WO2005092608A1 - 表面被覆部材および切削工具 - Google Patents

表面被覆部材および切削工具 Download PDF

Info

Publication number
WO2005092608A1
WO2005092608A1 PCT/JP2005/005966 JP2005005966W WO2005092608A1 WO 2005092608 A1 WO2005092608 A1 WO 2005092608A1 JP 2005005966 W JP2005005966 W JP 2005005966W WO 2005092608 A1 WO2005092608 A1 WO 2005092608A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
titanium carbonitride
titanium
substrate
coating layer
Prior art date
Application number
PCT/JP2005/005966
Other languages
English (en)
French (fr)
Inventor
Takahito Tanibuchi
Hiroki Ishii
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to EP05727661A priority Critical patent/EP1736307A4/en
Priority to US10/599,547 priority patent/US20080160338A1/en
Priority to JP2006511585A priority patent/JP4805819B2/ja
Publication of WO2005092608A1 publication Critical patent/WO2005092608A1/ja
Priority to US12/608,571 priority patent/US20100098911A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Definitions

  • the present invention relates to a surface-coated member having a coating layer having excellent fracture resistance and also having excellent wear resistance formed on a surface thereof, and a cutting provided with the surface-coated member.
  • the present invention relates to a cutting tool that has excellent cutting characteristics even when cutting in which a large impact is applied to the cutting edge.
  • a covering layer is formed on the surface of a substrate
  • a titanium carbide (TiC) layer, a titanium nitride (TiN) layer, a titanium carbonitride (TiCN) layer, and an oxide film are formed on the surface of a hard substrate such as a cemented carbide, cermet, or ceramic.
  • a cutting tool with a single or multiple layers of a coating layer such as an aluminum (Al 2 O 3) layer
  • Patent Document 1 discloses that a titanium carbonitride layer having a vertically grown crystal is divided by a granular titanium nitride layer to suppress delamination. It is disclosed that the fracture resistance of the tool can be improved.
  • Patent Document 2 discloses that the surface of an Al 2 O-based ceramic substrate is formed on a surface of an Al 2 O 3 based ceramic substrate by CVD.
  • Patent Document 3 discloses that a coating layer made of (Cr—Si—B) N is formed on the surface of a substrate having tool steel strength by an ion plating method, and the coating layer has a high scratch strength of 100N. It can be applied to moving parts, cutting tools, dies, etc. It is shown.
  • Patent Document 1 JP-A-8-1408
  • Patent Document 2 JP-A-5-169302
  • Patent Document 3 JP-A-2002-212707
  • the adhesion of the coating layer of Patent Document 2 to the substrate is insufficient due to the adhesive force of the coating layer. Therefore, if the coating layer is used under cutting conditions that cause a strong impact, the coating layer may be peeled off early. Wear progressed rapidly. Further, when a single-layer coating layer having a high adhesive force as disclosed in Patent Document 3 is applied to various uses, when it is actually used, it is likely to be suddenly subjected to a large impact and to be damaged. In addition, it is necessary to take into account the problem of oxidation of the surface of the coating layer, the compatibility with the material of the contact object with which the member comes into contact, and the like.
  • a main object of the present invention is to provide a surface covering member having excellent toughness and high fracture resistance, which is particularly suitable for cutting metal such as steel.
  • Another object of the present invention is to apply the invention to a long-life cutting tool having excellent fracture resistance even under severe cutting conditions in which a strong impact is applied to a tool cutting edge such as interrupted cutting of iron.
  • An object of the present invention is to provide a possible surface covering member.
  • Still another object of the present invention is to have excellent fracture resistance and also excellent wear resistance. To provide a cutting tool having a long life.
  • One aspect of the present invention is to provide at least two coating layers (a lower layer and an upper layer) on the surface of a substrate and to optimize adhesion between the coating layers and between the coating layer and the substrate. By doing so, it is possible to provide a surface coating member having improved toughness and fracture resistance without impairing the hardness required for practical use, based on new findings.
  • the coating layer slightly peels or cracks occur. By doing so, the impact can be absorbed and the hard coating layer can be prevented from peeling over a wide area, and the entire coating layer can be prevented from chipping, chipping, or peeling.
  • a surface covering member that works on one side of the present invention includes a substrate, at least one lower layer formed on the surface of the substrate, and at least one upper layer formed on the surface of the lower layer. Including.
  • the ratio (F / ⁇ ) is 1.1 to 30.
  • the peeling load F is 10 to 75 N, and the peeling load F is 80 N or more.
  • the roughness R of the interface between the upper layer and the lower layer which is obtained from the uneven shape according to a calculation method of arithmetic average roughness (Ra), is 0.5 to 3. It is desirable because the lower layer can be easily pulled out by controlling the pulling force of the lower layer.
  • the upper layer has a thickness of 2.0 to: LO.0 / zm and the lower layer has a thickness of 3.0 to 12.0 / zm. It is desirable because the peeling load can be controlled and the fracture resistance can be increased. Further, by controlling the film thickness to the above-mentioned thickness, the abrasion resistance is enhanced.
  • the upper layer includes at least one aluminum oxide layer and the lower layer includes at least one titanium carbonitride layer has high practical wear resistance. Desirable for imparting wear resistance and fracture resistance.
  • the titanium carbonitride layer also has a streak-like titanium carbonitride crystal force grown in a direction perpendicular to the surface of the base, and the titanium nitride carbonitride crystal has It is desirable that the average crystal width on the memory layer side be larger than the average crystal width on the substrate side. In particular, the average crystal width w on the substrate side is 0.05 to 0.
  • Zw is 0.7 or less, because the adhesion between the aluminum oxide layer and the titanium carbonitride layer,
  • the titanium carbonitride layer comprises at least an upper layer of titanium carbonitride formed on the side of the aluminum oxide layer and a lower layer of titanium carbonitride formed on the side of the base, and the average of the upper layers of titanium carbonitride It is preferable that the crystal width is larger than the average crystal width of the titanium carbonitride lower layer, since the extension of cracks generated on the aluminum oxide layer side can be effectively stopped and the fracture resistance is further enhanced.
  • the thickness t of the titanium carbonitride lower layer is 1.0 to 1.0 Om and the thickness of the titanium carbonitride upper layer is from the viewpoint of optimizing the wear resistance and fracture resistance of the member.
  • the film thickness t should be 1.0 to 5.O / zm and satisfy the relationship of l ⁇ t / ⁇ ⁇ 5.
  • the titanium carbonitride particles having the needle-like titanium carbonitride lower layer have a collective force, and the needle-like titanium carbonitride particles have the above-mentioned shape. It is preferable that each of them extends in a random direction on the surface of the titanium carbonitride lower layer. This increases the so-called crack deflecting effect in which the cracks do not extend straight but extend in a zigzag manner, so that the cracks can be prevented from being stretched at once, and the fracture resistance is improved.
  • the needle-shaped titanium carbonitride particles when observed from the surface direction of the titanium carbonitride lower layer, have an average aspect ratio of 2 or more. It is desirable to improve the fracture toughness of the coating layer and to improve the fracture resistance, which is highly effective in deflecting cracks and suppressing crack extension!
  • the acicular titanium carbonitride particles may be in a surface direction of the titanium carbonitride lower layer. It is desirable that the average major axis length of the titanium carbonitride particles when observed from above is 1 m or less, since the strength of the titanium carbonitride layer itself can be increased and the wear resistance of the titanium carbonitride layer can be improved.
  • the surface covering member of the present invention is formed on the surface of the base among the surface layer formed on the outermost surface of the upper layer, the intermediate layer formed on the lowermost surface of the upper layer, and the lower layer. It is preferable that at least one of the base layers has at least one coating layer selected from the group consisting of TiN layer, TiC layer, TiCNO layer, TiCO layer and TiNO layer.
  • the other Ti-based coating layer By forming the other Ti-based coating layer as an underlayer under the titanium carbonitride, the effect of suppressing the diffusion of the base component and the crystal structure of the titanium carbonitride layer can be easily controlled. Further, by forming the above-mentioned other T coating layer as an intermediate layer between the titanium carbonitride layer and the aluminum oxide layer, the adhesion between the titanium carbonitride layer and the aluminum oxide layer can be adjusted. Becomes easier. Furthermore, the crystal structure of the aluminum oxide layer can be optimized, and the peeling load of the aluminum oxide layer can be easily controlled. Furthermore, by forming the above-mentioned other Ti-based coating layer as a surface layer on the surface of the aluminum oxide layer, it is possible to adjust the slidability, appearance, etc. of the surface of the coated layer.
  • At least one of the titanium carbonitride layer and the aluminum oxynitride layer is composed of two or more layers, and a TiN layer, a TiC layer, a TiCNO layer, a TiCO layer, and a TiNO layer are provided between the two or more layers.
  • a coating layer selected from the following group hereinafter, referred to as another Ti-based interlayer coating layer. This has the effect of further increasing the toughness of the member. It is desirable that the aluminum oxide layer has an ⁇ - type crystal structure because it is structurally stable and can maintain excellent wear resistance even at high temperatures.
  • the cutting tool of the present invention cuts a workpiece by applying a cutting edge formed at an intersection ridge line between a rake face and a flank face to the object to be cut, and the cutting edge is formed by the surface coating described above. It consists of members.
  • a cutting tool of the present invention includes a substrate, a titanium carbonitride layer formed on the surface of the substrate, and an aluminum oxide layer formed on the surface of the titanium carbonitride layer, wherein the aluminum oxide layer is Surface force of titanium carbonitride layer
  • Another aspect of the present invention is to provide a surface coating member having a hard coating layer including at least a titanium carbonitride layer and an aluminum oxide layer provided thereon on a surface of a substrate,
  • a surface coating member having a hard coating layer including at least a titanium carbonitride layer and an aluminum oxide layer provided thereon on a surface of a substrate,
  • the so-called Calotest was performed, the distribution of partial wear resistance and fracture resistance of the hard coating layer could be evaluated from the observation of wear marks formed.
  • the density of cracks in the titanium carbonitride layer observed around the exposed substrate existing at the center of the wear marks is in an optimal state.
  • the residual stress generated between the titanium carbonitride layer and the upper aluminum oxide layer is released, for example, when suddenly large impact is exerted on the hard coating layer during interrupted cutting. Even in this case, the impact can be absorbed without generating a large crack and causing the hard coating layer to chip or break.
  • the existence of the lower structure of the titanium carbonitride layer in which cracks are less likely to be generated inhibits the extension of cracks generated in the upper structure, so that the titanium carbonitride layer or the entire hard coating layer may be chipped or peeled off. As a result, chipping and peeling of the entire hard coating layer can be prevented, and the wear resistance of the entire hard coating layer is improved.
  • a surface coating member that works on another surface of the present invention includes a base and a hard coating layer formed on the surface of the base, and the hard coating layer includes at least one titanium carbonitride layer. And an aluminum oxide layer formed as an upper layer of the titanium carbonitride layer. Then, the hard sphere contact portion of the surface covering member is locally worn so that the hard sphere is rotated while rolling while the hard sphere is in contact with the surface of the surface covering member. The hard coating layer is subjected to a carote test to form wear marks on a spherical curved surface so that the hard coating layer is exposed.
  • the titanium carbonitride layer observed at the outer peripheral position of the exposed substrate located at the center of the wear scar has no cracks or cracks.
  • a titanium carbonitride layer that is observed at the outer peripheral position of the exposed substrate present at the center of the wear mark is present at the center of the wear mark.
  • the lower titanium carbonitride layer which is observed around the exposed substrate and has no or coarse cracks
  • the lower titanium carbonitride layer which is observed around the lower titanium carbonitride layer, is more cracked than the lower titanium carbonitride layer. It is desirable to have a multi-layered structure including an upper titanium carbonitride layer in which densely exists. As a result, it is possible to reliably suppress chipping and chipping, which are highly effective in preventing cracks generated at the upper portion of the titanium carbonitride layer from extending to the lower portion without stopping.
  • the thickness t of the lower titanium carbonitride layer is l / z m ⁇ t ⁇ 10 ⁇ ⁇ ,
  • the thickness t of the titanium layer must be 0 ⁇ 5 ⁇ ⁇ 5; zm and satisfy the relationship of K t Zt ⁇ 5.
  • the titanium carbonitride layer is composed of titanium carbonitride particles in the form of streaks extending perpendicularly to the surface of the substrate, and the average of the titanium carbonitride particles forming the upper titanium carbonitride layer is Cracks generated in the upper titanium carbonitride layer, which desirably have a crystal width larger than the average crystal width of the titanium carbonitride particles forming the lower titanium carbonitride layer, can be suppressed from extending to the lower titanium carbonitride layer.
  • the residual stress between the aluminum oxide layer and the titanium carbonitride layer can be reduced to minimize the occurrence of cracks, and the adhesion between them can be controlled.
  • the wear resistance and peeling resistance of the hard coating layer can be enhanced, and the wear resistance and fracture resistance of the entire tool can be optimized.
  • the average crystal width w in the upper titanium carbonitride layer is 0.2 to 1
  • the wear resistance and chipping resistance of the hard coating layer as a whole can be improved by controlling the adhesive strength between the fractured crystal itself and the chipping resistance and controlling the adhesion to the oxide film layer. Hope to enhance! / ,. Further, the lower titanium carbonitride layer and the upper titanium carbonitride layer are represented by a general formula: Ti (C
  • a surface-coated cutting tool according to the present invention includes the above-described surface-coated member.
  • the surface coating member which is one aspect of the present invention has a coating layer of at least two layers and optimizes the adhesion between the layers and between the coating layer and the substrate to maintain the hardness in a practical range. Increases toughness, provides practical wear resistance, and increases fracture resistance. Therefore, for example, when applied to a cutting tool, even in processing that requires fracture resistance, the impact is absorbed by the generation of strong peeling or cracking between layers, resulting in large peeling or chipping of the entire coating layer. Can be prevented. Further, even if the coating layer is peeled off, the remaining lower layer has a fine average crystal width, a high wear resistance portion, and a high adhesion to the substrate. Therefore, progress of abrasion can be suppressed as a whole of the coating layer, and abrasion resistance is improved. In addition, by optimizing the values of peeling load F and F,
  • the coating layer exhibits high wear resistance without peeling.
  • the surface coating member that works on the other side of the present invention is characterized in that the titanium carbide nitride layer, which is observed around the exposed substrate existing at the center of the wear mark, is observed in the wear mark of the Calotest. There is a lower tissue where cracks are not present or cracks are coarse and an upper tissue which is observed around the lower tissue and has cracks denser than the lower tissue, that is, With the configuration in which cracks are preferentially generated in the upper structure, residual stress generated between the titanium carbonitride layer and the upper oxidized aluminum layer can be released.
  • fracture resistance as a cutting tool can be improved. More specifically, under severe cutting conditions, continuous cutting conditions, and combined cutting conditions combining interrupted cutting and continuous cutting, for example, when a sudden large impact is applied to the hard coating layer. However, a new large crack occurs and the hard coating layer may chip or break. Shock can be absorbed mainly by the upper structure that does not do. Further, the presence of the lower structure of the titanium carbonitride layer in which cracks are less likely to be generated inhibits the extension of cracks generated in the upper structure, so that the titanium carbonitride layer does not chip or peel. As a result, it is possible to prevent chipping and peeling of the entire hard coating layer, maintain the wear resistance of the entire hard coating layer, and obtain a cutting tool having excellent chipping resistance and chipping resistance.
  • the cutting tool of the present invention provided with the above-mentioned surface covering member not only cuts steel but also disperses high-hardness graphite particles such as mouse, iron (FC material), ductile, and iron (FCD material).
  • FC material iron
  • FCD material iron
  • severe cutting conditions such as heavy interrupted cutting of metals such as iron, which are strong against and impact on tool cutting edges, continuous cutting conditions, and combined cutting conditions combining these interrupted cutting and continuous cutting. Also in cutting, it has excellent fracture resistance, chipping resistance, abrasion resistance, etc., and the tool life can be extended.
  • the surface-coated member of the present invention is applicable to various applications such as abrasion-resistant parts such as sliding parts and dies, tools such as excavation tools and blades, and impact-resistant parts, in addition to cutting tools. Even when used in these applications, it has excellent mechanical reliability.
  • FIGS. Fig. 1 is a scanning electron microscope (SEM) photograph of the fracture surface of the coating layer
  • Fig. 2 is a scanning electron microscope observed from the surface of the coating layer with the titanium carbonitride layer formed at a specific thickness. It is a photograph (SEM).
  • a surface-coated cutting tool (hereinafter simply referred to as a tool) 1 is formed by depositing at least two hard coating layers 3 on the surface of a base 2 (a cemented carbide in FIG. 1). It was done.
  • the base 2 may be a cemented carbide or a cermet in which a hard phase is bonded with a binder phase composed of iron group metal such as conoreto (Co) and Z or nickel (Ni).
