WO2005094986A1 - 空気液化分離装置の前処理精製装置、炭化水素吸着剤、及び原料空気の前処理方法 - Google Patents

空気液化分離装置の前処理精製装置、炭化水素吸着剤、及び原料空気の前処理方法 Download PDF

Info

Publication number
WO2005094986A1
WO2005094986A1 PCT/JP2005/005939 JP2005005939W WO2005094986A1 WO 2005094986 A1 WO2005094986 A1 WO 2005094986A1 JP 2005005939 W JP2005005939 W JP 2005005939W WO 2005094986 A1 WO2005094986 A1 WO 2005094986A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
pretreatment
air
propane
zeolite
Prior art date
Application number
PCT/JP2005/005939
Other languages
English (en)
French (fr)
Inventor
Tatsuya Hidano
Morimitsu Nakamura
Masato Kawai
Original Assignee
Taiyo Nippon Sanso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corporation filed Critical Taiyo Nippon Sanso Corporation
Priority to CN2005800101139A priority Critical patent/CN1938081B/zh
Priority to US10/594,998 priority patent/US7931736B2/en
Priority to EP05727894A priority patent/EP1736237A4/en
Priority to JP2006511685A priority patent/JP4512093B2/ja
Publication of WO2005094986A1 publication Critical patent/WO2005094986A1/ja
Priority to US12/929,076 priority patent/US8366806B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S95/00Gas separation: processes
    • Y10S95/90Solid sorbent
    • Y10S95/902Molecular sieve

