WO2005096534A1 - 低密度波長多重光伝送システムおよび低密度波長多重光伝送方法 - Google Patents

低密度波長多重光伝送システムおよび低密度波長多重光伝送方法 Download PDF

Info

Publication number
WO2005096534A1
WO2005096534A1 PCT/JP2005/006234 JP2005006234W WO2005096534A1 WO 2005096534 A1 WO2005096534 A1 WO 2005096534A1 JP 2005006234 W JP2005006234 W JP 2005006234W WO 2005096534 A1 WO2005096534 A1 WO 2005096534A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
additional
low
density
Prior art date
Application number
PCT/JP2005/006234
Other languages
English (en)
French (fr)
Inventor
Yoichi Oikawa
Takashi Toyomaki
Tomoyuki Ohtsuka
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to CN2005800018659A priority Critical patent/CN1906876B/zh
Priority to JP2006511779A priority patent/JP4463808B2/ja
Publication of WO2005096534A1 publication Critical patent/WO2005096534A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0224Irregular wavelength spacing, e.g. to accommodate interference to all wavelengths

Definitions

  • the present invention relates to a low-density WDM optical transmission system and a low-density WDM optical transmission method.
  • the present invention relates to an optical transmission system and an optical transmission method for transmitting wavelength-division multiplexed light including a plurality of optical signals having different wavelengths using an optical fiber, and more particularly, to an optical signal in a low-density wavelength-division multiplexing system. It relates to technology for expansion.
  • DWDM Dense wavelength division multiplexing
  • Non-Patent Document 1 ADVA Optical Networking, "ADVA Launches Major CWDM Feature Release for FSP 2000", [online], October 28, 2003, Internet URL:
  • the present invention has been made in view of the above points, and it is possible to add optical signals in a CWDM system at low cost by using an optical transmission device used in a DWDM system, and at the same time, to improve transmission quality.
  • CWDM optical transmission system and CWDM that can avoid degradation
  • An object is to provide an optical transmission method.
  • a CWDM optical transmission system includes a plurality of first optical transmitters that generate a plurality of optical signals arranged on a first wavelength grid compatible with a CWDM scheme, and An optical transmitting terminal having a first multiplexer for multiplexing the optical signals output from the first optical transmitters and transmitting the CWDM light to the transmission line; and transmitting the optical signal from the optical transmitting terminal via the transmission line. And a light receiving terminal having a plurality of first optical receivers for receiving optical signals of respective wavelengths output from the first wavelength separator. It is about.
  • at least one wavelength on the first wavelength grid is set as an additional wavelength.
  • the optical transmitting terminal includes the additional wavelength of the first multiplexer on a second wavelength grid corresponding to the DWDM system, instead of the first optical transmitter corresponding to the additional wavelength.
  • a plurality of second optical transmitters for generating a plurality of optical signals arranged in a pass band; and multiplexing the optical signals output from each of the second optical transmitters to form a DWDM light into the first multiplexer.
  • an additional optical transmission unit having a second multiplexer for outputting the DWDM light from the additional optical transmission unit to the transmission line via the first multiplexer.
  • the optical receiving terminal instead of the first optical receiver corresponding to the additional wavelength, includes a second demultiplexer for demultiplexing the output DWDM light, and a second demultiplexer.
  • a plurality of second optical receivers for receiving the optical signals of the respective wavelengths output from the duplexer; and an additional optical receiving unit having a plurality of second optical receivers, and the first optical receiver having a gain corresponding to the attenuation of the optical attenuator.
  • An optical amplifier that amplifies the DWDM light output from the demultiplexer is provided.
  • the DWDM optical signal output from the additional optical transmission unit is replaced with the optical signal of at least one of a plurality of optical signals corresponding to the CWDM method.
  • the DWDM light and the CWDM light other than the additional wavelength are multiplexed and transmitted to the transmission line.
  • the total power of the DWDM light transmitted to the transmission line becomes approximately equal to the power per wavelength of the CWDM light by the optical attenuator.
  • the CWDM light and the added DWDM light are transmitted to the optical receiving terminal without causing a nonlinear effect on the transmission line.
  • the light output from the transmission line is demultiplexed by the first demultiplexer, and the optical signals of each wavelength corresponding to CWDM are received by the first optical receiver, respectively, and correspond to the additional wavelength.
  • the DWDM light is sent to an optical amplifier and amplified with a gain according to the amount of attenuation in the optical attenuator at the optical transmitting terminal. Then, the DWDM light output from the optical amplifier is demultiplexed by the second demultiplexer of the additional optical receiving unit, and optical signals of each wavelength are received by the second optical receiver.
  • At least one of 1530 nm and 1550 nm of a plurality of optical signals arranged on the first wavelength grid is set as an additional wavelength. .
  • the optical transmitting terminal station transmits the first optical multiplexer including the additional wavelength on the second wavelength grid corresponding to the DWDM system.
  • An additional optical transmission unit having a second multiplexer for outputting light to the first multiplexer.
  • the optical receiving terminal station instead of the first optical receiver corresponding to the additional wavelength, a second demultiplexer for demultiplexing the DWDM light output from the first demultiplexer; and An additional optical receiving unit having a plurality of second optical receivers for receiving the output optical signals of each wavelength is provided.
  • a DWDM optical signal having a wavelength of 1530 nm or 1550 nm is used instead.
  • Three or four optical signals arranged at unequal intervals on the second wavelength grid corresponding to the system are output from the additional optical transmission unit, and the DWDM light is given to the first multiplexer and is added to the other wavelengths. Is multiplexed with the CWDM light and transmitted to the transmission line. At this time, the DWDM light transmitted to the transmission line is arranged at unequal intervals, so that four-wave mixing (FWM), which is one of the nonlinear effects, occurs in the transmission line.
  • FWM four-wave mixing
  • the frequency (wavelength) of the idler light by the FWM does not overlap with the frequency (wavelength) of the DWDM light. Therefore, the CWDM light and the added DWDM light are transmitted to the optical receiving terminal without crosstalk between the DWDM light and the idler light by the FWM.
  • Optical receiving terminal In this case, the light output from the transmission line is demultiplexed by the first demultiplexer, the optical signals of each wavelength corresponding to CWDM are received by the first optical receiver, and the DWDM light corresponding to the additional wavelength is added to the additional light.
  • the signals are demultiplexed by the second demultiplexer of the receiving unit, and the optical signals of each wavelength are respectively received by the second optical receiver.
  • the addition of an optical signal in the CWDM system can be performed while avoiding a decrease in transmission quality due to a non-linear effect in a transmission path, while reducing an optical signal used in a DWDM system. It can be realized at low cost using a transmission device. This makes it possible to add optical signals beyond the maximum number of signals in the CWDM system.
  • FIG. 1 is a diagram showing a configuration of a CWDM optical transmission system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a signal wavelength arrangement of a general CWDMZDWDM.
  • FIG. 3 is a diagram showing an example of the pass characteristics of a multiplexer / demultiplexer for CWDM and the number of DWDM light signals that can be added.
  • FIG. 4 is a diagram showing an example of the power of each optical signal at the time of transmission in the first embodiment.
  • FIG. 5 is a diagram showing a configuration of a CWDM optical transmission system according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of the power of each optical signal at the time of transmission in the second embodiment.
  • FIG. 7 is a diagram showing a configuration of a CWDM optical transmission system according to a third embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of the power of each optical signal at the time of transmission in the third embodiment.
  • FIG. 9 is a diagram showing a configuration of a CWDM optical transmission system according to a fourth embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of the power of each optical signal at the time of transmission in the fourth embodiment.
  • FIG. 11 is a diagram showing another configuration of the CWDM optical transmission system related to the fourth embodiment.
  • FIG. 12 is a diagram illustrating an example of the power of each optical signal at the time of transmission in the CWDM optical transmission system in FIG.
  • FIG. 13 is a diagram showing an example of the power of each optical signal at the time of transmission in the fifth embodiment.
  • FIG. 14 is a diagram showing a configuration of a CWDM optical transmission system according to a fifth embodiment of the present invention.
  • FIG. 15 is a diagram for explaining DWDM-compatible optical signals that can be arranged in the C-band according to the sixth embodiment of the present invention.
  • FIG. 16 is a diagram showing frequency points at which idler light is generated by FWM when transmitting three optical signals by WDM.
  • FIG. 17 is a diagram showing generation frequency points of idler light by FWM when transmitting four optical signals by WDM.
  • FIG. 18 Referring to FIG. 17, optical signals arranged at irregular intervals in the 1530 nm band and the 1550 nm band
  • FIG. 19 is a diagram showing a specific signal arrangement example when the arrangement intervals of the optical signals in the 1530 nm band and the 1550 nm band are 200 GHz, 300 GHz, and 400 GHz.
  • FIG. 3 is a diagram showing a specific signal arrangement example when the arrangement intervals of optical signals in the 1550 nm band are 300 GHz, 400 GHz, and 500 GHz.
  • FIG. 21 is a diagram showing an example of a system configuration in the case where eight DWDM optical signals are added in the sixth embodiment.
  • FIG. 22 is a schematic diagram of a signal arrangement corresponding to the system configuration example of FIG. 21.
  • FIG. 23 is a diagram showing an example of the configuration of a bidirectional system in which four optical signals for DWDM are added on the uplink and the downlink in the sixth embodiment.
  • FIG. 24 is a schematic diagram of a signal arrangement corresponding to the example of the system configuration in FIG. 23.
  • VOA Variable optical attenuator
  • FIG. 1 is a diagram showing a configuration of a CWDM optical transmission system according to a first embodiment of the present invention.
  • the CWDM optical transmission system of the present embodiment includes, for example, an optical transmission terminal station 10 and an optical reception terminal station 20 connected to the optical transmission terminal station 10 via a transmission line 30. It is configured for.
  • the optical transmitting terminal 10 is, for example, an optical signal of a plurality of (here, eight) optical signals CH1 to CH8 arranged on a wavelength grid having a wavelength interval of 20 nm corresponding to CWDM.
  • Optical transmitters (EZO) that generate CH1 to CH4 and CH6 to CH8
  • Optical signal multiplexer 12 having eight input ports and one output port corresponding to CH1 to CH8, and additional optical transmission unit 100 that generates DWDM light as additional light in place of optical signal CH5 And the output port of the additional optical transmission unit 100 and the optical signal of the multiplexer 12.
  • VOA variable optical attenuator
  • Each of the optical transmitters 11 to 11 and 11 to 11 are optical transmitters used in a conventional CWDM system.
  • the wavelength of the optical signal CH1 that also outputs the power of the optical transmitter 11 is 1470 nm
  • the wavelength of the optical signal CH2 that also outputs the power of the optical transmitter 11 is 1490 nm
  • Transmitter 11 Optical signal with power also output CH3 wavelength 1510 nm, output from optical transmitter 11
  • the wavelength of the optical signal CH7 output from the optical transmitter 11 is set to 1590 nm, and the wavelength of the optical signal CH8 output from the optical transmitter 11 is set to 1610 nm.
  • the wavelength of the optical signal CH5 which becomes the additional wavelength, is set to 1550 nm.
  • the optical signal powers at which the optical transmitters 11 to 11 and 11 to 11 are also output are described later.
  • the transmission line 30 is adjusted in advance to a required level so that a non-linear effect does not occur.
  • the multiplexer 12 multiplexes optical signals that can be given to each input port corresponding to each of the optical signals CH1 to CH8, and sends out the multiplexed light to the transmission line 30 via one output port. Is
  • the additional optical transmission unit 100 has, for example, a wavelength interval of 0.8 nm corresponding to DWDM.
  • Optical transmitters that generate a plurality of optical signals (16 in this case, as described later) arranged on a wavelength grid, and output from each of the optical transmitters 111 to 111
  • a multiplexer 112 having 16 input ports and one output port corresponding to the optical signal to be converted.
  • Each optical transmitter 111 ⁇ : L11 is the same as the optical transmitter used in the existing DWDM system.
  • the multiplexer 112 combines the optical signals output from the respective optical transmitters 111 to 111.
  • the DWDM light is generated by the wave, and the DWDM light is output to the variable optical attenuator 101 as an additional light replacing the optical signal CH5.
  • the variable optical attenuator 101 is a known optical attenuator whose attenuation with respect to input light is variable.
  • variable optical attenuator 101 The attenuation of the variable optical attenuator 101 is transmitted from the multiplexer 12 as will be described in detail later.
  • the power set in advance so that the total power of the DWDM light transmitted to the path 30 is substantially equal to the power per wavelength of the optical signals CH1 to CH4 and CH6 to CH8, or not shown here. It is controlled according to a control signal given from the outside.
  • the optical receiving terminal 20 has, for example, one input port connected to the transmission line 30 and eight output ports corresponding to each of the optical signals CH1 to CH8 on the wavelength grid corresponding to the CWDM.
  • the additional optical receiving unit 200 that receives the DWDM light
  • the demultiplexer 21 demultiplexes the wavelength-division multiplexed light that can be given to the input port by propagating through the transmission path 30 according to the pass bands corresponding to the optical signals CH1 to CH8. Output from each corresponding output port.
  • the transmission characteristics of the multiplexer 12 with respect to the wavelength will be described later.
  • Each of the optical receivers 22 to 22, 22 to 22 is an optical receiver used in a conventional CWDM system.
  • the optical amplifier 201 is output from an output port corresponding to the optical signal CH5 of the duplexer 21
  • the DWDM light is amplified with a gain corresponding to the attenuation of the variable optical attenuator 101 of the optical transmitting terminal 10.
  • the optical amplifier 201 has an automatic
  • the additional optical receiving unit 200 is connected to the output port of the optical amplifier 201, for example.
  • the duplexer 221 is a duplexer 21
  • Each optical receiver 222-222 is an existing DWDM
  • optical receiver It is the same as the optical receiver used in the system, and receives optical signals output from each output port of the duplexer 221 and performs data identification processing and the like.
  • the transmission line 30 here, a general 1.3 ⁇ m zero dispersion single mode fiber (SMF) is used.
  • SMF zero dispersion single mode fiber
  • FIG. 2 shows an example of a signal wavelength arrangement of a general CWDMZDWDM.
  • the signal wavelength arrangement of CWDM is defined as having a wavelength interval of 20 nm, the S band indicating the wavelength band of 1460 to 1530 nm, the C band indicating the wavelength band of 1530 to 1565 nm, and the C band of 1565 to 1625 nm.
  • Multiple optical signals are arranged in a wide wavelength band over the L-band, which indicates the wavelength band.
  • optical signals are arranged at wavelengths of 1470 nm, 1490 nm, 1510 nm, 1530 nm, 1550 nm, 1570 nm, 1590 nm, and 1610 nm.
  • the signal wavelength allocation of DWDM is specified to have a wavelength interval of 0.8 nm (100 GHz), 0.4 nm (50 GHz), etc., and a plurality of optical signals are allocated corresponding to the C band or the L band.
  • Various types of optical transmission equipment for the C-band or L-band have been put into practical use.
  • an optical signal is added using the optical transmission device used in the existing DWDM system as it is.
  • the number of wavelengths of DWDM light that can be added is determined according to the passbands of the multiplexer 12 on the transmitting side and the duplexer 21 on the receiving side used in the CWDM optical transmission system. That is, as shown in FIG. 3, for example, the multiplexer 12 and the demultiplexer 21 each have a pass band corresponding to the wavelength of each optical signal compatible with CWDM, and the width of each pass band is, for example, 13. Onm level.
  • the number of wavelengths of optical signals corresponding to DWDM that can be allocated in the passband is, for example, the case where optical signals are allocated at wavelength intervals of 0.8 nm.
  • the optical signals CH4 and CH5 corresponding to the CWDM are located in the C band (see FIG. 2), these wavelengths can be set as additional wavelengths.
  • Add optical signal CH5 If the length is set to long, the entire pass band of the multiplexer / demultiplexer including the added wavelength exists within the signal band of the optical transmission equipment for the c-band, so up to 16 optical signals compatible with DWDM are added. It is possible.
  • optical signal CH4 is set to the additional wavelength, almost half of the passband of the multiplexer / demultiplexer including the additional wavelength exists in the signal band of the optical transmission equipment for the C band, so that the optical signal compatible with DWDM is used. It is possible to add up to eight signals. Therefore, when both of the optical signals CH4 and CH5 are set to the additional wavelength, an optical signal of a maximum of 24 waves can be added.
  • optical signals CH6, CH7, and CH8 corresponding to CWDM are located in the C-band. Therefore, these wavelengths can be set as additional wavelengths (see Fig. 2). If the optical signal CH7 is set to the extension wavelength, the entire pass band of the multiplexer / demultiplexer including the extension wavelength exists in the signal band of the optical transmission device for the L band. It is possible to add up to 16 waves. If the optical signal CH6 or the optical signal CH8 is set to the additional wavelength, almost half of the passband of the multiplexer / demultiplexer including the additional wavelength exists in the signal band of the L-band optical transmission device.
  • optical signals corresponding to the number of waves it is possible to increase the number of optical signals corresponding to the number of waves to eight. Therefore, when all of the optical signals CH6, CH7, and CH8 are set to the additional wavelengths, an optical signal of up to 32 waves can be added. Of course, it is possible to add more optical signals of even more wavelengths by combining existing C-band and L-band optical transmission devices. Also, if the wavelength interval of optical signals corresponding to DWDM is set to 0.4 nm (50 GHz), the number of signals that can be added can be doubled as described above.
  • an optical signal corresponding to DWDM is added instead of the optical signal CH5, so that the additional optical transmission unit 100 and the variable optical attenuator 101
  • Transmission equipment can be used, and up to 16 waves can be added.
  • the total number of signals in the entire CWDM optical transmission system is 23 with optical signals CH1 to CH4, CH6 to CH8, and 16 additional DWDM lights.
