WO2005093925A1 - 無停電電源装置、及び停電補償システム - Google Patents

無停電電源装置、及び停電補償システム Download PDF

Info

Publication number
WO2005093925A1
WO2005093925A1 PCT/JP2005/005833 JP2005005833W WO2005093925A1 WO 2005093925 A1 WO2005093925 A1 WO 2005093925A1 JP 2005005833 W JP2005005833 W JP 2005005833W WO 2005093925 A1 WO2005093925 A1 WO 2005093925A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
accident
load
commercial power
commercial
Prior art date
Application number
PCT/JP2005/005833
Other languages
English (en)
French (fr)
Inventor
Yoshinori Goko
Koichi Sano
Takeshi Kobayashi
Takahiro Okuno
Yutaka Maruyama
Kiyotaka Terada
Hirotsugu Hatanaka
Koichi Mizuno
Norikazu Kanao
Original Assignee
Nissin Electric Co., Ltd.
Hokuriku Electric Power Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co., Ltd., Hokuriku Electric Power Company filed Critical Nissin Electric Co., Ltd.
Publication of WO2005093925A1 publication Critical patent/WO2005093925A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/0403Modifications for accelerating switching in thyristor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to an uninterruptible power supply and a power outage compensation system for supplying power to a load without an instantaneous interruption when an accident such as an instantaneous voltage drop or a power outage occurs in a commercial power supply.
  • a typical uninterruptible power supply is equipped with a battery (storage battery). When the power supply is normal (normal), the battery is charged, and when a power failure occurs, the battery or power is supplied to the device or system. To prevent the equipment and system from stopping and malfunctioning, and to function normally.
  • the continuous inverter type uninterruptible power supply always has a constant output voltage regardless of the input power supply, and does not cause frequency disturbance. Also, in the event of a power failure, power can be supplied by switching to the knock-up power supply without interruption.
  • this type of uninterruptible power supply uses an inverter circuit and a converter circuit to convert twice as much power from a commercial power supply in normal times, resulting in a conversion loss and an efficiency of about 85%, resulting in an uninterruptible power supply. There was a problem that the power consumption of the device itself increased. In addition, there is a problem that the circuit to be used becomes complicated and thus expensive.
  • the uninterruptible power supply of the continuous commercial power supply method outputs the input AC power to the load as it is in normal times, and switches the output to a storage battery to supply power in the event of a power failure.
  • Low power consumption and relatively long battery life It is inexpensive because it uses few circuits and has a simple structure.
  • the conventional uninterruptible power supply of the continuous commercial power supply system has a configuration as shown in FIG. Figure 8 shows a conventional continuous commercial power supply method.
  • FIG. 2 is a configuration diagram in which a commercial power supply and a load are connected to an uninterruptible power supply of a type.
  • an input terminal 106 is connected to a commercial power supply 108, and an output terminal 107 is connected to a load 109.
  • the uninterruptible power supply 101 includes a measuring transformer 111, a control unit 112, a semiconductor switch 113, a battery 115, a battery output measuring unit 116, a converting unit 117 including a charger and an inverter, a filter circuit 118, a transformer 119, and A breaker 121 is provided.
  • Measurement transformer 111 reduces the voltage value of the required power supply to a predetermined voltage and outputs it to control section 112 in order to detect the voltage value supplied from commercial power supply 108.
  • control unit 112 When the voltage value of battery output measurement unit 116 is less than the predetermined value, control unit 112 causes battery charger 115 of conversion unit 117 to charge battery 115. When the voltage value output from the measurement transformer 111 becomes equal to or less than a predetermined value, the control unit 112 shuts off the semiconductor switch 113 (thyristors 113a and 113b) and operates the inverter of the conversion unit 117, Electric power is supplied from the note 115 to the load 109.
  • the semiconductor switch 113 includes a thyristor 113a and a thyristor 113b, and disconnects a load from the commercial power supply 108 when a power supply trouble such as a short circuit occurs in the commercial power supply 108.
  • Battery output measuring section 116 measures the voltage and current of battery 115 and outputs the result to control section 112.
  • the charger of converter 117 is a converter that converts AC power into DC power and charges battery 115. Further, the inverter of converter 117 converts DC power into AC power and outputs it.
  • the filter circuit 118 is a high-frequency filter that includes a rear turtle 118L and a capacitor 118C, and is connected to the load side of the inverter to absorb noise generated when the power device switches inside the inverter.
  • Transformer 119 converts a voltage supplied from commercial power supply 108 into a predetermined voltage. Also, when the semiconductor switch 113 is shut off, the voltage output from the inverter The value is converted into a voltage value of the commercial power supply 108.
  • the circuit breaker 121 is for supplying power directly from the commercial power supply 108 to the load 109 during maintenance of the uninterruptible power supply 101 or the like.
  • the control unit 112 normally turns on the semiconductor switch 113, and the control unit 112 stops the inverter of the conversion unit 117 to stop the power supply from the notch 115. As a result, electric power is supplied from the commercial power supply 108 to the load 109. Further, at this time, if the voltage value of battery 115 measured by battery output measurement section 116 is less than a predetermined value, control section 112 operates the charger of conversion section 117 to charge battery 115, and outputs the battery output. When the voltage value of the battery 115 measured by the measuring unit 116 becomes equal to or more than a predetermined value, the charger of the converting unit 117 is stopped.
  • the control unit 112 detects the decrease in the output voltage at high speed (1Z4 cycle or less) by the measuring transformer 111 and immediately switches the semiconductor switch 113. And the inverter 117b is operated to supply power from the battery 115 to the load 109. The user can prevent trouble by stopping the load normally until the notch 115 is consumed.
  • the control unit 112 detects the change in the output voltage at high speed (1Z4 cycle or less) by the measuring transformer 111, and immediately The switch 113 is closed, the inverter of the converter 117 is stopped, and the charger of the converter 117 is operated to charge the battery 115.
  • Patent Document 1 JP-A-5-64378
  • the conventional uninterruptible power supply of the continuous commercial power supply method opens the semiconductor switch 113 after detecting the voltage drop from the commercial power supply 108, and supplies power from the battery 115 to the load 109.
  • Supply it takes about half a cycle (8 to: LOms ec) to switch in the event of a power failure, and an instantaneous interruption occurs during this time. Therefore, in the case of a load such as a semiconductor manufacturing device that is affected by a short-time voltage drop of about 2 msec, an uninterruptible power supply unit with a commercial power supply system cannot be used at all times.
  • the uninterruptible power supply of the inverter system was always used as a standby power supply.
  • an object of the present invention is to provide an uninterruptible power supply of a constant commercial power supply system and a power failure compensation system that can supply power by switching to a standby power supply without an instantaneous interruption.
  • the present invention has the following arrangement as means for solving the above-mentioned problems.
  • an accident detecting means for detecting an instantaneous voltage drop accident and a power failure accident in a commercial power supply at a predetermined cycle
  • a single-phase rectifier bridge circuit including a high-speed switch for opening and closing an electric circuit for supplying power from the commercial power supply; and a DC reactor connected between two DC terminals of the single-phase rectifier bridge circuit.
  • the commercial power supply is healthy, both the active power and the reactive power supplied to the load are set to zero.
  • the accident detection means detects an accident in the commercial power supply, the PQ control is stopped and the required power for the load is controlled.
  • the responsiveness of the PQ control is set to be longer than the accident confirmation cycle of the commercial power supply in the accident detection means.
  • the high-speed current limiting cut-off means uses the DC power from the commercial power supply to supply only the commercial power supply without supplying power to the uninterruptible power supply power load.
  • Power is supplied to the load via the rear turtle, and PQ control is performed by the standby power supply so that both the active power and the reactive power supplied to the load become zero.
  • the impedance of the DC reactor is apparently 0, so when the commercial power is healthy, the DC reactor does not adversely affect the commercial power and the power is supplied stably to the commercial power load. . Therefore, when the commercial power supply is healthy, power is not supplied to the standby power supply means load, and the uninterruptible power supply can efficiently supply power only to the commercial power supply to the load.
  • the accident detection means performs the accident detection at a predetermined cycle.
  • 1S Accident occurrence force
  • the responsiveness of the PQ control is improved. Is set longer than the accident detection cycle of the commercial power supply in the accident detection means. Therefore, even if an instantaneous voltage drop or power failure occurs in the commercial power supply, the response of the PQ control immediately follows !, Tsukasa! /, So the bow I continues under the same system conditions as before the accident. Control is performed. At this time, while an accident has occurred on the system side, PQ control is performed under system conditions prior to the occurrence of the accident, so PQ control will not be performed correctly.
  • PQ control is not performed correctly so that load current does not flow, and current flows from the backup power supply to the system.
  • the power supply to the load is continued by the partial pressure action of the DC rear turtle and the AC rear turtle.
  • the PQ control stops at the next accident detection timing. After this stop, power is supplied from the standby power supply means. As described above, during the period from the accident occurrence timing to the accident detection timing, the power is supplied to the load and the accident point without any interruption of the standby power supply means.
  • the accident detecting means detects an accident such as an instantaneous voltage drop or a power failure in the commercial power supply
  • the PQ control is stopped in the standby power supply means, and the high-speed switch of the high-speed current limiting cutoff means is used.
  • the electric circuit is cut off and the commercial power is disconnected. Therefore, high After the current limiting circuit interrupts the electric circuit, the necessary power can be supplied from the standby power supply without voltage reduction to the load.
  • the impedance of the DC reactor is set to ( ⁇ ) ⁇ or more, where A is an allowable voltage drop rate with respect to the load, and Z is the impedance of the AC reactor.
  • control means for controlling the voltage of the standby power supply means and the voltage of the commercial power supply to have substantially the same phase and the same amplitude.
  • the load current is controlled to be zero, but the inverter is constantly driven. For this reason, by matching the phase of the system with the phase of the inverter in advance, the power supply from the standby power supply means immediately after the occurrence of the above-described accident has a continuous phase.
  • the high-speed switch is a pair of thyristors, and the single-phase rectifier bridge circuit has the pair of thyristors connected to at least one of two AC terminals. A terminal is connected to the commercial power supply and a load.
  • An accident detecting means for detecting an accident in the commercial power supply, and when the commercial power supply is healthy, power is supplied from the commercial power supply to a load, and the accident detecting means detects an accident in the commercial power supply.
  • the electric circuit for supplying electric power from the commercial power supply to the load is interrupted.
  • a high-speed current limiting interrupting means for interrupting, and a predetermined electric power is supplied to the load immediately after the occurrence of the accident, and when the accident detecting means detects the accident and the current limiting interrupting means cuts off the electric circuit, the load
  • An uninterruptible power supply having backup power supply means for supplying necessary power to the
  • An emergency generator that starts when a predetermined time elapses after the high-speed current limiting cutoff unit cuts off an electric circuit
  • An accident detecting means for detecting an instantaneous voltage drop accident and a power failure accident in a commercial power supply at a predetermined cycle
  • a single-phase rectifier bridge circuit including a high-speed switch for opening and closing an electric circuit for supplying power from the commercial power supply; and a DC reactor connected between two DC terminals of the single-phase rectifier bridge circuit.
  • a backup power supply unit for stopping the PQ control and supplying necessary power to the load when the accident detection unit detects an accident of the commercial power supply.
  • An emergency generator that starts when a predetermined time elapses after the high-speed current limiting cutoff unit cuts off an electric circuit
  • the standby power If an accident occurs in the commercial power supply, the standby power The required power can be supplied to the power supply, but after a certain period of time, the voltage of the DC power supply of the standby power supply drops, so that the required power cannot be supplied to the load.
  • the emergency generator is started before the voltage of the DC power supply drops and sufficient power cannot be supplied to the load from the standby power supply means. By switching the switch to supply power, it is possible to continuously and stably supply power to the load.
  • the uninterruptible power supply according to claim 1, power is normally supplied from the commercial power supply to the load, and when an accident occurs in the commercial power supply, the power is supplied to the load at that time. Therefore, unlike the conventional uninterruptible power supply of the continuous commercial power supply method, power can be supplied without interruption from the standby power supply when a commercial power supply accident occurs.
  • the uninterruptible power supply device of claim 2 when the commercial power supply is healthy, power is supplied to the load only from the commercial power supply without supplying power to the load from the backup power supply means. be able to. In addition, after the high-speed current limiting cutoff means cuts off the electric circuit, the power required by the standby power supply means can be supplied to the load without a voltage drop.
  • the uninterruptible power supply according to claim 3 even when a ground fault or short circuit occurs in the commercial power supply, the voltage of the backup power supply is divided by the DC rear turtle and the AC rear turtle. Thus, power can be supplied without the load voltage dropping below the allowable voltage drop rate.
  • the voltage of the commercial power supply and the voltage of the standby power supply are controlled so that the phase and the amplitude have substantially the same value.
  • the standby power supply can immediately supply power to the load.
  • the uninterruptible power supply device of claim 5 it is possible to cut off the electric power supply line for the commercial power supply in about 10 msec after the occurrence of the accident in the commercial power supply.
  • the electric circuit between the commercial power supply and the load is interrupted by a thyristor at the time of a power supply accident, the induced electromotive force generated in the reactor can be short-circuited by the semiconductor rectifier.
  • the voltage of the DC power supply decreases.
  • Standby power supply means Power can be supplied stably to the emergency generator power load before sufficient power cannot be supplied to the load.
