WO2005098373A1 - 電磁流量計 - Google Patents

電磁流量計 Download PDF

Info

Publication number
WO2005098373A1
WO2005098373A1 PCT/JP2005/006937 JP2005006937W WO2005098373A1 WO 2005098373 A1 WO2005098373 A1 WO 2005098373A1 JP 2005006937 W JP2005006937 W JP 2005006937W WO 2005098373 A1 WO2005098373 A1 WO 2005098373A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromotive force
component
electrode
fluid
frequency
Prior art date
Application number
PCT/JP2005/006937
Other languages
English (en)
French (fr)
Inventor
Tomoshige Yamamoto
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Priority to US11/578,208 priority Critical patent/US7434478B2/en
Priority to CN2005800122385A priority patent/CN1946988B/zh
Publication of WO2005098373A1 publication Critical patent/WO2005098373A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Definitions

  • the present invention relates to an electromagnetic flow meter, and more particularly to a technique of span correction for automatically correcting a coefficient of a component of an electromotive force between electrodes detected by an electrode, which is caused by a flow rate of a fluid to be measured. Things.
  • Equation (2) is a notation for a complex vector, and j is an imaginary unit.
  • L gives the length of the complex vector, and ⁇ gives the direction of the complex vector. Therefore, in order to analyze the geometric relationship on the complex coordinate plane, it is convenient to utilize the conversion to a complex vector.
  • FIG. 21 is a block diagram for explaining the principle of the electromagnetic flow meter disclosed in the aforementioned patent document.
  • the electromagnetic flowmeter is provided on the measuring tube 1 so that the measuring tube 1 flows through the measuring tube 1 in a direction perpendicular to both the magnetic field applied to the measuring fluid and the axis PAX of the measuring tube 1 and comes into contact with the measuring fluid.
  • a pair of electrodes 2a and 2b that are opposed to each other and detect the electromotive force generated by the magnetic field and the flow of the fluid to be measured, and a plane PLN that includes the electrodes 2a and 2b and is orthogonal to the direction of the measurement tube axis PAX is measured.
  • a magnetic field component (magnetic flux density) B1 orthogonal to both the electrode axis EAX connecting the electrodes 2a and 2b and both the electrode axis EAX and the measurement tube axis PAX Shall be given as follows:
  • Equation (3) bl is amplitude, ⁇ is angular frequency, and 01 is a phase difference (phase delay) from coO't.
  • the magnetic flux density B1 is referred to as a magnetic field B1.
  • the generated eddy current is only a component caused by a change in the magnetic field, and the eddy current I due to the change in the magnetic field Ba has a direction as shown in FIG. Therefore, in a plane including the electrode axis EAX and the measurement tube axis PAX, the interelectrode electromotive force E, which is generated by the change of the magnetic field Ba and is independent of the flow velocity, has a direction as shown in FIG. This direction is the minus direction.
  • the interelectrode electromotive force E is given by the coefficient k (the conductivity and permittivity of the fluid to be measured and the arrangement of the electrodes 2a and 2b, Including the complex number related to the structure of the measuring tube 1).
  • rk is a proportionality coefficient
  • ⁇ 00 is an angle of the vector k with respect to the real axis.
  • Rk'coO'bl'exp ⁇ j '(Z2 + ⁇ 1 + 000) ⁇ in equation (11) has a length of rk'coO'bl and an angle of real axis force of ⁇ / 2 + ⁇ 1 + ⁇ 00 Is a complex vector of.
  • the interelectrode electromotive force caused by the flow velocity of the fluid to be measured will be described.
  • the generated eddy current includes the eddy current I when the flow velocity is 0.
  • the flow velocity vector V and the eddy current Iv due to the magnetic field Ba are oriented as shown in FIG. Therefore, the interelectrode electromotive force Ev generated by the flow velocity vector V and the magnetic field Ba is opposite to the interelectrode electromotive force ⁇ ⁇ ⁇ ⁇ generated by the time change, and the direction of ⁇ is set to the plus direction.
  • the interelectrode electromotive force Ev due to the flow velocity is represented by a coefficient kv (the magnitude V of the flow velocity, the conductivity and the dielectric constant of the fluid to be measured, and the electrodes 2a, 2b) as shown in the following equation. (Complex number) related to the structure of the measuring tube 1 including the arrangement of.
  • equation (13) when equation (13) is mapped on a complex coordinate plane with reference to coO′t, the real axis component Evx and the imaginary axis component Evy are as follows.
  • Kvc Kvx + jEvy
  • rkv is a proportional coefficient
  • ⁇ 01 is an angle of the vector kv with respect to the real axis.
  • rkv is calculated by adding the magnitude V of the flow velocity and the proportional coefficient ⁇ to the proportional coefficient rk (see equation (10)). Equivalent to digits. That is, the following equation is established.
  • Rkv'bl'exp ⁇ j '(01 + 001) ⁇ in equation (19) is a complex vector having a length of rkvbl and an angle from the real axis of ⁇ 1 + ⁇ 01.
  • the total interelectrode electromotive force Eac which is the sum of the interelectrode electromotive force Ec caused by the time change of the magnetic field and the interelectrode electromotive force Eve caused by the flow velocity of the fluid, is expressed by the following equations (11) and (19). The following equation is obtained.
  • the length of the combined vector obtained by combining the two complex vectors represents the amplitude of the output (electromotive force Eac), and the angle ⁇ of the combined vector corresponds to the phase coO't of the input (excitation current). Indicates the phase difference (phase lag) of the interelectrode electromotive force Eac. Since the flow rate is the flow rate multiplied by the cross-sectional area of the measuring tube, the flow rate and the flow rate usually have a one-to-one relationship in the calibration in the initial state, and obtaining the flow rate and obtaining the flow rate are equivalent. Since it can be handled, description will be made below as a method for obtaining the flow velocity (to obtain the flow rate).
  • the electromagnetic flow meter disclosed in the patent document extracts a parameter (asymmetric excitation parameter) that is not affected by the span shift based on the above-described principle, and outputs a flow rate based on the extracted parameter. Has solved the problem.
  • the shift of the span will be described with reference to FIG. If the magnitude V of the flow velocity measured by the electromagnetic flow meter changes even though the flow velocity of the fluid to be measured has not changed, a span shift may be a factor of the output fluctuation.
  • the output of the electromagnetic flowmeter is 0 (V) when the flow velocity of the fluid to be measured is 0, and the output is l (v) when the flow velocity is l (mZsec).
  • the output of the electromagnetic flow meter is a voltage representing the magnitude V of the flow velocity. With such a calibration, if the flow rate of the fluid to be measured is 1 (mZsec), the output of the electromagnetic flowmeter should naturally be 1 (v).
  • the output of the electromagnetic flowmeter may be 1.2 (v) even though the flow rate of the fluid to be measured is also 1 (mZsec).
  • One possible factor for this output variation is the shift in span. The phenomenon of the shift of the span occurs because, for example, a change in the ambient temperature of the electromagnetic flowmeter makes it impossible to maintain a constant value of the exciting current flowing through the exciting coil.
  • the electromagnetic flow meter disclosed in the above patent document is based on the premise that the vector Va of the dA / dt component and the vector Vb of the vXB component are orthogonal.
  • the present invention has been made to solve the above-described problems, and has as its object to provide an electromagnetic flowmeter capable of automatically performing accurate span correction and performing high-accuracy flow measurement.
  • the electromagnetic flow meter of the present invention is provided with a measurement pipe through which a fluid to be measured flows, An electrode for detecting an electromotive force generated by the magnetic field applied to the fluid and the flow of the fluid; and an asymmetric and time-asymmetric electrode with respect to a first plane including the electrode and perpendicular to the axial direction of the measurement tube.
  • An exciting unit that applies a changing magnetic field to the fluid, an electromotive force of a 3 AZ3 component detected by the electrode, which is unrelated to the flow rate of the fluid, and an electromotive force of a v XB component caused by the flow rate of the fluid.
  • the flow rate output unit for calculating the flow rate of the fluid is also provided as a result of removing the variation factor of the span which is the coefficient and removing the variation factor.
  • the present invention from the combined electromotive force of the 3 AZ 3 component electromotive force and the v XB component electromotive force due to the fluid flow rate, which is detected at the electrode and independent of the fluid flow rate, by extracting the AZ3t component and correcting the span, which is the coefficient applied to the magnitude V of the flow velocity of the vXB component in the combined electromotive force, based on the extracted 3AZ3t component, the span variation Since the elements are deleted, accurate span correction can be performed automatically, and high-precision flow measurement can be performed.
  • a dA / dt component is extracted by applying a magnetic field to the fluid at a plurality of excitation frequencies and determining the amplitude and phase of at least two different frequency components of the combined electromotive force detected by the electrodes. can do.
  • an exciting current including two different frequency components is supplied to the exciting coil, and the amplitude and phase of the two frequency components of the first frequency and the second frequency in the combined electromotive force detected by the electrodes are determined. By calculating, the difference in electromotive force between two frequency components can be extracted as a 3AZ3t component.
  • a plurality of excitation coil forces are applied to the fluid with magnetic fields having different excitation frequencies, and the amplitude and phase of at least two different frequency components of the combined electromotive force detected by the electrodes are determined.
  • the components can be extracted.
  • the exciting current of the second frequency is supplied to the second exciting coil, and the combined electromotive force detected by the electrode is detected.
  • a plurality of electrodes are provided at different positions along the axial direction of the measurement tube, and a composite electromotive force detected by at least two electrodes out of the composite electromotive force detected by the plurality of electrodes.
  • the amplitude and phase of each of the first combined electromotive force detected by the first electrode and the second combined electromotive force detected by the second electrode are determined, whereby the first combined electromotive force is obtained.
  • the electromotive force difference or the sum of the electromotive forces between the power and the second combined electromotive force can be approximately extracted as a 3AZ3 component.
  • 3 AZ 3 components can be extracted using only one excitation frequency, it is not necessary to use two excitation frequencies.
  • FIG. 1A is a diagram showing a vector of a 3AZ3t component and a vector of a vXB component.
  • FIG. 1B is a diagram showing a vector obtained by normalizing a VXB component vector by a 3A / 3t component vector.
  • FIG. 1C is a diagram showing a vector obtained by multiplying the vector of FIG. 1B by an excitation angular frequency.
  • FIG. 2 is a diagram showing a complex vector representation of an interelectrode electromotive force and an electromotive force difference in the first embodiment of the present invention.
  • FIG. 3 is a diagram expressing a state of normalization processing in the first embodiment of the present invention in a complex vector representation.
  • FIG. 4 is a block diagram showing a configuration of an electromagnetic flow meter according to a first embodiment of the present invention.
  • FIG. 5 is a flowchart showing an operation of a signal conversion unit and a flow rate output unit according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram for explaining the principle of an electromagnetic flow meter according to a second embodiment of the present invention.
  • FIG. 7 is a diagram showing an eddy current and an interelectrode electromotive force when the flow rate of the fluid to be measured is 0 in the second embodiment of the present invention.
  • FIG. 8 is a diagram showing an eddy current and an interelectrode electromotive force when the flow force of the fluid to be measured is not SO in the second embodiment of the present invention.
  • FIG. 9 is a diagram showing a complex vector representation of an interelectrode electromotive force, an electromotive force sum, and an electromotive force difference in the second embodiment of the present invention.
  • FIG. 10 is a diagram showing a state of a normalization process in a second embodiment of the present invention as a complex vector.
  • FIG. 11 is a block diagram showing a configuration of an electromagnetic flow meter according to a second embodiment of the present invention.
  • FIG. 12 is a flowchart showing operations of a signal conversion unit and a flow rate output unit according to a second embodiment of the present invention.
  • FIG. 13 is a block diagram for explaining the principle of an electromagnetic flow meter according to a third embodiment of the present invention.
  • FIG. 14 is a diagram showing an eddy current and an interelectrode electromotive force when the flow rate of the fluid to be measured is 0 in the third embodiment of the present invention.
  • FIG. 15 is a diagram showing an eddy current and an interelectrode electromotive force when the flow force of the fluid to be measured is not ⁇ in the third embodiment of the present invention.
  • FIG. 16 is a diagram showing a complex vector representation of an interelectrode electromotive force, an electromotive force sum, and an electromotive force difference in a third embodiment of the present invention.
  • FIG. 17 is a diagram showing a state of a normalization process in a third embodiment of the present invention in a complex vector expression.
  • FIG. 18 is a block diagram showing a configuration of an electromagnetic flow meter according to a third embodiment of the present invention.
  • FIG. 19 is a cross-sectional view showing one example of an electrode used in the electromagnetic flow meter of the present invention.
  • FIG. 20 is a cross-sectional view showing another example of an electrode used in the electromagnetic flow meter of the present invention.
  • FIG. 21 is a block diagram for explaining the principle of a conventional electromagnetic flow meter.
  • FIG. 22 is a diagram showing an eddy current and an interelectrode electromotive force when the flow rate of a fluid to be measured is 0 in a conventional electromagnetic flowmeter.
  • FIG. 23 is a diagram showing an eddy current and an interelectrode electromotive force when the flow rate of a fluid to be measured is not 0 in a conventional electromagnetic flowmeter.
  • FIG. 24 is a diagram for explaining a shift in span in an electromagnetic flowmeter.
  • FIG. 25 is a diagram for explaining a problem of a conventional electromagnetic flow meter.
  • the vector Va which is related to whether or not the force Vb is orthogonal, depends only on the time change of the magnetic field and is independent of the flow velocity of the fluid to be measured. We pay attention to this vector.
  • a vector Va of the dA / dt component is extracted from the combined vector Va + Vb, and the vector Va is included in the vector Vb of the vXB component in the combined vector Va + Vb. Eliminate span variation elements. Then, the flow rate of the fluid to be measured is calculated based on the vXB component from which the span variation element has been eliminated.
  • the vector Va of the dA / dt component it is important that the vectors Va and Vb, which are related to whether or not the vectors Va and Vb are orthogonal, can be treated as separate vectors. In the conventional electromagnetic flow meter shown in Fig. 21, it is assumed that the vectors Va and Vb are orthogonal, so it is necessary to extract the solid Va or Vb from the combined vector Va + Vb! / ⁇ !
  • the plane containing the electrodes which is orthogonal to the axis of the measurement pipe, is used as the boundary of the measurement pipe.
  • the vector mapped on the complex plane based on the amplitude and phase difference of the interelectrode electromotive force measured by this asymmetric excitation is the following 3 AZ 3 t component vector Va and VXB component vector Vb Is equivalent to the combined vector Va + Vb.
  • Vb rv exp (j- ⁇ ⁇ )-C -V (22)
  • FIG. 1A shows the vectors Va and Vb.
  • the vector Va of the dA / dt component is an electromotive force generated by a change in the magnetic field, and therefore has a magnitude proportional to the excitation angular frequency ⁇ .
  • C is given as a variable element such as a shift of the magnetic field, that is, a span variation element.
  • the vector Vb of the v XB component is an electromotive force generated by the movement of the fluid to be measured in the measurement tube, and therefore has a magnitude proportional to the magnitude V of the flow velocity.
  • the cause of the shift of the span is a change in the span variation factor C. Therefore, if the flow rate of the fluid to be measured is obtained by the signal conversion formula in which the span variation element C is eliminated, the automatic correction of the span can be substantially realized. There are the following two specific methods for span correction.
  • the vector Vb of the vXB component is normalized by the vector Va of the dA / dt component to eliminate the span variation element C, and the magnitude of the flow velocity based on the normalized vector is
  • This is a method to achieve automatic span correction in flow measurement by using the signal conversion formula for V.
  • FIG. 1B shows a vector obtained by normalizing the vector Vb of the ⁇ X ⁇ component by the vector Va of the d A / dt component.
  • the vector in FIG. 1C is a vector obtained by multiplying the vector in FIG. 1B by the excitation angular frequency ⁇ and eliminating the excitation angular frequency ⁇ from the right side of Expression (23).
  • the second correction method normalizes the combined vector Va + Vb with the vector Va of the dA / dt component to eliminate the span variation element C, and relates to the magnitude V of the flow velocity based on the normalized vector. This is a method to realize automatic correction of span in flow rate measurement by using a signal conversion formula.
  • the normalization of the second correction method is expressed by a mathematical expression, it is as follows.
  • the second correction method provides more realistic processing than the first correction method. It is. Because the vector Vb of the electromotive force vX B component of the electromagnetic flow meter cannot be obtained directly, the vector that can be obtained from the electrode electromotive force is the force that becomes Va + Vb. .
  • the first extraction method is a method in which a magnetic field with a plurality of excitation frequencies is applied to a fluid to be measured, and a vector Va is extracted using a frequency difference between a plurality of components included in the electromotive force between electrodes.
  • the complex vector that can be obtained directly from the interelectrode electromotive force is the combined solid Va + Vb, and the vectors Va and Vb cannot be directly measured. Therefore, we focus on the fact that the magnitude of the vector Va of the d / dt component is proportional to the excitation angular frequency ⁇ , and that the solid Vb of the ⁇ ⁇ component does not depend on the excitation angular frequency ⁇ .
