WO2005088407A1 - 像加熱装置 - Google Patents

像加熱装置 Download PDF

Info

Publication number
WO2005088407A1
WO2005088407A1 PCT/JP2005/003889 JP2005003889W WO2005088407A1 WO 2005088407 A1 WO2005088407 A1 WO 2005088407A1 JP 2005003889 W JP2005003889 W JP 2005003889W WO 2005088407 A1 WO2005088407 A1 WO 2005088407A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
power
temperature
value
image
Prior art date
Application number
PCT/JP2005/003889
Other languages
English (en)
French (fr)
Inventor
Hideki Tatematsu
Hirofumi Ihara
Tadafumi Shimizu
Masahiro Samei
Keiichi Matsuzaki
Tomoyuki Noguchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006519396A priority Critical patent/JP4460578B2/ja
Priority to US10/554,945 priority patent/US7379685B2/en
Publication of WO2005088407A1 publication Critical patent/WO2005088407A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • G03G15/205Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature specially for the mode of operation, e.g. standby, warming-up, error
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2016Heating belt
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2016Heating belt
    • G03G2215/2025Heating belt the fixing nip having a rotating belt support member opposing a pressure member
    • G03G2215/2032Heating belt the fixing nip having a rotating belt support member opposing a pressure member the belt further entrained around additional rotating belt support members
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2045Variable fixing speed

Definitions

  • the present invention relates to an image heating apparatus for heating an unfixed image on a recording medium, and more particularly to a fixing apparatus for an image forming apparatus such as a copying machine, a facsimile, and a printer of an electronic or electrostatic recording system. It relates to a useful image heating device.
  • an image heating apparatus of an induction heating (IH) type is known.
  • IH induction heating
  • an eddy current is generated by applying a magnetic field generated by an induction heating device to the image heating member, and the transfer paper and an OHP (Over Head Projector) are generated by the Joule heat of the image heating member caused by the eddy current.
  • An unfixed image on a recording medium such as a sheet is being heated.
  • the IH-type image heating apparatus has higher heat generation efficiency and can increase the fixing speed as compared with an image heating apparatus using a halogen lamp as a heat source of a heating unit for heating the image heating body.
  • a halogen lamp as a heat source of a heating unit for heating the image heating body.
  • an image heating apparatus using a thin-walled sleeve or belt as the image heating body has a small heat capacity of the image heating body and can generate heat in a short time, thereby improving the startup response. It can be significantly improved.
  • the power supplied to the heat source is calculated from a predetermined control law in accordance with the temperature detected by a temperature detecting means provided in contact with or close to the image heating element. Therefore, the image heating member is maintained at a predetermined fixing temperature (target temperature).
  • PID Proportional (proportional), Integral (integral), Derivative (differential) control including PI control and PD control is generally used.
  • PID control based on the trend of increase and decrease of the deviation between the temperature detected by the temperature detection means and the target temperature of the image heating element, the operation amount of the power control means is simply proportional to the deviation.
  • the control is performed by taking into account the example element and the element proportional to the derivative of the deviation.
  • the temperature information from the temperature detecting means is sampled at a certain cycle (sampling cycle). It is taken into the control law of PID control.
  • the image heating body in the IH-type image heating apparatus rises in temperature by being supplied with a predetermined amount of heat from its heat source.
  • the amount of heat received and the amount of heat received also change.
  • the amount of heat received by the image heating element from the heat source is approximately doubled when the fixing speed is 1Z2. For this reason, in this type of image heating apparatus, even if the input power to the heat source is constant, the slower the fixing speed, the faster the temperature of the image heating body.
  • the sampling time of the detected temperature information of the temperature detecting means is determined in consideration of the time lag.
  • the sampling time is shifted and the control result of the PID control cannot be fed back accurately.
  • the PID control of the amount of power supplied to the heat source is not optimally performed because the rate of temperature rise and the sampling time of the image heating body change due to a change in the fixing speed.
  • the temperature of the image heating body vibrates up and down with respect to a target temperature.
  • the value of the proportional gain K of the PID control is reduced as the fixing speed (rotation speed of the fixing film) is lower.
  • this image heating apparatus has a table of proportional gains K corresponding to three fixing speeds, and refers to the proportional gain K corresponding to the current fixing speed from the table card according to the driving speed signal.
  • the on / off time of the switching element is calculated by the control law of the PID control.
  • the temperature of the fixing film is controlled by adjusting the voltage application time to the exciting coil as the heat source by turning on and off the switching element.
  • Patent Document 1 JP-A-2002-169410
  • the method of calculating the PID control is changed according to the rotation speed of the image heating element, and only linear control is performed on the heat source. Power output is being made.
  • the control range is, for example, 100W-
  • two or more IGBTs which are switching elements of a power supply for PID control of the power supplied to the heat source, are usually used. This is because if the above-mentioned wide-range power control is performed using a single IGBT, the power supply output becomes unstable and accurate control cannot be performed.
  • control range of the switching element of the power supply that performs PID control of the power supplied to the heat source is divided into two areas, for example, 100 W—500 W and 500 W—1000 W, Two IGBTs are used to perform linear control individually for each area.
  • the PID control method is generally used as the temperature control of the IH method. This controls the amount of operation of the power control means in accordance with the deviation between the detected temperature and the target temperature. However, if the amount of operation does not fall below a certain value, PWM (Pulse Width Modulation) is used. It will be used in combination with control.
  • PWM Pulse Width Modulation
  • the pulse width is changed within the sampling period, and an output corresponding to ONDuty is created in a pseudo manner.
  • the pulse width cannot actually be changed steplessly, but it depends on the control cycle of the image forming apparatus in which the image heating apparatus is mounted. For example, in the PWM control, if the control cycle of the image forming apparatus is 1 Oms, and if the sampling cycle is 100 ms, a pulse width of 10 steps can be obtained.
  • An object of the present invention is to provide an image heating apparatus that can stably maintain the temperature of an image heating body at a target temperature even when the fixing speed changes, thereby achieving cost reduction and high efficiency. It is to be.
  • An image heating apparatus includes: an image heating body that heats an unfixed image on a recording medium; a heating unit that heats the image heating body; and a temperature detection unit that detects a temperature of the image heating body. Controlling the amount of heat generated by the heat generating means based on the temperature detected by the temperature detecting means so that the temperature of the image heating body is maintained at an image fixing temperature suitable for heat fixing of the unfixed image on the recording medium. And a control unit that switches between linear control and PWM control with a predetermined reference power to control the heat generation amount of the heat generation unit.
  • the invention's effect even when the fixing speed changes, the temperature of the image heating body can be stably maintained at the target temperature. Further, according to the present invention, since only one IGBT is used for the power supply, it is possible to configure the device at low cost and high efficiency.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of an image forming apparatus using an image heating device according to an embodiment of the present invention as a fixing device.
  • FIG. 2 is a schematic cross-sectional view showing a configuration of a fixing device according to the exemplary embodiment.
  • FIG. 3 is a block diagram showing a configuration of a heat generation amount control unit of the fixing device according to the exemplary embodiment.
  • FIG. 4 is a control state transition diagram of the fixing device according to the present embodiment.
  • FIG. 5 is an explanatory diagram of a method for obtaining a current value and a voltage value input to the inverter circuit of the fixing device according to the present embodiment.
  • FIG. 6A is an explanatory diagram of a method of obtaining a target power value when the image forming apparatus according to the present embodiment is connected to a ⁇ power supply,
  • FIG. 6B is an explanatory diagram of a method of obtaining a target power value when the image forming apparatus according to the present embodiment is connected to a 200-v power supply
  • FIG. 7A is an explanatory diagram of a method for obtaining a minimum power value when the image forming apparatus according to the present embodiment is connected to a ⁇ power supply
  • FIG. 7B is an explanatory diagram of a method for obtaining a minimum power value when the image forming apparatus according to the present embodiment is connected to a 200-v power supply
  • FIG. 8A is a relationship diagram showing a relationship between a target power value, a minimum power value, and a limit power value when the image forming apparatus according to the present embodiment is connected to a ⁇ power supply.
  • FIG. 8B is a relationship diagram showing a relationship between a target power value, a minimum power value, and a limit power value when the image forming apparatus according to the present embodiment is connected to a 200-v power supply.
  • FIG. 9A is an explanatory diagram of a method for obtaining lower limit data when the image forming apparatus according to the present embodiment is connected to a ⁇ power supply
  • FIG. 9B is an explanatory diagram of a method of acquiring lower limit value data when the image forming apparatus according to the present embodiment is connected to a 200-volt power supply
  • FIG. 10 is an operation flowchart of the fixing device according to the present embodiment in a power startup control state.
  • FIG. 16 is a graph showing a change in the belt temperature of the fixing belt when the process speed according to the present embodiment is 50 mmZsec and the control cycle is 200 msec.
  • FIG. 17 is a graph showing a change in the belt temperature of the fixing belt when the process speed according to the present embodiment is 200 mmZsec and the control cycle is 50 msec.
  • FIG. 18 is a graph showing a change in the belt temperature of the fixing belt when the process speed according to the present embodiment is 200 mmZsec and the control cycle is 200 msec.
  • FIG. 19 is an explanatory diagram showing a relationship among the process speed, a sampling period, and a temperature ripple according to the present embodiment.
  • FIG. 20 is a schematic diagram showing the power output of each percentage in the case of 10 divisions, 20 divisions, and 5 divisions in the PWM control according to the present embodiment.
  • FIG. 21 is an explanatory diagram of a maximum temperature portion of the fixing belt H and a sensing distance L to a temperature detection portion of the temperature detector of the fixing device in the fixing device according to the present embodiment.
  • FIG. 22A is a schematic diagram showing 100% power output when the sampling frequency in PWM control according to the present embodiment is 10 ms.
  • FIG. 22B is a schematic diagram showing a 50% power output when the sampling frequency is 20 ms in the PWM control according to the present embodiment.
  • FIG. 22C A schematic diagram showing 33% and 66% power output when the sampling frequency is 30 ms in the PWM control according to the present embodiment.
  • FIG. 22D In the case of sampling frequency force S40ms in PWM control according to the present embodiment Schematic showing 25%, 50% and 75% power output of
  • FIG. 22E A schematic diagram showing power output of 20%, 40%, 60%, and 80% when the sampling frequency is 50 ms in the PWM control according to the present embodiment.
  • FIG. 23A is a schematic diagram showing 10% power output of the bias control and the dispersion control in the case of 10 divisions in the PWM control according to the present embodiment.
  • FIG. 23B is a schematic diagram showing 20% power output of the bias control and the dispersion control in the case of 10 divisions in the PWM control according to the present embodiment.
  • FIG. 23C is a schematic diagram showing 30% power output of the bias control and the dispersion control in the case of 10 divisions in the PWM control according to the present embodiment.
  • FIG. 23D A schematic diagram showing 40% power output of the bias control and the dispersion control in the case of 10 divisions in the PWM control according to the present embodiment.
  • FIG. 23E A schematic diagram showing 50% power output of the bias control and the dispersion control in the case of 10 divisions in the PWM control according to the present embodiment.
  • FIG. 24 A graph of power in a method in which one cycle of PWM control according to the present embodiment is completed and the control moves to the next power control.
  • FIG. 25 A graph of power in a method of increasing output even within one cycle of PWM control when the calculation result of PID control according to the present embodiment exceeds the minimum power!
  • FIG. 26 is a graph of power in a method of shifting to the next linear control at the end of the PWM control cycle according to the present embodiment.
  • FIG. 27 is a graph of power in a method of immediately shifting to linear control when the calculation result of PID control according to the present embodiment exceeds the minimum power.
  • FIG. 1 is a schematic sectional view showing a configuration of an image forming apparatus using an image heating device according to an embodiment of the present invention as a fixing device.
  • the image forming apparatus 100 is a tandem type image forming apparatus. In the image forming apparatus 100, it contributes to color development of a color image.
  • the four color toner images are formed individually on one image carrier, superimposed on the intermediate transfer body sequentially and primary-transferred, and then the primary transfer image is collectively transferred (secondarily transferred) to a recording medium.
  • the image heating apparatus according to the present embodiment is not limited to the tandem type image forming apparatus, and it goes without saying that it can be mounted on any type of image forming apparatus.
  • symbols Y, M, C, and K at the end of the reference numerals attached to the respective components of the image forming apparatus 100 are as follows: Y is a yellow image, M is a magenta image, C is a cyan image, K Indicates components related to the image formation of the black image, and components having the same reference numerals have common configurations.
  • the image forming apparatus 100 includes the photosensitive drums 110Y, 110M, 1IOC, 110K as the four image carriers, and an intermediate transfer belt (intermediate transfer member) 170.
  • Image forming stations SY, SM, SC, and SK are provided around each of the photosensitive drums 110Y, 110M, HOC, and 110K.
  • the image forming stations SY, SM, SC, and SK are a charger 120Y, 12 OM, 120C, 120K, an exposure device 130, a developing device 140Y, 140M, 140C, 140 ⁇ , a transfer device 150Y, 150M, 150C, 150K, and a cleaning device. It consists of 160Y, 160M, 160C, 160k.
  • each of the photoconductor drums 110Y, 110M, HOC, 110K is rotated in the direction of arrow C.
  • the surface of each of the photoconductor drums 110Y, 110M, HOC, 110K is charged by a charger 120Y, 120M, 120C, 120K, a uniform potential, and a predetermined potential.
  • the electrostatic latent images for the specific colors formed on the photosensitive drums 110Y, 110M, HOC, 110K are developed by the developing units 140Y, 140M, 140C, 140K.
  • unfixed images of four colors that contribute to color image formation are formed on the photosensitive drums 110Y, 110M, HOC, and 110K.
  • the four-color toner images visualized on the photoconductor drums 110Y, 110M, HOC, and 110K are transferred by the transfer devices 150Y, 150M, 150C, and 150K to an endless intermediate transfer belt as the intermediate transfer body.
  • Note 170 [This is primarily transcribed. This [From here, photoconductor, ram 110Y, 110M, 110K
  • the four color toner images formed on C and 110K are sequentially superimposed to form a full color image on the intermediate transfer belt 170.
  • each of the photosensitive drums 110Y, 110M, HOC, 110K removes the residual toner remaining on the respective surfaces by the cleaning means 160Y, 160M, 160C, 160K. Is removed.
  • the exposure device 130 is arranged with a predetermined inclination with respect to the photosensitive drums 110Y, 110M, HOC, 110K.
  • the intermediate transfer belt 170 is suspended between a driving roller 171 and a driven roller 172, and is rotated in the direction of arrow A in FIG. 1 by the rotation of the driving roller 171.
  • a paper feed cassette 180 that stores recording paper P such as printing paper as a recording medium is provided below the image forming apparatus 100.
  • the recording paper P is fed out of the paper feed cassette 180 by the paper feed roller 181 one by one in the direction of arrow B along a predetermined sheet path.
  • the recording paper P sent to the sheet path is formed by the outer peripheral surface of the intermediate transfer belt 170 suspended by the driven roller 172 and the secondary transfer roller 190 that comes into contact with the outer peripheral surface of the intermediate transfer belt 170. It passes through the transfer nip. When passing through the transfer nip, the full-color image (unfixed image) formed on the intermediate transfer belt 170 is collectively transferred to the recording paper P by the secondary transfer roller 190.
  • the recording paper P is brought into contact with the outer peripheral surface of the fixing belt 230 and the outer peripheral surface of the fixing belt 230 suspended by the fixing roller 210 and the heating roller 220 of the fixing device 200 described in detail in FIG.
  • the sheet passes through a fixing nip N formed by the roller 240.
  • the unfixed full-color image batch-transferred by the transfer-top section is fixed on the recording paper P by heating.
  • FIG. 2 is a schematic cross-sectional view showing a configuration of a fixing device 200 using the image heating device according to one embodiment of the present invention.
  • the fixing device 200 uses an image heating device of an electromagnetic induction heating (IH induction heating) type as its image heating means.
  • the fixing device 200 includes a fixing roller 210, a heating roller 220 as a heating element, a fixing belt 230 as an image heating element, and the like.
  • the fixing device 200 includes a pressure roller 240, an induction heating device 250 as a heating unit, a separator 260 as a sheet separation guide plate, and sheet guide plates 281, 282, 283, 284 as sheet conveyance path forming members.
  • IH induction heating electromagnetic induction heating
  • the fixing device 200 heats the heat generating roller 220 and the fixing belt 230 by the action of the magnetic field generated by the induction heating device 250.
  • the fixing device 200 fixes an unfixed image on the recording paper P conveyed along the sheet guide plates 281, 282, 283, and 284 to a fixing-up portion between the heated fixing belt 230 and the pressure roller 240. Heat and fix with N.
  • the fixing device 200 using the image heating device according to the present embodiment does not use the fixing belt 230 and the fixing roller 210 also serves as the heat roller 220. It is configured to directly heat and fix the unfixed image on the recording paper P.
  • the heat generating roller 220 is formed of a rotating body made of a hollow cylindrical magnetic metal member such as iron, conoreto, nickel or an alloy of these metals. Heating roller
  • the heat generating roller 220 is rotatably supported at both ends by bearings fixed to a support side plate (not shown), and is rotatably driven by drive means (not shown).
  • the heat generating roller 220 has an outer diameter of 20 mm and a wall thickness of 0.3 mm, has a low heat capacity and a fast rise in temperature, and is adjusted so that its Curie point is 300 ° C or more! RU
  • the fixing roller 210 is configured by coating a metal core such as stainless steel with a solid or foamed heat-resistant elastic member made of silicone rubber.