  • FIG. 1 is a schematic configuration diagram of an uninterruptible power supply according to an embodiment of the present invention.
  • FIG. 2 is a graph showing a relationship between a current decay time constant and an equivalent impedance with respect to an AC power supply cycle.
  • FIG. 3 is a block diagram of a control unit of the uninterruptible power supply.
  • FIG. 4 is a schematic diagram for explaining the operation of the uninterruptible power supply.
  • FIG. 5 is an equivalent circuit and a vector diagram of the uninterruptible power supply.
  • FIG. 6 is an output voltage waveform and control timing chart of the uninterruptible power supply.
  • FIG. 7 is a schematic diagram in which an emergency generator is connected to an uninterruptible power supply.
  • FIG. 8 is a configuration diagram in which a commercial power supply and a load are connected to a conventional uninterruptible power supply of a constant commercial power supply system.
  • FIG. 1 is a schematic configuration diagram of an uninterruptible power supply according to an embodiment of the present invention.
  • the uninterruptible power supply according to the embodiment of the present invention always supplies power to a load using a commercial power supply system, but is configured to compensate without interruption in the event of a power failure or a momentary voltage drop.
  • the uninterruptible power supply 1 includes an accident detection unit 2, a high-speed current limiting cutoff unit 3, a standby power supply unit 4, and a bypass unit 5, an input terminal 6 is connected to a commercial power supply 8, and an output terminal 7 is Connected to load 9.
  • the accident detection unit 2 includes a measurement transformer 11 and a control unit 12.
  • the high-speed current limiting interrupter 3 includes a bridge circuit 13 that is a single-phase rectification bridge circuit and a DC reactor 14.
  • the standby power supply unit 4 includes a battery 15 serving as a DC power supply, a battery output measurement unit 16, a conversion unit 17, a filter circuit 18, a transformer 19, and a power supply output measurement unit 20.
  • the no-pass section 5 includes a circuit breaker 21.
  • the accident detection unit 2 detects that a power failure has occurred in the commercial power supply 8 and a voltage sag or power failure has occurred.
  • the high-speed current limiting cutoff unit 3 cuts off an electric circuit between the commercial power supply 8 and the load 9 when a power failure occurs in the commercial power supply 8.
  • the backup power supply unit 4 supplies power to the load 9 when a power supply accident occurs in the commercial power supply 8.
  • Bypass section 5 is high The commercial power supply 8 and the load 9 are directly connected, bypassing the fast current limiting cutoff 3 and the standby power supply 4.
  • Measurement transformer 11 measures the AC voltage of commercial power supply 8, and outputs the result to control unit 12.
  • the control unit 12 controls the opening and closing operation of the bridge circuit 13 and the charging and output operation of the conversion unit 17 based on the voltage measurement result of the commercial power supply 8 output from the measurement transformer 11. Further, the control section 12 controls the charging operation of the conversion section 17 based on the measurement result of the battery output measurement section 16. Further, the control unit 12 controls the output power of the conversion unit 17 based on the measurement result of the power output measurement unit 20.
  • the control unit 12 is supplied with power from the standby power supply unit 4, and operates without being affected by a power supply accident in the commercial power supply 8. Further, the control unit 12 detects signals output from the measurement transformer 11, the battery output measurement unit 16, and the power output measurement unit 20 every 1Z4 cycles.
  • the bridge circuit 13 includes two (a pair) of thyristors 13a and 13b, two (a pair) of diodes 13c and 13d, and a power, two AC terminals 13al and 13a2, and two DCs. Terminals 13dl and 13d2.
  • the AC terminal 13al is connected to the anode of the thyristor 13a and the power source of the thyristor 13b, and the AC terminal 13a2 is connected to the power source of the diode 13c and the anode of the diode 13d.
  • the DC terminal 13dl is connected to the power source of the thyristor 13a and the power source of the diode 13d, and the DC terminal 13d2 is connected to the anode of the thyristor 13b and the anode of the diode 13c. Further, a DC rear turtle 14 is connected between the DC terminal 13dl and the DC terminal 13d2.
  • the input terminal 6 for connecting the commercial power supply 8 is connected to the AC terminal 13al, and the output terminal 7 for connecting the load 9 is connected to the AC terminal 13a2.
  • the AC terminal 13al may be connected to the output terminal 7, and the AC terminal 13a2 may be connected to the input terminal 6.
  • DC rear turtle 14 limits the current flowing from standby power supply unit 4 to commercial power supply 8 when a power failure occurs in commercial power supply 8.
  • the battery 15 is supplied to the load 9 when a power failure or a momentary voltage drop occurs in the commercial power supply 8. It accumulates electric power (electrical energy).
  • the battery output measurement unit 16 includes a DC measurement current transformer and a DC measurement transformer (not shown), measures the DC voltage and DC current of the battery 15, and outputs the results to the control unit 12. Output to
  • the conversion unit 17 includes a charging unit (converter) 17a and an inverter 17b (not shown).
  • Charging unit 17a converts AC power to DC power based on a control signal output from control unit 12 in order to charge battery 15 in a floating manner.
  • inverter 17b converts DC power stored in battery 15 into AC power based on a control signal output from control unit 12 to supply power to load 9.
  • the battery 15 may be configured to be charged by the charger separation method (DC switch method).
  • the conversion unit 17 is configured only with the inverter 17b, and the charger is separately provided. It may be provided.
  • the filter circuit 18 includes a rear turtle 18L and a capacitor 18C, and is a high-frequency filter that absorbs noise generated when a power device switches inside the inverter.
  • Transformer 19 reduces the voltage of commercial power supply 8 to a predetermined voltage, and boosts the output voltage of inverter 17b to substantially the same voltage as commercial power supply 8.
  • the power output measurement unit 20 includes an AC measurement current transformer 20a and an AC measurement transformer 20v, measures an inverter current and a load voltage, and outputs the result to the control unit 12.
  • the circuit breaker 21 is switched to the closed state at the time of maintenance or failure of the uninterruptible power supply 1 so that the uninterruptible power supply 1 is vinosed, and the power is directly supplied from the commercial power supply 8 to the load 9. It is for supplying power.
  • the uninterruptible power supply 1 has a constant current decay time constant and a system frequency cycle such that the impedance seen from the AC side force during normal operation is almost zero and exhibits a large impedance only when an accident occurs.
  • the relationship is set as follows.
  • FIG. 2 is a graph showing the relationship between the current decay time constant and the equivalent impedance with respect to the AC power supply cycle.
  • the uninterruptible power supply 1 configured as described above includes the reactance component and the resistance component of the reactor 19, a pair of thyristors 13a and 13b, and a pair of diodes 13c and 13d. As shown in FIG.
  • the current decay time constant determined by the bridge circuit 13 and the equivalent impedance viewed from the system side force have a relationship that the larger the current decay time constant is, the smaller the equivalent impedance force is. I have.
  • the circuit impedance during steady operation be as small as possible. Therefore, DC reactance is generally selected so that the self-current at the time of a system short-circuit fault is suppressed to about three times the rated current. That is, the bridge circuit 13 has an impedance of 33% of the rated current base.
  • FIG. 3 is a block diagram of a control unit of the uninterruptible power supply.
  • the control unit 12 includes a voltage determination unit 31, a thyristor control unit 32, a synchronization signal generation unit 33, a self-propelled operation phase signal generation unit 34, a switching switch 35, a PQ calculation unit 36, a PQ control unit 37, a switching switch 38, It includes a battery state determination unit 39, an output voltage reference sine wave creation unit 40, and an inverter output control unit 41.
  • Voltage determination unit 31 determines the voltage of commercial power supply 8 based on a signal corresponding to the AC voltage value of commercial power supply 8 output from measurement transformer 11 and a predetermined set value. It is determined whether the force has fallen below the set voltage value, the force that remains at the specified set voltage value, or the power has been restored to the specified set voltage value. Then, a signal corresponding to the determination result is output to the thyristor control unit 32. Further, when an instantaneous voltage drop or power failure occurs in the commercial power supply 8, the voltage determination unit 31 outputs a signal to that effect to the voltage battery state determination unit 39.
  • the thyristor control unit 32 outputs a thyristor firing signal to the thyristors 13 a and 13 b of the bridge circuit 13 based on the signal output from the voltage determination unit 31 to open and close these thyristors (ignition, Arc).
  • the synchronization signal generation unit 33 generates a signal for synchronizing the output voltage of the standby power supply unit 4 with the output voltage of the commercial power supply 8, and outputs the output voltage reference sine wave generation unit 40 via the switch 35. This signal is output. Note that the synchronization signal generation unit 33 converts this signal into the phase for self-propelled operation. It is also output to the signal generator 34.
  • the self-propelled operation phase signal generation unit 34 generates a phase signal of the voltage to be output when the uninterruptible power supply 1 performs the self-propelled operation by interrupting the electric circuit between the commercial power supply 8 and the load 9. It is for doing.
  • the self-propelled driving phase signal generator 34 performs control to match the phase with the output voltage of the commercial power supply 8 based on the signal output from the synchronization signal generator 33 when the commercial power supply 8 is healthy. I have.
  • the switching switch 35 is switched according to a switch control signal output from the voltage determination unit 31. That is, when the commercial power supply 8 is in a normal state or when the AC voltage of the commercial power supply 8 is restored, the switch 35 is switched so that a signal is output from the synchronization signal generation unit 33 to the output voltage reference sine wave generation unit 40. . On the other hand, when the AC voltage of the commercial power supply 8 is lower than the predetermined set voltage, the switch 35 is operated so that the signal is output from the self-propelled operation phase signal generator 34 to the output voltage reference sine wave generator 40. Can be switched.
  • the PQ calculation unit 36 performs a calculation based on the inverter current and the load voltage measured by the power supply output measurement unit 20 so that the active power and the reactive power supplied from the standby power supply unit 4 become zero.
  • the PQ control unit 37 creates phase information and amplitude information of the AC voltage (sine wave) output from the inverter 17b based on the operation result of the PQ operation unit 36, and outputs the information through the switching switch 38. Is output to the output voltage reference sine wave generator 40.
  • the switching switch 38 is switched according to a switch control signal output from the voltage determining unit 31. That is, when the commercial power supply 8 is in a healthy state or the AC voltage of the commercial power supply 8 is restored, the switch 38 is switched so that a signal is output from the PQ control unit 37 to the output voltage reference sine wave creating unit 40. On the other hand, when the voltage of the commercial power supply 8 is lower than the predetermined set voltage, the switch 38 is switched so that no signal is output to the output voltage reference sine wave generator 40.
  • the switching switches 35 and 38 will be described as latch-type switches.
  • battery state determining section 39 Based on the measurement results of the DC voltage and DC current of battery 15 output from battery output measuring section 16, battery state determining section 39 needs to charge battery 15 or has full charge. Is determined. And output the phase information according to the judgment result The voltage-based sine wave generator 40 creates and outputs it to the inverter output controller 41. Further, when a voltage sag or power failure occurs in the commercial power supply 8 and a signal is also output from the voltage determination unit 31, the battery state determination unit 39 stops outputting the phase signal and suspends charging of the battery 15.
  • the output voltage reference sine wave generator 40 includes a synchronization signal generator 33, a PQ controller 37, a battery state determiner 39, a signal in which force is also output, or a self-propelled operation phase signal generator 34. Based on the signal output from the inverter 17b, information on the phase and amplitude of the sine wave voltage output from the inverter 17b is created, and this information is output to the inverter output control unit 41.
  • Inverter output control unit 41 includes a signal for controlling power output from inverter 17b of conversion unit 17 based on a signal output from output voltage reference sine wave generation unit 40, and battery 15 for charging device 17a. And outputs a control signal for charging.
  • FIG. 4 is a schematic diagram for explaining the operation of the uninterruptible power supply.
  • the uninterruptible power supply 1 always supplies power to the load using the commercial power supply system, but can compensate for power outages or instantaneous drops without interruption.
  • the uninterruptible power supply 1 allows the standby power supply unit 4 to supply power to the load when the commercial power supply 8 is healthy, that is, when no power accident has occurred in the commercial power supply 8 and no instantaneous dip or power failure has occurred. Power from the commercial power supply 8 only.
  • both the thyristor 13a and the thyristor 13b of the high-speed current limiting interrupter 3 are fired and controlled to a closed state. Power is supplied to the load 9 via the flow cutoff unit 3.
  • the backup power supply unit 4 is controlled so that power is not supplied to the load 9 when the commercial power supply 8 is healthy. That is, in the standby power supply unit 4, control is performed to make both the active power P and the reactive power Q supplied to the load 9 zero (hereinafter, referred to as PQ control). Has been done.
  • the conversion unit 17 of the standby power supply unit 4 performs DC voltage control for performing floating charging of the nottery 15 and output voltage control for outputting a voltage having substantially the same phase and the same amplitude as the commercial power supply 8.
  • the control unit 12 detects the signal output from the measurement transformer 11 every 1Z4 cycle as described above.
  • the voltage determination unit 31 outputs a signal for switching the switching switch 35 so that the signal output from the synchronization signal generation unit 33 is output to the output voltage reference sine wave generation unit 34. I do.
  • voltage determination section 31 outputs a signal for switching switching switch 38 so that the signal from PQ control section 37 is output.
  • voltage determining section 31 outputs a signal to battery state determining section 39 to cause battery 15 to be charged when battery 15 is not in a fully charged state.
  • the voltage determination unit 31 outputs a signal to the thyristor control unit 32 to turn on the thyristors 13a and 13b of the bridge circuit 13.
  • the thyristor control unit 32 When detecting this signal, the thyristor control unit 32 outputs a thyristor firing signal.
  • the commercial power supply 8 is healthy, the thyristors 13a and 13b are always in a firing state (on state).
  • FIG. 5 is an equivalent circuit and a vector diagram of the uninterruptible power supply.
  • the output voltage of the commercial power supply 8 is VI
  • the voltage of the standby power supply 4 is V2
  • the voltage of the load 9 is VL
  • the reactance of the commercial power supply 8 is xl
  • the reactance of the standby power supply 4 is x2. I do.