  • a magnetic field including two components having the same magnitude and different frequencies is applied to the fluid to be measured from the excitation coil, and a combined vector Va + Vb of the first frequency component and a combined vector of the second frequency component are obtained. Find the difference from Va + Vb. Since this difference is a vector representing only a change in the magnitude of the vector Va, the vector Va can be extracted.
  • the second extraction method is a method applicable to an electromagnetic flowmeter having at least two pairs of electrodes disposed so as to face each other with a coil plane including the axis of the excitation coil interposed therebetween. This method extracts the vector Va using the output difference.
  • the direction of the 3AZ3t component generated during the first interelectrode electromotive force is opposite to the direction of the 3AZ3t component generated during the second interelectrode electromotive force. It is noted that the direction of the vXB component generated during the first interelectrode electromotive force is the same as the direction of the vXB component generated during the second interelectrode electromotive force.
  • the first electrode and the second electrode are uniformly arranged with respect to the coil plane, and the combined vector Va + Vb of the first interelectrode electromotive force and the second interelectrode electromotive force are used.
  • the VXB component generated during the first interelectrode electromotive force and the vXB component generated during the second interelectrode electromotive force cancel each other out. Therefore, it is possible to extract the vector Va of the sum of the 3AZ3 component generated during the first interelectrode electromotive force and the 3AZ3 component generated during the second interelectrode electromotive force.
  • the magnitude V of the flow velocity of the fluid to be measured is It can be calculated as follows.
  • the magnitude V of the flow velocity can be measured irrespective of the span variation element C such as the shift of the magnetic field, so that the automatic span correction is substantially realized. Further, in all the embodiments of the present invention, it is possible to obtain the 3 ⁇ 3 component and the composite component of the 3AZ3 component and the vXB component only by measurement under a single excitation state without switching the excitation state. This makes it possible to perform automatic correction at a higher speed than when performing measurement by switching the excitation state.
  • This embodiment uses the first extraction method as a method for extracting the vector Va of the 3AZ3t component among the methods described in the basic principle, uses the second correction method as the span correction method, It is something.
  • the electromagnetic flow meter of this embodiment has one excitation coil and a pair of electrodes, and the configuration except for the signal processing system is the same as that of the conventional electromagnetic flow meter shown in FIG. 21. The principle of the present embodiment will be described using reference numerals 21.
  • ⁇ , ⁇ are different angular frequencies
  • b6 is the amplitude of the component of the angular frequency ⁇ of the magnetic flux density ⁇ 6 and the amplitude of the component of the angular frequency ⁇
  • ⁇ 6 is the difference between the component of the angular frequency ⁇ and ⁇ ⁇ t.
  • the magnetic flux density B6 is referred to as a magnetic field B6.
  • the total sum of the electromotive force obtained by converting the interelectrode electromotive force resulting from the time change of the magnetic field into a complex vector and the electromotive force obtained by converting the interelectrode electromotive force resulting from the flow velocity of the fluid into a complex vector is obtained. If the EMF of the component of the angular frequency ⁇ is E50 among the EMFs between the electrodes, the EMF between the electrodes ⁇ 50 is expressed by the following equation similar to the equation (20).
  • the total of the electromotive force obtained by converting the interelectrode electromotive force resulting from the time change of the magnetic field into a complex level and the electromotive force obtained by converting the interelectrode electromotive force resulting from the fluid flow velocity into a complex vector is combined.
  • the electromotive force of the component of angular frequency ⁇ 1 is E51 among the interelectrode electromotive force of E1
  • the interelectrode electromotive force E51 is expressed by the following equation similar to the equation (20).
  • E51 rk- W l-b6-exp ⁇ j- ( ⁇ / 2 + ⁇ 6+ ⁇ 00) ⁇
  • EdA5 (E50-E51) ⁇ ⁇ / ( ⁇ — ⁇ 1)
  • the electromotive force difference EdA5 is not related to the magnitude V of the flow velocity, and is therefore only a component generated by 3AZ3t.
  • the coefficient (span) applied to the magnitude V of the flow velocity of the vXB component in the interelectrode electromotive force E50 (composite vector Va + Vb) is normalized.
  • Figure 2 shows a complex vector representation of the interelectrode electromotive forces E50 and E51 and the electromotive force difference EdA5.
  • Re is the real axis
  • Im is the imaginary axis.
  • dA / dt represents dA / dt ⁇ rk-b6-exp ⁇ j- ( ⁇ 6 + ⁇ ) ⁇ ⁇ ⁇ 1 ⁇ ⁇ (] ⁇ ⁇ / 2 at the interelectrode electromotive force E51.
  • the electromotive force difference EdA5 is exactly the electromotive force difference between the interelectrode electromotive forces E50 and E51 multiplied by ⁇ OZ ( ⁇ 0 ⁇ ⁇ 1), and ⁇ ⁇ ( ⁇ 0 ⁇ ⁇ 1) times. The reason for this is to make it easier to expand the expression.
  • the second term on the right side of equation (35) is a term obtained by normalizing the component generated by ⁇ with the component generated by 3 ⁇ 3t.
  • FIG. 3 shows a complex vector representation of the state of the above-mentioned normalization processing.
  • VXB in Fig. 3 represents the vXB component rk'b6'exp ⁇ j '( ⁇ 6 + ⁇ ) ⁇ ⁇ (] ⁇ 001) at the interelectrode electromotive force E50, and ⁇ ( ⁇ ) ,
  • the normalized vXB component [ ⁇ ⁇ ⁇ ⁇ ] ⁇ (- ⁇ / 2 + ⁇ 01) ⁇ ] ⁇ ⁇ .
  • Equation (35) the complex The prime coefficient has a magnitude of ⁇ and an angle of a real axial force of — ⁇ 2 + ⁇ 01.
  • the coefficient ⁇ and the angle ⁇ ⁇ 01 are constants that can be obtained in advance by calibration or the like, and the second term on the right side of Equation (35) is constant as long as the flow rate of the fluid to be measured does not change.
  • V I ( ⁇ 5- ⁇ ) / [ ⁇ ⁇ ⁇ ⁇ ] ⁇ (- ⁇ / 2 + ⁇ 001) ⁇ ]
  • FIG. 4 is a block diagram showing the configuration of the electromagnetic flow meter of the present embodiment.
  • the same components as those in FIG. 21 are denoted by the same reference numerals.
  • the electromagnetic flowmeter of this embodiment has a plane PLN force including the measuring tube 1, the electrodes 2a and 2b, and the electrodes 2a and 2b, which is perpendicular to the direction of the measuring tube axis PAX.
  • the excitation coil 3 disposed at a position separated by the distance d, the power supply unit 4 for supplying the excitation current to the excitation coil 3, and the first frequency and the second frequency of the combined electromotive force detected by the electrodes 2a and 2b.
  • the signal converter 5 extracts the amplitude and phase of the two frequency components of the frequency 2 and extracts the electromotive force difference between the two frequency components as a 3 AZ 3 t component based on the amplitude and the phase. 2 Based on the extracted dA / dt component, the variation factor of the span included in the VXB component in the first frequency component or the vXB component in the second frequency component of the combined electromotive force detected in b is extracted. And a flow rate output unit 6 for calculating a flow rate of the fluid to be measured as a result of removing the fluctuation factors.
  • the excitation coil 3 and the power supply unit 4 serve as an excitation unit that applies a magnetic field that is asymmetric with respect to the plane PLN and that changes over time to the fluid to be measured.
  • the power supply unit 4 supplies an exciting current including a sine wave component of the first angular frequency ⁇ and a sine wave component of the second angular frequency ⁇ 1 to the exciting coil 3. At this time, the component of the angular frequency ⁇ and the component of the angular frequency ⁇ 1 in the exciting current have the same amplitude.
  • FIG. 5 is a flowchart showing the operation of the signal conversion unit 5 and the flow rate output unit 6.
  • the signal converter 5 determines the amplitude r50 of the electromotive force ⁇ 50 of the component of the angular frequency ⁇ 0 of the electromotive force between the electrodes 2a and 2b, and also calculates the phase difference ⁇ 50 between the real axis and the interelectrode electromotive force E50. Is obtained by a phase detector (not shown).
  • the signal converter 5 obtains the amplitude r51 of the electromotive force E51 of the component of the angular frequency ⁇ 1 of the electromotive force between the electrodes 2a and 2b, and calculates the phase difference ⁇ 51 between the real axis and the interelectrode electromotive force E51. Determined by a phase detector (step S101 in Fig. 5).
  • the interelectrode electromotive forces E50 and E51 are the forces that can be frequency-separated by a band-pass filter.In fact, if a comb-shaped digital filter called a comb filter is used, the components of the two angular frequencies ⁇ ⁇ , ⁇ ⁇ Can be easily separated.
  • the signal conversion unit 5 calculates the real axis component ⁇ 50 ⁇ of the interelectrode electromotive force ⁇ 50 ⁇ and the imaginary axis component E50y, and the real axis component E5 lx and the imaginary axis component E5ly of the interelectrode electromotive force E51 as follows: (Step S102).
  • the signal converter 5 calculates the magnitude and angle of the electromotive force difference EdA5 between the interelectrode electromotive forces E50 and E51 (Step S103).
  • the process in step S103 is a process corresponding to obtaining the dA / dt component and the VXB component, and is a process corresponding to the calculation of Expression (34).
  • the signal converter 5 calculates the magnitude
  • the signal signal converting and converting unit 55 calculates the angle angle ZZEEddAA55 of the electromotive force difference EEddAA55 with respect to the real axis. Is calculated as in the following equation. .
  • step SS 110033 ends. .
  • the flow rate output / output unit 66 normalizes the electromotive force between the electrodes EE5500 by the electromotive force difference EEddAA55. Calculate the large magnitude and angle angle of the normalized normalization-induced electromotive force power EEnn55 ((Step11SS110044)). .
  • the processing in step SS 110044 here is processing equivalent to calculating the equation ((3355)).
  • the flow rate output output unit 66 calculates and calculates the large magnitude II EEnn55 II of the regular normal dangling electromotive force EEnn55 as in the following equation. You. .
  • the flow rate output / output unit 66 is formed by an angle of the regular normal dangling electromotive force ⁇ 55 with respect to the actual real axis.
  • the degree ⁇ 55 is calculated and calculated as in the following equation. .
  • step SS 110044 ends. .
  • the flow rate output / output unit 66 calculates and calculates a large magnitude VV of the flow velocity of the measured constant flow fluid. ((Step SS 110055)) ⁇
  • the processing of the step SS 110055 here is a processing equivalent to calculating and calculating the equation ((3366)).
  • the flow rate output / output unit 66 includes a real real axis component component ⁇ 55 ⁇ of (( ⁇ 55— ⁇ )) and an imaginary axis component of (( ⁇ 55—— ⁇ )).
  • the component EEnn55yy is calculated as shown in the following equation. .
  • the flow rate output / output unit 66 calculates the large magnitude VV of the flow velocity of the measured constant flow fluid by the following formula. Calculate as follows. .
  • step S 105 ends.
  • the signal conversion unit 5 and the flow rate output unit 6 repeat the processing in steps S101 to S105 as described above, and until the operator instructs the end of the measurement (YES in step S106), at regular intervals. Do.
  • the magnetic field including two components having the same magnitude and different frequencies is applied to the fluid to be measured from the excitation coil 3, and the angle of the electromotive force between the electrodes 2a and 2b is calculated.
  • the electromotive force E50 of the component of the frequency ⁇ and the electromotive force E51 of the component of the angular frequency ⁇ ⁇ and the force are also extracted as the electromotive force difference E dA5 (vector Va of the dA / dt component), and this electromotive force difference EdA5 is used.
  • the span applied to the magnitude V of the flow velocity of the V XB component in the interelectrode electromotive force E50 (composite vector Va + Vb) is normalized to eliminate span variation elements, so accurate span correction is automatically performed.
  • the flow rate can be measured with high accuracy.
  • the component E50 of the angular frequency ⁇ of the interelectrode electromotive force shown in the example of normalizing the component E50 of the angular frequency ⁇ is normalized.
  • the component E51 of the angular frequency ⁇ 1 is not limited to this. Just like that.
  • This embodiment is obtained by adding one excitation coil to the electromagnetic flow meter of the first embodiment, and among the methods described in the basic principle, a method of extracting the vector Va of the 3 ⁇ 3 t component. And the second correction method is used as the span correction method. That is, the electromagnetic flow meter of the present embodiment has two excitation coils and a pair of electrodes. When the newly added second excitation coil is added on the same side as the existing first excitation coil, the redundant configuration of the first embodiment is obtained. Therefore, the second excitation coil needs to be disposed on a side different from the first excitation coil with respect to the plane including the electrodes.
  • FIG. 6 is a block diagram for explaining the principle of the electromagnetic flow meter of the present embodiment.
  • this plane PLN including the electrodes 2a and 2b, which is orthogonal to the direction of the measurement tube axis PAX and including the electrodes 2a and 2b, is defined as the boundary of the measurement tube 1, this plane PLN It has a first excitation coil 3a and a second excitation coil 3b for applying an asymmetric, time-varying magnetic field to the fluid to be measured before and after the measurement tube 1 as a boundary.
  • the first excitation coil 3a is located, for example, on the downstream side from the plane PLN. At a position separated by an offset distance dl.
  • the second excitation coil 3b is disposed at a position where the plane PLN force is also away from the first excitation coil 3a by, for example, an offset distance d2 on the upstream side with the plane PLN interposed therebetween.
  • a magnetic field component orthogonal to both the electrode axis EAX and the measurement tube axis PAX on the electrode axis EAX connecting the electrodes 2a and 2b Magnetic flux density B7 and the magnetic field Be generated from the second exciting coil 3b
  • the magnetic field component (magnetic flux density) B8 that is orthogonal to both the electrode axis EAX and the measuring tube axis PAX on the electrode axis EAX! Shall be given as follows:
  • Equations (48) and (49) ⁇ ⁇ and ⁇ 2 are different angular frequencies, b7 and b8 are the amplitudes of magnetic flux densities B7 and B8, respectively, and 07 is the phase difference between magnetic flux density B7 and col't ( (Phase lag), 08 is the phase difference between the magnetic flux density B8 and co 2't.
  • the magnetic flux density B7 is defined as a magnetic field B7
  • the magnetic flux density B8 is defined as a magnetic field B8.
  • the generated eddy current is only a component due to the change in the magnetic field, and the eddy current II due to the change in the magnetic field Bb and the eddy current 12 due to the change in the magnetic field Be are shown in FIG.
  • the orientation is as shown in Figure 7. Therefore, in a plane including the electrode axis EAX and the measurement tube axis PAX, the interelectrode electromotive force E1 generated by the change of the magnetic field Bb and generated by the change of the magnetic field Bc, and generated by the change of the magnetic field Bc.
  • the interelectrode electromotive forces E2 are opposite to each other as shown in FIG.
  • the generated eddy current is caused by the flow velocity vector V of the fluid to be measured, in addition to the eddy currents II and 12 when the flow velocity is 0. Since the components vX Bb and vX Bc are generated, the eddy current Ivl due to the flow velocity vector V and the magnetic field Bb, and the eddy current Iv2 due to the flow velocity vector V and the magnetic field Be are oriented as shown in FIG. Therefore, the interelectrode electromotive force Evl generated by the flow velocity vector V and the magnetic field Bb and the interelectrode electromotive force Ev2 generated by the flow velocity vector V and the magnetic field Be have the same direction.
  • the interelectrode electromotive force caused by the time change of the magnetic field and the interelectrode electromotive force caused by the flow velocity of the fluid to be measured are combined.
  • the electromotive force of the component of the angular frequency ⁇ 1 is E61 among the interelectrode electromotive forces
  • the interelectrode electromotive force E61 is expressed by the following equation similar to the equation (20).
  • ⁇ 1 ⁇ — ⁇
  • ⁇ 2 ⁇ + ⁇
  • 56)
  • is the complex vector b7 — Indicates the magnitude of b8'exp (j ' ⁇ 08).
  • is a complex vector coO'exp (j. ⁇ / 2) ' represents the magnitude of ⁇ b7 + b8'exp (j.
  • EdA6 rk-exp ⁇ j- ( ⁇ 7 + ⁇ 00) ⁇
  • the interelectrode electromotive force EdA6 is not related to the magnitude V of the flow velocity, it is only a component generated by 3AZ3t. Using the interelectrode electromotive force EdA6, the coefficient (span) of the flow velocity magnitude V of the vXB component in the electromotive force sum Es6 (composite vector Va + Vb) is normalized.
  • Figure 9 shows a complex solid representation of the interelectrode electromotive forces E61, E62, EdA6, electromotive force sum Es6, and electromotive force difference Ed6. E61vXB in FIG.
  • FIG. 1100 shows a diagram in which the appearance of the above-mentioned normal regular rule processing is represented by a complex vector vector representation. . EEss66vvXXBB in Fig.
  • nn ((vvXXBB)) is the regular regular Represents the vvXXBB component [[ ⁇ '' eexxpp ⁇ jj '' ((- ⁇ // 22 ++ ⁇ ⁇ 0011)) ⁇ ]]]] represents VV . .
  • the reason why the result of normalizing the electromotive force sum EEss66 by the interelectrode electromotive force EEddAA66 by ⁇ 00 times the result is as follows.
  • the large complex coefficient of the velocity of the flow velocity VV is represented by the large magnitude of ⁇ , ⁇ 22 ++ ⁇ ⁇ 0011 with the angle angle from the real axis of 0011. .
  • the coefficient ⁇ and the angle angle ⁇ ⁇ 0011 are constant constants that can be obtained in advance by calibration calibration or the like.
  • the 33rd term on the right-hand side of the equation ((6600)) is the constant constant as long as the flow velocity of the measured constant-flow fluid does not change or change.
  • the flat plane surface including the electrode poles 22aa, 22bb, which intersects perpendicularly with the measurement measurement tube axis PPAAXX also has the eleventh excitation magnetism.
  • the distance ddll and the plane plane PPLLNN with the coco coil 33 aa are almost equal to the distance dd22 with the 22 nd excitation magnet coco coil 33 bb as it is.
  • ((ddll dd22)) it becomes bb77 bb88, ⁇ 88000.