  • the fixing roller 210 has an outer diameter of about 30 mm and is formed to be larger than the outer diameter of the heat generating roller 220.
  • the elastic member has a thickness of about 3 to 8 mm and a hardness of about 15 to 50 ° (Asker hardness: about 6 to 25 ° in JIS A hardness).
  • a pressure roller 240 is pressed against the fixing roller 210 so that the fixing roller 210 is pressed. Due to the pressure contact between the fixing roller 210 and the pressure roller 240, a fixing nip portion N having a predetermined width is formed at the pressure contact portion.
  • the fixing belt 230 is formed of a heat-resistant belt suspended between the heat roller 220 and the fixing roller 210.
  • the heat of the heat generating roller 220 is induction-heated by an induction heating device 250, which will be described later, so that the heat of the heat generating roller 220 is conducted at a contact portion with the heat generating roller 220, and the rotation thereof heats the entire circumference of the belt. Is done.
  • the heat capacity of the heat generating roller 220 is smaller than the heat capacity of the fixing roller 210, so that the heat generating roller 220 is rapidly heated. Warm-up time is reduced.
  • the fixing belt 230 is constituted by a heat-resistant belt having a multilayer structure including a heating layer, an elastic layer, and a release layer.
  • the heat generating layer is made of, for example, a metal having magnetism such as iron, cobalt, and nickel, or an alloy based on them.
  • the elastic layer is made of an elastic member such as silicone rubber or fluorine rubber provided so as to cover the surface of the heat generating layer.
  • the release layer may be made of a resin or rubber having good release properties such as PTFE (PolyTetra-Fluoro Ethylene), PFY (Per Fluoro Alkoxy Fluoroplastics), FEP (Fluorinated EtyienePropylenecopolymer), silicone rubber or fluoro rubber alone or rubber. It is formed by mixing.
  • PTFE PolyTetra-Fluoro Ethylene
  • PFY Per Fluoro Alkoxy Fluoroplastics
  • FEP Fluorinated EtyienePropylenecopolymer
  • silicone rubber or fluoro rubber alone or rubber. It is formed by mixing.
  • the heat generating layer is formed by the induction heating device 250.
  • the fixing belt itself can be heated by induction heating.
  • the fixing belt 230 itself can be directly heated by the induction heating device 250, thereby improving the heat generation efficiency and the response speed, so that there is little temperature unevenness and the reliability as a heating fixing means is high. Become.
  • the pressure roller 240 is, for example, provided by providing a metal member having high heat conductivity such as copper or aluminum on a surface of a metal core that also has a force, and providing an elastic member having high heat resistance and toner releasing property. It is configured.
  • a metal member having high heat conductivity such as copper or aluminum
  • a metal core that also has a force
  • an elastic member having high heat resistance and toner releasing property It is configured.
  • SUS may be used in addition to the above metals.
  • the pressure roller 240 presses against the fixing roller 210 via the fixing belt 230 as described above. As a result, a fixing nip N for nipping and conveying the recording paper P is formed.
  • the hardness of the pressure roller 240 is made harder than the hardness of the fixing roller 210, and the peripheral surface of the pressure roller 240 cuts into the peripheral surface of the fixing roller 210 via the fixing belt 230. In this manner, a fixing-top portion N is formed.
  • the pressure roller 240 has an outer diameter of about 30 mm, which is the same as that of the fixing roller 210.
  • Force Its wall thickness is about 2 to 5 mm, which is thinner than that of the fixing roller 210, and its hardness is also 20 to 60 ° ( Asker hardness: JIS A hardness is about 6-25 °), which is harder than the fixing roller 210.
  • the fixing device 200 having such a configuration, since the recording paper P is nipped and conveyed by the fixing nip N so as to follow the surface shape of the peripheral surface of the pressure roller 240, the recording paper P There is an effect that the surface force of the fixing belt 230 is easily released from the heat fixing surface.
  • a temperature detector 270 such as a thermistor, serving as a temperature detecting element that also has a high thermoresponsive element force, is provided on the inner peripheral surface of the fixing belt 230 near the entrance side of the fixing nip N. It is arranged in contact.
  • the induction heating device 250 determines the heating temperature of the heating roller 220 and the fixing belt 230 based on the temperature of the inner peripheral surface of the fixing belt 230 detected by the temperature detector 270, that is, the image fixing temperature of the unfixed image. Is controlled to be maintained at a predetermined temperature.
  • the induction heating device 250 is disposed so as to face the outer peripheral surface of the heat generating roller 220 via the fixing belt 230.
  • the induction heating device 250 is provided with a support frame 251 as a coil guide member made of a flame-retardant resin curved to cover the heat generating roller 220.
  • a thermostat 252 is provided at the center of the support frame 251 so that a temperature detecting portion thereof is partially exposed from the support frame 251 toward the heat generating roller 220 and the fixing belt 230.
  • the thermostat 252 When the thermostat 252 detects that the temperatures of the heating roller 220 and the fixing belt 230 have become abnormally high, the thermostat 252 includes an excitation coil 253 wound around the outer peripheral surface of the support frame 251 as a magnetic field generating means. The connection with the inverter circuit not shown is forcibly cut off.
  • the excitation coil 253 supports a single long excitation coil wire whose surface is insulated.
  • the heating roller 220 is alternately wound in the axial direction along the axis 51.
  • the length of the winding portion of the exciting coil 253 is set to be substantially the same as the length of the area where the fixing belt 230 and the heat roller 220 are in contact.
  • the excitation coil 253 is connected to an inverter circuit (not shown), and generates an alternating magnetic field when a high-frequency alternating current of 10 kHz to 1 MHz (preferably 20 kHz to 800 kHz) is supplied.
  • This alternating magnetic field acts on the heat generating layer of the heat generating roller 220 and the fixing belt 230 in the contact area between the heat generating roller 220 and the fixing belt 230 and in the vicinity thereof. Due to the action of the alternating magnetic field, an eddy current flows in the heat generating layer of the heat generating roller 220 and the fixing belt 230 in a direction that prevents the change of the alternating magnetic field.
  • the eddy current generates joule heat according to the resistance of the heat generating layer of the heat generating roller 220 and the fixing belt 230, and mainly generates heat in the contact area between the heat generating roller 220 and the fixing belt 230 and in the vicinity thereof.
  • the 220 and the fixing belt 230 are heated by electromagnetic induction.
  • the support frame 251 is provided with an arch core 254 and a side core 255 so as to surround the excitation coil 253.
  • These arch cores 254 and side cores 255 increase the inductance of the exciting coil 253 and improve the electromagnetic coupling between the exciting coil 253 and the heat roller 220.
  • this fixing device 200 by the action of the arch core 254 and the side core 255, a large amount of power can be supplied to the heat generating roller 220 even with the same coil current, and the warm-up time can be reduced. .
  • a resin housing 256 formed in a roof shape is attached to the support frame 251 so as to cover the arch core 254 and the thermostat 252 inside the induction heating device 250.
  • a plurality of heat radiation holes are formed in the housing 256 so that heat generated by the support frame 251, the exciting coil 253, the arch core 254, and the like is released to the outside.
  • the housing 256 may be made of a material other than resin such as aluminum.
  • a short ring 257 that covers the outer surface of the housing 256 is attached to the support frame 251 so as not to block the heat radiation holes formed in the housing 256.
  • the short ring 2 57 is located behind the arch core 254.
  • Short ring 257, arch core 254 By generating an eddy current in a direction to cancel a small leakage magnetic flux leaking to the outside, a magnetic field is generated in a direction to cancel the magnetic field of the leakage magnetic flux, thereby preventing unnecessary radiation due to the leakage magnetic flux.
  • FIG. 3 is a block diagram showing a configuration of a heating value control means of the fixing device 200.
  • the heating value control unit 300 includes a supply power calculation unit 301, a power setting unit 302, a temperature detection unit 303, a voltage value detection unit 304, a current value detection unit 305, and a power value calculation unit. 306 and a limiter control unit 307.
  • the image forming apparatus 100 starts the above-described image forming operation when a printing operation start command is sent from a not-shown host (a personal computer or the like used by a user).
  • a not-shown host a personal computer or the like used by a user.
  • the induction heating device 250 of the fixing device 200 heats the heat generating roller 220 and the fixing attachment 230 to heat and fix the unfixed full-color image secondary-transferred onto the recording paper P by the image forming operation. heat.
  • a supply power calculator 301 calculates the amount of power to be given to the induction heating device 250 that heats the heat roller 220 and the fixing belt 230 of the fixing device 200.
  • Power setting section 302 outputs the power value data calculated by supply power calculation section 301 to an inverter circuit (not shown) that drives excitation coil 253.
  • the power value output to the inverter circuit is controlled.
  • the amount of heat generated by the induction heating device 250 and the temperatures of the heat generating roller 220 and the fixing belt 230 for fixing an unfixed image on the recording paper P are controlled.
  • the information necessary to calculate the power supplied to the induction heating device 250 includes the image fixing temperature of the fixing device 200 and the power value actually supplied to the inverter circuit.
  • the image fixing temperature of the fixing device 200 is obtained from the temperature detecting unit 303.
  • the power value actually supplied to the inverter circuit is obtained from the power value calculation unit 306.
  • the temperature detecting unit 303 converts the analog output from the temperature detector 270 disposed in contact with the inner surface of the fixing belt 230 near the entrance side of the fixing nip N into a digital signal by an AD converter.
  • the data is converted into data and input to the supplied power calculation unit 301.
  • the power value calculation unit 306 outputs respective outputs from the voltage value detection unit 304 that detects the input voltage value of the inverter circuit and the current value detection unit 305 that detects the input current value of the inverter circuit. A method of obtaining the power value by multiplication is adopted.
  • the voltage value detection unit 304 converts the input voltage value of the inverter circuit from analog to digital and passes the digital data to the supply power calculation unit 301.
  • the current value detection unit 305 converts the input current value of the inverter circuit from analog to digital and passes the digital data to the supply power calculation unit 301. Note that the current value can be used for control by detecting the value of the current flowing through the exciting coil 253.
  • the supply power calculation unit 301 periodically (here, every 10 ms) obtains the data from the temperature detection unit 303 and the data from the power value calculation unit 306 while obtaining the calculated value ( Register value). As described above, the supply power calculation unit 301 sets the calculation value in the power setting unit 302, so that the temperatures of the heat roller 220 and the fixing belt 230 for fixing the unfixed image on the recording paper P are controlled.
  • the limiter control unit 307 plays a role of finally checking the power set in the power setting unit 302. That is, the limiter control unit 307 determines whether a value exceeding the predetermined limit value is set in the power setting unit 302 or the data in the power value calculation unit 306 is set in advance. It has a function of performing control to rewrite data set in the power setting unit 302 to a specified value when the value is larger than the specified value.
  • the limiter control unit 307 performs the same processing when the data from the power value calculation unit 301 is, for example, 1150 W or more.
  • FIG. 4 is a control state transition diagram of the calorific value control means 300 of the fixing device 200 using the image heating device according to the present embodiment.
  • an outline of the operation of the heat generation amount control means 300 of the fixing device 200 in each state will be described. Details will be explained using the operation flowcharts of each state.
  • the power supply to the inverter circuit is normally stopped (hereinafter, this is referred to as “IH control stopped state”). Call it).
  • IH control stopped state the power supply to the inverter circuit is normally stopped.
  • the heating roller 220 and the fixing belt 230 of the fixing device 200 are preheated to a certain temperature, for example, about 100 ° C.
  • the heat generation amount control means 300 applies to the inverter circuit a power smaller than the power applied to heat and fix the unfixed image on the recording paper P.
  • the heat generation amount control means 300 checks whether or not a signal for energizing the inverter circuit, for example, a zero-cross signal or the like is normally input, and outputs a signal to the inverter circuit. Check whether the power supply status is normal.
  • the zero-cross signal is periodically input as an interrupt signal to the heat generation amount control means 300 of the fixing device 200. By measuring this cycle, the high-state time, and the low-state time, it is determined whether the signal is normal. Make a decision.
  • the heat generation amount control means 300 stops the IH control operation. If the calorific value control means 300 is normal, IH control starts. After that, the data (lower limit value) to be set first is set in the power setting unit 302. The lower limit varies depending on the power supply voltage, and the minimum value that can be set from the viewpoint of protection of the inverter circuit is stored in ROM (not shown) as predetermined data.
  • the heat generation amount control means 300 determines, after a specified time (here, 300 ms) from the setting of the lower limit value, how much power has actually been applied to the value set in the power setting section 302. It is checked whether or not the power corresponding to the lower limit has been applied with reference to the data from the arithmetic unit 306.
  • the heating value control means 300 sets 70HEX in the power setting unit 302. Set. If the data of the power value calculation unit 306 after 300 ms is extremely smaller than 500 W (defined here as 200 W), the lower limit value is set again in the power setting unit 302, and after the specified time, the power value calculation unit Check the 306 data. When the retry operation is repeated a specified number of times (here, five times), the heat generation amount control means 300 stops the IH control as an error.
  • the data to be set secondly is determined depending on how much power is actually applied to the data set first.
  • Power setting for power setting section 302 is repeated in a similar manner, and is continued until target power is reached.
  • the target power value defines the maximum applicable power at a level at which the first print time is reduced as much as possible and at the same time the inverter circuit is not destroyed.
  • control state shifts to a state for maintaining the power near the target power value (hereinafter, this is referred to as a “power correction control state”).
  • control is performed to maintain the target power while adding / subtracting the power set value to the power setting unit 302 at one level!
  • the target power is 909W
  • the actual power when setting 90HEX in the power setting unit 302 is 915W based on the data from the power value calculation unit 306, the next time 8FHEX, which is the value obtained by subtracting one level, is set in the power setting unit 302.
  • the image fixing temperature of fixing device 200 increases.
  • the power correction control is stopped.
  • a temperature control transition instruction for executing temperature control (temperature control state) based on the image fixing temperature is issued from the image forming apparatus 100 to the heat generation amount control means 300 of the fixing apparatus 200.
  • This temperature control is performed by so-called PID control (details will be described later) using the difference between the image fixing temperature of the fixing device 200 and the fixing set temperature of the unfixed image, its integral value, and the differential value. Be done.
  • PID control a data value to be set in the power setting unit 302 is calculated by the supplied power calculating unit 301, and the calculated value is set in the power setting unit 302 every specified time (here, 10 ms).
  • control is performed based on the image fixing temperature of the fixing device 200.
  • the power setting unit 302 is, for example, an 8-bit register
  • the range of possible values of the operation result of the temperature control is 0 to 255 (8-bit upper limit).
  • the heat generation amount control means 300 of the fixing device 200 performs the calculation by the temperature control. If the result is set as it is, a value smaller than the lower limit or a value larger than the upper limit is set in the power setting unit 302, and there is a possibility that the inverter circuit is destroyed.
  • the heat generation amount control means 300 of the fixing device 200 performs PWM control according to the ratio between the lower limit and the calculated value as a countermeasure.
  • Examples of data necessary for the IH control include the following data.
  • CPU interrupts can be specified to be interrupt disabled and Z interrupt enabled, and interrupts are disabled when the power is turned on. Therefore, in the image forming apparatus 100, after the power is turned on, by specifying the interrupt permission, the interrupt is permitted, and the zero-cross signal can be input to the heat generation amount control unit 300.
  • the heat generation amount control means 300 starts a timer when the zero cross signal is input, and measures the time until the next zero cross signal input, that is, the occurrence of an interrupt.
  • the heat generation amount control means 300 determines the power supply frequency (50 Hz Z 60 Hz) based on the measured time.
  • the zero-cross cycle is 20 ms for 50 Hz, and 16.7 ms for 60 Hz. Therefore, in the heat generation amount control means 300 of the fixing device 200, 18 ms is set as a threshold value and 50 Hz is set as a threshold value and 60 Hz is set as a threshold value below it in consideration of a delay and a variation of an interrupt generation time. .
  • FIG. 5 is an explanatory diagram of a method of acquiring a current value and a voltage value performed by the power value calculating unit 306.
  • the calculation formulas for obtaining the actual current value and voltage value are variable depending on the power supply voltage system and the power supply frequency.
  • the power supply voltage system means that the image forming apparatus 100 is connected to a ⁇ system power supply, or connected to a 200v system power supply, and detected by a low-voltage power supply (not shown) to generate heat generation amount control means 300. It has been notified.
  • the actual current value Ival input to the inverter circuit and the AD converted digital data ADi have a linear relationship, and the coefficients thereof are experimentally obtained.
  • the actual voltage value Vval input to the inverter circuit and the AD converted digital data ADv have a linear relationship, and the coefficients thereof are experimentally obtained.
  • Vval 0.7148 XADv-33. 1930 [volt]... Equation 5—3
  • Vval l. 4048 XADv-63. 7730 [volt]... Equation 5—5
  • Vval l. 4048 XADv-63. 7730 [volt]... Equation 5— 7
  • the power value supplied to the inverter circuit is calculated by multiplying the current value and the voltage value obtained by the above equations by the power value calculation unit 306. In the fixing device 200, these calculations are repeated every 10 ms by the power value calculation unit 306, so that it is possible to cope with fluctuations in voltage and the like in real time, thereby realizing more reliable IH control.
  • (3) a method of acquiring the target power value performed by the heat generation amount control means 300 will be described.
  • the target power value is set from the viewpoint of reducing the first print time, which is one of the performance items of the image forming apparatus 100, and protecting the inverter circuit.
  • FIG. 6 is an explanatory diagram of a method of obtaining the target power value performed by the heat generation amount control means 300.