Definitions

  • the present invention relates to a pretreatment refining device constituting an air liquefaction separation device, a device for removing hydrocarbons contained in a trace amount in the air, an adsorbent used in the device, and an air liquefaction separation device.
  • the present invention relates to a method for pretreating raw air, which reduces hydrocarbons in liquid oxygen.
  • Gases such as nitrogen and oxygen are the most widely and widely used gases in industry.
  • These gases are generally produced by an air liquefaction method in which air is cooled, liquefied and separated by distillation.
  • the main obstructive components removed by the pretreatment refining device include water and carbon dioxide.
  • TSA temperature swing adsorption
  • a temperature swing adsorption (TSA) method is predominant, and many documents and patents have been published.
  • TSA-type pretreatment / purification system two types of adsorbents are stacked and packed in an adsorption tower, and activated alumina power to remove water upstream is used to remove carbon dioxide in the downstream.
  • Synthetic zeolite is used for this purpose.
  • synthetic zeolites NaX-type zeolites are widely used in consideration of the amount of carbon dioxide adsorbed at a low partial pressure and the adsorbent cost.
  • Nitrogen is contained in the air at about 0.3 ppm and is an occlusive substance like water and carbon. Conventionally, the concentration of nitrogen in the raw material air was low, so it was not considered as a component to be removed.However, an increase in the concentration of nitrous oxide in the atmosphere and the air-liquid Due to the improvement and improvement of the dani separation apparatus, and the change in gas behavior in the apparatus accompanying the improvement of performance, it has come to be considered that nitrogen is also one of the components to be removed.
  • the hydrocarbons contained in the air are mainly lower hydrocarbons having 1 to 3 carbon atoms, and specific examples include methane, acetylene, ethylene, ethane, propylene, and propane.
  • the concentration of methane is relatively high in the air (about 1.6 ppm).
  • Other components are very small, in the order of ppb. Since these hydrocarbons are dissolved and concentrated in liquid oxygen, and there is a possibility of burning and explosion in the equipment, it is necessary to control the hydrocarbon concentration in liquid oxygen based on the solubility, explosion range, etc. It has been demanded.
  • liquid oxygen enriched with hydrocarbons is discharged out of the device as a preservative liquid acid so that the hydrocarbon concentration in the liquid oxygen does not exceed a certain value.
  • the hydrocarbon concentration in this security liquid acid is regulated by law.
  • Japanese Patent Application Laid-Open No. 11-253736 discloses that ethylene in air can be removed by an X or LSX zeolite ion-exchanged with calcium!
  • Japanese Patent Application Laid-Open No. 2000-140550 discloses an X or LSX type Zeola ion-exchanged with calcium. It is disclosed that nitrite and ethylene mononitrate can be removed from the air by means of air.
  • Japanese Patent Application Laid-Open No. 2000-107546 discloses that nitrogen- and mono-nitrogen can be removed from air by binderless X-type zeolite ion-exchanged with calcium.
  • Japanese Patent Application Laid-Open No. 2001-62238 discloses that nitrogen monoxide, ethylene, and propane can be removed from air by an A-type or X-type zeolite ion-exchanged with calcium.
  • JP-A-2002-126436, JP-A-2002-143628, and JP-A-2002-154821 disclose
  • a combined adsorbent of Ca-LSX and Ca-A can remove nitrous oxide and hydrocarbons.
  • Japanese Patent Application Laid-Open No. 2002-143677 discloses that nitrogen- and monohydrogen mononitrates can be removed from air by a binderless LSX zeolite ion-exchanged with calcium.
  • JP-A-2001-129342 discloses that LSX-type zeolite ion-exchanged with calcium can remove nitrogen and ethylene from air.
  • adsorbent obtained by ion-exchanging X (LSX) type or A type zeolite with calcium.
  • Calcium ion exchange is effective for components that adsorb mainly by specific interaction such as dinitrogen monoxide and hydrocarbons such as ethylene, but components that do not have a specific interaction such as propane. It can be estimated that does not significantly contribute to adsorption. In fact, in most of the above patents, the components which were effective in the examples were oxynitride and ethylene.
  • hydrocarbons ethylene, acetylene and propylene can be removed relatively easily, but none of them can efficiently adsorb and remove the remaining hydrocarbons such as methane, ethane and propane (all saturated hydrocarbons). Helped.
  • Japanese Patent Application Laid-Open No. 2001-293368 discloses that zeolite containing an alkali metal such as Cs and having a SiO ZA1 O ratio of 10 or more is effective for treating exhaust gas of an internal combustion engine.
  • toluene can be adsorbed by Cs-ZSM5 and K-ZSM5 adsorbents. Since the purpose is exhaust gas treatment of internal combustion engines, it is better not to desorb at low temperatures and to have heat resistance, so a larger SiO ZA1 O ratio is better.
  • JP-A-2003-126689 discloses that the SiO / Al O ratio is 30 or more and the absolute value of oxygen charge
  • a zeolite having 0.210 or more is effective for treating exhaust gas of an internal combustion engine.
  • JP-A-2001-293368 and JP-A-2003-126689 include the following items as main use conditions of hydrocarbon-adsorbing zeolites in the field of automobile exhaust gas treatment.
  • the exhaust gas contains a relatively large amount of moisture.
  • the exhaust gas temperature is 600 ° C or higher (1000 ° C or higher during high-speed running).
  • the hydrocarbon concentration is at least about tens of ppm at least, and is about several thousand parts per million in the example.
  • zeolites For use at high temperatures, zeolites require high hydrothermal resistance. Zeolites are seeds Although it depends on the type, it is said that the structure is easily broken in the presence of high temperature and moisture. Generally, zeolite with a higher SiZAl ratio has higher hydrothermal resistance!
  • the conditions for using the zeolite of the TSA device as a pretreatment purification device for air liquefaction and separation are as follows.
  • Adsorption is performed at a normal temperature of 5 to 40 ° C, and regeneration is performed at a relatively low temperature of 100 to 300 ° C.
  • the hydrocarbon concentration in the air is several tens of ppb (excluding methane).
  • the TSA apparatus processes air having a relatively small amount of moisture.
  • the adsorbent is weak to moisture, it is possible to adsorb hydrocarbons without containing moisture by filling the adsorbent downstream of the adsorbent for removing moisture.
  • the regeneration temperature is preferably as low as possible, such as running cost.
  • the characteristics required for hydrocarbon adsorbents are that adsorbents used in automobile exhaust gas treatment catalysts desorb quickly at lower temperatures, in contrast to the fact that they must be adsorbed and held at high temperatures. Is required. Further, since hydrothermal resistance is not required, it is not necessary to increase the SiZAl ratio.
  • adsorbent which can remove propane, which has a relatively low solubility in liquid oxygen and is relatively dangerous.
  • ppb there is no disclosure of an adsorbent that can efficiently adsorb a very small amount of propane and can be used as an adsorbent for TSA.
  • the concentration of hydrocarbons in the air is less than one-thousandth of the concentration (partial pressure) of hydrocarbons in exhaust gas from automobiles.
  • the amount of adsorption varies depending on the pressure, that is, the partial pressure. Even if the amount of adsorption is large in a region where the partial pressure is high, the amount of adsorption is not necessarily large in a region where the partial pressure is low. Furthermore, the lower the partial pressure, the lower the partial pressure, the more competitive adsorption occurs with other components. Therefore, in order to adsorb a specific component in a low concentration region, it is necessary to strongly adsorb it.
  • a getter adsorbent is generally used as a method for removing low-concentration region components at the ppb level. However, this is a method using chemisorption, that is, it is adsorbed with a strong force, so that it is difficult to regenerate. It is common to replace the adsorbent without regenerating the adsorbed material.
  • the pretreatment refining device is premised on repeated adsorption and regeneration, it is difficult to desorb at a low temperature as described above if the adsorption power is too strong. Therefore, it is not easy to achieve both adsorption removal of low-concentration components at the ppb level and regeneration at low temperatures.
  • An object of the present invention is to provide a hydrocarbon adsorbent capable of efficiently removing propane at an extremely low concentration in raw material air and a pretreatment refining apparatus for removing hydrocarbons. Another object of the present invention is to provide a method for reducing hydrocarbons, especially propane, in liquid oxygen in an air liquefaction separation device.
  • the pretreatment purification device of the present invention is a pretreatment purification device of an air liquefaction separation device, and is a hydrocarbon adsorbent that is a zeolite having an H-FER structure or a MOR structure whose pore diameter is adjusted by ion exchange.
  • This is a TSA-type pretreatment / purification device that has an adsorption tower filled with the agent.
  • the adsorption tower is successively packed with activated alumina, NaX-type zeolite, and the hydrocarbon adsorbent in this order.
  • the pretreatment purification device of the present invention is a pretreatment purification device for an air liquefaction separation device
  • the adsorption tower is successively packed with activated alumina, NaX zeolite, and the propane adsorbent in this order.
  • the hydrocarbon adsorbent of the present invention is an adsorbent used in a pretreatment purification device of an air liquefaction separation device, and is preferably a zeolite having at least one straight channel.
  • the hydrocarbon adsorbent has an H-FER structure.
  • the hydrocarbon adsorbent preferably has a MOR structure in which the pore size is adjusted by ion exchange.
  • the propane adsorbent of the present invention is an adsorbent used for a pretreatment purification device of an air liquefaction separation device, and is preferably a zeolite having an MFI structure having at least one straight channel.
  • the propane adsorbent preferably has a pore diameter formed by ion exchange, substantially equal to the molecular ion diameter of propane.
  • the ion exchange of the propane adsorbent is performed using one or more elements selected from the group consisting of Na, Cu, Li, K, Mg, Ca, Zn, Ag, Ba, Cs, Rb, and Sr. I like it.
  • zeolite ion-exchanged with H which has a high SiZAl ratio, is considered to have a too large pore diameter and poor propane adsorption performance.
  • the propane adsorbent of the present invention can be used for a pretreatment purification device of an air liquefaction separation device.
  • This is a zeolite having at least one straight channel and having a SiZAl ratio of 100 or less.
  • the method for pretreating raw material air for reducing the concentration of hydrocarbons in liquid oxygen in the air liquefaction / separation apparatus of the present invention is a zeolite having a H-FER structure or a MOR structure having a pore size adjusted by ion exchange. This is a method using a TSA type pretreatment / purification device having an adsorption tower packed with.