  • tungsten carbide for example, tungsten carbide (WC), titanium carbide (TiC) or titanium carbonitride (TiCN) and, if desired, carbides, nitrides and carbons of metals of Groups 4a, 5a and 6a of the periodic table It also has at least one power selected from the group consisting of nitrides.
  • silicon nitride Si N
  • sintered aluminum Al 2 O 3
  • cubic boron nitride cBN
  • Hard materials such as ultra-hard sintered bodies mainly composed of diamond, or metals such as carbon steel, high-speed steel and alloy steel can be used.
  • the hard coating layer 3 includes at least one lower layer 5 formed on the substrate side and at least one upper layer 4 formed on the surface side of the lower layer 5.
  • the peeling load at which the lower surface of the upper layer 4 starts to peel from the upper surface of the lower layer 5 is F, and the lower surface of the lower layer 5 is the surface of the base 2
  • the ratio (F / F) is 1.1 to 30.
  • the peeling load of the coating layer 3 can be measured, for example, by measuring the adhesion of the coating layer 3 by a scratch test. Specifically, the scratch test is measured by pulling the surface of the coating layer 3 of the surface-coated cutting tool 1 with a diamond indenter under the following conditions.
  • the surface force of the lower layer under the upper layer peeled off that is, the upper layer began to peel and the lower layer began to be exposed
  • the load of the diamond indenter increased. Identify one of the locations where the upper layer cracks above the strength of the part itself and the underlying lower layer is exposed, ie, where the upper layer begins to break down and the lower layer begins to be exposed. In other words, the boundary position between the area where the upper layer is exposed and the area where the lower layer is exposed is different from the upper layer, and the load at this position is calculated.
  • the peeling load (F) at which the film begins to peel from the surface of the lower layer can be determined.
  • the element components exposed on the surface are analyzed by X-ray spectroscopy (Electron Probe Micro-Analysis) or X-ray photoelectron spectroscopy (X-ray photoelectron spectroscopy). Confirmation makes it possible to identify the load at which peeling starts.
  • the scratch test is performed on a flat surface of the surface covering member, because more accurate measurement is possible. Therefore, for example, in the case of a cutting tool such as a generally flat-plate-shaped throw-away chip having a principal surface that is free! / A surface that forms a flank, a breaker or a pattern is not formed. Measure the peel load at the flank. If the shape is difficult to measure on the flank, the value measured at the measurable site shall be used instead.
  • the part to be replaced is a burnt skin state in which the surface of the substrate is not polished, and it is desirable that the surface be covered with a coating layer. Do not lose the effect of the invention.
  • the lower layer 5 refers to a coating layer that starts to peel off from the base 2.
  • the lower layer 5 often refers to the first coating layer.
  • the first coating layer located immediately above the substrate 2 is the second coating layer to be subsequently applied.
  • the first coating layer and the second coating layer become the lower layer 5.
  • the plurality of layers simultaneously separated from the substrate 2 are the lower layer 5, and the separation load of the lower layer 5 is F.
  • the peeling load of the upper layer 4 is basically the peeling load of the first upper layer located immediately above the lower layer 5, that is, the lowermost layer of the upper layer 4. Also in this case,
  • the peeling load of the upper-second coating layer will be higher than that of the upper layer 4. It becomes.
  • the peeling load of the upper third coating layer is the peeling load F of the upper layer 4.
  • the upper-second or higher coating layer may be peeled off at a low load before the upper-first coating layer is peeled, and the upper first layer may be exposed.
  • the peeling load of the second or higher coating layer is not the peeling load F of the upper layer.
  • the coating layer having the highest peeling load is the lower layer 5
  • the peeling load of the lower layer 5 is the peeling load F. Then, the thickness of the hard coating layer 3 is reduced.
  • the coating layer having the second highest peeling load is the upper layer 4, and the peeling load of the upper layer 4 is the peeling load F.
  • upper layer 4 will be an aluminum oxide layer and lower layer 5 will be a titanium carbonitride layer. Therefore, in the following description based on FIG. 1, the upper layer 4 will be described as an oxidized aluminum layer 4 and the lower layer 5 will be described as a titanium carbonitride layer 5.
  • the tool 1 having such a configuration has a practical configuration in which both the wear resistance and the fracture resistance are practical.
  • the above ratio (F ZF) is 1.2 to: Especially hopeful
  • the above ratio (F / F) is more preferably 1.5 to 5.
  • the chipping resistance more preferably the wear resistance of the coating layer 3, and more preferably to improve the chipping resistance of the cutting tool while securing the practical wear resistance as a cutting tool. It is.
  • the fracture resistance of the member is improved.
  • the peeling load F force of the aluminum oxide layer 4 is ⁇ 0-60 ⁇
  • the wear resistance of the member is also improved. It is more desirable because it can be Furthermore, the peeling load F force of the silicon dioxide layer 4 3 ⁇ 40
  • the roughness R of the interface on the lower surface (interface) of the aluminum oxide layer 4 (upper layer) is 0.5 to 3 when the coating layer starts to peel or break. It is desirable that the particle size be ⁇ m because the adhesion of the coating layer 3 can be reliably controlled.
  • the roughness R of the interface is obtained by calculating the surface roughness of the interface according to the arithmetic mean roughness (Ra) calculation method.
  • the surface roughness R according to the present invention is defined in JIS B 0601-2001 (IS04287-1997) by tracing an uneven shape on the lower surface of the upper layer 4 and treating this trace as the surface shape. Is defined as the value calculated according to the arithmetic mean roughness (Ra) calculation method used.
  • m is desirable in that the peeling load of the upper layer 4 and the lower layer 5 can be controlled and the fracture resistance can be increased.
  • the wear resistance of the tool 1 is improved by controlling the film thickness to the above value.
  • the titanium carbonitride layer 5 is a line-like titanium carbonitride crystal that has grown in a direction perpendicular to the surface of the substrate 2 when viewed from a cross-sectional direction perpendicular to the film surface. Consists of It is desirable that the average crystal width of the striped titanium carbonitride crystal on the aluminum oxide layer 4 side is larger than the average crystal width on the base body 2 side in that the peeling load can be controlled.
  • the average crystal width w of the substrate 2 is 0.05 to 0.7 ⁇ m, and the average crystal width w of the substrate 2 is
  • a specific method for measuring the average crystal width is as follows: a position of 1 ⁇ m from the interface of the titanium carbonitride layer 5 to the substrate 2 in a direction perpendicular to the interface (in the region where the crystal width w is small due to nucleation).
  • the total thickness of the titanium carbonitride layer 5 is 5 to 15 m. This is desirable in terms of suppressing film peeling and maintaining wear resistance.
  • the thickness of the aluminum oxide layer 4 having a thickness of 2 to 8 ⁇ m can improve the chipping resistance while maintaining the wear resistance, particularly the wear resistance and welding resistance to iron. U, as desired.
  • the titanium carbonitride layer 5 has a small average crystal width and a titanium carbonitride lower layer 6 located on the substrate 2 side, and a titanium nitride layer having a large average crystal width and located on the titanium oxynitride layer 4 side. It is also desirable that a multilayer force of two or more layers including the layer 7 be provided, since the extension of cracks generated on the aluminum oxide layer 4 side can be effectively stopped and the fracture resistance is further enhanced.
  • the thickness t of the titanium carbonitride lower layer 6 ⁇ 10 ⁇ m, and the film thickness of the titanium carbonitride upper layer 7 Thickness t ⁇ 5 ⁇ m and l ⁇ t
  • the aggregate force of the titanium carbonitride particles (hereinafter, referred to as fine titanium carbonitride particles 8a) in the form of needles is obtained. It is desirable that the fine titanium carbonitride particles 8a extend in a random direction with respect to the surface direction of the titanium carbonitride lower layer 6, respectively. As a result, cracks in the titanium carbonitride lower layer 6, which have a high effect of deflecting cracks, can be prevented from extending in the depth direction of the titanium carbonitride layer 5, and chipping and delamination in the titanium carbonitride layer 5 can be prevented. It does not occur and is desirable in that the fracture resistance is improved.
  • the average aspect ratio of the fine titanium carbonitride particles 8a is preferably 2 or more in terms of suppressing crack extension and increasing fracture resistance.
  • the average aspect ratio is more preferably 3 or more, and more preferably the average aspect ratio is 5 or more, since the effect of promoting crack deflection is particularly high and the fracture resistance is more effectively enhanced.
  • the fine titanium carbonitride particles 8a of the titanium carbonitride layer 5 grow in a direction perpendicular to the surface of the film (that is, the surface of the base), and the fine titanium carbonitride particles 8a are observed from the cross-sectional direction.
  • the average aspect ratio of the crystals is 3 or more, preferably 5 or more. In particular, it is preferably 8 or more, and more preferably 10 or more, in terms of enhancing the shock absorbing ability, in that the hardness of the titanium carbonitride layer 5 itself can be increased and the wear resistance can be improved.
  • the fine titanium carbonitride particles 8a in the titanium carbonitride layer 5 are plate-like crystals.
  • the aspect ratio of the particles is such that for each particle, the ratio of the length of the short axis perpendicular to the long axis of the particle and the ratio of the length of the long axis of the particle is the maximum value. Is calculated, and the average value of the aspect ratio of each titanium carbonitride particle present in one visual field can be estimated. Further, in the cross-sectional structure observation of the coating layer 3, a mixed crystal in which granular titanium carbonitride crystals are mixed at a ratio of 30 area% or less may be used.
  • a titanium carbonitride layer (hereinafter referred to as a fine carbonitride In the case of titanium layer 5a, the surface can be observed by SEM as shown in FIG. 2 (a).
  • the polishing layer is removed using a transmission electron microscope (TEM) so that only a predetermined position of the coating layer 3 remains. After that, it is effective to observe the processed portion at a magnification of, for example, 5000 to 200,000.
  • TEM transmission electron microscope
  • the tool 1 when observing the structure in the cross-sectional direction and measuring the average aspect ratio, the tool 1 is broken or ground in a direction perpendicular to the surface of the substrate 2, and the broken surface or ground surface is scanned with a scanning electron microscope. For example, it can be measured by observing (SEM) at a magnification of 3000 to 50000.
  • FIG. 2 is a SEM photograph of the surface of the fine titanium carbonitride layer 5a when the fine titanium carbonitride layer was formed.
  • the fine titanium carbonitride particles 8a of the fine titanium carbonitride layer 5a were observed from the surface, As shown in Fig. 2 (a), when the average major axis length of the fine titanium carbonitride particles 8a is set to 1 ⁇ m or less, the cracks generated in the fine titanium carbonitride layer 5a are deflected to extend the cracks. This is desirable because the effect of suppressing the cracks is high and the strength of the coating layer 3 itself can be improved to improve the fracture resistance.
  • the titanium carbonitride upper layer 7 is different from the structure of the fine titanium carbonitride layer 5a. For example, as shown in FIG. 2 (b), the average length of the titanium carbonitride particles 8b is 1 ⁇ m or more. It is desirable to control the adhesion to the aluminum oxide layer 4 and the peeling load F of the upper layer. This
  • the aspect ratio of the titanium carbonitride particles 8b may be 2 or less, but is preferably 2 to 5 in order to improve the adhesion to the aluminum oxide-palladium layer 4.
  • the aluminum oxide layer has a ⁇ -type crystal structure because it is structurally stable and can maintain excellent abrasion resistance even at high temperatures.
  • silicon nitride having an a-type crystal structure has excellent wear resistance, but due to the large size of the nuclei generated during nucleation, the contact area with the titanium carbonitride layer 5 is small and the adhesion is small.
  • the adhesiveness between the aluminum oxide layer 4 and the lower layer 5 which is a titanium carbonitride layer can be controlled within a predetermined range by the above-described structural adjustment. Sufficient adhesive force can be obtained even with a ⁇ -type crystal structure.
  • the tool 1 having a longer tool life can be obtained without lowering the adhesive force in the silicon oxide aluminum layer 4 having excellent wear resistance and having a ⁇ -type crystal structure and also having an aluminum oxide strength.
  • a part of the aluminum oxide crystal is a ⁇ -type crystal structure other than the ⁇ -type crystal structure, that is, the crystal structure of the aluminum oxide layer 4 is changed to (a mixed crystal of the X-type crystal structure and the It is also possible to adjust the adhesive force of the aluminum layer 4.
  • At least one is preferably at least one coating layer selected from the group consisting of TiN layer, TiC layer, TiCNO layer, TiCO layer and TiNO layer (hereinafter referred to as other Ti-based coating layer).
  • TiN layer TiC layer
  • TiCNO layer TiCNO layer
  • TiCO layer TiNO layer
  • other Ti-based coating layer TiN layer
  • the underlayer 10 made of TiN is formed in a thickness of 0.1 to 2 m.
  • the underlayer 10 is thin and has high adhesion to the titanium carbonitride layer 5, so that it is peeled off at the same time as the titanium carbonitride layer 5. Further, carbon may diffuse from the substrate 2 or the titanium carbonitride layer 5 and the TiN layer as the underlayer may be absorbed by the titanium carbonitride layer 5 and disappear. Therefore, the configuration in Fig. 1 In the measurement of the scratch strength of the titanium carbonitride layer 5 of the tool 1 in many cases, the titanium carbonitride layer 5 and the underlayer 10 often start peeling at the same time, and in such a case, the titanium carbonitride layer 5 starts peeling. At this point, the substrate 2 is exposed.
  • the aluminum oxide layer 4 has an oc-type crystal structure
  • a TiCO layer, a TiNO layer, or a TiCNO layer of 1 ⁇ m or less is provided between the titanium carbonitride layer 5 and the aluminum oxide layer 4.
  • the formation of any one of the intermediate layers 11 is preferable in that the ex-type crystal structure can be stably grown. This is desirable because the adhesion of 4 (the upper coating layer) can be easily controlled.
  • the tool has a golden color. It is desirable because it is easy to determine whether or not the used force has been used due to wear, and the progress of wear can be easily confirmed.
  • the surface layer 12 is not limited to the TiN layer. In some cases, a DLC (diamond-like carbon) layer or a CrN layer is formed to enhance the slidability.
  • the thickness of the TiN layer forming the surface layer 12 is desirably less than or equal to m.
  • the peel strength of the surface layer 12 which is desirably lower than the peel strength of the aluminum oxide layer 4 is visually checked for use. It is desirable because it is easier to do.
  • At least one of the titanium carbonitride layer and the aluminum oxide layer acts as two or more layers, and between each of the two or more titanium carbonitride layers and the Z or aluminum oxide layer, A configuration in which a layer selected from the group consisting of a TiN layer, a TiC layer, a TiCNO layer, a TiCO layer, and a TiNO layer may be formed. It is possible to further improve the fracture resistance of the member by such a structure.
  • a method of manufacturing a surface-coated cutting tool that is powerful in this embodiment will be described.
  • a metal powder, a carbon powder and the like are appropriately added to and mixed with an inorganic powder such as a metal carbide, a nitride, a carbonitride, and an oxide which can be formed by firing the above-mentioned hard alloy.
  • an inorganic powder such as a metal carbide, a nitride, a carbonitride, and an oxide which can be formed by firing the above-mentioned hard alloy.
  • the above-mentioned hard alloy force is also reduced by firing in a vacuum or a non-oxidizing atmosphere.
  • a substrate 2 is prepared. Then, the surface of the substrate 2 is optionally subjected to a honing force of the cutting edge portion.
  • the surface roughness of the substrate 2 is such that the arithmetic average roughness (Ra) on the rake face is 0.1 to 1.5 m, and the arithmetic average on the flank is that the adhesive force of the coating layer is controlled.
  • the particle size of the raw material powder, the molding method, the firing method, and the processing method are controlled so that the roughness (Ra) is 0.5 to 3.0 m.
  • a coating layer 3 is formed on the surface by, for example, a gas diffusion vapor deposition (CVD) method.
  • CVD gas diffusion vapor deposition
  • TiN layer which is an underlayer by adjusting a mixed gas consisting of gas and introducing it into the reaction chamber
  • Nitrile (CH CN) gas from 0.1 to 0.4 volume 0/0, the gas mixture the remainder consisting of hydrogen (H) gas force al
  • the titanium carbonitride layer 5 is formed at a film forming temperature of 780 to 880 ° C. and 5 to 25 kPa.
  • the fine carbonitride in the fine titanium carbonitride layer 5a is adjusted.
  • the structure of the titanium particles 8a can be reliably grown in the above-described range.
  • the above-mentioned film formation temperature is preferably set to 780 ° C. to 880 ° C. so that fine carbonitride particles 8a made of fine titanium carbonitride Desirable for forming titanium layer 5a.
  • the ratio of CH CN in the reaction gas used in the initial stage of the formation of the titanium carbonitride layer is smaller than the ratio of the CH CN in the reaction gas used in the latter stage (at the time of the formation of the titanium carbonitride lower layer).
  • the average crystal width of the titanium carbonitride particles in the titanium carbonitride upper layer is made larger than in the titanium carbonitride lower layer.
  • the ratio of the acetonitrile gas introduced at the latter stage of the titanium carbonitride layer formation is 1.5 times or more the introduction ratio of the acetonitrile gas used at the initial stage of the titanium carbonitride layer formation.
  • CH CN acetonitrile
  • the ratio (V / V) of the ratio V of H gas to the ratio V of CH CN gas should be less than 03
  • the amount of CH CN gas introduced into the reaction gas is
  • the average crystal width of the titanium carbonitride crystal can be controlled to a predetermined configuration by changing the temperature as described above and adjusting the film formation temperature as desired.
  • an intermediate layer is formed as required.
  • TiCNO layer 0. titanium chloride (TiCl) Gas 1-3 volume 0/0, 0.1 to 10 methane (CH) Gas
  • the remaining gas is adjusted to a mixed gas consisting of hydrogen (H) gas and introduced into the reaction chamber.
  • an aluminum oxide layer 4 is formed.