  • VZ ⁇ is referred to as a voltage vector V
  • IZ ⁇ is referred to as a current vector I.
  • the voltage vector V2 of the standby power supply unit 4 and the voltage vector VL of the load voltage are the same, no current flows from the standby power supply unit 4 to the load 9.
  • the current vector II and the current vector 12 only need to have the same magnitude and opposite directions.
  • the relationship between the vectors is as shown in Fig. 5 (B).
  • the voltage vector V (xl + x2) is obtained by adding the voltage vector Vxl of the reactance xl and the voltage vector Vx2 of the reactance x2.
  • the output voltage reference sine wave creating unit 34 creates a reference sine wave based on signals output from the PQ control unit 37 and the like. When a sine wave is created based only on the signal output from the PQ control unit 37, the sine wave voltage output from the inverter 17b is
  • V2 (A + ⁇ ) sin ( w t + ⁇ 0) '.' (Equation 1)
  • phase ⁇ ⁇ for correcting voltage V2 output from standby power supply unit 4 and active power P, and amplitude ⁇ A and reactive power Q for correcting voltage V2 output from standby power supply unit 4 This relationship can be easily obtained by calculating based on the impedance of the commercial power supply 8 to which the uninterruptible power supply 1 is connected or the impedance of the uninterruptible power supply 1.
  • the control unit 12 controls the charging of the battery 15 as described above. That is, the battery state determination unit 39 needs to charge or not charge the battery 15 based on the measurement results of the DC voltage and DC current of the battery 15 output from the battery output measurement unit 16. Determine if it is charging.
  • the battery state determination unit 39 converts the phase information so that a current flows from the charger 17a of the conversion unit 17 to the battery 15 to charge the battery 15. create.
  • the information of the phase signal generated by the battery state determination unit 39 is output to the output voltage reference sine wave generation unit 40, and is used as information for correcting the phase of the sine wave voltage output from the inverter 17b.
  • the battery state determination unit 39 does not create a phase signal, and does not output information of the phase signal to the output voltage reference sine wave creation unit 40.
  • control unit 12 controls the phase of the voltage waveform output from the standby power supply unit 4 in the event of a momentary voltage drop or power failure. Control is performed to synchronize the amplitude with the phase of the output voltage of the commercial power supply 8.
  • the synchronizing signal generation unit 33 outputs the phase and amplitude information of the output voltage of the commercial power supply 8 based on the AC voltage measurement result of the commercial power supply 8 output from the measurement transformer 11 through the switching switch 35. Output to the reference sine wave generator 40.
  • the output voltage reference sine wave generator 40 corrects the phase of the sine wave voltage output from the inverter 17b based on the information output from the synchronization signal generator 33.
  • the control unit 12 performs the above-described control, and the output voltage reference sine wave creation unit 40 includes the synchronization signal generation unit 33, the PQ control unit 37 Then, based on the battery state determination unit 39 and the correction information on the amplitude and phase of the force, information on the phase and amplitude of the sine wave voltage output from the inverter 17b is created, and this information is output to the inverter output control unit 41. .
  • the conversion unit 17 performs an operation based on the signal output from the inverter output control unit 41.
  • the uninterruptible power supply 1 supplies power from the standby power supply unit 4 without interruption when a power failure occurs in the commercial power supply 8 and a momentary voltage drop or power outage occurs. That is, as shown in FIG. 4 (B), in the standby power supply unit 4, current is immediately supplied to the fault point as a voltage source (output voltage control), and the power stored in the battery 15 for the load 9 is supplied. Supplied. When a momentary voltage drop or a power failure is detected by the accident detection unit 2, a shutoff signal is output to the thyristors 13a and 13b of the high-speed current limit cutoff unit 3. Further, at this time, in the standby power supply unit 4, the PQ control is stopped, and the charging of the notebook 15 is stopped.
  • the load voltage VL is a voltage determined by the voltage division between the DC rear turtle 14 and the AC rear turtle 18L. That is, the nottery voltage is Vs, the impedance of the DC When the impedance of the reactor 18L is Z2, the load voltage VL is
  • the uninterruptible power supply 1 detects a power supply accident such as a momentary voltage drop or power failure in commercial power every 1Z4 cycles. In addition, PQ control is performed so that power is not supplied from the standby power supply unit 4 when the commercial power supply is healthy. On the other hand, when a power supply accident occurs, the following control is performed to supply the load 9 and the point of the accident from the standby power supply unit 4 without interruption.
  • a power supply accident such as a momentary voltage drop or power failure in commercial power every 1Z4 cycles.
  • PQ control is performed so that power is not supplied from the standby power supply unit 4 when the commercial power supply is healthy.
  • the following control is performed to supply the load 9 and the point of the accident from the standby power supply unit 4 without interruption.
  • FIG. 6 is an output voltage waveform and control timing chart of the uninterruptible power supply.
  • the commercial power supply 8 outputs a sine wave voltage as shown in FIG.
  • the control unit 12 detects the signal output from the measurement transformer 11 every 1Z4 cycle as described above.
  • the voltage judging unit 31 detects the occurrence of a sag or power failure ((1) shown in FIG. 6) by a maximum of 1Z4 cycles (5 msec at 50 Hz) (within tl period). Or, a power failure is detected ((2) shown in Fig. 6).
  • the standby power supply unit 4 immediately starts power supply to the accident point of the commercial power supply 8 and the load 9 to continuously supply power.
  • the responsiveness of the PQ control is set to 10 ms to several hundred ms, which is longer than the cycle in which the control unit 12 detects a power failure of the commercial power supply. Therefore, even if an instantaneous voltage drop or power failure occurs in the commercial power supply, the response of the PQ control does not follow immediately, so PQ control continues to be performed under the same system conditions as before the accident occurred. Be done.
  • the standby power supply unit 4 remains in the same state as when the power supply is healthy for a while. Therefore, the control to reduce the active power P and reactive power Q supplied to the load 9 to zero is not performed, and the power is supplied from the standby power supply to the accident point of the power supply commercial power supply 8 and the load 9. Feeding starts immediately.
  • the load voltage VL is determined by the voltage determined by the divided voltage of the DC rear turtle 14 and the AC rear turtle 18L. Become. Therefore, when the allowable voltage drop rate for the load 9 is A% and the impedance of the AC rear turtle 18L is Z2, the impedance Z1 of the DC rear turtle 14 is set to (100Z2) / A or more, so that the The voltage output to 9 can be set to a value larger than the allowable voltage drop rate.
  • the reduction rate of the voltage output from the standby power supply unit 4 to the load 9 can be reduced to less than 10%.
  • Uninterruptible power supply 1 stops PQ control at the accident detection timing ((3) shown in Fig. 6). After the PQ control is stopped, power is supplied from the standby power supply unit 4.
  • the voltage determination unit 31 of the control unit 12 sets the switching switch 35 so that the signal of the self-propelled driving phase signal generation unit 34 is output to the output voltage reference sine wave generation unit 34. Output the switching signal.
  • voltage determination section 31 stops the PQ control of standby power supply section 4, and outputs a signal for switching switching switch 38 in order to supply power from standby power supply section 4 to the load. Thereby, the output of the signal from the PQ control unit 37 to the output voltage reference sine wave creation unit 40 is stopped.
  • voltage determining section 31 outputs a signal to battery state determining section 39 so that battery state determining section 39 suspends charging of battery 15.
  • the output voltage reference sine wave generator 40 generates a sine wave voltage waveform based on the signal (phase information) output from the self-propelled driving phase signal generator 34 and sends the signal to the inverter output controller 41. Is output. Therefore, power is continuously supplied from the standby power supply unit 4 to the accident point of the commercial power supply 8 and the load 9. Supplied.
  • the voltage determination unit 31 sends a signal to the thyristor control unit 32 to turn off (turn off the thyristors 13a and 13b) the thyristors 13a and 13b of the bridge circuit 13 in addition to the above operation. Output.
  • the thyristor control unit 32 stops outputting the thyristor firing signal.
  • the thyristor control unit 32 stops outputting the firing signal of the thyristor, and the power is extinguished after a few milliseconds (see FIG. 6). (Four) ). Therefore, as shown in Fig.
  • the power is supplied to the load and the accident point without any sudden power interruption.
  • the power inverter 17b that controls the load current to zero is constantly driven. Therefore, as described above, by previously matching the voltage phase of the system (commercial power supply 8) and the voltage phase of the inverter 17b, the output voltage from the standby power supply unit 4 immediately after the occurrence of the power supply accident has the phase. It will be continuous.
  • the control unit 12 performs the same control as when an accident occurs. That is, in the control unit 12, the voltage determination unit 31 detects the signal output from the measurement transformer 11 every 1Z4 cycle as described above. The voltage judging unit 31 detects an instantaneous voltage drop or a power outage while the commercial power source 8 is experiencing an instantaneous voltage dip or a power outage. Does not output a signal. Therefore, the state of the switching switch 35 is maintained such that the signal of the self-propelled driving phase signal generating section 34 is output to the output voltage reference sine wave generating section 34, and the switching switch 38 is controlled by the PQ control section 37. The state is maintained so that no signal is output.
  • the battery state determination unit 39 continues to charge the battery 15. Since the charging is stopped, no signal is output, and the thyristor control unit 32 does not output the thyristor firing signal. Therefore, the output voltage reference sine wave generator 40 generates a sine wave voltage waveform based on the signal (phase information) output from the self-propelled operation phase signal generator 34, and generates the inverter output voltage. A signal is output to the control unit 41, and power is continuously supplied to the load 9 only from the standby power supply unit 4.
  • the uninterruptible power supply 1 When the power failure in the commercial power supply 8 is resolved and power is restored, the uninterruptible power supply 1 has both the thyristor 13a and the thyristor 13b of the high-speed current-limiting circuit 3 as described with reference to Fig. 4 (A).
  • the power is supplied to the load 9 from the commercial power supply 8 via the high-speed current limiting cutoff section 3 and the power supply from the standby power supply section 4 is stopped.
  • FIG. 7 is a schematic diagram in which an emergency generator is connected to the uninterruptible power supply. As shown in Fig.
  • the uninterruptible power supply 1 is connected to the load 9, and the power supply system switching switch 52 is provided at the input terminal 6 of the uninterruptible power supply 1, so that the commercial power supply 8 and the emergency power It is configured so that the connection with the device 51 can be switched.
  • This power failure compensation system operates as follows. First, when a power failure occurs on the grid side, power is supplied from the standby power supply unit 4 of the uninterruptible power supply 1 to the load 9 as described above. Further, the emergency generator 51 is started at a predetermined timing before a sufficient power cannot be supplied from the standby power supply unit 4 to the load 9 after the occurrence of an accident on the grid side. Then, the control unit 12 outputs a control signal to the power supply system switching switch 52, and switches the power supply system switching switch 52 to the emergency generator 51 side when the operation is stabilized by starting the emergency generator 51. .
  • the control unit 12 of the uninterruptible power supply 1 monitors the phase of the output of the emergency generator 51 with the measuring transformer 11, and the output of the standby power supply unit 4 matches the output of the emergency generator 51. To synchronize The conversion unit 17 is controlled. When the output of the standby power supply unit 4 and the output of the emergency generator 51 are synchronized, the control unit 12 ignites the thyristors 13a and 13b of the high-speed current limiting cut-off unit 3 and passes through the high-speed current limiting shut-off unit 3. Power from the emergency generator 51 to the load 9. Further, at this time, the control unit 12 switches the operation of the conversion unit 17, stops the power supply from the standby power supply unit 4 to the load 9, and starts charging the battery 15. It is preferable that the power is supplied from the emergency generator 51 to the load 9 and the battery 15 of the standby power supply unit 4 is charged during the power supply.
  • the control unit 12 When the power failure in the commercial power supply 8 is resolved and power is restored, the control unit 12 extinguishes the thyristor 13a and the thyristor 13b, switches the operation of the conversion unit 17, and switches the standby power supply unit. Supply power from 4 to the load. At this time, the output of the standby power supply unit 4 is controlled so as to synchronize with the output of the emergency generator 51. Subsequently, the control unit 12 outputs a control signal to the power supply system switching switch 52, and switches the switch to the commercial power supply 8 side.
  • the control unit 12 monitors the phase of the output of the commercial power supply 8 with the measuring transformer 11, and controls the conversion unit 17 so that the output of the standby power supply unit 4 is synchronized with the output of the commercial power supply 8.
  • the control unit 12 ignites the thyristors 13a and 13b of the high-speed current limiting cutoff unit 3 Power is supplied from the power supply 8 to the load 9.
  • the control unit 12 switches the operation of the conversion unit 17, stops the power supply from the standby power supply unit 4 to the load 9, starts charging the battery 15, and returns to the normal state. Become.
  • the emergency generator 51 is started and the power is supplied before the voltage of the notch 15 drops and the standby power supply unit 4 cannot supply sufficient power to the load 9 so that the power is supplied. , The power can be supplied to the load 9 stably.
  • the emergency generator 51 is configured such that the high-speed current-limiting circuit 3 of the uninterruptible power supply 1 cuts off the electric circuit between the commercial power supply 8 and the load 9 and starts after a predetermined time. It is good to set up a timer circuit. As a result, power can be supplied from the emergency power generator 51 before the supply power of the standby power supply unit 4 becomes equal to or less than the predetermined value and the required power cannot be supplied to the load 9.
  • the DC power supply of the uninterruptible power supply 1 the DC power supply of the The case where a battery (storage battery) is used has been described, but the present invention is not limited to this, and another device may be used.
  • a battery storage battery
  • an electric double layer capacitor / capacitor is suitable as a DC power supply.
  • a configuration using a flywheel as a power supply may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 商用電源の健全時には、高速限流遮断部(3)は商用電源から直流リアクトルを介して負荷に対して電力を供給し、予備電源部(4)は負荷(9)に対して供給する有効電力及び無効電力が共に零となるようにPQ制御を行う。また、PQ制御の応答性を、事故検出部(2)における商用電源の事故検出周期よりも長く設定して、事故検出部(2)で事故が検出されるまでの間に、負荷(9)及び事故点に対して予備電源部(4)から無瞬断で電力を供給させる。さらに、直流リアクトル(14)のインピーダンスを(100Z)/A以上に設定して、事故時に負荷(9)の電圧が許容電圧低下率よりも下がらないようにする。事故検出部(2)が電源事故を検出すると、予備電源部(4)でのPQ制御の停止と、高速スイッチ(13a),(13b)の遮断を行う。