  • the single-wave optical signal CH5 corresponding to CWDM is used in existing DWDM systems. If the 16-wave optical signal generated by the optical transmission unit is directly supplied to the CWDM optical transmission system without considering the power during fiber transmission as in the conventional technology, the total power of the 16-wave DWDM light is Since the power of the signal CH5 is much larger than that of the signal CH5, there is a high possibility that the power of the light transmitted to the transmission line will exceed the level at which the nonlinear effect occurs. Therefore, in the present embodiment, the variable optical attenuation is provided at the output stage of the additional optical transmission unit 100.
  • variable optical attenuator 101 The attenuation of the variable optical attenuator 101 is adjusted so that the power per wave of the optical signals CH1 to CH4 and CH6 to CH8 corresponding to the CWDM is substantially equal.
  • FIG. 4 is a diagram showing an example of the power of each optical signal at the time of transmission in the first embodiment.
  • the power of each of the optical signals CH1 to CH4 and CH6 to CH8 transmitted to the transmission line 30 is set to +2 dBmZch
  • the power per additional 16-wave DWDM light is ⁇ 10 dBm.
  • the attenuation of the variable optical attenuator 101 is set so that This variable
  • the attenuation of the optical attenuator 101 is obtained by 10'log (the number of additional wavelengths).
  • the total power of the light transmitted from the multiplexer 12 to the transmission line 30 is the same level as when only the optical signals CH1 to CH8 corresponding to CWDM are multiplexed and transmitted to the transmission line 30. Therefore, a situation in which a non-linear effect occurs in the optical signal propagating through the transmission path 30 is avoided.
  • the additional light whose power at the time of transmission is suppressed to a low level is propagated through the transmission path 30 and received by the optical receiving terminal 20, and is converted into optical signals CH1 to CH4 and CH6 to CH8 corresponding to CWDM.
  • the power is extremely low compared to the existing optical receiving unit 200.
  • the optical amplifier 201 is connected to the output port corresponding to the added wavelength of the duplexer 21 of the optical receiving terminal 20, and the duplexer 2 is connected.
  • the DWDM light demultiplexed by 1 is converted by the optical amplifier 201 into the variable optical attenuator 101 on the transmission side.
  • each optical receiving unit in the additional optical receiving unit 200 is
  • variable optical power output from the additional optical transmission unit 100 is output.
  • the power per wave has 10 dBmZch and the total power of 16 waves has +2 dBm.
  • the total power of the 16 DWDM light reaching the optical receiving terminal 20 is 18 dBm, and the power per wave is 30 dBm. It becomes.
  • a loss of about 4 dB occurs when passing through the demultiplexer 21, and the DWDM light input to the optical amplifier 201 has a power per wave of 134 dBmZch.
  • NF noise figure
  • the optical signal-to-noise ratio (OSNR) of the DWDM light output from 55 is calculated by the following equation.
  • OSNR (input power) NF + 57.9
  • the third item in the above equation is a constant corresponding to the C-band.
  • the optical signal of each wavelength included in the output DWDM light has an OSNR of about 19 dB.
  • optical receivers 222 to 222 in the additional optical receiving unit 200 are of the optical receivers 222 to 222 in the additional optical receiving unit 200.
  • the existing optical transmission device used in the DWDM system can be used as it is, so that the signal at the transmission It is possible to increase the number of optical signals while avoiding a decrease in quality. This makes it possible to provide inexpensively optical communication services that exceed the maximum number of signals that can be transmitted (8 waves) in conventional CWDM systems.
  • FIG. 5 is a diagram illustrating a configuration of a CWDM optical transmission system according to the second embodiment.
  • the CWDM optical transmission system shown in Fig. 5 is different from the configuration of the first embodiment described above in that the wavelength corresponding to the optical signal CH7 is set as an additional wavelength by adding the optical signal CH5 to the existing DWDM system.
  • the number of signals that can be added has been increased by using the optical transmission equipment for the L band used.
  • the optical transmitting terminal 10 is used in the first embodiment.
  • An optical transmission unit ioo 7 and a variable optical attenuator ioi 7 are provided in place of the optical transmitter ii 7 which has been used, and the power of the DWDM light output from the additional optical transmission unit 100 7 is adjusted by the variable optical attenuator 101.
  • the variable optical attenuator 101 Give to the input port corresponding to the optical signal CH7 of the multiplexer 12.
  • the optical receiving terminal 20 is provided with an additional optical receiving unit 200 and an optical amplifier 201 in place of the optical transmitter 22 used in the first embodiment, and an output port corresponding to the optical signal CH 7 of the duplexer 21.
  • the DWDM light output from the optical amplifier 201 is amplified by the optical amplifier 201 and then supplied to the additional optical receiving unit 200.
  • the configuration of the additional optical transmission unit 100 and the variable optical attenuator 101, and the configuration of the additional optical reception unit 200 and the optical amplifier 201 are described below.
  • the optical signal CH7 located in the L band is set to the additional wavelength, so that multiplexing is performed.
  • up to 16 optical signals having a wavelength interval of 0.8 nm can be arranged in the corresponding pass bands of the optical splitter 12 and the duplexer 21 (see FIG. 3).
  • the optical receiving terminal 20 The OSNR of the output DWDM light is calculated by the following equation.
  • OSNR (input power) NF + 58.3
  • the third item in the above equation is a constant corresponding to the L-band.
  • an OSNR of 19 dB or more can be secured for the L-band DWDM light that replaces the optical signal CH7, the reception processing in the additional optical receiving unit 200 is sufficiently possible.
  • the second embodiment it is possible to add a maximum of 32 optical signals using the C-band and L-band optical transmission devices used in the existing DWDM system.
  • the number of signals in the entire CWDM optical transmission system can be increased to 38 by combining the optical signals CH1 to CH4, CH6, and CH8 with the additional 32 DWDM light. Become.
  • FIG. 7 is a diagram illustrating a configuration of a CWDM optical transmission system according to the third embodiment.
  • the CWDM optical transmission system shown in FIG. 7 is different from the configuration of the second embodiment described above in that the wavelengths corresponding to the optical signals CH4 and CH6 are set to the additional wavelengths after the optical signals CH5 and CH7. It uses C-band and L-band optical transmission equipment used in DWDM systems to further increase the number of expandable signals.
  • an additional optical transmission unit 100 that generates DWDM light as additional light in place of the optical signals CH4 and CH5, and a total power of the DWDM light.
  • Variable attenuator 101 that adjusts the frequency and DWDM that has passed through the variable optical attenuator 101
  • a demultiplexer 102 for demultiplexing the light into a component corresponding to the optical signal CH4 and a component corresponding to the optical signal CH5 and outputting the component to each input port of the multiplexer 12; Also, the optical signal CH
  • the DWDM light passing through the attenuator 101 is converted into the component corresponding to the optical signal CH6 and the optical signal CH7.
  • a demultiplexer 102 that demultiplexes the component corresponding to and outputs to each input port of the multiplexer 12.
  • a multiplexer 202 for multiplexing the DWDM light output from each output port corresponding to the optical signals CH4 and CH5 of the demultiplexer 21, and the multiplexer 202 Power comes out
  • an additional optical receiving unit 200 that performs DWDM light receiving processing. Also a minute
  • a multiplexer 202 for multiplexing the DWDM light output from each output port corresponding to the optical signals CH6 and CH7 of the optical multiplexer 21, and an optical amplifier for amplifying the output DWDM light.
  • the optical signal CH4 located in the C band is set to the additional wavelength, thereby
  • the optical signal CH4 located in the C band is set to the additional wavelength, thereby
  • the optical signal CH4 located in the C band is set to the additional wavelength, thereby
  • Up to 8 optical signals at wavelength intervals can be allocated, and optical signals located in the same C-band.
  • Up to 16 optical signals that can be allocated in the passband corresponding to CH5 are combined with the C-band. Therefore, DWDM light including up to 24 optical signals can be added.
  • the optical signal CH6 located in the L band to the additional wavelength, up to eight waves are arranged in the corresponding pass bands of the multiplexer 12 and the demultiplexer 21.
  • It can include up to 24 optical signals in the L-band as well as up to 16 optical signals that can be placed in the passband corresponding to the optical signal CH7 located in the same L-band.
  • DWDM light can be added. Since these additional lights can secure an OSNR of about 19 dB at the outputs of the optical amplifiers 201 and 201 as in the case of the second embodiment,
  • Reception processing in the additional optical receiving unit 200 is sufficiently possible.
  • the third embodiment it is possible to add up to 48 optical signals using the C-band and L-band optical transmission devices used in the existing DWDM system.
  • the number of signals in the entire CWDM optical transmission system can be increased to 52, including the optical signals CH1 to CH3 and CH8 and the additional 48 DWDM light.
  • the wavelengths of the optical signals CH6 and CH7 are set as the additional wavelengths of the L band.
  • the combination of the optical signals CH7 and CH8 or the optical signal CH6 , CH8 or optical signal CH6, CH7, CH8 can be set.
  • the configuration in the case where a 1.3 ⁇ m zero-dispersion single-mode fiber is used as the transmission line 30 has been described.
  • a dispersion-shifted fiber (DSF) in which the zero dispersion wavelength is shifted to 1.5 ⁇ m is used as the transmission line 30 will be described.
  • FIG. 9 is a diagram illustrating a configuration of a CWDM optical transmission system according to the fourth embodiment.
  • the additional optical transmission unit 100 and the variable optical attenuator 101, and the additional optical reception unit 200 and the optical amplifier 201 are the same as those used in the second embodiment described above.
  • the wavelength interval is set to 0.8 nm, for example, as shown in the wavelength arrangement of the optical signals shown in FIG. 10, it is possible to add up to 16 optical signals.
  • the same effect as in the case of the first embodiment described above can be obtained by setting the additional wavelength in the L band.
  • the optical signal CH7 in the L band is set to the additional wavelength.
  • the additional wavelength when using the dispersion-shifted fiber is not limited to this. It is also possible to set the optical signals CH7 and CH8 to additional wavelengths as shown in the configuration diagram of FIG. Of course, even if one of the optical signals CH6 and CH8 is set to the additional wavelength instead of the optical signal CH7, the combination of any two or all of the optical signals CH6 to CH8 is set to the additional wavelength. I don't care.
  • a single-core 1.3 mSMF is used to transmit an optical signal bidirectionally.
  • FIG. 13 is a diagram illustrating a configuration of a CWDM optical transmission system according to the fifth embodiment.
  • the optical signals CHI, CH3, CH5, and CH7 having odd-numbered wavelength numbers among the eight optical signals CH1 to CH8 on the CWDM-compatible wavelength grid are transmitted on the uplink, and
  • the even-numbered optical signals CH2, CH4, CH6, and CH6 are transmitted on the downlink
  • optical signals CH5 and CH7 on the uplink and optical signals CH6 on the downlink , CH7 are respectively set to the extension wavelengths
  • the extension optical transmission unit 100 and the variable optical attenuator 101, and the extension optical reception unit are respectively set to correspond to the extension wavelengths in the same manner as in the above-described embodiments.
  • a multiplexer / demultiplexer 51 arranged near one end of the transmission line 30 transmits DWDM light corresponding to the optical signals CHI and CH3 and the optical signals C H5 and CH7 output from the multiplexer 12 on the uplink line to the transmission line.
  • the DWDM light corresponding to the optical signals CH2 and CH8 and the optical signals CH4 and CH6 propagating through the transmission line 30 is transmitted to the demultiplexer 21 'on the downstream line side.
  • the multiplexer / demultiplexer 52 arranged near the other end of the transmission line 30 outputs DWDM light corresponding to the optical signals CH2 and CH8 and the optical signals CH4 and CH6 output from the multiplexer 12 ′ on the downlink.
  • the DWDM light corresponding to the optical signals CHI and CH3 and the optical signals CH5 and CH7 propagating through the transmission path 30 is transmitted to the duplexer 21 on the uplink line.
  • the wavelength interval of the added DWDM light is 0.8 nm, as shown in FIG.
  • Up to 32 DWDM lights can be added with 16 C-band waves corresponding to signal CH5 and 16 L-band waves corresponding to optical signal CH7, and for downstream lines, optical signal CH4 is supported.
  • the eight C-band waves and the eight L-band waves corresponding to the optical signal CH6 make it possible to add up to 16 DWDM lights.
  • the optical signal CH8 can be set to the additional wavelength.
  • the allocation of the eight optical signals CH1 to CH8 corresponding to CWDM to the upstream line and the downstream line is not limited to the case where the odd number is an even number and the wavelength number is allocated according to an arbitrary rule. It is possible to do
  • the optical signals are arranged at all points on the wavelength grid corresponding to the DWDM. That is practically impossible.
  • the DWDM is placed on 10 grids from CH1 'to CH10'.
  • Optical signals can be arranged, and its frequency band is 900 GHz.
  • DWDM optical signals can be arranged on 16 grids from CH20 'to CH35', and the frequency band is 1500 GHz.
  • the frequency of the idler light generated by the FWM is shown in FIG. 16, for example, including those due to degenerate four-wave mixing. Become like Note that ⁇ 12 in the figure represents the interval between fl and f2, and ⁇ 23 and ⁇ 3 are the same.
  • the frequency of each optical signal and the frequency of generation of the idler light by the FWM are different. They do not overlap, and the transmission quality is not degraded by the occurrence of crosstalk. It can be seen from FIG. 16 that the idler light is generated at nine frequency points in the three optical signals.
  • FIG. 17 shows the results of the study.
  • the frequency band in which the DWDM optical signal can be arranged is 900 GHz as described above, it has a frequency of fl to f4.
  • the arrangement intervals of the four optical signals are, for example, 200 GHz, 300 GHz, and 400 GHz.
  • the optical signals CHI ', CH3', CH6 ', and CH10' corresponding to the DWDM shown in FIG. 15A are arranged.
  • the arrangement intervals of the four optical signals are, for example, 200 GHz, 300 GHz, and 400 GHz.
  • the optical signals CH23 ', CH25', CH28 'and CH32' corresponding to the DWDM shown in FIG. 15 (A) are arranged. It can be seen from FIG. 17 that the frequencies of the respective optical signals arranged in the 1550 nm band do not overlap with the frequency points at which idler light is generated by FWM for the 1530 nm band.
  • the frequency of idler light generated by FWM for the 1550 nm band also has a number of points that overlap the frequencies of the optical signals CH23 ', CH25', CH28 ', and CH32', as in the case of the 153 Onm band. In addition, it does not overlap with the frequencies CHI ', CH3', CH6 'and CH10' of each optical signal in the 1530nm band.
  • FIG. 18 summarizes the relative relationship between the optical signals arranged at unequal intervals in the 1530 nm band and the 1550 nm band as described above, and the idler light by the FWM.
  • the FWM crosstalk margin width W45 which indicates the interval from the longest wavelength of the idler light due to the 1530 nm band optical signal due to the FWM to the shortest wavelength of the 1550 nm band optical signal, and the 1550 nm band optical signal
  • the shortest wavelength of the idler light due to the FWM caused by the signal is also the FWM crosstalk margin W54, which indicates the interval to the longest wavelength of the optical signal in the 1530 nm band, and the force is n times 100 GHz (n is an integer), that is, Must be set to be equal to or longer than the wavelength grid interval.
  • FIG. 17 when the arrangement interval of the four-wave optical signal in the 1530 nm band and the arrangement interval of the four-wave optical signal in the 1550 ⁇ m band are 200 GHz, 300 GHz, and 400 GHz, respectively,
  • the FWM crosstalk margin width W45 and W54 are both 400GHz.
  • Figure 19 lists specific arrangement examples of each optical signal when the arrangement intervals of four optical signals in the 1530 nm band and the 1550 nm band are respectively 200 GHz, 300 GHz and 400 GHz.
  • arranging four optical signals at unequal intervals of 200 GHz, 300 GHz, and 400 GHz means applying the signal arrangement of the combination shown in FIG.
  • FIG. 20 shows that the arrangement intervals of the four-wave optical signals in the 1530 nm band are 200 GHz, 300 GHz, and 400 GHz, and the arrangement intervals of the four-wave optical signals in the 1550 nm band are 300 GHz, 400 GHz, and 500 GHz.
  • the relative relationship between each optical signal and the idler light by FWM is summarized.
  • optical signals CHI ′, CH3 ′, CH6 ′, CH10 are arranged in the 1530 nm band.
  • the FWM crosstalk allowance W45 is 400 GHz
  • the FWM crosstalk allowance W54 is 100 GHz.
  • FIG. 21 shows an example of a system configuration when eight DWDM-compatible optical signals are added.
  • FIG. 22 is a schematic diagram of a signal arrangement corresponding to the system configuration example of FIG.
  • Optical signals for DWDM that are added instead of CWDM-compatible optical signals CH4 and CH5
  • Four-wave + 4-wave optical signals are arranged at unequal intervals as described above to avoid crosstalk due to FWM Therefore, there is no need to attenuate DWDM-compatible optical signals with respect to other CWDM-compatible optical signals and send them to the transmission path 30 as in the first to fifth embodiments described above. Therefore, depending on the system level diagram, the optical amplifiers 103, 103, 203, 203 as shown in FIG. 21 are connected to either the optical transmitting terminal 10 or the optical receiving terminal 20.
  • they may be provided on both sides so that the added optical signal level compatible with DWDM is equal to or higher than the optical signal level compatible with CWDM.
  • FIG. 23 shows a configuration example of a bidirectional system in a case where four DWDM-compatible optical signals are respectively added to the uplink and the downlink.
  • FIG. 24 is a schematic diagram of a signal arrangement corresponding to the configuration example of the bidirectional system in FIG.
  • Optical signals CHI, CH2 and CH3 corresponding to CWDM and four optical signals corresponding to DWDM which are added in place of optical signal CH4 are allocated to the uplink.
  • Signals CH6, CH7, and CH8, and four DWDM-compatible optical signals added in place of the optical signal CH5 are assigned.
  • optical signals compatible with DWDM are added in the 1530 nm band and the 1550 nm band, so that the DWDM optical transmitters 111 to: L 11
  • DFB with semiconductor external modulator—LD DFB laser with EA modulator
  • An optical transmitter using a DFB-LD with a semiconductor external modulator has the advantage of being lower in cost and smaller in size than an optical transmitter using an LN-type external modulator.
  • each additional optical signal corresponding to DWDM is at least 200 GHz
  • a wavelength locker or the like generally used for wavelength stabilization control of an optical transmitter is provided. It becomes unnecessary. For this reason, it is possible to configure a system using a low-cost and small-sized optical transmitter.
  • the optical signal power to which the unequally-spaced wavelength arrangement is applied is described as the power transmitted to the transmission line 30 using SF. Can be sent as it is to a transmission path using SMF as well as DSF.
  • the configuration of the sixth embodiment also has an effect that the system does not depend on the type of fiber transmission line as a system corresponding to the addition of a few wavelengths of about three or four waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