  • the target power value for section (1) (power supply voltage is 70.19v power and 95.21v) is
  • the target power value in section (2) (power supply voltage is 95.21v or more and 132.45v or less) is
  • the target power value in the section (4) (the power supply voltage is 137. 19v or more) is
  • the target power value is
  • the target power value in section (6) (power supply voltage is 198.97v or more and 264.89v or less) is
  • the target power value in the section (7) (the power supply voltage is 264.89v power and 274.70v) is
  • the target power value in section (8) (power supply voltage is 274.70v or higher) is
  • the optimal target power value for each voltage is set from the viewpoint of protecting the inverter circuit or securing the first print time.
  • the heating value control means 300 of the fixing device 100 can respond to voltage fluctuations in real time by repeating acquisition of the target power value every 10 ms, thereby realizing more reliable IH control. are doing.
  • This minimum power is set from the viewpoint of protection of the inverter circuit. As described above, when a large power is supplied to the inverter circuit or a power smaller than a certain value is supplied, the inverter circuit may be broken.
  • FIG. 7 is an explanatory diagram of a method of acquiring the minimum power value performed by the heat generation amount control means 300.
  • the minimum power value is variable depending on the power supply voltage.
  • the heat generation amount control means 300 can cope with voltage fluctuations and the like in real time, thereby realizing more reliable IH control.
  • the power supplied to the inverter circuit should not reach the limit power.
  • This limit power value is provided to guarantee a disturbance operation when the heat generation amount control means 300 malfunctions due to noise or the like and the value of the AD conversion data of the current value or the voltage value becomes an irregular value. ing.
  • the heat generation amount control means 300 reduces the supplied power to a value smaller than the target power (for example, 80% of the target power). Power value).
  • FIGS. 8A and 8B are relationship diagrams showing the relationship among the target power value, the minimum power value, and the limit power value in the ⁇ system and the 200v system.
  • the limit power is set at the target power + 250 [W] for both 1 OOv system and 200 v system! 8A and 8B
  • the minimum power is shown by plotting the minimum power value shown in FIG. 7 on a graph.
  • the lower limit value data is a register value corresponding to the minimum power value.
  • the lower limit value data is, for example, a minimum power of 525 W when the power supply voltage ⁇ as shown in FIG.
  • the lower limit data when the power supply voltage is 77 ⁇ is calculated as 77 (decimal) according to Equation 9-6 shown in FIG. 9A.
  • this register value is used instead of the power value (shown in watts) shown in Fig. 7.
  • the lower limit value data and its power value (wattage) are uniquely determined, but a slight variation occurs due to a variation in the inductance of the excitation coil 253 or the fixing device 200 or a temporal change due to actual use. There are cases.
  • this fixing device 200 after the heat value control means 300 sets the power in each phase of the IH control including the lower limit value data, the current value input to the inverter circuit and the like are set.
  • the voltage value power always feeds back the power.
  • the fixing device 200 eliminates the above-mentioned variation factor, and achieves higher reliability and IH control.
  • the lower limit register value is variable depending on the power supply voltage, and is obtained by a quadratic relational expression with the power supply voltage.
  • the coefficient of the quadratic relational expression is experimentally determined in consideration of the variation in the inductance of the fixing device 200 and the exciting coil 253.
  • This limit value register value is obtained by basically performing an experiment similar to the experiment for obtaining the lower limit data for the minimum power value and obtaining register data corresponding to the limit power value. .
  • the power setting is incremented to reach the target power during the power correction control.
  • the inductance of the excitation coil 253 or the fixing device 200 deviates from the component specification value due to a change with time, the target power is not achieved even if the power setting value is increased, that is, the power is hardly supplied.
  • the power set value will increase forever.
  • the heat generation amount control means 300 controls the power set value so that when the power set value exceeds the limit value, the supplied power becomes a value smaller than the target power (for example, a power value of 80% of the target power). .
  • the target power for example, a power value of 80% of the target power.
  • the temperature is detected at two places by the temperature detector 270. One is at the center of the fixing device 200 and the other is at the end of the fixing device 200.
  • the purpose of detecting the temperature at the center of the fixing device 200 is to fix an unfixed image on the recording paper P at an optimum image fixing temperature and to secure image quality.
  • the purpose of detecting the temperature at the end of the fixing device 200 is to detect an abnormal rise in the temperature of the non-sheet passing portion (end) of the fixing device 200 and perform a cool-down when small-size paper is continuously printed. It is.
  • Each of the detected temperatures of the temperature detector 270 for detecting the temperature of each section of the fixing device 200 is obtained through an AD converter in the temperature detection section 303, and is supplied to the supply power calculation section 301 as digital data. Passed.
  • the acquisition of the temperature data of the fixing device 200 by the temperature detecting unit 303 is performed every 10 ms, and is used for temperature control calculation and error detection of the fixing device 200.
  • FIG. 10 is an operation flowchart of the fixing device 200 in the power startup control state.
  • the image forming apparatus 100 When the image forming apparatus 100 receives a print request from an external PC (personal computer) or the like, the image forming apparatus 100 controls the heating of the fixing apparatus 200 to fix the unfixed image on the recording paper P. To start.
  • an external PC personal computer
  • the heat generation amount control means 300 performs power startup control.
  • preparations for acquiring various data for performing IH control are performed.
  • the input voltage to the inverter circuit, the input current to the inverter circuit, and the power supply voltage The data of the frequency of the fixing device 200 and the temperature of the fixing device 200 are obtained from the time when the power of the image forming apparatus 100 is turned on.
  • the input voltage to the inverter circuit is stored as digital data in a work memory (not shown) through an AD converter in a voltage value detection unit 304, and is passed to a power value calculation unit 306.
  • the input current to the inverter circuit is stored as digital data in a work memory (not shown) through an A / D converter in a current value detection unit 305 and passed to a power value calculation unit 306. Then, the power value supplied to the inverter circuit is calculated by multiplying the voltage value and the current value by the power value calculation unit 306.
  • the heat generation amount control means 300 of the fixing device 200 is configured such that these data acquisition and calculation operations are performed every 1 Oms, and even if the power supply voltage fluctuates, it can cope in real time.
  • the voltage value obtained here becomes a fluctuation parameter for changing the minimum power value (watt), target power value (watt), lower limit value (register value), and limit value (register value), which will be described later. Things.
  • a zero-cross signal is input as an interrupt signal to a CPU (not shown) in the heat generation amount control means 300 for performing main control of the fixing device 200 from when the power is turned on.
  • the frequency of the power supply voltage is measured by measuring the signal generation cycle.
  • an analog output from the temperature detector 270 which also has a thermosensitive element with high thermal response such as a thermistor, is supplied to the supply power calculation unit 301 through the AD converter of the temperature detection unit 303. Input as digital data.
  • step S1001 when IH control is started by the heat generation amount control means 300, first, a zero cross signal is checked (step S1001). Note that the check here is to check whether a zero-cross signal is input, but not to check the detailed cycle.
  • the cycle is about 20 ms, and the power supply frequency power 1 ⁇ 20 If the frequency is Hz, the cycle is about 16.7 ms. Therefore, if the zero-cross signal is normal, a zero-cross interrupt occurs to the CPU of the heating value control means 300 at this interval.
  • the error condition in this example is defined as a case in which a zero-cross interrupt is not generated continuously for 1 second or more, and when this state is reached, the operation of the image forming apparatus 100 is stopped as an error. (Step S1002).
  • the heat generation amount control means 300 sets a lower limit next (step S1003).
  • the lower limit value (register value) is a value corresponding to the minimum power.
  • the IH control signal is turned ON (step S 1004), and the heating operation of the fixing device 200 is started by the heat generation amount control means 300.
  • the heat generation amount control means 300 waits (waits) for 300 ms (step S1005). This is the time from when the power is set in the power setting unit 302 until the power is actually applied to the inverter circuit.
  • This wait time differs depending on the configuration of the inverter circuit.
  • a wait time of 300 ms is secured.
  • the 300 ms wait time is a time in the direction of increasing power.
  • a 1500 ms wait time is provided in the direction of power reduction.
  • the wait time in the direction of lowering the power also depends on the configuration of the inverter circuit.
  • the heat generation amount control means 300 checks the power applied to the inverter circuit (step S1006). This is checked with the power value obtained by multiplying the current value and the same voltage value input to the above-described inverter circuit by the power value calculation unit 306.
  • a force having a variation in inductance of the IH coil and the fixing device 200, a secular change, etc. returns a value of almost the minimum power as the power applied to the inverter circuit.
  • the value of this minimum power varies depending on the power supply voltage and the voltage input to the inverter circuit, but as shown in Fig. 7, it is 300 W at the minimum when the voltage is less than 185 V in the 200 V system.
  • the heat generation amount control means 300 determines that the electric power is small and performs an error process. However, this At this point, the power setting and power check retry operation are performed without stopping the IH control as a service call error immediately.
  • the heat generation amount control means 300 executes the retry operation more than the specified number of times, the IH control is stopped as a service call error and the entire operation of the image forming apparatus 100 is stopped.
  • the heat generation amount control means 300 checks whether the retry counter is greater than “5”, that is, whether the number of retries has exceeded five (step S1008). If the number of retries does not exceed five, the process returns to step S1003 and the power setting operation by the heat generation amount control means 300 is repeated. If the number of retries exceeds five, the heat generation amount control means 300 stops the IH control as a service call error and stops all operations of the image forming apparatus 100 (step S1009).
  • the heat generation amount control means 300 next checks whether there is a temperature control shift request (step S1010). This is determined based on the output from the temperature detection unit 303 which detects the temperature of the fixing device 200. As described above, in the present embodiment, thermistors, which are the temperature detection units 303, are provided at two places, the center part and the end part of the fixing device 200. 1S The temperature control of the fixing device 200 is performed using the central part. Is a thermistor.
  • This temperature control shift request is issued when the temperature reaches 20 ° C lower than the set temperature for fixing the unfixed image on the recording paper P (depending on the process speed, type of recording medium, environmental conditions, etc.). Issued by the heating value control means 300 (step S1011). For example, if the fixing temperature is 170 ° C., a temperature control shift request is issued when the temperature of the fixing device 200 reaches 150 ° C.
  • the transition to the temperature control at this point is rare.
  • the standby time is short, intermittent printing, or the like, the next printing is started in a state where the fixing device 200 has been sufficiently warmed in the previous printing.
  • step S1012 the power value to be set next time is calculated (step S1012). This is calculated in advance from the difference or ratio between the power value detected (calculated) 300 ms after the lower limit was set earlier and the minimum power value corresponding to the input voltage of the inverter circuit at that time (illustrated in the figure). The power set value to be set next time is calculated based on the above.
  • This power set value corresponds to the target power value. For example, if the minimum power value is 500W and the lower limit is set, and the actual power value returned is S400W, the actual value is smaller than the theoretical value, so the next set value should be set larger. . Conversely, if 600W is returned here, the actual value is larger than the theoretical value, so the next setting value should be set smaller.
  • step S1013 The power set value calculated by the supplied power calculation unit 301 in this way is actually set (step S1013), and after a 300 ms wait (step S1014), the heating value ⁇ 1 ⁇ control means 300 It is checked whether or not the power reaches the target power (step S1015). If the target power has not been reached at this point, the heat generation amount control means 300 returns to step S1010 and repeats the subsequent processing. On the other hand, if the target power has been reached, the heat generation amount control means 300 ends the power startup control and shifts to power correction control.
  • FIG. 11 is an operation flowchart of the fixing device 200 in the power correction control state.
  • the heat generation amount control unit 300 first sets the power set value immediately after the transition to the power startup control power to the power correction control as an upper limit value, as shown in FIG. It is stored in a work area (not shown) (step S1101). This upper limit value is used as the upper limit value when performing the temperature control calculation later.
  • the upper limit value in the case of shifting to the temperature control during the power start-up control is a predetermined value (in this example, the power corresponding to about 80% of the target power). (Set value).
  • the variable amount of the power set value is performed at the levels of "+1" and "1-1.” That is, in the power correction control, the supply power calculation unit 301 performs the power correction control while setting the power set value to “1 1” when the target power is exceeded, and “+1” when the power is lower than the target power. . In addition, the supply power calculation unit 301 performs power compensation from the power startup control. Immediately after the shift to the normal control, the target power is exceeded, and the power set value is set to "1 1" (step S1102).
  • the supply power calculation unit 301 performs a power check passed from the power value calculation unit 306 (step S1103), and if the power value is equal to or higher than the target power, sets the power set value to "1 1". (Step S1104) Wait for 1500ms (Step SI 105). If the power value is lower than the target power value, the supply power calculation unit 301 sets the power set value to “+1” (step S1106) and waits for 300 ms (step S1107).
  • the supply power calculation unit 301 refers to the upper limit value and the target power stored in the work area immediately after shifting from the power start-up control to the power correction control during the power correction control, and sets "+1 The power setting value obtained by “1” or “1 1” is compared (step S1108).
  • the supplied power calculation unit 301 updates the value as a new upper limit value (Ste S1109). After that, the supply power calculation unit 301 checks the temperature control shift request (step S1110), and if there is no request, returns to step S1103 and repeats the processing.
  • FIG. 12 is an operation flowchart of the fixing device 200 in a temperature control state.
  • a reference value for calculating a power set value in the case of the power start-up control and the power correction control is a power value calculated by a power value calculation unit 306 from a current value and a power value input to the inverter circuit. It is.
  • the reference value for calculating the power set value in the case of the temperature control is based on the output of the thermistor (temperature detecting unit 303) at the center of the fixing device 200, that is, the temperature at the center of the fixing device 200. is there.
  • the calculation method for obtaining the power set value performed by the supplied power calculation unit 301 includes a set fixing temperature (process speed, type of recording medium, and environmental conditions) for fixing an unfixed image to recording paper P. Etc.) and the actual temperature at the center of the fixing device 200
  • the power set value is calculated using the PID calculation (step S1201).
  • the supply power calculation unit 301 starts checking the thermistor at the end of the fixing device 200 from the point of transition to the temperature control. If the difference between the temperature and the temperature at the end of the fixing device 200 exceeds a certain specified value, an IH control is stopped as an error.
  • the specified temperature is set at 30 ° C in this example. That is, the fixing device 20
  • the fixing temperature of an unfixed image (hereinafter, simply referred to as “fixing temperature”) according to the process speed, the type of recording medium, environmental conditions, and the like, and the thermistor at the center of the fixing device 200
  • the power set value is calculated according to the difference from the output (hereinafter, simply referred to as “fixing device temperature”) (hereinafter, this is referred to as “deviation”).
  • the power set value is set according to the cumulative value of the difference (hereinafter referred to as an integral value) and the difference between the previous difference and the present difference (hereinafter, referred to as a "differential value"). Is calculated.
  • PID control for calculating the power set value by multiplying the deviation and its integral value by a certain coefficient is adopted.
  • the equation for PID control is as shown in Equation 12-1 below.
  • Power set value Kp ⁇ E (n) + Kt X ⁇ E (n) ⁇ ⁇ Equation 12-1
  • Kp proportional constant
  • Kt integral constant
  • ⁇ ( ⁇ ) deviation
  • the proportionality constant ⁇ and the integration constant Kt are calculated using a limit sensitivity method (not shown), which is one of known methods for obtaining them. After that, taking into account the characteristics of the control system (in this example, the variation in the inductance of the fixing device 200 and the exciting coil 253, etc.), the overshoot when the first set temperature is reached and the temperature ripple during the steady control are within the allowable range. The value is fine-tuned to determine the final coefficient.
  • the sampling cycle of the temperature control in this example is 10 ms, and the power set value is calculated according to the control law of Equation 12-1 in this cycle.
  • the value calculated by the PID calculation when the value calculated by the PID calculation is directly applied to the inverter circuit as the power set value, the value may exceed the upper limit value or the limit value, or may exceed the lower limit value. It will output a value below. In this case, the power of protection of the inverter circuit is extremely disadvantageous, and in the worst case, the inverter circuit may be destroyed.
  • the PID calculated value is constantly compared with the upper limit and the lower limit already calculated or predetermined in the phase of the temperature control.
  • the power is set to protect the inverter circuit.
  • the supplied power calculation unit 301 compares the magnitude relationship between the PID calculation value and the lower limit (step S1202).
  • PID calculation value> lower limit value then the magnitude relationship between the PID calculation value and the upper limit value is compared (step S1203).
  • the supply power calculation unit 301 sets the PID calculation value as a power setting value (step S1204).
  • step S1205 if the PID calculation value exceeds the upper limit, supply power calculator 301 sets the upper limit as the power set value (step S1205). Thereafter, the process proceeds to a check for a temperature control termination request (step S1212).
  • step S1202 the temperature control in the case where the calculated PID value falls below the lower limit value in step S1202 will be described. This is the processing from step S1206 to step S1211 in FIG. There is no problem if the PID calculation value can be directly set as the power set value, but as described above, the power set value is limited for protecting the inverter circuit.
  • the PID calculation value exceeds the upper limit value immediately after the transition from the power correction control to the temperature control, and is unlikely to occur during steady temperature control. However, when the calculated PID value is less than the lower limit, it frequently occurs when the fixing device 200 is warmed up and low power is sufficient.
  • step S1202 when the PID calculation value falls below the lower limit value in step S1202, the supply power calculation unit 301 sets the lower limit value for the power set value (step S1206). Next, the supply power calculation unit 301 calculates the duty of ONZOFF of the PWM control (step S1207).
  • the power is set according to the ONZOFF Duty of the PWM control calculated as described above.