Description

明 細 書
無停電電源装置、及び停電補償システム
技術分野
[0001] 本発明は、商用電源において瞬時電圧低下や停電などの事故が発生したときに、 無瞬断で負荷に給電する無停電電源装置及び停電補償システムに関する。
背景技術
[0002] ネットワークサーバや半導体製造装置などの装置やシステムでは、停電や瞬時電 圧低下 (以下、瞬低と称する。)により重大なダメージを受けるため、電源事故発生時 の予備電源として無停電電源装置(UPS :uninterrupt¾le power supply)が使用され ることが多くなつている。一般的な無停電電源装置は、ノ ッテリ(蓄電池)を備えており 、電源健全時 (平常時)にはノ ッテリの充電を行い、電源トラブル発生時にはこのバッ テリから装置やシステムに対して電力を供給して、装置やシステムの停止や誤動作を 防止して正常に機能させる。
[0003] 無停電電源装置の給電方式には、常時インバータ方式 (例えば、特許文献 1参照。
)や常時商用給電方式などがある。
[0004] 常時インバータ方式の無停電電源装置は、入力電源にかかわらず常に出力電圧 が一定であり、周波数の乱れが発生しない。また、電源トラブル時には、ノ ックアップ 電源に無瞬断で切り替えて電力を供給できる。しかしながら、この方式の無停電電源 装置は、インバータ回路及びコンバータ回路を利用して平常時にも商用電源力もの 電力を 2回変換するので、変換ロスが発生して効率が 85%程度となり無停電電源装 置自体の消費電力が多くなるという問題があった。また、使用する回路が複雑になる ので、高価となるという問題があった。
[0005] 一方、常時商用給電方式の無停電電源装置は、平常時には入力交流電源をその まま負荷へ出力し、電源トラブル時には出力を蓄電池に切り替えて電力を供給する ので、無停電電源装置自体の消費電力が少なくバッテリ寿命も比較的長い。また、 使用する回路が少なく構造も簡単なため安価である。従来の常時商用給電方式の 無停電電源装置は、図 8に示したような構成である。図 8は、従来の常時商用給電方 式の無停電電源装置に商用電源と負荷を接続した構成図である。
[0006] 無停電電源装置 101は、入力端子 106が商用電源 108に接続され、出力端子 10 7が負荷 109に接続されている。無停電電源装置 101は計測用変圧器 111、制御部 112、半導体スィッチ 113、バッテリ 115、バッテリ出力測定部 116、充電器とインバ ータから成る変換部 117、フィルタ回路 118、変圧器 119、及び遮断器 121を備えて いる。
[0007] 計測用変圧器 111は、商用電源 108から供給される電圧値を検出するために、所 用電源の電圧値を所定の電圧に降圧して制御部 112へ出力する。
[0008] 制御部 112は、バッテリ出力測定部 116の電圧値が所定値未満であると、変換部 1 17の充電器にバッテリ 115を充電させる。また、制御部 112は、計測用変圧器 111 から出力される電圧値が所定の値以下になると、半導体スィッチ 113 (サイリスタ 113 a, 113b)を遮断し、変換部 117のインバータを動作させて、ノ ッテリ 115から負荷 10 9に対して電力を供給させる。
[0009] 半導体スィッチ 113は、サイリスタ 113a及びサイリスタ 113bを備え、商用電源 108 において短絡事故などの電源トラブルが発生した際に、負荷を商用電源 108から切 り離すスィッチである。
[0010] バッテリ 115は、電源事故が発生して半導体スィッチ 113が遮断された際に、負荷
109へ電力を供給する。
[0011] バッテリ出力測定部 116は、バッテリ 115の電圧 ·電流を測定して、その結果を制御 部 112へ出力する。
[0012] 変換部 117の充電器は、交流電力を直流電力に変換してバッテリ 115を充電する コンバータである。また、変換部 117のインバータは、直流電力を交流電力に変換し て出力する。
[0013] フィルタ回路 118は、リアタトル 118Lとコンデンサ 118Cを備え、インバータ内部で パワーデバイスがスイッチングするときに発生するノイズを吸収するために、インバー タの負荷側に接続した高周波フィルタである。
[0014] 変圧器 119は、商用電源 108から供給される電圧を所定の電圧に変換する。また、 半導体スィッチ 113の遮断時には、変換部 117のインバータから出力された電圧の 値を商用電源 108の電圧値に変換する。
[0015] 遮断器 121は、無停電電源装置 101のメンテナンスなどの際に、負荷 109に対して 商用電源 108から直接電力を供給するためのものである。
[0016] 次に、無停電電源装置 101の動作を説明する。制御部 112は、平常時には半導体 スィッチ 113をオンにし、また、制御部 112は変換部 117のインバータを停止させて ノ ッテリ 115からの電力供給を停止させている。これにより、商用電源 108から負荷 1 09に対して電力が供給される。また、このとき、制御部 112は、バッテリ出力測定部 1 16が測定したバッテリ 115の電圧値が所定値未満であると、変換部 117の充電器を 動作させてバッテリ 115を充電し、バッテリ出力測定部 116が測定したバッテリ 115の 電圧値が所定値以上になると、変換部 117の充電器を停止させる。
[0017] 商用電源 108において事故が発生して供給電圧が低下すると、制御部 112は、こ の出力電圧の低下を計測用変圧器 111により高速(1Z4サイクル以下)に検出し、 直ちに半導体スィッチ 113を開放するとともに、インバータ 117bを動作させて、バッ テリ 115から負荷 109へ電力を供給させる。ユーザは、ノ ッテリ 115が消耗するまで の間に負荷を正常に停止させることで、トラブルを防止できる。
[0018] 商用電源 108が健全な状態に戻り供給電圧が正常値になると、制御部 112は、こ の出力電圧の変化を計測用変圧器 111により高速(1Z4サイクル以下)に検出し、 直ちに半導体スィッチ 113を閉じるとともに、変換部 117のインバータを停止させ、変 換部 117の充電器を動作させてバッテリ 115を充電させる。
特許文献 1:特開平 5— 64378号公報
発明の開示
発明が解決しょうとする課題
[0019] 従来の常時商用給電方式の無停電電源装置は、前記のように、商用電源 108から の電圧低下を検出した後に半導体スィッチ 113を開放して、バッテリ 115から負荷 10 9に対して電力を供給していたため、電源異常時の切り替えに半サイクル (8〜: LOms ec)程度の時間がかかり、瞬断がこの間発生する。そのため、 2msec程度の短時間 の電圧低下でも影響を受ける半導体製造装置のような負荷の場合、常時商用給電 方式の無停電電源装置を用いることができず、従来は、高価で効率があまり良くない 常時インバータ方式の無停電電源装置を予備電源として使用していた。
[0020] そこで、本発明は、予備電源に無瞬断で切り替えて電力を供給できる常時商用給 電方式の無停電電源装置及び停電補償システムを提供することを目的とする。 課題を解決するための手段
[0021] この発明は、上記の課題を解決するための手段として、以下の構成を備えている。
[0022] (1)商用電源の事故を検出する事故検出手段と、
前記商用電源の健全時には負荷に対して前記商用電源から電力を供給し、前記 事故検出手段が前記商用電源における事故を検出すると、前記商用電源から負荷 に対して電力を供給する電路を遮断する高速限流遮断手段と、
事故の発生直後から負荷に対して所定の電力を供給し、前記事故検出手段が事 故を検出して前記限流遮断手段が前記電路を遮断すると、前記負荷に対して必要 な電力を供給する予備電源手段と、を備えたことを特徴とする。
[0023] この構成においては、通常は商用電源力 負荷へ電力が供給され、商用電源に事 故が発生するとその直後から負荷に対して予備電源手段力 電力が供給される。し たがって、従来の常時商用給電方式の無停電電源装置と異なり、商用電源の事故 発生時には予備電源力 無瞬断で電力を供給することができる。
[0024] (2)商用電源における瞬時電圧低下事故及び停電事故を所定の周期で検出する 事故検出手段と、
前記商用電源から電力を供給する電路を開閉する高速スィッチを含む単相整流ブ リッジ回路と、前記単相整流ブリッジ回路の 2つの直流端子間に接続される直流リア タトルと、を備え、前記商用電源の健全時には、負荷に対して前記商用電源から前 記直流リアタトルを介して電力を供給し、前記事故検出手段が前記商用電源におけ る事故を検出すると、前記負荷に対して前記商用電源から電力を供給する電路を前 記高速スィッチで遮断する高速限流遮断手段と、
交流リアタトルを含むフィルタ回路と、インバータと、直流電源と、が直列に接続され た構成であり、前記商用電源の健全時には、前記負荷に対して供給する有効電力 及び無効電力を共に零にする PQ制御を行!、、前記事故検出手段が前記商用電源 の事故を検出したときには、前記 PQ制御を停止して前記負荷に対して必要な電力 を供給する予備電源手段と、を有し、
前記 PQ制御の応答性が、前記事故検出手段における商用電源の事故確認周期 よりも長く設定されたことを特徴とする。
[0025] この構成においては、商用電源の健全時には、無停電電源装置力 負荷に対して 電力を供給せずに商用電源力 のみ電力供給するために、高速限流遮断手段は商 用電源から直流リアタトルを介して負荷に対して電力を供給しており、予備電源手段 では負荷に対して供給する有効電力及び無効電力が共に零となるように PQ制御が 行われている。また、定常状態において直流リアタトルのインピーダンスは見かけ上 0 となるので、商用電源の健全時には直流リアタトルは商用電源に対して悪影響を及 ぼさず、商用電源力 負荷へ安定して電力が供給される。したがって、商用電源の健 全時には、予備電源手段力 負荷に対して電力が供給されないので、無停電電源 装置は効率良く商用電源のみ力 負荷に対して電力を供給することができる。
[0026] また、この構成においては、事故検出手段は事故検出を所定の周期で行っている 1S 事故発生力 事故検出までの間に無瞬断で電力を供給するために、 PQ制御の 応答性を事故検出手段における商用電源の事故検出周期よりも長く設定している。 したがって、商用電源において瞬時電圧低下事故や停電事故が発生しても、 PQ制 御の応答がすぐに追!、つかな!/、ため、弓 Iき続き事故発生前と同様の系統条件で PQ 制御が行われる。このとき、系統側で事故が発生している一方で、 PQ制御は事故発 生前の系統条件で行われるために、 PQ制御は正しく行われないことになる。つまり、 負荷電流が流れないように正しく PQ制御が行われず、予備電源手段から系統に対 して電流が流れてしまう。本発明では、このときの電流を利用して、直流リアタトルと交 流リアタトルとの分圧作用により、負荷に対して電力供給を継続させる。そして、次の 事故検出タイミングで PQ制御が停止する。この停止後は、予備電源手段から電力供 給が行われる。以上のように、事故発生タイミングから事故検出タイミングまでの期間 において、負荷及び事故点に対して予備電源手段力 無瞬断で電力が供給される。
[0027] さらに、この構成においては、事故検出手段が商用電源における瞬低や停電など の事故を検出すると、予備電源手段では PQ制御が停止されるとともに、高速限流遮 断手段の高速スィッチで電路が遮断されて商用電源が切り離される。したがって、高 速限流遮断手段が電路を遮断後には、負荷に対して電圧が低下することなく予備電 源手段から必要な電力を供給できる。
[0028] (3)前記負荷に対する許容電圧低下率を A%、前記交流リアタトルのインピーダン スを Zとしたとき、前記直流リアタトルのインピーダンスが(ΙΟΟΖ) ΖΑ以上に設定され たことを特徴とする。
[0029] この構成においては、商用電源において地絡事故や短絡事故が発生した場合でも 、予備電源手段の電圧は直流リアタトルと交流リアタトルによって分圧されて、負荷の 電圧が許容電圧低下率よりも下がることがな!ヽ。
[0030] (4)前記予備電源手段の電圧と、前記商用電源の電圧と、をほぼ同相、同振幅に 制御する制御手段を備えたことを特徴とする。
[0031] この構成においては、商用電源の電圧と予備電源手段の電圧とは、位相及び振幅 がほぼ同じ値になるように制御されているので、商用電源において事故が発生した 際に、予備電源手段力 負荷に対して位相及び振幅のずれのない電力を直ちに供 給できる。なお、 PQ制御では、負荷電流を零にする制御を行ってはいるが、インバ ータは常時駆動している。このため、系統の位相とインバータの位相とを予め合わせ ておくことにより、上記の事故発生直後における予備電源手段から電力供給は、位 相が連続したものとなる。
[0032] (5)前記高速スィッチは一対のサイリスタであり、前記単相整流ブリッジ回路は 2つ の交流端子のうち少なくともいずれか一方に前記一対のサイリスタが接続され、前記 整流回路の 2つの交流端子が前記商用電源と負荷とに接続されたことを特徴とする。