  • titanium chloride (TiCl 3) gas is used as a reaction gas composition. From 0.1 to 10% by volume, nitrogen (N) gas from 0 to 60% by volume, and the rest from hydrogen (H) gas
  • the mixed gas is adjusted and introduced into the reaction chamber, and the pressure in the chamber is set to 800 to: L 100 ° C and 50 to 85 kPa.
  • the cooling rate of the chamber up to 700 ° C. after forming the coating layer 3 by the chemical vapor deposition method at 12 to 30 ° C.
  • the adhesive force of the layer 4 and the lower layer 5 can be controlled within the above-mentioned predetermined range.
  • upper layer 4 and Z or lower layer 5 may be a single layer.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the upper layer 4 and the lower layer 5 are combined with each other such that a TiAl N layer—a TiCN layer, a TiCrN layer—a TiAIN layer, a DLC layer—a CrSiBN layer Various combinations such as the configuration described above are possible.
  • a TiAl N layer a TiCN layer
  • a TiCrN layer a TiAIN layer
  • a DLC layer a CrSiBN layer
  • FIG. 3 is a metallographic image of a wear mark of the Calotest.
  • FIG. 3 (a) is the present embodiment, and
  • FIG. 3 (b) is a comparative example.
  • FIG. 4 is a scanning electron microscope (SEM) photograph of the fracture surface including the hard coating layer. Note that, since the basic film configuration in FIG. 4 is the same as that in FIG. 1, portions that are the same as those in the first embodiment are denoted by the same reference numerals as in FIG. 1, and description thereof is omitted.
  • a surface-coated cutting tool (hereinafter, simply abbreviated as a tool) 21 has a hard coating layer 23 formed on the surface of the substrate 2 by chemical vapor deposition (CVD). Things.
  • the hard coating layer 23 has at least a titanium carbonitride (TiCN) layer 24 and an aluminum oxide layer 4 as an upper layer thereof.
  • Fig. 3 shows the wear mark 27 of the Calotest observed with a metal microscope or a scanning electron microscope (Fig. 3 is a metal micrograph) at a magnification of, for example, 40 to 500 times (50 times in Fig. 3). .
  • the calotest defined as an evaluation item of the present invention is, as shown in FIG. 5, a hard sphere made of metal or cemented carbide 33 on the surface of the tool 21, that is, the surface of the hard coating layer 23.
  • the tool 21 is locally worn by rotating the support rod 34 that supports the hard sphere 33 while rolling the hard sphere 33 while the tool 21 is in contact with the center of the wear mark 27 as shown in FIG.
  • the hard coating layer 23 is worn on a spherical surface so that the substrate 2 is exposed to the outside.
  • the calotest is a method of estimating the thickness of each layer of the hard coating layer 23 observed in the wear mark 27 by observing the width of each layer.
  • the hard coating layer 23 is worn on a spherical surface so that the base 2 is exposed at the center of the wear mark 27 as the wear mark 27 of the Calotest. It was found that the properties and properties of the hard coating layer 23 can be evaluated by observing the wear and peeling of each layer of the hard coating layer 23 contained in the wear mark 27, the state of extension of the crack 25, and the like for each layer. is there.
  • the charcoal observed at the outer peripheral position of the exposed base 2 existing at the center of the wear mark 27 as shown in Fig. 3 (a).
  • the titanium nitride layer 24 there is no crack or the presence of cracks in the coarser lower structure 31 and the upper structure 32 where the average crack is more dense than the lower structure 31 as observed at the outer peripheral position of the lower structure 31. Exists.
  • the coarse density of the existence of cracks can be determined by the number of cracks, the average area of each exposed portion surrounded by the cracks, the crack interval, and the like.
  • a method for quantitatively determining the coarse density of cracks at the average crack interval will be described with reference to FIG.
  • the average crack interval in the present invention refers to the outer periphery of the exposed substrate existing at the center of the wear mark when the wear mark surface is observed with a metallographic photograph after the Calotest wear.
  • Cracks 25 observed in the titanium carbonitride layer 24 observed at the position The average distance between cracks when an arbitrary line L is drawn on a photograph based on the basic concept of the intercept method.
  • an arbitrary circle c is drawn on a photograph, and the number of cracks 25 existing on the circumference of the circle c is observed.
  • the length obtained by dividing the circumferential length L by the number of cracks 25 existing on the circumference is defined as an average crack interval (average of the distance between cracks).
  • the average crack interval in the lower tissue 31 is preferably 80 ⁇ m or more.
  • the tool of the present embodiment preferentially cracks the upper structure 32 on the surface side of the titanium carbonitride layer 24 even if a sudden large impact is applied to the hard coating layer 23.
  • the stress is released by the generation of 25, and a large crack is newly generated to absorb the impact without causing the hard coating layer 23 to chip or break.
  • the conventional tool at the time of cooling after coating, the tool is peeled off from the interface where residual stress due to the difference in thermal expansion coefficient between the aluminum oxide layer and the titanium carbonitride layer exists.
  • the presence of the lower structure 31 of the titanium carbonitride layer 24 in which the cracks 25 are unlikely to be formed inhibits the extension of the cracks 25 formed in the upper thread 32, so that the carbonitriding is prevented.
  • the titanium layer 24 does not chip or peel. Therefore, chipping and peeling of the entire hard coating layer 23 can be prevented, and the wear resistance of the entire hard coating layer 23 is improved. As a result, the tool 21 having excellent chipping resistance and chipping resistance can be obtained.
  • the generation ratio of cracks 25 in the entire titanium carbonitride layer 24 was The same, that is, if the crack interval is uniform throughout the titanium carbonitride layer 24, cracks inherent before cutting due to residual stress with the above-mentioned silicon nitride layer 4 and cracks generated by impact during cutting are generated. 25 extends to the entire titanium carbonitride layer 24 at an early stage, and in this case, the hard coating layer 23 may be chipped, chipped, or chipped.
  • the wear mark 27 Adjust the wear conditions (time, types of hard spheres, abrasives, etc.) in the Calotest so that the diameter of the substrate 2 exposed inside is 0.1 to 0.6 times the diameter of the wear mark 27 as a whole. Is good.
  • the relational expression xZy of the average crack interval y observed in the lower structure 31 to the average crack interval X observed in the upper structure of the titanium carbonitride layer 24 is 0. It is desirable that the ratio be 5 or less, particularly 0.2 or less, whereby the crack generation ratio of the titanium carbonitride layer 24 can be optimized. Thereby, the adhesion between the titanium carbonitride layer 24 and the aluminum oxide layer 4 can be enhanced, and the extension of cracks in the titanium carbonitride layer 24 itself can be suppressed. As a result, the chipping resistance and chipping resistance of the entire hard coating layer 23 are improved, and the wear resistance of the tool 21 is maintained.
  • the crack interval in the lower structure 31 is 80 ⁇ m or more, particularly 100 ⁇ m or more, and more preferably 150 ⁇ m or more, the cracks in the lower structure 31 of the titanium carbonitride layer 24 are difficult to extend. Since the structure is structured, the strength of the titanium carbonitride layer 24 increases, and the fracture resistance and chipping resistance of the entire hard coating layer 23 are improved.
  • Fig. 4 showing a scanning electron microscope image of the fractured surface of the tool 21 in Fig. 3, the titanium carbonitride layer 24 is observed at the outer peripheral position of the exposed base 2 existing at the center of the wear mark 27. No cracks exist, or the average crack interval is wide, and the average crack interval is smaller than the lower titanium carbonitride layer 35 observed around the lower titanium carbonitride layer 35 and the lower titanium carbonitride layer 35 In this state, a plurality of layers including the upper titanium carbonitride layer 36 exist. With this configuration, it is possible to effectively prevent the crack 25 generated at the upper portion of the titanium carbonitride layer 24 from extending to the lower portion, and to surely prevent the hard coating layer 3 from being chipped or chipped.
  • the thickness t of the upper titanium carbonitride layer 36 is 0.5 / zm ⁇ t ⁇ 5 / zm
  • the thickness t of the conductive layer 35 is 1 / ⁇ ⁇ 10 / ⁇ ⁇ and satisfies the relationship of Kt Zt ⁇ 5
  • the adhesion between the titanium carbonitride layer 24 and the oxidized aluminum layer 4 can be increased, and the extension of the cracks 25 of the titanium carbonitride layer 24 itself can be suppressed, and the impact resistance of the entire hard coating layer 23 can be increased. It is desirable to prevent chipping and breakage of the tool 21 as a whole and to maintain high wear resistance!
  • the titanium carbonitride particles in the titanium carbonitride layer 24 also have a streak-like structural force that extends perpendicularly to the surface of the base 2, and the upper titanium carbonitride layer 36 has a titanium carbonitride layer.
  • the average crystal width w of the carbon particles is also large, resulting in a streak-like structure force, and the lower titanium carbonitride layer 35
  • the average crystal width W of titanium carbide particles is small.
  • the extension of the cracks 25 formed in the layer 36 to the lower titanium carbonitride layer 35 can be suppressed, and the residual stress between the aluminum oxide layer 4 and the titanium carbonitride layer 24 is reduced to generate cracks. Can be minimized and the adhesive force between the two can be controlled. This is desirable because the wear resistance and peeling resistance of the hard coating layer 23 can be enhanced, and the wear resistance and chipping resistance of the tool 21 as a whole can be optimized.
  • the titanium carbonitride particles of the streak-like fibers extending perpendicular to the surface of the substrate 2 are defined as a crystal length in a direction perpendicular to an interface with the substrate 2,
  • Z average crystal width aspect ratio Indicates two or more crystal structures.
  • a mixed crystal in which granular titanium carbonitride crystals are mixed at a ratio of 30 area% or less may be used.
  • the average crystal width w of the upper titanium carbonitride layer 36 in the titanium carbonitride layer 24 is 0.2 to 1.5 / ⁇ , particularly 0.2 to 0.5 m Yes, and lower titanium carbonitride
  • the ratio of the average crystal width w of the layer 35 to the average crystal width w of the upper titanium carbonitride layer 36 (w / 1)
  • the average crystal width of the titanium carbonitride particles composed of streak-like crystals a section including the hard coating layer 23 is observed with a scanning electron microscope photograph, In each height region of the titanium nitride layer 24, the interface between the base 2 and the hard coating layer 23 A straight line is drawn (see lines C and D in Fig. 4), and the average width of each particle on this line, that is, the length of the line, is calculated by the number of grain boundaries crossing the line. The resulting value is defined as the average crystal width w.
  • titanium carbonitride layer 24 (the lower titanium carbonitride layer 35 and the upper titanium carbonitride layer 36) is represented by Ti (CN)
  • m in the lower titanium carbonitride layer 35 is 0.55-0. 80, above
  • an intermediate layer is provided between the titanium carbonitride layer 24 and the silicon nitride aluminum layer 4.
  • 11 as a titanium carbonitride interlayer (not shown) between the multi-layered titanium carbonitride layers 24 and a surface layer 12 on the oxide film layer 4 as titanium nitride (TiN ) Layer, titanium carbide (TiC) layer, titanium carbonitride (TiCNO) layer, titanium carbonate (TiCO) layer, and titanium nitride oxide (TiNO) layer.
  • the temperature in the chamber is set in the range of 800 to 840 ° C.
  • the temperature in the chamber was set to 860 to 900 ° C, and the mixing ratio of acetonitrile (CH 3 CN) gas in the reaction gas used was formed.
  • Cracks in the upper titanium carbonitride layer 36 can be made denser than in the titanium nitride layer 35.
  • the yarn of the titanium carbonitride layer can be Calotest above It is possible to control the structure in which a predetermined crack is observed.
  • the force described above is an example in which the surface covering member of the present invention is applied to a cutting tool.
  • the present invention is not limited to this.
  • the present invention can be suitably used for structural materials requiring wear resistance and fracture resistance such as tools, molds, sliding members, and other wear-resistant materials.
  • the arithmetic mean roughness (Ra) according to JISB0601-2001 on the flank of the obtained substrate was 1.1 m, and the arithmetic mean roughness (Ra) on the rake face was 0.4 ⁇ m. .
  • Table 1 shows the film forming conditions for each layer in Table 2.
  • TiCN5 is the ratio V of CH CN gas in the reaction gas from 1.1 volume 0/0 1.8 volume 0/0 or
  • the obtained tool was subjected to a scratch test on the flank of the tool under the following conditions. Observation of a scratch mark confirmed the state of delamination and the load at which the coating layer began to peel off the substrate force.
  • the upper layer in the delamination of the layer is an oxidized aluminum (Al 2 O 3) layer,
  • TiCN titanium carbonitride
  • Indenter conical diamond indenter (Diamond contact made by Tokyo Diamond Tool Works) (Child: N2—1487)
  • the measurement conditions are as described above.
  • the coating layers described in Table 2 were polished using a transmission electron microscope (TEM) so that the structure of each layer was also observed with respect to the surface direction force, and the surface of the titanium carbonitride particles was observed. The structure in the direction was specified and the average aspect ratio was measured.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the lower layer is at a height of 1 ⁇ m from the base side with respect to the total film thickness
  • the upper layer is 0.5 ⁇ m from the surface side with respect to the total film thickness.
  • Feed rate 0.3 to 0.5mm / rev
  • Table 13 shows that Sample Nos. I-7 and I-8 with F / Y smaller than 1.1 showed chipping and were inferior in fracture resistance. Further, in Sample Nos. 1 to 9 where the F / Y exceeded 30, the Al 2 O 3 layer was exfoliated at an early stage, and the wear progressed rapidly. On the contrary
  • the coating layer was not peeled off in any of Nos. 1 to 1610 in which the F / ⁇ force was controlled to be within the range of 130.
  • FZF was in the range of 1.2 to L0 Controlled within In Nos. 1-1 and 4-6, the number of impacts that can withstand the impact in the interrupted cutting test was further improved, and F / ⁇ was controlled within the range of 1.5-5. 1 and 4, continuous cut
  • the lower layer TiAlCrN layer (film thickness 2 ⁇ m), upper layer MoS layer (film thickness) 1 ⁇ m)
  • TiCN Titanium carbonitride
  • 2nd layer TiAIN layer (2 m thick)
  • 3rd layer A coating layer consisting of three layers of a CrN layer (film thickness 0.5 / zm) was formed.
  • a cemented carbide was produced in the same manner as in Example I, and the produced cemented carbide was subjected to a cutting edge treatment (Hojung R) by brushing.
  • Samples No. IV-1 to 7 obtained by forming various hard coating layers on the cemented carbide by the CVD method under the conditions shown in Table 4 to form a hard coating layer composed of a multilayer film having the composition shown in Table 5.
  • Table 4 a cutting edge treatment
  • the titanium layer has an inclined structure.
  • the crack state of the hard coating layer of the surface-coated cutting tool was observed by a metallurgical microscope or SEM for wear marks generated by a calotest test performed under the following conditions. Crack intervals x and y in the lower and upper structures of the titanium nitride layer were measured.
  • Fig. 3 (a) is a photograph of a sample No. IV-2
  • Fig. 3 (b) is a photograph of a Calotest wear mark observed for sample No. IV-5.
  • an arbitrary circle c is drawn on the portion of the titanium carbonitride layer 24 observed on the outer periphery of the base material 2 as the base material, and the number of intersection points P where the circumference of the circle c intersects with the cracks is estimated.
  • Table 5 shows the calculation results of crack intervals for all samples including this sample.
  • Example 1 Under the cutting conditions of the intermittent cutting test of Example 1, the test was performed by changing the cutting speed to 200 mZ.
  • Tables 4 to 6 show that in Sample No. IV-5, where the titanium carbonitride layer had a single-layer force and the cracks were uniformly distributed throughout the titanium carbonitride layer, the hard coating layer on the cutting edge was formed from the beginning of cutting. Chipping occurred, and the chipping resulted in early loss. Furthermore, even in Sample No. IV-6, in which two layers of titanium carbonitride under the same conditions with a fine particle size were formed, the average crack interval was uniform throughout the wear trace observation in the Calotest, and chipping was also observed. Occurred It was lost when 2500 pieces were processed. In Sample No. IV-7, in which the titanium carbonitride layer had a graded composition, the average crack interval of the lower yarn and yarn was smaller than the average crack interval of the upper yarn and weave. Insufficient micro chipping occurred, and as a result, the fracture resistance was reduced.
  • the upper structure (upper titanium carbonitride) on the silicon oxide aluminum layer side is larger than the average crack interval of the lower structure (lower titanium carbonitride layer) on the substrate side of the titanium carbonitride layer.
  • No. IV—1 to 4 which have a structure in which the average crack interval of the layers is narrow, no peeling of the hard coating layer occurs in any of them, and they have a long life in both continuous and interrupted cutting. It had excellent cutting performance in both chipping and chipping resistance.
  • IV-1 to 4 which consisted of a multilayered titanium carbonitride layer, in particular, the average crack interval of the lower titanium carbonitride layer was as wide as 500 m or more, that is, cracks were observed.
  • Sample No. IV-3 was the most excellent in both abrasion resistance and fracture resistance.
  • FIG. 1 is a scanning electron micrograph showing an example of a fractured surface of a surface-coated cutting tool applied to a first embodiment of the present invention.
  • FIG. 2 (a) is a scanning electron micrograph of a structure suitable for a fine titanium carbonitride (TiCN) layer of a surface coating member applied to the first embodiment of the present invention when observed from the surface.
  • (B) is a scanning electron microscope photograph of a titanium carbonitride (TiCN) layer (a structure suitable as an upper TiCN layer) of another surface covering member that is useful for this embodiment when observed from the surface.
  • FIG. 3 (a) is a metallographic image showing wear marks obtained by calotesting a surface-coated cutting tool according to the second embodiment of the present invention, and (b) is a metal-coated image of a comparative example. It is a metallurgical microscope image showing a carotested wear mark.
  • FIG. 4 is a scanning electron microscope image of a surface coating layer region in a fracture surface of the surface-coated cutting tool of FIG. 3 (a).
  • FIG. 5 is a schematic diagram for explaining a test method of a calotest.
  • Titanium carbonitride layer
  • ⁇ ⁇ 'A line indicating the position of 1 ⁇ m from the interface between the substrate and the titanium carbonitride layer toward the silicon oxide aluminum layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