  • the sampling period of the PWM control uses a value experimentally obtained while changing the process speed and the like. For example, the sampling period is set to 40 ms at the steady speed (100 mmZs) in this example.
  • the supply power calculation unit 301 waits for the ON time in the PWM control calculated from the ONZOFFDuty of the PWM control and the sampling cycle of the PWM control (step S1208). After the wait for the ON time, the IH control signal is turned off (step S1209), and the wait is performed for the OFF time in the PWM control (step S1210).
  • step S1211 the supply power calculation unit 301 turns on the IH control signal after waiting for the OFF time (step S1211), and proceeds to the temperature control end check (step S1212).
  • step S1212 the supply power calculation section 301 ends temperature control and stops IH control. If there is no request for terminating temperature control, return to step S1201 to continue temperature control. To do.
  • the heat generation amount control means 300 controls the power setting value so that the supplied power becomes a value smaller than the target power (for example, 80% of the target power). In addition, IH control failure due to the destruction of the inverter circuit or malfunction of the inverter circuit is prevented.
  • a fixing device using this type of image heating device be configured to use one IGBT as a power source. Therefore, if linear control is performed using only one IGBT, the high-frequency switching loss increases at low power, and the minimum power of the IH output drops to only about 400 W. There are drawbacks.
  • the calorific value control means 300 of the fixing device 200 performs linear control if the calculation result power of the PID control is equal to or higher than the minimum power obtained as the IH output, and When power is required, PWM control is performed with the minimum power.
  • the calorific value control means 300 of the fixing device 200 determines whether or not the temperature control calculation can be performed within a range in which the temperature can be controlled with one IGBT without swinging according to the rotation speed of the fixing belt 230. Judge and switch the control method to linear control or PWM control.
  • the calorific value of fixing belt 230 can be controlled by one calculation method without having to switch the calculation method of supply power calculation unit 301 according to the fixing speed. Therefore, in the heat generation amount control means 300 of the fixing device 200, the power supply to the heat source of the fixing belt 230 can be PID controlled by the switching element (IGBT) having only one stone, thereby reducing the cost and increasing the efficiency. It is possible to perform the dangling, and the temperature of the fixing belt 230 can be stably maintained at the target temperature.
  • the switching element IGBT
  • FIG. 14 is an explanatory diagram showing the relationship between the power supply voltage of the fixing device 200 and the minimum power.
  • the minimum power of the fixing device 200 varies depending on the power supply voltage, and the higher the power supply voltage, the higher the minimum power.
  • the reference power the minimum power that can be output by one IGBT
  • the minimum power exceeds 600W, so that the reference power may increase.
  • the reference power may be, for example, 400W or 500W or more depending on the power supply voltage which is not always a constant value such as 500W described above.
  • the heat generation amount control means 300 of the fixing device 200 the reference power is changed by the power supply voltage. According to this configuration, the amount of heat generated by the fixing belt 230 can be controlled without any problem even when the use environment is different.
  • the switching between the linear control and the PWM control is performed, for example, by monitoring the current and voltage of the output to the inverter circuit, calculating the power, and using an appropriate table by a table according to the power. Select the control!
  • the image forming apparatus 100 Change the sampling cycle of PWM control according to the process speed!
  • the process speed is high, it is necessary to reflect the manipulated variable quickly. Therefore, a short sampling period is suitable, and as the process speed is reduced, a long sampling period is suitable. This is remarkable when the heated portion of the fixing belt 230 is separated from the temperature detection portion of the temperature detector 270.
  • the operation amount is reflected on the heating, and the optimal sampling period corresponding to the time constant at which the operation amount is read and sensed by the temperature detector 270 exists. For this reason, in the fixing device 200, the temperature ripple increases when the optimum sampling cycle is deviated.
  • FIG. 19 is an explanatory diagram showing a relationship among the process speed, the sampling period, and the temperature ripple.
  • the optimum value can be considered only by the sampling time.
  • the sampling time when the sampling time is long, the level of the manipulated variable can be obtained finely.
  • the power sampling time is short, as shown in FIGS.
  • the power output is controlled in divided or divided into five sections, only a few steps can take the level of the operation amount in combination with the control cycle of the image forming apparatus 100. [0236] Therefore, in this PWM control, a more complicated optimum value exists. In this example
  • the heat generating roller 220 and the fixing belt 230 generate heat S in accordance with the magnetic flux distribution of the induction heating device 250. Therefore, the fixing belt 230 has a maximum temperature point according to the shape of the exciting coil 253, which is not uniformly heated when viewed in the cross-sectional direction of the heat generating roller 220.
  • the temperature detector 270 that detects the temperature of the fixing belt 230 be installed at this maximum temperature point, since the result of temperature control will be immediately reflected.
  • the temperature detector 270 is installed in a place where the power is slightly deviated, for example, due to the shape of the exciting coil 253.
  • the fixing device 200 uses the fixing belt 230 as the image heating member as shown in FIG. 21, the sensing distance L from the highest temperature portion H to the temperature detecting portion of the temperature detector 270 (this example). , 25mm) is longer.
  • the temperature of the fixing belt 230 heated at the highest temperature portion is sensed by the temperature detector 270 with a delay of a predetermined time.
  • the sampling cycle of the fixing device 200 is such that, at the process speed, V, the maximum temperature portion H is not less than the time required to move the sensing distance L to the temperature detection portion of the temperature detector 270. No. It is desirable that the sampling cycle be 1Z2 or less of the time required for the maximum temperature portion H force to move the sensing distance L to the temperature detection portion of the temperature detector 270 at the process speed.
  • the time required for sensing is about 500 ms, and the optimal control cycle is 200 ms.
  • the process speed is as fast as 200 mmZs, such as when fixing a black and white image (printing 20 sheets per minute) or a color image (printing 16 sheets per minute)
  • the sensing time is about 125 ms
  • the optimal control cycle is 50 ms.
  • the sampling period is usually fixed and the pulse width is changed, but in this case, only the value of the number of divisions according to the control period of the image forming apparatus 100 is taken. I can't. Therefore, as shown in FIGS. 22A to 22E, it is possible to obtain a finer output level by changing the sampling cycle of the PWM control according to the calculation result of the PID control.
  • the heat generation amount control means 300 of the fixing device 200 normally shifts to the next linear control when the PWM control cycle ends. However, in this control, it takes time for the PWM control force to shift to linear control.
  • the first mode of the image heating apparatus of the present invention includes a heating element for heating an unfixed image on a recording medium, a heating unit for heating the image heating element, and a temperature of the image heating element.
  • Temperature detecting means for detecting the temperature of the image heating body based on the temperature detected by the temperature detecting means such that the temperature of the image heating body is maintained at an image fixing temperature suitable for heating and fixing the unfixed image onto the recording medium.
  • a heating value control means for controlling the heating value of the heating means, wherein the heating value control means controls the heating value of the heating means by switching between linear control and PWM control at a predetermined reference power. It adopts the configuration to do.
  • the heat generation amount of the heat generation means is controlled by the PWM control when the output is low, and when the output is high, the linear control is performed by the linear control.
  • the amount of heat generated by the heat generating means can be controlled.
  • the calorific value of the heat generating means can be controlled by one arithmetic method without having to switch the calculation method of the heat generating amount control means according to the fixing speed. Therefore, in this configuration, the power supply to the heat source of the heating means can be controlled by PID with only one switching element (IGBT), thereby achieving low cost and high efficiency. This makes it possible to stably maintain the temperature of the image heating body at the target temperature.
  • the reference power changes with a power supply voltage.
  • the power supply voltage differs depending on the country or region. In an environment where the power supply voltage is low, low power can be output. Therefore, the reference power can be reduced, and, for example, linear control can be performed up to about 400 W. Conversely, in an environment where the power supply voltage is high, low power cannot be output. According to this configuration, in addition to the effect of the invention described in claim 1, since the reference power changes with the power supply voltage, the amount of heat generated by the heat generating means can be controlled without any problem even in different use environments. .
  • the switching between the linear control and the PWM control is performed, for example, by monitoring the output current and voltage, calculating the power, and selecting an appropriate control from a table corresponding to the power.
  • a third aspect of the image heating apparatus of the present invention includes an image heating element for heating an unfixed image on a recording medium, a heating unit for heating the image heating element, and a temperature of the image heating element.
  • a temperature detecting means for detecting the temperature of the image heating element, and a temperature detected by the temperature detecting means so as to maintain an image fixing temperature suitable for heating and fixing the unfixed image onto the recording medium.
  • a heat generation amount control means for controlling a heat generation amount of the heat generation means, wherein the heat generation amount control means switches between linear control and PWM control at a predetermined reference power to control the heat generation means. The heat generation amount is controlled, and the sampling period of the PWM control is changed according to the rotation speed of the image heating body.
  • the temperature of the image heating body can be appropriately set, the temperature ripple can be reduced, and the control width can be reduced. Can be narrowed.
  • the optimum value of the sampling cycle of the PWM control actually changes due to the time constant of the temperature detecting means or other factors, it is set to 1Z2 or less of the time required for sensing by the temperature detecting means. This is preferred.
  • a fourth aspect of the image heating apparatus is the image heating apparatus according to the third aspect, wherein the heat generation amount control means includes any one of a plurality of rotation speeds of the image heating body.
  • the heat generation amount control means includes any one of a plurality of rotation speeds of the image heating body.
  • a configuration is adopted in which the value of the sampling period of the PWM control is set to be larger at the lower one of the two rotation speeds.
  • the heat generation amount control means detects the temperature from a highest temperature portion of the image heating body.
  • a configuration is employed in which the PWM control is performed at a sampling cycle shorter than the time required for the image heating body to move at a predetermined process speed to the distance to the temperature detecting portion of the means.
  • the distance is shorter than the time required for the image heating body to move at a predetermined process speed!
  • the PWM control is performed at a sampling cycle, so that the control of the heat generation amount control means is ensured. It can be reflected.
  • the PWM control is performed based on the duty ratio of the PWM control calculated by the heat generation amount control means.
  • the control sampling period is changed.
  • the sampling period is usually constant and the pulse width is changed. In this case, only the value of the number of divisions according to the control period of the image forming apparatus can be taken. According to this configuration, since the sampling cycle of the PWM control is changed according to the duty ratio of the PWM control, a finer output level can be obtained.
  • the heating value control means disperses the on-time of the PWM control within a control cycle.
  • the configuration is adopted.
  • the reference point is usually fixed and the width is changed.
  • the output can be turned on and off according to the control period of the image forming apparatus. It is also possible to obtain a considerable output by dispersing the ON time and the OFF time. According to this configuration, since the on-time of the PWM control is dispersed within the control cycle, the off-time does not continue for a long time, and the temperature ripple is reduced.
  • An eighth aspect of the image heating apparatus is the image heating apparatus according to the first aspect, wherein the heat generation amount control means is configured so that the PID control cycle of the linear control is the same as that of the PWM control.
  • the control is switched to the linear control without waiting for one cycle of the PWM control to end.
  • the next control cannot be performed until a predetermined sampling period ends. For this reason, even if the PID control is calculated for each control cycle of the image forming apparatus, for example, in the case of a PWM control cycle of 200 ms, the output cannot be changed to the next output only after 200 ms. This is not a problem in the case of PWM control alone, but only in the case of returning to linear control for some reason such as environmental temperature change or power supply voltage change. The reaction will be delayed. According to this configuration, when the condition for transition to the linear control is reached, the control is switched to the linear control without waiting for the end of one cycle of the PWM control, so that control delay due to a sampling cycle can be prevented.
  • a ninth aspect of the fixing device of the present invention includes image heating means for heating an unfixed image on a recording medium, and uses the image heating apparatus according to the first aspect as the image heating means. Take the configuration.
  • the image heating device according to the first aspect is used as the image heating unit, the temperature of the image heating body can be stably maintained at the target temperature at low cost.
  • a highly efficient fixing device can be provided.
  • a tenth aspect of the image forming apparatus of the present invention includes: an image forming unit that forms an unfixed image on a recording medium; and a fixing unit that heats and fixes the unfixed image formed on the recording medium. And a configuration using the fixing device according to the ninth aspect as the fixing unit.
  • the fixing device according to the ninth aspect is used as the fixing unit, it is possible to heat and fix an unfixed image on a recording medium at an appropriate fixing temperature.
  • An image forming apparatus can be provided.