 本発明のCWDM光伝送システムでは、CWDM方式に対応した複数の光信号のうちの少なくとも1波の光信号に代えて、DWDM方式の増設光送信ユニットから出力されるDWDM光が可変光減衰器を介して合波器に与えられ、CWDM対応の光信号と合波されて伝送路に送出される。このとき伝送路に送出されるDWDM光のトータルパワーはCWDM光の1波長あたりのパワーと略等しくなるように可変光減衰器で減衰される。光受信端局では、伝送路を伝搬した光が分波器で分波され、増設波長に対応したDWDM光が光増幅器で増幅された後に増設光受信ユニットで受信される。これにより、CWDM方式における光信号の増設を伝送品質の低下を回避しながら低コストで実現することができる。

Description

明 細 書
低密度波長多重光伝送システムおよび低密度波長多重光伝送方法 技術分野
[0001] 本発明は、波長の異なる複数の光信号を含んだ波長多重光を光ファイバを用いて 伝送する光伝送システムおよび光伝送方法に関し、特に、低密度波長多重方式に おいて光信号を増設するための技術に関する。
背景技術
[0002] 波長間隔が 0. 8nm、さらにはその半分の 0. 4nmの複数の光信号を扱う高密度波 長多重(Dense wavelength division multiplexing;以下、 DWDMとする)システムは、 伝送容量を飛躍的に増大できる通信システムとして開発および実用化が進められて きている。この DWDMシステムは、通常、 32波から 128波までの信号数で運用でき る反面、精度よく波長管理を行うために高価な光源や波長管理装置などが必要とな る。このため、 DWDMシステムのコストは、たとえ少数の信号数で運用する場合であ つても高額であった o
[0003] そこで、高い精度の波長管理が不要になる程度に光信号の波長間隔を広げて、信 号数が少数の WDMシステムを低価格で実現するシステムが切望されるようになり、 最近、 20nmの波長間隔で 8波の光信号 (8チャンネル)まで扱うことができる低密度 波長多重(Coarse Wavelength Division Multiplexing;以下 CWDMとする)システムが 開発および商用化されてきている。この CWDMシステムは、伝送容量が比較的小さ なアクセス(例えばメトロ'エリアなど)での適用力も構内網の LANに至るまで幅広く需 要がある。また、公的機関や電力会社、通信キヤリャメーカなどの光ファイバ所有者 力 ダークファイバ (敷設されて!、ながら稼動して!/、な!、光ファイバ)を用いて回線貸 しビジネスを始めており、この場合も伝送容量が比較的小さなときには安価なサービ スを提供する必要があるので、上記のような CWDMシステムが適して!/、る。
[0004] 一方、 CWDMシステムでは、光ファイバを用いた高速デジタル通信方式の国際規 格である SDH (Synchronous Digital Hierarchy)に準拠した光信号のみならず、ィー サネット系データ通信に用いられる光信号も収容可能なことが望まれている。このよう な要望に応えるためには、既存の CWDMシステムについて、 8チャンネル以上に信 号数を増設可能にするための技術が必要となる。
[0005] 従来、 CWDMシステムの信号数を一般的な規格値を越えて増設する手法につい ては、装置メーカにおいてもサポートしておらず、 8チャンネル(フルバンドで 16チヤ ンネル)までしか扱うことができなかった。最近になって、 CWDMシステムに DWDM システムを融合させることで信号数を増設するための検討がなされるようになった (例 えば、非特許文献 1、 2参照)。
非特許文献 1: ADVA Optical Networking, "ADVA Launches Major CWDM Feature Release for FSP 2000", [online], 2003年 10月 28日,インターネットく URL :
http://www.advaoptical.com/adva― press. asp?id=66&action=view&msgid=>3>3 l > 非特許文献 2 : H. Hinderthur and L. Friedric, "WDM hybrid transmission based on CWDM plus DWDM", Lightwave Europe, volume 2, Issue 7, [online], 2003年 7月, Lightwave Europe,インタ ~~ネット < URL : http://lw.pennnet.com/Articles/Article― Display.cftn?Section=ARCHI&ARTICLE_ID=183295&VERSION_NUM=l&p=63 > 発明の開示
発明が解決しょうとする課題
[0006] しかしながら、上記のような従来の技術においては、 DWDMシステムに対応した光 信号の CWDMシステムへの接続の方法だけが検討されており、接続された DWDM 対応の光信号に対するファイバ伝送時の方式的な検討はなされて 、な 、。このため 、実効的なファイバ伝送を行うことは困難な状況であった。すなわち、 DWDMシステ ムで運用される複数の波長の光信号を、パワーまたは波長間隔等の設定をそのまま にして CWDMシステムに直接接続し、 CWDMシステムの信号数の増設を行った場 合、ファイバ非線形効果による波形劣化や、 CWDMシステム用の光合分波器の特 性に起因したクロストーク等による雑音増加など力 増設した DWDM側の光信号に 発生して伝送品質の低下を招 、てしまうと!、う問題が考えられる。
[0007] 本発明は上記の点に着目してなされたもので、 CWDM方式における光信号の増 設を DWDMシステムに使用される光伝送装置を利用して低コストで実現すると同時 に、伝送品質の低下を回避することのできる CWDM光伝送システムおよび CWDM 光伝送方法を提供することを目的とする。
課題を解決するための手段
[0008] 上記の目的を達成するため、本発明の CWDM光伝送システムは、 CWDM方式に 対応した第 1波長グリッド上に配置される複数の光信号を発生する複数の第 1光送信 器および該各第 1光送信器から出力される光信号を合波して CWDM光を伝送路に 送出する第 1合波器を有する光送信端局と、該光送信端局から伝送路を介して伝え られる CWDM光を分波する第 1分波器および該第 1分波器から出力される各波長の 光信号を受信する複数の第 1光受信器を有する光受信端局と、を備えたシステムに 関するものである。この CWDM光伝送システムの 1つの態様は、前記第 1波長グリツ ド上の少なくとも 1つの波長を増設波長に設定する。そして、前記光送信端局は、前 記増設波長に対応する前記第 1光送信器に代えて、 DWDM方式に対応した第 2波 長グリッド上において前記第 1合波器の前記増設波長を含む通過帯域内に配置され る複数の光信号を発生する複数の第 2光送信器と、該各第 2光送信器から出力され る光信号を合波して DWDM光を前記第 1合波器に出力する第 2合波器と、を有する 増設光送信ユニットを設けると共に、該増設光送信ユニットから前記第 1合波器を介 して伝送路に送出される DWDM光のトータルパワーが前記増設波長以外に対応し た前記第 1光送信器から出力される光信号の 1波長あたりのパワーに略等しくなるよう に、前記増設光送信ユニットから出力される DWDM光を減衰させる光減衰器を備え る。また、前記光受信端局は、前記増設波長に対応する前記第 1光受信器に代えて 、前記第 1分波器力 出力される DWDM光を分波する第 2分波器と、該第 2分波器 から出力される各波長の光信号を受信する複数の第 2光受信器と、を有する増設光 受信ユニットを設けると共に、前記光減衰器の減衰量に応じた利得で前記第 1分波 器から出力される DWDM光を増幅する光増幅器を備える。
[0009] 上記のような態様の CWDM光伝送システムによれば、 CWDM方式に対応した複 数の光信号のうちの少なくとも 1波の光信号に代えて、増設光送信ユニットから出力 される DWDM光が第 1合波器に与えられ、その DWDM光と増設波長以外の CWD M光とが合波されて伝送路に送出される。このとき伝送路に送出される DWDM光の トータルパワーが光減衰器によって CWDM光の 1波長あたりのパワーと略等しくなる ように減衰されて 、るため、伝送路で非線形効果が発生することなく CWDM光およ び増設された DWDM光が光受信端局まで伝送される。光受信端局では、伝送路か ら出力される光が第 1分波器により分波され、 CWDMに対応した各波長の光信号は 第 1光受信器でそれぞれ受信され、増設波長に対応した DWDM光は光増幅器に 送られて光送信端局側の光減衰器での減衰量に応じて利得で増幅される。そして、 光増幅器から出力される DWDM光は、増設光受信ユニットの第 2分波器で分波され 、各波長の光信号が第 2光受信器でそれぞれ受信される。
[0010] また、本発明による CWDM光伝送システムの他の態様は、前記第 1波長グリッド上 に配置される複数の光信号の波長のうちの 1530nmおよび 1550nmの少なくとも 1 波長を増設波長に設定する。そして、前記光送信端局は、前記増設波長に対応する 前記第 1光送信器に代えて、 DWDM方式に対応した第 2波長グリッド上において前 記第 1合波器の前記増設波長を含む通過帯域内に不等間隔に配置される 3波また は 4波の光信号を発生する複数の第 2光送信器と、該各第 2光送信器から出力され る光信号を合波して DWDM光を前記第 1合波器に出力する第 2合波器と、を有する 増設光送信ユニットを設ける。また、前記光受信端局は、前記増設波長に対応する 前記第 1光受信器に代えて、前記第 1分波器から出力される DWDM光を分波する 第 2分波器と、該第 2分波器力 出力される各波長の光信号を受信する複数の第 2 光受信器と、を有する増設光受信ユニットを設ける。
[0011] 上記のような他の態様の CWDM光伝送システムによれば、 CWDM方式に対応し た複数の光信号のうちの中で、波長が 1530nmまたは 1550nmに該当する光信号 に代えて、 DWDM方式に対応した第 2波長グリッド上に不等間隔に配置された 3波 または 4波の光信号が増設光送信ユニットから出力され、その DWDM光が第 1合波 器に与えられて増設波長以外の CWDM光と合波されて伝送路に送出される。このと き伝送路に送出される DWDM光は信号配置が不等間隔に設定されているため、伝 送路で非線形効果の 1つである 4光波混合 (FWM ; Four Wave Mixing)が発生しても 、その FWMによるアイドラ光の周波数 (波長)が DWDM光の周波数 (波長)と重なら ない。このため、 DWDM光と FWMによるアイドラ光とのクロストークが生じることなぐ CWDM光および増設された DWDM光が光受信端局まで伝送される。光受信端局 では、伝送路から出力される光が第 1分波器により分波され、 CWDMに対応した各 波長の光信号は第 1光受信器でそれぞれ受信され、増設波長に対応した DWDM 光は増設光受信ユニットの第 2分波器で分波され、各波長の光信号が第 2光受信器 でそれぞれ受信される。
発明の効果
[0012] 上記のような本発明の CWDM光伝送システムによれば、 CWDM方式における光 信号の増設を、伝送路における非線形効果による伝送品質の低下を回避しつつ、 D WDMシステムに使用される光伝送装置を利用して低コストで実現することができる。 これにより、 CWDM方式における最大信号数を超えて光信号を増設することが可能 になる。
図面の簡単な説明
[0013] [図 1]本発明の第 1実施形態による CWDM光伝送システムの構成を示す図である。
[図 2]—般的な CWDMZDWDMの信号波長配置の一例を示す図である。
[図 3]CWDM用の合分波器の通過特性と増設可能な DWDM光の信号数の一例を 示す図である。
[図 4]上記第 1実施形態における送信時の各光信号のパワーの一例を示した図であ る。
[図 5]本発明の第 2実施形態による CWDM光伝送システムの構成を示す図である。
[図 6]上記第 2実施形態における送信時の各光信号のパワーの一例を示した図であ る。
[図 7]本発明の第 3実施形態による CWDM光伝送システムの構成を示す図である。
[図 8]上記第 3実施形態における送信時の各光信号のパワーの一例を示した図であ る。
[図 9]本発明の第 4実施形態による CWDM光伝送システムの構成を示す図である。
[図 10]上記第 4実施形態における送信時の各光信号のパワーの一例を示した図であ る。
[図 11]上記第 4実施形態に関連した CWDM光伝送システムの他の構成を示す図で ある。 [図 12]図 11の CWDM光伝送システムにおける送信時の各光信号のパワーの一例 を示した図である。
[図 13]上記第 5実施形態における送信時の各光信号のパワーの一例を示した図であ る。
[図 14]本発明の第 5実施形態による CWDM光伝送システムの構成を示す図である。
[図 15]本発明の第 6実施形態について C—バンドに配置可能な DWDM対応の光信 号を説明するための図である。
[図 16]3波の光信号を WDM伝送する場合に FWMによるアイドラ光の発生周波数ポ イントを示す図である。
[図 17]4波の光信号を WDM伝送する場合に FWMによるアイドラ光の発生周波数ポ イントを示す図である。
[図 18]図 17について 1530nm帯および 1550nm帯に不等間隔配置される光信号と
FWMによるアイドラ光との相対的な関係を整理した図である。
[図 19]1530nm帯および 1550nm帯の光信号の配置間隔を 200GHz、 300GHzお よび 400GHzとした場合の具体的な信号配置例を示す図である。