  • the magnitude VV of the flow velocity is expressed by the following equation rather than the equation ((6600)). .
  • Table 2 shows the correspondence between the constants and variables used in the basic principle and the constants and variables in this embodiment. As is clear from Table 2, this embodiment is one example that specifically realizes the basic principle.
  • FIG. 11 is a block diagram showing the configuration of the electromagnetic flow meter of the present embodiment, and the same components as those in FIG. 6 are denoted by the same reference numerals.
  • the electromagnetic flow meter according to the present embodiment supplies an exciting current to the measuring tube 1, the electrodes 2a and 2b, the first and second exciting coils 3a and 3b, and the first and second exciting coils 3a and 3b.
  • the amplitude and phase of the two frequency components of the first and second frequencies of the combined electromotive force detected by the power supply unit 4a and the electrodes 2a and 2b are obtained, and two based on these amplitudes and phases.
  • the signal converter 5a extracts the electromotive force difference between the frequency components as a 3AZ3t component, and the vXB component in the sum of the electromotive forces of the two frequency components among the combined electromotive forces detected at the electrodes 2a and 2b.
  • a flow rate output unit 6a for calculating a flow rate of the fluid to be measured as a result of removing the variation factor of the span to be measured based on the extracted 3AZ3t component and removing the variation factor.
  • the first and second excitation coils 3a and 3b and the power supply unit 4a are excitation units that apply a magnetic field that is asymmetric with respect to the plane PLN and that changes over time to the fluid to be measured. [0098] In the present embodiment, as described above, it is assumed that the distance dl to the first excitation coil 3a and the distance d2 to the second excitation coil 3b are also substantially equal to each other.
  • the second sine wave exciting current of ⁇ is supplied to the second exciting coil 3b. At this time, the amplitudes of the first sine wave exciting current and the second sine wave exciting current are the same.
  • FIG. 12 is a flowchart showing the operation of the signal conversion unit 5a and the flow rate output unit 6a.
  • the signal converter 5a obtains the amplitude rs6 of the electromotive force sum Es6 of the interelectrode electromotive forces E61 and E62, and obtains the phase difference ⁇ 36 between the real axis and the electromotive force sum Es6 by a phase detector (not shown).
  • the signal conversion unit 5a obtains the amplitude rd6 of the electromotive force difference Ed6 between the interelectrode electromotive forces E61 and E62, and obtains the phase difference ⁇ d6 between the real axis and the electromotive force difference Ed6 using a phase detector ( Figure 12 Step S201).
  • the interelectrode electromotive forces E61 and E62 can be frequency-separated by a bandpass filter or a comb filter.
  • the signal conversion unit 5a calculates the real axis component Es6x and the imaginary axis component Es6y of the electromotive force sum Es6 and the real axis component Ed6x and the imaginary axis component Ed6y of the electromotive force difference Ed6 as follows: It is calculated (step S202).
  • Es6x rsD 'cos (s6)... (62)
  • Es6y rs6 sin ( ⁇ s6)
  • the signal conversion unit 5a calculates the magnitude and angle of the electromotive force EdA6 that approximates the electromotive force difference Ed6 (Step S203).
  • the process of step S203 is a process corresponding to obtaining the 3AZ3t component and the vXB component, and is a process corresponding to the calculation of Expression (59).
  • the signal converter 5a calculates the magnitude I EdA6 I of the electromotive force EdA6 that approximates the electromotive force difference Ed6 as in the following equation.
  • EdA6 I (Ed6x 2 + Ed6y 2 ) 1 2
  • the signal conversion unit 5a calculates the angle ZEdA6 of the interelectrode electromotive force EdA6 with respect to the real axis as in the following equation.
  • ZEdA6 tan _1 (Ed6y / Ed6x) (67)
  • step S203 ends.
  • the flow output unit 6a obtains the magnitude and angle of the normalized electromotive force En6 obtained by normalizing the electromotive force sum Es6 with the interelectrode electromotive force EdA6 (step S204).
  • the process in step S204 is a process corresponding to the calculation of equation (60).
  • the flow output unit 6a calculates the magnitude I En6 I of the normalized electromotive force En6 as in the following equation.
  • the flow output unit 6a calculates the angle ZEn6 of the normal driving force En6 with respect to the real axis as in the following equation.
  • step S204 This ends the process of step S204.
  • the flow output unit 6a calculates the magnitude V of the flow velocity of the fluid to be measured (step S20).
  • step S205 is a process corresponding to the calculation of equation (61).
  • the flow rate output unit 6a calculates the real axis component En6x of ( ⁇ 6 + ⁇ ) and the imaginary axis component En6y of ( ⁇ 6 + ⁇ ) as in the following equation.
  • En6x I En6
  • the flow rate output unit 6a calculates the magnitude V of the flow velocity of the fluid to be measured as in the following equation.
  • V (En6x 2 + En6y 2 ) 1 2 / ⁇ (72)
  • step S205 The signal conversion unit 5a and the flow rate output unit 6a perform the processing of steps S201 to S205 as described above at regular intervals until, for example, the operator instructs the end of the measurement (YES in step S206).
  • the electromotive force difference Ed6 is extracted from the interelectrode electromotive forces E61 and E62, and the electromotive force sum Es6 is normalized using the electromotive force difference Ed6. It is also possible to approximately extract the electromotive force sum Es6, which is not limited to this, as a 3AZ3 component, and normalize the electromotive force difference Ed6 using the 3AZ3t component.
  • the present embodiment is obtained by adding one pair of electrodes to the electromagnetic flow meter of the first embodiment, and as a method for extracting the vector A of the dA / dt component among the methods described in the basic principle.
  • the second extraction method is used, and the second correction method is used as a span correction method. That is, the electromagnetic flow meter of the present embodiment has one excitation coil and two pairs of electrodes.
  • the newly added second electrode is added on the same side as the existing first electrode, the redundant configuration of the first embodiment is obtained. Therefore, the second electrode needs to be disposed on a side different from the first electrode with the excitation coil interposed therebetween.
  • FIG. 13 is a block diagram for explaining the principle of the electromagnetic flow meter of the present embodiment.
  • the electromagnetic flow meter is disposed opposite to the measuring tube 1 so as to be perpendicular to both the measuring tube 1 and the magnetic field applied to the fluid to be measured and the axis PAX of the measuring tube and to be in contact with the fluid to be measured.
  • first electrode 2a, 2b and second electrode 2c, 2d for detecting electromotive force generated by magnetic field and flow of fluid to be measured, and first electrode 2a, 2b orthogonal to measurement tube axis PAX
  • first electrode 2a, 2b orthogonal to measurement tube axis PAX
  • the plane is PLN1 and the plane perpendicular to the measurement tube axis PAX and including the second electrodes 2c and 2d is PLN2
  • an asymmetric, time-varying magnetic field is measured before and after the measurement tube 1 bordering the plane PLN1.
  • It has an excitation coil 3 for applying a fluid and applying an asymmetric, time-varying magnetic field to the fluid to be measured asymmetrically before and after the measurement tube 1 bordering the plane PLN2.
  • the first electrodes 2a, 2b are disposed at a position away from the plane PLN3, including the axis of the excitation coil 3, perpendicular to the direction of the measurement tube axis PAX, for example, by an offset distance d3 on the upstream side.
  • the second electrodes 2c and 2d are arranged at a position away from the plane PLN3 by, for example, an offset distance d4 on the downstream side, and are arranged so as to face the first electrodes 2a and 2b with the plane PLN interposed therebetween.
  • the electrode axis EA connecting the electrodes 2a and 2b is used.
  • the electrode connecting the electrodes 2c and 2d on the electrode axis EAX2 is given as follows.
  • Equations (73) and (74) b9 and blO are the amplitudes of the magnetic flux densities B9 and B10, ⁇ is the angular frequency, and 09 is the phase difference between the magnetic flux density ⁇ 9 and ⁇ O't (phase Delay), ⁇ 10 is the phase difference between the magnetic flux density B10 and co O't.
  • the magnetic flux density B9 is referred to as a magnetic field B9
  • the magnetic flux density B10 is referred to as a magnetic field B10.
  • the generated eddy current is only a component caused by a change in the magnetic field, and the eddy current I due to the change in the magnetic field Bd has a direction shown in FIG. Therefore, the electromotive force El independent of the flow velocity between the electrodes 2a and 2b generated by the change of the magnetic field Bd in the plane including the electrode axis EAX1 and the measuring tube axis PAX, and the electrode axis EAX2 and the measuring tube axis PAX.
  • the electromotive force E2 between the electrodes 2c and 2d generated by the change of the magnetic field Bd in the plane including the direction opposite to the flow velocity is opposite to each other as shown in FIG.
  • the generated eddy current includes, in addition to the eddy current I when the flow velocity is 0, a component vX caused by the flow velocity vector V of the fluid to be measured. Since Bd is generated, the eddy current Iv due to the flow velocity vector V and the magnetic field Bd is oriented as shown in FIG. Therefore, the electromotive force Evl of the electrodes 2a and 2b generated by the flow velocity vector V and the magnetic field Bd and the electromotive force Ev2 between the electrodes 2c and 2d generated by the flow velocity V and the magnetic field Bd have the same direction.
  • the first interelectrode electromotive force E71 between the electrodes 2a and 2b is expressed by the following equation similar to the equation (20).
  • Es7 rk- W 0-b9-exp ⁇ j- ( ⁇ / 2 + ⁇ 9+ ⁇ 00) ⁇
  • the distance d3 from the plane PLN3 including the axis of the exciting coil 3 to the electrode axis EAX1 connecting the electrodes 2a and 2b and the distance d4 from the plane PLN3 to the electrode axis EAX2 connecting the electrodes 2c and 2d are If the magnetic fields B9 and B10 are set equal in the initial state (the state at the time of calibration), the difference between the subsequent magnetic fields B9 and B10 becomes small, and the following condition is satisfied.
  • represents the magnitude of the complex vector oO'exp (j ' ⁇ 2)' ⁇ b9 + bl0'exp (j ' ⁇ 010) ⁇
  • EdA7 rk-exp ⁇ j- ( ⁇ 9+ ⁇ 00) ⁇
  • Equation (84) Since equation (84) holds, it is possible to extract the component generated by dA / dt without changing the excitation frequency to binary. Since the interelectrode electromotive force EdA7 is not related to the magnitude V of the flow velocity, it is only a component generated by 3AZ3t. Using the interelectrode electromotive force EdA7, the coefficient (span) of the flow velocity magnitude V of the vXB component in the electromotive force sum Es7 (composite vector Va + Vb) is normalized. Figure 16 shows a complex vector representation of the interelectrode electromotive forces E71, E72, EdA7, electromotive force sum Es7, and electromotive force difference Ed7. E7 IvXB in FIG.
  • E71 dA / dt represents the 3 A / 3 t component rk'exp ⁇ j-( ⁇ 9+ ⁇ 00) ⁇ ⁇ ⁇ ⁇ ⁇ (] ⁇ ⁇ / 2) 'b9 in the interelectrode electromotive force E71, and E723 AZ 3 t , 3 A at E72 ( ⁇ 9 + ⁇ 00) ⁇ ⁇ ⁇ -expij ⁇ (- ⁇ / 2) ⁇ -blO-exp (j ⁇ ⁇ 10)
  • Equation (85) If the sum of the electromotive force Es7 in Equation (79) is normalized by the interelectrode electromotive force EdA7 in Equation (84) and the result of multiplying by ⁇ is ⁇ 7, the normalized electromotive force ⁇ 7 can be expressed by Equation (85). Obviously, the sum of the electromotive force Es7 in Equation (79) is normalized by the interelectrode electromotive force EdA7 in Equation (84) and the result of multiplying by ⁇ is ⁇ 7, the normalized electromotive force ⁇ 7 can be expressed by Equation (85). Become.
  • Equation 85) The second term on the right side of Equation (85) is a term obtained by normalizing the component generated by ⁇ with the component generated by 3 ⁇ 3t.
  • FIG. 17 shows a complex vector representation of the state of the above-described normal ridge processing.
  • Es7vXB represents a vXB component in the electromotive force sum Es7
  • n (vXB) is a normalized vXB component [ ⁇ ′exp ⁇ j ′ ( ⁇ ⁇ / 2 + ⁇ 01) ⁇ ] ′
  • the complex coefficient relating to the magnitude V of the flow velocity has a magnitude of ⁇ and an angle from the real axis of — ⁇ 2 + ⁇ 01.
  • the coefficient ⁇ and the angle ⁇ ⁇ 01 are constants that can be obtained in advance by calibration, etc.
  • the second term on the right side of equation (85) is constant unless the flow rate of the fluid to be measured changes.
  • V I ⁇ 7 / [ ⁇ ⁇ ⁇ ⁇ ] ⁇ (- ⁇ / 2 + ⁇ 001) ⁇ ]
  • Table 3 shows the correspondence between the constants and variables used in the basic principle and the constants and variables of this embodiment. As is clear from Table 3, this embodiment is one example that specifically realizes the basic principle.
  • FIG. 18 is a block diagram showing the configuration of the electromagnetic flow meter of the present embodiment, and the same components as those in FIG. 13 are denoted by the same reference numerals.
  • the electromagnetic flow meter according to the present embodiment includes a measuring tube 1, first electrodes 2a and 2b, second electrodes 2c and 2d, an exciting coil 3, and a power supply unit 4b for supplying an exciting current to the exciting coil 3. And the amplitude and phase of each of the first combined electromotive force detected by the first electrodes 2a and 2b and the second combined electromotive force detected by the second electrodes 2c and 2d.
  • the power supply unit 4b supplies a sine wave exciting current having an angular frequency ⁇ to the exciting coil 3.
  • the signal converter 5b obtains the amplitude rs7 of the electromotive force sum Es7 of the first interelectrode electromotive force E71 and the second interelectrode electromotive force E72, and calculates the phase difference between the real axis and the electromotive force sum Es7.
  • ⁇ s7 is determined by a phase detector (not shown).
  • the signal converter 5b calculates the amplitude rd7 of the electromotive force difference Ed7 between the first interelectrode electromotive force E71 and the second interelectrode electromotive force E72, and calculates the phase difference ⁇ between the real axis and the electromotive force difference Ed7. 17 is obtained by the phase detector (step S201 in FIG. 12).
  • the interelectrode electromotive forces E71 and E72 can be separated in frequency by a bandpass filter or a comb filter.
  • the signal conversion unit 5b calculates the real axis component Es7x and the imaginary axis component Es7y of the electromotive force sum Es7 and the real axis component Ed7x and the imaginary axis component Ed7y of the electromotive force difference Ed7 as follows: (Step S202).
  • the signal conversion unit 5b After calculating Equations (87) to (90), the signal conversion unit 5b obtains the magnitude and angle of the electromotive force EdA7 that approximates the electromotive force difference Ed7 (Step S203).
  • the process of step S203 is a process corresponding to obtaining the 3 AZ d t component and the V XB component, and is a process corresponding to the calculation of equation (84).
  • the signal converter 5b calculates the magnitude I EdA7 I of the electromotive force EdA7 that approximates the electromotive force difference Ed7 as in the following equation.
  • EdA7 I (Ed7x 2 + Ed7y 2 ) 1 2
  • the signal conversion unit 5b calculates the angle ZEdA7 of the interelectrode electromotive force EdA7 with respect to the real axis as in the following equation.
  • step S203 ends.
  • the flow output unit 6b obtains the magnitude and angle of the normalized electromotive force En7 obtained by normalizing the electromotive force sum Es7 with the interelectrode electromotive force EdA7 (step S204).
  • the process of step S204 is a process corresponding to the calculation of equation (85).
  • the flow output section 6b has a large normalized electromotive force En7.
  • the magnitude I En7 I is calculated as follows.
  • the flow rate output unit 6b calculates the angle ZEn7 of the normal impulsive power En7 with respect to the real axis as in the following equation.
  • step S204 This ends the process of step S204.
  • the flow rate output unit 6b calculates the magnitude V of the flow velocity of the fluid to be measured by Expression (86).
  • Step S205 Although ZEn7 is not used in step S205 for calculating the flow velocity (flow rate), this angle is used when performing more accurate measurement by comparing it with the angle obtained at the time of calibration. Since it is not directly related to the operation, the description is omitted here.
  • the signal conversion unit 5b and the flow rate output unit 6b perform the processing in steps S201 to S205 as described above, for example, at regular intervals until the operator instructs the end of the measurement (YES in step S206).
  • the first electrodes 2a, 2b and the second electrodes 2c, 2d are arranged to face each other with the plane PLN3 including the axis of the excitation coil 3 interposed therebetween.
  • the electromotive force difference Ed7 is extracted from the first interelectrode electromotive force E71 and the second interelectrode electromotive force ⁇ 72, and the electromotive force sum Es7 is normalized using the electromotive force difference Ed7.
  • the force shown in the example of shading is not limited to this.
  • the electromotive force sum Es7 is approximately extracted as a 3AZ3t component, and the electromotive force difference Ed7 is normalized using the 3AZ3t component.
  • the sine wave excitation method using a sine wave for the excitation current which does not need to use the rectangular wave excitation method can be used.
  • High frequency excitation is possible.
  • lZf noise can be removed and the response to flow rate changes can be improved.
  • the electrodes 2a, 2b, 2c, and 2d used in the first to third embodiments are of a type in which the inner wall force of the measurement tube 1 is exposed and comes into contact with the fluid to be measured.
  • the electrodes 2a, 2b, 2c, 2d are covered by a lining 10 formed on the inner wall of the measuring tube 1 and having a strong force such as ceramic or Teflon (registered trademark).
  • a pair of electrodes 2a and 2b are used as a first electrode, and a pair of electrodes 2c and 2d are used as a second electrode.
  • the present invention is not limited to this.
  • One first electrode and one second electrode may be used.
  • a ground ring or a ground electrode is provided in the measurement tube 1 to bring the potential of the fluid to be measured to the ground potential, and the electromotive force generated at one electrode (ground potential and May be detected by the signal conversion units 5, 5a, 5b.
  • the electrode axis is a straight line connecting the pair of electrodes.
  • a virtual electrode is placed on a plane PLN including the one real electrode and at a position facing the real electrode with the measurement tube axis PAX interposed therebetween.
  • the straight line connecting the real electrode and the virtual electrode is the electrode axis.
  • the configuration excluding the detection of the electromotive force includes a CPU, a storage device, and an interface. It can be realized by a computer and a program that controls these hardware resources.
  • the present invention can be applied to measurement of the flow rate of a fluid to be measured flowing in a measurement tube.