  • the present invention can stably maintain the temperature of an image heating body at a target temperature even if the fixing speed of a fixing device of an image forming apparatus such as a copying machine, a facsimile, and a printer changes, and can reduce the cost. It is an object of the present invention to make it possible to perform a dangling and a high efficiency dangling.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)
  • General Induction Heating (AREA)
  • Control Of Temperature (AREA)

Abstract

 定着速度が変化しても像加熱体の温度を目標温度に安定して保つことができ、低コスト化及び高効率化を図る像加熱装置。この装置において、定着装置200の発熱量制御手段300では、温度制御の演算を定着ベルト230の回転数に応じて振らずに、PID制御の演算結果が、1石のIGBTで温度制御ができる範囲か否かを判断し、IH出力として得られる最低電力以上であればリニア制御を行い、最低電力以下の電力を求められた場合には、最低電力でPWM制御を行う。これにより、供給電力演算部301の演算方法を定着速度に応じて切り替える必要がなく、1つの演算方法で定着ベルト230の発熱量を制御することができる。従って、1石のみのスイッチング素子(IGBT)で定着ベルト230の熱源への供給電力をPID制御することができ、低コスト化及び高効率化を図ることができ、定着ベルト230の温度を目標温度に安定して保つことができるようになる。

Description

明 細 書
像加熱装置
技術分野
[0001] 本発明は、記録媒体上の未定着画像を加熱する像加熱装置に関し、特に電子写 真方式あるいは静電記録方式の複写機、ファクシミリ及びプリンタ等の画像形成装置 の定着装置に用いて有用な像加熱装置に関する。
背景技術
[0002] この種の像加熱装置として、電磁誘導加熱(IH; induction heating)方式の像加熱 装置が知られている。この像加熱装置は、像加熱体に誘導加熱装置により生成した 磁界を作用させて渦電流を発生させ、この渦電流による前記像加熱体のジュール発 熱により、転写紙及び OHP (Over Head Projector )シートなどの記録媒体上の未定 着画像を加熱している。
[0003] この IH方式の像加熱装置は、前記像加熱体を加熱する発熱手段の熱源としてハロ ゲンランプを用いた像加熱装置と比較して、発熱効率が高く定着速度を速くすること ができるという利点を有している。また、前記像加熱体として肉厚の薄いスリーブもしく はベルトなどを用いた像加熱装置は、像加熱体の熱容量が小さくこの像加熱体を短 時間で発熱させることができ、立ち上がり応答性を著しく向上させることができる。
[0004] ところで、 IH方式の像加熱装置では、通常、前記熱源への供給電力が像加熱体に 当接又は近接配設された温度検出手段の検出温度に応じて所定の制御則から算出 される値で制御されること〖こより、前記像加熱体が所定の定着温度(目標温度)に維 持されている。
[0005] 前記制御則としては、一般に、 PI制御及び PD制御を含む PID (Proportional (比例 )、 Integral (積分)、 Derivative (微分))制御が用いられて!/、る。この PID制御では、前 記温度検出手段の検出温度と前記像加熱体の目標温度との偏差の増減の動向に 基づいて電力制御手段の操作量を偏差に比例させるだけでなぐ偏差の積分に比 例する要素、偏差の微分に比例する要素を加味して制御して 、る。
[0006] また、前記温度検出手段からの温度情報は、ある周期(サンプリング周期)でサンプ リングされ、 PID制御の制御則に取り込まれる。
[0007] なお、この種の像加熱装置では、定着画像の光沢度を上げたり、 OHPシート上の 定着画像の透過性を向上させたりする場合にその定着速度を通常時よりも減速させ るようにしている。また、この種の像加熱装置では、未定着画像の加熱定着に多くの 熱量を必要とする厚紙などを記録媒体として使用する場合にも、その定着速度を通 常時よりも減速させるようにして ヽる。
[0008] しかしながら、 IH方式の像加熱装置では、熱源に供給する電力を前記 PID制御に より制御した場合、加熱定着される記録媒体の種類に応じて定着速度が変わると、そ の像加熱体の温度制御が不安定になるおそれがあった。
[0009] すなわち、 IH方式の像加熱装置における像加熱体は、その熱源により所定の熱量 が供給されることにより昇温するが、像加熱体の発熱効率が高いため定着速度が変 わると前記熱源力も受け取る熱量も変わってくる。例えば、前記熱源から前記像加熱 体が受け取る熱量は、定着速度が 1Z2になると約 2倍になる。このため、この種の像 加熱装置においては、その熱源への投入電力が一定であっても、定着速度が遅くな ると像加熱体の昇温速度が速くなる。
[0010] また、この種の像加熱装置においては、前記 PID制御の演算結果である電力調整 の実行から、その制御結果である前記像加熱体の温度変化を前記温度検出手段が 検出するまでに、ある程度のタイムラグがある。
[0011] そこで、この種の像加熱装置では、前記タイムラグを考慮して、前記温度検出手段 力もの検出温度情報のサンプリングタイムを決定するようにしている。しかしながら、こ のような像加熱装置では、定着速度が変わると前記サンプリングタイムがずれて前記 PID制御の制御結果を正確にフィードバックできなくなる。
[0012] このように、この種の像加熱装置においては、定着速度の変化によって像加熱体の 昇温速度やサンプリングタイムが変わるため、その熱源への供給電力量の PID制御 が最適に行われず、前記像加熱体の温度が目標温度に対し上下に振動してしまう 欠点があった。
[0013] すなわち、熱源への供給電力量を PID制御する像加熱装置では、定着速度が遅 い場合、供給電力変化に対する像加熱体の温度変化が大きぐ PID制御の比例ゲイ ン Kの値が大きいと、 PID制御によるスイッチング素子(IGBT; Insulated Gate Bipolar Transistor)の操作量の演算結果が振動しやすい。このように、定着速度が遅い場合 には、像加熱体の温度がオーバーシュート等で目標温度になかなか収束しない。こ れとは逆〖こ、定着速度が速い場合には、 PID制御の比例ゲイン Kの値が小さいと、前 記スイッチング素子の操作量が外乱による像加熱体の温度変化に追随できなくなる
[0014] このため、この種の像加熱装置では、上述のような像加熱体の温度の振動により記 録媒体の面内での定着画像の均一なダロス及び OHPシート上での画像の均一な透 過性が得られないといった問題があった。また、この種の像加熱装置においては、そ の像加熱体の温度が目標温度を含む定着可能温度領域から外れると、ホットオフセ ット及びコールドオフセットといった定着不良が発生する問題があった。
[0015] そこで、前記 PID制御によるスイッチング素子の操作量の決定方式を、前記像加熱 体としての定着フィルムの回転速度に応じて変更するようにした像加熱装置が提案さ れている (例えば、特許文献 1など参照)。
[0016] この特許文献 1に開示された像加熱装置においては、その定着速度 (前記定着フィ ルムの回転速度)が遅いほど、 PID制御の比例ゲイン Kの値を小さくしている。例え ば、この像加熱装置では、 3つの定着速度に対応した比例ゲイン Kのテーブルを有し 、駆動速度信号に応じて前記テーブルカゝら現在の定着速度に対応する比例ゲイン K を参照して PID制御の制御則により前記スイッチング素子のオン Zオフ時間を算出し ている。そして、この像加熱装置では、前記スイッチング素子のオン Zオフにより前記 熱源としての励磁コイルへの電圧印加時間を調整して前記定着フィルムの温度制御 を行っている。
特許文献 1:特開 2002-169410号公報
発明の開示
発明が解決しょうとする課題
[0017] ところで、前記従来の像加熱装置にお!、ては、前記 PID制御の演算の方法を像加 熱体の回転速度に応じて変更しており、前記熱源に対してリニア制御のみで電源出 力を出すようにしている。また、このリニア制御では、その制御範囲が例えば 100W— 1000Wのように広い場合、通常、前記熱源への供給電力を PID制御する電源のス イッチング素子である IGBTを 2石以上使用している。これは、上述のような広範囲の 電力制御を 1石の IGBTを用いて行った場合、電源出力が不安定になり正確な制御 ができなくなるためである。
[0018] つまり、この種の従来の像加熱装置では、その熱源への供給電力を PID制御する 電源のスイッチング素子の制御範囲を、例えば 100W— 500Wと 500W— 1000Wと の 2つのエリアに分け、 2石の IGBTによりエリアごとに個別にリニア制御を行うようにし ている。
[0019] このように、この種の従来の像加熱装置にぉ 、ては、その熱源への供給電力を複 数個の IGBTを用いて PID制御して!/、るため、コストが高くかつ効率も悪くなると!、う 不具合があった。
[0020] このようなことから、この種の像加熱装置としては、低コストで高効率な構成を考えた 場合、その電源として 1石の IGBTを用いる構成であることが望ましい。しかし、このよ うな構成の像加熱装置は、低電力時に高周波スイッチング損失が増加し、 IHの出力 として最低電力が 400W程度までしか下がらな ヽと 、う欠点がある。
[0021] 前述したように、 IH方式の温度制御としては、 PID制御方式が一般に用いられてい る。これは、検出温度と目標温度との偏差に応じて電力制御手段の操作量を制御す るものであるが、操作量がある一定値より下がらない場合、 PWM (Pulse Width Modulation;パルス幅変調)制御と組み合わせて用いることになる。
[0022] PWM制御は、そのサンプリング周期内でパルス幅を変更し、 ONDutyに相当する 出力を擬似的に作成するものである。しかし、 PWM制御では、実際には無段階にパ ルス幅を変更できるわけではなぐ像加熱装置が搭載されている画像形成装置の制 御周期に依存する。例えば、 PWM制御においては、画像形成装置の制御周期が 1 Omsであった場合、サンプリング周期が 100msであれば、 10段階のパルス幅が得ら れること〖こなる。
[0023] 従って、 PWM制御では、サンプリング周期を長く取ると多段階の細かい制御が行 えるが、周期が長いため操作量が反映されるのに時間がかかる。また、 PWM制御で は、サンプリング周期が短いとすぐに操作量を反映できるが、操作量の粗い制御とな る。さらに、 PWM制御では、一般的に厚紙や OHPシートの定着を行う場合、通常の 定着速度より低速で定着させることを行うが、定着速度が変わると温度制御が不安定 になるという課題がある。
[0024] すなわち、 PWM制御では、定着速度が変わると、前記像加熱体を加熱する発熱 手段の単位時間あたりの熱供給量は同じであるのに、供給される熱の消費速度が変 わるため、定着速度が低速になるほど制御に対する反応が過敏になる。
[0025] さらに、熱容量が小さいベルトを用いた像加熱装置においては、前述したように、像 加熱体の加熱部位と前記温度検出手段の検出部位とが離れているため、定着速度 が遅いほど加熱結果を検出するまでのタイムラグが大きい。このため、この像加熱装 置では、前記タイムラグに適したサンプリング周期で制御しな 、と制御結果が正確に フィードバックされない。
[0026] このように、前記従来の像加熱装置では、サンプリング周期が適当でないと特に定 着速度の低速時において温度制御が乱れ、目標温度に対して上下に振動する温度 リップルが大きくなる。
[0027] また、前記従来の像加熱装置では、 PWM制御のサンプリング周期を長く取ると細 かい制御が得られる力 制御結果が出力に反映されるのに時間が力かってしまう。
[0028] 本発明の目的は、定着速度が変化しても像加熱体の温度を目標温度に安定して 保つことができ、低コスト化及び高効率化を図ることができる像加熱装置を提供する ことである。
課題を解決するための手段
[0029] 本発明の像加熱装置は、記録媒体上の未定着画像を加熱する像加熱体と、前記 像加熱体を加熱する発熱手段と、前記像加熱体の温度を検出する温度検出手段と 、前記像加熱体の温度が前記記録媒体への前記未定着画像の加熱定着に適した 画像定着温度に保たれるように前記温度検出手段の検出温度に基づいて前記発熱 手段の発熱量を制御する発熱量制御手段と、を有し、前記発熱量制御手段が、所定 の基準電力でリニア制御と PWM制御とを切り替えて前記発熱手段の発熱量を制御 する構成を採る。
発明の効果 [0030] 本発明によれば、定着速度が変化しても像加熱体の温度を目標温度に安定して保 つことができる。また、本発明によれば、電源に用いる IGBTが 1石のみであるので、 低コストで高効率に構成することができる。 図面の簡単な説明
[0031] [図 1]本発明の一実施の形態に係る像加熱装置を定着装置として用いた画像形成装 置の構成を示す概略断面図
[図 2]本実施の形態に係る定着装置の構成を示す概略断面図
[図 3]本実施の形態に係る定着装置の発熱量制御手段の構成を示すブロック図
[図 4]本実施の形態に係る定着装置の制御状態遷移図
[図 5]本実施の形態に係る定着装置のインバータ回路に入力される電流値と電圧値 の取得方法の説明図
[図 6A]本実施の形態に係る画像形成装置が ΙΟΟν系電源に接続されている場合の 目標電力値の取得方法の説明図、
[図 6B]本実施の形態に係る画像形成装置が 200v系電源に接続されている場合の 目標電力値の取得方法の説明図
[図 7A]本実施の形態に係る画像形成装置が ΙΟΟν系電源に接続されている場合の 最小電力値の取得方法の説明図
[図 7B]本実施の形態に係る画像形成装置が 200v系電源に接続されている場合の 最小電力値の取得方法の説明図
[図 8A]本実施の形態に係る画像形成装置が ΙΟΟν系電源に接続されている場合の 目標電力値と最小電力値とリミット電力値との関係を示す関係図
[図 8B]本実施の形態に係る画像形成装置が 200v系電源に接続されている場合の 目標電力値と最小電力値とリミット電力値との関係を示す関係図
[図 9A]本実施の形態に係る画像形成装置が ΙΟΟν系電源に接続されている場合の 下限値データの取得方法の説明図
[図 9B]本実施の形態に係る画像形成装置が 200v系電源に接続されている場合の 下限値データの取得方法の説明図
[図 10]本実施の形態に係る定着装置の電力立上制御状態における動作フローチヤ ート
圆 11]本実施の形態に係る定着装置の電力補正制御状態における動作フローチヤ ート
圆 12]本実施の形態に係る定着装置の温度制御状態における動作フローチャート [図 13]本実施の形態に係る定着装置の電力の変化及び定着ベルトのベルト温度の 変化を示すグラフ
圆 14]本実施の形態に係る定着装置の電源電圧と最低電力との関係を示す説明図 [図 15]本実施の形態に係るプロセス速度が 50mmZsec、制御周期が 50msecの場 合の前記定着ベルトのベルト温度の変化を示すグラフ
[図 16]本実施の形態に係るプロセス速度が 50mmZsec、制御周期が 200msecの 場合の前記定着ベルトのベルト温度の変化を示すグラフ
[図 17]本実施の形態に係るプロセス速度が 200mmZsec、制御周期が 50msecの 場合の前記定着ベルトのベルト温度の変化を示すグラフ
[図 18]本実施の形態に係るプロセス速度が 200mmZsec、制御周期が 200msecの 場合の前記定着ベルトのベルト温度の変化を示すグラフ
[図 19]本実施の形態に係る前記プロセス速度とサンプリング周期と温度リップルとの 関係を示す説明図
[図 20]本実施の形態に係る PWM制御における 10分割、 20分割、 5分割の場合の 各%の電源出力を示す模式図
[図 21]本実施の形態に係る定着装置における定着ベルトの最高温度部位 H力ゝら温 度検出器の温度検出部位までのセンシング距離 Lの説明図
[図 22A]本実施の形態に係る PWM制御におけるサンプリング周波数が 10msの場合 の 100%の電源出力を示す模式図
[図 22B]本実施の形態に係る PWM制御におけるサンプリング周波数が 20msの場合 の 50%の電源出力を示す模式図
[図 22C]本実施の形態に係る PWM制御におけるサンプリング周波数が 30msの場 合の 33%及び 66%の電源出力を示す模式図
[図 22D]本実施の形態に係る PWM制御におけるサンプリング周波数力 S40msの場合 の 25%, 50%及び 75%の電源出力を示す模式図
[図 22E]本実施の形態に係る PWM制御におけるサンプリング周波数が 50msの場合 の 20%, 40%, 60%及び 80%の電源出力を示す模式図
[図 23A]本実施の形態に係る PWM制御における 10分割の場合の片寄せ制御と分 散制御との 10%の電源出力を示す模式図
[図 23B]本実施の形態に係る PWM制御における 10分割の場合の片寄せ制御と分 散制御との 20%の電源出力を示す模式図
[図 23C]本実施の形態に係る PWM制御における 10分割の場合の片寄せ制御と分 散制御との 30%の電源出力を示す模式図
[図 23D]本実施の形態に係る PWM制御における 10分割の場合の片寄せ制御と分 散制御との 40%の電源出力を示す模式図
[図 23E]本実施の形態に係る PWM制御における 10分割の場合の片寄せ制御と分 散制御との 50%の電源出力を示す模式図
[図 24]本実施の形態に係る PWM制御の 1周期が終わって力 次の制御に移る方式 における電力のグラフ
[図 25]本実施の形態に係る PID制御の演算結果が最低電力を超えた場合に PWM 制御の 1周期内でも出力を増力!]させる方式における電力のグラフ
[図 26]本実施の形態に係る PWM制御周期が終了した時点で次のリニア制御に移行 する方式における電力のグラフ
[図 27]本実施の形態に係る PID制御の演算結果が最低電力を上回った時点で即リ ニァ制御に移行する方式における電力のグラフ
発明を実施するための最良の形態
[0032] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、各 図において同一の構成又は機能を有する構成要素及び相当部分には、同一の符号 を付してその説明は繰り返さない。
[0033] 図 1は、本発明の一実施の形態に係る像加熱装置を定着装置として用いた画像形 成装置の構成を示す概略断面図である。この画像形成装置 100は、タンデム方式の 画像形成装置である。画像形成装置 100においては、カラー画像の発色に寄与する 4色のトナー像力 つの像担持体上に個別に形成され中間転写体上に順次重ね合 わせて一次転写された後、この一次転写像が記録媒体に一括転写(二次転写)され る。
[0034] なお、本一実施の形態に係る像加熱装置は、前記タンデム方式の画像形成装置 のみに限定されず、あらゆる方式の画像形成装置に搭載可能であることはいうまでも ない。
[0035] また、図 1において、画像形成装置 100の各構成要素に付した符号の末尾の記号 Y, M, C, Kは、 Yはイェロー画像、 Mはマゼンタ画像、 Cはシアン画像、 Kはブラッ ク画像のそれぞれの画像形成に関与する構成要素を示しており、同一符号の構成 要素はそれぞれ共通した構成を有して 、る。