  • the method for pretreating raw material air for reducing the concentration of propane in liquid oxygen in the air liquefaction separation apparatus of the present invention uses a TSA type pretreatment purification apparatus having an adsorption tower filled with zeolite having an MFI structure. Is the way.
  • the supply conditions of the raw material air are as follows: the pressure is 300 kPa to 1 MPa (absolute pressure) and the temperature is 5 to 40 ° C.
  • the conditions during the regeneration step are preferably such that the pressure is near atmospheric pressure and the temperature is 100 to 300 ° C.
  • the hydrocarbon adsorbent of the present invention is used in a TSA type pretreatment refining apparatus in the form of activated alumina as a first adsorbent for removing water and NaX type as a second adsorbent for removing carbon dioxide. Used as a third adsorbent together with zeolite by laminating and filling. Regarding the order of the layers, it is fixed that activated alumina is upstream and NaX is downstream. The reason is that the adsorption performance of NaX for carbon dioxide decreases due to the presence of water, so it is necessary to remove water first.
  • the adsorbent of the present invention when an adsorbent having a low SiZAl ratio that affects the adsorption performance due to the presence of water is used, it is preferable that the adsorbent is stacked and packed downstream of activated alumina. The invention's effect
  • FIG. 1 is a schematic diagram of pores of a FER-type adsorbent.
  • FIG. 2 is a schematic diagram of pores of a MOR-type adsorbent.
  • FIG. 3 is a schematic diagram of pores of an MFI-type adsorbent.
  • FIG. 4 is a schematic diagram of pores of an X-type adsorbent.
  • FIG. 5 is a system diagram of an air-liquid separating apparatus.
  • the adsorption amount of hydrocarbons was measured for the FER type, MOR type, MFI type and X type adsorbents.
  • Figs. 1 to 4 show schematic diagrams of the pores of the FER type, MOR type, MFI type, and X type adsorbents.
  • the FER-type adsorbent has pores with a minor axis of 42 nm and a major axis of 54 nm and straight channels of a minor axis of 35 nm and a major axis of 48 nm, and forms a two-dimensional pore structure.
  • the MOR adsorbent has pores with a minor axis of 26 nm and a major axis of 57 nm, and a straight channel with a minor axis of 65 nm and a major axis of 70 nm, and forms a two-dimensional pore structure.
  • the MFI-type adsorbent has a straight channel with a minor axis of 53 nm and a major axis of 56 nm and a zigzag channel with a minor axis of 51 nm and a major axis of 55 nm, which combine to form a three-dimensional pore structure.
  • the pores of the X-type adsorbent have a hollow part called a super cage, and have a three-dimensional pore structure.
  • the pore diameter / straight channel diameter of these adsorbents is a number calculated based on the radius of oxygen ions (0.135 nm) forming a part of pores for the purpose of structurally classifying zeolite.
  • the actual pore size varies depending on conditions such as composition (SiZAl ratio, ion species), temperature, and hydration state, in addition to the effects of covalent bonds and lattice vibration.
  • the process gas containing the components to be adsorbed is flowed from the lower part of the column filled with the adsorbent, and the composition of the gas flowing out from the upper part of the column is analyzed.
  • a column with an inner diameter of 17.4 mm and a packing height of 400 mm is packed with the adsorbent, and as a preparation before measurement, the adsorbent is raised to a temperature of 473 K and nitrogen is flown at atmospheric pressure at a flow rate of 2 liters Zmin. Heat regeneration was performed for 10 hours.
  • the measurement conditions were as follows: with the column kept at a temperature of 283K and a pressure of 550kPa, a processing gas of nitrogen mixed with lppm of hydrocarbon was introduced at a rate of 11.96 l / min from the bottom of the column. Under these conditions, the gas flow rate in the column is about 160 mmZmin.
  • the above conditions of temperature, pressure and flow rate are values selected according to the conditions of a typical TSA-type pretreatment / purification system.
  • the trace analysis is required for the composition analysis of the gas flowing out from the upper column.
  • a process gas analyzer (RGA5) manufactured by Tikal was used. This analyzer is capable of ppp level hydrocarbon composition analysis.
  • the amount of adsorbed hydrocarbons of the adsorbent can be estimated. Specifically, if a graph is drawn with the horizontal axis as time and the vertical axis as hydrocarbon concentration with the time when the process gas starts to flow as the origin, no hydrocarbon is detected while the adsorbent is adsorbing hydrocarbons. Eventually, the adsorbent can no longer absorb hydrocarbons, and the hydrocarbon concentration at the column outlet gradually increases. Then, the amount of adsorbed hydrocarbons of all adsorbents in the column reaches saturation. Then, the analysis value shows the same value as the inlet concentration. The curve that represents such a state is called a breakthrough curve.
  • the adsorbent can be treated at a temperature of 283K and a pressure of 550kPa.
  • the amount of hydrocarbons that is, the amount of absorbed hydrocarbons, can be estimated.
  • H-FER type, Na-MOR type, H-MFI type, Na-MFI type, Cu-MFI type adsorbent and K-MOR type obtained by ion exchange of the above Na-MOR type adsorbent with K The adsorption performance of each of the adsorbents, Ca-MFI type and Zn-MFI type adsorbents obtained by ion-exchanging the above Na-MFI type with Ca and Zn was examined according to the breakthrough curve measurement method described above. These sorbents are all zeolites with straight channels.
  • H-MOR type and H-MFI type adsorbents are considered to have larger pore diameters than Na-MOR type adsorbents or Cu-MFI type adsorbents which have straight channels.
  • Table 1 shows the measurement results of the basic structure, the ion species subjected to ion exchange, the SiZAl ratio, and the adsorption amount of hydrocarbons for the adsorbents measured in the examples and comparative examples.
  • Adsorbent Structure exchange Si / Al adsorption amount [mmo 1 / kg]
  • Example MF I C a 15 2.4 4.5 ⁇ 3 ⁇ 3.0 ⁇ .
  • Examples 7 and 8 and Comparative Example 2 ethylene was used as the adsorbent in Examples 1 and 2, and the power obtained by continuous measurement for 6 hours or more. In the gas flowing out, the respective hydrocarbons were not detected. It is considered that these adsorbents have an adsorption amount equal to or greater than the total amount of propylene, acetylene, or ethylene introduced into the column, and the amount of propylene, acetylene, or ethylene introduced is described as the adsorption amount, and * is indicated. Attached.
  • the adsorbent of the present invention is compatible with the NaX-type adsorbent conventionally used in the pretreatment purification device. In comparison, it is particularly superior in the amount of propane adsorbed, has a maximum adsorbed amount of 6 times or more, and can efficiently remove propane.
  • the adsorbent of the present invention can also remove propylene and acetylene in the same manner as in the NaX type, as well as in the amount of ethylene adsorbed, as in the NaX type.
  • the adsorbent of the present invention can also remove trichloroethylene and trichloroethane.
  • H MOR type and H-MFI type adsorbents have straight channels, but are considered to have larger pore diameters than Na-MOR type adsorbents and Cu-MFI type adsorbents. Therefore, it is considered that the pore molecule having a dynamic diameter of 43 nm (value calculated from the Leonard Jones potential) cannot obtain sufficient adsorption energy from the pore wall, and the amount of adsorption is likely to be small. . It is presumed that pores having a SiZAl ratio of more than 100 have a small amount of exchangeable ions! /, So that pore adjustment is difficult.
  • the SiZAl ratio is 20 or less, the amount of ion exchange, that is, a portion related to pore adjustment increases, so that it is more preferable.
  • Example 1 An example in which the H-FER adsorbent of Example 1 is used in a pretreatment purification device of an air liquefaction separation device will be described.
  • FIG. 5 is a system diagram of a typical air liquefaction separation device 100.
  • the air / liquid separating apparatus 100 is composed of a pretreatment / purifying apparatus 10 and an air / liquid separating apparatus main body 20.
  • the illustrated pretreatment purification device 10 is a typical TSA type pretreatment purification device. As shown in FIG. 5, the pretreatment refining device 10 includes a compressor cooler 2, a drain separator 3, adsorption towers 4a and 4b, a heater (not shown), a silencer (not shown), The pipe 11 and a valve (not shown) provided in the middle of the pipe are also configured.
  • the main body 20 of the air liquefaction / separation apparatus includes a liquid oxygen reservoir 22, a main heat exchanger 23, an expansion turbine 24, rectification towers 25 and 26, and a pipe for joining these. 27, and a valve (not shown) provided in the middle of the pipe 27!
  • the separation device main body 20 is usually called a “cold box”, in which low-temperature equipment is stored in a large housing so that it can be kept cool at, for example, about 200 ° C, and the gap is filled with a heat insulating material such as perlite. Force Vacuum insulation or normal pressure insulation.
  • the raw material air compressed to a predetermined pressure by the compressor 1 is cooled by the cooler 2, separated into gas and liquid by the drain separator 3, and then introduced into the adsorption tower 4a or 4b.
  • the raw material air pretreated in the adsorption towers 4a and 4b is sent to the air liquefaction / separation device main body 20.
  • the adsorption towers 4a and 4b are regenerated with gas obtained by heating exhaust gas discharged from the air liquefaction / separation device body 20 to a predetermined temperature by a heater.
  • the gas used for regeneration is released from the silencer to the atmosphere.
  • activated alumina 5, NaX-type zeolite 6, and the adsorbent 7 of the present invention are filled and stacked in this order in the adsorption towers 4a and 4b. .
  • the H—FER adsorbent was layered and filled.
  • the ratio of the respective filling heights is 2: 3: 2.
  • the ratio of the packed bed of activated alumina, NaX type zeolite and K-MOR type adsorbent was 2: 3: 4.
  • the KMOR type is the adsorbent with the smallest amount of propane adsorption among the adsorbents of Examples 1 to 8, even the TSA type pretreatment refining apparatus using other adsorbents removes propane. It is possible to leave.
  • the normal propane concentration in the raw air may be several tens of ppb depending on the power environment, which is 1 to 3 ppb.
  • the adsorbent of the present invention when the concentration of the propane in the raw material air increases, how the concentration of propane concentrated in the liquid oxygen reservoir 22 increases. I simulated it. When the amount of propane in the feed air reached 100 ppb, the concentration of propane concentrated in the liquid oxygen reservoir 22 was about 2 ppm.
  • propane in the raw material air can be removed to several ppb or less. It is possible to prevent propane from being concentrated in the liquid oxygen reservoir 22 and other liquid oxygen in the air liquefaction / separation apparatus 100.
  • a zeolite having at least one straight channel as a hydrocarbon adsorbent in a pretreatment purification device of an air liquefaction separator, it is possible to remove extremely low-concentration hydrocarbons, particularly propane, contained in raw material air. Can be applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