Abstract

 電磁流量計は、流体が流れる測定管(1)と、流体に印加される磁場と流体の流れとによって生じた起電力を検出する電極(2a,2b)と、電極(2a,2b)を含む、測定管の軸方向と垂直な平面(PLN)に対して非対称な磁場を流体に印加する励磁コイル(3)と、電極(2a,2b)で検出される、流体の流速とは無関係な∂A/∂t成分の起電力と流体の流速に起因するv×B成分の起電力との合成起電力から、∂A/∂t成分を抽出する信号変換部(5)と、合成起電力中のv×B成分の流速の大きさにかかる係数であるスパンの変動要因を∂A/∂t成分に基づいて除去し、除去した結果から流体の流量を算出する流量出力部(6)とを有する。励磁コイル(3)からは複数の周波数成分を含む磁場が流体に印加される。                                                                                 

Description

明 細 書
電磁流量計
技術分野
[0001] 本発明は、電磁流量計に係り、特に電極で検出される電極間起電力のうち被測定 流体の流量に起因する成分の流速にかかる係数を自動的に補正するスパン補正の 技術に関するものである。
背景技術
[0002] 従来技術と本発明を理解するために必要な両者に共通する理論的前提部分につ いて説明する。まず、一般に知られている数学的基礎知識について説明する。 同一周波数で異なる振幅の余弦波 P'cos(co,t)、正弦波 Q'sin(co,t)は、以下の ような余弦波に合成される。 P, Qは振幅、 ωは角周波数である。
P'cos(co .t)+Q'sin(co .t) = (P2+Q2)1/2 -cos(W -t- ε )
ただし、 ε =tan_1(Q/P) ·'· (1)
[0003] 式(1)の合成を分析するには、余弦波 P'cos(co,t)の振幅 Ρを実軸、正弦波 Q' si η(ω,t)の振幅 Qを虚軸にとるように複素座標平面に写像すると都合がよい。すなわ ち、複素座標平面上において、原点力もの距離 (P2 + Q2) 1/2が合成波の振幅を与え 、実軸との角度 ε =tan— i(QZP)が合成波と ω 'tとの位相差を与えることになる。
[0004] また、複素座標平面上においては、以下の関係式が成り立つ。
L · exp {} · ε ) =L'cos、 ε ) +j'L'sin( ε ) … (2)
式(2)は複素ベクトルに関する表記であり、 jは虚数単位である。 Lは複素ベクトルの 長さを与え、 εは複素ベクトルの方向を与える。したがって、複素座標平面上の幾何 学的関係を分析するには、複素ベクトルへの変換を活用すると都合がよい。
以下の説明では、電極間起電力がどのような挙動を示し、従来技術はこの挙動をど のように利用しているかを説明するために、上記のような複素座標平面への写像と、 複素ベクトルによる幾何学的分析を採用する。
[0005] 次に、発明者が提案した電磁流量計 (特許文献 WO 03Z027614参照)におけ るコイル 1組、電極 1対の場合の複素ベクトル配置について説明する。 図 21は、前記特許文献の電磁流量計の原理を説明するためのブロック図である。 この電磁流量計は、被測定流体が流れる測定管 1と、被測定流体に印加される磁場 および測定管 1の軸 PAXの双方と直交し、かつ被測定流体と接触するように測定管 1に対向配置され、前記磁場と被測定流体の流れとによって生じた起電力を検出す る一対の電極 2a, 2bと、測定管軸 PAXの方向と直交する、電極 2a, 2bを含む平面 PLNを測定管 1の境としたとき、この平面 PLNを境とする測定管 1の前後で非対称な 、時間変化する磁場を被測定流体に印加する励磁コイル 3とを有する。
[0006] ここで、励磁コイル 3から発生する磁場 Baのうち、電極 2a, 2b間を結ぶ電極軸 EAX ヽて電極軸 EAXおよび測定管軸 PAXの双方と直交する磁場成分 (磁束密 度) B1は、以下のように与えられるものとする。
Bl=bl'cos(coO't— 01) ··· (3)
式(3)において、 blは振幅、 ωθは角周波数、 01は coO'tとの位相差 (位相遅れ) である。以下、磁束密度 B1を磁場 B1とする。
[0007] まず、磁場の変化に起因し、被測定流体の流速とは無関係な電極間起電力につい て説明する。磁場の変化に起因する起電力は、磁場の時間微分 dBZdtによるので 、励磁コイル 3から発生する磁場 B1を次式のように微分する。
dBlZdt= coO'bl'sin(coO't— θ 1) · · · (4)
被測定流体の流速が 0の場合、発生する渦電流は、磁場の変化に起因する成分の みとなり、磁場 Baの変化による渦電流 Iは、図 22に示すような向きとなる。したがって 、電極軸 EAXと測定管軸 PAXとを含む平面内において、磁場 Baの変化によって発 生する、流速と無関係な電極間起電力 Eは、図 22に示すような向きとなる。この向き をマイナス方向とする。
[0008] このとき、電極間起電力 Eは、次式に示すように向きを考えた磁場の時間微分 dB lZdtに係数 k (被測定流体の導電率及び誘電率と電極 2a, 2bの配置を含む測定 管 1の構造に関係する複素数)を力けたものとなる。
E=k' coO'bl'sin(coO't 01) · · · (5)
そして、式 (5)を変形すると次式となる。
E=k- ωθ-bl-isin (- θ 1) } -cosC oO't) +k- ωθ-bl-icos (- θ 1) } -sir^ oO't)
=k* oO'bl'{— sin( Θ 1) } -cosC oO't)
+k- w0-bl-{cos( Θ lM'sin(coO't) …(6)
[0009] ここで、式 (6)を coO'tを基準として複素座標平面に写像すると、実軸成分 Ex、虚 軸成分 Eyは次式となる。
Ex=k- W0-bl-{-sin( θ 1) }
=k' coO'bl'{cos( Z2+ 01)} ··· (7)
Ey=k- W0-bl-{cos( Θ 1) }
=k' coO'bl'{sin( Z2+ 01)} · · · (8)
[0010] さらに、式(7)、式 (8)に示した Ex, Eyを次式に示す複素ベクトル Ecに変換する。
Ec = Ex+j'Ey
=k' coO'bl'{cos( Z2+ θ 1)}
+j'k' coO'bl'{sin( Z2+ θ 1) }
=k' coO'bl'{cos( Z2+ θ 1)+ΐ·5ίη(π/2+ θ 1)}
= k'coO'bl'exp{j'( Z2+ 01)} · · · (9)
[0011] また、前述の係数 kを複素ベクトルに変換すると次式となる。
k=rk-cos( Θ 00) +j-rk-sin( θ 00)
=rk-exp(j- θ 00) …(10)
式(10)において、 rkは比例係数、 Θ 00は実軸に対するベクトル kの角度である。
[0012] 式(10)を式 (9)に代入することにより、複素座標に変換された電極間起電力 Ec (磁 場の時間変化のみに起因し、流速とは無関係な電極間起電力)が以下のように得ら れる。
Ec=rk-exp(j- Θ 00) · ωθ-bl-expij· (π/2+ θ 1) }
=rk- ωθ-bl-expij· (π/2+ θ 1+ θ 00)} ··· (11)
式(11)の rk'coO'bl'exp{j'( Z2+ θ 1+ 000)}は、長さが rk'coO'bl、実軸 力らの角度が π/2+ Θ 1+ Θ 00の複素ベクトルである。
[0013] 次に、被測定流体の流速に起因する電極間起電力について説明する。被測定流 体の流速の大きさが V(V≠0)の場合、発生する渦電流には、流速 0のときの渦電流 I に加えて、被測定流体の流速ベクトル vに起因する成分 vXBaが発生するため、流 速ベクトル Vと磁場 Baによる渦電流 Ivは、図 23に示すような向きとなる。したがって、 流速ベクトル Vと磁場 Baによって発生する電極間起電力 Evは時間変化によって発生 する電極間起電力 Εと逆向きとなり、 Ενの方向をプラス方向とする。
[0014] このとき、流速に起因する電極間起電力 Evは、次式に示すように、磁場 B1に係数 kv (流速の大きさ Vと被測定流体の導電率及び誘電率と電極 2a、 2bの配置を含む 測定管 1の構造に関係する複素数)を力けたものとなる。
Ev=kv{bl-cos(W0-t- Θ 1)} ··· (12)
式( 12)を変形すると次式となる。
Ev=kvbl 'cos (ωΟ·ί) -cos、一 θ 1)
kv'bl*sin( oO't) 'sin (— θ 1)
= kvbl-{cos( Θ l)}'cos( oO't)
+kvbl-{sin( Θ lM'sin(coO't) …(13)
[0015] ここで、式(13)を coO'tを基準として複素座標平面に写像すると、実軸成分 Evx、 虚軸成分 Evyは次式となる。
Evx=kvbl-{cos( θ 1) } ··· (14)
Evy=kvbl-{sin( θ 1) } ··· (15)
さらに、式(14)、式(15)に示した Evx, Evyを次式に示す複素ベクトル Eveに変換 する。
Kvc = Kvx +j · Evy
=kvbl-{cos( Θ l)}+j-kvbl-{sin( Θ 1) }
=kvbl-{cos( Θ l)+j-sin(01)}
=kvbl-exp(j- Θ 1) ··· (16)
[0016] また、前述の係数 kvを複素ベクトルに変換すると次式となる。
kv=rkvcos( Θ 01) +j-rkvsin( θ 01)
=rkvexp(j- θ 01) ··· (17)
式(17)において、 rkvは比例係数、 Θ 01は実軸に対するベクトル kvの角度である 。ここで、 rkvは、前記比例係数 rk (式(10)参照)に流速の大きさ Vと比例係数 γをか けたものに相当する。すなわち、次式が成立する。
rkv= y -rk-V · · · (18)
[0017] 式(17)を式(16)に代入することにより、複素座標に変換された電極間起電力 Eve が以下のように得られる。
Evc = Kvb丄 'expij' θ 1)
=rkvbl-exp{j- ( θ 1+ θ 01) } · · · (19)
式(19)の rkv'bl'exp{j' ( 0 1+ 001) }は、長さが rkvbl、実軸からの角度が θ 1+ Θ 01の複素ベクトルである。
[0018] 磁場の時間変化に起因する電極間起電力 Ecと流体の流速に起因する電極間起 電力 Eveとを合わせた全体の電極間起電力 Eacは、式(11)、式(19)により次式のよ うになる。
Eac = Ec + Evc
=rk- ωθ-bl-expij· (π/2+ θ 1+ θ 00) }
+rkvbl-exp{j- ( θ 1+ θ 01) } …(20)
[0019] 式(20)力ら分かるように、電極間起電力 Eacは、 rk* coO'bl'exp{j' ( Z2+ θ 1
+ 000) }と rkv'bl'exp{j' ( 0 1+ 001) }の 2個の複素ベクトルにより記述される。 そして、この 2個の複素ベクトルを合成した合成ベクトルの長さが出力(電極間起電力 Eac)の振幅を表し、この合成ベクトルの角度 φが入力(励磁電流)の位相 coO'tに対 する電極間起電力 Eacの位相差 (位相遅れ)を表す。なお、流量は流速に測定管の 断面積をかけたものとなるため、通常、初期状態での校正において流速と流量は一 対一の関係となり、流速を求めることと流量を求めることは同等に扱えるので、以下( 流量を求めるために)流速を求める方式として説明を進める。
[0020] 前記特許文献の電磁流量計は、上記のような原理を背景に、スパンのシフトに影響 されないパラメータ (非対称励磁パラメータ)を抽出し、これに基づき流量を出力する ことで、スパンのシフトの問題を解決している。
ここで、図 24を用いてスパンのシフトについて説明する。被測定流体の流速が変化 していないにもかかわらず、電磁流量計によって計測される流速の大きさ Vが変化し たとすると、この出力変動の要因としてスパンのシフトが考えられる。 [0021] 例えば、初期状態において被測定流体の流速が 0のときに電磁流量計の出力が 0 (V)となり、流速が l (mZsec)のときに出力が l (v)となるように校正したとする。ここ での電磁流量計の出力は、流速の大きさ Vを表す電圧である。このような校正により、 被測定流体の流速が 1 (mZsec)であれば、電磁流量計の出力は当然 1 (v)になる はずである。ところが、ある時間 tlが経過したところで、被測定流体の流速が同じく 1 ( mZsec)であるにもかかわらず、電磁流量計の出力が 1. 2 (v)になることがある。この 出力変動の要因として考えられるのが、スパンのシフトである。スパンのシフトという現 象は、例えば電磁流量計の周囲温度の変化などにより、励磁コイルを流れる励磁電 流値が一定値を維持できなくなるなどの原因により発生する。
発明の開示
発明が解決しょうとする課題
[0022] まず説明に必要な物理現象につ 、て説明しておく。
変化する磁場中を物体が移動する場合、電磁誘導によって 2種類の電界、 (a)磁場 の時間変化によって発生する電界 E(i)= d A/ d t Ab)磁場中を物体が動くことによ り発生する電界 E(v)=vX Bが発生する。 は と の外積を示し、 d A/ d tは A の時間による偏微分を示す。 v、 B、 Aはそれぞれ下記に対応しており、 3次元 (x、 y、 z)に方向をもつベクトルである(v:流速、 B:磁束密度、 A:ベクトルポテンシャル (磁 束密度とは B=rotAの関係がある))。ただし、ここでの 3次元ベクトルは複素平面上 のベクトルとは意味が異なる。この 2種類の電界によって、電位分布が流体中に発生 し、この電位は電極によって検出することができる。
前記特許文献の電磁流量計では、基本的な理論展開においては実軸に対するべ タトル kの角度 Θ 00、実軸に対するベクトル kvの角度 Θ 01を考慮している力 スパン のシフトの問題を解決できる電磁流量計の制約条件として、 Θ 00= Θ 01 = 0を前提 においている。すなわち、上記前提が成立するように電磁流量計の条件を整えること が制約条件になる。なお、 Θ 1は初期位相であり、励磁電流と電極間起電力に共通 の位相部分である。ゆえに、従来技術および本発明のように、励磁電流と電極間起 電力の位相差のみを考える場合は、理解を容易にするため Θ 1 =0とする。
[0023] 前記制約条件が流量計測に与える影響について、図 25を用いて複素ベクトルの考 え方で説明する。図 25において、 Reは実軸、 Imは虚軸である。まず、磁場の時間変 化のみに依存し、被測定流体の流速に依存しない電極間起電力 Ecを 3 AZ 3 t成 分と呼び、この 3 AZ 3 t成分をベクトル Vaで表すと共に、被測定流体の流速に依存 する電極間起電力 Eveを vX B成分と呼び、この vX B成分をベクトル Vbで表す。前 述のスパンとは、この被測定流体の流速に依存する V X B成分の流速の大きさ Vにか 力る係数である。なお、 0 00, 0 01の前述の定義を言い換えると、 0 00は虚軸に対 するベクトル Vaの角度、 Θ 01は実軸に対するベクトル Vbの角度である。
[0024] 図 21に示した電磁流量計の構成において、 Θ 00= Θ 01 =0ということは、ベクトル Vaが虚軸 Im上に存在し、ベクトル Vbが実軸 Re上に存在することを意味する。すな わち、ベクトル Vaと Vbは直交する位置関係にある。このように、前記特許文献の電磁 流量計は、 d A/ d t成分のベクトル Vaと v X B成分のベクトル Vbが直交することを 前提としている。
[0025] し力しながら、現実の電磁流量計において、上記前提は必ずしも常に成立するとは 限らない。その理由は、ミクロ的には 3 AZ 3 t成分のベクトル Vaと vX B成分のベタト ル Vbの直交性は保証される力 マクロ的に見ると、被測定流体に印加される磁場が 理想的な分布になっていないため、電極で検出されるマクロ的な 3 AZ 3 t成分のベ タトル Vaと V X B成分のベクトル Vbが若干のゆがみを含むと考えなければならないか らである。した力 Sつて、ベクトノレ Vaと Vbは直交しないし、 θ 00≠0、 θ 01≠0、 Θ 00 ≠ Θ 01と考えなければならない。
[0026] 以上の説明から明らかなように、高精度の流量計測を指向する場合には、ベクトル Vaと Vbの直交性を精密に考慮しなければならな 、が、前記特許文献の電磁流量計 では、ベクトル Vaと Vbの直交性を前提としているので、直交性に誤差が生じる場合 には、正確なスパン補正や流量計測ができな 、可能性があった。
本発明は、上記課題を解決するためになされたもので、正確なスパン補正を自動 的に行い、高精度の流量計測を行うことができる電磁流量計を提供することを目的と する。
課題を解決するための手段
[0027] 本発明の電磁流量計は、被測定流体が流れる測定管と、この測定管に配設され、 前記流体に印加される磁場と前記流体の流れとによって生じた起電力を検出する電 極と、この電極を含む、前記測定管の軸方向と垂直な第 1の平面に対して非対称か つ時間変化する磁場を前記流体に印加する励磁部と、前記電極で検出される、前記 流体の流速とは無関係な 3 AZ 3 成分の起電力と前記流体の流速に起因する v X B成分の起電力との合成起電力から、前記 3 AZ 3 成分を抽出する信号変換部と、 前記抽出された d A/ d t成分に基づいて、前記合成起電力の中の v X B成分の流 速の大きさ Vにかかる係数であるスパンの変動要因を除去し、この変動要因を除去し た結果力も前記流体の流量を算出する流量出力部とを備えるものである。
発明の効果
[0028] 本発明によれば、電極で検出される、流体の流速とは無関係な 3 AZ 3 成分の起 電力と流体の流速に起因する v X B成分の起電力との合成起電力から、 3 AZ 3 t成 分を抽出し、抽出した 3 AZ 3 t成分に基づいて、合成起電力の中の v X B成分の流 速の大きさ Vにかかる係数であるスパンを補正することにより、スパン変動要素を消去 するようにしたので、正確なスパン補正を自動的に行うことができ、高精度の流量計 測を行うことができる。
[0029] また、複数の励磁周波数により流体に磁場を印加し、電極で検出される合成起電 力のうち少なくとも 2つの異なる周波数成分の振幅と位相を求めることにより、 d A/ d t成分を抽出することができる。
[0030] また、異なる 2つの周波数成分を含む励磁電流を励磁コイルに供給し、電極で検出 される合成起電力のうち第 1の周波数と第 2の周波数の 2つの周波数成分の振幅と 位相を求めることにより、 2つの周波数成分の起電力差を 3 AZ 3 t成分として抽出 することができる。
[0031] また、複数の励磁コイル力 それぞれ励磁周波数が異なる磁場を流体に印加し、 電極で検出される合成起電力のうち少なくとも 2つの異なる周波数成分の振幅と位相 を求めることにより、 3 AZ 3 成分を抽出することができる。
[0032] また、第 1の周波数の励磁電流を第 1の励磁コイルに供給すると同時に、第 2の周 波数の励磁電流を第 2の励磁コイルに供給し、電極で検出される合成起電力のうち 第 1の周波数と第 2の周波数の 2つの周波数成分の振幅と位相を求めることにより、 2 つの周波数成分の起電力差又は起電力和を近似的に 3 AZ 3 成分として抽出す ることがでさる。
[0033] また、測定管の軸方向に沿って異なる位置に複数個の電極を配設し、複数個の電 極で検出される合成起電力のうち少なくとも 2個の電極で検出される合成起電力の振 幅と位相を求めることにより、 d A/ d t成分を抽出することができる。
[0034] また、第 1の電極で検出される第 1の合成起電力と第 2の電極で検出される第 2の 合成起電力の各々について振幅と位相を求めることにより、第 1の合成起電力と第 2 の合成起電力との起電力差又は起電力和を近似的に 3 AZ 3 成分として抽出する ことができる。また、 1つの励磁周波数のみにより 3 AZ 3 成分を抽出できることから 、 2つの励磁周波数を用いる必要がなくなる。
図面の簡単な説明
[0035] [図 1A]図 1Aは、 3 AZ 3 t成分のベクトルと vX B成分のベクトルを示す図である。
[図 1 B]図 1 Bは、 V X B成分のベクトルを 3 A/ 3 t成分のベクトルにより正規化したベ タトルを示す図である。
[図 1C]図 1Cは、図 1Bのベクトルに励磁角周波数をかけたベクトルを示す図である。
[図 2]図 2は、本発明の第 1実施例において電極間起電力と起電力差を複素ベクトル 表現した図である。
[図 3]図 3は、本発明の第 1実施例における正規ィ匕処理の様子を複素ベクトル表現し た図である。
[図 4]図 4は、本発明の第 1実施例の電磁流量計の構成を示すブロック図である。
[図 5]図 5は、本発明の第 1実施例における信号変換部と流量出力部の動作を示す フローチャートである。
[図 6]図 6は、本発明の第 2実施例の電磁流量計の原理を説明するためのブロック図 である。
[図 7]図 7は、本発明の第 2実施例において被測定流体の流量が 0の場合の渦電流 及び電極間起電力を示す図である。
[図 8]図 8は、本発明の第 2実施例において被測定流体の流量力 SOでない場合の渦 電流及び電極間起電力を示す図である。 [図 9]図 9は、本発明の第 2実施例において電極間起電力と起電力和と起電力差を 複素ベクトル表現した図である。
[図 10]図 10は、本発明の第 2実施例における正規ィ匕処理の様子を複素ベクトル表現 した図である。
[図 11]図 11は、本発明の第 2実施例の電磁流量計の構成を示すブロック図である。
[図 12]図 12は、本発明の第 2実施例における信号変換部と流量出力部の動作を示 すフローチャートである。
[図 13]図 13は、本発明の第 3実施例の電磁流量計の原理を説明するためのブロック 図である。
[図 14]図 14は、本発明の第 3実施例において被測定流体の流量が 0の場合の渦電 流及び電極間起電力を示す図である。
[図 15]図 15は、本発明の第 3実施例において被測定流体の流量力^でない場合の 渦電流及び電極間起電力を示す図である。
[図 16]図 16は、本発明の第 3実施例において電極間起電力と起電力和と起電力差 を複素ベクトル表現した図である。
[図 17]図 17は、本発明の第 3実施例における正規ィ匕処理の様子を複素ベクトル表現 した図である。
[図 18]図 18は、本発明の第 3実施例の電磁流量計の構成を示すブロック図である。
[図 19]図 19は、本発明の電磁流量計で用いる電極の 1例を示す断面図である。
[図 20]図 20は、本発明の電磁流量計で用いる電極の他の例を示す断面図である。
[図 21]図 21は、従来の電磁流量計の原理を説明するためのブロック図である。
[図 22]図 22は、従来の電磁流量計において被測定流体の流量が 0の場合の渦電流 及び電極間起電力を示す図である。
[図 23]図 23は、従来の電磁流量計において被測定流体の流量が 0でない場合の渦 電流及び電極間起電力を示す図である。
[図 24]図 24は、電磁流量計におけるスパンのシフトを説明するための図である。