 基体と、この基体表面に形成された硬質被覆層とを具備し、前記硬質被覆層は、少なくとも一層からなる下部層と、この下部層表面に形成され、少なくとも一層からなる上部層とからなり、前記上部層が前記下部層の表面から剥離し始める剥離荷重をFU、前記下部層が前記基体の表面から剥離し始める剥離荷重をFLとしたとき、その比(FL/FU)が1.1~30である表面被覆部材であり、これにより靭性に優れて、耐欠損性が高く、特に鋼等の金属の切削、中でも鋳鉄の断続切削等の工具切刃に強い衝撃がかかるような過酷な切削条件においても、優れた耐欠損性を有する長寿命の切削工具等に応用可能な表面被覆部材が得られ、優れた耐欠損性を維持しつつ、耐摩耗性を高めることができる。

Description

明 細 書
表面被覆部材および切削工具
技術分野
[0001] 本発明は、優れた耐欠損性を有し、さらには優れた耐摩耗性をも有しうる被覆層を 表面に被着形成した表面被覆部材、およびこの表面被覆部材を備えた切削工具に 関し、特に大きな衝撃が切刃にかかるような切削に際しても、優れた切削特性を有す る切削工具に関する。
背景技術
[0002] 従来より、基体の表面に被覆層を被着形成した表面被覆部材が各種用途に用いら れている。例えば、金属の切削加工には、超硬合金やサーメット、セラミックス等の硬 質基体の表面に、炭化チタン (TiC)層、窒化チタン (TiN)層、炭窒化チタン (TiCN) 層、酸ィ匕アルミニウム (Al O )層等の被覆層を単層または複数層形成した切削工具
2 3
が広く用いられている。
[0003] 一方、最近の切削加工の高能率化に従って、さらなる耐欠損性 '耐摩耗性の向上 が求められている。特に、金属の重断続切削等の大きな衝撃が切刃に力かるような 切削が増えている。力かる過酷な切削条件においては、従来の切削工具では被覆 層が大きな衝撃に耐えきれず、チッビングや被覆層の剥離が発生しやすい。このよう なチッビングや被覆層の剥離が弓 Iき金となる切刃の欠損や異常摩耗の発生等の突 発的な工具損傷により工具寿命を長くできないという問題があった。
[0004] そこで、上記被覆層の特性改善のために、特許文献 1には、縦長成長結晶を有す る炭窒化チタン層間を粒状の窒化チタン層で分割することにより、層間剥離を抑制し て工具の耐欠損性を高めることができることが開示されている。
また、特許文献 2には、 Al O基セラミック基体の表面に CVD法にて酸ィ匕アルミ-ゥ
2 3
ム層を成膜し、スクラッチ試験において 5. 9Nの荷重で剥離が生じた (密着力 600g) ことが記載されている。さらに、特許文献 3には、工具鋼力もなる基体の表面にイオン プレーティング法にて (Cr— Si— B) Nからなる被覆層を成膜し、被覆層のスクラッチ 強度が 100Nと高ぐ摺動部品、切削工具、金型等へ好適に応用可能であることが開 示されている。
[0005] 特許文献 1 :特開平 8— 1408号公報
特許文献 2 :特開平 5— 169302号公報
特許文献 3 :特開 2002— 212707号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記特許文献 1に記載された被覆層の構成によっても、耐欠損性は まだ満足できるものではなぐ特に、重断続切削等の突発的に大きな衝撃が力かるよ うな切削等最近の過酷な切削条件においては、依然として切刃のチッビングによる異 常摩耗や突発欠損等が発生し工具寿命が短くなつていた。さらに、この被覆層のチ ッビングや剥離を防止する目的で被覆層の膜厚を薄くすると、早期に被覆層が消滅 して摩耗の進行が早くなり、工具寿命を長くすることができな力つた。また、鋼等の切 削においても、更なる耐欠損性および耐摩耗性の向上が求められていた。
[0007] また、特許文献 2の被覆層の付着力では基体との密着性が不十分である、このため 、衝撃がカゝかるような切削条件で使用すると、被覆層が早期に剥離して摩耗が急激 に進行するものであった。さらに、特許文献 3のような付着力の高い単層の被覆層を 各種用途に応用すると、現実に使用する場合には突発的に大きな衝撃が力かって 欠損しやすい。また、被覆層表面の酸化の問題や、部材が接触する被接触物の材 質との相性等を加味する必要がある。このため、特許文献 3の被覆層をそのまま応用 できず、他の被覆層を上の層としてさらに形成する必要が生じる。しかし、他の被覆 層と、付着力の高い下の被覆層との界面で剥離する等の問題は依然として解消され ていない。
[0008] 従って、本発明の主たる目的は、靭性に優れ、耐欠損性が高ぐ特に鋼等の金属 の切削に適用するのに好適な表面被覆部材を提供することにある。
本発明の他の目的は、铸鉄の断続切削等の工具切刃に強い衝撃がカゝかるような過 酷な切削条件においても、優れた耐欠損性を有する長寿命の切削工具等に応用可 能な表面被覆部材を提供することにある。
本発明のさらに他の目的は、優れた耐欠損性を有するとともに、耐摩耗性にも優れ た長寿命の切削工具を提供することにある。
課題を解決するための手段
[0009] 本発明の一面(one aspect)は、基体表面に少なくとも 2層の被覆層(下部層および 上部層)を具備すると共に、被覆層間および被覆層と基体との間の付着力を適正化 することにより、実用上必要な硬度を損なうことなく靭性、および耐欠損性が向上した 表面被覆部材を提供することができると 、う新たな知見に基づ 、て 、る。
[0010] したがって、例えば、断続切削のように耐欠損性が求められる切削加工において、 たとえ突発的に大きな衝撃が被覆層に力かったときでも、被覆層間がわずかに剥離 したり、クラックを発生させたりすることによって衝撃を吸収して硬質被覆層間が広範 囲にわたって剥離したり、被覆層全体がチッビングや欠損したり剥離したりすることを 低減できる。
[0011] すなわち、本発明の一面に力かる表面被覆部材は、基体と、この基体表面に形成 された少なくとも一層の下部層と、この下部層表面に形成された少なくとも一層の上 部層とを含む。そして、前記上部層が前記下部層の表面から剥離し始める剥離荷重 を F、前記下部層が前記基体の表面力 剥離し始める剥離荷重を Fとしたとき、そ
U L
の比(F /¥ )が 1. 1〜30である。
L U
[0012] ここで、前記剥離荷重 Fは 10〜75N、前記剥離荷重 Fは 80N以上であることが、
U L
部材の耐摩耗性を向上できる点で望まし 、。
また、凹凸形状から算術平均粗さ (Ra)の算出方法に準じて求められる前記上部層 と前記下部層との界面における界面の粗さ Rは 0. 5〜3. であることが、前記上 部層の下側が引抜かれる力を制御して前記上部層の付着力を容易に制御できる点 で望ましい。
[0013] さらに、前記上部層の膜厚が 2. 0〜: LO. 0 /z mであり、且つ前記下部層の膜厚が 3 . 0〜12. O /z mであることが、前記各層の剥離荷重を制御することができて耐欠損 性を高めることができる点で望ましい。また、上記膜厚に制御することによって耐摩耗 '性が高くなる。
[0014] なお、前記上部層が少なくとも 1層の酸ィ匕アルミニウム層を具備し、且つ前記下部 層が少なくとも 1層の炭窒化チタン層を具備する組み合わせが、実用性の高い耐摩 耗性と耐欠損性とを付与するうえで望ましい。
[0015] また、前記炭窒化チタン層が、前記基体との表面に対して垂直な方向に成長した 筋状炭窒化チタン結晶力もなるとともに、該筋状炭窒化チタン結晶の酸ィ匕アルミ-ゥ ム層側の平均結晶幅が前記基体側の平均結晶幅より大きいことが望ましい。特に、 前記基体側の平均結晶幅 wが 0. 05〜0. で、かつ、該基体側の平均結晶幅
1
Wと前記筋状炭窒化チタン結晶の酸化アルミニウム層側の平均結晶幅 Wとの比 (W
1 2 1
Zw )が 0. 7以下であることが、酸ィ匕アルミニウム層と炭窒化チタン層との付着力、お
2
よび基体と炭窒化チタン層との付着力をともに制御することができ、耐欠損性を高め ることができる点で望まし!/、。
[0016] さらに、前記炭窒化チタン層は少なくとも前記酸ィ匕アルミニウム層側に形成された 炭窒化チタン上層と前記基体側に形成された炭窒化チタン下層とからなり、且つ炭 窒化チタン上層の平均結晶幅が炭窒化チタン下層の平均結晶幅より大きいことが、 酸ィ匕アルミニウム層側に発生したクラックの伸展を有効に止めることができて耐欠損 性がさらに高まる点で望ましい。なお、この場合、部材の耐摩耗性と耐欠損性との最 適化の点で、前記炭窒化チタン下層の膜厚 tが 1. 0〜10. O ^ m,前記炭窒化チタ ン上層の膜厚 tが 1. 0〜5. O /z mであり、且つ l <t /\≤5の関係を満たすのがよ
2 1 2
い。
[0017] また、前記炭窒化チタン層下層を表面から見たとき、該炭窒化チタン下層が針状を なす炭窒化チタン粒子の集合体力もなるとともに、該針状をなす炭窒化チタン粒子 が前記炭窒化チタン下層の表面においてランダムな方向にそれぞれ伸びているのが よい。これにより、クラックが真っ直ぐ伸展せずジグザグに伸展する、いわゆるクラック の偏向効果が高くなり、クラックが一気に伸展することを防止できて耐欠損性が向上 する。
[0018] ここで、前記針状をなす炭窒化チタン粒子は、前記炭窒化チタン下層の表面方向 から観察した場合の平均アスペクト比が 2以上であることが、被覆層中に発生したクラ ックを偏向させてクラックの伸展を抑制する効果が高ぐ被覆層の破壊靱性を向上さ せ、耐欠損性を向上することができるために望まし!/、。
[0019] また、前記針状をなす炭窒化チタン粒子は、前記炭窒化チタン下層の表面方向か ら観察した場合の前記炭窒化チタン粒子の平均長軸長さが 1 m以下であることが、 炭窒化チタン層自体の強度を高めて炭窒化チタン層の耐摩耗性を向上できる点で 望ましい。
[0020] 本発明の表面被覆部材は、前記上部層の最表面に形成された表面層、前記上部 層の最下面に形成された中間層、および前記下部層のうち前記基体の表面に形成 された下地層のうち少なくとも 1つ力 TiN層、 TiC層、 TiCNO層、 TiCO層および Ti NO層力もなる群より選ばれる 1層以上の被覆層であるのがよい。
[0021] 前記炭窒化チタンの下層に下地層として上記他の Ti系被覆層を形成することによ つて、基体成分の拡散を抑制する効果および炭窒化チタン層の結晶構造を容易に 制御できる。また、炭窒化チタン層と酸ィ匕アルミニウム層との層間に中間層として上記 他の T係被覆層を形成することによって、炭窒化チタン層と酸ィ匕アルミニウム層との 層間の付着力の調整が容易となる。さらに、酸化アルミニウム層の結晶構造を最適化 できて、酸ィ匕アルミニウム層の剥離荷重を容易に制御することができる。さらに、酸ィ匕 アルミニウム層の表面に表層として上記他の Ti系被覆層を形成することによって、被 覆層表面の摺動性、外観等の調整が可能となる。
[0022] さらに、前記炭窒化チタン層と酸ィヒアルミニウム層の少なくとも一方が 2層以上から なり、該 2層以上の各層間に、 TiN層、 TiC層、 TiCNO層、 TiCO層および TiNO層 力もなる群より選ばれる被覆層(以下、他の Ti系層間被覆層と称す。)を形成したもの であってもよい。これによつて、さらに部材の靭性を高める効果がある。なお、前記酸 化アルミニウム層は α型結晶構造力 なることが、構造的に安定で高温になっても優 れた耐摩耗性を維持できる点で望まし ヽ。
[0023] また、本発明の切削工具は、すくい面と逃げ面との交差稜線部に形成された切刃 を被切削物に当てて切削加工するものであり、前記切刃が上記の表面被覆部材から なる。特に、本発明の切削工具は、基体と、この基体表面に形成された炭窒化チタン 層と、この炭窒化チタン層の表面に形成された酸化アルミニウム層を具備し、前記酸 化アルミニウム層が前記炭窒化チタン層の表面力 剥離し始める剥離荷重を F、前
U
記炭窒化チタン層が前記基体の表面力 剥離し始める剥離荷重を Fとしたとき、前 し
記酸ィヒアルミニウム層が剥離し始める剥離荷重 F力 S10〜75N、前記炭窒化チタン 層が剥離し始める剥離荷重 F力 ^ON以上で、且つその比 (F /F )が 1. 1〜30で
L L U
あるのがよい。
[0024] 本発明の他面(other aspect)は、基体の表面に、少なくとも炭窒化チタン層および その上層に設けられた酸ィ匕アルミニウム層を含む硬質被覆層を具備する表面被覆部 材に、いわゆるカロテスト(Calotest)を実施したとき、形成される摩耗痕の観察から、 前記硬質被覆層の部分的な耐摩耗性および耐欠損性の分布を評価することができ ると 、う新たな知見に基づ 、て 、る。
[0025] 前記摩耗痕を観察した際に、前記摩耗痕の中心に存在する露出した基体の周囲 に観察される炭窒化チタン層におけるクラックの発生密度、すなわち平均クラック間 隔が最適な状態となる場合には、炭窒化チタン層と上層の酸ィ匕アルミニウム層との間 に発生する残留応力を開放して、例えば断続切削時において例え突発的に大きな 衝撃が硬質被覆層に力かるような場合であっても新たに大きなクラックが発生して硬 質被覆層がチッビングしたり欠損したりすることなく衝撃を吸収できる。また、クラック の生成しにくい炭窒化チタン層の下部組織が存在することによって、上部組織にて 生成したクラックの伸展が阻害されるために炭窒化チタン層または硬質被覆層全体 がチッビングや剥離することなぐ結果的に硬質被覆層全体のチッビングや剥離を防 止できるとともに、硬質被覆層全体の耐摩耗性が向上する。
[0026] すなわち、本発明の他の面に力かる表面被覆部材は、基体と、この基体表面に形 成された硬質被覆層とを具備し、硬質被覆層は、少なくとも一層の炭窒化チタン層と 、炭窒化チタン層の上層として形成された酸ィ匕アルミニウム層とを含む。そして、前記 表面被覆部材の表面に硬質球を接触させた状態で該硬質球をころがしながら自転さ せるように前記表面被覆部材の前記硬質球接触部分を局所的に摩耗させて、中心 に前記基体が露出するように前記硬質被覆層に球曲面の摩耗痕を形成させるカロテ ストを行う。本発明の表面被覆部材は、前記摩耗痕を観察した際、該摩耗痕の中心 に存在する露出した基体の外周位置に観察される前記炭窒化チタン層に、クラック が存在しないか、あるいはクラックの存在が粗である下部組織と、該下部組織の外周 位置に観察されて前記下部組織よりもクラックの存在が密である上部組織とが存在す る。 [0027] また、前記カロテストを行い、摩耗痕を観察した際、該摩耗痕の中心に存在する露 出した基体の外周位置に観察される炭窒化チタン層が、前記摩耗痕中心に存在す る露出した基体の周囲に観察されてクラックが存在しないか、あるいは粗に存在する 下部炭窒化チタン層と、該下部炭窒化チタン層の周隨こ観察されて前記下部炭窒 化チタン層よりもクラックが密に存在する上部炭窒化チタン層とを含む複数層力 な ることが望ましい。これにより炭窒化チタン層の上部にて生成したクラックが止まること なく伸展して下部にまで達してしまうことを防止する効果が高ぐチッビングや欠損を 確実に抑制できる。
[0028] また、前記下部炭窒化チタン層の膜厚 tが l /z m^t≤10 ^ πι,前記上部炭窒化
3 3
チタン層の膜厚 tが 0· 5 ^ πι≤ΐ≤5 ;z mで、かつ、 K t Zt≤5の関係を満たすこ
4 4 3 4
とが、前記炭窒化チタン層と前記酸化アルミニウム層との密着性を高め、前記炭窒化 チタン層自身のクラックの伸展を抑制することもでき、前記硬質被覆層全体の耐衝撃 性を高めて、工具全体としてのチッビングや欠損を防止し、かつ高い耐摩耗性を維 持することができるために望まし!/、。
[0029] さらに、前記炭窒化チタン層が前記基体表面に対して垂直に伸びる筋状糸且織の炭 窒化チタン粒子カゝらなるとともに、前記上部炭窒化チタン層をなす炭窒化チタン粒子 の平均結晶幅が前記下部炭窒化チタン層をなす炭窒化チタン粒子の平均結晶幅よ り大きいことが望ましぐ上部炭窒化チタン層に生成したクラックが下部炭窒化チタン 層に伸展することを抑制できるとともに、酸ィ匕アルミニウム層と炭窒化チタン層との残 留応力を低減してクラックの発生を最小限に抑えて両者間の付着力を制御できる。こ れによって、硬質被覆層の耐摩耗性と耐剥離性を高めて、工具全体としての耐摩耗 性と耐欠損性を最適な状態にすることができる。
[0030] なお、この場合には、前記上部炭窒化チタン層における平均結晶幅 wが 0. 2〜1
4
. 5 mであり、かつ、前記下部炭窒化チタン層における平均結晶幅 wと前記上部炭
3
窒化チタン層の平均結晶幅 wとの比 (w /w )が 0. 7以下であることが、炭窒化チタ
4 3 4
ン結晶自身の耐欠損性および耐チッビング性を高めることができるとともに、酸ィ匕ァ ルミ-ゥム層との付着力を制御して、硬質被覆層全体としての耐摩耗性および耐欠 損 ¾を高めるために望まし!/、。 [0031] また、前記下部炭窒化チタン層および前記上部炭窒化チタン層を一般式: Ti(C
1-m
N )で表したとき、前記下部炭窒化チタン層が m=0. 55〜0. 80、前記上部炭窒化 m
チタン層が m=0. 40〜0. 55であること力 基体上部の炭窒化チタン層に生成した クラックが下部炭窒化チタン層に伸展することを抑制し、硬質被覆層の耐チッビング 性および耐欠損性を高め、高 ヽ耐摩耗性を維持することができるために望まし!/ヽ。 本発明の表面被覆切削工具は上記の表面被覆部材を具備する。
発明の効果
[0032] 本発明の一面に力かる表面被覆部材は、被覆層を少なくとも 2層とし、層間および 被覆層と基体間の付着力を適正化することによって、硬度を実用的な範囲に維持し つつ靭性を高めて、実用的な耐摩耗性を備えるとともに耐欠損性が高まる。したがつ て、例えば、切削工具に適用した場合、耐欠損性が求められる加工においても層間 のわず力な剥離やクラックの発生によって衝撃を吸収して、大きな剥離や被覆層全 体のチッビングを防止できる。さらに、たとえ被覆層間が剥離しても、残存した下部層 も微細な平均結晶幅の高い耐摩耗性を有する部分があるとともに、基体との密着力 が高い。したがって、被覆層全体として摩耗の進行を抑制することができ、耐摩耗性 が向上する。また、剥離荷重 F、 Fの値を最適化することによって、連続切削のよう
U L
に耐摩耗性が要求される加工においても被覆層が剥離することなく高い耐摩耗性を 発揮する。
[0033] 本発明の他面に力かる表面被覆部材は、前記カロテストの摩耗痕の観察にて、前 記摩耗痕の中心に存在する露出した基体の周隨こ観察される炭窒化チタン層にクラ ックが存在しないか、またはクラックの存在が粗な下部組織と、該下部組織の周囲に 観察されて前記下部組織よりもクラックの存在が密な上部組織とが存在する、すなわ ち、上部組織に優先的にクラックが生成する構成により、炭窒化チタン層と上部酸ィ匕 アルミニウム層との間に発生する残留応力を開放することができる。
[0034] そのため、切削工具としての耐欠損性を高めることができる。より具体的には、過酷 な切削条件や、連続切削条件、さらにはこれら断続切削と連続切削とを組み合わせ た複合切削条件において、例え突発的に大きな衝撃が硬質被覆層に力かったときで あっても、新たに大きなクラックが発生して硬質被覆層がチッビングしたり欠損したり することなぐ上部組織を中心として衝撃を吸収できる。また、クラックの生成しにくい 炭窒化チタン層の下部組織が存在することによって上部組織にて生成したクラックの 伸展が阻害されるために炭窒化チタン層がチッビングや剥離することがない。その結 果、硬質被覆層全体のチッビングや剥離を防止できるとともに、硬質被覆層全体の 耐摩耗性が維持され、優れた耐チッビング性および耐欠損性を有する切削工具が得 られる。