[図 20]153Onm帯の光信号の配置間隔を 200GHz、 300GHzおよび 400GHzとし
、 1550nm帯の光信号の配置間隔を 300GHz、 400GHzおよび 500GHzとした場 合の具体的な信号配置例を示す図である。
[図 21]上記第 6実施形態について DWDM対応の光信号を 8波増設する場合のシス テム構成例を示す図である。
[図 22]図 21のシステム構成例に対応した信号配置の模式図である。
[図 23]上記第 6実施形態について DWDM対応の光信号を上り回線および下り回線 で 4波ずつ増設した双方向システムの構成例を示す図である。
[図 24]図 23のシステム構成例に対応した信号配置の模式図である。
符号の説明
10· ··光送信端局
11〜11 , 111
8 1〜111
24…光送信器 (EZO)
1
12, 112, 202 , 202 , 202 …合波器 20· ··光受信端局
21, 102 , 102 , 102 , 221· ··分波器
45 67 78
22〜22 , 222〜222 …光受信器 OZE)
1 8 1 24
30…伝送路
100〜100 , 100 , 100 …増設光送信ュ-ッ卜
4 7 45 67
101〜101 , 101 , 101 …可変光減衰器 (VOA)
4 7 45 67
200〜200 , 200 , 200 …増設光受信ュ-ッ卜
4 7 45 67
201〜201 , 201 , 201 …光増幅器
4 7 45 67
発明を実施するための最良の形態
[0015] 以下、本発明を実施するための最良の形態について添付図面を参照しながら説明 する。なお、全図を通して同一の符号は同一または相当部分を示すものとする。
[0016] 図 1は、本発明の第 1実施形態による CWDM光伝送システムの構成を示す図であ る。
[0017] 図 1において、本実施形態の CWDM光伝送システムは、例えば、光送信端局 10と 、その光送信端局 10に伝送路 30を介して接続される光受信端局 20と、を備えて構 成される。
[0018] 光送信端局 10は、例えば、 CWDMに対応した 20nmの波長間隔を有する波長グ リツド上に配置される複数 (ここでは 8波とする)の光信号 CH1〜CH8のうちの光信号 CH1〜CH4,CH6〜CH8を発生する光送信器(EZO) ll〜11 ,11〜11と、各
1 4 6 8 光信号 CH1〜CH8に対応した 8個の入力ポートおよび 1個の出力ポートを有する合 波器 12と、光信号 CH5に代わる増設光として DWDM光を発生する増設光送信ュ ニット 100と、その増設光送信ユニット 100の出力ポートおよび合波器 12の光信号
5 5
CH5に対応した入力ポートの間に挿入された可変光減衰器 (VOA) 101と、を有す
5 る。
[0019] 各光送信器 11〜11 ,11〜11は、従来の CWDMシステムに用いられる光送信
1 4 6 8
器と同様のものである。ここでは例えば、光送信器 11力も出力される光信号 CH1の 波長が 1470nm、光送信器 11力も出力される光信号 CH2の波長が 1490nm、光
2
送信器 11力も出力される光信号 CH3の波長が 1510nm、光送信器 11から出力さ
3 4 れる光信号 CH4の波長が 1530nm、光送信器 11力も出力される光信号 CH6の波
6
長が 1570nm、光送信器 11力も出力される光信号 CH7の波長が 1590nm、光送 信器 11カゝら出力される光信号 CH8の波長が 1610nmにそれぞれ設定されている。
8
なお、本実施形態において増設波長となる光信号 CH5の波長は 1550nmに設定さ れる。また、各光送信器 11〜11 ,11〜11力も出力される光信号パワーは、後述
1 4 6 8
するように伝送路 30にお 、て非線形効果が発生することな 、所要のレベルとなるよう に予め調整されている。
[0020] 合波器 12は、各光信号 CH1〜CH8に対応した各入力ポートに与えられえる光信 号を合波し、その合波光を 1つの出力ポートを介して伝送路 30に送出するものである
。なお、この合波器 12の通過特性については後述する。
[0021] 増設光送信ユニット 100は、例えば、 DWDMに対応した 0. 8nmの波長間隔を有
5
する波長グリッド上に配置される複数 (ここでは、後述するように 16波とする)の光信 号を発生する光送信器 (EZO) l l l〜111 と、各光送信器 111〜111 から出力
1 16 1 16 される光信号に対応した 16個の入力ポートおよび 1個の出力ポートを有する合波器 112と、を備える。
[0022] 各光送信器 111〜: L 11 は、既存の DWDMシステムに用いられる光送信器と同
1 16
様のものである。各光送信器 111〜111 力も出力される光信号の波長は、後述す
1 16
るように合波器 12の光信号 CH5に対応した入力ポートの通過帯域内となるように設 定されている。合波器 112は、各光送信器 111〜111 力も出力される光信号を合
1 16
波して DWDM光を生成し、その DWDM光を光信号 CH5に代わる増設光として可 変光減衰器 101に出力する。
5
[0023] 可変光減衰器 101は、入力光に対する減衰量が可変な公知の光減衰器である。
5
この可変光減衰器 101の減衰量は、後で詳しく説明するように、合波器 12から伝送
5
路 30に送出される DWDM光のトータルパワーが光信号 CH1〜CH4,CH6〜CH8 の 1波長あたりのパワーに略等しくなるように、予め設定されている力、若しくは、ここ では図示を省略したが外部等から与えられる制御信号に従って制御されている。
[0024] 光受信端局 20は、例えば、伝送路 30に接続される 1個の入力ポートおよび CWD M対応の波長グリッド上の各光信号 CH1〜CH8に対応した 8個の出力ポートを有す る分波器 21と、その分波器 21の光信号 CH1〜CH4,CH6〜CH8に対応した出力 ポートから出力される光信号をそれぞれ受信する光受信器 (OZE) 22〜22 ,22〜
1 4 6
22と、分波器 21の光信号 CH5に対応した出力ポートに接続される光増幅器 201と
8 5
、その光増幅器 201力も出力される DWDM光を受信する増設光受信ユニット 200
5 5 と、を有する。
[0025] 分波器 21は、伝送路 30を伝搬して入力ポートに与えられえる波長多重光を、各光 信号 CH1〜CH8に対応した通過帯域に応じて分波し、各々の分波光を対応する出 力ポートからそれぞれ出力する。なお、この合波器 12の波長に対する通過特性につ いても後述する。
[0026] 各光受信器 22〜22 ,22〜22は、従来の CWDMシステムに用いられる光受信
1 4 6 8
器と同様のものであり、分波器 21の光信号 CHI〜CH4,CH6〜CH8に対応した出 力ポートから出力される光信号をそれぞれ受信してデータの識別処理等を行う。
[0027] 光増幅器 201は、分波器 21の光信号 CH5に対応した出力ポートから出力される
5
DWDM光を、光送信端局 10の可変光減衰器 101の減衰量に応じた利得で増幅し
5
て出力する一般的な光増幅器である。なお、この光増幅器 201については、自動利
5
得一定制御 (AGC)または自動出力一定制御 (ALC)を行うようにするのが好ま 、 [0028] 増設光受信ユニット 200は、例えば、光増幅器 201の出力ポートに接続される 1
5 5
個の入力ポートおよび DWDM対応の波長グリッドに対応した 16個の出力ポートを有 する分波器 221と、その分波器 221の各出力ポートから出力される光信号をそれぞ れ受信する光受信器 (OZE) 222〜222 と、を有する。分波器 221は、分波器 21
1 16
力 出力され入力ポートに与えられえる DWDM光を分波し、各々の光信号を対応す る出力ポートからそれぞれ出力する。各光受信器 222〜222 は、既存の DWDM
1 16
システムに用いられる光受信器と同様のものであり、分波器 221の各出力ポートから 出力される光信号をそれぞれ受信してデータの識別処理等を行う。
[0029] 伝送路 30は、ここでは、一般的な 1. 3 μ m零分散シングルモードファイバ(SMF) が使用される。
[0030] 次に、上記のような構成の CWDM光伝送システムにおける光信号の増設について 説明する。
[0031] 最初に、本 CWDM光伝送システムにおける光信号の波長配置および DWDM対 応の光信号の増設可能数にっ 、て説明する。
[0032] 図 2は、一般的な CWDMZDWDMの信号波長配置の一例を示したものである。
図 2に示すように、 CWDMの信号波長配置は、波長間隔が 20nmと規定され、 146 0〜 1530nmの波長帯域を示す S バンド、 1530〜 1565nmの波長帯域を示す C —バンドおよび 1565〜1625nmの波長帯域を示す L—バンドに亘る広い波長帯域 に複数の光信号が配置される。一般的な CWDM対応の波長グリッドでは、 1470nm 、 1490nm、 1510nm、 1530nm、 1550nm、 1570nm、 1590nmおよび 1610nm の各波長に光信号が配置される。このため、本実施形態でも上記の各波長に対応さ せて短波長側力 順に 8波の光信号 CH1〜CH8を設定して 、る。これに対して DW DMの信号波長配置は、波長間隔が 0. 8nm(100GHz)や 0. 4nm(50GHz)など に規定され、 C バンドまたは L バンドにそれぞれ対応させて複数の光信号が配置 される場合が多ぐ C バンド用または L バンド用の各種光伝送装置が実用化され ている。
[0033] 上記のような一般的な CWDM対応の波長配置を適用した光伝送システムにつ!/、 て、既存の DWDMシステムに使用される光伝送装置をそのまま利用して光信号の 増設を行うことを考えると、増設可能な DWDM光の波長数は、 CWDM光伝送シス テムに用いられる送信側の合波器 12および受信側の分波器 21の通過帯域に応じて 決まることになる。すなわち、例えば図 3に示すように、上記合波器 12および分波器 2 1は、 CWDM対応の各光信号の波長にそれぞれ対応した通過帯域をもち、各々の 通過帯域の幅は例えば 13. Onm程度である。したがって、 CWDMに対応した 1波の 光信号に代えて、当該通過帯域内に配置することのできる DWDMに対応した光信 号の波長数は、例えば 0. 8nmの波長間隔で光信号を配置した場合に最大で 16波( 0. 8nm X 16波 = 12. 8應)となる。
[0034] 具体的に、既存の DWDMシステムに使用される C バンド用の光伝送装置を増設 に利用する場合には、 CWDMに対応した光信号 CH4,CH5が C バンド内に位置 するため(図 2参照)、これらの波長を増設波長に設定できる。光信号 CH5を増設波 長に設定すれば、その増設波長を含んだ合分波器の通過帯域の全体が c バンド 用の光伝送装置の信号帯域内に存在するので、 DWDMに対応した光信号を 16波 まで増設することが可能である。光信号 CH4を増設波長に設定すれば、その増設波 長を含んだ合分波器の通過帯域の略半分が C バンド用の光伝送装置の信号帯域 内に存在するので、 DWDMに対応した光信号を 8波まで増設することが可能である 。よって、上記の光信号 CH4,CH5の両方を増設波長に設定したときには、最大で 2 4波の光信号を増設できることになる。
[0035] また、既存の DWDMシステムに使用される L バンド用の光伝送装置を増設に利 用する場合には、 CWDMに対応した光信号 CH6,CH7, CH8が C—バンド内に位 置するため(図 2参照)、これらの波長を増設波長に設定できる。光信号 CH7を増設 波長に設定すれば、その増設波長を含んだ合分波器の通過帯域の全体が L バン ド用の光伝送装置の信号帯域内に存在するので、 DWDMに対応した光信号を 16 波まで増設することが可能である。光信号 CH6または光信号 CH8を増設波長に設 定すれば、その増設波長を含んだ合分波器の通過帯域の略半分が L バンド用の 光伝送装置の信号帯域内に存在するので、 DWDMに対応した光信号を 8波まで増 設することが可能である。よって、上記の光信号 CH6,CH7, CH8のすベてを増設 波長に設定したときには、最大で 32波の光信号を増設できることになる。もちろん、 既存の C バンド用および L バンド用の各光伝送装置を組み合わせてもよぐさら に多くの波長の光信号を増設することが可能である。また、 DWDMに対応した光信 号の波長間隔を 0. 4nm (50GHz)とすれば、増設可能な信号数を上記の 2倍とする ことができる。
[0036] 前述の図 1に示した第 1実施形態の構成では、光信号 CH5に代えて DWDMに対 応した光信号が増設されるので、増設光送信ユニット 100および可変光減衰器 101
5
、並びに、増設光受信ユニット 200および光増幅器 201は、既存の C バンド用光
5 5 5
伝送装置を利用することができ、最大で 16波の増設が可能である。 CWDM光伝送 システム全体での信号数は、光信号 CH1〜CH4, CH6〜CH8と増設される 16波 の DWDM光とで 23波となる。
[0037] CWDMに対応した 1波の光信号 CH5に代えて、既存の DWDMシステムに用いら れる光送信ユニットで生成される 16波の光信号を、従来技術のようにファイバ伝送時 のパワーを考慮することなくそのまま CWDM光伝送システムに与えた場合、 16波の DWDM光のトータルパワーは光信号 CH5のパワーよりも遥かに大きくなるため、伝 送路に送出される光のパワーが非線形効果の発生するレベルを超えてしまう可能性 が高い。そこで、本実施形態では、増設光送信ユニット 100の出力段に可変光減衰