[0033] この構成においては、整流回路の高速スィッチとして一対のサイリスタを使用してい るので、商用電源において事故が発生してから 10msec程度の時間で、商用電源か ら電力を供給する電路を遮断することができる。また、電源事故時に商用電源と負荷 の間の電路をサイリスタで遮断した際には、直流リアタトルにおいて発生する誘導起 電力を半導体整流素子で短絡することができる。
[0034] (6)商用電源の事故を検出する事故検出手段と、前記商用電源の健全時には負 荷に対して前記商用電源から電力を供給し、前記事故検出手段が前記商用電源に おける事故を検出すると、前記商用電源から負荷に対して電力を供給する電路を遮 断する高速限流遮断手段と、事故の発生直後から負荷に対して所定の電力を供給 し、前記事故検出手段が事故を検出して前記限流遮断手段が前記電路を遮断する と、前記負荷に対して必要な電力を供給する予備電源手段と、を備えた無停電電源 装置と、
前記高速限流遮断手段が電路を遮断して所定時間が経過すると始動する非常用 発電機と、
前記負荷と前記商用電源及び前記非常用発電機との接続を切り換えるスィッチと、 を備えたことを特徴とする。
[0035] また、商用電源における瞬時電圧低下事故及び停電事故を所定の周期で検出す る事故検出手段と、
前記商用電源から電力を供給する電路を開閉する高速スィッチを含む単相整流ブ リッジ回路と、前記単相整流ブリッジ回路の 2つの直流端子間に接続される直流リア タトルと、を備え、前記商用電源の健全時には、負荷に対して前記商用電源から前 記直流リアタトルを介して電力を供給し、前記事故検出手段が前記商用電源におけ る事故を検出すると、前記負荷に対して前記商用電源から電力を供給する電路を前 記高速スィッチで遮断する高速限流遮断手段と、
交流リアタトルを含むフィルタ回路と、インバータと、直流電源と、が直列に接続され た構成であり、前記商用電源の健全時には、前記負荷に対して供給する有効電力 及び無効電力を共に零にする PQ制御を行!、、前記事故検出手段が前記商用電源 の事故を検出したときには、前記 PQ制御を停止して前記負荷に対して必要な電力 を供給する予備電源手段と、を有し、
前記 PQ制御の応答性が、前記事故検出手段における商用電源の事故確認周期 よりも長く設定された無停電電源装置と、
前記高速限流遮断手段が電路を遮断して所定時間が経過すると始動する非常用 発電機と、
前記負荷と前記商用電源及び前記非常用発電機との接続を切り換えるスィッチと、 を備えたことを特徴とする。
[0036] 商用電源において事故が発生した場合、しばらくの間は予備電源手段力も負荷に 対して必要な電力を供給することができるが、ある程度時間が経過すると、予備電源 手段の直流電源の電圧が低下するため、負荷に対して必要な電力を供給できなくな る。上記の構成においては、直流電源の電圧が低下して予備電源手段から負荷に 対して十分な電力を供給できなくなる前に非常用発電機を始動させて、この非常用 発電機力 負荷に対して電力を供給するようにスィッチを切り換えることで、負荷に対 して引き続き安定して電力供給することができる。
発明の効果
[0037] 請求項 1に記載の無停電電源装置によると、通常は商用電源から負荷へ電力を供 給し、商用電源に事故が発生するとその時力 負荷に対して予備電源手段力 電力 が供給されるので、従来の常時商用給電方式の無停電電源装置と異なって、商用電 源の事故発生時には予備電源力ゝら無瞬断で電力を供給できる。
[0038] 請求項 2に記載の無停電電源装置によると、商用電源の健全時には、予備電源手 段から負荷に対して電力を供給せずに、商用電源のみから負荷に対して電力を供給 することができる。また、高速限流遮断手段が電路を遮断後には、負荷に対して電圧 が低下することなく予備電源手段力 必要な電力を供給できる。
[0039] 請求項 3に記載の無停電電源装置によると、商用電源において地絡事故や短絡事 故が発生した場合でも、予備電源手段の電圧は直流リアタトルと交流リアタトルによつ て分圧されて、負荷の電圧が許容電圧低下率よりも低下することなく電力を供給でき る。
[0040] 請求項 4に記載の無停電電源装置によると、商用電源の電圧と予備電源手段の電 圧とは、位相及び振幅がほぼ同じ値になるように制御されているので、商用電源にお いて事故が発生した際に、すぐに予備電源手段力も負荷に対して電力を供給できる
[0041] 請求項 5に記載の無停電電源装置によると、商用電源において事故が発生してか ら 10msec程度の時間で、商用電源力も電力を供給する電路を遮断することができる 。また、電源事故時に商用電源と負荷の間の電路をサイリスタで遮断した際には、リ ァクトルにおいて発生する誘導起電力を半導体整流素子で短絡することができる。
[0042] 請求項 6または 7に記載の停電補償システムによると、直流電源の電圧が低下して 予備電源手段力 負荷に対して十分な電力を供給できなくなる前に、非常用発電機 力 負荷に対して引き続き安定して電力供給することができる。
図面の簡単な説明
[0043] [図 1]本発明の実施形態に係る無停電電源装置の概略構成図である。
[図 2]交流電源周期に対する電流減衰時定数と等価インピーダンスとの関係を示す グラフである。
[図 3]無停電電源装置の制御部のブロック図である。
[図 4]無停電電源装置の動作を説明するための概略図である。
[図 5]無停電電源装置の等価回路及びベクトル図である。
[図 6]無停電電源装置の出力電圧波形及び制御タイミングチャートである。
[図 7]無停電電源装置に非常用発電機を接続した概略図である。
[図 8]従来の常時商用給電方式の無停電電源装置に商用電源と負荷を接続した構 成図である。
発明を実施するための最良の形態
[0044] 図 1は、本発明の実施形態に係る無停電電源装置の概略構成図である。本発明の 実施形態に係る無停電電源装置は、常時商用給電方式で負荷に対して電力を供給 するが、停電や瞬低の発生時には無瞬断で補償するように構成されている。
[0045] 無停電電源装置 1は、事故検出部 2、高速限流遮断部 3、予備電源部 4、及びバイ パス部 5を備え、入力端子 6が商用電源 8に接続され、出力端子 7が負荷 9に接続さ れている。事故検出部 2は、計測用変圧器 11及び制御部 12から成る。高速限流遮 断部 3は、単相整流ブリッジ回路であるブリッジ回路 13及び直流リアタトル 14から成 る。予備電源部 4は、直流電源であるバッテリ 15、バッテリ出力測定部 16、変換部 17 、フィルタ回路 18、変圧器 19、及び電源出力測定部 20から成る。ノ ィパス部 5は、 遮断器 21から成る。
[0046] 事故検出部 2は、商用電源 8において電源事故が発生して瞬低や停電が起こった ことを検出する。高速限流遮断部 3は、商用電源 8において電源事故が発生した際 に、商用電源 8と負荷 9との間の電路を遮断する。予備電源部 4は、商用電源 8にお いて電源事故が発生した際に、負荷 9に対して電力を供給する。バイパス部 5は、高 速限流遮断部 3と予備電源部 4とをバイパスして、商用電源 8と負荷 9とを直接接続す る。
[0047] 計測用変圧器 11は、商用電源 8の交流電圧を測定して、その結果を制御部 12へ 出力する。
[0048] 制御部 12は、計測用変圧器 11から出力された商用電源 8の電圧測定結果に基づ いて、ブリッジ回路 13の開閉動作や変換部 17の充電や出力動作を制御する。また、 制御部 12は、バッテリ出力測定部 16の測定結果に基づいて変換部 17の充電動作 を制御する。さらに、制御部 12は、電源出力測定部 20の測定結果に基づいて変換 部 17の出力電力を制御する。
[0049] なお、制御部 12は予備電源部 4から電力が供給されており、商用電源 8において 電源事故が発生しても、その影響を受けずに動作する。また、制御部 12は、計測用 変圧器 11、バッテリ出力測定部 16、及び電源出力測定部 20から出力された信号を 1Z4サイクル毎に検出している。
[0050] ブリッジ回路 13は、 2個の(一対の)サイリスタ 13a, 13bと、 2個の(一対の)ダイォー ド 13c, 13dと、力も成り、 2つの交流端子 13al, 13a2と、 2つの直流端子 13dl , 13 d2と、を備えている。交流端子 13alには、サイリスタ 13aのアノードとサイリスタ 13b の力ソードが接続され、交流端子 13a2には、ダイオード 13cの力ソードとダイオード 1 3dのアノードが接続されている。また、直流端子 13dlには、サイリスタ 13aの力ソード とダイオード 13dの力ソードが接続され、直流端子 13d2には、サイリスタ 13bのァノー ドとダイオード 13cのアノードが接続されている。さら〖こ、直流端子 13dlと直流端子 1 3d2との間には、直流リアタトル 14が接続されている。カロえて、交流端子 13alには、 商用電源 8を接続する入力端子 6が接続され、交流端子 13a2には、負荷 9を接続す る出力端子 7が接続されて ヽる。
[0051] なお、ブリッジ回路 13において、交流端子 13alを出力端子 7に接続し、交流端子 13a2を入力端子 6に接続するようにしても良!、。
[0052] 直流リアタトル 14は、商用電源 8において電源事故発生時に、予備電源部 4から商 用電源 8に対して流れる電流を制限する。
[0053] バッテリ 15は、商用電源 8において停電や瞬低が発生した際に、負荷 9へ供給する 電力(電気工ネルギ)を蓄積して 、る。
[0054] バッテリ出力測定部 16は、直流計測用変流器と直流計測用変圧器とを備え(図示 せず)、バッテリ 15の直流電圧及び直流電流を測定して、その結果を制御部 12へ出 力する。
[0055] 変換部 17は、充電部(コンバータ) 17a及びインバータ 17bを備えている(図示せず )。充電部 17aは、バッテリ 15を浮動充電するために、制御部 12から出力された制御 信号に基づいて交流電力を直流電力に変換する。また、インバータ 17bは、負荷 9に 対して電力を供給するために制御部 12から出力された制御信号に基づいてバッテリ 15に蓄積された直流電力を交流電力に変換する。
[0056] なお、バッテリ 15を充電器分離方式 (直流スィッチ方式)で充電するように構成して も良ぐこの場合には変換部 17をインバータ 17bのみの構成として、充電器を別に独 立して設ければ良い。
[0057] フィルタ回路 18は、リアタトル 18Lとコンデンサ 18Cを備え、インバータ内部でパヮ 一デバイスがスイッチングするときに発生するノイズを吸収する高周波フィルタである
[0058] 変圧器 19は、商用電源 8の電圧を所定の電圧に降圧し、また、インバータ 17bの出 力電圧を商用電源 8とほぼ同じ電圧に昇圧する。
[0059] 電源出力測定部 20は、交流計測用変流器 20aと交流計測用変圧器 20vとを備え、 インバータ電流及び負荷電圧を測定して、その結果を制御部 12へ出力する。
[0060] 遮断器 21は、無停電電源装置 1のメンテナンス時や故障時などに閉状態に切り替 えることで、無停電電源装置 1をバイノスして、商用電源 8から負荷 9に対して直接電 力を供給するためのものである。
[0061] ここで、無停電電源装置 1は、定常運転時には交流側力 見たインピーダンスがほ ぼ零となり、事故発生時にのみ大きなインピーダンスを呈するように、電流減衰時定 数と系統周波数周期との関係を以下のように設定している。図 2は、交流電源周期に 対する電流減衰時定数と等価インピーダンスとの関係を示すグラフである。前記のよ うに構成された無停電電源装置 1にお ヽて、リアタトル 14のリアクタンス成分及び抵 抗成分並びに一対のサイリスタ 13a, 13b及び一対のダイオード 13c, 13dから成る ブリッジ回路 13によって決定される電流減衰時定数と、系統側力 見た等価インピー ダンスとは、図 2に示すように、電流減衰時定数が大きくなるほど等価インピーダンス 力 、さくなるという関係を有している。一方、定常動作時の回路インピーダンスは極力 小さいことが望ましい。そこで、一般的には、系統短絡事故時の自己電流を定格電 流の 3倍程度に抑制するように直流リアクタンスが選定される。つまり、定格電流べ一 スの 33%のインピーダンスをブリッジ回路 13に持たせることになる。一方、上記のよう に通常の運転状態では等価インピーダンスを極力小さくすることが好ましぐ実用上 は定格電流ベースで 3%、すなわち図 2に示す等価インピーダンスが直流リアタトル L の示す交流インピーダンスの 0. 09pu ( = 3%/33%)以下でその要求を満たすこと ができる。したがって、無停電電源装置 1の電流減衰時定数を図 2に基づいて系統 周波数周期の 2. 5倍以上に設定している。