[0035] 上記表面被覆部材を備えた本発明の切削工具は、鋼の切削はもちろんのこと、ね ずみ铸鉄 (FC材)ゃダクタイル铸鉄 (FCD材)のような高硬度黒鉛粒子が分散した铸 鉄等の金属の重断続切削等のような工具切刃に強 、衝撃が力かる過酷な切削条件 や、連続切削条件、さらにはこれら断続切削と連続切削とを組み合わせた複合切削 条件での切削においても、優れた耐欠損性、耐チッビング性、耐摩耗性等を有し、ェ 具の長寿命化が可能となる。
[0036] 本発明の表面被覆部材は、切削工具以外にも、摺動部品や金型等の耐摩部品、 掘削工具、刃物等の工具、耐衝撃部品等の各種用途へ適用可能である。これらの用 途に用いた場合であっても優れた機械的信頼性を有するものである。
発明を実施するための最良の形態
[0037] <第一の実施形態 >
本発明の表面被覆部材の好適例である表面被覆切削工具の第一の実施形態を図 1および図 2を基に説明する。図 1は被覆層の破断面の走査型電子顕微鏡 (SEM) 写真、および図 2は被覆層中における炭窒化チタン層を特定厚み成膜した表面につ V、て表面から観察した走査型電子顕微鏡 (SEM)写真である。
[0038] 図 1によれば、表面被覆切削工具 (以下、単に工具と略す。 ) 1は、基体 2 (図 1では 超硬合金)の表面に少なくとも 2層の硬質被覆層 3を被着形成したものである。なお、 基体 2としては、コノ レト(Co)および Zまたはニッケル (Ni)の鉄属金属から成る結合 相にて硬質相を結合させた超硬合金やサーメットなどが挙げられる。ここで、硬質相 としては、例えば、炭化タングステン (WC)、炭化チタン (TiC)または炭窒化チタン( TiCN)と、所望により周期律表第 4a、 5a、 6a族金属の炭化物、窒化物および炭窒 化物からなる群より選ばれる少なくとも 1種力もなる。また、基体 2として、窒化珪素(Si N )や酸ィ匕アルミニウム (Al O )質セラミック焼結体、さらに立方晶窒化ホウ素(cBN
3 4 2 3
)、ダイヤモンドを主体とした超硬質焼結体等の硬質材料、あるいは炭素鋼、高速度 鋼、合金鋼等の金属も使用可能である。
[0039] 工具 1によれば、硬質被覆層 3は基体側に形成された少なくとも 1層の下部層 5と、 下部層 5の表面側に形成された少なくとも 1層の上部層 4とからなる。上部層 4の下面 が下部層 5の上面から剥離し始める剥離荷重を F、下部層 5の下面が基体 2の表面
U
力も剥離し始める剥離荷重を Fとしたとき、その比 (F /F )は 1. 1〜30である。
L L U
[0040] これによつて、耐欠損性が要求される加工において上部層 4の実用的に問題ない 耐摩耗性は確保しつつ上部層 4のわずかな剥離やクラックの発生によって衝撃を吸 収して、大きな剥離や被覆層 3全体のチッビングを防止できる。さらに、例え上部層 4 が剥離しても、残存する下部層 5の基体との密着力が高いことから摩耗や欠損の抑 制に貢献して、被覆層 3全体として耐欠損性が高いものである。
[0041] 被覆層 3の剥離荷重は、例えば、被覆層 3のスクラッチ試験による付着力測定によ つて測定することができる。具体的には、上記スクラッチ試験は表面被覆切削工具 1 の被覆層 3表面をダイヤモンド圧子にて下記条件で引つ搔くことによって測定される
<圧子 >
円錐形ダイヤモンド圧子 (ダイヤモンド接触子)
曲率半径: 0. 2mm
稜線角度: 120—
<試験条件 >
テーブルスピード:0. 17mmZ秒
荷重スピード: 100NZ分 (連続荷重)
(ただし、初期荷重は剥離荷重に応じて調整)
引搔き距離: 5mm
評価:上記引つ搔き痕を顕微鏡によって観察する。
その際、(1)上部層がその下に存在する下部層の表面力 剥がれる、すなわち上 部層が剥離し始めて下部層が露出し始めた位置、(2)ダイヤモンド圧子の荷重が上 部層自体の強度を上回って上部層が割れて、その下に存在する下部層が露出する 、すなわち上部層が破壊し始めて下部層が露出し始めた位置のいずれかを特定す る。つまり、引つ搔き痕のうち上部層が露出した領域と、上部層とは異なる下部層が 露出した領域との境界位置を特定し、この位置での荷重を算出することによって、上 部層が下部層の表面から剥離し始める剥離荷重 (F )を求めることができる。
U
[0042] なお、組織観察のみでは特定が困難な場合には表面に露出した元素成分を X線 分光分析(Electron Probe Micro-Analysis)または X線光電子分光分析(X-ray photoelectron spectroscopy )等にて確認することにより剥離し始める荷重の特定が 可能となる。
[0043] また、上記スクラッチ試験は、表面被覆部材の平坦面にて測定されることが、より正 確な測定が可能な点で望ましい。したがって、例えば略平板形状のスローアウエイチ ップ等のように、主面がすく!/、面をなし側面が逃げ面をなすような切削工具にぉ 、て は、ブレーカや絵柄等を形成しない逃げ面にて剥離荷重を測定する。また、逃げ面 での測定が困難な形状である場合には、測定可能な部位にて測定した値で代用す るものとする。特に、代用する部分は、基体表面が研磨されない焼き肌状態であり、こ の表面に被覆層が被覆された部分であることが望ましいが、基体表面が研磨加工さ れた面であっても本発明の効果を失わな 、。
[0044] なお、本発明によれば、多層の被覆層の中で、下部層 5とは基体 2から剥離し始め る被覆層を指す。基本的には、下部層 5は 1層目の被覆層を指す場合が多いが、例 えば基体 2の直上に存在する 1層目の被覆層がその次に被着される 2層目の被覆層 と同時に剥離する場合には、 1層目の被覆層と 2層目の被覆層が下部層 5となる。 3 層以上が基体 2から同時に剥離する場合にも同様に、同時に基体 2から剥離する複 数層が下部層 5となり、下部層 5の剥離荷重が Fとなる。
[0045] また、上部層 4についても、下部層 5の直上、すなわち上部層 4の最下層に位置す る上 1層目の剥離荷重が基本的に上部層 4の剥離荷重 Fとなる。この場合にも、
U
上部層 4の上 1層目の被覆層が上 2層目の被覆層と同時に剥離してしまうような 場合には、上— 2層目の被覆層の剥離荷重が上部層 4の剥離荷重 Fとなる。同様に
U
、上 3層目が上 1層目と同時に剥離する場合にも、上 1層目と同時に剥離する 上 3層目の被覆層の剥離荷重が上部層 4の剥離荷重 Fとなる。このように、上部層
U
4のうち、上 1層目と同時に剥離する複数の上部層がある場合には、上 1層目と 同時に剥離する複数の上部層のうち最上層の剥離荷重が上部層 4の剥離荷重 Fと
U
なる。さらに、上部層の構成において、上— 1層目の被覆層が剥離する前に低い荷 重で上ー2層目以上の被覆層が剥離して上 1層目が露出する場合もあるが、本発 明においては、このような場合の上 2層目以上の被覆層の剥離荷重は上部層の剥 離荷重 Fではない。
U
つまり、硬質被覆層 3の被覆層のうち、最も剥離荷重が高い被覆層が下部層 5であ り、その下部層 5の剥離荷重が剥離荷重 Fである。そして、硬質被覆層 3の被覆層の し
うち、 2番目に剥離荷重が高い被覆層が上部層 4であり、その上部層 4の剥離荷重が 剥離荷重 Fである。
U
[0046] なお、図 1の構成によれば、上部層 4が酸ィ匕アルミニウム層、下部層 5が炭窒化チタ ン層となる可能性が高い。したがって、以下、図 1に基づいた説明においては、上部 層 4を酸ィ匕アルミニウム層 4、下部層 5を炭窒化チタン層 5として説明する。この構成 力もなる工具 1は、耐摩耗性と耐欠損性が共に実用的な構成となっている。
[0047] ここで、耐摩耗性が要求される加工において被覆層 3が剥離することなく高い耐摩 耗性を有する構成とするためには、上記比 (F ZF )が 1. 2〜: LOであることが特に望
L U
ましい。さらに、切削工具として実用的な耐摩耗性を確保しつつ耐欠損性を向上させ るためには、上記比(F /F )が 1. 5〜5であることがさらに望ましい。
L U
[0048] すなわち、図 1の構成において、この酸ィ匕アルミニウム層 4の剥離荷重 Fと炭窒化
U
チタン層 5の基体 2からの剥離荷重 Fの比率を上記所定の範囲内に制御することよ し
つて、被覆層 3の耐欠損性、より好ましくは耐摩耗性の最適化、さらに好ましくは切削 工具としての実用的な耐摩耗性を確保しつつ切削工具の耐欠損性を向上させること ができるものである。
[0049] また、図 1の構成によれば、酸化アルミニウム層 4の剥離荷重 F力 lO〜75Nで、か
U
つ炭窒化チタン層 5の剥離荷重 Fが 80N以上であることが、部材の耐欠損性を向上 し
できる点で望ましい。特に酸化アルミニウム層 4の剥離荷重 F力 ¾0〜60Νで、かつ
U
炭窒化チタン層 5の剥離荷重 Fが 100N以上であることが、部材の耐摩耗性をも高 めることができる点でより望ましい。さらに、酸ィ匕アルミニウム層 4の剥離荷重 F力 ¾0
U
〜45Nで、かつ炭窒化チタン層 5の剥離荷重 F力 110N以上であること力 切削ェ し
具として実用的な耐摩耗性を確保しつつ耐欠損性を向上できる点でさらに望ましい。
[0050] ここで、被覆層 3の組織観察において、前記被覆層間が剥離または破壊し始める 酸ィ匕アルミニウム層 4 (上部層)の下面 (界面)における界面の粗さ Rは 0. 5〜3 μ m であることが、被覆層 3の付着力を確実に制御できる点で望ま ヽ。
[0051] なお、界面の粗さ Rは、界面の凹凸形状力も算術平均粗さ (Ra)の算出方法に準じ て求められる。具体的には、本発明における表面粗さ Rとは、上部層 4の下面におけ る凹凸形状をトレースし、このトレースを表面形状とみなして、 JIS B 0601 - 2001 (IS04287- 1997)に規定される算術平均粗さ(Ra)の算出方法に準じて求められ る値と定義する。
[0052] さらに、上咅層 4の膜厚 t Ι λ. 0〜: LO. で、下咅層 5の膜厚 t力 3. 0〜12. 0
U L
mであることが、上部層 4および下部層 5の剥離荷重を制御することができて、耐欠 損性を高めることができる点で望ましい。また、上記膜厚に制御することによって工具 1の耐摩耗性が向上するという効果もある。
[0053] また、図 1においては、炭窒化チタン層 5は、膜表面に対して垂直な断面方向から 見たとき、基体 2の表面に対して垂直な方向に成長した筋状炭窒化チタン結晶から なる。この筋状炭窒化チタン結晶の酸化アルミニウム層 4側の平均結晶幅が基体 2側 の平均結晶幅より大きいことが剥離荷重を制御できる点で望ましい。
[0054] 特に、基体 2側の平均結晶幅 wが 0. 05〜0. 7 μ mで、かつ、基体 2側の平均結
1
晶幅 wと前記筋状炭窒化チタン結晶の酸化アルミニウム層 4側の平均結晶幅 wとの
1 2 比 (w Zw )が 0. 7以下であることが、上部層 4と下部層 5との付着力、および基体 2
1 2
と下部層 5との付着力をともに調整することができ、剥離荷重を制御してチッビングを 防ぐことができる点で望まし ヽ。
[0055] 上記平均結晶幅の具体的な測定方法は、炭窒化チタン層 5の基体 2との界面から 界面に垂直な方向に向かって 1 μ mの位置 (核生成によって結晶幅 wが小さい領域 を越えた高さ hおよび線 B) )の位置における炭窒化チタン層 5の平均結晶幅^ w、
1 1 炭窒化チタン層 5の酸化アルミニウム層 4との界面から基体 2へ垂直に向かって 0. 5 μ mの位置 (hおよび線 A)における平均結晶幅を wとして測定する。
2 2
[0056] さらに、炭窒化チタン層 5を多層構造とした際の炭窒化チタン層 5の総膜厚(図 1で は炭窒化チタン下層 6と炭窒化チタン上層 7)は 5〜15 mであることが膜剥離を抑 えて耐摩耗性を維持するという点で望ましい。また、酸ィ匕アルミニウム層 4の膜厚は 2 〜8 μ mであることが耐摩耗性、特に铸鉄に対する耐摩耗性および耐溶着性を維持 しつつ、耐欠損性を高めることができる点で望ま U、。
[0057] また、炭窒化チタン層 5が、平均結晶幅が小さく基体 2側に位置する炭窒化チタン 下層 6と、平均晶幅が大きく前記酸ィヒアルミニウム層 4側に位置する炭窒化チタン上 層 7とを含む 2層以上の多層力もなることが、酸ィ匕アルミニウム層 4側に発生したクラッ クの伸展を効果的に止めることができて耐欠損性がさらに高まる点で望ましい。
[0058] なお、この場合、工具 1の耐摩耗性と耐欠損性との最適化の点で、炭窒化チタン下 層 6の膜厚 t力^〜 10 μ m、炭窒化チタン上層 7の膜厚 t力^〜 5 μ mで、かつ、 l <t
1 2
/t≤ 5の関係を満たすことが望ましい。
1 2
[0059] さらに、炭窒化チタン下層 6を表面方向力 見たとき、炭窒化チタン下層 6が針状を なす炭窒化チタン粒子 (以下、微細炭窒化チタン粒子 8aと記す。)の集合体力 なる とともに、該微細炭窒化チタン粒子 8aが炭窒化チタン下層 6の表面方向に対してラン ダムな方向にそれぞれ伸びていることが望ましい。これによつて、炭窒化チタン下層 6 におけるクラックの偏向効果が高ぐクラックが炭窒化チタン層層 5の深さ方向に伸展 することを防止でき、炭窒化チタン層 5内にチッビングや層剥離が発生することなぐ 耐欠損性が向上する点で望まし 、。
[0060] また、炭窒化チタン層 5を表面方向から観察した場合の微細炭窒化チタン粒子 8a の平均アスペクト比が 2以上であることがクラックの伸展を抑制して耐欠損性を高める 点で望ましぐ特にクラックの偏向を促す効果が高くより効果的に耐欠損性を高める 点で、平均アスペクト比が 3以上であることがより望ましぐさらに平均アスペクト比が 5 以上であることがさらに望ましい。
[0061] ここで、炭窒化チタン層 5の微細炭窒化チタン粒子 8aは膜の表面 (すなわち基体の 表面)に対して垂直方向に成長しており、微細炭窒化チタン粒子 8aを断面方向から 観察した場合の平均アスペクト比が 3以上、好ましくは 5以上の筋状結晶であることが 衝撃吸収力を高める点で望ましぐ特に 8以上、さらには 10以上であることが炭窒化 チタン層 5自身の硬度を高めて耐摩耗性を向上できる点で望ましい。
[0062] なお、断面方向および表面方向の観察を加味すると、炭窒化チタン層 5中の微細 炭窒化チタン粒子 8aは板状結晶になっているものと推定される。また、粒子(上記微 細炭窒化チタン粒子 8a)のアスペクト比は、各粒子について、粒子の長軸と直交する 短軸の長さ Z粒子の長軸の長さの比が最大値となる値を算定し、一視野内に存在す る各炭窒化チタン粒子についてそのアスペクト比の平均値によって見積もることがで きる。また、被覆層 3の断面組織観察にて、粒状炭窒化チタン結晶が 30面積%以下 の割合で混合した混晶であってもよ 、。
[0063] ここで、炭窒化チタン粒子 8の表面方向における組織観察および平均アスペクト比 を測定する際、最表面が上記板状の炭窒化チタン粒子 8aからなる炭窒化チタン層 ( 以下、微細炭窒化チタン層 5aと略す。)である場合には、図 2 (a)に示すように、その 表面を SEMによって観察することができる。一方、上記微細炭窒化チタン層 5aの表 面に別の層が存在する場合には、透過型電子顕微鏡 (TEM)を用いて、被覆層 3の 所定位置のみが残存するように研磨カ卩ェした後、例えば 5000〜200000倍の倍率 によって上記加工部を観察する方法が有効である。この方法によって、例え被覆層 3 として上記微細炭窒化チタン層 5aの上面に他の硬質層が成膜された多層被覆層で あっても確実に表面方向からの微細炭窒化チタン粒子 8aの組織状態を確認できる。
[0064] また、断面方向における組織観察および平均アスペクト比を測定する際には、基体 2の表面に垂直な方向に工具 1を破断または研削し、その破断面または研削面を走 查型電子顕微鏡 (SEM)にて例えば 3000〜50000倍で観察することで測定するこ とがでさる。
[0065] また、図 2は微細炭窒化チタン層を成膜した状態での表面を観察した SEM写真で あるが、微細炭窒化チタン層 5aの微細炭窒化チタン粒子 8aを表面から観察した際、 図 2 (a)に示すように、微細炭窒化チタン粒子 8aの平均長径長さを 1 μ m以下とする ことが、微細炭窒化チタン層 5a中に発生したクラックを偏向してクラックの伸展を抑制 する効果が高ぐかつ被覆層 3自体の強度を向上させて耐欠損性を向上することが できるため望ましい。 [0066] さらに、炭窒化チタン上層 7は、微細炭窒化チタン層 5aの構成とは異なり、例えば、 図 2 (b)に示すように炭窒化チタン粒子 8bの平均長さが 1 μ m以上力 なることが酸 化アルミニウム層 4との密着力、上部層の剥離荷重 Fを制御するために望ましい。こ
U
の場合、炭窒化チタン粒子 8bのアスペクト比は 2以下であってもよいが、酸化アルミ -ゥム層 4との密着力を向上するために望ましくは 2〜5である。
[0067] なお、前記酸ィ匕アルミニウム層は痫型結晶構造力 なることが、構造的に安定で高 温になっても優れた耐摩耗性を維持できる点で望ま 、。従来では a型結晶構造を もつ酸ィ匕アルミニウムは優れた耐摩耗性を持つが、核生成の際に生成する核のサイ ズが大きいため、炭窒化チタン層 5との接触面積が小さく付着力が弱くなつて膜剥離 を起こしやすいという問題があった。しかし、上述した組織調整によって酸ィ匕アルミ二 ゥム層 4と炭窒化チタン層である下部層 5との付着力を所定の範囲内に制御すること ができるため、酸ィ匕アルミニウム層 4を痫型結晶構造としても十分な付着力を得ること ができる。よって、優れた耐摩耗性を有する痫型結晶構造の酸ィ匕アルミニウム力もな る酸ィ匕アルミニウム層 4における付着力を低下させることなく得ることができるため、ェ 具寿命のより長い工具 1を得ることができる。なお、酸ィ匕アルミニウム結晶の一部を α 型結晶構造以外の κ型結晶構造として、すなわち酸ィ匕アルミニウム層 4の結晶構造 を (X型結晶構造と κ型結晶構造との混晶として酸ィ匕アルミニウム層 4の付着力を調 整することも可能である。
[0068] さらに、前記上部層の最表面に形成された表面層、前記上部層の最下面に形成さ れた中間層、および前記下部層のうち前記基体の表面に形成された下地層のうち少 なくとも 1つは、 TiN層、 TiC層、 TiCNO層、 TiCO層および TiNO層力もなる群より 選ばれる 1層以上の被覆層(以下、他の Ti系被覆層と称す)であるのが好ましい。 具体的には、図 1に示すように、基体 2と炭窒化チタン層 5との間には、炭窒化チタ ン層 5の付着力向上および基体成分の拡散による耐摩耗性の低下を防ぐため、層厚 0. 1〜2 mの範囲で TiNからなる下地層 10が成膜されている。なお、この下地層 1 0は薄ぐかつ炭窒化チタン層 5との密着力が高いために炭窒化チタン層 5と同時に 剥離する。また、基体 2または炭窒化チタン層 5から炭素が拡散して下地層である Ti N層が炭窒化チタン層 5に吸収されて消失することもある。したがって、図 1の構成に おける工具 1の炭窒化チタン層 5のスクラッチ強度測定においては、炭窒化チタン層 5と下地層 10とが同時に剥離し始める場合が多ぐこのような場合には炭窒化チタン 層 5の剥離し始めた時点で基体 2が露出する形態となる。
