成用材料、およびこれを用いたレジストパターン形成方法
JP2005250511A (ja) 液浸露光プロセス用レジスト保護膜形成用材料、該保護膜形成材料による保護膜を有するレジスト膜、および該保護膜を用いたレジストパターン形成方法
KR100702730B1 (ko) 액침 노광 프로세스용 레지스트 재료 및 상기 레지스트재료를 이용한 레지스트 패턴 형성 방법
JP5507601B2 (ja) レジストパターン形成方法
JP2006048075A (ja) 液浸露光プロセス用レジスト保護膜除去用溶剤およびこれを用いたレジストパターン形成方法
JP2006309257A (ja) 液浸露光プロセス用レジスト保護膜除去用溶剤およびこれを用いたレジストパターン形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11597124

Country of ref document: US

122 Ep: pct application non-entry in european phase