[0036] 画像形成装置 100は、前記 4つの像担持体としての感光体ドラム 110Y, 110M, 1 IOC, 110K及び中間転写ベルト(中間転写体) 170を有している。各感光体ドラム 1 10Y, 110M, HOC, 110Kの周囲には、画像形成ステーション SY, SM, SC, SK が配設されている。画像形成ステーション SY, SM, SC, SKは、帯電器 120Y, 12 OM, 120C, 120K、露光装置 130、現像器 140Y, 140M, 140C, 140Κ、転写器 150Y, 150M, 150C, 150K、及びクリーニング装置 160Y, 160M, 160C, 160 κで構成されている。
[0037] 図 1において、各感光体ドラム 110Y, 110M, HOC, 110Kは、それぞれ矢印 C 方向に回転される。各感光体ドラム 110Y, 110M, HOC, 110Kの表面は、帯電器 120Y, 120M, 120C, 120K【こ Jり一様【こ所定の電位【こそれぞれ帯電される。
[0038] 帯電された各感光体ドラム 110Y, 110M, HOC, 110Kの表面には、露光装置 1 30により特定色の画像データに対応したレーザビームの走査線 130Y, 130M, 13 OC, 130K力 S照射される。これにより、各感光体ドラム 110Y, 110M, HOC, 110K の表面に前記特定色ごとの静電潜像が形成される。
[0039] 感光体ドラム 110Y, 110M, HOC, 110K上に形成された前記特定色ごとの静電 潜像は、現像器 140Y, 140M, 140C, 140Kにより顕像ィ匕される。これにより、各感 光体ドラム 110Y, 110M, HOC, 110K上に、カラー画像の発色に寄与する 4色の 未定着画像が形成される。 [0040] 感光体ドラム 110Y, 110M, HOC, 110K上に顕像化された 4色のトナー像は、 転写器 150Y, 150M, 150C, 150Kにより、前記中間転写体としての無端状の中 転写べノレ卜 170【こ一次転写される。これ【こより、感光体ド、ラム 110Y, 110M, 110
C, 110K上に形成された 4色のトナー像が順次重ね合わされて中間転写ベルト 170 上にフルカラー画像が形成される。
[0041] 各感光体ドラム 110Y, 110M, HOC, 110Kは、中間転写ベルト 170にトナー像 を転写した後、クリーニング手段 160Y, 160M, 160C, 160Kにより、それぞれの表 面に残って 、る残留トナーが除去される。
[0042] ここで、露光装置 130は、感光体ドラム 110Y, 110M, HOC, 110Kに対して所 定の傾きをもって配置されている。また、中間転写ベルト 170は、駆動ローラ 171と従 動ローラ 172とに懸架されており、駆動ローラ 171の回転により、図 1において矢印 A 方向へ回動される。
[0043] 一方、画像形成装置 100の下部には、記録媒体としての印字用紙などの記録紙 P が収納された給紙カセット 180が設けられている。記録紙 Pは、給紙ローラ 181により 給紙カセット 180から 1枚ずつ所定のシート経路に沿って矢印 B方向に送り出される
[0044] 前記シート経路に送り出された記録紙 Pは、従動ローラ 172に懸架された中間転写 ベルト 170の外周面と中間転写ベルト 170の外周面に接触する二次転写ローラ 190 とで形成される転写二ップ部を通過する。記録紙 Pには、前記転写二ップ部を通過す る際に、中間転写ベルト 170上に形成されたフルカラー画像 (未定着画像)が二次転 写ローラ 190により一括転写される。
[0045] 次いで、記録紙 Pは、図 2に詳述する定着装置 200の定着ローラ 210及び発熱ロー ラ 220に懸架された定着ベルト 230の外周面と定着ベルト 230の外周面に接触する 加圧ローラ 240とで形成される定着-ップ部 Nを通過する。これにより、記録紙 Pには 、前記転写-ップ部で一括転写された未定着のフルカラー画像が加熱定着される。
[0046] なお、画像形成装置 100には、その筐体の一部を成す開閉自在のドア 101が設け られており、このドア 101の開閉により、定着装置 200の交換やメンテナンス及び前 記用紙搬送路に詰まった記録紙 Pのジャム処理などを行なうことができる。 [0047] 次に、画像形成装置 100に搭載されている定着装置について説明する。図 2は、 本発明の一実施の形態に係る像加熱装置を用いた定着装置 200の構成を示す概 略断面図である。
[0048] 定着装置 200は、その像加熱手段として、電磁誘導加熱 (IH induction heating)方 式の像加熱装置を用いている。図 2に示すように、定着装置 200は、定着ローラ 210 、発熱体としての発熱ローラ 220、及び像加熱体としての定着ベルト 230などを備え ている。また、定着装置 200は、加圧ローラ 240、発熱手段としての誘導加熱装置 25 0、シート分離ガイド板としてのセパレータ 260及びシート搬送経路形成部材としての シートガイド板 281, 282, 283, 284などを備えている。
[0049] 定着装置 200は、誘導加熱装置 250により生成した磁界の作用によって発熱ロー ラ 220及び定着ベルト 230を加熱する。定着装置 200は、シートガイド板 281, 282, 283, 284に沿って搬送される記録紙 P上の未定着画像を、加熱された定着ベルト 2 30と加圧ローラ 240との定着-ップ部 Nで加熱定着する。
[0050] なお、本一実施の形態に係る像加熱装置を用いた定着装置 200は、定着ベルト 23 0を使用せず、定着ローラ 210が発熱ローラ 220を兼ねた構成とし、この定着ローラ 2 10により記録紙 P上の未定着画像を直接加熱定着するように構成したものであって ちょい。
[0051] 図 2において、発熱ローラ 220は、例えば、鉄、コノ レト、ニッケル又はこれら金属の 合金等の中空円筒状の磁性金属部材からなる回転体で構成されている。発熱ローラ
220は、図示しない支持側板に固定されたベアリングにより、その両端が回転可能に 支持されており、図示しない駆動手段によって回転駆動される。また、発熱ローラ 22 0は、外径が 20mm、肉厚が 0. 3mmの低熱容量で昇温の速い構成となっており、そ のキュリー点が 300°C以上となるように調整されて!、る。
[0052] 定着ローラ 210は、例えばステンレススチール等の金属製の芯金を、ソリッド状又は 発泡状の耐熱性を有するシリコーンゴムカゝらなる弾性部材で被覆して構成されている 。定着ローラ 210は、その外径が 30mm程度あり発熱ローラ 220の外径よりも大きく 形成されている。前記弾性部材は、その肉厚を 3— 8mm程度、硬度を 15— 50° (A sker硬度: JIS A の硬度では 6— 25° )程度としている。 [0053] また、定着ローラ 210には、加圧ローラ 240が圧接して!/、る。この定着ローラ 210と 加圧ローラ 240との圧接により、その圧接部に所定幅の定着-ップ部 Nが形成される
[0054] 定着ベルト 230は、発熱ローラ 220と定着ローラ 210とに懸架された耐熱性ベルト で構成されている。定着ベルト 230は、後述する誘導加熱装置 250により発熱ローラ 220が誘導加熱されることで、発熱ローラ 220との接触部位で発熱ローラ 220の熱が 伝導され、その回転によってベルト全周に亘つて加熱される。
[0055] このような構成の定着装置 200は、発熱ローラ 220の熱容量が定着ローラ 210の熱 容量よりも小さくなるので、発熱ローラ 220が急速に加熱されるようになり、その加熱 定着開始時におけるウォームアップ時間が短縮される。
[0056] 定着ベルト 230は、発熱層、弾性層及び離型層を備えた多層構造の耐熱性ベルト で構成されている。前記発熱層は、例えば、鉄、コバルト、ニッケル等の磁性を有する 金属又はそれらを基材とする合金を基材としている。前記弾性層は、前記発熱層の 表面を被覆するようにして設けられたシリコーンゴム又はフッ素ゴム等の弾性部材か らなる。前記離型層は、 PTFE (PolyTetra- Fluoro Ethylene )、 PFY (Per Fluoro Alkoxy Fluoroplastics )、 FEP (FluorinatedEtyienePropylenecopolymer )、シリコ ~~ン ゴム又はフッ素ゴム等の離型性の良好な榭脂あるいはゴムを単独もしくは混合して形 成されている。
[0057] このような構成の定着ベルト 230は、仮に、定着ベルト 230と発熱ローラ 220との間 に何らかの原因で異物が混入してギャップが生じたとしても、その発熱層を誘導加熱 装置 250により誘導加熱して定着ベルト自体を発熱させることができる。このように、 定着ベルト 230は、それ自体を誘導加熱装置 250により直接加熱でき、その発熱効 率が良くなり、またレスポンスが速くなるので、温度ムラが少なく加熱定着手段として の信頼'性が高くなる。
[0058] 加圧ローラ 240は、例えば、銅又はアルミ等の熱伝導性の高い金属製の円筒部材 力もなる芯金の表面に、耐熱性及びトナー離型性の高!、弾性部材を設けて構成され ている。前記芯金としては、上記金属以外に SUSを使用しても良い。
[0059] 加圧ローラ 240は、前述したように、定着ベルト 230を介して定着ローラ 210に圧接 することにより、記録紙 Pを挟持搬送する定着-ップ部 Nを形成している。図示の定着 装置 200にお ヽては、加圧ローラ 240の硬度を定着ローラ 210の硬度よりも硬くし、 加圧ローラ 240の周面が定着ベルト 230を介して定着ローラ 210の周面に食い込む ようにして定着-ップ部 Nを形成して 、る。
[0060] このため、加圧ローラ 240は、その外径は定着ローラ 210と同じ 30mm程度である 力 その肉圧が 2— 5mm程度と定着ローラ 210よりも薄ぐその硬度も 20— 60° (As ker硬度: JIS A の硬度では 6— 25° )程度と定着ローラ 210よりも硬く構成されて いる。
[0061] このような構成の定着装置 200においては、記録紙 Pが加圧ローラ 240の周面の表 面形状に沿うように定着-ップ部 Nにより挟持搬送されるので、記録紙 Pの加熱定着 面が定着ベルト 230の表面力も離れやすくなるという効果がある。
[0062] なお、定着-ップ部 Nの入口側近傍の定着ベルト 230の内周面には、サーミスタな どの熱応答性の高い感温素子力もなる温度検出手段としての温度検出器 270が当 接配置されている。
[0063] 誘導加熱装置 250は、温度検出器 270が検出した定着ベルト 230の内周面の温 度に基づいて、発熱ローラ 220及び定着ベルト 230の加熱温度、つまり前記未定着 画像の画像定着温度が所定の温度に維持されるように制御される。
[0064] 次に、誘導加熱装置 250の構成について説明する。誘導加熱装置 250は、図 2〖こ 示すように、定着ベルト 230を介して発熱ローラ 220の外周面に対向するように配置 されている。誘導加熱装置 250には、発熱ローラ 220を覆うように湾曲形成された難 燃性の榭脂からなるコイルガイド部材としての支持フレーム 251が設けられて 、る。
[0065] 支持フレーム 251の中心部には、サーモスタット 252力 その温度検出部分を支持 フレーム 251から発熱ローラ 220及び定着ベルト 230に向けて一部表出させるように して配設されている。
[0066] サーモスタット 252は、発熱ローラ 220及び定着ベルト 230の温度が異常高温度に なったことを検出したときに、支持フレーム 251の外周面に卷回された磁界発生手段 としての励磁コイル 253と図示しないインバータ回路との接続を強制遮断する。
[0067] 励磁コイル 253は、表面が絶縁された長い一本の励磁コイル線材を支持フレーム 2 51に沿って発熱ローラ 220の軸方向に交互に巻き付けて構成されている。この励磁 コイル 253の卷回部分の長さは、定着ベルト 230と発熱ローラ 220とが接する領域と 略同じ長さになるように設定されて ヽる。
[0068] 励磁コイル 253は、図示しないインバータ回路に接続され、 10kHz— 1MHz (好ま しくは 20kHz— 800kHz)の高周波交流電流が給電されることにより交番磁界を発 生する。この交番磁界は、発熱ローラ 220と定着ベルト 230との接触領域及びその近 傍部において発熱ローラ 220及び定着ベルト 230の発熱層に作用する。この交番磁 界の作用により、発熱ローラ 220及び定着ベルト 230の発熱層の内部に前記交番磁 界の変化を妨げる方向の渦電流が流れる。
[0069] この渦電流は、発熱ローラ 220及び定着ベルト 230の発熱層の抵抗に応じたジュ 一ル熱を発生させ、主として発熱ローラ 220と定着ベルト 230との接触領域及びその 近傍部において発熱ローラ 220及び定着ベルト 230を電磁誘導加熱する。
[0070] 一方、支持フレーム 251には、励磁コイル 253を囲むようにして、アーチコア 254及 びサイドコア 255が設けられている。これらのアーチコア 254及びサイドコア 255は、 励磁コイル 253のインダクタンスを増大させ、励磁コイル 253と発熱ローラ 220との電 磁結合を良好にする。
[0071] 従って、この定着装置 200においては、アーチコア 254及びサイドコア 255の作用 により、同じコイル電流でも多くの電力を発熱ローラ 220へ投入することが可能となり 、そのウォームアップ時間を短縮することができる。
[0072] また、支持フレーム 251には、誘導加熱装置 250の内部のアーチコア 254及びサ 一モスタツト 252を覆うように屋根型に形成された榭脂製のハウジング 256が取り付け られている。このハウジング 256には、複数の放熱孔が形成されており、支持フレー ム 251、励磁コイル 253及びアーチコア 254等力も発生した熱が外部に放出されるよ うになつている。なお、ハウジング 256は、例えばアルミなどの榭脂以外の素材で形 成されたものであってもよ 、。
[0073] また、支持フレーム 251には、ハウジング 256に形成された放熱孔を塞がないように ハウジング 256の外面を覆うショートリング 257が取り付けられている。ショートリング 2 57は、アーチコア 254の背面に位置している。ショートリング 257は、アーチコア 254 の背面力 外部に漏れ出るわずかな漏れ磁束を打ち消す方向に渦電流が発生する ことで、前記漏れ磁束の磁界を打ち消す方向に磁界が発生して前記漏れ磁束による 不要な輻射を防止する。
[0074] 次に、本一実施の形態に係る像加熱装置を用いた定着装置 200の発熱量制御手 段の構成及びその機能について説明する。図 3は、定着装置 200の発熱量制御手 段の構成を示すブロック図である。
[0075] 図 3に示すように、発熱量制御手段 300は、供給電力演算部 301、電力設定部 30 2、温度検出部 303、電圧値検出部 304、電流値検出部 305、電力値演算部 306及 びリミッタ制御部 307などを有して 、る。
[0076] 画像形成装置 100は、図示しないホスト(ユーザ使用のパーソナルコンピュータ等) より印字動作開始指令が送られると、前述した画像形成動作を開始する。これにより 、定着装置 200の誘導加熱装置 250は、前記画像形成動作により記録紙 P上に二 次転写された未定着のフルカラー画像を加熱定着するために発熱ローラ 220及び定 着べノレト 230をカロ熱する。
[0077] 図 3において、供給電力演算部 301は、定着装置 200の発熱ローラ 220及び定着 ベルト 230を加熱する誘導加熱装置 250に与えるべき電力量を演算する。
[0078] 電力設定部 302は、供給電力演算部 301で算出された電力値データを、励磁コィ ル 253を駆動するインバータ回路 (不図示)へ出力する。
[0079] この電力設定部 302に設定された値 (レジスタ値)に応じて、前記インバータ回路へ 出力する電力値が制御される。この電力値の制御により、誘導加熱装置 250による 発熱量、及び記録紙 Pに未定着画像を定着するための発熱ローラ 220及び定着べ ルト 230の温度が制御される。
[0080] 誘導加熱装置 250に与える供給電力の演算を行うために必要な情報には、定着装 置 200の画像定着温度と、前記インバータ回路に実際に供給されている電力値とが ある。定着装置 200の画像定着温度は、温度検出部 303から得られる。また、前記ィ ンバータ回路に実際に供給されて 、る電力値は、電力値演算部 306から得られる。
[0081] 温度検出部 303は、定着-ップ部 Nの入口側近傍の定着ベルト 230の内面側に当 接配置された温度検出器 270からのアナログ出力を ADコンバータによりディジタル データに変換して供給電力演算部 301に入力する。
[0082] 電力値演算部 306は、前記インバータ回路の入力電圧値を検出する電圧値検出 部 304と前記インバータ回路の入力電流値を検出する電流値検出部 305からのそ れぞれの出力を乗算することにより前記電力値を求める方法を採用している。
[0083] 電圧値検出部 304は、前記インバータ回路の入力電圧値を AD変換して供給電力 演算部 301にディジタルデータを渡す。電流値検出部 305は、前記インバータ回路 の入力電流値を AD変換して供給電力演算部 301にディジタルデータを渡す。なお 、電流値については励磁コイル 253に流れる電流値を検出して制御に用いることも 可能である。
[0084] 供給電力演算部 301では、定期的(ここでは、 10msごと)に、温度検出部 303から のデータ及び電力値演算部 306からのデータを取得しながら電力設定部 302に演 算値 (レジスタ値)を設定する。このように、供給電力演算部 301が電力設定部 302 に演算値を設定することにより、記録紙 Pに未定着画像を定着するための発熱ローラ 220及び定着ベルト 230の温度が制御される。
[0085] リミッタ制御部 307は、電力設定部 302に設定される電力を最終チェックする役割 を果たしている。すなわち、リミッタ制御部 307は、予め定められた規定のリミット値を 越えた値が電力設定部 302に設定されようとした時、又は電力値演算部 306でのデ ータが、予め規定された規定値より大きな値であった場合に、電力設定部 302に設 定するデータをある規定値に書き換える制御を行う機能を有している。
[0086] より具体的には、リミッタ制御部 307は、例えばリミット値がデータで AA(16進) HE Xで、供給電力演算部 301で演算された値が AAHEX以上であった場合に、電力設 定部 302に設定する値として目標電力の 80%に対応する電力を強制的に設定する 。また、リミッタ制御部 307は、電力値演算部 301からのデータが例えば 1150W以上 であった場合にも同様の処理を行う。
[0087] なお、実際には、前記電力を設定する際には上限値及び下限値でゲートされてい るので前述のようなリミット値に力かることは無いはずである。しかし、このようなリミット 制御は、電流値や電圧値を取得するための ADコンバータのラインにノイズが発生し てデータを誤検出した場合に備える意味からも必要であると思われる。 [0088] 次に、前記未定着画像を記録紙 Pに定着させるための定着装置 200の発熱量制御 手段 300の制御動作の各状態と遷移条件について説明する。
[0089] 図 4は、本一実施の形態に係る像加熱装置を用いた定着装置 200の発熱量制御 手段 300の制御状態遷移図である。ここでは、定着装置 200の発熱量制御手段 300 の各状態における動作の概要を説明する。詳細については各状態の動作フローチ ヤートを用いて説明することとする。