[0062] 次に、制御部 12の詳細な構成について説明する。図 3は、無停電電源装置の制御 部のブロック図である。制御部 12は、電圧判定部 31、サイリスタ制御部 32、同期信 号生成部 33、自走運転用位相信号作成部 34、切り替えスィッチ 35、 PQ演算部 36 、 PQ制御部 37、切り替えスィッチ 38、バッテリ状態判定部 39、出力電圧基準正弦波 作成部 40、及びインバータ出力制御部 41を備えている。
[0063] 電圧判定部 31は、計測用変圧器 11から出力された商用電源 8の交流電圧値に応 じた信号と、所定の設定値と、に基づいて、商用電源 8の電圧が所定の設定電圧値 よりも低下した力、所定の設定電圧値のままである力 または所定の設定電圧値に復 電したかを判定する。そして、この判定結果に応じた信号をサイリスタ制御部 32へ出 力する。また、商用電源 8において瞬低や停電が起こった場合、電圧判定部 31は電 圧バッテリ状態判定部 39に対してその旨を伝える信号を出力する。
[0064] サイリスタ制御部 32は、電圧判定部 31から出力された信号に基づいて、サイリスタ 点弧信号をブリッジ回路 13のサイリスタ 13a, 13bへ出力して、これらのサイリスタの 開閉 (点弧、消弧)を制御する。
[0065] 同期信号生成部 33は、予備電源部 4の出力電圧を、商用電源 8の出力電圧に同 期させるための信号を生成して、スィッチ 35を介して出力電圧基準正弦波作成部 40 へこの信号を出力する。なお、同期信号生成部 33は、この信号を自走運転用位相 信号作成部 34にも出力する。
[0066] 自走運転用位相信号作成部 34は、無停電電源装置 1が商用電源 8と負荷 9との間 の電路を遮断して自走運転する際に、出力する電圧の位相信号を作成するためのも のである。なお、自走運転用位相信号作成部 34は、商用電源 8の健全時に、同期信 号生成部 33から出力された信号に基づいて、商用電源 8の出力電圧と位相を合わ せる制御を行っている。
[0067] 切り替えスィッチ 35は、電圧判定部 31から出力されたスィッチコントロール信号に 応じて切り替えられる。すなわち、商用電源 8が健全状態または商用電源 8の交流電 圧が復電した場合には、同期信号生成部 33から出力電圧基準正弦波作成部 40へ 信号が出力されるようにスィッチ 35が切り替えられる。一方、商用電源 8の交流電圧 が所定の設定電圧よりも低い場合には、自走運転用位相信号作成部 34から出力電 圧基準正弦波作成部 40へ信号が出力されるようにスィッチ 35が切り替えられる。
[0068] PQ演算部 36は、電源出力測定部 20で測定されたインバータ電流及び負荷電圧 に基づいて、予備電源部 4から供給する有効電力及び無効電力が零になるように演 算を行う。
[0069] PQ制御部 37は、 PQ演算部 36の演算結果に基づいて、インバータ 17bから出力 する交流電圧 (正弦波)の位相情報及び振幅情報を作成し、切り替えスィッチ 38を 介してこれらの情報を出力電圧基準正弦波作成部 40へ出力する。
[0070] 切り替えスィッチ 38は、電圧判定部 31から出力されたスィッチコントロール信号に 応じて切り替えられる。すなわち、商用電源 8が健全状態または商用電源 8の交流電 圧が復電した場合には、 PQ制御部 37から出力電圧基準正弦波作成部 40へ信号が 出力されるようにスィッチ 38が切り替えられる。一方、商用電源 8の電圧が所定の設 定電圧よりも低い場合には、出力電圧基準正弦波作成部 40へ信号が出力されない ようにスィッチ 38が切り替えられる。なお、後述する動作説明では、切り替えスィッチ 35, 38をラッチ形のスィッチとして説明する。
[0071] バッテリ状態判定部 39は、バッテリ出力測定部 16から出力されたバッテリ 15の直 流電圧及び直流電流の測定結果に基づ 、て、バッテリ 15を充電する必要があるか、 または満充電であるかを判断する。そして、その判断結果に応じた位相情報を出力 電圧基準正弦波作成部 40が作成してインバータ出力制御部 41へ出力する。また、 バッテリ状態判定部 39は、商用電源 8において瞬低や停電が起こり、電圧判定部 31 力も信号が出力されると、位相信号の出力を停止して、バッテリ 15の充電を休止させ る。
[0072] 出力電圧基準正弦波作成部 40は、同期信号生成部 33と、 PQ制御部 37と、バッテ リ状態判定部 39と、力も出力された信号、または自走運転用位相信号作成部 34から 出力された信号に基づいて、インバータ 17bから出力する正弦波電圧の位相及び振 幅の情報を作成し、この情報をインバータ出力制御部 41へ出力する。
[0073] インバータ出力制御部 41は、出力電圧基準正弦波作成部 40から出力された信号 に基づいて、変換部 17のインバータ 17bから出力される電力を制御する信号や、充 電器 17aにバッテリ 15を充電させるための制御信号を出力する。
[0074] 次に、無停電電源装置 1の動作について主に図 3、図 4に基づいて説明する。図 4 は、無停電電源装置の動作を説明するための概略図である。無停電電源装置 1は、 常時商用給電方式で負荷に対して電力を供給するが、停電や瞬低の発生時には無 瞬断で補償することができる。
[0075] (A)健全時 (商用給電時)
無停電電源装置 1は、商用電源 8の健全時、つまり商用電源 8において電源事故 が発生しておらず瞬低や停電が起こっていないときには、予備電源部 4から負荷に 対して電力を供給せずに、商用電源 8からのみ電力供給する。
[0076] 無停電電源装置 1では、図 4 (A)に示すように、高速限流遮断部 3のサイリスタ 13a とサイリスタ 13bが共に点弧されて閉状態に制御され、商用電源 8から高速限流遮断 部 3を介して負荷 9へ電力が供給される。
[0077] 高速限流遮断部 3において直流リアタトル 14には常に同じ方向に電流が流れるた め、直流リアタトル 14のインピーダンスは見かけ上零になり、交流端子 13al, 13a2 側から見たインピーダンスも零となって 、る。
[0078] 予備電源部 4は、商用電源 8の健全時には、負荷 9に対して電力が供給されないよ うに制御されている。すなわち、予備電源部 4において、負荷 9に対して供給する有 効電力 P及び無効電力 Qのいずれも零にする制御(以下、 PQ制御と称する。)が行 われている。また、予備電源部 4の変換部 17では、ノッテリ 15の浮動充電を行う直流 電圧制御と、商用電源 8とほぼ同相 ·同振幅の電圧を出力する出力電圧制御と、が 行われる。
[0079] 健全時における制御部 12の各部の動作について説明する。制御部 12では、計測 用変圧器 11から出力された信号を、前記のように 1Z4サイクル毎に検出している。 電圧判定部 31は、電圧が通常状態の場合には、同期信号生成部 33が出力した信 号が出力電圧基準正弦波作成部 34に出力されるように、切り替えスィッチ 35を切り 替える信号を出力する。また、電圧判定部 31は、 PQ制御部 37からの信号を出力さ れるように、切り替えスィッチ 38を切り替えるための信号を出力する。さらに、電圧判 定部 31は、ノ ッテリ状態判定部 39にバッテリ 15が満充電状態でない場合、バッテリ 15を充電させるために、バッテリ状態判定部 39へ信号を出力する。カロえて、電圧判 定部 31は、サイリスタ制御部 32に対してブリッジ回路 13のサイリスタ 13a, 13bをオン させる信号を出力する。サイリスタ制御部 32は、この信号を検出すると、サイリスタ点 弧信号を出力する。なお、商用電源 8の健全時においては、サイリスタ 13a, 13bは、 常に点弧状態 (オン状態)である。
[0080] (PQ制御)
制御部 12では、上記の PQ制御を行う際には、負荷 9に対して供給する有効電力 P 及び無効電力 Qのいずれも零にするために、予備電源部 4から負荷 9へ出力する電 流を零にする制御が行われる。図 5は、無停電電源装置の等価回路及びベクトル図 である。図 5 (A)において、商用電源 8の出力電圧を VI、予備電源部 4の電圧を V2 、負荷 9の電圧を VL、商用電源 8側のリアクタンスを xl、予備電源部 4のリアクタンス を x2とする。また、商用電源 8から予備電源部 4へ電流 IIが流れ、予備電源部 4から 負荷 9へ電流 12が流れ、商用電源 8から負荷 9へ電流 13が流れるものとする。また、 以下の説明では、 VZ Θ を電圧ベクトル Vと称し、 IZ Θを電流ベクトル Iと称する。
V I
[0081] 予備電源部 4の電圧ベクトル V2と、負荷電圧の電圧ベクトル VLと、が同じ場合、予 備電源部 4から負荷 9に対して電流は流れない。また、この場合、電流ベクトル IIと電 流ベクトル 12が、同じ大きさでそれぞれ向きが正反対であれば良い。これらの関係を 満たすようにした場合、各ベクトルの関係は図 5 (B)に示したようになる。なお、図に おいて、電圧ベクトル V (xl +x2)はリアクタンス xlの電圧ベクトル Vxlと、リアクタン ス x2の電圧べクトノレ Vx2と、を足したものである。
[0082] PQ演算部 36は、上記の関係を満たすために、電源出力測定部 20が測定したイン バータ電流と負荷電圧とに基づいて、有効電力 Pと無効電力 Qを演算する。続いて、 PQ制御部 37は、有効電力 P = 0にするために、インバータ 17bから出力する正弦波 電圧の位相を補正する所定の値 Δ Θを算出する。また、無効電力 Q = 0にするため に、インバータ 17bから出力する正弦波電圧の振幅を補正する所定の値 Δ Aを算出 する。そして、 PQ制御部 37は、算出した Δ Θ及び Δ Aの情報を出力電圧基準正弦 波作成部 34へ出力する。
[0083] 出力電圧基準正弦波作成部 34は、 PQ制御部 37などから出力された信号に基づ いて基準正弦波を作成する。 PQ制御部 37から出力された信号のみに基づいて正 弦波を作成した場合、インバータ 17bが出力する正弦波電圧は、
V2= (A+ ΔΑ) sin( w t+ Δ 0 ) ' . ' (式1)
となる。したがって、インバータ 17bの出力電圧 V2を上式のようにすることで、予備電 源部 4から負荷 4へ供給される電力を零にすることができる。
[0084] なお、予備電源部 4から出力する電圧 V2を補正する位相 Δ Θと有効電力 Pとの関 係、及び予備電源部 4から出力する電圧 V2を補正する振幅 Δ Aと無効電力 Qとの関 係は、無停電電源装置 1を接続する商用電源 8のインピーダンスや無停電電源装置 1のインピーダンスに基づいて演算することで、容易に求めることができる。
[0085] (充電制御)
また、制御部 12では、前記のようにバッテリ 15の充電制御を行っている。すなわち 、 ノ ッテリ状態判定部 39は、ノ ッテリ出力測定部 16から出力されたバッテリ 15の直 流電圧及び直流電流の測定結果に基づ 、て、バッテリ 15を充電する必要があるか、 または満充電であるかを判断する。ノ ッテリ 15に対して充電が必要な場合、バッテリ 状態判定部 39は、変換部 17の充電器 17aからバッテリ 15に対して電流が流れてバ ッテリ 15の充電が行われるように、位相情報を作成する。バッテリ状態判定部 39で作 成された位相信号の情報は、出力電圧基準正弦波作成部 40へ出力され、インバー タ 17bから出力する正弦波電圧の位相を補正するための情報として使用される。一 方、バッテリ 15が満充電の場合には、バッテリ状態判定部 39は位相信号を作成せず 、出力電圧基準正弦波作成部 40へ位相信号の情報は出力しない。
[0086] なお、充電器分離方式でバッテリ 15を充電する場合には、この制御は不要である。
[0087] (予備電源出力バランス制御)
さらに、制御部 12では、瞬低や停電が発生した際に、予備電源部 4から出力する 電圧波形の位相 *振幅のずれがない電圧を出力させるために、予備電源部 4の出力 電圧の位相'振幅を、商用電源 8の出力電圧の位相 '振幅と同期させる制御を行って いる。同期信号生成部 33は、計測用変圧器 11が出力した商用電源 8の交流電圧測 定結果に基づいて、商用電源 8の出力電圧における位相 ·振幅の情報を、切り替え スィッチ 35を介して出力電圧基準正弦波作成部 40へ出力する。出力電圧基準正弦 波作成部 40は、同期信号生成部 33から出力された情報に基づいて、インバータ 17 bから出力する正弦波電圧の位相を補正する。
[0088] このように、商用電源 8の健全時には、制御部 12で上記のような制御が行われ、出 力電圧基準正弦波作成部 40は、同期信号生成部 33と、 PQ制御部 37と、バッテリ状 態判定部 39と、力もの振幅や位相の補正情報に基づいて、インバータ 17bから出力 する正弦波電圧の位相及び振幅の情報を作成し、この情報をインバータ出力制御部 41へ出力する。また、変換部 17は、インバータ出力制御部 41から出力された信号に 基づいた動作を行う。
[0089] (B)事故発生時