   本発明の炭化水素吸着剤は、H-FER構造、もしくは、イオン交換によってその細孔径を調整したMOR構造を有するゼオライトである。本発明のプロパン吸着剤は、MFI構造を有するゼオライトである。本発明の炭化水素除去装置は、活性アルミナ、NaX型ゼオライト、及び上記吸着剤の順に積層充填した吸着塔を有するTSA式前処理精製装置である。本発明の空気液化分離装置内の液体酸素中の炭化水素を低減する方法は、上記前処理精製装置で、原料空気を精製する方法である。

Description

明 細 書
空気液化分離装置の前処理精製装置、炭化水素吸着剤、及び原料空気 の前処理方法
技術分野
[0001] 本発明は空気液化分離装置を構成する前処理精製装置において、空気中に微量 に含まれる炭化水素を除去するための装置、該装置に使用する吸着剤、および前記 空気液化分離装置内の液体酸素中の炭化水素を低減する、原料空気の前処理方 法に関する。
本願は、 2004年 3月 30日に出願された特願 2004— 99683号に基づき優先権を 主張し、その内容をここに援用する。
背景技術
[0002] 窒素や酸素などのガスは産業界で最も広くかつ大量に使用されているガスである。
これらのガスは一般に、空気を冷却、液化し蒸留によって分離する空気液化分離法 によって製造される。
しかし空気を液化する際、その温度で固化する成分が含まれていると、流体の流路 が閉塞し装置の運転が困難となる。そのような状況を避けるため、空気を冷却する前 に閉塞性の成分を前処理精製装置によってあらかじめ除去することが実施されてい る。前処理精製装置で除去する主な閉塞性の成分には水分、二酸化炭素がある。
[0003] また、前処理精製の方法としては、温度変動吸着 (Thermal Swing Adsorptio n:TSA)方式が主流であり、数多くの文献、特許が出ている。典型的な TSA式前処 理精製装置では、吸着塔内に 2種類の吸着剤を積層充てんし、上流部に水分を除去 するための活性アルミナ力 下流部には二酸ィ匕炭素を除去するための合成ゼォライ トが用いられている。また合成ゼォライトとしては低分圧における二酸ィ匕炭素吸着量 及び吸着剤コストなどを総合的に考慮して NaX型ゼオライトが広く使われている。 しかし、最近になって空気液ィ匕分離装置の安全性を確保するためには、上記の成 分以外に一酸ィ匕ニ窒素、炭化水素類などの成分も除去する必要があることが明らか となってきた。 [0004] 一酸ィ匕ニ窒素は空気中に約 0. 3ppm含まれており、水、二酸ィ匕炭素と同様に閉塞 性物質である。従来は、原料空気中の一酸ィ匕ニ窒素の濃度が低いことから、除去対 象の成分として考慮されていな力つたが、大気中の一酸化二窒素濃度の増加や、空 気液ィ匕分離装置の改良 ·改善、性能向上に伴う装置内のガス挙動の変化などから、 一酸ィ匕ニ窒素も除去すべき成分の一つであると考えられるようになつてきた。
[0005] 空気中に含まれる炭化水素類は、炭素数 1〜3の低級炭化水素が主であり、具体的 にはメタン、アセチレン、エチレン、ェタン、プロピレン、プロパンなどが挙げられる。空 気中においてはメタンの濃度が比較的高い(約 1. 6ppm)。その他の成分は ppbォ ーダ一と極微量である。これらの炭化水素類は液体酸素中に溶けて濃縮され、装置 内で燃焼'爆発を起こす可能性があるため、溶解度、爆発範囲等を指標として、液体 酸素中の炭化水素濃度をコントロールすることが求められている。具体的には液体酸 素中の炭化水素濃度が、ある一定値を超えないように、保安液酸として、炭化水素類 が濃縮された液体酸素を装置外へ排出している。この保安液酸中の炭化水素濃度 は法律で規定されている。
[0006] ただし、上述のように、空気液化分離装置の改良'改善、性能向上に伴う装置内の ガス挙動の変化などから、保安液酸として抜き出す液体酸素溜め以外の場所で局所 的に炭化水素類が濃縮する可能性も否定できない。そもそも、装置の安全性を脅か す成分が流入すること自体が好ましいことではなぐ炭化水素類も前処理精製の段 階で除去することが望ましい。
[0007] Reyhingらは、従来の前処理精製装置では、プロピレン、アセチレンは除去可能だ 力 一酸ィ匕ニ窒素やその他の炭化水素類は完全に除去できないことを示した。近年 、空気液ィヒ分離装置メーカーではこれらの成分を除去するための吸着剤について検 討された S果を、文献 (Linde Reports on Science and Technology, 36/ 1983, Dr J. Reyhing)で開示している。
[0008] 特開平 11 253736には、カルシウムでイオン交換された Xまたは LSX型ゼォライ トによって空気中力 エチレンを除去できることが開示されて!、る。
[0009] 特開 2000— 140550には、カルシウムでイオン交換された Xまたは LSX型ゼオラ イトによって空気中から一酸ィヒニ窒素およびエチレンを除去できることが開示されて いる。
[0010] 特開 2000— 107546には、カルシウムでイオン交換されたバインダーレス X型ゼォ ライトによって空気中から一酸ィヒニ窒素およびエチレンを除去できることが開示され ている。
[0011] 特開 2001— 62238には、カルシウムでイオン交換された A型または X型ゼオライト によって空気中から一酸ィヒニ窒素、エチレン、プロパンを除去できることが開示され ている。
[0012] 特開 2002— 126436、特開 2002— 143628、および特開 2002— 154821には
、 Ca— LSXと Ca— Aの複合吸着剤で、一酸化二窒素および炭化水素類を除去でき ることが開示されている。
[0013] 特開 2002— 143677には、カルシウムでイオン交換されたバインダーレス LSX型 ゼォライトによって空気中から一酸ィヒニ窒素および炭化水素類を除去できることが開 示されている。
[0014] 特開 2001— 129342には、カルシウムでイオン交換された LSX型ゼオライトによつ て空気中から一酸ィ匕ニ窒素およびエチレンを除去できることが開示されている。
[0015] これらの特許文献で開示されている内容に共通することは、いずれも X(LSX)型あ るいは A型のゼォライトをカルシウムでイオン交換した吸着剤を用いることである。 カルシウムイオン交換は、一酸化二窒素や炭化水素類の中でもエチレンなど、主に 特異的な相互作用によって吸着する成分に対しては有効であるが、プロパンなど特 異的な相互作用を持たない成分に対しては、特段吸着に大きく寄与しないと推測で きる。実際、上記特許のほとんどで実施例において効果があった成分はー酸ィ匕ニ窒 素、エチレンである。
現状においては炭化水素類の中でもエチレン、アセチレン、プロピレンは比較的簡 単に除去できるが、残りの炭化水素類であるメタン、ェタン、プロパン (いずれも飽和 炭化水素)を効率よく吸着除去できるものはな力つた。
[0016] 炭化水素を吸着で除去する試みは、自動車の排気ガス処理の分野でも行われて V、る。自動車の排気ガスは一般に触媒によって処理されて 、る。 通常、エンジン始動直後の触媒の温度は低ぐ触媒活性も低いことから、排気ガス が処理されないまま大気中に放出される。そこで、触媒の温度が上昇して活性が高く なるまでの間は、別途、前段に設けたゼォライトによるトラップで排気ガス中の炭化水 素類を一時的に吸着させてその放出を防いでいる。その後、排気ガス温度の上昇と ともにゼォライトに吸着された炭化水素類は脱離し後段の触媒により処理される。ある いは、ゼォライトトラップそのものに触媒作用がある場合には、その場で処理される。
[0017] この分野の先行技術として、例えば特開 2001— 293368には、 Csなどのアルカリ 金属を含む SiO ZA1 O比が 10以上のゼォライトが内燃機関の排ガス処理に有効
2 2 3
であることが開示されている。この文献では、 Cs— ZSM5、 K—ZSM5吸着剤で、ト ルェンを吸着できることが開示されている。 目的が内燃機関の排ガス処理なので、低 い温度で脱着しないこと、耐熱性が必要なことから、 SiO ZA1 O比は大きい方が良
2 2 3
いと記載されている。
特開 2003— 126689には、 SiO /Al O比が 30以上であり、酸素電荷の絶対値
2 2 3
が 0. 210以上のゼォライトが内燃機関の排ガス処理に有効であることが開示されて いる。
[0018] 特開 2001— 293368および特開 2003— 126689には、自動車排気ガスの処理 分野における炭化水素類吸着用ゼオライトの主な使用条件として以下の項目が挙げ られる。
(1)排気ガスには比較的多くの水分が含まれて 、る。
(2)排気ガスの温度は 600°C以上(高速走行時には 1000°C以上)である。
(3)十分温度が高くなるまで炭化水素類を脱離しな!/、。
(4)炭化水素類濃度は少なく見積もっても数十 ppm程度であり、実施例では数千 pp m程度である。
[0019] 極性が高い水分はゼオライトに優先的に吸着するため、炭化水素の吸着性能は低 下する。よって水分共存下において高い炭化水素類吸着性能を有する吸着剤が求 められている。一般に SiZAl比が低いと水分の影響を強く受けるため、自動車排ガ ス処理の分野では SiZAl比の高 、ゼオライトが用いられる傾向にある。
高温での使用のため、ゼォライトには高い耐水熱性が必要である。ゼォライトは種 類にもよるが高温、水分共存下で構造が壊れやすいと言われている。一般に SiZAl 比の高 ヽゼオライトほど耐水熱性が高!、。
吸着剤の後段の触媒が高温になって活性が高くならないと、炭化水素を含んだガ スを処理できな!/ヽので、できるだけ高温まで炭化水素類を保持 (吸着)できるゼォライ トが必要とされている。
[0020] 上記のような、自動車排ガス処理におけるゼォライトの条件と異なり、空気液化分離 の前処理精製装置としての TSA装置のゼォライトの使用条件は以下のとおりである。