[図 25]図 25は、従来の電磁流量計の問題点を説明するための図である。
発明を実施するための最良の形態 [0036] [基本原理]
本発明は、電磁流量計の電極で検出される電極間起電力から、 d A/ d t成分の ベタトル Vaと V X B成分のベクトル Vbとの合成べクトル Va +Vbを求めたとき、ベタト ル Vaと Vbが直交する力否かに関係なぐベクトル Vaは磁場の時間変化のみに依存 し、被測定流体の流速に無関係なベクトルであり、ベクトル Vbは被測定流体の流速 に比例して大きさが変化するベクトルであることに着目している。
[0037] 本発明では、合成ベクトル Va+Vbの中から、 d A/ d t成分のベクトル Vaを抽出し 、このベクトル Vaにより、合成ベクトル Va+Vb中の v X B成分のベクトル Vbに含まれ るスパン変動要素を消去する。そして、このスパン変動要素を消去した v X B成分に 基づき、被測定流体の流量を算出する。 d A/ d t成分のベクトル Vaを抽出すること により、ベクトル Vaと Vbが直交するか否かに関係なぐベクトル Vaと Vbを別々のべク トルとして扱えることが重要である。図 21に示した従来の電磁流量計では、ベクトル V aと Vbが直交することを前提にしているので、合成ベクトル Va+Vbの中から、ベタト ル Vaあるいは Vbを抽出することは行なって!/ヽな!、。
[0038] 以下、スパンを実際に補正するための本発明の基本原理を図 1A—図 1Cを用いて 説明する。図 21に示した電磁流量計と同様に、測定管軸と直交する、電極を含む平 面を測定管の境とし、この平面を境とする測定管の前後で非対称な磁場を被測定流 体に印カロしたとき、この非対称励磁により計測される電極間起電力の振幅と位相差 に基づき、複素平面に写像されるベクトルは、以下の 3 AZ 3 t成分のベクトル Vaと V X B成分のベクトル Vbの合成ベクトル Va + Vbに相当する。
ν&=ν ω - exp (j - θ ω ) - C - ω · · · (21)
Vb =rv exp (j - θ ν) - C -V · · · (22)
[0039] このベクトル Vaと Vbを図 1 Aに示す。 d A/ d t成分のベクトル Vaは、磁場の変化 により発生する起電力なので、励磁角周波数 ωに比例する大きさになる。このとき、 ベクトル Vaの大きさに対する既知の比例定数部分 ¾τ ω、ベクトル Vaの方向を 0 ωと すると、 Cが磁場のシフトなどの変化する要素、すなわちスパン変動要素として与えら れる。また、 v X B成分のベクトル Vbは、測定管中の被測定流体の移動により発生す る起電力なので、流速の大きさ Vに比例する大きさになる。このとき、ベクトル Vbの大 きさに対する既知の比例定数部分を rv、ベクトルの方向を θ Vとすると、 Cがスパン変 動要素として与えられる。なお、式(21)のベクトル Vaにおける Cと式(22)のベクトル Vbにおける Cは、同一の要素である。
[0040] スパンのシフトの要因は、スパン変動要素 Cの変化である。したがって、スパン変動 要素 Cを消去した信号変換式により被測定流体の流速を求めれば、実質的にスパン の自動補正が実現できる。スパン補正の具体的な方法としては、以下の 2つの方法 がある。
[0041] 第 1の補正方法は、 vXB成分のベクトル Vbを d A/ d t成分のベクトル Vaにより正 規ィ匕してスパン変動要素 Cを消去し、正規ィ匕したベクトルに基づく流速の大きさ Vに 関する信号変換式を用いることで、流量計測におけるスパンの自動補正を実現する 方法である。この第 1の補正方法の正規ィヒを数式で表すと、以下のようになる。
Vb/Va
= irvexpy θ ν) ·0·ν}/ {νω · exp {} · θ ω) ·ϋ· ω }
= (τν//τω) ·βχρ{ΐ· ( θν- θ ω)}·ν/ω · · · (23)
I Vb/Va I = (νν/νω) Ύ/ ω ··· (24)
[0042] ν X Β成分のベクトル Vbを d A/ d t成分のベクトル Vaにより正規化したベクトルを 図 1Bに示す。なお、図 1Cのベクトルは、図 1Bのベクトルに励磁角周波数 ωをかけて 、式(23)の右辺から励磁角周波数 ωを消去したベクトルである。
[0043] 第 2の補正方法は、合成ベクトル Va+Vbを d A/ d t成分のベクトル Vaにより正規 化してスパン変動要素 Cを消去し、正規ィ匕したベクトルに基づく流速の大きさ Vに関 する信号変換式を用いることで、流量計測におけるスパンの自動補正を実現する方 法である。この第 2の補正方法の正規ィ匕を数式で表すと、以下のようになる。
(Va+Vb)/Va
= ίΓω · exp · θ ω) ·0· ω +rvexp(j' θ ν) - C'V}
Ζ {r ω · exp (j · θ ω ) · C · ω }
= l+(rv/rW) -exp{j - ( θ ν- θ ω)}Ύ/ ω · · · (25)
I (Va+Vb)/Va-1 | =(νν/νω)-ν/ω . · · (26)
[0044] この第 2の補正方法は、第 1の補正方法に比べてより現実的な処理を提供するもの である。何故ならば、通常、電磁流量計の電極間起電力力 vX B成分のベクトル Vb を直接的に求めることはできず、電極間起電力から求めることができるベクトルは Va +Vbになる力 である。
[0045] d A/ d t成分のベクトル Vaを抽出する方法としては、以下の 2つの方法がある。
第 1の抽出方法は、複数の励磁周波数による磁場を被測定流体に印加し、電極間起 電力に含まれる複数の成分の周波数差を利用してベクトル Vaを抽出する方法である 。前述のとおり、電極間起電力から直接求めることができる複素ベクトルは合成べタト ル Va+Vbであり、ベクトル Va, Vbが直接的に計測できるわけではない。そこで、 d / d t成分のベクトル Vaの大きさは励磁角周波数 ωに比例し、 νΧ Β成分のベタト ル Vbは励磁角周波数 ωに依存しないことに着眼する。具体的には、励磁コイルから 大きさが等しくかつ周波数が異なる 2つの成分を含む磁場を被測定流体に印加し、 第 1の周波数成分の合成ベクトル Va + Vbと第 2の周波数成分の合成ベクトル Va + Vbとの差を求める。この差は、ベクトル Vaの大きさの変化分のみを表すベクトルにな るので、これによりベクトル Vaを抽出することができる。
[0046] 第 2の抽出方法は、励磁コイルの軸を含むコイル平面を挟んで対向するように配設 された少なくとも 2対の電極をもつ電磁流量計に適用可能な方法であり、電極間の出 力差を利用してベクトル Vaを抽出する方法である。この第 2の抽出方法では、第 1の 電極間起電力中に発生する 3 AZ 3 t成分の向きと第 2の電極間起電力中に発生す る 3 AZ 3 t成分の向きが逆であり、第 1の電極間起電力中に発生する vX B成分の 向きと第 2の電極間起電力中に発生する vX B成分の向きが同じになることに着眼す る。
[0047] 具体的には、第 1の電極と第 2の電極とをコイル平面に対して均等に配置し、第 1の 電極間起電力の合成ベクトル Va+Vbと第 2の電極間起電力の合成ベクトル Va+V bとの差を求めるようにすれば、第 1の電極間起電力中に発生する V X B成分と第 2の 電極間起電力中に発生する vX B成分とが互いに打ち消し合うので、第 1の電極間 起電力中に発生する 3 AZ 3 成分と第 2の電極間起電力中に発生する 3 AZ 3 成分の和のベクトル Vaを抽出することができる。
[0048] vX B成分のベクトル Vbを d A/ d t成分のベクトル Vaにより正規化する前述の第 1 の補正方法によって正規化した結果を用いると、被測定流体の流速の大きさ Vを以 下のように算出できる。
Figure imgf000016_0001
[0049] また、合成ベクトル Va+Vbを d A/ d t成分のベクトル Vaにより正規化する前述の 第 2の補正方法によって正規化した結果を用いると、被測定流体の流速の大きさ Vを 以下のように算出できる。
ν=(νω/νν) -{ | (Va+Vb)/Va-1 | }· ω · · · (28)
以上の原理により、磁場のシフトなどのスパン変動要素 Cとは無関係に、流速の大 きさ Vが計測できることになるので、実質的にスパンの自動補正が実現されることにな る。また、本発明における全ての実施例では励磁の状態を切換えることなぐ単一の 励磁状態下での測定のみで、 3 ΑΖ 3 成分、および 3 AZ 3 成分と vX B成分の 合成成分を求めることが可能であり、これにより励磁の状態を切換えて測定を行う場 合よりも高速に自動補正を行うことが可能になる。
[0050] [第 1実施例]
以下、本発明の第 1実施例について図面を参照して詳細に説明する。本実施例は 、前記基本原理で説明した方法のうち、 3 AZ 3 t成分のベクトル Vaを抽出する方法 として第 1の抽出方法を用 、、スパン補正の方法として第 2の補正方法を用 、るもの である。本実施例の電磁流量計は 1個の励磁コイルと 1対の電極とを有するものであ り、信号処理系を除く構成は図 21に示した従来の電磁流量計と同様であるので、図 21の符号を用いて本実施例の原理を説明する。
[0051] 図 21において、励磁コイル 3から発生する磁場 Baのうち、電極 2a, 2b間を結ぶ電 極軸 EAX上において電極軸 EAXおよび測定管軸 PAXの双方と直交する磁場成分 (磁束密度) B6は、以下のように与えられるものとする。
B6 = b6-cos(co0-t— Θ 6) +b6-cos ( ω 1 -t- θ 6) …(29)
式(29)において、 ωθ, ωΐは異なる角周波数、 b6は磁束密度 Β6の角周波数 ωθ の成分の振幅および角周波数 ωΐの成分の振幅、 Θ 6は角周波数 ωθの成分と ωΟ· tとの位相差 (位相遅れ)および角周波数 ω 1の成分と ω l'tとの位相差である。以下 、磁束密度 B6を磁場 B6とする。 [0052] このとき、磁場の時間変化に起因する電極間起電力を複素ベクトルに変換した起 電力と流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合 わせた全体の電極間起電力のうち、角周波数 ωθの成分の起電力を E50とすると、 電極間起電力 Ε50は式(20)と同様の次式で表される。
E50=rk- W0-b6-exp{j- (π/2+ θ 6+ θ 00)}
+rkvb6-exp{j- ( θ 6+ θ 01)} …(30)
[0053] また、磁場の時間変化に起因する電極間起電力を複素べ外ルに変換した起電力 と流体の流速に起因する電極間起電力を複素ベクトルに変換した起電力とを合わせ た全体の電極間起電力のうち、角周波数 ω 1の成分の起電力を E51とすると、電極 間起電力 E51は式(20)と同様の次式で表される。
E51=rk- Wl-b6-exp{j- (π/2+ θ 6+ θ 00)
+rkvb6-exp{j- ( θ 6+ θ 01)} ··· (31)
[0054] ここで、虚軸に対するベクトル Vaの角度 Θ 00と実軸に対するベクトル Vbの角度 Θ 0 1との関係を 001= Θ 00+ Δ 001とし、式(30)、式(31)に 001= Θ 00+ Δ Θ 01 および式(18)を代入したときの電極間起電力 E50、 E51は、それぞれ式(32)、式( 33)で表される。
E50=rk- W0-b6-exp{j- (π/2+ θ 6+ θ 00)}
+ y -rk-V-b6-exp{j- ( θ 6+ θ 00+ Δ θ 01) }
=rk-b6-exp{j- ( θ 6+ θ 00)}
•{ωΟ·Θχρ(ΐ·π/2) + γ ·ν·Θχρ(ΐ·Δ θ 01)} · · · (32)
[0055] E51=rk- Wl-b6-exp{j- (π/2+ θ 6+ θ 00)}
+ γ -rk-V-b6-exp{j- ( θ 6+ θ 00+ Δ θ 01) }
=rk-b6-exp{j- ( θ 6+ θ 00)}
•{ω1·Θχρ(ΐ· π/2) + γ ·ν·Θχρ(ΐ·Δ θ 01)} · · · (33)
[0056] 電極間起電力 Ε50と E51との差をとり、求めた差分を0)0 (0)0— 0)1)倍した結 果を EdA5とすれば、式(34)が成立する。
EdA5= (E50-E51) · ωΟ/(ωΟ— ω 1)
=rk-b6-exp{j- ( θ 6+ θ 00)} •{ωΟ·Θχρ(ΐ·π/2) + γ -V-exp(j- Δ θ 01)
-ω1·θχρ(ΐ·π/2)-γ -V-exp(j- Δ θ 01)}
·ω0/(ω0-ω1)
=rk- W0-b6-exp{j- (π/2+ θ 6+ θ 00)} · · · (34)
[0057] 起電力差 EdA5は、流速の大きさ Vに関係しな 、ので、 3 AZ 3 tにより発生する成 分のみとなる。この起電力差 EdA5を用いて電極間起電力 E50(合成ベクトル Va + Vb)中の vXB成分の流速の大きさ Vにかかる係数 (スパン)を正規ィ匕する。以上の電 極間起電力 E50, E51および起電力差 EdA5を複素ベクトル表現した図を図 2に示 す。図 2において、 Reは実軸、 Imは虚軸である。図 2中の vXBは、電極間起電力 E5 0, E51にぉけるvXB成分rk·b6·exp{j·( Θ 6+ Θ 00)}· γ -V-exp(j- Δ θ 01)を 表し、 dA/d tは、電極間起電力 E51における dA/d t^rk-b6-exp{j -(Θ6 + ΘΟΟ)}·ω1·Θχρ(]· π /2)を表す。なお、起電力差 EdA5は、正確には電極間 起電力 E50と E51との起電力差を ω OZ ( ω 0— ω 1)倍したものであるが、 ω ΟΖ ( ω 0- ω 1)倍した理由は、式の展開を容易にするためである。
[0058] 式(32)の電極間起電力 Ε50を式(34)の起電力差 EdA5で正規化し、 ωθ倍した 結果を Εη5とすれば、正規化起電力 Εη5は式(35)のようになる。
En5= (E50/EdA5) · ωθ
=rk-b6-exp{j- ( θ 6+ θ 00)}
•{ωΟ·Θχρ(ΐ·π/2) + γ -V-exp(j- Δ θ 01)}
/[rk- W0-b6-exp{j- (π/2+ θ 6+ θ 00)}]· ωθ
= ωΟ+[γ ·Θχρ{]· (- π/2+Δ Θ01)}]·ν · · (35)
[0059] 式(35)の右辺第 2項が、 νΧΒにより発生する成分を 3 ΑΖ 3 tにより発生する成分 で正規化した項となる。以上の正規ィ匕処理の様子を複素ベクトル表現した図を図 3に 示す。図 3中の vXBは、電極間起電力 E50における vXB成分 rk'b6'exp{j' ( Θ 6 + ΘΟΟ)}·γ ·ν·Θχρ(]·Δ 001)を表し、 η(νΧΒ)は、正規化された vXB成分 [ γ · Θχρ{]· (- π/2+ Δ θ 01) }] ·νを表す。なお、電極間起電力 Ε50を起電力差 Ed A5で正規ィ匕した結果を ω 0倍した理由は、流速の大きさ Vに係る右辺第 2項力も励 磁角周波数 ωθを消去するためである。式(35)によれば、流速の大きさ Vにかかる複 素係数は、 Ύの大きさ、— πΖ2+ Δ Θ 01の実軸力もの角度をもつ。係数 γおよび 角度 Δ Θ 01は校正等により予め求めることができる定数であり、式(35)の右辺第 2 項は被測定流体の流速が変化しないかぎり一定となる。
[0060] したがって、 3 ΑΖ 3 t成分を用いて νΧΒ成分の正規ィ匕を行うことにより、磁場のシ フトゃ位相変化による誤差を自動的に補正するスパン補正を実現することができる。 式(35)より、流速の大きさ Vは次式のように表される。
V= I (Εη5-ωΟ)/[γ ·Θχρ{]· (- π/2+Δ 001)}] |
= I (Εη5-ωΟ) | / y . · · (36)
[0061] なお、前記基本原理で用いた定数および変数と、本実施例の定数および変数との 対応関係は以下の表 1のとおりである。本実施例は、表 1から明らかなように、前記基 本原理を具体的に実現する 1つの例である。
[0062] [表 1] 基本原理と第 1実施例の対応関係
Figure imgf000019_0001
[0063] 次に、本実施例の電磁流量計の具体的な構成とその動作について説明する。図 4 は本実施例の電磁流量計の構成を示すブロック図であり、図 21と同一の構成には同 一の符号を付してある。本実施例の電磁流量計は、測定管 1と、電極 2a, 2bと、電極 2a, 2bを含む、測定管軸 PAXの方向と垂直な平面 PLN力 軸方向にオフセット距 離 dだけ離れた位置に配設された励磁コイル 3と、励磁コイル 3に励磁電流を供給す る電源部 4と、電極 2a, 2bで検出される合成起電力のうち第 1の周波数と第 2の周波 数の 2つの周波数成分の振幅と位相を求め、これらの振幅と位相に基づいて 2つの 周波数成分の起電力差を 3 AZ 3 t成分として抽出する信号変換部 5と、電極 2a, 2 bで検出される合成起電力のうち第 1の周波数成分中の V X B成分又は第 2の周波数 成分中の vX B成分に含まれるスパンの変動要因を抽出された d A/ d t成分に基 づいて除去し、この変動要因を除去した結果力 被測定流体の流量を算出する流量 出力部 6とを有する。励磁コイル 3と電源部 4とは、平面 PLNに対して非対称、かつ時 間変化する磁場を被測定流体に印加する励磁部となる。
[0064] 電源部 4は、第 1の角周波数 ω θの正弦波成分と第 2の角周波数 ω 1の正弦波成分 とを含む励磁電流を励磁コイル 3に供給する。このとき、励磁電流における角周波数 ω θの成分と角周波数 ω 1の成分の振幅は同一である。
[0065] 図 5は信号変換部 5と流量出力部 6の動作を示すフローチャートである。まず、信号 変換部 5は、電極 2aと 2b間の起電力のうち角周波数 ω 0の成分の起電力 Ε50の振 幅 r50を求めると共に、実軸と電極間起電力 E50との位相差 φ 50を図示しない位相 検波器により求める。また、信号変換部 5は、電極 2aと 2b間の起電力のうち角周波数 ω 1の成分の起電力 E51の振幅 r51を求めると共に、実軸と電極間起電力 E51との 位相差 Φ 51を位相検波器により求める(図 5ステップ S101)。電極間起電力 E50, E 51は、バンドパスフィルタによっても周波数分離することができる力 実際にはコムフ ィルタとよばれる櫛形のデジタルフィルタを使用すれば、 2つの角周波数 ω θ, ω ΐの 成分に簡単に分離することができる。
[0066] 次に、信号変換部 5は、電極間起電力 Ε50の実軸成分 Ε50χと虚軸成分 E50y、お よび電極間起電力 E51の実軸成分 E5 lxと虚軸成分 E5 lyを次式のように算出する( ステップ S 102)。
E5Ox=r5O-cos ( 5O) …(37)
E50y=r50 · sin ( φ 50) …(38)
E51x=r51 -cos ( 51) …(39)
E51y=r51 - sin( 51) …(40) 式(37)〜式 (40)の算出後、信号変換部 5は、電極間起電力 E50と E51との起電 力差 EdA5の大きさと角度を求める(ステップ S103)。このステップ S103の処理は、 d A/ d t成分および V X B成分を求めることに対応する処理であり、式(34)の算出 に相当する処理である。信号変換部 5は、電極間起電力 E50と E51との起電力差 Ed A5の大きさ | EdA5 |を次式のように算出する。
| EdA5 | = { (E50x-E51x) 2+ (E50y-E51y) 2}1 2
· ω Ο/ ( ω Ο- ω 1) •••(41)
[[00006688]] そそししてて、、信信号号変変換換部部 55はは、、実実軸軸にに対対すするる起起電電力力差差 EEddAA55のの角角度度 ZZEEddAA55をを次次式式ののよよ ううにに算算出出すするる。。
ZZEEddAA55==ttaann__11{{ ((EE5500yy--EE5511yy)) // ((ΕΕ5500χχ--ΕΕ5511χχ)) }} ·· ·· ·· ((4422))
以以上上でで、、スステテッッププ SS 110033のの処処理理がが終終了了すするる。。
[[00006699]] 次次にに、、流流量量出出力力部部 66はは、、電電極極間間起起電電力力 EE5500をを起起電電力力差差 EEddAA55でで正正規規化化ししたた正正規規化化 起起電電力力 EEnn55のの大大ききささとと角角度度をを求求めめるる((スステテッッププ SS110044))。。ここののスステテッッププ SS 110044のの処処理理はは、、 式式((3355))のの算算出出にに相相当当すするる処処理理ででああるる。。流流量量出出力力部部 66はは、、正正規規ィィ匕匕起起電電力力 EEnn55のの大大ききささ II EEnn55 IIをを次次式式ののよよううにに算算出出すするる。。
II EEnn55 II == ((rr5500// || EEddAA55 || )) ·· ωω θθ ·· ·· ·· ((4433))
[[00007700]] ままたた、、流流量量出出力力部部 66はは、、実実軸軸にに対対すするる正正規規ィィ匕匕起起電電力力 ΕΕηη55のの角角度度 ΖΖΕΕηη55をを次次式式ののよよ ううにに算算出出すするる。。
ΖΖΕΕηη55== 5500-- ΖΖΕΕάάΑΑ55 ……((4444))
ここれれでで、、スステテッッププ SS 110044のの処処理理がが終終了了すするる。。
[[00007711]] 続続いいてて、、流流量量出出力力部部 66はは、、被被測測定定流流体体のの流流速速のの大大ききささ VVをを算算出出すするる ((スステテッッププ SS 110055 )) οοここののスステテッッププ SS 110055のの処処理理はは、、式式((3366))のの算算出出にに相相当当すするる処処理理ででああるる。。流流量量出出力力部部 66はは、、((ΕΕηη55—— ωω θθ))のの実実軸軸成成分分 ΕΕηη55χχとと((ΕΕηη55—— ωω θθ))のの虚虚軸軸成成分分 EEnn55yyをを次次式式ののよようう にに算算出出すするる。。
EEnn55xx== II EEnn55 || ccooss ((ZZEEnn55))—— ωω θθ ·…· · ((4455))
EEnn55yy== || EEnn55 || ssiinn ((ZZEEnn55)) ……((4466))
[[00007722]] そそししてて、、流流量量出出力力部部 66はは、、被被測測定定流流体体のの流流速速のの大大ききささ VVをを次次式式ののよよううにに算算出出すするる。。
* •• ·· ·· ((4477)) これで、ステップ S 105の処理が終了する。
[0073] 信号変換部 5と流量出力部 6は、以上のようなステップ S 101〜S105の処理を例え ばオペレータによって計測終了が指示されるまで (ステップ S 106において YES)、一 定周期毎に行う。