5
器 101を設け、合波器 12から伝送路 30に送出される DWDM光のトータルパワー
5
力 CWDMに対応した光信号 CH1〜CH4, CH6〜CH8の 1波あたりのパワーに 略等しくなるように可変光減衰器 101の減衰量が調整される。
5
[0038] 図 4は、第 1実施形態における送信時の各光信号のパワーの一例を示した図であ る。図 4では、伝送路 30に送出される各光信号 CH1〜CH4, CH6〜CH8のパワー が + 2dBmZchに設定される場合に、増設される 16波の DWDM光の 1波あたりの パワーが— lOdBmとなるように可変光減衰器 101の減衰量が設定される。この可変
5
光減衰器 101の減衰量は、 10 'log (増設波長数)で求められ、ここでは 10'log (16
5
) = 12dBとなる。これにより、合波器 12から伝送路 30に送出される光のトータルパヮ 一は、 CWDMに対応した光信号 CH 1〜CH8だけを合波して伝送路 30に送出して いる場合と同様のレベルとなるため、伝送路 30を伝搬する光信号に非線形効果が発 生するような状況は回避されるようになる。
[0039] 送信時のパワーが低く抑えられた増設光は、伝送路 30を伝搬して光受信端局 20 で受信される時点で、 CWDMに対応した各光信号 CH1〜CH4, CH6〜CH8に比 ベてパワーが非常に小さくなり、そのままの状態では増設光受信ユニット 200でデー
5 タの識別処理等を行うことが困難となる。このため、本実施形態では光受信端局 20 の分波器 21の増設波長に対応した出力ポートに光増幅器 201を接続し、分波器 2
5
1で分波された DWDM光が光増幅器 201により送信側の可変光減衰器 101での
5 5 減衰量に応じた利得で増幅される。これにより、増設光受信ユニット 200に与えられ
5 る DWDM光のトータルパワーは、既存の DWDMシステムに用いられる光受信ュ- ットの場合と同様のレベルに補償されるため、増設光受信ユニット 200内の各光受
5
信器 222
1〜222 での受信処理が可能になる。
16
[0040] ここで、本 CWDM光伝送システムにおける増設光の伝送特性について具体例を 挙げて詳しく説明する。
[0041] 本 CWDM光伝送システムでは、増設光送信ユニット 100から出力され可変光減
5
衰器 101および合波器 12を介して伝送路 30に送出される最大 16波の DWDM光
5
は、前述の図 4に示した一例を想定すると、 1波あたりのパワーが 10dBmZch、 1 6波のトータルパワーが + 2dBmを有することになる。伝送路 30として、例えば全長 が 50km、伝送損失が 20dBの SMFの使用を想定すると、光受信端局 20に到達す る 16波の DWDM光のトータルパワーは 18dBm、 1波あたりのパワーは 30dBm Zchとなる。さらに、分波器 21を通過する際に 4dB程度の損失が発生し、光増幅器 201に入力される DWDM光は、 1波あたりのパワーが一 34dBmZchとなる。
5
[0042] ここで、光増幅器 201 の雑音指数 (NF)として 5dBを想定すると、光増幅器 201か
5 5 ら出力される DWDM光の光信号対雑音比(OSNR)は、次式により算出される。
[0043] OSNR= (入力パワー) NF+ 57. 9
= - 34dBm/ch- 5dB + 57. 9 = 18. 9dB
ただし、上式の第 3項目は C—バンドに対応した定数である。このように光増幅器 2 01力 出力される DWDM光に含まれる各波長の光信号は、 19dB程度の OSNR
5
が確保されるため、増設光受信ユニット 200内の各光受信器 222〜222 におい
5 1 16 て充分に受信処理することが可能となる。
[0044] 上述したように第 1実施形態の CWDM光伝送システムによれば、 DWDMシステム に用いられる既存の光伝送装置をそのまま利用することで低コストの利点を生力しつ つ伝送時の信号品質の低下を回避して、光信号の増設を行うことができる。これによ り、従来の CWDMシステムにお 、て伝送可能な最大信号数 (8波)を越えた光通信 サービスを安価に提供することが可能になる。
[0045] 次に、本発明の第 2実施形態について説明する。
[0046] 図 5は、第 2実施形態の CWDM光伝送システムの構成を示す図である。
[0047] 図 5に示す CWDM光伝送システムは、上述した第 1実施形態の構成について、光 信号 CH5にカ卩えて光信号 CH7に対応した波長を増設波長に設定し、既存の DWD Mシステムに使用される L バンド用の光伝送装置も利用して増設可能な信号数を 増大させたものである。具体的には、光送信端局 10について、第 1実施形態で用い ていた光送信器 ii7に代えて増設光送信ユニット ioo7および可変光減衰器 ioi7を 設け、増設光送信ユニット 1007から出力される DWDM光のパワーを可変光減衰器 101で調整した後に合波器 12の光信号 CH7に対応した入力ポートに与えるように する。また、光受信端局 20について、第 1実施形態で用いていた光送信器 22に代 えて増設光受信ユニット 200および光増幅器 201を設け、分波器 21の光信号 CH 7に対応した出力ポートから出力される DWDM光を光増幅器 201で増幅した後に 増設光受信ユニット 200に与えるようにする。なお、増設光送信ユニット 100および 可変光減衰器 101、並びに、増設光受信ユニット 200および光増幅器 201の各構 成については、増設光送信ユニット 100および可変光減衰器 101、並びに、増設
5 5
光受信ユニット 200および光増幅器 201の各構成と基本的に同様であり、各々の
5 5
信号波長帯域が C バンド対応力 L バンド対応にシフトしたものであるため、ここ での具体的な説明を省略する。
[0048] 上記のような構成の CWDM光伝送システムでは、図 6に示す光信号の波長配置に あるように、 L バンド内に位置する光信号 CH7が増設波長に設定されることにより、 合波器 12および分波器 21の対応する通過帯域内(図 3参照)に、例えば 0. 8nmの 波長間隔の光信号を最大で 16波配置することができる。このような CWDM対応の光 信号 CH7に代わる L バンドの 16波の DWDM光を、上述した光信号 CH5に対応 した C バンドの DWDM光と同様の条件下で伝送した場合、光受信端局 20内の光 増幅器 201力 出力される DWDM光の OSNRは、次式により算出される。
[0049] OSNR= (入力パワー) NF+ 58. 3
= - 34dBm/ch- 5dB + 58. 3 = 19. 3dB
ただし、上式の第 3項目は L—バンドに対応した定数である。このように光信号 CH7 に代わる L—バンドの DWDM光についても 19dB以上の OSNRを確保できるため、 増設光受信ユニット 200における受信処理が充分に可能である。
[0050] したがって、第 2実施形態によれば、既存の DWDMシステムに使用される C バン ド用および L バンド用の光伝送装置を利用して最大で 32波の光信号を増設するこ とができ、 CWDM光伝送システム全体での信号数は、光信号 CH1〜CH4, CH6, CH8と増設される 32波の DWDM光とを合わせて 38波まで増大させることが可能に なる。
[0051] 次に、本発明の第 3実施形態について説明する。
[0052] 図 7は、第 3実施形態の CWDM光伝送システムの構成を示す図である。
[0053] 図 7に示す CWDM光伝送システムは、上述した第 2実施形態の構成について、光 信号 CH5, CH7にカ卩えて光信号 CH4, CH6に対応した波長も増設波長に設定し、 既存の DWDMシステムに使用される C バンドおよび L バンド用の光伝送装置を 利用して増設可能な信号数をさらに増大させたものである。
[0054] 具体的には、光送信端局 10について、光信号 CH4, CH5に代わる増設光として の DWDM光を発生する増設光送信ユニット 100 と、その DWDM光のトータルパヮ
45
一を調整する可変光減衰器 101 と、その可変光減衰器 101 を通過した DWDM
45 45
光を光信号 CH4に対応する成分および光信号 CH5に対応する成分に分波して合 波器 12の各入力ポートに出力する分波器 102 と、が設けられる。また、光信号 CH
45
6, CH7に代わる増設光としての DWDM光を発生する増設光送信ユニット 100 と、
67 その DWDM光のトータルパワーを調整する可変光減衰器 101 と、その可変光減
67
衰器 101 を通過した DWDM光を光信号 CH6に対応する成分および光信号 CH7
67
に対応する成分に分波して合波器 12の各入力ポートに出力する分波器 102 と、が
67 設けられる。
[0055] 光受信端局 20については、分波器 21の光信号 CH4, CH5に対応した各出力ポ ートから出力される DWDM光を合波する合波器 202 と、その合波器 202 力も出
45 45 力される DWDM光を増幅する光増幅器 201 と、その光増幅器 201 カゝら出力され
45 45
る DWDM光の受信処理を行う増設光受信ユニット 200 と、が設けられる。また、分
45
波器 21の光信号 CH6, CH7に対応した各出力ポートから出力される DWDM光を 合波する合波器 202 と、その合波器 202 力 出力される DWDM光を増幅する光
67 67
増幅器 201 と、その光増幅器 201 カゝら出力される DWDM光の受信処理を行う増
67 67
設光受信ユニット 200 と、が設けられる。
67
[0056] 上記のような構成の CWDM光伝送システムでは、図 8に示す光信号の波長配置に あるように、 C バンド内に位置する光信号 CH4が増設波長に設定されることにより、 合波器 12および分波器 21の対応する通過帯域内(図 3参照)に、例えば 0. 8nmの 波長間隔の光信号を最大で 8波配置することができ、同じ C—バンド内に位置する光 信号 CH5に対応した通過帯域内に配置可能な最大 16波の光信号と合わせて、 C - バンドにっ 、て最大で 24波の光信号を含む DWDM光を増設することができる。また 、これと同様にして、 L バンド内に位置する光信号 CH6が増設波長に設定されるこ とにより、合波器 12および分波器 21の対応する通過帯域内に最大で 8波配置するこ とができ、同じ L バンド内に位置する光信号 CH7に対応した通過帯域内に配置可 能な最大 16波の光信号と合わせて、 L—バンドについても最大で 24波の光信号を 含む DWDM光を増設することができる。これらの増設光は、第 2実施形態の場合と 同様に、各光増幅器 201 , 201 の出力で 19dB程度の OSNRを確保できるため、
67 67
増設光受信ユニット 200における受信処理が充分に可能である。
[0057] したがって、第 3実施形態によれば、既存の DWDMシステムに使用される C バン ド用および L バンド用の光伝送装置を利用して最大で 48波の光信号を増設するこ とができ、 CWDM光伝送システム全体での信号数は、光信号 CH1〜CH3, CH8と 増設される 48波の DWDM光とを合わせて 52波まで増大させることが可能になる。
[0058] なお、上記の第 3実施形態では、 L バンドの増設波長として光信号 CH6, CH7 の各波長を設定したが、この組み合わせ以外にも、光信号 CH7, CH8の組み合わ せ若しくは光信号 CH6, CH8の組み合わせ、または、光信号 CH6, CH7, CH8の 組み合わせが設定可能である。
[0059] 次に、本発明の第 4実施形態について説明する。
[0060] 上述した第 1〜第 3の実施形態では、伝送路 30として 1. 3 μ m零分散シングルモ ードファイバが使用される場合の構成を示した。第 4実施形態では、零分散波長を 1 . 5 μ mにシフトさせた分散シフトファイバ (DSF)を伝送路 30として使用する場合に ついて説明する。
[0061] 図 9は、第 4実施形態の CWDM光伝送システムの構成を示す図である。
[0062] 図 9に示すように、伝送路 30に分散シフトファイバを用いて波長多重した光信号の 伝送を行う場合、 C バンドの DWDM光については 4光波混合 (FWM)が発生して 伝送品質が低下してしまう可能性がある。このため、既存の DWDMシステムに用い られる光伝送装置を利用して低コストに信号光波長の増設を行うための 1つの方法と しては、 L バンド内の光信号 CH6〜CH8を増設波長に設定することが有効である 。そこで本実施形態では、例えば光信号 CH7を増設波長とし、それに対応させて、 光送信端局 10内に増設光送信ユニット 100および可変光減衰器 101を設けると共 に、光受信端局 20内に増設光受信ユニット 200および光増幅器 201を設けるよう にする。これらの増設光送信ユニット 100および可変光減衰器 101、並びに、増設 光受信ユニット 200および光増幅器 201は、上述した第 2実施形態に用いられるも のと同様であり、 DWDMに対応した光信号の波長間隔を例えば 0. 8nmとした場合 には、図 10に示す光信号の波長配置にあるように、最大で 16波の光信号を増設す ることが可能である。このように伝送路 30に分散シフトファイバを用いた CWDM光伝 送システムについても、増設波長を L バンド内に設定することで上述した第 1実施 形態の場合と同様の効果を得ることができる。