(1)排気ガスより少な 、水分量の空気を精製する。
(2) 5〜40°Cの常温で吸着させ、 100〜300°Cの比較的低い温度で再生が行われ る。
(3)ゼォライトに高 、耐水熱性を必要としな 、。
(4)空気中の炭化水素濃度は数十 ppb (メタンを除く)である。
[0021] TSA装置では、比較的、少ない水分量の空気を処理する。また、水分に弱い吸着 剤であれば、水分除去用の吸着剤の下流側に充てんすることで、水分を含まない状 態での炭化水素類の吸着が可能である。そして、再生温度はランニングコストの面な ど力 できるだけ低い温度が好ましい。つまり炭化水素類吸着剤に求められる特性は 、自動車の排ガス処理触媒に使われる吸着剤が、高温まで吸着保持しなければなら ないこととは対照的に、より低い温度で速やかに脱離することが求められる。また、耐 水熱性を必要としな 、ので、 SiZAl比を大きくする必要がな 、。
発明の開示
発明が解決しょうとする課題
[0022] 空気液化分離装置の前処理精製装置の分野では、原料空気に含まれる微量の炭 化水素類を除去するために様々な吸着剤が検討されて 、る。自動車からの排ガス中 の炭化水素の組成は、大気中のそれとは大きく異なる。そのため、上記の自動車排 ガス処理分野の文献に開示された炭化水素は、極性の高い炭化水素や分子量の大 きい炭化水素に限られている。それらの吸着剤は、低級炭化水素でかつ飽和炭化水 素であるメタン、ェタン、プロパンは吸着しにくい。中でも液体酸素への溶解度が小さ ぐ比較的危険性の高いプロパンを除去できる吸着剤の実施例はない。特に、 ppbレ ベルの極微量のプロパンを効率的に吸着し、 TSA用吸着剤として使用できる吸着剤 の開示はない。
上述したように、空気中の炭化水素濃度は、自動車の排ガス中の炭化水素濃度( 分圧)の 1000分の 1以下である。吸着量は圧力、すなわち分圧によって変化するも のであり、分圧が高い領域で吸着量が多くても、分圧の低い領域で吸着量が多いと は限らない。さらには、分圧が低くなればなるほど他の成分と競合吸着を起こすこと で吸着阻害がおき、より吸着しに《なる。よって、ある特定の成分を低濃度領域で吸 着するためには、強 、力で吸着させなければならな 、。
[0023] ppbレベルの低濃度領域成分を除去する方法として一般にゲッター吸着剤が使わ れているが、これは化学吸着を利用したもの、つまり強い力で吸着しているため再生 が困難であり、吸着させたものは再生させることなぐ吸着剤を交換するのが普通で ある。
一方、前処理精製装置は吸着 ·再生を繰り返すことが前提であるため、吸着力が強 すぎると、上記のような低い温度で脱離することが困難となる。よって ppbレベルの低 濃度成分の吸着除去と低温度での再生を両立させることは容易ではない。
以上のように、自動車の排ガス処理分野と空気液化分離装置の前処理精製装置で の使用条件は大きく異なり、前処理精製の条件に適合した炭化水素吸着剤が求めら れている。
[0024] これまでに空気中から微量不純物である炭化水素類を除去するために様々な吸着 剤が検討されているが、メタン、ェタンなどの飽和炭化水素、中でも液体酸素への溶 解度が小さぐ比較的危険性の高いプロパンを効率的に除去できるものはな力つた。 そのため、大気中の低濃度の炭化水素を除去するような、空気液化分離装置の前処 理精製条件に適合した炭化水素吸着剤が求められていた。本発明は、原料空気中 の極低濃度のプロパンを効率よく除去しうる炭化水素吸着剤及び炭化水素を除去す る前処理精製装置を提供することを目的とする。本発明は、さらに空気液化分離装 置内の液体酸素中の炭化水素、特に、プロパンを減少させる方法を提供することを 目的とする。
課題を解決するための手段 [0025] 本発明の前処理精製装置は、空気液化分離装置の前処理精製装置であって、 H— FER構造、もしくはイオン交換によって細孔径を調整した MOR構造を有するゼ オライトである炭化水素吸着剤を充填した吸着塔を有する TSA式前処理精製装置 である。
[0026] この吸着塔には、活性アルミナ、 NaX型ゼオライト、前記炭化水素吸着剤の順に積 層充填されて 、ることが好ま 、。
[0027] 本発明の前処理精製装置は、空気液化分離装置の前処理精製装置であって、 M
FI構造を有するゼォライトであるプロパン吸着剤を充填した吸着塔を有する TSA式 前処理精製装置である。
この吸着塔には、活性アルミナ、 NaX型ゼオライト、前記プロパン吸着剤の順に積 層充填されて 、ることが好ま 、。
[0028] 本発明の炭化水素吸着剤は、空気液化分離装置の前処理精製装置に使用される 吸着剤であって、少なくとも一つのストレートチャンネルをもつゼォライトであることが 好ましい。
前記炭化水素吸着剤は、 H— FER構造を有することが好ましい。
前記炭化水素吸着剤は、イオン交換によってその細孔径を調整した MOR構造を 有することが好ましい。
[0029] 本発明のプロパン吸着剤は、空気液化分離装置の前処理精製装置に使用する吸 着剤であって、少なくとも一つのストレートチャンネルを持つ MFI構造であるゼォライ トであることが好ましい。
前記プロパン吸着剤は、イオン交換により形成された、プロパンの分子イオン径と実 質的に等 、細孔径を有することが好ま 、。
前記プロパン吸着剤のイオン交換は、 Na、 Cu、 Li、 K、 Mg、 Ca、 Zn、 Ag、 Ba、 Cs 、 Rb、 Srからなる群力 選択される 1又は 2以上の元素を用いて行われたことが好ま しい。
MFI型、 MOR型であっても、 SiZAl比が高ぐ Hでイオン交換したゼォライトでは、 細孔径が大きすぎ、プロパンの吸着性能は劣ると考えられる。
[0030] 本発明のプロパン吸着剤は、空気液化分離装置の前処理精製装置に使用する吸 着剤であって、少なくとも一つのストレートチャンネルをもち、 SiZAl比が 100以下の ゼォライトである。
[0031] 本発明の空気液化分離装置内の液体酸素中の炭化水素濃度を減少させる原料空 気の前処理方法は、 H— FER構造、もしくはイオン交換によって細孔径を調整した MOR構造を有するゼォライトを充填した吸着塔を有する TSA式前処理精製装置を 用いる方法である。
[0032] 本発明の空気液化分離装置内の液体酸素中のプロパン濃度を減少させる原料空 気の前処理方法は、 MFI構造を有するゼォライトを充填した吸着塔を有する TSA式 前処理精製装置を用いる方法である。
[0033]
本発明の TSA式前処理精製装置における、原料空気の供給条件は、圧力が 300 kPa〜lMPa (絶対圧力)、温度が 5〜40°Cであり、吸着工程時の条件もそれに準ず る。再生工程時の条件は、圧力が大気圧付近、温度が 100〜300°Cであることが好 ましい。
[0034] 本発明の炭化水素吸着剤の TSA式前処理精製装置における使用形態は、水分 除去用の第一の吸着剤である活性アルミナ、二酸化炭素除去用の第二の吸着剤で ある NaX型ゼオライトと共に第三の吸着剤として積層充てんして用いられる。その積 層の順序に関し、活性アルミナが上流側、 NaXがその下流側であることは固定される 。なぜなら、 NaXの二酸ィ匕炭素吸着性能は水分の存在により低下するため、先に水 分を除去しておくことが必要だ力もである。
[0035] 本発明の吸着剤についても、水の存在により吸着性能に影響を与える低 SiZAl比 の吸着剤を用いる場合は、活性アルミナの下流側に積層充てんすることが好ましい。 発明の効果
[0036] 以上より、少なくとも一つのストレートチャンネルをもつゼォライトを炭化水素吸着剤 として前処理精製装置に使うことで、空気中に含まれる極低濃度の炭化水素類、特 にプロパンを除去することができる。 図面の簡単な説明
[0037] [図 1]図 1は FER型吸着剤の細孔の模式図である。 [図 2]図 2は MOR型吸着剤の細孔の模式図である。
[図 3]図 3は MFI型吸着剤の細孔の模式図である。
[図 4]図 4は X型吸着剤の細孔の模式図である。
[図 5]図 5は空気液ィ匕分離装置の系統図である。
符号の説明
[0038] 1…圧縮機、
2…冷却機、
3· ··ドレインセパレータ、
4a…吸着塔、
4b…吸着塔、
5· ··活性アルミナ、
6"'NaX型ゼオライト
7…吸着剤、
10· ··前処理精製装置
20· ··空気液化分離装置本体
100…空気液ィ匕分離装置
発明を実施するための最良の形態
[0039] (実施態様)
FER型、 MOR型、 MFI型、 X型の吸着剤について、炭化水素類の吸着量を測定 した。
[0040] FER型、 MOR型、 MFI型、 X型の各吸着剤の細孔の模式図を、図 1〜4に示す。
[0041] FER型吸着剤は、短径 42nm、長径 54nmの細孔と、短径 35nm、長径 48nmのス トレートチャンネルを持ち、 2次元細孔構造を形成する。
MOR型吸着剤は短径 26nm、長径 57nmの細孔と、短径 65nm、長径 70nmのス トレートチャンネルを持ち、 2次元細孔構造を形成する。
MFI型吸着剤は短径 53nm、長径 56nmのストレートチャンネルと、短径 51nm、長 径 55nmのジグザグのチャンネルを持ち、それらが互いに組み合わさって 3次元細孔 構造を形成している。 X型吸着剤の細孔は、スーパーケージと呼ばれる空洞部分を有しており、 3次元の 細孔構造を持つ。
[0042] これらの吸着剤の細孔径ゃストレートチャンネル径は、ゼォライトを構造的に分類す る目的で、細孔の一部を形成する酸素イオン半径 (0. 135nm)を元に計算された数 値であり、実際の細孔径は、共有結合、格子振動の影響に加え、組成 (SiZAl比、ィ オン種)、温度、水和状態などにの条件によって異なる。
W. M. Meier, D. H. Olson, Ch. Baerlocher ed. , Atlas of Zeolite Stru cture Types, 4th Ed. , Elsevier (1996)参照。