[0074] 以上のように、本実施例では、励磁コイル 3から大きさが等しくかつ周波数が異なる 2つの成分を含む磁場を被測定流体に印加し、電極 2aと 2b間の起電力のうち角周 波数 ω θの成分の起電力 E50と角周波数 ω ΐの成分の起電力 E51と力も起電力差 E dA5 ( d A/ d t成分のベクトル Va)を抽出し、この起電力差 EdA5を用いて電極間 起電力 E50 (合成ベクトル Va+ Vb)中の v X B成分の流速の大きさ Vに力かるスパン を正規ィ匕して、スパン変動要素を消去するようにしたので、正確なスパン補正を自動 的に行うことができ、高精度の流量計測を行うことができる。
[0075] なお、本実施例では、電極間起電力のうち角周波数 ω θの成分 E50を正規ィ匕する 例について示した力 これに限るものではなぐ角周波数 ω 1の成分 E51を正規化す るようにしてちょい。
[0076] [第 2実施例]
次に、本発明の第 2実施例について説明する。本実施例は、第 1実施例の電磁流 量計に対して励磁コイルを 1個追加したものであり、前記基本原理で説明した方法の うち、 3 ΑΖ 3 t成分のベクトル Vaを抽出する方法として第 1の抽出方法を用い、スパ ン補正の方法として第 2の補正方法を用いるものである。すなわち、本実施例の電磁 流量計は、 2個の励磁コイルと 1対の電極とを有する。新たに追加する第 2の励磁コィ ルを既存の第 1の励磁コイルと同じ側に追加した場合には、第 1実施例の冗長な構 成となる。したがって、第 2の励磁コイルは、電極を含む平面を挟んで第 1の励磁コィ ルと異なる側に配設する必要がある。
[0077] 図 6は本実施例の電磁流量計の原理を説明するためのブロック図である。この電磁 流量計は、測定管 1と、電極 2a, 2bと、測定管軸 PAXの方向と直交する、電極 2a, 2 bを含む平面 PLNを測定管 1の境としたとき、この平面 PLNを境とする測定管 1の前 後で非対称な、時間変化する磁場を被測定流体に印加する第 1の励磁コイル 3a、第 2の励磁コイル 3bとを有する。第 1の励磁コイル 3aは、平面 PLNから例えば下流側 にオフセット距離 dlだけ離れた位置に配設される。第 2の励磁コイル 3bは、平面 PL N力も例えば上流側にオフセット距離 d2だけ離れた位置に、平面 PLNを挟んで第 1 の励磁コイル 3aと対向するように配設される。
[0078] ここで、第 1の励磁コイル 3aから発生する磁場 Bbのうち、電極 2a, 2b間を結ぶ電極 軸 EAX上にお ヽて電極軸 EAXおよび測定管軸 PAXの双方と直交する磁場成分( 磁束密度) B7と、第 2の励磁コイル 3bから発生する磁場 Beのうち、電極軸 EAX上に お!、て電極軸 EAXおよび測定管軸 PAXの双方と直交する磁場成分 (磁束密度) B8 は、以下のように与えられるものとする。
B7=b7-cos ( W l -t- Θ 7) · · · (48)
B8=b8 -cos ( W 2-t- θ 8) · · · (49)
式 (48)、式 (49)において、 ω ΐ, ω 2は異なる角周波数、 b7, b8はそれぞれ磁束 密度 B7, B8の振幅、 0 7は磁束密度 B7と co l 'tとの位相差 (位相遅れ)、 0 8は磁 束密度 B8と co 2'tとの位相差である。以下、磁束密度 B7を磁場 B7とし、磁束密度 B 8を磁場 B8とする。
[0079] 被測定流体の流速が 0の場合、発生する渦電流は、磁場の変化に起因する成分の みとなり、磁場 Bbの変化による渦電流 II、磁場 Beの変化による渦電流 12は、図 7に 示すような向きとなる。したがって、電極軸 EAXと測定管軸 PAXとを含む平面内にお いて、磁場 Bbの変化によって発生する、流速と無関係な電極間起電力 E1と、磁場 B cの変化によって発生する、流速と無関係な電極間起電力 E2は、図 7に示すように互 いに逆向きとなる。
[0080] 被測定流体の流速が V(V≠0)の場合、発生する渦電流には、流速 0のときの渦電 流 II, 12に加えて、被測定流体の流速ベクトル Vに起因する成分 vX Bb, vX Bcが発 生するため、流速ベクトル Vと磁場 Bbによる渦電流 Ivl、流速ベクトル Vと磁場 Beによ る渦電流 Iv2は、図 8に示すような向きとなる。したがって、流速ベクトル Vと磁場 Bbに よって発生する電極間起電力 Evl、流速ベクトル Vと磁場 Beによって発生する電極 間起電力 Ev2は、同じ向きとなる。
[0081] 図 7、図 8で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起因す る電極間起電力と被測定流体の流速に起因する電極間起電力とを合わせた全体の 電極間起電力のうち、角周波数 ω 1の成分の起電力を E61とすると、電極間起電力 E61は式(20)と同様の次式で表される。
E61=rk- Wl-b7-exp{j- (π/2+ Θ 7+ Θ 00)}
+rkvb7-exp{j- ( Θ 7+ Θ 01)} …(50)
[0082] また、磁場の時間変化に起因する電極間起電力と被測定流体の流速に起因する 電極間起電力とを合わせた全体の電極間起電力のうち、角周波数 ω 2の成分の起 電力を Ε62とすると、電極間起電力 Ε62は式(20)と同様の次式で表される。
E62=rk- W2-b8-exp{j- (- π/2+ θ 8+ θ 00)
+rkvb8-exp{j- ( θ 8+ θ 01)} ··· (51)
[0083] ここで、 ω1=ωΟ— Δ ω、 ω2=ωΟ+Δ ωとし、 ω 1 'tに対する磁場 Β7の位相遅 れ 07と co2'tに対する磁場 B8の位ネ目遅れ 08との関係を 08= 07+ Δ 08とし、 虚軸に対するベクトル Vaの角度 Θ 00と実軸に対するベクトル Vbの角度 Θ 01との関 係を 001= Θ 00+ Δ 001としたとき、式(50)に 001= Θ 00+ Δ 001、 ω1=ωΟ Δ ωおよび式(18)を代入したときの電極間起電力 E61は次式で表される。
E61=rk- (ωθ- Δ ω) -b7-exp{j- (π/2+ Θ 7+ Θ 00)}
+ γ -rk-V-b7-exp{j- ( Θ 7+ Θ 00+ Δ θ 01) }
=rk-exp{j- ( Θ 7+ Θ 00)}-b7
•{(ωθ- Δ ω) -exp(j- π/2)
+ γ -V-exp(j- Δ θ 01)} · · · (52)
[0084] また、式(51)に 08= θ 7+ Δ θ 8, θ 01= θ 00+ Δ 001、 ω2=ωΟ+Δ ωお よび式(18)を代入したときの電極間起電力 Ε62は次式で表される。
E62=rk- (ωΟ+ Δ ω) -b8
•exp{j- (- π/2+ θ 7+ Δ θ 8+ θ 00)
+ γ -rk-V-b8-exp{j- ( θ 7+ Δ θ 8+ θ 00+ Δ 001)}
=rk-exp{j- ( Θ 7+ Θ 00) } -b8-exp (j · Δ θ 8)
•[(ωΟ+ Δ ω) -exp{j- (- π/2)}
+ γ -V-exp(j- Δ θ 01)] · · · (53)
[0085] 式(52)、式(53)より、電極間起電力 E61と Ε62との和 Es6および差 Ed6は次式の ようになる。
Es6=E61+E62
=rk-exp{j- ( Θ 7+ Θ 00)}-b7
•{(ωθ- Δ ω) -exp(j- π/2) + γ -V-exp(j- Δ θ 01)}
+rk-exp{j- ( Θ 7+ Θ 00) } -b8-exp(j- Δ θ 8)
•[(ωΟ+ Δ ω) -exp{j- (- π/2)}
+ y -V-exp(j- Δ θ 01)]
=rk-exp{j- ( Θ 7+ Θ 00)}
•[ωΟ-expG· π/2) -{b7-b8-exp(j- Δ θ 8)}
- Δ ω -exp(j- π/2) -{b7 + b8-exp(j- Δ θ 8)}
+ γ -V-exp(j- Δ θ 01) -{b7+b8-exp(j- Δ θ 8)}] · · · (54) [0086] Ed6=E61-E62
=rk-exp{j- ( Θ 7+ θ 00)}-b7
•{(ωθ- Δ ω) -exp(j- π/2) + γ -V-exp(j- Δ θ 01)}
-rk-exp{j- ( Θ 7+ θ 00) } -b8-exp(j- Δ θ 8)
•[(ωΟ+ Δ ω) -exp{j- (- π/2)}
+ γ -V-exp(j- Δ θ 01)]
=rk-exp{j- ( Θ 7+ θ 00)}
•[ωΟ-expG· π/2) -{b7 + b8-exp(j- Δ θ 8)}
- Δ ω -exp(j- π/2) -{b7-b8-exp(j- Δ θ 8)}
+ γ -V-exp(j- Δ θ 01) -{b7-b8-exp(j- Δ θ 8)}] …(55) [0087] ここで初期状態 (校正時の状態)において、第 1の励磁コイル 3aから発生する磁場 B7と第 2の励磁コイル 3bから発生する磁場 B8とを等しく設定しておくと、その後の磁 場 B7と B8との差は小さくなり、次式の条件が成り立つ。
I b7+b8-exp(j- Δ Θ 8) | > | b7-b8-exp(j- Δ Θ 8) | · · · (56) 式(56)にお!/、て、 I b7+b8-exp(j- Δ Θ 8) | ίま複素べクトノレ b7+b8'exp(j' Δ 08)の大きさを表し、 I b7— b8'exp(j' Δ 08) |は複素べクトノレ b7— b8'exp(j' Δ 08)の大きさを表す。 [0088] また、通常 ωΟ>γ·ν、 ω 0> Δ ωが成り立つことから、式(56)の条件を考慮する と、式(55)において次式の条件が成り立つ。
I ωΟ·Θχρ(ΐ· π/2) -{b7 + b8-exp(j- Δ θ 8)} |
> I - Δ ω -exp(j- π/2) -{b7-b8-exp(j- Δ θ 8)}
+ γ - V-expG - Δ θ 01) -{b7-b8-exp(j- Δ θ 8) } | · · · (57)
[0089] 式(57)において、 I ωΟ-expG· π/2) -{b7+b8-exp(j- Δ θ 8) } |は複素べク トル coO'exp(j. π/2) '{b7 + b8'exp(j. Δ 08)}の大きさを表し、 | — Aco'exp( j- π/2) -{b7-b8-exp(j- Δ θ 8) } + γ -V-exp(j- Δ θ 01) · {b7— b8'exp (j · Δ Θ8)} Iは複素べクトノレ一 Δ ω -exp(j- π/2) -{b7-b8-exp(j- Δ θ 8) } + γ -V- exp (j - Δ θ 01) -{b7-b8-exp(j- Δ θ 8)}の大きさを表す。
[0090] 式(57)の条件を用いて、起電力差 Ed6を近似した電極間起電力 EdA6は次式の ように表される。
EdA6=Ed6 · · · (58)
EdA6=rk-exp{j- ( Θ7+ θ 00)}
• ωΟ-expG· π/2) -{b7+b8-exp(j- Δ θ 8)} · · · (59)
[0091] 電極間起電力 EdA6は、流速の大きさ Vに関係しないので、 3 AZ 3 tにより発生 する成分のみとなる。この電極間起電力 EdA6を用いて起電力和 Es6 (合成ベクトル Va+Vb)中の vXB成分の流速の大きさ Vにかかる係数 (スパン)を正規ィ匕する。以 上の電極間起電力 E61, E62, EdA6、起電力和 Es6、起電力差 Ed6を複素べタト ル表現した図を図 9に示す。図 9中の E61vXBは、電極間起電力 E61における vX B成分 rk'exp{j' ( Θ7+ Θ 00)}-b7- γ -V-exp(j- Δ θ 01)を表し、 Ε62νΧΒは、 電極間起電力 E62における vXB成分 rk'exp{j' ( Θ7+ ΘΟΟ)}·γ -V-exp(j- Δ θ 01) -b8-exp(j- Δ θ 8)を表し、 E613 AZ3tは、電極間起電力 E61における 3 A Z 3 t成分 rk'exp{j' ( θ 7+ ΘΟΟ)}·(ωΟ-Δ ω) -exp(j- π/2) 'b7を表し、 E62 dA/d tは、電極間起電力 E62における 3 A/ 3 t成分 rk'exp{j -(Θ 7+ ΘΟΟ)} • (ωΟ+ Δ ω) -exp{j- (- π/2)}·Β8·Θχρ(ΐ· Δ θ 8)を表す。
[0092] 式(54)の起電力和 Es6を式(59)の電極間起電力 EdA6で正規化し、 ωθ倍した 結果を Εη6とすれば、正規化起電力 Εη6は式(60)のようになる。 EΕnη66== ((EEss66//EEddAA66)) ·· ωωθθ
==rrkk--eexxpp{{jj-- (( ΘΘ77++ Θθ 0000))}}
••[[ωωΟΟ--eexxppGG·· ππ//22)) --{{bb77--bb88--eexxpp((jj-- ΔΔ Θθ 88))}}
-- ΔΔ ωω --eexxpp((jj-- ππ//22)) --{{bb77 ++ bb88--eexxpp((jj-- ΔΔ θθ 88))}}
++ γγ -·Vν-·eΘxχpρ((jΐ-· ΔΔ θθ 0011)) --{{bb77++bb88--eexxpp((jj-- ΔΔ θθ 88))}}]]
//[[rrkk--eexxpp{{jj--((0077++ 000000))}}
•• ωωΟΟ--eexxppGG·· ππ//22)) --{{bb77 ++ bb88--eexxpp((jj-- ΔΔ θθ 88))}}]]·· ωωθθ
== WW00--{{bb77--bb88--eexxpp((jj-- ΔΔ θθ 88))}}
//{{bb77++bb88--eexxpp((jj-- ΔΔ θθ 88))}} -- ΔΔ ωω
++ [[ γγ ··ΘΘχχρρ{{]]·· ((-- ππ//22++ΔΔ ΘΘ0011))}}]]··νν ·· ·· ·· ((6600))
[[00009933]] 式式 ((6600))のの右右辺辺第第 33項項がが、、 ννΧΧΒΒにによよりり発発生生すするる成成分分をを 33 ΑΑΖΖ 33 ttにによよりり発発生生すするる成成分分 でで正正規規化化ししたた項項ととななるる。。以以上上のの正正規規ィィ匕匕処処理理のの様様子子をを複複素素ベベククトトルル表表現現ししたた図図をを図図 1100 にに示示すす。。図図 1100中中のの EEss66vvXXBBはは、、起起電電力力和和 EEss66ににおおけけるる vvXXBB成成分分をを表表しし、、 nn((vvXXBB)) はは、、正正規規ィィ匕匕さされれたた vvXXBB成成分分 [[γγ ''eexxpp{{jj'' ((―― ππ//22 ++ ΔΔ ΘΘ0011))}}]] ''VVをを表表すす。。ななおお、、起起 電電力力和和 EEss66をを電電極極間間起起電電力力 EEddAA66でで正正規規化化ししたた結結果果をを ωω 00倍倍ししたた理理由由はは、、流流速速のの大大 ききささ VVにに係係るる右右辺辺第第 33項項力力 励励磁磁角角周周波波数数 ωωθθをを消消去去すするるたためめででああるる。。式式 ((6600))にによよれれ ばば、、流流速速のの大大ききささ VVににかかかかるる複複素素係係数数はは、、 γγのの大大ききささ、、—― ππΖΖ22++ ΔΔ ΘΘ 0011のの実実軸軸かからら のの角角度度ををももつつ。。係係数数 γγおおよよびび角角度度 ΔΔ ΘΘ 0011はは校校正正等等にによよりり予予めめ求求めめるるここととががででききるる定定 数数でであありり、、式式 ((6600))のの右右辺辺第第 33項項はは被被測測定定流流体体のの流流速速がが変変化化ししなないいかかぎぎりり一一定定ととななるる
[[00009944]] ししたたががっってて、、 33 ΑΑΖΖ 33 tt成成分分をを用用いいてて vvXXBB成成分分のの正正規規ィィ匕匕をを行行ううここととにによよりり、、磁磁場場ののシシ フフトトゃゃ位位相相変変化化にによよるる誤誤差差をを自自動動的的にに補補正正すするるススパパンン補補正正をを実実現現すするるここととががででききるる。。 ここここでで、、測測定定管管軸軸 PPAAXXとと直直交交すするる、、電電極極 22aa,, 22bbをを含含むむ平平面面 PPLLNN力力もも第第 11のの励励磁磁ココィィ ルル 33aaままででのの距距離離 ddllとと平平面面 PPLLNN力力もも第第 22のの励励磁磁ココイイルル 33bbままででのの距距離離 dd22ととがが略略等等ししいいとと すするるとと((ddll dd22))、、 bb77 bb88、、 ΔΔ θθ 88 00ににななるる。。ここののとときき、、流流速速のの大大ききささ VVはは式式((6600))よよりり 次次式式ののよよううにに表表さされれるる。。
VV== II ((ΕΕηη66++ΔΔ ωω))//[[γγ ··ΘΘχχρρ{{]]·· ((-- ππ//22++ΔΔ 000011))}}]] ||
* ••••••((6611)) [0095] なお、前記基本原理で用いた定数および変数と、本実施例の定数および変数との 対応関係は以下の表 2のとおりである。本実施例は、表 2から明らかなように、前記基 本原理を具体的に実現する 1つの例である。
[0096] [表 2] 2 ]
基本原理と第 2実施例の対応関係
Figure imgf000028_0001
[0097] 次に、本実施例の電磁流量計の具体的な構成とその動作について説明する。図 1 1は本実施例の電磁流量計の構成を示すブロック図であり、図 6と同一の構成には同 一の符号を付してある。本実施例の電磁流量計は、測定管 1と、電極 2a, 2bと、第 1 、第 2の励磁コイル 3a, 3bと、第 1、第 2の励磁コイル 3a, 3bに励磁電流を供給する 電源部 4aと、電極 2a, 2bで検出される合成起電力のうち第 1の周波数と第 2の周波 数の 2つの周波数成分の振幅と位相を求め、これらの振幅と位相に基づいて 2つの 周波数成分の起電力差を 3 AZ 3 t成分として抽出する信号変換部 5aと、電極 2a, 2bで検出される合成起電力のうち 2つの周波数成分の起電力和の中の v X B成分に 含まれるスパンの変動要因を抽出された 3 AZ 3 t成分に基づいて除去し、この変動 要因を除去した結果力 被測定流体の流量を算出する流量出力部 6aとを有する。 第 1、第 2の励磁コイル 3a, 3bと電源部 4aとは、平面 PLNに対して非対称、かつ時 間変化する磁場を被測定流体に印加する励磁部となる。 [0098] 本実施例では、前述のとおり、平面 PLN力 第 1の励磁コイル 3aまでの距離 dlと 平面 PLN力も第 2の励磁コイル 3bまでの距離 d2とが略等しいとする。
電源部 4aは、第 1の角周波数 ω 1 = ω 0— Δ ωの第 1の正弦波励磁電流を第 1の 励磁コイル 3aに供給すると同時に、第 2の角周波数 ω 2= ω Ο+ Δ ωの第 2の正弦 波励磁電流を第 2の励磁コイル 3bに供給する。このとき、第 1の正弦波励磁電流と第 2の正弦波励磁電流の振幅は同一である。
[0099] 図 12は信号変換部 5aと流量出力部 6aの動作を示すフローチャートである。まず、 信号変換部 5aは、電極間起電力 E61と E62との起電力和 Es6の振幅 rs6を求めると 共に、実軸と起電力和 Es6との位相差 φ 36を図示しない位相検波器により求める。ま た、信号変換部 5aは、電極間起電力 E61と E62との起電力差 Ed6の振幅 rd6を求め ると共に、実軸と起電力差 Ed6との位相差 φ d6を位相検波器により求める(図 12ス テツプ S201)。電極間起電力 E61, E62は、バンドパスフィルタやコムフィルタによつ て周波数分離することができる。
[0100] 、て、信号変換部 5aは、起電力和 Es6の実軸成分 Es6xと虚軸成分 Es6y、およ び起電力差 Ed6の実軸成分 Ed6xと虚軸成分 Ed6yを次式のように算出する (ステツ プ S202)。
Es6x=rsD 'cos ( s6) … (62)
Es6y=rs6 · sin ( φ s6) · · · (63)
Ed6x=rd6 'cos ( d6) … (64)
Ed6y=rd6 · sin ( φ d6) … (65)
[0101] 式 (62)〜式 (65)の算出後、信号変換部 5aは、起電力差 Ed6を近似した起電力 E dA6の大きさと角度を求める(ステップ S203)。このステップ S203の処理は、 3 AZ 3 t成分および vX B成分を求めることに対応する処理であり、式(59)の算出に相当 する処理である。信号変換部 5aは、起電力差 Ed6を近似した起電力 EdA6の大きさ I EdA6 Iを次式のように算出する。
I EdA6 I = (Ed6x2+Ed6y2) 1 2 · · · (66)
[0102] そして、信号変換部 5aは、実軸に対する電極間起電力 EdA6の角度 ZEdA6を次 式のように算出する。 ZEdA6=tan_1 (Ed6y/Ed6x) · · · (67)
以上で、ステップ S203の処理が終了する。
[0103] 次に、流量出力部 6aは、起電力和 Es6を電極間起電力 EdA6で正規ィ匕した正規 化起電力 En6の大きさと角度を求める(ステップ S204)。このステップ S204の処理は 、式 (60)の算出に相当する処理である。流量出力部 6aは、正規化起電力 En6の大 きさ I En6 Iを次式のように算出する。
I En6 I = (rs6/ | EdA6 | ) · ω θ · · · (68)
[0104] また、流量出力部 6aは、実軸に対する正規ィ匕起電力 En6の角度 ZEn6を次式の ように算出する。
ZEn6= s6- ZEdA6 · · · (69)
これで、ステップ S204の処理が終了する。
[0105] 続いて、流量出力部 6aは、被測定流体の流速の大きさ Vを算出する (ステップ S20
5)。このステップ S205の処理は、式(61)の算出に相当する処理である。流量出力 部 6aは、 (Εη6+ Δ ω )の実軸成分 En6xと(Εη6+ Δ ω )の虚軸成分 En6yを次式 のように算出する。
En6x= I En6 | cos (ZEn6) + Δ ω · · · (70)
En6y= | Εη6 | sin (ZEn6) · · · (71)
[0106] そして、流量出力部 6aは、被測定流体の流速の大きさ Vを次式のように算出する。
V= (En6x2+En6y2) 1 2/ γ · · · (72)
これで、ステップ S205の処理が終了する。信号変換部 5aと流量出力部 6aは、以上 のようなステップ S201〜S205の処理を例えばオペレータによって計測終了が指示 されるまで (ステップ S206において YES)、一定周期毎に行う。
[0107] 以上のように、本実施例では、第 1、第 2の励磁コイル 3a, 3bからそれぞれ大きさが 等しぐかつ周波数が異なる磁場を被測定流体に印加したとき、電極 2aと 2b間の起 電力のうち角周波数 ω ΐの成分の起電力 E61と角周波数 ω 2の成分の起電力 E62と の起電力差 Ed6が近似的に 3 AZ 3 成分として抽出できることに着眼し、この 3 A / d t成分を用いて起電力和 Es6 (合成ベクトル Va+Vb)中の vX B成分の流速の 大きさ Vにかかるスパンを正規ィ匕して、スパン変動要素を消去するようにしたので、正 確なスパン補正を自動的に行うことができ、高精度の流量計測を行うことができる。