[0063] なお、上記の第 4実施形態では、 L バンド内の光信号 CH7が増設波長に設定さ れる一例を示したが、分散シフトファイバ使用時の増設波長はこれに限らず、例えば 図 11の構成図および図 12の波長配置図に示すように、光信号 CH7, CH8を増設 波長に設定することも可能である。もちろん、光信号 CH7に代えて光信号 CH6, CH 8のいずれか一方を増設波長に設定しても、また、光信号 CH6〜CH8のいずれか 2 つ若しくは全部の組み合わせを増設波長に設定しても構わな 、。
[0064] 次に、本発明の第 5実施形態について説明する。
[0065] 第 5実施形態では、一芯の 1. 3 mSMFを用いて双方向に光信号を伝送する C
WDM光伝送システムへの応用例を説明する。
[0066] 図 13は、第 5実施形態の CWDM光伝送システムの構成を示す図である。
[0067] 図 13に示す構成では、 CWDM対応の波長グリッド上の 8波の光信号 CH1〜CH8 のうちの波長番号が奇数の光信号 CHI, CH3, CH5, CH7が上り回線を伝送され 、波長番号が偶数の光信号 CH2, CH4, CH6, CH6が下り回線を伝送されるような 双方向の CWDM光伝送システムについて、上り回線側の光信号 CH5, CH7およ び下り回線側の光信号 CH6, CH7がそれぞれ増設波長に設定され、各々の増設波 長に対応させて、上述した各実施形態の場合と同様に増設光送信ユニット 100およ び可変光減衰器 101、並びに、増設光受信ユニット 200および光増幅器 20 ^ (ただ し、 i=4〜7)がそれぞれ設けられる。なお、伝送路 30の一端近傍に配置した合分波 器 51は、上り回線側の合波器 12から出力される光信号 CHI, CH3および光信号 C H5, CH7に対応した DWDM光を伝送路 30に送ると共に、それとは逆に伝送路 30 を伝搬してきた光信号 CH2, CH8および光信号 CH4, CH6に対応した DWDM光 を下り回線側の分波器 21 'に伝えるものである。また、伝送路 30の他端近傍に配置 した合分波器 52は、下り回線側の合波器 12'から出力される光信号 CH2, CH8お よび光信号 CH4, CH6に対応した DWDM光を伝送路 30に送ると共に、それとは逆 に伝送路 30を伝搬してきた光信号 CHI, CH3および光信号 CH5, CH7に対応し た DWDM光を上り回線側の分波器 21に伝えるものである。
[0068] 上記のような構成の C双方向 WDM光伝送システムでは、例えば、増設される DW DM光の波長間隔を 0. 8nmとした場合、図 14に示すように、上り回線については、 光信号 CH5に対応した C バンドの 16波と、光信号 CH7に対応した L バンドの 1 6波とによって最大で 32波の DWDM光を増設することができ、下り回線については 、光信号 CH4に対応した C バンドの 8波と、光信号 CH6に対応した L バンドの 8 波とによって最大で 16波の DWDM光を増設することが可能になる。
[0069] なお、上記の第 5実施形態における下り回線については、光信号 CH8を増設波長 に設定することも可能である。また、 CWDMに対応した 8波の光信号 CH1〜CH8に つ 、ての上り回線および下り回線に対する割り振りは、上記のような波長番号が奇数 が偶数によるものに限定されず、任意の規則に従って割り振りを行うことが可能である
[0070] 次に、本発明の第 6実施形態について説明する。
[0071] 上述した第 4実施形態では、零分散波長を 1. 5 μ mにシフトさせた分散シフトフアイ バ(DSF)を伝送路 30として使用する場合に、 C バンドの DWDM光に対する 4光 波混合 (FWM)の発生を考慮して、 L バンド内の光信号 CH6〜CH8を増設波長 に設定する一例を示した。しかし、少数波長の増設 (例えば 4波までの増設)を行う場 合には、 C バンド内での増設であっても光信号を不等間隔に配置することにより、 F WMの発生周波数でのクロストーク劣化を回避することが可能になる。そこで、第 6実 施形態では、上記のような場合に対応した CWDM光伝送システムの具体例にっ ヽ て説明する。
[0072] まず、図 15 (A) (B)に示すように、 ITU—T規格で決められた C—バンドにおいて、 CWDM対応の光信号 CH4が配置される 1530nm± 10nmの帯域内には、 DWD M対応の波長グリッド上の点が 15個存在し(CH1,〜CH15, )、 CWDM対応の光 信号 CH5が配置される 1550nm± 10nmの帯域内には、 DWDM対応の波長グリツ ド上の点が 25個存在する(CH16'〜CH40' )。しかしながら、 CWDM対応の合波 器 12および分波器 21の各通過帯域が CWDMの信号間隔 20nm、つまり ± 10nm よりも狭いので、上記 DWDM対応の波長グリッド上の全ての点に光信号を配置する ことは実用上不可能である。例えば、合波器 12および分波器 21の各通過帯域が士 6. 5nmの場合、 CWDMの光信号 CH4に対応した 1530nm帯では、 CH1 'から C H10'までの 10個のグリッド上に DWDMの光信号を配置することができ、その周波 数帯域は 900GHzになる。また、 CWDMの光信号 CH5に対応した 1550nm帯では 、 CH20'から CH35 'までの 16個のグリッド上に DWDMの光信号を配置することが でき、その周波数帯域は 1500GHzになる。
[0073] ここで、上記のような 1530nm帯および 1550nm帯の周波数帯域について、 DWD Mの光信号と FWMによるアイドラ光との相対的な関係を検討する。
[0074] 一般に、 fl, f2, f3の周波数を有する 3波の光信号を WDM伝送する場合、 FWM によるアイドラ光の発生周波数ポイントは、縮退四光波混合によるものも含めて例え ば図 16に示すようになる。なお、図中の Δ ί12は、 flと f2の間隔を表し、 Δ ί23, Δ ίΐ 3もこれと同様である。図 16の一例に示すように、周波数 fl〜f3の各光信号を不等 間隔(ここでは、 100GHzおよび 300GHz間隔)にすることで、各光信号の周波数と FWMによるアイドラ光の発生周波数とは重ならなくなり、クロストークの発生によって 伝送品質を劣化させることはなくなる。 3波の光信号にっ 、てのアイドラ光の発生周 波数ポイントは、図 16より 9箇所あることが分かる。
[0075] 次に、上記のような FWMによるアイドラ光の発生周波数ポイントについて、 4波の 光信号を WDM伝送する場合に拡張して検討する。図 17はその検討結果を示したも のである。図 17において、上側に示した 1530nm帯では、前述したように DWDMの 光信号を配置可能な周波数帯域が 900GHzであるので、 fl〜f4の周波数を有する 4波の光信号の配置間隔を例えば 200GHz, 300GHzおよび 400GHzとする。具体 的にここでは、前述の図 15 (A)に示した DWDM対応の光信号 CHI ' , CH3' , CH 6'および CH10'が配置される。この不等間隔の信号配置での FWMによるアイドラ 光の発生周波数ポイントは、図 17の上側の 2段目〜5段目に示す通り多数あるが、 各光信号 CHI ' , CH3' , CH6'および CH10'の周波数に重なるポイントは存在し ていないことが分かる。また、 1530nm帯内で各光信号と FWMによるアイドラ光との クロストークが生じないことにカ卩えて、上記の FWMによるアイドラ光の発生周波数ポ イントが、 1550nm帯に配置される光信号の周波数と重ならないことも重要である。
[0076] 図 17では、下側に示した 1550nm帯についても、 4波の光信号の配置間隔を例え ば 200GHz, 300GHzおよび 400GHzとする。具体的にここでは、前述の図 15 (A) に示した DWDM対応の光信号 CH23' , CH25' , CH28 'および CH32'が配置さ れる。これら 1550nm帯に配置される各光信号の周波数は、 1530nm帯についての FWMによるアイドラ光の発生周波数ポイントと重なっていないことが図 17より分かる 。また、 1550nm帯についての FWMによるアイドラ光の発生周波数ポイントも、 153 Onm帯の場合と同様に多数ある力 各光信号 CH23' , CH25' , CH28'および CH 32'の周波数に重なるポイントは存在しておらず、加えて、 1530nm帯の各光信号の 周波数 CHI ' , CH3' , CH6'および CH10'とも重なっていない。
[0077] 図 18は、上記のような 1530nm帯および 1550nm帯に不等間隔でそれぞれ配置 した各光信号と FWMによるアイドラ光との相対的な関係を整理したものである。この ように、 1530nm帯の光信号に起因した FWMによるアイドラ光のうちの最長波長か ら 1550nm帯の光信号のうちの最短波長までの間隔を示す FWMクロストーク余裕 幅 W45と、 1550nm帯の光信号に起因した FWMによるアイドラ光のうちの最短波長 力も 1530nm帯の光信号のうちの最長波長までの間隔を示す FWMクロストーク余 裕幅 W54と力 それぞれ 100GHzの n倍 (nは整数)、すなわち、波長グリッド間隔以 上となるように設定することが必要である。
[0078] 前述の図 17に示したように、 1530nm帯の 4波の光信号の配置間隔および 1550η m帯の 4波の光信号の配置間隔をそれぞれ 200GHz、 300GHzおよび 400GHzと した場合には、 FWMクロストーク余裕幅 W45, W54がいずれも 400GHzとなる。図 19は、 1530nm帯および 1550nm帯の各々 4波の光信号の配置間隔を 200GHz、 300GHzおよび 400GHzとした場合における、各光信号の具体的な配置例を列挙 したものである。このように本実施形態において 4波の光信号を 200GHz、 300GHz および 400GHzの不等間隔で配置するということは、図 19に示した組み合わせの信 号配置を適用することを意味して 、る。
[0079] また、図 20は、 1530nm帯の 4波の光信号の配置間隔を 200GHz、 300GHzおよ び 400GHzとし、 1550nm帯の 4波の光信号の配置間隔を 300GHz、 400GHzおよ び 500GHzとした場合について、各光信号と FWMによるアイドラ光との相対的な関 係を整理したものである。なお、図 20には、上記のような配置間隔を適用する場合の 各光信号の具体的な配置の一例として、 1530nm帯に光信号 CHI ' , CH3' , CH6 ' , CH10,を配置し、 1550nm帯に光信号 CH23,, CH26' , CH30' , CH35'を 配置している。このような信号配置においては、 FWMクロストーク余裕幅 W45が 400 GHzとなり、 FWMクロストーク余裕幅 W54が 100GHzとなる。
[0080] 図 21は、 DWDM対応の光信号を 8波増設する場合のシステム構成例を示したも のである。また、図 22は、図 21のシステム構成例に対応した信号配置の模式図であ る。 CWDM対応の光信号 CH4, CH5に代えて増設される DWDM対応の 4波 + 4 波の光信号は、前述したように不等間隔配置とすることで FWMによるクロストークの 発生を回避しているので、上述した第 1〜第 5実施形態の場合のように DWDM対応 の光信号を他の CWDM対応の光信号に対して減衰させて伝送路 30に送る必要が なくなる。このため、システムのレベルダイヤに応じて、図 21に示したような光増幅器 103 , 103 , 203 , 203を光送信端局 10若しくは光受信端局 20のいずれか一方
4 5 4 5
または双方に設け、 CWDM対応の光信号レベルに対して DWDM対応の増設光信 号レベルを同等若しくは高めるようにしてもよ 、。
[0081] 図 23は、 DWDM対応の光信号を上り回線および下り回線でそれぞれ 4波ずつ増 設する場合の双方向システムの構成例を示したものである。また、図 24は、図 23の 双方向システムの構成例に対応した信号配置の模式図である。上り回線には、 CW DM対応の光信号 CHI, CH2, CH3と、光信号 CH4に代えて増設される DWDM 対応の 4波の光信号とが割り当てられる。また、下り回線には、 CWDM対応の光信 号 CH6, CH7, CH8と、光信号 CH5に代えて増設される DWDM対応の 4波の光 信号とが割り当てられる。
[0082] 上記の図 21や図 23に示した各構成においては、 1530nm帯および 1550nm帯に DWDM対応の光信号が増設されるため、 DWDM用の光送信器 111〜: L 11として
1 4
、半導体外部変調器付 DFB— LD (EA変調器付 DFBレーザ)を適用することができ る。半導体外部変調器付 DFB— LDを用いた光送信器は、 LN型の外部変調器を用 いた光送信器に比べて、低価格で、小型になるという利点がある。
[0083] また、上記のような波長配置では、増設される DWDM対応の各光信号の波長間隔 が少なくとも 200GHzあるので、光送信器の波長安定化制御に一般に使用される波 長ロッカーなどを設けることが不要になる。このため、より低価格で小型の光送信器を 用いてシステムを構成することが可能になる。
[0084] なお、上記の第 6実施形態では、不等間隔の波長配置を適用した光信号力 ¾SFを 用いた伝送路 30に送出される場合を説明した力 上記のような波長配置の光信号は 、 DSFのみならず、 SMFを用いた伝送路にもそのまま送出することが可能である。つ まり、第 6実施形態の構成は、 3波若しくは 4波程度の少数波長の増設に対応したシ ステムとして、ファイバ伝送路の種類に依存しな 、と 、う効果も合わせもつことになる