[0043] 12種類の吸着剤について、炭化水素類の吸着量を、以下の破過曲線測定法で測 し 7こ。
本測定法は吸着剤を充てんしたカラムの下部より被吸着成分を含む処理ガスを流 し、カラムの上部から流出してくるガスの組成を分析する方法である。
内径 17. 4mm,充てん高さ 400mmのカラムに吸着剤を充填し、測定前の準備とし て、吸着剤を温度 473Kまで上昇させ、窒素を大気圧で、流量 2リットル Zminとなる ように流しながら、 10時間の加熱再生を行った。
[0044] 測定条件は、カラムを温度 283K、圧力 550kPaに保った状態で、窒素ガスに炭化 水素 lppmを混合させた処理ガス 11. 96リットル/ minをカラム下部より導入した。本 条件におけるカラム内のガス流速は約 160mmZminとなる。上記の温度、圧力、流 速の条件は、典型的な TSA式前処理精製装置の条件に準じて選定された値である カラム上部カゝら流出してくるガスの組成分析には、トレースアナリティカル社製プロ セスガス分析計 (RGA5)を用いた。本分析計は ppbレベルの炭化水素類の組成分 祈が可能である。
[0045] 得られた組成分析結果より吸着剤の炭化水素吸着量を見積もることができる。具体 的には、処理ガスを流し始めた時を原点として横軸に時間、縦軸に炭化水素濃度と したグラフを描くと、吸着剤が炭化水素を吸着している間は炭化水素は検出されない 力 やがて吸着剤が炭化水素を吸着しきれなくなり、徐々にカラム出口炭化水素濃 度は増加してくる。そしてカラム内すベての吸着剤の炭化水素吸着量が飽和に達す ると、分析値は入口濃度と同じ値を示すようになる。このような状態を表した曲線を破 過曲線と言うが、この破過曲線と処理ガスの流量、濃度条件(11. 96リットル Zmin、 lppm)から、温度 283K、圧力 550kPaで吸着剤が処理できる炭化水素量すなわち 炭化水素吸着量を見積もることができる。
[0046] (実施例)
巿販の H— FER型、 Na— MOR型、 H— MFI型、 Na— MFI型、 Cu— MFI型各吸 着剤、および上記 Na— MOR型吸着剤を Kでイオン交換した K—MOR型吸着剤、 上記 Na— MFI型を Ca、 Znでイオン交換した Ca—MFI型、 Zn—MFI型各吸着剤 について、上記の破過曲線測定法に従い、吸着性能を調べた。これらの吸着剤は、 すべてストレートチャンネルをもつゼォライトである。
[0047] (比較例)
市販の NaX型の吸着剤、 CaX型の吸着剤、 H— MOR型の吸着剤、 H— MFI型の 吸着剤について、上記の破過曲線測定法に従い、吸着性能を調べた。
これらの吸着剤のうち、 H— MOR型および H— MFI型の吸着剤はストレートチャン ネルをもつ力 Na— MOR型吸着剤や Cu— MFI型吸着剤に比べると細孔径が大き いと考えられる。
[0048] 表 1に、実施例、比較例で測定を行った吸着剤について、基本構造、イオン交換を 行ったイオン種、 SiZAl比、及び炭化水素類の吸着量の測定結果を示す。
[表 1]
吸着剤 ¾造 交換 Si/Al 吸着量 [mmo 1/kg]
ィ ォ [-] プロノ ェチレ プロピレ ァセチレ' ン ン ン ン ン
実施例 FER H 9 6.0 4.3 ≥3 ≥3
1
実施例 MOR Na 9 1.8 1.7 ≥3.0J¾ ≥3.0Ϊ¾
2
実施例 MOR K 9 1.6 0.75 ≥3.0ΪΚ ≥3 3
実施例 MF I H 15 2.1 3.1 .。※ ≥3 4
実施例 MF I Na 15 2.1 2.8 ≥3.0^. ≥3.0^
5
実施例 MF I C a 15 2.4 4.5 ≥3 ≥3.0^.
6
実施例 MF I Z n 15 2.5 ≥3.0J8
7
実施例 MF I Cu 20 2.6 ≥3 ≥3 8
比較例 X Na 1.2 0.79 1.6 ≥3 ≥3 -。※
1
比較例 X C a 1.2 0.87 .。※ 3
2
比較例 MOR H 115 0.65 0.6 ≥3 -。※ 1.5 3
比較例 MF I H 940 1.0 0.5 ≥3.05¾ 0.86 4
[0049] 本測定では、プロピレンは全ての吸着剤、アセチレンは実施例 1〜8および比較例
1、 2の吸着剤、エチレンは実施例 7、 8と比較例 2において、 6時間以上の連続測定 を行った力 流出してくるガス中力もそれぞれの炭化水素は検出されな力 た。 これらの吸着剤には、カラムに導入したプロピレン、アセチレン、もしくはエチレンの 総量以上の吸着量があると考え、吸着量として、導入したプロピレン、アセチレン、も しくはエチレンの総量を記載し、※を付した。
[0050] 本発明の吸着剤は、従来、前処理精製装置で用いられていた NaX型の吸着剤に 比べ、特にプロパンの吸着量の点で優れ、最大で 6倍以上の吸着量を持ち、プロパ ンを効率よく除去できる。
本発明の吸着剤は、エチレンの吸着量も NaX型と同等かそれ以上に多ぐプロピレ ン、アセチレンも NaX型と同様に除去できる。
実施例としては示していないが、本発明の吸着剤は、トリクロロエチレン、トリクロロェ タンをも除去することができる。
H MOR型および H— MFI型の吸着剤はストレートチャンネルをもつが、 Na— M OR型吸着剤や Cu— MFI型吸着剤に比べると細孔径が大きいと考えられる。そのた め、 43nmの動的直径(レナードジョーンズポテンシャルから計算された値)を持つプ 口パン分子は細孔壁からの十分な吸着エネルギーを得ることができず、吸着量が少 なくなると考えられる。また、 SiZAl比が 100を越えるようなものは、交換できるイオン 量が少な!/、ため、細孔調整は難 、と推定される。
SiZAl比が 20以下であると、イオン交換量、すなわち細孔調整に関わる部分が多 くなるため、より好ましい。
[0051] 333Kで実施例 1〜8に示した吸着剤について、同様の測定を行った結果も良好で めつに。
[0052] 実施例 1の H— FER吸着剤を、空気液化分離装置の前処理精製装置に用!ヽた例 を示す。
[0053] 図 5は、典型的な空気液化分離装置 100の系統図である。
この空気液ィ匕分離装置 100は、図 5に示したように、前処理精製装置 10と空気液 化分離装置本体 20とから構成されて 、る。
図示した前処理精製装置 10は典型的な TSA式前処理精製装置である。この前処 理精製装置 10は、図 5に示したように、圧縮機 冷却器 2、ドレインセパレータ 3、吸 着塔 4a, 4b、加熱器 (図示省略)、サイレンサー(図示省略)、これらの間を接合する 配管 11、および配管の途中に設けられたバルブ(図示省略)力も構成されて 、る。
[0054] 一方、空気液化分離装置本体 20は、図 5に示したように、液体酸素溜め 22、主熱 交換器 23、膨張タービン 24、精留塔 25, 26、これらの間を接合する配管 27、および 配管 27の途中に設けられたバルブ(図示省略)から構成されて!ヽる。この空気液ィ匕 分離装置本体 20は通常「コールドボックス」と呼ばれ、例えば 200°C程度の保冷が できるように、大型筐体内に低温機器類を収納し、パーライト等の断熱材で隙間を充 填し、周囲力 真空断熱或いは常圧断熱されている。
[0055] 次に、前処理精製装置 10の各部の動作について説明する。
圧縮機 1で所定の圧力まで圧縮された原料空気は、冷却器 2で冷却され、ドレイン セパレータ 3で気液分離されたのち、吸着塔 4a、もしくは吸着塔 4bに導入される。吸 着塔 4a、 4bで前処理された原料空気は、空気液化分離装置本体 20に送られる。吸 着塔 4a、 4bは、空気液化分離装置本体 20から排出される排ガスを加熱器で所定の 温度まで加熱したガスで再生される。再生に用いたガスは、サイレンサーから大気に 放出される。
[0056] 本発明の前処理精製装置 10では、吸着塔 4a、 4b内に、活性アルミナ 5、 NaX型ゼ オライト 6、および本発明の吸着剤 7が、この順番で充填され、積層されている。
[0057] ベンチスケールの実験装置において、吸着塔に活性アルミナ、 NaX型ゼオライト、
H— FER吸着剤を積層充填した。それぞれの充填高さの割合は、 2 : 3 : 2である。 精製された空気を加湿し、約 350ppmの二酸ィ匕炭素と、約 lppmのプロパンを混ぜ
、精製実験を行った。吸着塔の下流において、プロパン濃度を前述のプロセスガス分 析計 (RGA5)で測定したところ、検出限界未満であった。
[0058] 次に、実施例 3の K— MOR型吸着剤を用い、同様に実験を行った。
活性アルミナ、 NaX型ゼオライト、 K—MOR型吸着剤の充填層の割合は、 2 : 3 :4 とした。
K—MOR型吸着剤を用いた場合も、プロパンは検出限界未満であった。
[0059] K MOR型は、実施例 1〜8の吸着剤のうち、最もプロパンの吸着量が少ない吸 着剤であるから、その他の吸着剤を用いた TSA式前処理精製装置でも、プロパン除 去が可能と言える。
[0060] 原料空気中の通常のプロパン濃度は、 l〜3ppbである力 環境によっては数十 pp bになる場合もある。
TSA式前処理精製装置 10で、本発明の吸着剤を使わない場合、原料空気中のプ 口パン濃度が増加すると、液体酸素溜め 22に濃縮されるプロパン濃度がどのように なるかシミュレートした。原料空気中のプロパンが lOOppbになると、液体酸素溜め 2 2に濃縮されるプロパン濃度は約 2ppmとなった。
[0061] 本発明の TSA式前処理精製装置 10を用いれば、原料空気中のプロパンを、数 pp b以下まで除去できる。液体酸素溜め 22や、空気液化分離装置 100内の他の液体 酸素中にプロパンが濃縮することを防止できる。
産業上の利用可能性
[0062] 少なくとも一つのストレートチャンネルをもつゼォライトを炭化水素吸着剤として空気 液化分離装置の前処理精製装置に使うことにより、原料空気中に含まれる極低濃度 の炭化水素類、特にプロパンの除去に適用することができる。