[0069] また、酸ィ匕アルミニウム層 4を oc型結晶構造とする場合には、炭窒化チタン層 5と酸 化アルミニウム層 4との間に 1 μ m以下の TiCO層、 TiNO層または TiCNO層のいず れかの中間層 11を形成することが安定して ex型結晶構造を成長させることができる 点で望ましぐ特に膜厚を 0. 5 m以下とすることによって酸ィ匕アルミニウム層 4 (上 部層の被覆層)の付着力を容易に制御することができる点で望ましい。
[0070] さらに、酸ィ匕アルミニウム層 4の上層、すなわち硬質被覆膜 3の表面に TiN力もなる 表層 12を形成することによって、工具が金色を呈するため、工具 1を使用したときに 表層 12が摩耗して使用済み力どうかの判別がつきやすぐまた、摩耗の進行を容易 に確認できるため望ましい。さらには、表層 12は TiN層に限定されるものではなぐ 摺動性を高めるために DLC (ダイヤモンドライクカーボン)層や CrN層を形成する場 合もある。表層 12をなす TiN層の膜厚は: m以下であることが望ましぐかかる表 層 12の剥離強度は酸ィ匕アルミニウム層 4の剥離強度よりも低くなることが使用の有無 を目視で確認しやすくなる点で望ま ヽ。
[0071] なお、上記同様に、炭窒化チタン層と酸ィ匕アルミニウム層との間に中間層として上 記他の T係被覆層を形成する場合、この中間層は酸ィ匕アルミニウム層と同時に剥離 してしまう。さらに、酸ィ匕アルミニウム層の上面に表層として形成した TiN層は酸ィ匕ァ ルミ-ゥム層の剥離荷重よりも低い荷重で剥離してしまう。したがって、この場合、上 部層 4の剥離荷重 Fは酸ィ匕アルミニウム層の剥離荷重となる。
U
[0072] また、前記炭窒化チタン層と酸ィ匕アルミニウム層の少なくとも一方が 2層以上力 な り、該 2層以上の前記炭窒化チタン層および Zまたは酸ィヒアルミニウム層の各層間に 、 TiN層、 TiC層、 TiCNO層、 TiCO層および TiNO層カゝらなる群より選ばれる層が 形成された構成であってもよい。カゝかる構成によって部材の耐欠損性をさらに向上す ることち可會である。
[0073] (製造方法)
次に、この実施形態に力かる表面被覆切削工具を製造する方法について説明する 。 まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化 物、酸ィ匕物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プ レス成形、铸込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によつ て所定の工具形状に成形した後、真空中または非酸化性雰囲気中にて焼成すること によって上述した硬質合金力もなる基体 2を作製する。そして、上記基体 2の表面に 所望によって研磨力卩ェゃ切刃部のホーユング力卩ェを施す。
[0074] なお、基体 2の表面粗さは、被覆層の付着力を制御する点で、すくい面における算 術平均粗さ(Ra)が 0. 1〜1. 5 m、逃げ面における算術平均粗さ(Ra)が 0. 5〜3 . 0 mとなるように原料粉末の粒径、成形方法、焼成方法、加工方法を制御する。
[0075] 次に、その表面に例えばィ匕学気相蒸着 (CVD)法によって被覆層 3を成膜する。ま ず、チャンノ 内を 800〜1000。C、 10〜30kPaの条件で、反応ガス組成として塩ィ匕 チタン (TiCl )ガスを 0. 1〜10体積%、窒素(N )ガスを 0〜60体積%、残りが水素(
4 2
H )ガスカゝらなる混合ガスを調整して反応チャンバ内に導入して下地層である TiN層
2
を成膜する。
[0076] 次に、例えば、反応ガス組成として、体積%で塩化チタン (TiCl )ガスを 0. 1〜: LO
4
体積0 /0、窒素 )ガスを 0〜60体積0 /0、メタン(CH )ガスを 0〜0. 1体積0 /0、ァセト
2 4
二トリル (CH CN)ガスを 0. 1〜0. 4体積0 /0、残りが水素(H )ガス力らなる混合ガス
3 2
を調整して反応チャンバ内に導入し、成膜温度を 780〜880°C、 5〜25kPaにて炭 窒化チタン層 5を成膜する。
[0077] ここで、上記成膜条件のうち、反応ガス中のァセトニトリルガスの割合が 0. 1〜0. 4 体積%に調整することによって、微細炭窒化チタン層 5a中の微細炭窒化チタン粒子 8aの組織を上述した範囲に確実に成長させることができる。また、上記成膜温度に ついても、 780°C〜880°Cとすることが、断面観察において筋状をなし、かつ表面観 察において針状をなす微細炭窒化チタン粒子 8aからなる微細炭窒化チタン層 5aを 形成するために望ましい。
[0078] なお、本実施形態では、炭窒化チタン層の成膜前期 (炭窒化チタン下層の成膜時) に使用する反応ガス中の CH CNの割合よりも炭窒化チタン層の成膜後期 (炭窒化
3
チタン上層の成膜時)に使用する反応ガス中のァセトニトリル (CH CN)ガスの混合 割合を増やすことによって、炭窒化チタン下層よりも炭窒化チタン上層中の炭窒化チ タン粒子の平均結晶幅を大きくする。具体的には、炭窒化チタン層の成膜前期に使 用するァセトニトリルガスの導入割合に対して炭窒化チタン層の成膜後期時に導入 するァセトニトリルガスの割合を 1. 5倍以上とすることにより確実な制御が可能である [0079] ここで、上記成膜条件のうち、筋状炭窒化チタン結晶の成長過程では、 CH CN (ァ
3 セトニトリル)ガスの割合 Vを 0. 1〜3体積0 /0に制御するとともに、キャリアガスである
A
Hガスの割合 Vと CH CNガスの割合 Vとの比(V /V )が 0· 03以下となるように
2 H 3 A A H
低濃度に制御することによって、微細な核生成ができて炭窒化チタン層の付着力を 向上させることができる。
[0080] ここで、上記成膜条件のうち、反応ガス中のァセトニトリル (CH CN)ガスの割合力 SO
3
. 1体積%より少ないと筋状炭窒化チタン結晶に成長させることができず粒状結晶と なる。逆に反応ガス中の CH CNガスの割合 Vが 3体積%を超えると炭窒化チタン結
3 A
晶の平均結晶幅が大きくなつて、その比を制御することができな 、。
[0081] また、炭窒化チタン層の上層を成膜する際は、反応ガス中の CH CNガス導入量を
3
上述したように変え、所望により成膜温度を調整することによって、炭窒化チタン結晶 の平均結晶幅を所定の構成に制御することが可能である。
[0082] 次に、所望により中間層を成膜する。例えば中間層 11として TiCNO層を成膜する 場合には、塩化チタン (TiCl )ガスを 0. 1〜3体積0 /0、メタン(CH )ガスを 0. 1〜10
4 4
体積%、二酸化炭素(CO )ガスを 0. 01〜5体積%、窒素 (N )ガスを 0〜60体積%
2 2
、残りが水素 (H )ガスカゝらなる混合ガスを調整して反応チャンバ内に導入し、チャン
2
ノ 内を 800〜: L 100。C、 5〜30kPaとする。
[0083] そして、引き続き、酸ィ匕アルミニウム層 4を成膜する。酸ィ匕アルミニウム層 4の成膜方 法としては、塩化アルミニウム (A1C1 )ガスを 3〜20体積0 /0、塩化水素(HC1)ガスを 0
3
. 5〜3. 5体積0 /0、二酸化炭素(CO )ガスを 0. 01〜5. 0体積0 /0、硫化水素 (H S)
2 2 ガスを 0〜0. 01体積%、残りが水素(H )ガスからなる混合ガスを用い、 900-1100
2
。C、 5〜: LOkPaとすることが望ましい。
[0084] また、表層(TiN層) 12を成膜するには、反応ガス組成として塩化チタン (TiCl )ガ スを 0. 1〜10体積%、窒素(N )ガスを 0〜60体積%、残りが水素(H )ガスからなる
2 2
混合ガスを調整して反応チャンバ内に導入し、チャンノ 内を 800〜: L 100°C、 50〜8 5kPaとすればよい。
[0085] このとき、上述した方法に加えて、上記化学蒸着法にて被覆層 3を成膜した後 700 °Cまでのチャンバの冷却速度を 12〜30°CZ分に制御することによって、上部層 4お よび下部層 5の付着力を上述した所定の範囲に制御することができる。
[0086] そして、所望により、成膜した被覆層 3表面の少なくとも切刃部を研磨加工する。こ の研磨加工により、被覆層 3中に残存する残留応力が開放されてさらに耐欠損性に 優れた工具となる。
[0087] なお、本発明は上記実施態様に限定されるものではなぐ例えば、上部層 4および Zまたは下部層 5が単層であってももちろんよい。また、上記説明においては成膜方 法として化学蒸着 (CVD)法を用いた場合について説明したが、被覆層の一部また は全部を物理蒸着 (PVD)法によって形成したものであってもよ!/、。
[0088] 例えば、イオンプレーティング法にて、上部層 4 下部層 5の糸且み合わせが、 TiAl N層— TiCN層とした構成、 TiCrN層— TiAIN層とした構成、 DLC層— CrSiBN層 とした構成等各種の組み合わせが可能である。そして、これら各層の付着力を上述し た範囲に制御することによって、耐欠損性に優れ、さらに耐摩耗性に優れて、場合に よっては、加えて摺動性、被削材ゃ被摺動材との耐反応性、外観に優れた表面被覆 部材を作製することができる。
[0089] <第二の実施形態 >
本発明の表面被覆部材の好適例である表面被覆切削工具の第二の実施形態に ついて、図 3および図 4を基に説明する。図 3はカロテストの摩耗痕の金属顕微鏡像 であって、図 3 (a)は本実施形態、(b)は比較例である。また、図 4は硬質被覆層を含 む破断面の走査型電子顕微鏡 (SEM)写真である。なお、図 4の基本的な膜構成は 図 1と同じであるために、第一の実施形態と同じ説明となる部分については、図 1と同 じ符号を付して説明を省略する。
[0090] 図 3、 4によれば、表面被覆切削工具 (以下、単に工具と略す。 ) 21は、基体 2の表 面に硬質被覆層 23を化学蒸着法 (CVD)にて被着形成したものである。 [0091] 本実施態様によれば、図 4に示すように、硬質被覆層 23として、少なくとも炭窒化チ タン (TiCN)層 24およびその上層として酸化アルミニウム層 4を有している。また、図 3は、カロテストの摩耗痕 27を金属顕微鏡または走査型電子顕微鏡(図 3は金属顕 微鏡写真)により、例えば倍率 40〜500倍(図 3では 50倍)で観察したものである。
[0092] ここで、本発明の評価項目として規定するカロテストとは、図 5に示すように、工具 2 1の表面、すなわち硬質被覆層 23の表面に金属製または超硬合金製の硬質球 33を 接触させた状態で硬質球 33を支持する支持棒 34を回転させて硬質球 33をころがし ながら自転させることによって、工具 21を局所的に摩耗させ、図 3に示すように摩耗 痕 27の中心に基体 2が露出するように硬質被覆層 23を球曲面に摩耗させたもので ある。一般的には、カロテストは、この摩耗痕 27中に観察される硬質被覆層 23の各 層の幅を観察することによって各層の膜厚を見積もる方法である。
[0093] 本発明によれば、上記カロテストの摩耗痕 27として、摩耗痕 27の中心に基体 2が 露出するように硬質被覆層 23を球曲面に摩耗させた状態としたものである。この摩耗 痕 27中に含まれる硬質被覆層 23の各層の摩耗、剥離、クラック 25の伸展状態等を 各層ごとに観察することにより、硬質被覆層 23の性状および特性を評価できることを 見出したものである。
[0094] 本発明によれば、カロテストの摩耗痕 27の観察にぉ 、て、図 3 (a)のように摩耗痕 2 7の中心に存在する露出した基体 2の外周位置に観察される炭窒化チタン層 24に、 クラックが存在しないか、あるいはクラックの存在が粗な下部組織 31と、下部組織 31 の外周位置に観察されて下部組織 31よりも平均クラックの存在が密な上部組織 32と が存在する。
[0095] ここで、本発明において、クラックの存在の粗密度合いは、クラックの本数、クラック によって囲まれた各露出部の平均面積、クラックの間隔等によって定量ィ匕することが できる。例えば、平均クラック間隔にてクラックの粗密度合いを定量ィ匕する方法につ いて図 3を基に説明する。
本発明における平均クラック間隔とは、図 3に示されるように、カロテスト摩耗後、金 属顕微鏡写真にて摩耗痕表面を観察した際に、該摩耗痕の中心に存在する露出し た基体の外周位置に観察される炭窒化チタン層 24に観察されるクラック 25について 、インタセプト法の基本思想に基づき、写真上に任意の線 Lを引いたときのクラック間 の距離の平均をさす。
具体的には、まず写真上に任意の円 cを描き、この円 cの円周上に存在するクラック 25の数を観察する。そして、円周長さ Lを上記円周上に存在するクラック 25の数で割 つた長さを平均クラック間隔 (クラック間の距離の平均)とする。
[0096] さらに、前記炭窒化チタン層 24の下部組織 31中に観察される平均クラック間隔 Xに 対する上部組織 32中に観察される平均クラック間隔 yの比 (yZx)は 0. 5以下である ことが、炭窒化チタン層 24と酸ィ匕アルミニウム層 4との密着性を高め、かつ炭窒化チ タン層 24自身のクラックの伸展を抑制するうえで望ましい。なお、下部組織 31にクラ ックが存在しない場合は x=無限大、 yZx=0として計算する。また、前記下部組織 31における平均クラック間隔は 80 μ m以上であるのがよい。
[0097] 本実施形態の工具は、上記構成によって、たとえ突発的に大きな衝撃が硬質被覆 層 23にかかっても、炭窒化チタン層 24の表面側である上部組織 32に優先的にクラ ック 25が発生することによって応力解放されて、新たに大きなクラックが発生して硬質 被覆層 23がチッビングしたり欠損したりすることなく衝撃を吸収できる。これに対して 、従来の工具では、コーティング後の冷却時に酸ィ匕アルミニウム層と炭窒化チタン層 との熱膨張係数差に起因する残留応力が存在する界面部分から剥離してしまう。ま た、本実施形態では、クラック 25の生成しにくい炭窒化チタン層 24の下部組織 31が 存在することによって、上部糸且織 32にて生成したクラック 25の伸展が阻害されるため に炭窒化チタン層 24がチッビングや剥離することがない。それゆえ、硬質被覆層 23 全体のチッビングや剥離を防止できるとともに、硬質被覆層 23全体の耐摩耗性が向 上する結果、優れた耐欠損性および耐チッビング性を有する工具 21が得られる。
[0098] すなわち、摩耗痕 27の観察において、炭窒化チタン層 24の上部組織 32にクラック 25がないと炭窒化チタン層 24と酸ィ匕アルミニウム層 4との間の残留応力が解放され ず、硬質被覆層 23に大きな衝撃が加わった場合に炭窒化チタン層 24と酸ィ匕アルミ -ゥム層 4のいずれ力、または両方に大きなクラック 25がー気に伸展して硬質被覆層 23に大きなチッビングが発生したり、突発欠損したりしゃすくなる。
[0099] また、図 3 (b)のように、炭窒化チタン層 24全体においてクラック 25の生成割合が 同じ、すなわち、クラック間隔が炭窒化チタン層 24全体にわたって一様であると、上 記酸ィ匕アルミニウム層 4との残留応力に起因する切削前に内在したクラックや切削中 の衝撃によって発生したクラック 25が炭窒化チタン層 24全体に早期に伸展してしま い、この場合にも硬質被覆層 23にチッビングが発生したり、欠損したりしゃすくなる。
[0100] ここで、基体 2の露出した部分の大きさが大きすぎたり、小さすぎたりすると、炭窒化 チタン層 24中のクラック 25を正確に観察することができない場合があるため、摩耗痕 27中に露出する基体 2の直径が摩耗痕 27全体の直径の 0. 1倍〜 0. 6倍〖こなるよう にカロテストの摩耗条件(時間、硬質球の種類、研磨剤等)を調節するのがよい。
[0101] また、カロテストの摩耗痕観察において、炭窒化チタン層 24の上部組織中に観察さ れる平均クラック間隔 Xに対する下部組織 31中に観察される平均クラック間隔 yの関 係式 xZyが 0. 5以下、特に 0. 2以下であることが望ましぐこれによつて炭窒化チタ ン層 24のクラックの生成割合を最適化することができる。これによつて、炭窒化チタン 層 24と酸ィ匕アルミニウム層 4との密着性を高めることができるとともに、炭窒化チタン 層 24自身のクラックの伸展を抑制することもできる。その結果、硬質被覆層 23全体の 耐チッビング性、耐欠損性が向上し、かつ工具 21の耐摩耗性が維持される。
[0102] さらに、下部組織 31におけるクラック間隔が 80 μ m以上、特に 100 μ m以上、さら には 150 μ m以上であることが、炭窒化チタン層 24の下部組織 31がクラックの伸展 しにくい組織構造となるため、炭窒化チタン層 24の強度が高まり、硬質被覆層 23全 体の耐欠損性、耐チッビング性が向上するため望ま 、。
[0103] また、図 3の工具 21の破断面における走査型電子顕微鏡像を示す図 4によれば、 炭窒化チタン層 24力 摩耗痕 27中心に存在する露出した基体 2の外周位置に観察 されてクラックが存在しな 、か、もしくは平均クラック間隔が広 、下部炭窒化チタン層 35と、下部炭窒化チタン層 35の周囲に観察されて下部炭窒化チタン層 35よりも平 均クラック間隔が狭い上部炭窒化チタン層 36との複数層が存在した状態となってい る。この構成によって、炭窒化チタン層 24の上部にて生成したクラック 25が伸展して 下部にまで達してしまうことを効果的に防止して、確実に硬質被覆層 3のチッビング や欠損を防止できる。
[0104] ここで、上部炭窒化チタン層 36の膜厚 tが 0. 5 /z m≤t≤5 /z m、下部炭窒化チタ ン層 35の膜厚 tが 1 /ζ πι≤ΐ≤10 /ζ πιで、かつ、 Kt Zt≤5の関係を満たすこと
3 3 3 4
力 炭窒化チタン層 24と酸ィ匕アルミニウム層 4との密着性を高め、かつ炭窒化チタン 層 24自身のクラック 25の伸展を抑制することもでき、硬質被覆層 23全体の耐衝撃性 を高めて、工具 21全体としてのチッビングや欠損を防止し、かつ高い耐摩耗性を維 持することができるために望まし!/、。
[0105] また図 4に示すように、炭窒化チタン層 24中の炭窒化チタン粒子が基体 2表面に対 して垂直に伸びる筋状組織力もなるとともに、上部炭窒化チタン層 36が炭窒化チタ ン粒子の平均結晶幅 wが大きい筋状組織力もなり、下部炭窒化チタン層 35が炭窒
4
化チタン粒子の平均結晶幅 Wが小さい筋状組織力 なることが、上部炭窒化チタン
3
層 36に生成したクラック 25が下部炭窒化チタン層 35に伸展することを抑制できるとと もに、酸ィ匕アルミニウム層 4と炭窒化チタン層 24との残留応力を低減してクラックの発 生を最小限に抑えて両者間の付着力を制御できる。これによつて、硬質被覆層 23の 耐摩耗性と耐剥離性を高めて、工具 21全体としての耐摩耗性と耐欠損性を最適な 状態にすることができるために望ましい。
[0106] ここで、基体 2表面に対して垂直に伸びる筋状糸且織の炭窒化チタン粒子とは、基体 2との界面に対して垂直な方向の結晶長さ Z平均結晶幅 =アスペクト比が 2以上の 結晶組織を指す。また、図 4に示すような硬質被覆層 23の断面組織観察にて、粒状 炭窒化チタン結晶が 30面積%以下の割合で混合した混晶であってもよい。