Claims

請求の範囲
[1] 低密度波長多重方式に対応した第 1波長グリッド上に配置される複数の光信号を 発生する複数の第 1光送信器および該各第 1光送信器カゝら出力される光信号を合波 して低密度波長多重光を伝送路に送出する第 1合波器を有する光送信端局と、該光 送信端局から伝送路を介して伝えられる低密度波長多重光を分波する第 1分波器お よび該第 1分波器から出力される各波長の光信号を受信する複数の第 1光受信器を 有する光受信端局と、を備えた低密度波長多重光伝送システムにおいて、
前記第 1波長グリッド上の少なくとも 1つの波長を増設波長に設定し、
前記光送信端局は、前記増設波長に対応する前記第 1光送信器に代えて、高密 度波長多重方式に対応した第 2波長グリッド上において前記第 1合波器の前記増設 波長を含む通過帯域内に配置される複数の光信号を発生する複数の第 2光送信器 と、該各第 2光送信器から出力される光信号を合波して高密度波長多重光を前記第 1合波器に出力する第 2合波器と、を有する増設光送信ユニットを設けると共に、該 増設光送信ユニットから前記第 1合波器を介して伝送路に送出される高密度波長多 重光のトータルパワーが前記増設波長以外に対応した前記第 1光送信器から出力さ れる光信号の 1波長あたりのパワーに略等しくなるように、前記増設光送信ユニットか ら出力される高密度波長多重光を減衰させる光減衰器を備え、
前記光受信端局は、前記増設波長に対応する前記第 1光受信器に代えて、前記 第 1分波器から出力される高密度波長多重光を分波する第 2分波器と、該第 2分波 器力 出力される各波長の光信号を受信する複数の第 2光受信器と、を有する増設 光受信ユニットを設けると共に、前記光減衰器の減衰量に応じた利得で前記第 1分 波器力 出力される高密度波長多重光を増幅する光増幅器を備えたことを特徴とす る低密度波長多重光伝送システム。
[2] 請求項 1に記載の低密度波長多重光伝送システムであって、
前記第 1波長グリッドは、 20nmの波長間隔を有することを特徴とする低密度波長 多重光伝送システム。
[3] 請求項 2に記載の低密度波長多重光伝送システムであって、
前記第 1波長グリッド上に配置される複数の光信号の波長が 1530nmおよび 1550 nmを含むとき、
前記増設波長として 1530nmおよび 1550nmのうちの少なくとも 1波長を設定し、 当該増設波長に対応する前記増設光送信ユニットおよび前記増設光受信ユニットと して C—バンド用のユニットをそれぞれ使用することを特徴とする低密度波長多重光 伝送システム。
[4] 請求項 2に記載の低密度波長多重光伝送システムであって、
前記第 1波長グリッド上に配置される複数の光信号の波長が 1570nm、 1590nm および 1610nmを含むとき、
前記増設波長として 1570nm、 1590nmおよび 16 lOnmのうちの少なくとも 1波長 を設定し、当該増設波長に対応する前記増設光送信ユニットおよび前記増設光受 信ユニットとして L—バンド用のユニットをそれぞれ使用することを特徴とする低密度 波長多重光伝送システム。
[5] 請求項 2に記載の低密度波長多重光伝送システムであって、
前記第 1波長グリッド上に配置される複数の光信号の波長が 1530nm、 1550nm、 1570nm、 1590nmおよび 1610nmを含むとき、
前記増設波長として 1530nmおよび 1550nmのうちの少なくとも 1波長を設定し、 当該増設波長に対応する前記増設光送信ユニットおよび前記増設光受信ユニットと して C—バンド用のユニットをそれぞれ使用すると共に、
前記増設波長として 1570nm、 1590nmおよび 16 lOnmのうちの少なくとも 1波長 を設定し、当該増設波長に対応する前記増設光送信ユニットおよび前記増設光受 信ユニットとして L—バンドに対応したユニットをそれぞれ使用することを特徴とする低 密度波長多重光伝送システム。
[6] 請求項 1に記載の低密度波長多重光伝送システムであって、
前記第 1波長グリッド上の複数の波長が増設波長に設定されるとき、
前記光送信端局は、 2波以上の増設波長に対応した複数の光信号を合波した高 密度波長多重光を生成することが可能な増設光送信ユニットと、該増設光送信ュニ ットから出力される高密度波長多重光を前記 2波以上の増設波長にそれぞれ対応し た成分に分波して前記第 1合波器に出力する第 3分波器と、を備え、 前記光受信端局は、前記第 1分波器力 出力される前記 2波以上の増設波長にそ れぞれ対応した高密度波長多重光を合波する第 3合波器と、該第 3合波器から出力 される高密度波長多重光を受信可能な増設光受信ユニットと、を備えることを特徴と する低密度波長多重光伝送システム。
[7] 請求項 1に記載の低密度波長多重光伝送システムであって、
前記伝送路に分散シフトファイバが用いられるとき、
前記第 1波長グリッド上に配置される複数の光信号の波長のうちの L バンド内に ある波長を増設波長に設定することを特徴とする低密度波長多重光伝送システム。
[8] 請求項 1に記載の低密度波長多重光伝送システムであって、
前記第 2波長グリッドは、 0. 8nmの波長間隔を有することを特徴とする低密度波長 多重光伝送システム。
[9] 請求項 1に記載の低密度波長多重光伝送システムであって、
前記第 2波長グリッドは、 0. 4nmの波長間隔を有することを特徴とする低密度波長 多重光伝送システム。
[10] 低密度波長多重方式に対応した第 1波長グリッド上に配置される複数の光信号を 複数の第 1光送信器で発生し、該各第 1光送信器力 出力される光信号を第 1合波 器で合波した低密度波長多重光を伝送路に送出し、該伝送路を伝送された低密度 波長多重光を第 1分波器で分波し、該分波された各波長の光信号を複数の第 1光受 信器で受信する低密度波長多重光伝送方法において、
前記第 1波長グリッド上の少なくとも 1つの波長を増設波長に設定し、
送信側では、前記増設波長に対応する前記第 1光送信器から前記第 1合波器に出 力される光信号に代えて、高密度波長多重方式に対応した第 2波長グリッド上にお いて前記第 1合波器の前記増設波長を含む通過帯域内に配置される複数の光信号 を複数の第 2光送信器で発生し、該各第 2光送信器カゝら出力される光信号を第 2合 波器で合波した高密度波長多重光を前記第 1合波器に出力すると共に、前記第 1合 波器を介して伝送路に送出される高密度波長多重光のトータルパワーが前記増設 波長以外に対応した前記第 1光送信器から出力される光信号の 1波長あたりのパヮ 一に略等しくなるように、前記高密度波長多重光を光減衰器で減衰させ、 受信側では、前記増設波長に対応する前記第 1光受信器で光信号を受信するの に代えて、前記第 1分波器から出力される前記高密度波長多重光を第 2分波器で分 波し、該分波された各波長の光信号を複数の第 2光受信器で受信すると共に、前記 第 1分波器から出力される前記高密度波長多重光を光増幅器により前記光減衰器 の減衰量に応じた利得で増幅することを特徴とする低密度波長多重光伝送方法。
[11] 請求項 10に記載の低密度波長多重光伝送方法であって、
前記第 1波長グリッド上に配置し得る最大の信号数を越えた光信号の増設を可能と する光通信サービスを行うことを特徴とする低密度波長多重光伝送方法。
[12] 低密度波長多重方式に対応した第 1波長グリッド上に配置される複数の光信号を 発生する複数の第 1光送信器および該各第 1光送信器カゝら出力される光信号を合波 して低密度波長多重光を伝送路に送出する第 1合波器を有する光送信端局と、該光 送信端局から伝送路を介して伝えられる低密度波長多重光を分波する第 1分波器お よび該第 1分波器から出力される各波長の光信号を受信する複数の第 1光受信器を 有する光受信端局と、を備えた低密度波長多重光伝送システムにおいて、
前記第 1波長グリッド上に配置される複数の光信号の波長のうちの 1530nmおよび 1550nmの少なくとも 1波長を増設波長に設定し、
前記光送信端局は、前記増設波長に対応する前記第 1光送信器に代えて、高密 度波長多重方式に対応した第 2波長グリッド上において前記第 1合波器の前記増設 波長を含む通過帯域内に不等間隔に配置される 3波または 4波の光信号を発生する 複数の第 2光送信器と、該各第 2光送信器力 出力される光信号を合波して高密度 波長多重光を前記第 1合波器に出力する第 2合波器と、を有する増設光送信ュニッ トを設け、
前記光受信端局は、前記増設波長に対応する前記第 1光受信器に代えて、前記 第 1分波器から出力される高密度波長多重光を分波する第 2分波器と、該第 2分波 器力 出力される各波長の光信号を受信する複数の第 2光受信器と、を有する増設 光受信ユニットを設けたことを特徴とする低密度波長多重光伝送システム。
[13] 請求項 12に記載の低密度波長多重光伝送システムであって、
前記光送信端局は、 1530nmおよび 1550nmの各増設波長に対して前記第 2波 長グリッド上にそれぞれ 4波の光信号を配置するとき、当該 4波の光信号の周波数間 隔の組み合わせを 200GHz、 300GHzおよび 400GHzとしたことを特徴とする低密 度波長多重光伝送システム。
[14] 請求項 12に記載の低密度波長多重光伝送システムであって、
前記光送信端局は、 1530nmおよび 1550nmの各増設波長に対して前記第 2波 長グリッド上にそれぞれ 4波の光信号を配置するとき、 1530nmの増設波長に対応し た 4波の光信号の周波数間隔の組み合わせを 200GHz、 300GHzおよび 400GHz とし、 1550nmの増設波長に対応した 4波の光信号の周波数間隔の組み合わせを 3 00GHz、 400GHzおよび 500GHzとしたことを特徴とする低密度波長多重光伝送 システム。
[15] 請求項 12に記載の低密度波長多重光伝送システムであって、
前記複数の第 2光送信器は、半導体外部変調器付 DFBレーザを含むことを特徴と する低密度波長多重光伝送システム。
[16] 低密度波長多重方式に対応した第 1波長グリッド上に配置される複数の光信号を 複数の第 1光送信器で発生し、該各第 1光送信器力 出力される光信号を第 1合波 器で合波した低密度波長多重光を伝送路に送出し、該伝送路を伝送された低密度 波長多重光を第 1分波器で分波し、該分波された各波長の光信号を複数の第 1光受 信器で受信する低密度波長多重光伝送方法において、
前記第 1波長グリッド上に配置される複数の光信号の波長のうちの 1530nmおよび 1550nmの少なくとも 1波長を増設波長に設定し、
送信側では、前記増設波長に対応する前記第 1光送信器から前記第 1合波器に出 力される光信号に代えて、高密度波長多重方式に対応した第 2波長グリッド上にお いて前記第 1合波器の前記増設波長を含む通過帯域内に不等間隔に配置される 3 波または 4波の光信号を複数の第 2光送信器で発生し、該各第 2光送信器力 出力 される光信号を第 2合波器で合波した高密度波長多重光を前記第 1合波器に出力し 受信側では、前記増設波長に対応する前記第 1光受信器で光信号を受信するの に代えて、前記第 1分波器から出力される前記高密度波長多重光を第 2分波器で分 波し、該分波された各波長の光信号を複数の第 2光受信器で受信することを特徴と する低密度波長多重光伝送方法。
PCT/JP2005/006234 2004-03-31 2005-03-31 低密度波長多重光伝送システムおよび低密度波長多重光伝送方法 WO2005096534A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800018659A CN1906876B (zh) 2004-03-31 2005-03-31 稀疏波分复用光传送系统以及稀疏波分复用光传送方法
JP2006511779A JP4463808B2 (ja) 2004-03-31 2005-03-31 低密度波長多重光伝送システムおよび低密度波長多重光伝送方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-101764 2004-03-31
JP2004101764 2004-03-31
JP2004-262153 2004-09-09
JP2004262153 2004-09-09