[0108] なお、本実施例では、電極間起電力 E61と E62とから起電力差 Ed6を取り出し、こ の起電力差 Ed6を用いて起電力和 Es6を正規ィ匕する例について示した力 これに限 るものではなぐ起電力和 Es6を近似的に 3 AZ 3 成分として抽出し、この 3 AZ 3 t成分を用いて起電力差 Ed6を正規化するようにしてもょ ヽ。
[0109] [第 3実施例]
次に、本発明の第 3実施例について説明する。本実施例は、第 1実施例の電磁流 量計に対して電極を 1対追加したものであり、前記基本原理で説明した方法のうち、 d A/ d t成分のベクトル Vaを抽出する方法として第 2の抽出方法を用い、スパン補 正の方法として第 2の補正方法を用いるものである。すなわち、本実施例の電磁流量 計は、 1個の励磁コイルと 2対の電極とを有する。新たに追加する第 2の電極を既存 の第 1の電極と同じ側に追加した場合には、第 1実施例の冗長な構成となる。したが つて、第 2の電極は、励磁コイルを挟んで第 1の電極と異なる側に配設する必要があ る。
[0110] 図 13は本実施例の電磁流量計の原理を説明するためのブロック図である。この電 磁流量計は、測定管 1と、被測定流体に印加される磁場および測定管軸 PAXの双 方と直交し、かつ被測定流体と接触するように測定管 1に対向配置され、前記磁場と 被測定流体の流れとによって生じた起電力を検出する第 1の電極 2a, 2bおよび第 2 の電極 2c, 2dと、測定管軸 PAXと直交する、第 1の電極 2a, 2bを含む平面を PLN1 、測定管軸 PAXと直交する、第 2の電極 2c, 2dを含む平面を PLN2としたとき、平面 PLN1を境とする測定管 1の前後で非対称な、時間変化する磁場を被測定流体に印 加すると同時に、平面 PLN2を境とする測定管 1の前後で非対称な、時間変化する 磁場を被測定流体に印加する励磁コイル 3とを有する。
[0111] 第 1の電極 2a, 2bは、励磁コイル 3の軸を含む、測定管軸 PAXの方向と垂直な平 面 PLN3から例えば上流側にオフセット距離 d3だけ離れた位置に配設される。第 2 の電極 2c, 2dは、平面 PLN3から例えば下流側にオフセット距離 d4だけ離れた位置 に配設され、平面 PLNを挟んで第 1の電極 2a, 2bと対向するように配設される。
[0112] ここで、励磁コイル 3から発生する磁場 Bdのうち、電極 2a, 2b間を結ぶ電極軸 EA XI上において電極軸 EAX1および測定管軸 PAXの双方と直交する磁場成分 (磁 束密度) B9と、励磁コイル 3から発生する磁場 Bdのうち、電極 2c, 2d間を結ぶ電極 軸 EAX2上において電極軸 EAX2および測定管軸 PAXの双方と直交する磁場成 分 (磁束密度) B10は、以下のように与えられるものとする。
B9=b9 -cos ( W 0-t- Θ 9) · · · (73)
B10=blO-cos ( W 0-t- θ 10) · · · (74)
[0113] 但し、 B9、 BIOは 1つの励磁コイル 3から発生しているので、 b9と blO、 0 9と 0 10 は互いに関係があり、独立変数ではない。式(73)、式(74)において、 b9, blOはそ れぞれ磁束密度 B9, B10の振幅、 ω θは角周波数、 0 9は磁束密度 Β9と ω O'tとの 位相差 (位相遅れ)、 Θ 10は磁束密度 B10と co O'tとの位相差である。以下、磁束密 度 B9を磁場 B9とし、磁束密度 B10を磁場 B10とする。
[0114] 被測定流体の流速が 0の場合、発生する渦電流は、磁場の変化に起因する成分の みとなり、磁場 Bdの変化による渦電流 Iは、図 14に示すような向きとなる。したがって 、電極軸 EAX1と測定管軸 PAXとを含む平面内において磁場 Bdの変化によって発 生する電極 2a, 2b間の、流速と無関係な起電力 Elと、電極軸 EAX2と測定管軸 PA Xとを含む平面内において磁場 Bdの変化によって発生する電極 2c, 2d間の、流速と 無関係な起電力 E2とは、図 14に示すように互いに逆向きとなる。
[0115] 被測定流体の流速が V(V≠0)の場合、発生する渦電流には、流速 0のときの渦電 流 Iに加えて、被測定流体の流速ベクトル Vに起因する成分 vX Bdが発生するため、 流速ベクトル Vと磁場 Bdによる渦電流 Ivは、図 15に示すような向きとなる。したがって 、流速ベクトル Vと磁場 Bdによって発生する電極 2a, 2bの起電力 Evlと、流速べタト ル Vと磁場 Bdによって発生する電極 2c, 2d間の起電力 Ev2とは、同じ向きとなる。
[0116] 図 14、図 15で説明した電極間起電力の向きを考慮すると、磁場の時間変化に起 因する電極間起電力と被測定流体の流速に起因する電極間起電力とを合わせた、 電極 2a, 2b間の第 1の電極間起電力 E71は、式(20)と同様の次式で表される。
E71 =rk- W 0-b9 -exp{j - ( π /2+ θ 9+ θ 00) }
+rkvb9 -exp{j - ( θ 9+ θ 01) } · · · (75)
[0117] また、磁場の時間変化に起因する電極間起電力と被測定流体の流速に起因する 電極間起電力とを合わせた、電極 2c, 2d間の第 2の電極間起電力 E72は、式(20) と同様の次式で表される。
E72=rk- ωΟ-blO-expij· (- π/2+ θ 10+ θ 00)
+rkvblO-exp{j- ( θ 10+ θ 01)} · · · (76)
[0118] 式(75)、式(76)より、第 1の電極間起電力 E71と第 2の電極間起電力 Ε72との和 Es7および差 Ed7は次式のようになる。
Es7=E71+E72
=rk- W0-b9-exp{j- (π/2+ θ 9+ θ 00)}
+rkvb9-exp{j- ( θ 9+ θ 01)}
+rk- ωΟ-blO-expij· (- π/2+ θ 10+ θ 00)}
+rkvblO-exp{j- ( θ 10+ θ 01)} · · · (77)
[0119] Ed7=E71-E72
=rk-- W0-b9-exp{j- (π/2+ θ 9+ θ 00)}
+rkvb9-exp{j- ( θ 9+ θ 01)}
-rk- ωΟ-blO-expij· (- π/2+ θ 10+ θ 00)}
-rkvblO-exp{j- ( θ 10+ θ 01)} · · · (78)
[0120] ここで、 coO'tに対する磁場 Β9の位相遅れ 09と coO'tに対する磁場 BIOの位相遅 れ Θ 10との関係を Θ 10= θ 9+Δ Θ 10とし、虚軸に対するベクトル Vaの角度 Θ 00 と実軸〖こ対するベクトノレ Vbの角度 Θ 01との関係を Θ01= Θ00+Δ Θ 01としたとき 、式(77)、式(78)に Θ 10= Θ 9+ Δ 010、 Θ 01= Θ 00+ Δ Θ 01および式(18) を代入したときの起電力和 Es7、起電力差 Ed7は次式のようになる。
[0121] Es7=rk- W0-b9-exp{j- (π/2+ θ 9+ θ 00)}
+ γ -rk-V-b9-exp{j- ( θ 9+ θ 00+ Δ θ 01) }
+rk- ωΟ-blO-expij· (- π/2+ θ 9+ Δ θ 10+ θ 00)}
+ γ -rk-V-blO
•exp{j- ( θ 9+ Δ θ 10+ θ 00+ Δ 001)}
=rk-exp{j- ( θ 9+ θ 00)}
•[ωΟ-expG· π/2) -{bg-blO-expG- Δ θ 10) } + y -V-exp(j- Δ θ 01)
•{b9+bl0-exp(j- Δ θ 10)}] · · · (79)
[0122] Ed7=rk- W0-b9-exp{j- (π/2+ θ 9+ θ 00)}
+ γ -rk-V-b9-exp{j- ( θ 9+ θ 00+ Δ θ 01) }
-rk- ωΟ-blO-expij· (- π/2+ θ 9+ Δ θ 10+ θ 00)} γ -rk-V-blO
•exp{j- ( θ 9+ Δ θ 10+ θ 00+ Δ 001)}
=rk-exp{j- ( θ 9+ θ 00)}
•[ωΟ-expG· π/2) -{bg+blO-expG- Δ θ 10) }
+ γ -V-exp(j- Δ θ 01)
•{b9-blO-exp(j- Δ θ 10)}] · · · (80)
[0123] ここで、励磁コイル 3の軸を含む平面 PLN3から電極 2a, 2b間を結ぶ電極軸 EAX 1までの距離 d3と平面 PLN3から電極 2c, 2d間を結ぶ電極軸 EAX2までの距離 d4 とを等距離とし、初期状態 (校正時の状態)において磁場 B9と B10とを等しく設定し ておくと、その後の磁場 B9と B10との差は小さくなり、次式の条件が成り立つ。
I b9+bl0-exp(j- Δ Θ 10) |
> I b9-bl0-exp(j- Δ Θ 10) | ··· (81)
式(81)にお!/、て、 I b9+bl0-exp(j- Δ Θ 10) | ίま複素べクトノレ b9+bl0'exp(j • Δ Θ 10)の大きさを表し、 I b9-bl0-exp(j- Δ Θ 10) |は複素ベクトル b9—bl0 •expG-Δ Θ 10)の大きさを表す。
[0124] また、通常 ω0> γ 'Vが成り立つことから、式(81)の条件を考慮すると、式(80)に お!、て次式の条件が成り立つ。
I ωΟ-expG· π/2) -{bg + blO-expG- Δ θ 10)} |
> I γ -V-exp(j- Δ θ 01) '{b9— blO'exp(j. Δ θ 10) } | · · · (82) [0125] 式(82)において、 I ωΟ-expG· π/2) -{bg+blO-expG- Δ θ 10) } |は複素 ベクトノレ oO'exp(j' πΖ2) '{b9 + bl0'exp(j' Δ 010)}の大きさを表し、 | γ -V· exp (j - Δ θ 01) -{b9-bl0-exp(j- Δ θ 10)} |は複素べクトノレ γ -V-exp(j- Δ θ 01) '{b9— blO'exp(j. Δ θ 10)}の大きさを表す。 [0126] 式(82)の条件を用いて、起電力差 Ed7を近似した電極間起電力 EdA7は次式の ように表される。
EdA7=Ed7 · · · (83)
EdA7=rk-exp{j- ( θ 9+ θ 00)}
• ωΟ-expG· π/2) -{bg+blO-expG- Δ θ 10)} · · · (84)
[0127] 式 (84)が成り立つことから、励磁周波数を 2値に変化させることなぐ dA/d tによ つて発生する成分を抽出することができる。電極間起電力 EdA7は、流速の大きさ V に関係しないので、 3 AZ 3 tにより発生する成分のみとなる。この電極間起電力 Ed A7を用いて起電力和 Es7 (合成ベクトル Va+ Vb)中の vX B成分の流速の大きさ V にかかる係数 (スパン)を正規化する。以上の電極間起電力 E71, E72, EdA7、起 電力和 Es7、起電力差 Ed7を複素ベクトル表現した図を図 16に示す。図 16中の E7 IvXBは、電極間起電力 E71における vXB成分 rk'exp{j' ( Θ 9+ Θ 00) } -b9- γ · V-exp(j- Δ θ 01)を表し、 Ε72νΧΒは、電極間起電力 E72における vXB成分 rk' exp{j- ( θ 9+ θ 00)}· γ -V-exp(j- Δ θ 01) -blO-expG- Δ θ 10)を表し、 E71 dA/d tは、電極間起電力 E71における 3 A/ 3 t成分 rk'exp{j -(Θ 9+ Θ00)} ·ωΟ·Θχρ(]·π/2) 'b9を表し、 E723 AZ 3 tは、電極間起電力 E72における 3 A
Figure imgf000035_0001
( θ 9+ θ 00) } · ωθ-expij· (- π /2) } -blO-exp (j · Δ θ 1 0)を表す。
[0128] 式(79)の起電力和 Es7を式(84)の電極間起電力 EdA7で正規化し、 ωθ倍した 結果を Εη7とすれば、正規化起電力 Εη7は式(85)のようになる。
En7= (Es7/EdA7) · ωθ
=rk-exp{j- ( θ 9+ θ 00)}
•[ωΟ-expG· π/2) -{bg-blO-expG- Δ θ 10) }
+ y -V-exp(j- Δ θ 01)
•{b9+bl0-exp(j- Δ θ 10)}]
/[rk-exp{j- ( θ 9+ θ 00)}
• ω 0 · exp (j · π /2)
•{b9+bl0-exp(j- Δ θ 10)}]· ωθ coO'{b9— blO-exp(j- Δ Θ 10)}
/{b9+bl0-exp(j- Δ Θ 10)}
+ [γ ·Θχρ{]·(-π/2+Δ Θ01)}]·Υ •••(85)
[0129] 式 (85)の右辺第 2項が、 νΧΒにより発生する成分を 3 ΑΖ 3 tにより発生する成分 で正規化した項となる。以上の正規ィ匕処理の様子を複素ベクトル表現した図を図 17 に示す。図 17中の Es7vXBは、起電力和 Es7における vXB成分を表し、 n(vXB) は、正規ィ匕された vXB成分 [γ 'exp{j' (― π/2 + Δ Θ01)}] 'Vを表す。なお、起 電力和 Es7を電極間起電力 EdA7で正規化した結果を ω 0倍した理由は、流速の大 きさ Vに係る右辺第 2項力 励磁角周波数 ωθを消去するためである。式 (85)によれ ば、流速の大きさ Vにかかる複素係数は、 γの大きさ、— πΖ2+ Δ Θ 01の実軸から の角度をもつ。係数 γおよび角度 Δ Θ 01は校正等により予め求めることができる定 数であり、式 (85)の右辺第 2項は被測定流体の流速が変化しないかぎり一定となる
[0130] したがって、 3 ΑΖ 3 t成分を用いて vXB成分の正規ィ匕を行うことにより、磁場のシ フトゃ位相変化による誤差を自動的に補正するスパン補正を実現することができる。 ここで、再び励磁コイル 3の軸を含む平面 PLN3から電極 2a, 2b間を結ぶ電極軸 E AX1までの距離 d3と平面 PLN3力 電極 2c, 2d間を結ぶ電極軸 EAX2までの距離 d4とが略等しいとして、 b9^blO、 Δ Θ 10 0とすると、流速の大きさ Vは式(85)より 次式のように表される。
V= I Εη7/[γ ·Θχρ{]· (- π/2+Δ 001)}] |
= I En7 I / y . · · (86)
[0131] なお、前記基本原理で用いた定数および変数と、本実施例の定数および変数との 対応関係は以下の表 3のとおりである。本実施例は、表 3から明らかなように、前記基 本原理を具体的に実現する 1つの例である。
[0132] [表 3] ほ 3 ]
基本原理と第 3実施例の対応関係
Figure imgf000037_0001
[0133] 次に、本実施例の電磁流量計の具体的な構成とその動作について説明する。図 1 8は本実施例の電磁流量計の構成を示すブロック図であり、図 13と同一の構成には 同一の符号を付してある。本実施例の電磁流量計は、測定管 1と、第 1の電極 2a, 2 bと、第 2の電極 2c, 2dと、励磁コイル 3と、励磁コイル 3に励磁電流を供給する電源 部 4bと、第 1の電極 2a, 2bで検出される第 1の合成起電力と第 2の電極 2c, 2dで検 出される第 2の合成起電力の各々について振幅と位相を求め、これらの振幅と位相 に基づいて第 1の合成起電力と第 2の合成起電力との起電力差を 3 AZ 3 t成分とし て抽出する信号変換部 5bと、第 1の合成起電力と第 2の合成起電力との起電力和の 中の v X B成分に含まれるスパンの変動要因を抽出された d A/ d t成分に基づいて 除去し、この変動要因を除去した結果から被測定流体の流量を算出する流量出力 部 6bとを有している。
[0134] 本実施例では、前述のとおり、励磁コイル 3の軸を含む平面 PLN3から電極 2a, 2b 間を結ぶ電極軸 EAX1までの距離 d3と平面 PLN3から電極 2c, 2d間を結ぶ電極軸 EAX2までの距離 d4とが略等し 、とする。
電源部 4bは、角周波数 ω θの正弦波励磁電流を励磁コイル 3に供給する。 [0135] 信号変換部 5bと流量出力部 6bの処理の流れは第 2実施例と同様であるので、図 1 2の符号を用いて、信号変換部 5bと流量出力部 6bの動作を説明する。まず、信号変 換部 5bは、第 1の電極間起電力 E71と第 2の電極間起電力 E72との起電力和 Es7 の振幅 rs7を求めると共に、実軸と起電力和 Es7との位相差 φ s7を図示しない位相 検波器により求める。また、信号変換部 5bは、第 1の電極間起電力 E71と第 2の電極 間起電力 E72との起電力差 Ed7の振幅 rd7を求めると共に、実軸と起電力差 Ed7と の位相差 φ 17を位相検波器により求める(図 12ステップ S201)。電極間起電力 E71 , E72は、バンドパスフィルタやコムフィルタによって周波数分離することができる。
[0136] 続、て、信号変換部 5bは、起電力和 Es7の実軸成分 Es7xと虚軸成分 Es7y、およ び起電力差 Ed7の実軸成分 Ed7xと虚軸成分 Ed7yを次式のように算出する (ステツ プ S202)。
Es7x=rs / ' cos ( φ s / ) … (87)
Es7y=rs7 · sin ( φ s7) · · · (88)
Ed7x=rd7 - cos ( d7) …(89)
Ed7y=rd7 · sin ( φ d7) · · · (90)
[0137] 式 (87)〜式(90)の算出後、信号変換部 5bは、起電力差 Ed7を近似した起電力 E dA7の大きさと角度を求める(ステップ S203)。このステップ S203の処理は、 3 AZ d t成分および V X B成分を求めることに対応する処理であり、式 (84)の算出に相当 する処理である。信号変換部 5bは、起電力差 Ed7を近似した起電力 EdA7の大きさ I EdA7 Iを次式のように算出する。
I EdA7 I = (Ed7x2 + Ed7y2) 1 2 · · · (91)
[0138] そして、信号変換部 5bは、実軸に対する電極間起電力 EdA7の角度 ZEdA7を次 式のように算出する。
ZEdA7=tan_1 (Ed7y/Ed7x) · · · (92)
以上で、ステップ S203の処理が終了する。
[0139] 次に、流量出力部 6bは、起電力和 Es7を電極間起電力 EdA7で正規ィ匕した正規 化起電力 En7の大きさと角度を求める(ステップ S204)。このステップ S204の処理は 、式 (85)の算出に相当する処理である。流量出力部 6bは、正規化起電力 En7の大 きさ I En7 Iを次式のように算出する。
I En7 I = (rs7/ | EdA7 | ) · ω θ · · · (93)
[0140] また、流量出力部 6bは、実軸に対する正規ィ匕起電力 En7の角度 ZEn7を次式の ように算出する。
ZEn7= s7- ZEdA7 …(94)
これで、ステップ S204の処理が終了する。
[0141] 続いて、流量出力部 6bは、被測定流体の流速の大きさ Vを式 (86)により算出する
(ステップ S205)。なお、流速(流量)を求めるステップ S205で ZEn7を用いていな いが、この角度は校正時に求められる角度と比較することにより、より高精度な測定を 行う場合に使用し、スパン補正の本質的な動作と直接関係しないので、ここでの説明 は省略する。
信号変換部 5bと流量出力部 6bは、以上のようなステップ S201〜S205の処理を例 えばオペレータによって計測終了が指示されるまで (ステップ S206において YES)、 一定周期毎に行う。
[0142] 以上のように、本実施例では、励磁コイル 3の軸を含む平面 PLN3を挟んで対向す るように第 1の電極 2a, 2bと第 2の電極 2c, 2dとを配設し、電極 2a, 2b間を結ぶ電極 軸 EAX1上の磁場 B9と電極 2c, 2d間を結ぶ電極軸 EAX2上の磁場 BIOの大きさが 等しくなるようにしたとき、第 1の電極間起電力 E71と第 2の電極間起電力 E72との起 電力差 Ed7が近似的に 3 AZ 3 成分として抽出できることに着眼し、この 3 AZ 3 成分を用いて起電力和 Es7 (合成ベクトル Va+ Vb)中の v X B成分の流速の大きさ V にかかるスパンを正規ィ匕して、スパン変動要素を消去するようにしたので、正確なス パン補正を自動的に行うことができ、高精度の流量計測を行うことができる。また、本 実施例では、励磁角周波数として ω θのみを用いればよぐ第 1、第 2実施例のように 2つの励磁周波数を用いる必要がな 、。
[0143] なお、本実施例では、第 1の電極間起電力 E71と第 2電極間起電力 Ε72とから起 電力差 Ed7を取り出し、この起電力差 Ed7を用いて起電力和 Es7を正規ィ匕する例に ついて示した力 これに限るものではなぐ起電力和 Es7を近似的に 3 AZ 3 t成分 として抽出し、この 3 AZ 3 t成分を用いて起電力差 Ed7を正規ィ匕するようにしてもよ い。
[0144] なお、第 1〜第 3実施例においては、同相成分のノイズを除去できることから、矩形 波励磁方式を用いる必要がなぐ励磁電流に正弦波を用いる正弦波励磁方式を使 用できるので、高周波励時が可能となる。高周波励磁を用いることで、 lZfノイズを 除去することができ、流量変化に対する応答性を高めることができる。
[0145] また、第 1〜第 3実施例で使用する電極 2a, 2b, 2c, 2dとしては、図 19に示すよう に、測定管 1の内壁力 露出して被測定流体に接触する形式の電極でもよいし、図 2 0に示すように、被測定流体と接触しない容量結合式の電極でもよい。容量結合式の 場合、電極 2a, 2b, 2c, 2dは、測定管 1の内壁に形成されるセラミックやテフロン (登 録商標)等力もなるライニング 10によって被覆される。
[0146] また、第 1〜第 3実施例では、第 1の電極として 1対の電極 2a, 2bを使用し、第 2の 電極として 1対の電極 2c, 2dを使用している力 これに限るものではなぐ第 1の電極 と第 2の電極をそれぞれ 1個ずつにしてもよい。電極が 1個だけの場合には、被測定 流体の電位を接地電位にするための接地リングや接地電極が測定管 1に設けられて おり、 1個の電極に生じた起電力(接地電位との電位差)を信号変換部 5, 5a, 5bで 検出すればよい。電極軸は、 1対の電極を使用する場合はこの 1対の電極間を結ぶ 直線である。一方、電極が 1個だけの場合、この 1個の実電極を含む平面 PLN上に ぉ ヽて、測定管軸 PAXを挟んで実電極と対向する位置に仮想の電極を配置したと 仮定したとき、実電極と仮想の電極とを結ぶ直線が電極軸となる。
また、第 1〜第 3実施例において、信号変換部 5, 5a, 5b及び流量出力部 6, 6a, 6 bのうち、起電力の検出を除く構成は、 CPU、記憶装置およびインタフェースを備え たコンピュータとこれらのハードウェア資源を制御するプログラムによって実現すること ができる。
産業上の利用可能性
[0147] 本発明は、測定管内を流れる被測定流体の流量計測に適用することができる。