無停電電源装置 1は、商用電源 8において電源事故が発生して瞬低や停電が起こ つた場合、予備電源部 4から無瞬断で電力を供給する。すなわち、図 4 (B)に示すよ うに、予備電源部 4では、すぐに電圧源として事故点に電流が供給される(出力電圧 制御)とともに、負荷 9に対してバッテリ 15に蓄えた電力が供給される。事故検出部 2 で瞬低や停電が検出されると、高速限流遮断部 3のサイリスタ 13a, 13bに遮断信号 が出力される。また、このとき、予備電源部 4では、 PQ制御が休止されて、ノ ッテリ 15 の充電が休止される。
[0090] 負荷電圧 VLは、直流リアタトル 14と交流リアタトル 18Lとの分圧により決まる電圧と なる。すなわち、ノ ッテリ電圧を Vs、直流リアタトル 14のインピーダンスを Zl、交流リ ァクトル 18Lのインピーダンスを Z2とした場合、負荷電圧 VLは、
VL = Z1/ (Z1 +Z2) XVs— (式 2)
となる。
[0091] (事故発生)
無停電電源装置 1では、商用電源における瞬時電圧低下や停電などの電源事故 を 1Z4サイクル毎に検出している。また、商用電源の健全時には予備電源部 4から 電力供給が行わないように PQ制御を行っている。一方、電源事故が発生すると、負 荷 9及び事故点に対して予備電源部 4から無瞬断で電力を供給するために、以下の ような制御を行っている。
[0092] 事故発生時における制御部 12の各部の動作について説明する。図 6は、無停電 電源装置の出力電圧波形及び制御タイミングチャートである。商用電源 8からは、図 6に示すような正弦波電圧が出力されている。制御部 12では、計測用変圧器 11から 出力された信号を、前記のように 1Z4サイクル毎に検出している。図 6に示すように、 電圧判定部 31は、瞬低または停電の発生(図 6に示す(1) )力も最長 1Z4サイクル( 50Hzの場合 5msec)後までに (tl期間内に)、瞬低または停電を検出する(図 6に示 す (2) )。
[0093] 無停電電源装置 1では、瞬低や停電が発生すると予備電源部 4から商用電源 8の 事故点及び負荷 9に対して、直ちに電力供給を開始して連続して電力を供給するよ うに、 PQ制御の応答性を、制御部 12が商用電源の電源事故を検出する周期よりも 長い時間である 10msec〜数 100msecに設定している。したがって、商用電源にお Vヽて瞬時電圧低下事故や停電事故が発生しても、 PQ制御の応答がすぐに追!ヽっ かないため、引き続き事故発生前と同様の系統条件で PQ制御が行われる。このとき 、系統側(商用電源 8側)で事故が発生している一方で、 PQ制御は事故発生前の系 統条件で行われるために、 PQ制御は正しく行われないことになる。つまり、負荷電流 が流れな 、ように正しく PQ制御が行われず、予備電源部 4から系統に対して電流が 流れてしまう。本発明では、このときの電流を利用して、直流リアタトル 14と交流リアク トル 18Lとの分圧作用により、負荷 9に対して電力供給を継続させる。
[0094] このように、予備電源部 4は、電源事故が発生してもしばらくの間は電源健全時と同 様の制御を行うので、負荷 9に対して供給する有効電力 P及び無効電力 Qを零にす る制御が行われずに、予備電源から電源供給商用電源 8の事故点及び負荷 9に対し て電力供給が直ちに開始される。
[0095] このとき、予備電源部 4からは商用電源 8の事故点と負荷 9に対して電流が流れる ため、負荷電圧 VLは、直流リアタトル 14と交流リアタトル 18Lとの分圧により決まる電 圧となる。そのため、負荷 9に対する許容電圧低下率を A%、交流リアタトル 18Lのィ ンピーダンスを Z2としたとき、直流リアタトル 14のインピーダンス Z1を(100Z2) /A 以上に設定することで、予備電源部 4から負荷 9へ出力する電圧を許容電圧低下率 よりも大きな値にすることができる。
[0096] 例えば、負荷 9に対する許容電圧低下率が 10%の場合、交流リアタトル 18Lのイン ピーダンス Z2と、直流リアタトル 14のインピーダンス Z1との比を、 Z1 :Z2= 10 : 1に 設定することで、予備電源部 4から負荷 9へ出力する電圧の低下率を 10%未満にす ることがでさる。
[0097] (事故検出)
無停電電源装置 1は、事故検出タイミングで PQ制御を停止する(図 6に示す (3) )。 また、この PQ制御の停止後には、予備電源部 4から電力供給が行われる。
[0098] 制御部 12の電圧判定部 31は、電源事故を検出すると、自走運転用位相信号作成 部 34の信号が出力電圧基準正弦波作成部 34に出力されるように、切り替えスィッチ 35を切り替える信号を出力する。
[0099] また、電圧判定部 31は、予備電源部 4の PQ制御を停止して、予備電源部 4から負 荷に対して電力を供給するために、切り替えスィッチ 38を切り替える信号を出力する 。これにより、 PQ制御部 37からの信号が出力電圧基準正弦波作成部 40へ出力が 停止される。
[0100] さらに、電圧判定部 31は、バッテリ状態判定部 39にバッテリ 15の充電を休止させる ように、バッテリ状態判定部 39へ信号を出力する。また、出力電圧基準正弦波作成 部 40は、自走運転用位相信号作成部 34から出力された信号 (位相情報)に基づい て正弦波電圧の波形を作成して、インバータ出力制御部 41へ信号を出力する。した がって、商用電源 8の事故点と負荷 9とに対して、予備電源部 4から引き続き電力が 供給される。
[0101] 電圧判定部 31は、瞬低または停電を検出した際には上記の動作以外に、サイリス タ制御部 32に対してブリッジ回路 13のサイリスタ 13a, 13bをオフ(消弧)させる信号 を出力する。サイリスタ制御部 32は、この信号を検出すると、サイリスタ点弧信号の出 力を停止させる。しかし、サイリスタ 13a, 13bは、負荷電流が零にならないとオフしな いため、サイリスタ制御部 32がサイリスタの点弧信号を出力するのを停止して力も数 msec後に消弧する(図 6に示す (4) )。したがって、図 6に示したように、瞬低や停電 が発生して力もサイリスタが消弧するまでの間(=tl +t2)に、最長 1Z2サイクル(50 Hzの場合 10msec)が必要となるが、事故発生タイミングから事故検出タイミングまで の期間において、負荷及び事故点に対して予備電源手段力 無瞬断で電力が供給 される。
[0102] なお、 PQ制御では、負荷電流を零にする制御を行っている力 インバータ 17bを常 時駆動している。このため、前記のように、系統(商用電源 8)の電圧位相とインバータ 17bの電圧位相とを予め合わせておくことにより、電源事故発生直後における予備電 源部 4からの出力電圧は、位相が連続したものとなる。
[0103] (C)補償時
高速限流遮断部 3のサイリスタ 13a, 13bが消弧されて商用電源 8と負荷 9との間の 電路が遮断されると、図 4 (C)に示すように、予備電源部 4からは 100%の電圧で負 荷 9に対してのみ電力が供給されて瞬低 ·停電が補償される。
[0104] 補償時における制御部 12の各部の動作について説明する。制御部 12では、事故 発生時と同様の制御が行われる。すなわち、制御部 12では、電圧判定部 31が、計 測用変圧器 11から出力された信号を、前記のように 1Z4サイクル毎に検出している 。電圧判定部 31は、商用電源 8で瞬低または停電が発生している間、瞬低または停 電を検出し、切り替えスィッチ 35, 38、バッテリ状態判定部 39、及びサイリスタ制御 部 32に対して信号を出力しない。そのため、切り替えスィッチ 35は自走運転用位相 信号作成部 34の信号が出力電圧基準正弦波作成部 34に出力されるように状態が 維持されており、切り替えスィッチ 38は、 PQ制御部 37からの信号が出力されないよ うに状態が維持されている。また、ノ ッテリ状態判定部 39は、引き続きバッテリ 15の 充電を休止させるので、信号を出力せず、サイリスタ制御部 32もサイリスタの点弧信 号を出力しない。したがって、出力電圧基準正弦波作成部 40は、自走運転用位相 信号作成部 34から出力された信号 (位相情報)に基づ!/ヽて正弦波電圧の波形を作 成して、インバータ出力制御部 41へ信号を出力し、負荷 9に対して引き続き予備電 源部 4からのみ電力が供給される。
[0105] (D)復電時
商用電源 8における電源事故が解消して復電した場合、無停電電源装置 1では、 図 4 (A)に基づいて説明したように、高速限流遮断部 3のサイリスタ 13aとサイリスタ 1 3bが共に点弧されて閉状態に制御され、商用電源 8から高速限流遮断部 3を介して 負荷 9へ電力が供給され、予備電源部 4からの電力供給は停止される。
[0106] ここで、商用電源において事故が発生した場合、しばらくの間は予備電源手段から 負荷に対して必要な電力を供給することができる。しかし、無停電電源装置 1のみか ら負荷 9に対して電力供給した状態が続き、ある程度時間が経過すると、予備電源手 段の直流電源の電圧が低下するので、負荷に対して必要な電力を供給できなくなる 。そこで、無停電電源装置 1のバックアップ用電源として、非常用発電機を負荷に接 続するシステム構成にすると良い。図 7は、無停電電源装置に非常用発電機を接続 した概略図である。図 7に示すように、負荷 9に対して、無停電電源装置 1を接続する とともに、この無停電電源装置 1の入力端子 6に電源系統切換スィッチ 52を設けて、 商用電源 8と非常用発電機 51との接続を切り換えることができるように構成する。
[0107] この停電補償システムは、以下のように動作する。まず、系統側で電源事故が発生 すると、無停電電源装置 1の予備電源部 4から負荷 9に対して、上記の説明のように 電力が供給される。また、非常用発電機 51は、系統側での事故発生後に予備電源 部 4から負荷 9に対して十分な電力が供給できなくなる前の所定のタイミングで始動さ れる。そして、制御部 12は、電源系統切換スィッチ 52に制御信号を出力して、非常 用発電機 51を始動して動作が安定した時点で、電源系統切換スィッチ 52を非常用 発電機 51側に切り換える。
[0108] 無停電電源装置 1の制御部 12は、計測用変圧器 11で非常用発電機 51の出力の 位相を監視しており、予備電源部 4の出力が非常用発電機 51の出力と同期するよう に変換部 17を制御する。制御部 12は、予備電源部 4の出力と非常用発電機 51の出 力が同期すると、高速限流遮断部 3のサイリスタ 13a及びサイリスタ 13bを点弧させて 、高速限流遮断部 3を介して非常用発電機 51から負荷 9に電力を供給させる。また、 このとき、制御部 12は、変換部 17の動作を切り換えて、予備電源部 4から負荷 9への 電力供給を停止し、バッテリ 15の充電を開始する。なお、非常用発電機 51から負荷 9に対して電力供給を行って 、る間は、予備電源部 4のバッテリ 15を充電するように 設定すると良い。
[0109] 商用電源 8における電源事故が解消して復電した場合には、制御部 12は、サイリス タ 13a及びサイリスタ 13bを消弧するとともに、変換部 17の動作を切り換えて、予備電 源部 4から負荷への電力を供給させる。なお、このとき、予備電源部 4の出力は非常 用発電機 51の出力と同期するように制御されている。続いて、制御部 12は、電源系 統切換スィッチ 52に制御信号を出力して、スィッチを商用電源 8側に切り換える。制 御部 12は、計測用変圧器 11で商用電源 8の出力の位相を監視しており、予備電源 部 4の出力が商用電源 8の出力と同期するように変換部 17を制御する。制御部 12は 、予備電源部 4の出力と商用電源 8の出力が同期すると、高速限流遮断部 3のサイリ スタ 13a及びサイリスタ 13bを点弧させて、高速限流遮断部 3を介して商用電源 8から 負荷 9に電力を供給させる。また、このとき、制御部 12は、変換部 17の動作を切り換 えて、予備電源部 4から負荷 9への電力供給を停止し、ノ ッテリ 15の充電を開始して 、健全時の状態となる。
[0110] このように、ノ ッテリ 15の電圧が低下して予備電源部 4から負荷 9に対して十分な電 力を供給できなくなる前に非常用発電機 51を始動させて電力を供給するので、負荷 9に対して引き続き安定して電力供給することができる。
[0111] また、非常用発電機 51には、無停電電源装置 1の高速限流遮断部 3が商用電源 8 と負荷 9との間の電路を遮断して力 所定時間後に始動するように、タイマ回路を設 けておくと良い。これにより、予備電源部 4の供給電力が所定値以下になって、負荷 9に対して必要な電力を供給できなくなる前に、非常用発電機 51から電力を供給す ることがでさる。
[0112] なお、以上の説明では、無停電電源装置 1において、予備電源部 4の直流電源と バッテリ(蓄電池)を用いた場合について説明したが、本発明は、これに限るものでは なぐ他のものを使用しても良い。例えば、電気二重層キャパシタゃコンデンサなどが 直流電源として好適である。また、フライホイールを電源として用いた構成であっても 良い。