[0107] なお、この場合には、炭窒化チタン層 24中の上部炭窒化チタン層 36における平均 結晶幅 wが 0. 2〜1. 5 /ζ πι、特に 0. 2〜0. 5 mであり、かつ、下部炭窒化チタン
4
層 35における平均結晶幅 wと上部炭窒化チタン層 36の平均結晶幅 wとの比 (w /
3 4 3 w ) ^0. 7以下、特に 0. 5以下であること力 炭窒化チタン層 24自身の耐欠損性お
4
よび耐チッビング性を高めることができるとともに、酸ィ匕アルミニウム層 4との付着力を 制御して、硬質被覆層 23全体としての耐摩耗性および耐欠損性を高めるために望ま しい。
[0108] また、本発明にお 、て筋状結晶からなる炭窒化チタン粒子の平均結晶幅を測定す る方法としては、硬質被覆層 23を含む断面について走査型電子顕微鏡写真観察を 行い、炭窒化チタン層 24の各高さ領域において基体 2と硬質被覆層 23との界面と平 行な直線を引き(図 4の線分 C、 D参照)、この線分上にある各粒子の幅の平均値、す なわち線分長さを、線分上を横切る粒界の数で割った値を平均結晶幅 wとする。
[0109] また、炭窒化チタン層 24 (下部炭窒化チタン層 35および上部炭窒化チタン層 36) を Ti (C N )と表したとき、下部炭窒化チタン層 35において mが 0. 55-0. 80、上
1— m m
部炭窒化チタン層 36において mが 0. 40〜0. 55の組成力もなること力 上部炭窒化 チタン層 36に生成したクラックが下部炭窒化チタン層 35に伸展することを抑制し、硬 質被覆層 23の耐チッビング性および耐欠損性を高めるために望まし 、。
[0110] また、第一の実施形態と同様に、基体 2と炭窒化チタン層 24との間に最下層 10とし て、炭窒化チタン層 24と酸ィ匕アルミニウム層 4との層間に中間層 11として、多層に形 成された炭窒化チタン層 24の層間に炭窒化チタン層間層(図示せず)として、酸ィ匕ァ ルミ-ゥム層 4の上層に表層 12として、窒化チタン (TiN)層、炭化チタン (TiC)層、 炭窒酸化チタン (TiCNO)層、炭酸化チタン (TiCO)層および窒酸ィ匕チタン (TiNO )層の群力 選ばれる少なくとも 1層基体 2の成分の拡散防止、硬質被覆層 23の各層 間密着力の向上、炭窒化チタン層 24、酸ィ匕アルミニウム層 4の組織、結晶構造、密 着力およびクラックの発生状態を制御する等が可能である。最下層 10では特に窒化 チタン層を介装するのが好ま 、。
[0111] (製造方法)
次に、上述した第二の実施形態にかかる表面被覆切削工具を製造する方法につ いて説明する。基本的には、第一の実施形態と同様な製造方法によって製造するこ とがでさる。
ここで、本実施形態で注意すべき点は、炭窒化チタン層の成膜前期(下部炭窒化 チタン層 35の成膜)ではチャンバ内温度を 800〜840°Cの範囲にし、炭窒化チタン 層の成膜後期(上部炭窒化チタン層 36の成膜)では、チャンバ内温度を 860〜900 °Cとし、使用する反応ガス中のァセトニトリル (CH CN)ガスの混合割合を成膜前記
3
に使用した CH CNガスの混合割合よりも増やすことである。これによつて、下部炭窒
3
化チタン層 35よりも上部炭窒化チタン層 36のクラックを密にすることができる。
[0112] また、化学蒸着法にて硬質被覆層を成膜した後 700°Cまでのチャンバの冷却速度 を 12〜30°CZ分に制御することによって、炭窒化チタン層の糸且織を、上記カロテスト にて所定のクラックが観察される組織に制御することができる。
[0113] 以上、第一の実施形態および第二の実施形態の説明では本発明の表面被覆部材 を切削工具に応用した例について説明した力 本発明はこれに限定されるものでは なぐ例えば、掘削工具、金型ゃ摺動部材等の耐摩材等の耐摩耗性および耐欠損 性が要求される構造材に好適に利用可能である。
[0114] 次に、実施例を挙げて本発明の表面被覆部材を詳細に説明するが、本発明は以 下の実施例のみに限定されるものではない。
[実施例 I]
平均粒径 1. 5 mの炭化タングステン (WC)粉末に対して、平均粒径 1. の 金属コバルト (Co)粉末を 6質量%、平均粒径 2. 0 μ mの炭化チタン (TiC)粉末を 0 . 5質量%、 TaC粉末を 5質量%の割合で添加、混合して、プレス成形により切削ェ 具形状(CNMA120412)に成形した後、脱バインダ処理を施し、 0. 01 Paの真空中 、 1500°Cで 1時間焼成して超硬合金を作製した。さらに、作製した超硬合金にブラ シカ卩ェにてすくい面より刃先処理 (ホーユング R)を施した。得られた基体の逃げ面に おいて JISB0601— 2001に準じた算術平均粗さ(Ra)は 1. 1 m、すくい面におけ る算術平均粗さ (Ra)は 0. 4 μ mであった。
[0115] 次に、上記超硬合金に対して、 CVD法により各種の被覆層を表 2に示す構成の多 層膜からなる被覆層を成膜した。なお、表 2の各層の成膜条件は表 1に示した。表 1 中、 TiCN5は、反応ガス中の CH CNガスの割合 Vを 1. 1体積0 /0から 1. 8体積0 /0
3 A
で連続的に変化させて成膜した。そして、被覆層の表面をすくい面側から 30秒間ブ ラシ加工して試料 No. I— 1〜9の表面被覆切削工具を作製した。
[0116] 得られた工具について、工具の逃げ面において下記条件でスクラッチ試験を行い 、引つ搔き痕を観察して層間剥離状態および被覆層が基体力 剥離し始める荷重を 確認したところ、被覆層の層間剥離における上部層は酸ィ匕アルミニウム (Al O )層、
2 3 被覆層が基体力も剥離し始めるときの下部層は炭窒化チタン (TiCN)層と特定でき、 各層の付着力を算出した。
[0117] 装置:ナノテック社製 CSEM—REVETEST
圧子:円錐形ダイヤモンド圧子 (東京ダイヤモンド工具製作所社製ダイヤモンド接触 子: N2— 1487)
測定条件は前述のとおりである。
[0118] また、透過型電子顕微鏡 (TEM)を用いて表 2に記載する被覆層が観察できるよう に研磨加工して、各層の表面方向力もみた組織状態を観察し、炭窒化チタン粒子の 表面方向における組織を特定するとともに平均アスペクト比を測定した。さらに、被覆 層の断面を含む任意破断面 5力所について走査型電子顕微鏡 (SEM)写真を撮り、 各写真において炭窒化チタン粒子の組織状態を観察し、断面方向における平均ァ スぺタト比、および炭窒化チタン粒子の平均結晶幅 wを測定した。このとき、炭窒化 チタン層を多層構造とした試料については、下部層については、総膜厚に対して基 体側から 1 μ mの高さ位置、上部層については、表面側から 0. 5 μ mの高さ位置に それぞれ図 1に示すような線 Aおよび線 Bを引いて、それぞれの線分上を横切る粒界 数を測定して炭窒化チタン粒子の結晶幅に換算した値を算出し、写真 5ケ所につい てそれぞれ算出した結晶幅の平均値を平均結晶幅として算出した。
[0119] [表 1]
Figure imgf000030_0001
Figure imgf000031_0001
得られた切削工具を用いて下記の条件により、連続切削試験および断続切削試験 を行い、耐摩耗性および耐欠損性を評価した。結果を表 3に示した。
(連続切削条件)
被削材 :ダクタイル铸鉄 4本溝付スリーブ材 (FCD700)
工具形状: CNMA 120412
切削速度: 250mZ分
送り速度: 0. 3mm/rev
切り込み: 2mm
切削時間:20分
その他 :水溶性切削液使用 評価項目:顕微鏡にて切刃を観察し、フランク摩耗量 ·先端摩耗量を測定 (断続切削条件)
被削材 :ダクタイル铸鉄 4本溝付スリーブ材 (FCD700)
工具形状: CNMA 120412
切削速度: 250mZ分
送り速度: 0. 3〜0. 5mm/rev
切り込み: 2mm
その他 :水溶性切削液使用
評価項目:欠損に至る衝撃回数
衝撃回数 1000回時点で顕微鏡にて切刃の被覆層の剥離状態を観察 [表 3]
Figure imgf000033_0001
表 1 3より、 F /Yが 1. 1より小さい試料 No. I— 7および I— 8では、チッピンクが 発生して耐欠損性に劣るものであった。さらに F /Yが 30を超える試料 No. 1— 9で は Al O層が早期に剥離してしまい、摩耗の進行が速いものであった。これに対して
、本発明に従い、 F /¥力 1 30の範囲内に制御された No. 1—1 6 10では いずれも被覆層の剥離が発生せず、特に、 F ZFが 1. 2〜: L0の範囲内に制御され た No. 1—1、 4〜6では断続切削試験において衝撃に耐えうる衝撃回数がさらに向 上し、さらには、 F /¥が 1. 5〜5の範囲内に制御された No. 1—1、 4では、連続切
L U
削にお 、ても断続切削にお 、ても長寿命であり、耐欠損性および耐チッビング性とも 優れた切削性能を有するものであった。
[0123] [実施例 Π]
平均粒径 0. 3 μ mの WC粒子を主とする超微粒超硬合金基体に対して、イオンプ レーティング法にて下部層: TiAlCrN層(膜厚 2 μ m)、上部層 MoS層(膜厚 1 μ m)
2
の 2層からなる被覆層を成膜した。ついで、実施例 Iと同様にしてスクラッチ強度を評 価した結果、 F (上部層) = 30N、 F (下部層) = 80N、 F /Y = 2. 7であった。この
U L L U
構成力 なる内径カ卩ェ用のスローァウェイチップを作製して切削したところ耐摩耗 '耐 欠損とも優れた実用的なものであることがわ力つた。
[0124] [実施例 III]
合金鋼力もなる基体に対して、イオンプレーティング法にて、 1層目:炭窒化チタン( TiCN)層(膜厚 1 m)、 2層目: TiAIN層(膜厚 2 m)、 3層目: CrN層(膜厚 0. 5 /z m)の 3層からなる被覆層を成膜した。ついで、実施例 Iと同様にしてスクラッチ強度 を評価した結果、 F (上部層: TiAIN層) =40N、 F (下部層: TiCN層) = 60N、 F
U L L
/¥ = 1. 3であった。この構成カゝらなる金型を作製して成形試験を行ったところ耐摩
U
耗 ·耐欠損とも優れた実用的なものであることがわ力つた。
[0125] [実施例 IV]
実施例 Iと同様にして超硬合金を作製し、作製した超硬合金にブラシ加工にて刃先 処理 (ホーユング R)を施した。そして、前記超硬合金に対して、 CVD法により各種の 硬質被覆層を表 4に示す条件で表 5に示す構成の多層膜からなる硬質被覆層を成 膜した試料 No. IV- 1〜7の表面被覆切削工具を作製した。
なお、表 5中の試料 No. IV— 7は、表 4の炭窒化チタン (TiCN)層 5の条件、すなわ ち、混合ガス中のァセトニトリル (CH CN)ガスの割合を連続的に増力!]させて炭窒化
3
チタン層を傾斜組織としたものである。
[0126] [表 4]
Figure imgf000035_0001
得られた工具について、硬質被覆層の断面を含む任意破断面または研磨面 5力所 について走査型電子顕微鏡 (SEM)写真を撮り、各写真において炭窒化チタン層の 組織を観察した。このとき、炭窒化チタン層の総膜厚に対して基体側から総膜厚の 1 Z5の高さ位置と酸ィ匕アルミニウム層(表面)側力 総膜厚の 1Z5の高さ位置にそれ ぞれ図 4に示すような線 Cおよび線 Dを引いて、それぞれの線分上を横切る粒界数を 測定して炭窒化チタン結晶の結晶幅に換算した値を算出し、写真 5ケ所についてそ れぞれ算出した結晶幅の平均値を平均結晶幅 (w、 w )として算出した。
3 4
[0128] 上記金属顕微鏡写真または SEM写真にて炭窒化チタン層が単層か多層かを確認 し、多層である場合には、上部炭窒化チタン層と上部炭窒化チタン層との膜厚 t、 t
4 3 を測定し、関係式 t Ztの値を計算した。なお、炭窒化チタン層の観察において層境
3 4
界が明確でない場合には、上記破断面を研磨して鏡面状態とし、さらにアルカリ赤血 塩溶液 [村上氏試薬: 10%KOH+ 10%K Fe (CN) ]によるエッチング処理を施し
3 6
た状態とし、これを金属顕微鏡または SEMにて観察して多層カゝ否かを判定した。結 果は表 5に示した。
[0129] また、上記表面被覆切削工具の硬質被覆層のクラック状態を、下記条件で行った カロテスト試験によって生じた摩耗痕を金属顕微鏡または SEMにて観察し、カロテス ト摩耗痕で観察される炭窒化チタン層の下部組織と上部組織におけるクラックの間隔 x、 yをそれぞれ測定した。
[0130] 装置:ナノテック社製 CSEM— CALOTEST
鋼球:
直径 30mm球形鋼玉
ダイヤモンドペースト 1/4MICRON
摩耗痕中に露出する基体の直径が摩耗痕全体の直径に対して 0. 1〜0. 6倍 (今 回の測定では 0. 3〜0. 7mm)となるように摩耗させた状態でクラックを観察した。な お、前記クラックの間隔については、下部組織と上部組織中に長さ 200 /z mの任意 直線をそれぞれ 5本引いて、その直線とクラックの交点の数力もクラック間隔 x、 y、お よびその比 yZxの値を算出した。結果は表 5に示した。
[0131] なお、図 3 (a)は試料 No. IV— 2、図 3 (b)は試料 No. IV— 5についてのカロテスト 摩耗痕観察写真である。この写真において、母材である基体 2の外周に観察される 炭窒化チタン層 24の部分に任意の円 cを描 、て、円 cの円周とクラックとが交わる交 点 Pの数を見積もり、
クラック間隔 =円 cの円周長さ Z交点 Pの数
にてクラック間隔を見積もった例であり、 試料 No. IV- 2
下部クラック間隔: x= l. 82mm÷ 4箇所 =0. 4550mm
上部クラック間隔: y= 2. 81mm÷ 37箇所 =0. 0759mm
y/x=0. 167
試料 No. IV- 5
下部クラック間隔: x= 1. 82mm ÷ 28箇所 =0. 0650mm
上部クラック間隔: y= 2. 99mm÷41箇所 =0. 0729mm
y/x= l. 122
と算出した。この試料を含め全ての試料についてのクラック間隔の算出結果は表 5に 示した。
[0132] さらに、硬質被覆層の付着力を、実施例 1と同じ測定条件のスクラッチ試験によって 測定した。結果は表 5に示した。
[0133] [表 5]
Figure imgf000038_0001
そして、この切削工具を用いて下記の条件にょ 〕、連続切削試験および I 切 I 試験を行い、耐摩耗性および耐欠損性を評価し -:。その結果を表 6に示す (
(連続切削試験)
実施例 1の連続切削試験の切削条件において、送り速度を 0. 4mm. 'evに変更 して試験を行った。
(断続試験)
実施例 1の断続切削試験の切削条件において、切削速度を 200mZ分に変更して 試験を行った。
[0135] [表 6]
Figure imgf000039_0001
[0136] 表 4〜6より、炭窒化チタン層単層力 なり炭窒化チタン層全体にクラックが均一細 力べ存在する試料 No. IV— 5では、切刃部の硬質被覆層に切削初期からチッビング が発生し、また、このチッビングが要因となって早期に欠損した。さらに、微細な粒径 となる同じ条件の炭窒化チタン層を 2層成膜した試料 No. IV— 6でも、カロテストの摩 耗痕観察において平均クラック間隔が全体的に一様で、やはりチッビングが発生して 2500個加工した時点で欠損した。また、炭窒化チタン層を傾斜組成とした試料 No. IV— 7では、下部糸且織の平均クラック間隔が上部糸且織の平均クラック間隔よりも狭くな つてしまい、炭窒化チタン層の強度が十分ではなぐ微小チッビングが発生し、その 結果、耐欠損性も低下してしまった。
[0137] これに対して、本発明に従い、炭窒化チタン層の基体側の下部組織 (下部炭窒化 チタン層)の平均クラック間隔よりも、酸ィ匕アルミニウム層側の上部組織 (上部炭窒化 チタン層)の平均クラック間隔が狭い状態にした構成である No. IV— 1〜4では、い ずれも硬質被覆層の剥離が発生せず、連続切削においても断続切削においても長 寿命であり、耐欠損性および耐チッビング性とも優れた切削性能を有するものであつ た。特に、炭窒化チタン層を多層とした試料 No. IV— 1〜4、中でも下部炭窒化チタ ン層の平均クラック間隔が 500 m以上と広くなつている、つまりクラックが観察され に《なっている試料 No. IV— 3が最も耐摩耗性、耐欠損性ともに優れていた。
図面の簡単な説明
[0138] [図 1]本発明の第一の実施形態に力かる表面被覆切削工具の破断面の一例につい ての走査型電子顕微鏡写真である。
[図 2] (a)は、本発明の第一の実施形態に力かる表面被覆部材の微細炭窒化チタン ( TiCN)層に好適な組織を表面から観察した際の走査型電子顕微鏡写真であり、 (b) は、この実施形態に力かる他の表面被覆部材の炭窒化チタン (TiCN)層(上部 TiC N層として好適な組織)を表面から観察した際の走査型電子顕微鏡写真である。
[図 3] (a)は、本発明の第二の実施形態に力かる表面被覆切削工具をカロテストした 摩耗痕を示す金属顕微鏡像であり、(b)は、比較例の表面被覆切削工具をカロテス トした摩耗痕を示す金属顕微鏡像である。
[図 4]図 3 (a)の表面被覆切削工具の破断面における表面被覆層領域についての走 查型電子顕微鏡像である。
[図 5]カロテストの試験方法を説明するための模式図である。
符号の説明
[0139] 1, 21 · · ·表面被覆切削工具 (工具)
2· · ·基体 3, 23…硬質被覆層
4· · ·上部層(酸ィヒアルミニウム層)
5···下部層 (炭窒化チタン層)
5a ···微細炭窒化チタン層
6···炭窒化チタン下層
7···炭窒化チタン上層
8···炭窒化チタン粒子
8a · · '微細炭窒化チタン粒子
8b · · ·炭窒化チタン上層中の炭窒化チタン粒子
10···下地層
11··,中間層
12···表層
24···炭窒化チタン層
25··,クラック
27…摩耗痕
31·· '炭窒化チタン層の下部組織
32·· '炭窒化チタン層の上部組織
33···硬質球
34···支持棒
35···下部炭窒化チタン層
36···上部炭窒化チタン層
Α···酸ィ匕アルミニウム層と炭窒化チタン層との界面より基体に向力つて 0. 5/xmの 位置を示す線
Β· · '基体と炭窒化チタン層との界面より酸ィ匕アルミニウム層に向力つて 1 μ mの位置 を示す線
h ···炭窒化チタン下層の平均結晶幅を測定する高さ位置
h ···炭窒化チタン上層の平均結晶幅を測定する高さ位置
2
w · · '炭窒化チタン下層の平均結晶幅 w · · '炭窒化チタン上層の平均結晶幅
2
t ···炭窒化チタン下層の膜厚
1
t ···炭窒化チタン上層の膜厚
2
c' ··平均クラック間隔を測定する際の円 Ρ···円 cとクラックとの交点
χ· · ·炭窒化チタン層の下部組織 (基体側)における平均クラック間隔
y · ·炭窒化チタン層の上部組織 (酸ィ匕アルミニウム層側)における平均クラック間隔 w ···炭窒化チタン層の基体側の平均結晶幅
3
W · · ·炭窒化チタン層の酸ィ匕アルミニウム層側の平均結晶幅
4
t…炭窒化チタン層の下部組織の膜厚
3
t…炭窒化チタン層の上部組織の膜厚