Claims

請求の範囲
[1] 被測定流体が流れる測定管と、
この測定管に配設され、前記流体に印加される磁場と前記流体の流れとによって 生じた起電力を検出する電極と、
この電極を含む、前記測定管の軸方向と垂直な第 1の平面に対して非対称かつ時 間変化する磁場を前記流体に印加する励磁部と、
前記電極で検出される、前記流体の流速とは無関係な 3 AZ 3 成分の起電力と 前記流体の流速に起因する v X B成分の起電力との合成起電力から、前記 3 AZ 3 t成分を抽出する信号変換部と、
前記抽出された 3 AZ 3 成分に基づいて、前記合成起電力の中の v X B成分の 流速の大きさ Vにかかる係数であるスパンの変動要因を除去し、この変動要因を除 去した結果力 前記流体の流量を算出する流量出力部とを備えることを特徴とする 電磁流量計。
[2] 請求項 1記載の電磁流量計において、
前記励磁部は、複数の励磁周波数により前記流体に前記磁場を印加し、 前記信号変換部は、前記電極で検出される合成起電力のうち少なくとも 2つの異な る周波数成分の振幅と位相を求めることにより前記 3 AZ 3 成分を抽出することを 特徴とする電磁流量計。
[3] 請求項 1記載の電磁流量計において、
前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第 1の平面からォ フセットを設けて離れた位置に配設された励磁コイルと、第 1の周波数と第 2の周波 数の異なる 2つの周波数成分を含む励磁電流を前記励磁コイルに供給する電源部と からなり、
前記信号変換部は、前記電極で検出される合成起電力のうち前記第 1の周波数と 前記第 2の周波数の 2つの周波数成分の振幅と位相を求め、これらの振幅と位相に 基づいて前記 2つの周波数成分の起電力差を前記 3 AZ 3 成分として抽出し、 前記流量出力部は、前記電極で検出される合成起電力のうち前記第 1の周波数成 分中の V X B成分又は前記第 2の周波数成分中の V X B成分に含まれるスパンの変 動要因を前記抽出された d A/ d t成分に基づ 、て除去し、この変動要因を除去し た結果力 前記流体の流量を算出することを特徴とする電磁流量計。
[4] 請求項 2記載の電磁流量計において、
前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第 1の平面からォ フセットを設けて離れた位置に配設された励磁コイルと、第 1の周波数と第 2の周波 数の異なる 2つの周波数成分を含む励磁電流を前記励磁コイルに供給する電源部と からなり、
前記信号変換部は、前記電極で検出される合成起電力のうち前記第 1の周波数と 前記第 2の周波数の 2つの周波数成分の振幅と位相を求め、これらの振幅と位相に 基づいて前記 2つの周波数成分の起電力差を前記 3 AZ 3 t成分として抽出し、 前記流量出力部は、前記電極で検出される合成起電力のうち前記第 1の周波数成 分中の V X B成分又は前記第 2の周波数成分中の V X B成分に含まれるスパンの変 動要因を前記抽出された d A/ d t成分に基づ 、て除去し、この変動要因を除去し た結果力 前記流体の流量を算出することを特徴とする電磁流量計。
[5] 請求項 1記載の電磁流量計において、
前記励磁部は、複数の励磁コイルからそれぞれ励磁周波数が異なる磁場を前記流 体に印加し、
前記信号変換部は、前記電極で検出される合成起電力のうち少なくとも 2つの異な る周波数成分の振幅と位相を求めることにより前記 3 AZ 3 t成分を抽出することを 特徴とする電磁流量計。
[6] 請求項 1記載の電磁流量計において、
前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第 1の平面から第 1のオフセットを設けて離れた位置に配設された第 1の励磁コイルと、前記第 1の平面 から第 2のオフセットを設けて離れた位置に、前記第 1の平面を挟んで前記第 1の励 磁コイルと対向するように配設された第 2の励磁コイルと、第 1の周波数の励磁電流を 前記第 1の励磁コイルに供給すると同時に、前記第 1の周波数と異なる第 2の周波数 の励磁電流を前記第 2の励磁コイルに供給する電源部とからなり、
前記信号変換部は、前記電極で検出される合成起電力のうち前記第 1の周波数と 前記第 2の周波数の 2つの周波数成分の振幅と位相を求め、これらの振幅と位相に 基づいて前記 2つの周波数成分の起電力差を前記 3 AZ 3 成分として抽出し、 前記流量出力部は、前記電極で検出される合成起電力のうち前記 2つの周波数成 分の起電力和の中の vX B成分に含まれるスパンの変動要因を前記抽出された 3 A / d t成分に基づいて除去し、この変動要因を除去した結果力 前記流体の流量を 算出することを特徴とする電磁流量計。
[7] 請求項 5記載の電磁流量計において、
前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第 1の平面から第 1のオフセットを設けて離れた位置に配設された第 1の励磁コイルと、前記第 1の平面 から第 2のオフセットを設けて離れた位置に、前記第 1の平面を挟んで前記第 1の励 磁コイルと対向するように配設された第 2の励磁コイルと、第 1の周波数の励磁電流を 前記第 1の励磁コイルに供給すると同時に、前記第 1の周波数と異なる第 2の周波数 の励磁電流を前記第 2の励磁コイルに供給する電源部とからなり、
前記信号変換部は、前記電極で検出される合成起電力のうち前記第 1の周波数と 前記第 2の周波数の 2つの周波数成分の振幅と位相を求め、これらの振幅と位相に 基づいて前記 2つの周波数成分の起電力差を前記 3 AZ 3 t成分として抽出し、 前記流量出力部は、前記電極で検出される合成起電力のうち前記 2つの周波数成 分の起電力和の中の vX B成分に含まれるスパンの変動要因を前記抽出された 3 A / d t成分に基づいて除去し、この変動要因を除去した結果力 前記流体の流量を 算出することを特徴とする電磁流量計。
[8] 請求項 1記載の電磁流量計において、
前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第 1の平面から第 1のオフセットを設けて離れた位置に配設された第 1の励磁コイルと、前記第 1の平面 から第 2のオフセットを設けて離れた位置に、前記第 1の平面を挟んで前記第 1の励 磁コイルと対向するように配設された第 2の励磁コイルと、第 1の周波数の励磁電流を 前記第 1の励磁コイルに供給すると同時に、前記第 1の周波数と異なる第 2の周波数 の励磁電流を前記第 2の励磁コイルに供給する電源部とからなり、
前記信号変換部は、前記電極で検出される合成起電力のうち前記第 1の周波数と 前記第 2の周波数の 2つの周波数成分の振幅と位相を求め、これらの振幅と位相に 基づいて前記 2つの周波数成分の起電力和を前記 3 AZ 3 成分として抽出し、 前記流量出力部は、前記電極で検出される合成起電力のうち前記 2つの周波数成 分の起電力差の中の vX B成分に含まれるスパンの変動要因を前記抽出された 3 A / d t成分に基づいて除去し、この変動要因を除去した結果力 前記流体の流量を 算出することを特徴とする電磁流量計。
[9] 請求項 5記載の電磁流量計において、
前記励磁部は、前記電極を含む、前記測定管の軸方向と垂直な第 1の平面から第 1のオフセットを設けて離れた位置に配設された第 1の励磁コイルと、前記第 1の平面 から第 2のオフセットを設けて離れた位置に、前記第 1の平面を挟んで前記第 1の励 磁コイルと対向するように配設された第 2の励磁コイルと、第 1の周波数の励磁電流を 前記第 1の励磁コイルに供給すると同時に、前記第 1の周波数と異なる第 2の周波数 の励磁電流を前記第 2の励磁コイルに供給する電源部とからなり、
前記信号変換部は、前記電極で検出される合成起電力のうち前記第 1の周波数と 前記第 2の周波数の 2つの周波数成分の振幅と位相を求め、これらの振幅と位相に 基づいて前記 2つの周波数成分の起電力和を前記 3 AZ 3 t成分として抽出し、 前記流量出力部は、前記電極で検出される合成起電力のうち前記 2つの周波数成 分の起電力差の中の vX B成分に含まれるスパンの変動要因を前記抽出された 3 A / d t成分に基づいて除去し、この変動要因を除去した結果力 前記流体の流量を 算出することを特徴とする電磁流量計。
[10] 請求項 1記載の電磁流量計において、
前記電極は、前記測定管の軸方向に沿って異なる位置に配設された複数個の電 極からなり、
前記信号変換部は、前記複数個の電極で検出される合成起電力のうち少なくとも 2 個の電極で検出される合成起電力の振幅と位相を求めることにより前記 3 AZ 3 成 分を抽出することを特徴とする電磁流量計。
[11] 請求項 1記載の電磁流量計において、
前記励磁部は、前記流体に磁場を印加する励磁コイルと、この励磁コイルに励磁 電流を供給する電源部とからなり、
前記電極は、前記励磁コイルの軸を含む、前記測定管の軸方向と垂直な第 2の平 面力ゝら第 1のオフセットを設けて離れた位置に配設された第 1の電極と、前記第 2の 平面力 第 2のオフセットを設けて離れた位置に、前記第 2の平面を挟んで前記第 1 の電極と対向するように配設された第 2の電極とからなり、
前記信号変換部は、前記第 1の電極で検出される第 1の合成起電力と前記第 2の 電極で検出される第 2の合成起電力の各々について振幅と位相を求め、これらの振 幅と位相に基づいて前記第 1の合成起電力と前記第 2の合成起電力との起電力差を 前記 3 AZ 3 t成分として抽出し、
前記流量出力部は、前記第 1の合成起電力と前記第 2の合成起電力との起電力和 の中の v X B成分に含まれるスパンの変動要因を前記抽出された d A/ d t成分に 基づいて除去し、この変動要因を除去した結果力 前記流体の流量を算出すること を特徴とする電磁流量計。
[12] 請求項 10記載の電磁流量計において、
前記励磁部は、前記流体に磁場を印加する励磁コイルと、この励磁コイルに励磁 電流を供給する電源部とからなり、
前記電極は、前記励磁コイルの軸を含む、前記測定管の軸方向と垂直な第 2の平 面力ゝら第 1のオフセットを設けて離れた位置に配設された第 1の電極と、前記第 2の 平面力 第 2のオフセットを設けて離れた位置に、前記第 2の平面を挟んで前記第 1 の電極と対向するように配設された第 2の電極とからなり、
前記信号変換部は、前記第 1の電極で検出される第 1の合成起電力と前記第 2の 電極で検出される第 2の合成起電力の各々について振幅と位相を求め、これらの振 幅と位相に基づいて前記第 1の合成起電力と前記第 2の合成起電力との起電力差を 前記 3 AZ 3 t成分として抽出し、
前記流量出力部は、前記第 1の合成起電力と前記第 2の合成起電力との起電力和 の中の v X B成分に含まれるスパンの変動要因を前記抽出された d A/ d t成分に 基づいて除去し、この変動要因を除去した結果力 前記流体の流量を算出すること を特徴とする電磁流量計。
[13] 請求項 1記載の電磁流量計において、
前記励磁部は、前記流体に磁場を印加する励磁コイルと、この励磁コイルに励磁 電流を供給する電源部とからなり、
前記電極は、前記励磁コイルの軸を含む、前記測定管の軸方向と垂直な第 2の平 面力ゝら第 1のオフセットを設けて離れた位置に配設された第 1の電極と、前記第 2の 平面力 第 2のオフセットを設けて離れた位置に、前記第 2の平面を挟んで前記第 1 の電極と対向するように配設された第 2の電極とからなり、
前記信号変換部は、前記第 1の電極で検出される第 1の合成起電力と前記第 2の 電極で検出される第 2の合成起電力の各々について振幅と位相を求め、これらの振 幅と位相に基づいて前記第 1の合成起電力と前記第 2の合成起電力との起電力和を 前記 3 AZ 3 t成分として抽出し、
前記流量出力部は、前記第 1の合成起電力と前記第 2の合成起電力との起電力差 の中の v X B成分に含まれるスパンの変動要因を前記抽出された d A/ d t成分に 基づいて除去し、この変動要因を除去した結果力 前記流体の流量を算出すること を特徴とする電磁流量計。
[14] 請求項 10記載の電磁流量計において、
前記励磁部は、前記流体に磁場を印加する励磁コイルと、この励磁コイルに励磁 電流を供給する電源部とからなり、
前記電極は、前記励磁コイルの軸を含む、前記測定管の軸方向と垂直な第 2の平 面力ゝら第 1のオフセットを設けて離れた位置に配設された第 1の電極と、前記第 2の 平面力 第 2のオフセットを設けて離れた位置に、前記第 2の平面を挟んで前記第 1 の電極と対向するように配設された第 2の電極とからなり、
前記信号変換部は、前記第 1の電極で検出される第 1の合成起電力と前記第 2の 電極で検出される第 2の合成起電力の各々について振幅と位相を求め、これらの振 幅と位相に基づいて前記第 1の合成起電力と前記第 2の合成起電力との起電力和を 前記 3 AZ 3 t成分として抽出し、
前記流量出力部は、前記第 1の合成起電力と前記第 2の合成起電力との起電力差 の中の v X B成分に含まれるスパンの変動要因を前記抽出された d A/ d t成分に 基づいて除去し、この変動要因を除去した結果力 前記流体の流量を算出すること を特徴とする電磁流量計。
PCT/JP2005/006937 2004-04-09 2005-04-08 電磁流量計 WO2005098373A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/578,208 US7434478B2 (en) 2004-04-09 2005-04-08 Electromagnetic flowmeter for applying a magnetic field and a plurality of frequency components to a fluid
CN2005800122385A CN1946988B (zh) 2004-04-09 2005-04-08 电磁流量计

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004116252A JP4523319B2 (ja) 2004-04-09 2004-04-09 電磁流量計
JP2004-116252 2004-04-09

Publications (1)

Publication Number Publication Date
WO2005098373A1 true WO2005098373A1 (ja) 2005-10-20

Family

ID=35125187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006937 WO2005098373A1 (ja) 2004-04-09 2005-04-08 電磁流量計

Country Status (4)

Country Link
US (1) US7434478B2 (ja)
JP (1) JP4523319B2 (ja)
CN (1) CN1946988B (ja)
WO (1) WO2005098373A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523318B2 (ja) * 2004-04-09 2010-08-11 株式会社山武 電磁流量計
GB2440964B (en) * 2006-08-18 2011-08-10 Abb Ltd Flow meter
GB2440963B (en) * 2006-08-18 2011-06-08 Abb Ltd Flow meter
KR100748613B1 (ko) 2007-02-20 2007-08-10 김진택 다중변환 주파수를 이용한 전자유량 측정시스템.
JP5559499B2 (ja) * 2009-09-04 2014-07-23 アズビル株式会社 状態検出装置
JP5391000B2 (ja) * 2009-09-04 2014-01-15 アズビル株式会社 電磁流量計
JP5385064B2 (ja) * 2009-09-09 2014-01-08 アズビル株式会社 電磁流量計
US8991264B2 (en) 2012-09-26 2015-03-31 Rosemount Inc. Integrally molded magnetic flowmeter
US9021890B2 (en) * 2012-09-26 2015-05-05 Rosemount Inc. Magnetic flowmeter with multiple coils

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027614A1 (fr) * 2001-09-20 2003-04-03 Yamatake Corporation Fluxmetre electromagnetique
JP2004108973A (ja) * 2002-09-19 2004-04-08 Yamatake Corp 電磁流量計
JP2004108975A (ja) * 2002-09-19 2004-04-08 Yamatake Corp 電磁流量計

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426984A (en) * 1993-09-02 1995-06-27 Rosemount Inc. Magnetic flowmeter with empty pipe detector
JP4523318B2 (ja) * 2004-04-09 2010-08-11 株式会社山武 電磁流量計
JP4523343B2 (ja) * 2004-06-14 2010-08-11 株式会社山武 電磁流量計
JP4527484B2 (ja) * 2004-09-22 2010-08-18 株式会社山武 状態検出装置
JP4754932B2 (ja) * 2005-10-17 2011-08-24 株式会社山武 電磁流量計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027614A1 (fr) * 2001-09-20 2003-04-03 Yamatake Corporation Fluxmetre electromagnetique
JP2004108973A (ja) * 2002-09-19 2004-04-08 Yamatake Corp 電磁流量計
JP2004108975A (ja) * 2002-09-19 2004-04-08 Yamatake Corp 電磁流量計

Also Published As

Publication number Publication date
US7434478B2 (en) 2008-10-14
JP4523319B2 (ja) 2010-08-11
US20070272030A1 (en) 2007-11-29
CN1946988A (zh) 2007-04-11
JP2005300326A (ja) 2005-10-27
CN1946988B (zh) 2010-05-05

Similar Documents

Publication Publication Date Title
WO2005098373A1 (ja) 電磁流量計
WO2005098372A1 (ja) 電磁流量計
JP5385064B2 (ja) 電磁流量計
JP3774218B2 (ja) 電磁流量計
JP4754932B2 (ja) 電磁流量計
WO2006033365A1 (ja) 状態検出装置
JP3756862B2 (ja) 電磁流量計
WO2005121716A1 (ja) 電磁流量計
JP5559499B2 (ja) 状態検出装置
JP2010101746A (ja) 回転角度検出方法および回転角度センサ
JP2004108975A (ja) 電磁流量計
JPH11271116A (ja) 磁気誘導型流量測定方法および磁気誘導型流量計
JP5391000B2 (ja) 電磁流量計
JP4555023B2 (ja) 電磁流量計
JP4555024B2 (ja) 電磁流量計
JP4550523B2 (ja) 電磁流量計
JP4550468B2 (ja) 電磁流量計
JP2005207755A (ja) 電磁流量計

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11578208

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580012238.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: DEEMED TO BE WITHDRAWN SINCE FEES WERE NOT PAID

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11578208

Country of ref document: US