Claims

請求の範囲
[1] 商用電源の事故を検出する事故検出手段と、
前記商用電源の健全時には負荷に対して前記商用電源から電力を供給し、前記 事故検出手段が前記商用電源における事故を検出すると、前記商用電源から負荷 に対して電力を供給する電路を遮断する高速限流遮断手段と、
事故の発生直後から負荷に対して所定の電力を供給し、前記事故検出手段が事 故を検出して前記限流遮断手段が前記電路を遮断すると、前記負荷に対して必要 な電力を供給する予備電源手段と、を備えたことを特徴とする無停電電源装置。
[2] 商用電源における瞬時電圧低下事故及び停電事故を所定の周期で検出する事故 検出手段と、
前記商用電源から電力を供給する電路を開閉する高速スィッチを含む単相整流ブ リッジ回路と、前記単相整流ブリッジ回路の 2つの直流端子間に接続される直流リア タトルと、を備え、前記商用電源の健全時には、負荷に対して前記商用電源から前 記直流リアタトルを介して電力を供給し、前記事故検出手段が前記商用電源におけ る事故を検出すると、前記負荷に対して前記商用電源から電力を供給する電路を前 記高速スィッチで遮断する高速限流遮断手段と、
交流リアタトルを含むフィルタ回路と、インバータと、直流電源と、が直列に接続され た構成であり、前記商用電源の健全時には、前記負荷に対して供給する有効電力 及び無効電力を共に零にする PQ制御を行!、、前記事故検出手段が前記商用電源 の事故を検出したときには、前記 PQ制御を停止して前記負荷に対して必要な電力 を供給する予備電源手段と、を有し、
前記 PQ制御の応答性が、前記事故検出手段における商用電源の事故確認周期 よりも長く設定されたことを特徴とする無停電電源装置。
[3] 前記負荷に対する許容電圧低下率を A%、前記交流リアタトルのインピーダンスを Zとしたとき、前記直流リアタトルのインピーダンスが(100Z) ZA以上に設定された請 求項 2に記載の無停電電源装置。
[4] 前記予備電源手段の電圧と、前記商用電源の電圧と、をほぼ同相、同振幅に制御 する制御手段を備えた請求項 2または 3に記載の無停電電源装置。
[5] 前記高速スィッチは一対のサイリスタであり、前記単相整流ブリッジ回路は 2つの交 流端子のうち少なくともいずれか一方に前記一対のサイリスタが接続され、前記整流 回路の 2つの交流端子が前記商用電源と負荷とに接続された請求項 2または 3に記 載の無停電電源装置。
[6] 商用電源の事故を検出する事故検出手段と、前記商用電源の健全時には負荷に 対して前記商用電源から電力を供給し、前記事故検出手段が前記商用電源におけ る事故を検出すると、前記商用電源から負荷に対して電力を供給する電路を遮断す る高速限流遮断手段と、事故の発生直後から負荷に対して所定の電力を供給し、前 記事故検出手段が事故を検出して前記限流遮断手段が前記電路を遮断すると、前 記負荷に対して必要な電力を供給する予備電源手段と、を備えた無停電電源装置と 前記高速限流遮断手段が電路を遮断して所定時間が経過すると始動する非常用 発電機と、
前記負荷と前記商用電源及び前記非常用発電機との接続を切り換えるスィッチと、 を備えたことを特徴とする停電補償システム。
[7] 商用電源における瞬時電圧低下事故及び停電事故を所定の周期で検出する事故 検出手段と、
前記商用電源から電力を供給する電路を開閉する高速スィッチを含む単相整流ブ リッジ回路と、前記単相整流ブリッジ回路の 2つの直流端子間に接続される直流リア タトルと、を備え、前記商用電源の健全時には、負荷に対して前記商用電源から前 記直流リアタトルを介して電力を供給し、前記事故検出手段が前記商用電源におけ る事故を検出すると、前記負荷に対して前記商用電源から電力を供給する電路を前 記高速スィッチで遮断する高速限流遮断手段と、
交流リアタトルを含むフィルタ回路と、インバータと、直流電源と、が直列に接続され た構成であり、前記商用電源の健全時には、前記負荷に対して供給する有効電力 及び無効電力を共に零にする PQ制御を行!、、前記事故検出手段が前記商用電源 の事故を検出したときには、前記 PQ制御を停止して前記負荷に対して必要な電力 を供給する予備電源手段と、を有し、 前記 PQ制御の応答性が、前記事故検出手段における商用電源の事故確認周期 よりも長く設定された無停電電源装置と、
前記高速限流遮断手段が電路を遮断して所定時間が経過すると始動する非常用 発電機と、
前記負荷と前記商用電源及び前記非常用発電機との接続を切り換えるスィッチと、 を備えたことを特徴とする停電補償システム。
PCT/JP2005/005833 2004-03-29 2005-03-29 無停電電源装置、及び停電補償システム WO2005093925A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004094934A JP3929449B2 (ja) 2004-03-29 2004-03-29 無停電電源装置、及び停電補償システム
JP2004-094934 2004-03-29

Publications (1)

Publication Number Publication Date
WO2005093925A1 true WO2005093925A1 (ja) 2005-10-06

Family

ID=35056517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005833 WO2005093925A1 (ja) 2004-03-29 2005-03-29 無停電電源装置、及び停電補償システム

Country Status (5)

Country Link
JP (1) JP3929449B2 (ja)
KR (1) KR100868372B1 (ja)
CN (1) CN100452612C (ja)
TW (1) TWI313953B (ja)
WO (1) WO2005093925A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694657A (zh) * 2012-05-10 2012-09-26 太仓市同维电子有限公司 带备电功能的家庭接入网关转换方法
US8791597B2 (en) 2010-03-12 2014-07-29 Liebert Corporation Uninterruptible power supply with a dual gain voltage regulator controlling an inverter output voltage based on active and reactive components of current

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818302B2 (ja) * 2004-07-23 2006-09-06 日新電機株式会社 無停電電源装置
EP2107676A4 (en) * 2007-01-12 2014-06-25 Meidensha Electric Mfg Co Ltd CONTROL DEVICE AND CONTROL METHOD FOR ENERGY CONVERSION SYSTEM WITH IMMEDIATE COMPENSATION FOR VOLTAGE LOSS AND OPERATION INTERRUPTION
CN102075008A (zh) * 2011-01-21 2011-05-25 大连理工大学 一种机电混合式电压瞬低补偿装置
CN103187789B (zh) * 2011-12-30 2015-09-02 比亚迪股份有限公司 快速不间断电源系统及其控制方法
JP6407775B2 (ja) * 2015-03-13 2018-10-17 株式会社東芝 蓄電装置
CN108370174B (zh) * 2015-12-01 2021-06-04 东芝三菱电机产业系统株式会社 不间断电源装置
KR101798915B1 (ko) * 2016-01-12 2017-11-17 정순희 무정전 전력 공급 시스템 및 방법
CN107346905B (zh) * 2016-05-06 2023-01-31 中兴通讯股份有限公司 供电方法及装置
JP7180112B2 (ja) * 2018-05-15 2022-11-30 日新電機株式会社 無停電電源装置
KR102276024B1 (ko) * 2019-10-30 2021-07-12 엘에스일렉트릭(주) 무순단 전원 공급 제어 장치 및 그 전원 공급 제어 장치가 적용된 ups 모듈
WO2022239225A1 (ja) * 2021-05-14 2022-11-17 東芝三菱電機産業システム株式会社 電源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336209Y2 (ja) * 1986-12-19 1991-07-31
JPH09163634A (ja) * 1995-11-30 1997-06-20 Honda Motor Co Ltd 非常用電源システム
JPH09285012A (ja) * 1996-04-12 1997-10-31 Nissin Electric Co Ltd 系統連系装置
JPH1118304A (ja) * 1997-06-25 1999-01-22 Toshiba Corp 連系インバータ
JP2004201413A (ja) * 2002-12-18 2004-07-15 Nissin Electric Co Ltd 電力貯蔵システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226077B2 (ja) * 1994-09-09 2001-11-05 東洋電機製造株式会社 多重化整流装置
JPH11215738A (ja) * 1998-01-26 1999-08-06 Hitachi Ltd 無停電電源装置
JPH11289668A (ja) * 1998-04-03 1999-10-19 Tokyo Gas Co Ltd 無効電力制御装置および無効電力制御方法
JPH11299103A (ja) * 1998-04-08 1999-10-29 Nissin Electric Co Ltd 系統連系装置
WO2000008735A1 (fr) * 1998-08-07 2000-02-17 Matsushita Electric Industrial Co., Ltd. Systeme d'alimentation electrique sans coupure
JP3817921B2 (ja) * 1998-09-01 2006-09-06 日新電機株式会社 系統連系装置
JP3725015B2 (ja) * 2000-09-22 2005-12-07 山洋電気株式会社 無停電電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336209Y2 (ja) * 1986-12-19 1991-07-31
JPH09163634A (ja) * 1995-11-30 1997-06-20 Honda Motor Co Ltd 非常用電源システム
JPH09285012A (ja) * 1996-04-12 1997-10-31 Nissin Electric Co Ltd 系統連系装置
JPH1118304A (ja) * 1997-06-25 1999-01-22 Toshiba Corp 連系インバータ
JP2004201413A (ja) * 2002-12-18 2004-07-15 Nissin Electric Co Ltd 電力貯蔵システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791597B2 (en) 2010-03-12 2014-07-29 Liebert Corporation Uninterruptible power supply with a dual gain voltage regulator controlling an inverter output voltage based on active and reactive components of current
CN102694657A (zh) * 2012-05-10 2012-09-26 太仓市同维电子有限公司 带备电功能的家庭接入网关转换方法

Also Published As

Publication number Publication date
JP2005287125A (ja) 2005-10-13
CN100452612C (zh) 2009-01-14
KR100868372B1 (ko) 2008-11-12
KR20060134995A (ko) 2006-12-28
TWI313953B (en) 2009-08-21
CN1934765A (zh) 2007-03-21
JP3929449B2 (ja) 2007-06-13
TW200605470A (en) 2006-02-01

Similar Documents

Publication Publication Date Title
WO2005093925A1 (ja) 無停電電源装置、及び停電補償システム
US10014718B2 (en) Uninterruptible power source
US10084341B2 (en) Uninterruptible power source
WO2011152249A1 (ja) 系統連系システム、及び分配器
KR101704472B1 (ko) 교류공통모선형 하이브리드 전원 시스템 및 그 제어방법
JP2011010412A (ja) 重要負荷の自立運転制御システム
TWI723454B (zh) 電源系統
JP2019083689A (ja) パワーコンディショナ、電力システム、パワーコンディショナの制御方法
RU2656372C1 (ru) Динамический компенсатор напряжений
RU2393611C1 (ru) Устройство динамического восстановления провалов напряжения
KR20100104006A (ko) 순간정전 보상장치
JP2006254659A (ja) 分散型電源装置
JPH08205423A (ja) 無停電電源装置
CN117937590A (zh) 用于微电网系统的控制装置,控制方法和微电网系统
KR20170078991A (ko) 무정전절체장치를 이용한 비상발전기 동기 제어 운영 시스템 및 방법
JP3839643B2 (ja) 無瞬断自立移行発電システム
JP3748394B2 (ja) 無停電電源装置
JP2002171671A (ja) 無瞬断自立移行発電システム
JP2002315231A (ja) 無停電電源装置
JP4276192B2 (ja) 瞬時電圧低下補償装置の放電方法
CN108347170B (zh) 一种直流电源调压装置、系统及方法
JP7542181B2 (ja) 移動体を用いた電力供給システム
JPH0783560B2 (ja) 無停電電源制御装置
JP2023121463A (ja) 双方向型電源システム
JP2013041674A (ja) 交流スイッチ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067019516

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580009308.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067019516

Country of ref document: KR

122 Ep: pct application non-entry in european phase