[0090] 図 4において、画像形成装置 100が印字要求待ち等の待機状態にあるときは、通 常、前記インバータ回路への通電は停止している(以下、これを「IH制御停止状態」 と呼称する)。ただし、この画像形成装置 100においては、ファーストプリント時間を短 縮させた ヽ場合に、定着装置 200の発熱ローラ 220及び定着ベルト 230をある一定 の温度、例えば 100°C程度に予備加熱させておく場合がある。この場合には、発熱 量制御手段 300は、未定着画像を記録紙 Pに加熱定着させるために印加する電力よ り小さい電力を前記インバータ回路に印加する。
[0091] 画像形成装置 100が印字開始指令を受信すると、定着装置 200の発熱量制御手 段 300にはインバータ回路への通電開始指令が発行される(以下、これを「IH制御 開始状態」と呼称する)。これにより、定着装置 200の発熱ローラ 220及び定着ベルト 230を、未定着画像が記録紙 P上に定着可能な温度まで昇温させる制御が開始され るのに先だって、まず、そのための準備処理が行われる(以下、これを「電力立上制 御状態」という)。
[0092] この電力立上制御状態において、発熱量制御手段 300は、前記インバータ回路へ の通電を行うための信号、例えばゼロクロス信号等が正常に入力されているかどうか のチェック及び前記インバータ回路への通電状態が正常に行われているかどうかの チェックなどを行う。
[0093] 前記ゼロクロス信号は、定着装置 200の発熱量制御手段 300に定期的に割り込み 信号として入力されており、この周期、ハイステート時間及びローステート時間を計測 することにより信号が正常かどうかの判断を行っている。
[0094] ここで、発熱量制御手段 300は、もし前記周期が異常である等のエラーがあれば、 I H制御動作を停止する。また、発熱量制御手段 300は、正常であれば、 IH制御開始 後一番初めに設定すべきデータ (下限値)を電力設定部 302に設定する。この下限 値は、電源電圧により異なった値であり、前記インバータ回路の保護の観点から設定 可能な最小の値が予め定められたデータとして図示しない ROMに格納されている。
[0095] 発熱量制御手段 300は、前記下限値の設定時から規定時間(ここでは、 300ms) 後に、電力設定部 302に設定した値に対して実際にいくらの電力が印加されたかを 電力値演算部 306からのデータを参照して前記下限値に対応する電力が印加され たかどうかをチェックする。
[0096] 例えば、発熱量制御手段 300は、電源電圧 ΙΟΟν時には、下限値データが 70HE X(16進データ)、それに対応する電力が 500Wであるとするならば、電力設定部 30 2に 70HEXを設定する。そして、 300ms後の電力値演算部 306のデータが 500W より極端に小さい場合 (ここでは、 200Wで規定)には、再度下限値を電力設定部 30 2に設定し、規定時間後に電力値演算部 306のデータをチ ックする。発熱量制御 手段 300は、このリトライ動作が規定回数 (ここでは、 5回)以上繰り返されると、エラー として IH制御を停止する。
[0097] ここで、最初の電力印加が正常に行われると、次には第二番目の電力設定を行う 必要がある。この第二番目に設定すべきデータは、第一番目に設定したデータに対 し実際に電力が 、くら印加されたかに応じて決定される。
[0098] 例えば、第一番目に電力設定部 302に 70HEXを設定した時の理論値が 500Wで あるのに対し、実際の電力が 450Wであった場合には、理論値より小さな値であった ので第二番目には例えば 80HEXを電力設定部 302に設定する。また、逆に実際の 電力が 550Wであった場合には、理論値より大きな値であったので、第二番目には 先の 80HEXより小さい 78HEXを電力設定部 302に設定する。
[0099] 同様な方法で電力設定部 302に対する電力設定を繰り返し、目標電力に到達する まで継続する。また一方で、実際の電力と目標電力値との差分に応じて第二番目以 降の設定すべきデータを決定する方法もある。前記目標電力値とは、ファーストプリ ント時間をできるだけ短縮させると同時に前記インバータ回路が破壊しないレベルで の最大の印加可能電力を規定したものである。
[0100] このようにして、複数回の電力設定を行った後、実際の電力が上記目標電力に到 達すると、制御状態は電力を目標電力値近傍に保持するための状態 (以下、これを「 電力補正制御状態」という)に移行する。ここでは、電力設定部 302への電力設定値 を 1レベルで加減算しながら目標電力を保持する制御を行って!/ヽる。
[0101] 具体的には、目標電力を 909Wとするならば、電力設定部 302に 90HEXを設定し た時の実際の電力が電力値演算部 306からのデータで 915Wであった場合、次回 は 1レベル減算した値である 8FHEXを電力設定部 302に設定する。
[0102] そして、この時の実際の電力が電力値演算部 306からのデータで、もし 909Wを下 回る値であったならば、次回には 8FHEXを 1レベルカ卩算した 90HEXを電力設定部 302に設定する。また、もし 909Wより大きな値であった場合には、 8FHEXから更に 1レベル減算した 8EHEXを電力設定部 302に設定する。
[0103] この電力補正制御は、温度制御移行指示が発行されるまで継続される。なお、この 電力補正制御中に設定された最大の設定値は、上限値として保持され、以降の温度 制御等で利用される。
[0104] このような電力補正制御が実行されると、定着装置 200の画像定着温度が上昇して くる。この定着装置 200の画像定着温度が予め定められた規定温度 (ここでは、未定 着画像の定着設定温度より 20°C低い値)に達すると、前記電力補正制御を停止する 。そして、今度は画像形成装置 100から定着装置 200の発熱量制御手段 300には 画像定着温度を基準にした温度制御 (温度制御状態)を実行するための温度制御移 行指示が発行される。
[0105] この温度制御は、定着装置 200の画像定着温度と未定着画像の定着設定温度と の差分、その積分値、更には微分値を利用したいわゆる PID制御(詳細は後述)によ り行われる。この PID制御では、電力設定部 302に設定すべきデータ値を供給電力 演算部 301で演算し、規定時間(ここでは、 10ms)ごとに電力設定部 302に演算値 を設定している。
[0106] この温度制御においては、電力制御と異なり定着装置 200の画像定着温度を基準 とした制御が行われる。電力設定部 302を例えば 8Bitのレジスタとすれば、温度制 御の演算結果の取りうる値の範囲は 0— 255 (8Bit上限)である。
[0107] しかし、この定着装置 200の発熱量制御手段 300では、前記温度制御による演算 結果をそのまま設定しているのであれば、前述した下限値より小さな値又は上限値よ り大きな値が電力設定部 302に設定されてしまい前記インバータ回路の破壊を招く おそれがある。
[0108] これを防ぐため温度制御時における電力設定は、上限値と下限値の間の値のみを 電力設定部 302に設定する。ここで、温度制御による演算結果が上限値より大きな 場合には電力設定部 302には上限値を設定し、温度制御による演算結果が下限値 より小さな場合には電力設定部 302には下限値を設定する。
[0109] ただし、この定着装置 200の発熱量制御手段 300では、下限値を設定し続けると、 本来は下限値より小さな値を要求されているため、その温度制御が破綻する可能性 がある。そこで、この定着装置 200の発熱量制御手段 300においては、この対策とし て下限値と演算値の比率に応じた PWM制御を行っている。
[0110] 具体的には、下限値を 40HEXとした場合、演算値が 20HEXであれば Duty50% の PWM制御を行う。これら一連の温度制御状態は、印字停止要求等による IH制御 終了指示を受信するまで継続する。その後、定着装置 200は、発熱量制御手段 300 が IH制御停止状態に移行し再び IH制御開始指示待ち状態となる。
[0111] ところで、発熱量制御手段 300が前記 IH制御を行うためには、既に記述した種々 のデータを取得参照する必要がある。次に、前記 IH制御を行うための各種データの 取得方法につ!、て説明する。
[0112] 前記 IH制御に必要なデータとしては、以下のデータが挙げられる。
(1)電源周波数
(2)インバータ回路に入力される電流値、電圧値と、これらの乗算により求められる 電力値
(3)目標電力値
(4)最小電力値
(5)リミット電力値
(6)下限値レジスタ値
(7)リミット値レジスタ値
(8)定着装置の温度 (複数箇所) [0113] なお、前記上限値については、電力補正制御実行時に求められるものであるので
、後述する電力補正制御の動作説明の項にて説明する。
[0114] まず、(1)電源周波数の計測方法について説明する。画像形成装置 100の電源が 投入されると、ゼロクロス信号の入力が開始される。このゼロクロス信号は、発熱量制 御手段 300に図示しない CPU (中央演算処理装置)の割り込み信号として通知され る。
[0115] CPUの割り込みは、通常、割り込み禁止 Z割り込み許可の指定が可能となってお り、電源投入時には割り込み禁止となっている。そこで、この画像形成装置 100にお いては、電源投入後、割り込み許可の指定を行うことで割り込みが許可され発熱量制 御手段 300にゼロクロス信号の入力が可能となる。
[0116] 発熱量制御手段 300は、ゼロクロス信号が入力された時点でタイマを起動し、次回 のゼロクロス信号入力すなわち割り込み発生までの時間を計測する。発熱量制御手 段 300は、この計測された時間により電源周波数(50HzZ60Hz)を判定している。 ゼロクロス周期は、 50Hzの場合には 20ms、 60Hzの場合にはゼロクロス周期は 16, 7msである。そこで、この定着装置 200の発熱量制御手段 300においては、割り込 みの発生時間のディレイ、ばらつき等を考慮し 18msを閾値としてそれ以上を 50Hz、 それ以下を 60Hzと規定して!/、る。
[0117] 次に、(2)インバータ回路に入力される電流値、電圧値と、これらの乗算により電力 値演算部 306で求められる電力値の取得方法について説明する。図 5は、電力値演 算部 306で実施される電流値と電圧値の取得方法の説明図である。
[0118] 図 5に示すように、実際の電流値、電圧値の取得演算式は、電源電圧系、電源周 波数により可変となっている。ここでいう電源電圧系とは、画像形成装置 100が ΙΟΟν 系電源に接続されて 、るか 200v系電源に接続されて 、るかを低圧電源(図示せず) で検出し発熱量制御手段 300に通知しているものである。
[0119] 図 5に示すように、インバータ回路に入力される実際の電流値 Ivalと AD変換された ディジタルデータ ADiとは、 1次式の関係を有しその係数は実験的に求められている 。また。インバータ回路に入力される実際の電圧値 Vvalと AD変換されたディジタル データ ADvとは、同様に 1次式の関係を有しその係数も実験的に求められている。 [0120] 例えば、 ΙΟΟν系、 50Hz時のインバータ回路に入力される電圧値は、 Vval=0. 7112 XADv-33. 0290 [volt]…式 5—1
で求められる。
[0121] ΙΟΟν系、 50Hz時のインバータ回路に入力される電流値は、
lval=0. 0533 X ADト 1. 5059 [amp]…式 5— 2
で求められる。
[0122] ΙΟΟν系、 60Hz時のインバータ回路に入力される電圧値は、
Vval=0. 7148 XADv-33. 1930 [volt]…式 5— 3
で求められる。
[0123] ΙΟΟν系、 60Hz時のインバータ回路に入力される電流値は、
lval=0. 0535 X ADト 1. 6145 [amp]…式 5— 4
で求められる。
[0124] 200v系、 50Hz時のインバータ回路に入力される電圧値は、
Vval= l . 4048 XADv-63. 7730 [volt]…式 5— 5
で求められる。
[0125] 200v系、 50Hz時のインバータ回路に入力される電流値は、
lval=0. 0269 X ADト 0. 8516 [amp]…式 5— 6
で求められる。
[0126] 200v系、 60Hz時のインバータ回路に入力される電圧値は、
Vval= l . 4048 XADv-63. 7730 [volt]…式 5— 7
で求められる。
[0127] 200v系、 60Hz時のインバータ回路に入力される電流値は、
lval=0. 0268 X ADト 0. 9182[amp]…式 5— 8
で求められる。
[0128] また、前記インバータ回路に供給される電力値は、上記の各式で求められた電流 値と電圧値を電力値演算部 306で乗算することで算出している。この定着装置 200 では、これらの演算を電力値演算部 306で 10msごとに繰り返すことで電圧の変動等 にもリアルタイムで対応でき、より信頼性の高 ヽ IH制御を実現して 、る。 [0129] 次に、発熱量制御手段 300で実施される (3)目標電力値の取得方法について説 明する。この目標電力値は、画像形成装置 100の性能項目の 1つであるファーストプ リント時間の短縮と前記インバータ回路の保護との観点から設定されるものである。
[0130] すなわち、この画像形成装置 100では、目標電力値を大きくすればファーストプリン ト時間には有利になるが前記インバータ回路の破壊を招くおそれがある。逆に、目標 電力値を小さくすればインバータ回路の保護の観点からは望ましいがファーストプリ ント時間が遅くなる懸念がある。そこで、この目標電力値は、前記両者のトレードオフ により実験的に定められている。図 6は、発熱量制御手段 300で実施される前記目標 電力値の取得方法の説明図である。
[0131] 図 6 (a)に示すように、画像形成装置 100が ΙΟΟν系電源に接続されている場合に は、
区間(1) (電源電圧が 70. 19v力ら 95. 21v)の目標電力値は、
16. 39 X電源電圧— 651. 1960 [W]…式 6—1
で求められる。
[0132] 区間(2) (電源電圧が 95. 21v以上 132. 45v以下)の目標電力値は、
909 [W]…式 6— 2
で一定である。
[0133] 区間(3) (電源電圧が 132. 45v力ら 137. 19v)の目標電力値は、
-22. 94 X電源電圧 + 3947. 1190[W]…式 6— 3
で求められる。
[0134] 区間(4) (電源電圧が 137. 19v以上)の目標電力値は、
800 [W]…式 6— 4
で一定である。この区間(4)においては後述する最小電力も同じ値となる。
[0135] また、図 6 (b)に示すように、画像形成装置 100が 200v系電源に接続されている場 合には、
区間(5) (電源電圧が 161. 13vから 198. 97v)の目標電力値は、
9. 83 X電源電圧— 1047. 0476 [W]…式 6— 5
で求められる。 [0136] 区間(6) (電源電圧が 198. 97v以上 264. 89v以下)の目標電力値は、
909 [W]…式 6— 6
で一定である。
[0137] 区間(7) (電源電圧が 264. 89v力ら 274. 70v)の目標電力値は、
-9. 84 X電源電圧 + 3513. 0034 [W]…式 6— 7
で求められる。
[0138] 区間(8) (電源電圧が 274. 70v以上)の目標電力値は、
810 [W]…式 6—8
で一定である。この区間(8)においては後述する最小電力も同じ値となる。
[0139] このように、この画像形成装置 100においては、前記インバータ回路の保護の観点 から、又はファーストプリント時間の確保の観点から、電圧ごとの最適な目標電力値を 設定している。このように、この定着装置 100の発熱量制御手段 300においては、目 標電力値の取得を 10msごとに繰り返すことで電圧の変動等にもリアルタイムで対応 でき、より信頼性の高い IH制御を実現している。
[0140] 次に、発熱量制御手段 300で実施される(4)最小電力値の取得方法について説 明する。この最小電力は、前記インバータ回路の保護の観点力 設定される。前述の ように、前記インバータ回路に大電力を与えたりある値より小さな電力を与えたりする と前記インバータ回路が破壊する可能性がある。
[0141] 図 7は、この発熱量制御手段 300で実施される最小電力値の取得方法の説明図で ある。図 7 (a)の ΙΟΟν系及び図 7 (b)の 200v系に示すように、最小電力値は、電源 電圧により可変となっている。前記発熱量制御手段 300は、最小電力値を 10msごと に取得することで電圧の変動等にもリアルタイムで対応でき、より信頼性の高 ヽ IH制 御を実現している。
[0142] 最小電力値は、小さければ小さ 、ほど定着装置 200の温度制御における制御性能 、すなわち制御のダイナミックレンジが広がり制御性は良くなる力 一方で前記インバ ータ回路の破壊につながる。そこで、この最小電力値は、前記目標電力と同様に両 者のトレードオフにより実験的に定められている。
[0143] 次に、発熱量制御手段 300で実施される (5)リミット電力値の取得方法について説 明する。このリミット電力値は、目標電力 + 250Wの電力値で規定されている。
[0144] 定着装置 200の画像定着温度は、通常、前記目標電力値で電力制御されるため、 前記インバータ回路に供給される電力がリミット電力に達することは無いはずである。 このリミット電力値は、発熱量制御手段 300がノイズ等で誤動作を起こし、電流値や 電圧値の AD変換データの値が不正規な値となった場合等の外乱的な動作保証の ために設けている。
[0145] すなわち、前記発熱量制御手段 300は、前記インバータ回路に供給される電力が リミット電力以上であると検出されれば、前記供給電力を目標電力より更に小さな値( 例えば目標電力の 80%の電力値)になるように電力設定値を制御する。これにより、 前記インバータ回路の破壊及び前記インバータ回路の誤動作による IH制御の不具 合を防止することができる。
[0146] 図 8A及び図 8Bは、 ΙΟΟν系及び 200v系における、目標電力値と、最小電力値と、 リミット電力値との関係を示す関係図である。図 8A, Bに示すように、リミット電力は、 1 OOv系、 200v系共【こ目標電力 + 250 [W]で設定して!/ヽる。また、図 8A, B【こお!ヽて 、最小電力は、図 7に示した最小電力値をグラフ上にプロットしている。
[0147] 次に、発熱量制御手段 300で実施される (6)下限値レジスタ値の取得方法につい て説明する。図 9A及び図 9Bは、 ΙΟΟν系及び 200v系における、下限値データの取 得方法の説明図である。前記下限値データは、前記最小電力値に対応するレジスタ 値のことである。この下限値データは、例えば、図 7に示すように、電源電圧 ΙΟΟν時 には最小電力 525Wである。
[0148] 一方、電源電圧 ΙΟΟν時の下限値データは、図 9Aに示す式 9—6により、 77 (10進) と算出される。実際の IH制御には図 7に示した電力値 (ワット表示)ではなぐこのレジ スタ値を使用している。
[0149] 下限値データとその電力値 (ワット数)は、一義的に決まるものではあるが、励磁コィ ル 253や定着装置 200のインダクタンスのばらつきや実使用による経時変化等により 若干のばらつきが生じる場合がある。
[0150] そこで、この定着装置 200では、発熱量制御手段 300が下限値データをはじめとす る IH制御の各フェーズでの電力設定後、前記インバータ回路に入力される電流値や 電圧値力も電力を常時フィードバックしている。これにより、この定着装置 200は、前 記ばらつき要因を解消し、より信頼性の高 、IH制御を実現して 、る。
[0151] 下限値レジスタ値は、電源電圧により可変であり、電源電圧との 2次関係式で求め られる。また、この 2次関係式の係数は、定着装置 200や励磁コイル 253のインダクタ ンスのばらつきを考慮し実験的に求められたものである。