Publications (1)

Publication Number Publication Date
WO2005096534A1 true WO2005096534A1 (ja) 2005-10-13

Family

ID=34889450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006234 WO2005096534A1 (ja) 2004-03-31 2005-03-31 低密度波長多重光伝送システムおよび低密度波長多重光伝送方法

Country Status (6)

Country Link
US (1) US7831118B2 (ja)
EP (1) EP1583269A3 (ja)
JP (1) JP4463808B2 (ja)
KR (1) KR100789095B1 (ja)
CN (1) CN1906876B (ja)
WO (1) WO2005096534A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638833A (ja) * 1992-07-28 1994-02-15 Yukio Kanazawa 支持台
JP2007208499A (ja) * 2006-01-31 2007-08-16 Fujitsu Ltd 光伝送ネットワーク
JP2010166394A (ja) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp 波長多重伝送システム
JP2010273033A (ja) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp 光伝送装置、光波長増設装置および光波長増設方法
EP2487820A2 (en) 2011-02-14 2012-08-15 Fujitsu Limited Optical transmission device and optical filter circuit
JP2012175254A (ja) * 2011-02-18 2012-09-10 Nec Corp 波長分割多重システム並びにそのシステムにおける送信側波長分割多重装置及び受信側波長分割多重分離装置
JP2014216811A (ja) * 2013-04-25 2014-11-17 日本電気株式会社 光波長多重通信システム、光波長多重通信方法、及び光合分波装置
US8948593B2 (en) 2010-09-30 2015-02-03 Fujitsu Limited Optical network interconnect device
JP2019041317A (ja) * 2017-08-28 2019-03-14 住友電気工業株式会社 光送信器
JPWO2018193835A1 (ja) * 2017-04-18 2020-02-06 日本電気株式会社 双方向光伝送システム及び双方向光伝送方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7587137B2 (en) * 2006-05-08 2009-09-08 Cisco Technology, Inc. System and method for seamless integration of CWDM and DWDM technologies on a fiber optics infrastructure
US8917986B2 (en) * 2006-12-07 2014-12-23 Arris Solutions, Inc. Extended range for CWDM optical transport
US7783197B2 (en) * 2007-05-22 2010-08-24 General Instrument Corporation Method and apparatus for reducing crosstalk in a DWDM transmission system
US20090010649A1 (en) * 2007-07-02 2009-01-08 Tellabs Bedford, Inc. Optical access network with legacy support
US8260138B2 (en) * 2008-04-07 2012-09-04 Arris Solutions, Inc. Wavelength distribution for optical transport
JP2010226169A (ja) * 2009-03-19 2010-10-07 Fujitsu Ltd 光送信装置、光通信方法および光通信システム
GB2484868B (en) * 2009-08-18 2013-08-07 Hitesh Mehta A novel fiber optic training kit
US9477141B2 (en) 2011-08-31 2016-10-25 Cablecam, Llc Aerial movement system having multiple payloads
US9337949B2 (en) 2011-08-31 2016-05-10 Cablecam, Llc Control system for an aerially moved payload
US10469790B2 (en) * 2011-08-31 2019-11-05 Cablecam, Llc Control system and method for an aerially moved payload system
KR101477169B1 (ko) * 2011-09-26 2014-12-29 주식회사 에치에프알 클라우드 기반 네트워크를 위한 광 선로 공유 방법과 그를 위한 시스템 및 장치
US9379838B2 (en) * 2011-12-30 2016-06-28 Infinera Corporation Optical communication system having tunable sources
US9485049B2 (en) * 2013-03-29 2016-11-01 Infinera Corporation Adjusting carrier spacing in a channel
KR101819254B1 (ko) * 2013-09-13 2018-01-17 한국전자통신연구원 대용량 광 트랜시버 모듈
US9496961B2 (en) 2015-04-09 2016-11-15 International Business Machines Corporation External cavity laser based wavelength division multiplexing superchannel transceivers
JP6103097B1 (ja) * 2016-03-18 2017-03-29 日本電気株式会社 光伝送装置及びその制御方法
JP7135783B2 (ja) * 2018-11-27 2022-09-13 富士通株式会社 伝送システム、伝送装置、及び伝送方法
CN112399283B (zh) * 2019-08-16 2021-10-26 中国移动通信有限公司研究院 一种波分复用系统、局端装置及远端装置
CN112769519A (zh) * 2019-11-04 2021-05-07 中国电信股份有限公司 光信号通信系统
US11671177B2 (en) 2021-02-25 2023-06-06 Google Llc 8WDM optical transceiver at 10nm wavelength grid
US11686900B2 (en) * 2021-03-11 2023-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package, optical device and method of fabricating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244404A (ja) * 1999-02-19 2000-09-08 Lucent Technol Inc 波長分割多重化システム
JP2002300137A (ja) * 2001-04-03 2002-10-11 Nippon Telegr & Teleph Corp <Ntt> ハイブリッド光伝送システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE300459C (ja) *
US5933552A (en) * 1996-04-25 1999-08-03 The Furukawa Electric Co., Ltd. Optical filter, manufacturing method thereof and optical amplifier equipped with said optical filter
US5748350A (en) 1996-06-19 1998-05-05 E-Tek Dynamics, Inc. Dense wavelength division multiplexer and demultiplexer devices
US5778118A (en) * 1996-12-03 1998-07-07 Ciena Corporation Optical add-drop multiplexers for WDM optical communication systems
US7054559B1 (en) * 1997-09-04 2006-05-30 Mci Communications Corporation Method and system for modular multiplexing and amplification in a multi-channel plan
US6356384B1 (en) * 1998-03-24 2002-03-12 Xtera Communications Inc. Broadband amplifier and communication system
EP0964275A1 (en) 1998-06-09 1999-12-15 PIRELLI CAVI E SISTEMI S.p.A. Method and device for dropping optical channels in an optical transmission system
US6388783B1 (en) * 1999-11-30 2002-05-14 Corning Incorporated Narrow band wavelength division multiplexer and method of multiplexing optical signals
US20020105692A1 (en) * 2001-02-07 2002-08-08 Richard Lauder Hierarchical WDM in client-server architecture
US6810214B2 (en) * 2001-03-16 2004-10-26 Xtera Communications, Inc. Method and system for reducing degradation of optical signal to noise ratio
US6636658B2 (en) * 2001-04-23 2003-10-21 Optical Coating Laboratory, Inc. Wavelength division multiplexing/demultiplexing systems
JP2003115822A (ja) * 2001-10-05 2003-04-18 Nec Corp 波長多重光伝送システム
US20030206688A1 (en) * 2002-05-03 2003-11-06 Hollars Dennis R. Miniature optical multiplexer/de-multiplexer DWDM device
DE20300459U1 (de) 2003-01-13 2003-04-30 Adva Ag Optische Filteranordnung für ein optisches Wellenlängenmultiplex-Übertragungssystem
WO2004066534A1 (de) 2003-01-13 2004-08-05 Adva Ag Optical Networking Optische filteranordnung für ein optisches wellenlängenmultiplex-übertragungssystem

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244404A (ja) * 1999-02-19 2000-09-08 Lucent Technol Inc 波長分割多重化システム
JP2002300137A (ja) * 2001-04-03 2002-10-11 Nippon Telegr & Teleph Corp <Ntt> ハイブリッド光伝送システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638833A (ja) * 1992-07-28 1994-02-15 Yukio Kanazawa 支持台
JP2007208499A (ja) * 2006-01-31 2007-08-16 Fujitsu Ltd 光伝送ネットワーク
JP2010166394A (ja) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp 波長多重伝送システム
JP2010273033A (ja) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp 光伝送装置、光波長増設装置および光波長増設方法
US8948593B2 (en) 2010-09-30 2015-02-03 Fujitsu Limited Optical network interconnect device
EP2487820A2 (en) 2011-02-14 2012-08-15 Fujitsu Limited Optical transmission device and optical filter circuit
US8977130B2 (en) 2011-02-14 2015-03-10 Fujitsu Limited Optical transmission device and optical filter circuit
JP2012175254A (ja) * 2011-02-18 2012-09-10 Nec Corp 波長分割多重システム並びにそのシステムにおける送信側波長分割多重装置及び受信側波長分割多重分離装置
JP2014216811A (ja) * 2013-04-25 2014-11-17 日本電気株式会社 光波長多重通信システム、光波長多重通信方法、及び光合分波装置
JPWO2018193835A1 (ja) * 2017-04-18 2020-02-06 日本電気株式会社 双方向光伝送システム及び双方向光伝送方法
JP2019041317A (ja) * 2017-08-28 2019-03-14 住友電気工業株式会社 光送信器

Also Published As

Publication number Publication date
US20050220397A1 (en) 2005-10-06
KR20070006683A (ko) 2007-01-11
US7831118B2 (en) 2010-11-09
EP1583269A3 (en) 2007-07-11
JPWO2005096534A1 (ja) 2008-02-21
CN1906876B (zh) 2010-05-05
EP1583269A2 (en) 2005-10-05
CN1906876A (zh) 2007-01-31
JP4463808B2 (ja) 2010-05-19
KR100789095B1 (ko) 2007-12-26

Similar Documents

Publication Publication Date Title
WO2005096534A1 (ja) 低密度波長多重光伝送システムおよび低密度波長多重光伝送方法
JP3995781B2 (ja) 波長選択フィルタを用いた光分岐・挿入装置及び光分岐装置
JP4252219B2 (ja) 光ノード装置及び該装置を備えたシステム
EP1635489A1 (en) Optical wavelength multiplex access system and optical network unit
KR100334432B1 (ko) 하나의도파관열격자다중화기를이용한양방향애드/드롭광증폭기모듈
JPH07107069A (ja) 光波長多重伝送方式および光分散補償方式
US6577652B1 (en) Optical add-drop multiplexer of WDM optical signals
US6661973B1 (en) Optical transmission systems, apparatuses, and methods
US6771854B2 (en) Optical transmission system and optical coupler/branching filter
US6377375B1 (en) Optical wavelength division multiplexed signal amplifying repeater and optical communication transmission line with very large capacity
JP2003283438A (ja) 光伝送装置および光伝送方法
EP3327963B1 (en) Optical multiplexing device and associated equipment and method
US7130542B2 (en) Modular multiplexing/demultiplexing units in optical transmission systems
EP3427413A1 (en) Optical pumping technique
US20050259988A1 (en) Bi-directional optical access network
JP2006129503A (ja) 光ネットワーク,光送信装置,光受信装置,光増幅装置,分散補償装置,光ネットワークにおける信号光波長選択方法,波長多重化装置および波長分離装置
JP2004193974A (ja) 光クロスコネクト装置
JP2000312185A (ja) 波長多重光伝送用光中継増幅器およびこれを用いた波長多重光伝送装置
JP3233269B2 (ja) 四光波混合抑圧方式
JPH1013382A (ja) 光分岐挿入多重ノード装置
JP3866421B2 (ja) 波長多重光伝送システム、光受信装置、光増幅器および光波長多重送信装置
KR100434454B1 (ko) 데이지 체인 파장 분할 다중화 디바이스와 이를 사용한데이지 체인 파장 분할 다중화 시스템 및 전송 네트워크
JP3275855B2 (ja) 波長多重光送信装置とこの装置を備えた波長多重光伝送装置
JP3609968B2 (ja) 光増幅器
JP3515358B2 (ja) 波長分割多重型光伝送システムおよび方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001865.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511779

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067013122

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067013122

Country of ref document: KR

122 Ep: pct application non-entry in european phase