Claims

請求の範囲
[1] 基体と、該基体表面に形成された少なくとも一層力 なる下部層と、該下部層表面 に形成された少なくとも一層からなる上部層とを含み、
前記上部層が前記下部層の表面から剥離し始める剥離荷重を F、前記下部層が
U
前記基体の表面から剥離し始める剥離荷重を Fとしたとき、その比 (F /F )が 1. 1
L L U
〜30である表面被覆部材。
[2] 前記剥離荷重 (F )が 10〜75Nであり、且つ前記剥離荷重 (F )が 80N以上である
U L
請求項 1記載の表面被覆部材。
[3] 凹凸形状から算術平均粗さ (Ra)の算出方法に準じて求められる前記上部層と前 記下部層との界面における界面の粗さ Rが 0. 5〜3. 0 mである請求項 1記載の表 面被覆部材。
[4] 前記上部層の膜厚が 2. 0〜: LO. O /z mで、前記下部層の膜厚が 3. 0〜15. O ^ m である請求項 1記載の表面被覆部材。
[5] 前記上部層が少なくとも 1層の酸ィ匕アルミニウム層を具備し、且つ前記下部層が少 なくとも 1層の炭窒化チタン層を具備する請求項 1記載の表面被覆部材。
[6] 前記炭窒化チタン層が、前記基体の表面に対して垂直な方向に成長した筋状炭 窒化チタン結晶力もなるとともに、該筋状炭窒化チタン結晶の酸ィ匕アルミニウム層側 の平均結晶幅が前記基体側の平均結晶幅より大きい請求項 5記載の表面被覆部材
[7] 前記基体側の平均結晶幅 wが 0. 05-0. 7 μ mで、かつ該基体側の平均結晶幅
1
Wと前記筋状炭窒化チタン結晶の酸化アルミニウム層側の平均結晶幅 Wとの比 (W
1 2 1
/w )が 0. 7以下である請求項 6記載の表面被覆部材。
2
[8] 前記炭窒化チタン層は少なくとも前記酸ィ匕アルミニウム層側に形成された炭窒化チ タン上層と前記基体側に形成された炭窒化チタン下層とからなり、且つ炭窒化チタン 上層の平均結晶幅が炭窒化チタン下層の平均結晶幅より大きい請求項 6記載の表 面被覆部材。
[9] 前記炭窒化チタン下層の膜厚 tが 1. 0〜10. 0 m、前記炭窒化チタン上層の膜 厚 tが 1. 0〜5. O /z mであり、且つ l <t Zt≤ 5の関係を満たす請求項 8記載の表 面被覆部材。
[10] 前記炭窒化チタン下層を表面方向から見たとき、該炭窒化チタン下層が針状をな す炭窒化チタン粒子の集合体力 なるとともに、該針状をなす炭窒化チタン粒子が 前記炭窒化チタン下層の表面にお 、てランダムな方向にそれぞれ伸びて 、る請求 項 8記載の表面被覆部材。
[11] 前記針状をなす炭窒化チタン粒子を前記炭窒化チタン下層の表面方向から観察し た場合の平均アスペクト比が 2以上である請求項 10記載の表面被覆部材。
[12] 前記針状をなす炭窒化チタン粒子を前記炭窒化チタン下層の表面方向から観察し た場合の平均長軸長さが 1 μ m以下である請求項 10記載の表面被覆部材。
[13] 前記上部層の最表面に形成された表面層、前記上部層の最下面に形成された中 間層、および前記下部層のうち前記基体の表面に形成された下地層のうち少なくとも 1つが、 TiN層、 TiC層、 TiCNO層、 TiCO層および TiNO層力もなる群より選ばれる 1層以上の被覆層である請求項 5記載の表面被覆部材。
[14] 前記炭窒化チタン層と酸ィ匕アルミニウム層の少なくとも一方が 2層以上力 なり、該 2層以上の各層間に、 TiN層、 TiC層、 TiCNO層、 TiCO層および TiNO層力もなる 群より選ばれる 1層以上を形成した請求項 5記載の表面被覆部材。
[15] 前記酸化アルミニウム層が α型結晶構造を有する請求項 5記載の表面被覆部材。
[16] 基体と硬質被覆層とを具備し、硬質被覆層は、前記基体表面に形成された炭窒化 チタン層と、該炭窒化チタン層の表面に形成された酸ィ匕アルミニウム層とを含み、 前記硬質被覆層の表面にて硬質球をころがすように回自転させて前記表面被覆層 の硬質球接触部分を局所的に摩耗させて、前記硬質被覆層の炭窒化チタン層およ び前記基体を露出するように前記硬質被覆層に球曲面の摩耗痕を形成してなり、該 摩耗痕の露出した基体の外周位置に観察される前記炭窒化チタン層において、クラ ックが存在しないか、あるいは粗に存在する下部組織と、該下部組織の外周位置に 観察されて前記下部組織よりもクラックが密に存在する上部組織とが存在する表面被 覆部材。
[17] 基体と、硬質被覆層とを具備し、硬質被覆層は少なくとも、前記基体表面に形成さ れた炭窒化チタン層と、この炭窒化チタン層の表面に形成された酸ィ匕アルミニウム層 とを含み、
前記炭窒化チタン層力 請求項 16に記載の摩耗痕の露出した基体の外周位置を 観察した際に、クラックが存在しないか、あるいは粗に存在する下部炭窒化チタン層 と、該下部炭窒化チタン層の周隨こ観察されて前記下部炭窒化チタン層よりもクラッ クが密に存在する上部炭窒化チタン層とを含む複数層からなる表面被覆部材。
[18] 前記下部炭窒化チタン層の膜厚 t力 ^u m^t≤10 ^ πι,前記上部炭窒化チタン
3 3
層の膜厚 tが 0. 5 m≤t≤5 /ζ πιで、且つ K t Zt≤ 5の関係を満たす請求項 17
4 4 3 4
記載の表面被覆部材。
[19] 前記下部炭窒化チタン層および前記上部炭窒化チタン層中の炭窒化チタン粒子 が前記基体表面に対して垂直に伸びる筋状組織力もなるとともに、前記上部炭窒化 チタン層をなす炭窒化チタン粒子の平均結晶幅が前記下部炭窒化チタン層をなす 炭窒化チタン粒子の平均結晶幅より大きい請求項 17記載の表面被覆部材。
[20] 前記上部炭窒化チタン層における平均結晶幅 wが 0. 2〜1. 5 mであり、且つ前
4
記下部炭窒化チタン層における平均結晶幅 Wと前記上部炭窒化チタン層の平均結
3
晶幅 wとの比 (w /w )が 0. 7以下である請求項 19記載の表面被覆部材。
4 3 4
[21] 前記下部炭窒化チタン層および前記上部炭窒化チタン層を Ti (C N )と表したと
1— m m き、前記下部炭窒化チタン層における mが 0. 55〜0. 80、前記上部炭窒化チタン層 における mが 0. 40-0. 55の組成力もなる請求項 17記載の表面被覆部材。
[22] すくい面と逃げ面との交差稜線部に形成された切刃を被切削物に当てて切削加工 するための切削工具であって、前記切刃が請求項 1記載の表面被覆部材からなる切 削工具。
[23] 基体と、該基体の表面に形成された炭窒化チタン層と、該炭窒化チタン層の表面 に形成された酸ィ匕アルミニウム層とを含み、前記酸ィ匕アルミニウム層が前記炭窒化チ タン層の表面から剥離し始める剥離荷重を F、前記炭窒化チタン層が前記基体の表
U
面から剥離し始める剥離荷重を Fとしたとき、前記剥離荷重 Fが 10〜75N、前記剥
L U
離荷重 F力 ¾0N以上で、かつその比(F ZF )が 1. 1〜30である切削工具。
L L U
[24] すくい面と逃げ面との交差稜線部に形成された切刃を被切削物に当てて切削加工 するための切削工具であって、前記切刃が請求項請求項 16または 17記載の表面被 覆部材力 なる切削工具。
PCT/JP2005/005966 2004-03-29 2005-03-29 表面被覆部材および切削工具 WO2005092608A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05727661A EP1736307A4 (en) 2004-03-29 2005-03-29 SURFACE COATING AND CUTTING TOOL
US10/599,547 US20080160338A1 (en) 2004-03-29 2005-03-29 Surface Coated Member and Cutting Tool
JP2006511585A JP4805819B2 (ja) 2004-03-29 2005-03-29 表面被覆部材および切削工具
US12/608,571 US20100098911A1 (en) 2004-03-29 2009-10-29 Surface Coated Member and Cutting Tool

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004096812 2004-03-29
JP2004-096812 2004-03-29
JP2004138863 2004-05-07
JP2004-138863 2004-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/608,571 Division US20100098911A1 (en) 2004-03-29 2009-10-29 Surface Coated Member and Cutting Tool

Publications (1)

Publication Number Publication Date
WO2005092608A1 true WO2005092608A1 (ja) 2005-10-06

Family

ID=35056061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005966 WO2005092608A1 (ja) 2004-03-29 2005-03-29 表面被覆部材および切削工具

Country Status (4)

Country Link
US (2) US20080160338A1 (ja)
EP (1) EP1736307A4 (ja)
JP (1) JP4805819B2 (ja)
WO (1) WO2005092608A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056785A1 (de) 2005-11-17 2007-05-24 Boehlerit Gmbh & Co. Kg. Metallcarbonitridschicht und verfahren zum herstellen einer metallcarbonitridschicht
JP2008132547A (ja) * 2006-11-27 2008-06-12 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2010046757A (ja) * 2008-08-21 2010-03-04 Sumitomo Electric Hardmetal Corp 切削工具およびその製造方法
JP2011156637A (ja) * 2010-02-03 2011-08-18 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
JP2012096303A (ja) * 2010-03-23 2012-05-24 Mitsubishi Materials Corp 耐チッピング性にすぐれた表面被覆切削工具
JP2012096302A (ja) * 2009-10-30 2012-05-24 Mitsubishi Materials Corp 耐チッピング性にすぐれた表面被覆切削工具
JP2013506570A (ja) * 2009-10-05 2013-02-28 セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング 金属材料の加工のためのバイト
JP2015500148A (ja) * 2011-12-14 2015-01-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ 被覆切削工具及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722246B1 (en) * 2005-04-20 2010-05-25 Carty William M Method for determining the thermal expansion coefficient of ceramic bodies and glazes
US9796108B2 (en) * 2008-08-28 2017-10-24 Corning Incorporated Wear resistant coatings for tool dies
CN102196874B (zh) * 2008-10-28 2014-07-23 京瓷株式会社 表面被覆工具
EP2409798B1 (en) * 2009-03-18 2017-04-19 Mitsubishi Materials Corporation Surface-coated cutting tool
KR101757489B1 (ko) * 2009-10-30 2017-07-12 미쓰비시 마테리알 가부시키가이샤 내칩핑성이 우수한 표면 피복 절삭 공구
CN102883840B (zh) * 2011-05-10 2015-08-05 住友电工硬质合金株式会社 表面被覆切削工具
DE102011107787A1 (de) * 2011-07-15 2013-01-17 Oerlikon Trading Ag, Trübbach Verfahren zur Verbesserung der Verschleissbeständigkeit von eingefärbten chirurgischen Instrumenten
DE112012003571B4 (de) 2011-08-30 2022-09-15 Kyocera Corp. Schneidwerkzeug
EP2839907B1 (en) 2012-04-19 2018-10-03 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US9721853B2 (en) * 2013-03-13 2017-08-01 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for forming a semiconductor device
JP5663814B2 (ja) * 2013-07-03 2015-02-04 住友電工ハードメタル株式会社 表面被覆窒化硼素焼結体工具
JP5663813B2 (ja) 2013-07-03 2015-02-04 住友電工ハードメタル株式会社 表面被覆窒化硼素焼結体工具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328810A (ja) * 1994-05-31 1995-12-19 Mitsubishi Materials Corp 硬質被覆層がすぐれた層間密着性を有する表面被覆炭化タングステン基超硬合金製切削工具
JPH11335870A (ja) * 1998-05-25 1999-12-07 Hitachi Metals Ltd 炭窒化チタン・酸化アルミニウム被覆工具
JP2001277006A (ja) * 2000-03-31 2001-10-09 Sumitomo Electric Ind Ltd 被覆切削工具
JP2001341007A (ja) * 2000-06-01 2001-12-11 Sumitomo Electric Ind Ltd 被覆切削工具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2969291B2 (ja) * 1991-03-28 1999-11-02 マツダ株式会社 耐摩耗性部材およびその製造法
US5597272A (en) * 1994-04-27 1997-01-28 Sumitomo Electric Industries, Ltd. Coated hard alloy tool
JP3230375B2 (ja) * 1994-06-15 2001-11-19 三菱マテリアル株式会社 硬質被覆層がすぐれた層間密着性および耐欠損性を有する表面被覆炭化タングステン基超硬合金製切削工具
DE69521410T2 (de) * 1994-10-04 2001-10-04 Sumitomo Electric Industries Beschichtete hartlegierung
SE514177C2 (sv) * 1995-07-14 2001-01-15 Sandvik Ab Belagt hårdmetallskär för intermittent bearbetning i låglegerat stål
JP2000042806A (ja) * 1998-07-31 2000-02-15 Toshiba Tungaloy Co Ltd 切削工具用積層被覆体
DE60038783D1 (de) * 2000-03-09 2008-06-19 Sulzer Metaplas Gmbh Hartschichten auf Komponenten
US7413591B2 (en) * 2002-12-24 2008-08-19 Kyocera Corporation Throw-away tip and cutting tool
DE102004007653A1 (de) * 2003-02-17 2004-08-26 Kyocera Corp. Oberflächenbeschichtetes Teil
US7581906B2 (en) * 2004-05-19 2009-09-01 Tdy Industries, Inc. Al2O3 ceramic tools with diffusion bonding enhanced layer
US8007929B2 (en) * 2004-07-29 2011-08-30 Kyocera Corporation Surface coated cutting tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328810A (ja) * 1994-05-31 1995-12-19 Mitsubishi Materials Corp 硬質被覆層がすぐれた層間密着性を有する表面被覆炭化タングステン基超硬合金製切削工具
JPH11335870A (ja) * 1998-05-25 1999-12-07 Hitachi Metals Ltd 炭窒化チタン・酸化アルミニウム被覆工具
JP2001277006A (ja) * 2000-03-31 2001-10-09 Sumitomo Electric Ind Ltd 被覆切削工具
JP2001341007A (ja) * 2000-06-01 2001-12-11 Sumitomo Electric Ind Ltd 被覆切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1736307A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056785A1 (de) 2005-11-17 2007-05-24 Boehlerit Gmbh & Co. Kg. Metallcarbonitridschicht und verfahren zum herstellen einer metallcarbonitridschicht
JP2009510257A (ja) * 2005-11-17 2009-03-12 ベーレリト ゲーエムベーハー ウント コー. カーゲー. 金属炭窒化物層及び金属炭窒化物層の製造方法
US7968218B2 (en) 2005-11-17 2011-06-28 Boehlerit GmbH & Co. K.G. Metal carbonitride layer and method for the production thereof
JP2008132547A (ja) * 2006-11-27 2008-06-12 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2010046757A (ja) * 2008-08-21 2010-03-04 Sumitomo Electric Hardmetal Corp 切削工具およびその製造方法
JP2013506570A (ja) * 2009-10-05 2013-02-28 セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング 金属材料の加工のためのバイト
JP2012096302A (ja) * 2009-10-30 2012-05-24 Mitsubishi Materials Corp 耐チッピング性にすぐれた表面被覆切削工具
JP2011156637A (ja) * 2010-02-03 2011-08-18 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
JP2012096303A (ja) * 2010-03-23 2012-05-24 Mitsubishi Materials Corp 耐チッピング性にすぐれた表面被覆切削工具
JP2015500148A (ja) * 2011-12-14 2015-01-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ 被覆切削工具及びその製造方法

Also Published As

Publication number Publication date
EP1736307A4 (en) 2011-10-05
JP4805819B2 (ja) 2011-11-02
JPWO2005092608A1 (ja) 2008-02-07
EP1736307A1 (en) 2006-12-27
US20080160338A1 (en) 2008-07-03
US20100098911A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
WO2005092608A1 (ja) 表面被覆部材および切削工具
JP4994367B2 (ja) 切削工具及びその製造方法、並びに切削方法
JP4658939B2 (ja) 表面被覆切削工具
JP5670661B2 (ja) 被覆された切削工具インサート
JP4854359B2 (ja) 表面被覆切削工具
WO2011105420A1 (ja) 切削工具
WO2006064724A1 (ja) 表面被覆切削工具
WO2006070538A1 (ja) 表面被覆切削工具
JP4942326B2 (ja) 表面被覆部材および表面被覆部材を用いた切削工具
JP2006305714A (ja) 表面被覆切削工具
JP4711691B2 (ja) 表面被覆部材および切削工具
JP2006281361A (ja) 表面被覆部材および表面被覆切削工具
EP1253124A1 (en) Highly adhesive surface-coated cemented carbide and method for producing the same
JP4142955B2 (ja) 表面被覆切削工具
JP2006205300A (ja) 表面被覆部材および切削工具
JP4284201B2 (ja) 表面被覆部材および切削工具
JP4713137B2 (ja) 表面被覆部材および切削工具
JP4936742B2 (ja) 表面被覆工具および切削工具
JP4360618B2 (ja) 表面被覆切削工具
JPH0569204A (ja) 硬質層被覆炭化タングステン基超硬合金製切削工具
JP4845490B2 (ja) 表面被覆切削工具
JP6050183B2 (ja) 切削工具
JP4593937B2 (ja) 表面被覆部材および切削工具
JP2005103657A (ja) 表面被覆切削工具
JP5822780B2 (ja) 切削工具

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511585

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005727661

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005727661

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10599547

Country of ref document: US