Claims

請求の範囲
[I] 空気液化分離装置の前処理精製装置であって、 H— FER構造、もしくはイオン交換 によって細孔径を調整した MOR構造を有するゼォライトである炭化水素吸着剤を充 填した吸着塔を有する温度スイング吸着式の前処理精製装置。
[2] 前記吸着塔には、活性アルミナ、 NaX型ゼオライト、および前記炭化水素吸着剤が この順に充填され、積層されている請求項 1記載の前処理精製装置。
[3] 空気液化分離装置の前処理精製装置であって、 MFI構造を有するゼォライトである プロパン吸着剤を充填した吸着塔を有する温度スイング吸着式の前処理精製装置。
[4] 前記吸着塔には、活性アルミナ、 NaX型ゼオライト、および前記プロパン吸着剤がこ の順に充填され、積層されて!ヽる請求項 3記載の前処理精製装置。
[5] 空気液ィ匕分離装置の前処理精製装置に使用される吸着剤であって、少なくとも一つ のストレートチャンネルを有するゼォライトからなる炭化水素吸着剤。
[6] 前記炭化水素吸着剤が、 H— FER構造を有する請求項 5記載の炭化水素吸着剤。
[7] 前記炭化水素吸着剤が、イオン交換によりその細孔径を調整された MOR構造を有 する請求項 5記載の炭化水素吸着剤。
[8] 空気液ィ匕分離装置の前処理精製装置に使用する吸着剤であって、 MFI構造を有す るゼオライトからなるプロパン吸着剤。
[9] 前記プロパン吸着剤は、イオン交換することにより形成された、プロパンの分子イオン 径と実質的に等 、細孔径を有する請求項 8記載のプロパン吸着剤。
[10] 前記イオン交換が、 Na、 Cu、 Li、 K、 Mg、 Ca、 Zn、 Ag、 Ba、 Cs、 Rb、 Srからなる群 力 選択される 1又は 2以上の元素を用いて行われる請求項 9記載のプロパン吸着剤
[II] 空気液化分離装置の前処理精製装置に使用する吸着剤であって、少なくとも一つの ストレートチャンネルをもち、 SiZAl比が 100以下のゼォライトであるプロパン吸着剤
[12] 請求項 1記載の前処理精製装置を用いて、前記空気液化分離装置内の液体酸素中 の炭化水素濃度を減少させる原料空気の前処理方法。
[13] 請求項 3記載の前処理精製装置を用いて、前記空気液化分離装置内の液体酸素中 のプロパン濃度を減少させる原料空気の前処理方法。
PCT/JP2005/005939 2004-03-30 2005-03-29 空気液化分離装置の前処理精製装置、炭化水素吸着剤、及び原料空気の前処理方法 WO2005094986A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2005800101139A CN1938081B (zh) 2004-03-30 2005-03-29 空气液化分离装置的预处理精制装置、烃吸附剂、及原料空气的预处理方法
US10/594,998 US7931736B2 (en) 2004-03-30 2005-03-29 Pre-purification unit of cryogenic air separation unit, hydrocarbon adsorbent, and method of pre-treating feed air
EP05727894A EP1736237A4 (en) 2004-03-30 2005-03-29 PRE-TREATMENT OF A CLEANING AGENT FOR AIR CLEANING DEVICE AND HYDROCARBON ABSORPTION AGENT FOR USE THEREIN AND PROCESS FOR PRE-TREATMENT OF ROLE AIR
JP2006511685A JP4512093B2 (ja) 2004-03-30 2005-03-29 空気液化分離装置の前処理精製装置、炭化水素吸着剤、及び原料空気の前処理方法
US12/929,076 US8366806B2 (en) 2004-03-30 2010-12-29 Pre-purification unit of cryogenic air separation unit, hydrocarbon adsorbent, and method of pre-treating feed air

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004099683 2004-03-30
JP2004-099683 2004-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/594,998 A-371-Of-International US7931736B2 (en) 2004-03-30 2005-03-29 Pre-purification unit of cryogenic air separation unit, hydrocarbon adsorbent, and method of pre-treating feed air
US12/929,076 Division US8366806B2 (en) 2004-03-30 2010-12-29 Pre-purification unit of cryogenic air separation unit, hydrocarbon adsorbent, and method of pre-treating feed air

Publications (1)

Publication Number Publication Date
WO2005094986A1 true WO2005094986A1 (ja) 2005-10-13

Family

ID=35063570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005939 WO2005094986A1 (ja) 2004-03-30 2005-03-29 空気液化分離装置の前処理精製装置、炭化水素吸着剤、及び原料空気の前処理方法

Country Status (7)

Country Link
US (2) US7931736B2 (ja)
EP (1) EP1736237A4 (ja)
JP (2) JP4512093B2 (ja)
KR (1) KR100830893B1 (ja)
CN (1) CN1938081B (ja)
TW (1) TWI363655B (ja)
WO (1) WO2005094986A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102091502A (zh) * 2009-12-10 2011-06-15 琳德股份公司 气体预纯化方法
KR101918709B1 (ko) * 2011-09-30 2018-11-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 과산화수소 수용액의 제조방법
CN104022437A (zh) * 2014-06-06 2014-09-03 鞍山紫玉激光科技有限公司 一种多程激光放大器
CN109922872A (zh) * 2016-09-01 2019-06-21 埃克森美孚上游研究公司 使用3a沸石结构移除水的变化吸附处理
JP2021159916A (ja) * 2020-03-31 2021-10-11 東ソー株式会社 炭化水素吸着剤及び炭化水素の吸着方法
WO2022085753A1 (ja) * 2020-10-23 2022-04-28 株式会社キャタラー 炭化水素吸着装置
US20230027070A1 (en) * 2021-07-21 2023-01-26 Air Products And Chemicals, Inc. Air separation apparatus, adsorber, and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140550A (ja) * 1998-10-20 2000-05-23 L'air Liquide ガス流れから亜酸化窒素を分離するプロセス
JP2000157862A (ja) * 1998-10-30 2000-06-13 Boc Group Inc:The モレキュラ―シ―ブ物質からなる吸着剤組成物
JP2001087646A (ja) * 1999-08-25 2001-04-03 Praxair Technol Inc 窒素を別のガスから選択的に吸着させるための新規の吸着剤
JP2002126436A (ja) * 2000-08-28 2002-05-08 Boc Group Inc:The 熱スィング吸着方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289688A (en) 1991-11-15 1994-03-01 Air Products And Chemicals, Inc. Inter-column heat integration for multi-column distillation system
JPH05172458A (ja) 1991-12-25 1993-07-09 Kobe Steel Ltd 空気分離装置における不純物除去装置
JP3513667B2 (ja) 1994-05-31 2004-03-31 日本酸素株式会社 空気液化分離方法及び装置
JPH09168715A (ja) 1995-12-20 1997-06-30 Hitachi Ltd 空気分離用の前処理装置
JP3497043B2 (ja) * 1996-03-21 2004-02-16 出光興産株式会社 排ガス中の炭化水素類浄化用吸着材
CA2203352C (en) 1996-06-07 2000-08-01 Walter H. Whitlock Method and apparatus for purifying a substance
DE19700644A1 (de) 1997-01-10 1998-07-16 Linde Ag Entfernung von Acetylen bei der Luftzerlegung
US5980611A (en) * 1997-09-25 1999-11-09 The Boc Group, Inc. Air purification process
FR2773499B1 (fr) 1998-01-14 2000-02-11 Air Liquide Procede de purification par adsorption de l'air avant distillation cryogenique
JPH11319551A (ja) * 1998-05-18 1999-11-24 Tosoh Corp 炭化水素の吸着剤及び炭化水素の吸着除去方法
US6106593A (en) 1998-10-08 2000-08-22 Air Products And Chemicals, Inc. Purification of air
WO2000024507A1 (fr) 1998-10-28 2000-05-04 Toyota Jidosha Kabushiki Kaisha Agent adsorbant pour hydrocarbure et catalyseur pour la purification de gaz d'echappement
FR2795657B1 (fr) * 1999-07-02 2001-09-14 Air Liquide Procede de purification d'air par adsorption sur zeolite echangee au baryum
FR2796570B1 (fr) * 1999-07-22 2002-06-07 Air Liquide Adsorbant a selectivite amelioree pour la separation des gaz
KR20010067037A (ko) 1999-07-29 2001-07-12 라이너 카섹케르트, 베른하르트 오베르뮬러 공기 정화 방법 및 장치
US6284021B1 (en) 1999-09-02 2001-09-04 The Boc Group, Inc. Composite adsorbent beads for adsorption process
FR2798304B1 (fr) 1999-09-13 2001-11-09 Air Liquide Utilisation d'une alumine activee pour eliminer le co2 d'un gaz
US6603048B1 (en) 1999-10-05 2003-08-05 E. I. Du Pont De Nemours And Company Process to separate 1,3-propanediol or glycerol, or a mixture thereof from a biological mixture
US6391092B1 (en) 1999-10-12 2002-05-21 The Boc Group, Inc. Thermal swing adsorption process for the removal of dinitrogen oxide, hydrocarbons and other trace impurities from air
DE19951781A1 (de) * 1999-10-27 2001-05-03 Sued Chemie Ag Verfahren zur Herstellung von synthetischen Zeolithen mit MFI-Struktur
US6358302B1 (en) * 1999-11-18 2002-03-19 The Boc Group, Inc. Purification of gases using multi-composite adsorbent
JP2001293368A (ja) 2000-04-13 2001-10-23 Tosoh Corp 炭化水素吸着剤及び炭化水素の吸着除去方法
US6409800B1 (en) 2000-08-28 2002-06-25 The Boc Group, Inc. Temperature swing adsorption process
US6416569B1 (en) 2000-08-28 2002-07-09 The Boc Group, Inc. Temperature swing adsorption process
MY136131A (en) 2000-09-14 2008-08-29 Boc Group Inc Adsorbent compositions
US6436173B1 (en) * 2000-09-18 2002-08-20 The Boc Group, Inc. Monolith adsorbents for air separation processes
US6468328B2 (en) 2000-12-18 2002-10-22 Air Products And Chemicals, Inc. Oxygen production by adsorption
JP3545377B2 (ja) * 2001-08-07 2004-07-21 日本酸素株式会社 空気液化分離用空気の精製装置および方法
JP2003126689A (ja) 2001-10-26 2003-05-07 Tosoh Corp 炭化水素用吸着剤及び炭化水素の吸着除去方法
FR2834915A1 (fr) 2002-01-21 2003-07-25 Air Liquide PURIFICATION D'AIR EN NxOy ET CnHm SUR ADSORBANT AVEC METAUX DE TRANSITION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140550A (ja) * 1998-10-20 2000-05-23 L'air Liquide ガス流れから亜酸化窒素を分離するプロセス
JP2000157862A (ja) * 1998-10-30 2000-06-13 Boc Group Inc:The モレキュラ―シ―ブ物質からなる吸着剤組成物
JP2001087646A (ja) * 1999-08-25 2001-04-03 Praxair Technol Inc 窒素を別のガスから選択的に吸着させるための新規の吸着剤
JP2002126436A (ja) * 2000-08-28 2002-05-08 Boc Group Inc:The 熱スィング吸着方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Atlas of Zeolite Structure Types", 1996, ELSEVIER
See also references of EP1736237A4 *

Also Published As

Publication number Publication date
KR20060134126A (ko) 2006-12-27
JPWO2005094986A1 (ja) 2008-02-14
US20110126706A1 (en) 2011-06-02
KR100830893B1 (ko) 2008-05-21
TW200534912A (en) 2005-11-01
TWI363655B (en) 2012-05-11
JP2010158678A (ja) 2010-07-22
CN1938081A (zh) 2007-03-28
US20070209518A1 (en) 2007-09-13
EP1736237A4 (en) 2009-05-06
CN1938081B (zh) 2011-07-06
EP1736237A1 (en) 2006-12-27
JP4512093B2 (ja) 2010-07-28
US8366806B2 (en) 2013-02-05
US7931736B2 (en) 2011-04-26

Similar Documents

Publication Publication Date Title
US7527670B2 (en) Method and apparatus for gas purification
US8734571B2 (en) Purification of air
JP2967871B2 (ja) 二酸化炭素と水の吸着方法及び吸着剤
CA2826900C (en) Swing adsorption processes utilizing controlled adsorption fronts
AU2008277536B2 (en) Method for the purification of a gas containing CO2, using an adsorption purification unit
TW455505B (en) Process and apparatus for removing water, carbon dioxide and nitrous oxide from a feed air stream, process and apparatus for air separation
US6824588B2 (en) Apparatus and method for purifying air used in cryogenic air separation
US8690990B2 (en) Method of purifying air
WO2005094986A1 (ja) 空気液化分離装置の前処理精製装置、炭化水素吸着剤、及び原料空気の前処理方法
KR101781256B1 (ko) 공기의 정제
KR101196929B1 (ko) 희박한 휘발성 탄화수소를 포함하는 대량의 배기가스 정화장치
EP1417995A1 (en) Process and device for adsorption of nitrous oxide from a feed gas stream
WO2021101782A1 (en) Systems and processes for heavy hydrocarbon removal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580010113.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511685

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067019962

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10594998

Country of ref document: US

Ref document number: 2007209518

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005727894

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005727894

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10594998

Country of ref document: US