[0152] 具体的には、定着装置 200と励磁コイル 253との部品スペック上の最大値のものと 最小値のもの、更には平均値近傍のものとでデータをとり求められたものである。この 定着装置 200においては、前記下限値レジスタ値の取得を、 10msごとに繰り返すこ とで電圧の変動等にもリアルタイムで対応できるより信頼性の高い IH制御を実現して いる。
[0153] 次に、発熱量制御手段 300で実施される (7)リミット値レジスタ値の取得方法につ いて説明する。このリミット値レジスタ値は、基本的には前記最小電力値に対して前 記下限値データを求めた実験と同様の実験を行い、前記リミット電力値に対応したレ ジスタデータを求めたものである。
[0154] 定着装置 200は、通常、 IH制御中の電力設定において、上限値でデータは制限さ れるので、電力設定値がリミット値に達することはないはずである。し力しながら、前述 したように、励磁コイル 253や定着装置 200のインダクタンスのばらつきや実使用によ る経時変化等により、例えば電力補正制御中に求められる上限値がリミット値を超え る場合がある。
[0155] つまり、この定着装置 200の発熱量制御手段 300においては、前記電力補正制御 中に目標電力に達するべく電力設定をインクリメントしていく。しかし、励磁コイル 253 や定着装置 200のインダクタンスが経時変化等で部品スペックの値をはずれた場合 には、いくら電力設定値を大きくしても目標電力に達成しない状態、すなわち電力が 入りにくい状態になり電力設定値が永遠に増カロしていくことになる。
[0156] このような電力設定値の増加は、前記インバータ回路の保護の観点より好ましくな いので最終のリミット値を設けておく必要がある。そこで、発熱量制御手段 300は、電 力設定値がリミット値以上になったら供給電力を目標電力より更に小さな値 (例えば 目標電力の 80%の電力値)になるように電力設定値を制御する。これにより、前記ィ ンバータ回路の破壊や前記インバータ回路の誤動作による IH制御の不具合を防止 することができる。この定着装置 200の発熱量制御手段 300では、このリミット値レジ スタ値の取得動作を 10msごとに繰り返すことで、電圧の変動等にもリアルタイムで対 応できるより信頼性の高 、IH制御を実現して 、る。
[0157] 次に、前記温度検出部 303で実施される (8)定着装置の温度の取得方法について 説明する。この定着装置 200においては、その温度を前記温度検出器 270により 2 箇所で検出している。 1つは定着装置 200の中央部で、もうひとつは定着装置 200の 端部である。定着装置 200の中央部の温度検出の目的は、記録紙 P上の未定着画 像を最適な画像定着温度で定着させ、画像品質の確保を行うためである。定着装置 200の端部の温度検出の目的は、小サイズの用紙が連続で印刷された場合に定着 装置 200の非通紙部 (端部)の異常な温度上昇を検出しクールダウンを行うためであ る。
[0158] これらの定着装置 200の各部の温度を検出する温度検出器 270の各検出温度は 、それぞれ温度検出部 303内の ADコンバータを通してデータ取得を行い、供給電 力演算部 301にディジタルデータとして渡される。この温度検出部 303による定着装 置 200の温度データの取得は、 10msごとに行い温度制御演算や定着装置 200の エラー検出に使用される。
[0159] 次に、定着装置 200の電力立上時の IH制御方法について説明する。図 10は、定 着装置 200の電力立上制御状態における動作フローチャートである。
[0160] 画像形成装置 100は、外部の PC (パーソナルコンピュータ)等から印字要求を受信 すると、その未定着画像を記録紙 P上に定着させるために定着装置 200の加熱制御 V、わゆる IH制御を開始する。
[0161] この IH制御では、まず発熱量制御手段 300は、電力の立上制御を行う。このフエ一 ズでは、前述したように、未定着画像の記録紙 P上への定着が可能な温度になるま で、定着装置 200の発熱ローラ 220及び定着ベルト 230を昇温させるための準備処 理が行われる。また、このフェーズでは、 IH制御を行うための種々のデータ取得のた めの準備が実施される。
[0162] なお、前記インバータ回路への入力電圧、インバータ回路の入力電流、電源電圧 の周波数、定着装置 200の温度の各々のデータは、画像形成装置 100の電源投入 時から取得が行われて 、る。
[0163] 前記インバータ回路への入力電圧は、電圧値検出部 304内の ADコンバータを通 してディジタルデータとしてー且ワークメモリ(不図示)に格納され電力値演算部 306 へ渡される。また、前記インバータ回路への入力電流は、電流値検出部 305内の A Dコンバータを通してディジタルデータとしてワークメモリ(不図示)に格納され電力値 演算部 306へ渡される。そして、これらの電圧値と電流値を電力値演算部 306で乗 算することにより、前記インバータ回路に供給される電力値が算出される。
[0164] 定着装置 200の発熱量制御手段 300は、これらのデータ取得及び演算動作が、 1 Omsごとに実施され、電源電圧の変動が起こってもそれにリアルタイムに対応できる 構成となっている。また、ここで取得された電圧値は、後述する、最小電力値 (ワット) 、目標電力値 (ワット)、下限値 (レジスタ値)、リミット値 (レジスタ値)を可変するための 変動パラメータになるものである。
[0165] また、電源電圧の周波数については、電源 ON時より定着装置 200のメイン制御を 行う発熱量制御手段 300内の CPU (不図示)にゼロクロス信号が割り込み信号として 入力されており、この割り込み信号の発生周期を計測することにより電源電圧の周波 数を計測している。
[0166] また、定着装置 200の温度については、サーミスタなどの熱応答性の高い感温素 子力もなる温度検出器 270からのアナログ出力が温度検出部 303の ADコンバータ を通して供給電力演算部 301にディジタルデータとして入力される。
[0167] 定着装置 200の発熱量制御手段 300では、これらの動作が 10msごとに繰り返し実 行され、定着装置 200の温度変化に対しリアルタイムに対応できる構成となって 、る
[0168] 図 10において、発熱量制御手段 300により IH制御が開始されると、まずゼロクロス 信号のチェックが行われる(ステップ S1001)。なお、ここでのチェックは、ゼロクロス 信号が入力されているかどうかを確認するものであり詳細な周期を確認するものでは ない。
[0169] ここで、電源周波数が 50Hzであれば周期は約 20msであり、また電源周波数力 ½0 Hzであれば周期は約 16. 7msであるので、ゼロクロス信号が正常であればこの間隔 で発熱量制御手段 300の CPUに対しゼロクロスの割り込みが発生する。
[0170] また、本例におけるエラー条件としては、 1秒以上連続でゼロクロスの割り込みが発 生しな力つた場合と規定し、この状態になったときはエラーとして画像形成装置 100 の動作を停止する(ステップ S 1002)。
[0171] 一方、ステップ S1001において、ゼロクロス信号が正常であることが確認された場 合には、発熱量制御手段 300は、次に下限値の設定を行う(ステップ S1003)。この 下限値の値 (レジスタ値)は、前記最小電力に対応した値となっている。
[0172] その後、 IH制御信号が ON (ステップ S 1004)され、発熱量制御手段 300により定 着装置 200の加熱動作が開始される。 IH制御信号 ONの後、発熱量制御手段 300 は 300msウェイト(待機)する (ステップ S 1005)。これは、電力を電力設定部 302に 設定し実際に前記インバータ回路に電力が印加されるまでの時間である。
[0173] このウェイト時間は、インバータ回路の構成により異なってくる。本例では、 300ms のウェイト時間を確保している。また、このウェイト時間 300msは、電力を増加させる 方向の時間である。逆に電力を下げる方向では、 1500msのウェイト時間を設けてい る。この電力を下げる方向でのウェイト時間もインバータ回路の構成に依存するもの である。
[0174] この IH制御信号の ON後、 300ms経過したら、発熱量制御手段 300は前記インバ ータ回路に印加されている電力のチェックを行う(ステップ S1006)。これは、前述し たインバータ回路に入力される電流値と同電圧値を前記電力値演算部 306で乗算 することで求められた電力値でチェックを行う。
[0175] ここで、下限値を設定すると IHコイルや定着装置 200のインダクタンスのばらつき、 経年変化等がある力 前記インバータ回路に印加された電力としてほぼ最小電力の 値が返ってくる。この最小電力の値は、電源電圧更にはインバータ回路に入力される 電圧により異なるが、図 7に示すように最小でも 200v系の 185v未満の場合で 300W である。
[0176] これを考慮し、発熱量制御手段 300は前記インバータ回路の入力電圧に依存せず に電力が 200W以下であれば、電力が小さいとしてエラー処理を行う。ただし、この 時点で即サービスコールエラーとして IH制御を停止するのではなぐ電力設定と電 力チェックのリトライ動作を行う。そして、発熱量制御手段 300において規定回数以 上のリトライ動作が実行されると、初めてサービスコールエラーとして IH制御を停止し 、画像形成装置 100の全動作を停止する。
[0177] 具体的には、発熱量制御手段 300による電力チェックで電力が 200W以下であれ ば、リトライ回数計数用のカウンタ (IH制御開始時には 0でリセットされている)を + 1と する (ステップ S 1007)。その後、発熱量制御手段 300は、リトライカウンタが「5」より 大きいかどうか、つまりリトライ回数が 5回を超えたかどうかのチェックを行う(ステップ S 1008)。ここで、リトライ回数が 5回を超えていなければ、ステップ S1003に戻って発 熱量制御手段 300による電力設定動作を繰り返す。また、発熱量制御手段 300は、 リトライ回数が 5回を超えていれば、サービスコールエラーとして IH制御を停止し、画 像形成装置 100の全動作を停止する (ステップ S1009)。
[0178] このようにして電力が正常に印加されているのが確認されると、発熱量制御手段 30 0は、次に、温度制御移行要求があるかどうかをチェックする (ステップ S1010)。これ は、定着装置 200の温度を検出している温度検出部 303からの出力で判定している 。前述したように、本例では定着装置 200の中央部と端部の 2箇所に温度検出部 30 3であるサーミスタを設けて 、る 1S この定着装置 200の温度制御に利用するのは中 央部のサーミスタである。
[0179] この温度制御移行要求は、未定着画像を記録紙 Pに定着するための設定温度 (プ ロセス速度、記録媒体の種類、環境条件等で異なる)より 20°C低い温度に到達した 時に発熱量制御手段 300による発行される (ステップ S1011)。例えば、定着設定温 度が 170°Cの場合には、定着装置 200の温度が 150°Cに到達した時点で温度制御 移行要求が発行される。
[0180] ここで、 IH制御開始後は、通常、定着装置 200の温度は低い状態であるので、この 時点で温度制御に移行することは少な 、。しかし、待機時間の短 、間欠印字等では 、前回の印字で定着装置 200が十分温まった状態で次の印字が開始されるため、電 力チェック後即温度制御に移行する場合も多々ある。
[0181] この電力チェック後、温度制御移行要求がない場合には、供給電力演算部 301は 、次回に設定すべき電力値の演算を行う(ステップ S1012)。これは、先に下限値を 設定した 300ms後に検出(演算)された電力値とその時のインバータ回路の入力電 圧に応じた最小電力値との差分又は比率より予め定められた計算式(図示せず)に 基づいて次回に設定すべき電力設定値を算出するものである。
[0182] この電力設定値とは、前記目標電力値に対応したものである。例えば、最小電力値 が 500Wである場合に下限値を設定して実際に返ってきた電力値力 S400Wであった 場合には、理論値より実際値が小さいので次回の設定値を大きめに設定する。逆に 、ここで 600Wが返ってきた場合には、理論値より実際値が大きいので次回の設定値 を小さめに設定する。
[0183] このようにして供給電力演算部 301で演算された電力設定値を実際に設定し (ステ ップ S1013)、 300msウェイト(ステップ S1014)後に、発熱量帘1』御手段 300ίま、目 標電力に到達したかどうかのチェックを行う(ステップ S1015)。この時点で目標電力 に到達していなければ、発熱量制御手段 300は、ステップ S1010に戻って以降の処 理を繰り返す。一方、目標電力に達していれば、発熱量制御手段 300は、電力立上 制御を終了し電力補正制御へ移行する。
[0184] 次に、前記電力補正制御時の IH制御方法について説明する。図 11は、定着装置 200の電力補正制御状態における動作フローチャートである。
[0185] この電力補正制御時には、発熱量制御手段 300は、図 11に示すように、まず、前 記電力立上制御力 前記電力補正制御へ移行した直後の電力設定値を上限値とし 所定のワークエリア(不図示)に格納しておく(ステップ S 1101)。この上限値は、後の 温度制御演算を行う際の上限値として利用される。
[0186] また、前述したように、電力立上制御中に温度制御に移行した場合の上限値につ いては、予め定められた規定値 (本例では目標電力の 80%程度に相当する電力設 定値)を用いることとしている。
[0187] この電力補正制御の状態においては、電力設定値の可変量は、「 + 1」、「一 1」のレ ベルで行う。つまり、この電力補正制御において、供給電力演算部 301は、目標電 力を超えると電力設定値を「一 1」、目標電力を下回ると電力設定値を「 + 1」しながら 電力補正制御を行う。また、供給電力演算部 301は、前記電力立上制御から電力補 正制御に移行直後は、目標電力を超えた状態であり電力設定値を「一 1」する (ステツ プ S 1102)。
[0188] その後、供給電力演算部 301は、電力値演算部 306から渡される電力チェックを行 Vヽ (ステップ S 1103)、電力値が目標電力以上であれば電力設定値を「一 1」し (ステツ プ S1104)、 1500msウェイ卜する(ステップ SI 105)。また、供給電力演算部 301は 、電力値が目標電力値を下回っていれば、電力設定値を「 + 1」し (ステップ S1106) 、 300msウェイトする(ステップ S 1107)。
[0189] また、供給電力演算部 301は、この電力補正制御の途中で前記電力立上制御から 電力補正制御へ移行した直後にワークエリアに格納した上限値と目標電力を参照し ながら「 + 1」又は「一 1」して得られた電力設定値の大小の比較を行う(ステップ S110 8)。
[0190] ここで、供給電力演算部 301は、もしワークエリアに格納した上限値を電力補正制 御中の電力設定値が超えた場合には、その値を新たな上限値として値を更新する( ステップ S1109)。その後、供給電力演算部 301は、温度制御移行要求のチェックを 行い (ステップ S 1110)、要求が無ければ、ステップ S 1103に戻って処理を繰り返す
[0191] なお、温度制御移行要求については、前記電力立上制御の説明と同じであるので 、ここでの説明は省略する。この温度制御移行要求があれば温度制御に移行する。
[0192] 次に、温度制御時の IH制御方法について詳細に説明する。図 12は、定着装置 20 0の温度制御状態における動作フローチャートである。
[0193] 前記電力立上制御及び前記電力補正制御の場合に電力設定値を演算する基準 値は、前記インバータ回路に入力される電流値及び電力値から電力値演算部 306 で算出される電力値である。これに対し、この温度制御の場合の電力設定値を演算 する基準値は、定着装置 200の中央部のサーミスタ (温度検出部 303)の出力、すな わち定着装置 200の中央部の温度である。
[0194] 供給電力演算部 301で実施される電力設定値を求めるための演算方式としては、 未定着画像を記録紙 Pに定着するための定着設定温度 (プロセス速度、記録媒体の 種類、環境条件等で異なる)と実際の定着装置 200の中央部の温度との差分に応じ て電力設定値を演算する PID演算を使用して 、る (ステップ S 1201)。
[0195] また、図示していないが、供給電力演算部 301は、この温度制御に移行した時点か ら定着装置 200の端部のサーミスタのチェックを開始しており、定着装置 200の中央 部の温度と定着装置 200の端部の温度との差が、ある規定値以上になればエラーと して IH制御を停止する。
[0196] この規定温度は、本例においては、 30°Cで設定している。すなわち、定着装置 20
0の中央部の温度が定着設定温度 20°Cに到達 (温度制御に移行)した時点以降で
、定着装置 200の端部の温度が定着装置 200の中央部の温度より 30°C以上低い場 合にエラーとしている。
[0197] PID演算では、プロセス速度、記録媒体の種類、環境条件等に応じた未定着画像 の定着設定温度 (以下、単に「定着設定温度」と称す)と、定着装置 200の中央部の サーミスタ出力(以下、単に「定着装置温度」と称す)との差分 (以下、これを「偏差」と 称す)に応じて電力設定値を算出する。また、 PID演算では、前記差分の累積値 (以 降積分値と称す)、さらには前回の差分と今回の差分との差 (以下、これを「微分値」 と称す)に応じて電力設定値を算出する。また、本例では、前記偏差とその積分値に ある一定の係数を乗算して電力設定値を算出する PID制御を採用して 、る。 PID制 御の演算式は、以下の式 12—1のとおりである。
[0198] 電力設定値 =Kp{E (n) +Kt X∑E (n) } · · ·式 12-1
ただし、 Kp =比例定数、 Kt=積分定数、 Ε (η) =偏差、である。
[0199] ここで、比例定数 Κρ及び積分定数 Ktは、それを求めるための既知の方法の 1つで ある限界感度法(図示せず)を利用して算出して 、る。後は制御系の特性 (本例では 、定着装置 200、及び励磁コイル 253のインダクタンスばらつき等)を考慮して、最初 の設定温度到達時のオーバーシュートや定常制御時の温度リップルが許容範囲内 になるよう値を微調整し最終的な係数を決定している。また、本例における温度制御 のサンプリング周期は、 10msであり、この周期で式 12— 1の制御則に従って電力設 定値を算出している。
[0200] ここで、前記 PID演算により演算された値をそのまま電力設定値として前記インバ ータ回路に印加した場合には、前述した上限値又はリミット値を越えたり、下限値を 下回ったりした値を出力することになる。この場合には、前記インバータ回路の保護 の観点力 非常な不都合を生じ、最悪の場合インバータ回路の破壊に至る可能性が ある。
[0201] そこで、この温度制御では、これを防ぐために、前記 PID演算値と、この温度制御の フェーズではすでに算出されている又は予め定められている上限値と下限値とを常 に比較しながら電力設定を行 、前記インバータ回路の保護を図って 、る。
[0202] すなわち、この温度制御では、供給電力演算部 301は、前記 PID演算値と下限値 との大小関係を比較する (ステップ S 1202)。ここで、 PID演算値〉下限値ならば、今 度は前記 PID演算値と上限値との大小関係を比較する (ステップ S 1203)。ここで、 供給電力演算部 301は、 PID演算値 <上限値ならば、前記 PID演算値を電力設定 値として設定する (ステップ S 1204)。
[0203] また、供給電力演算部 301は、 PID演算値が上限値を超えたならば、上限値を電 力設定値として設定する (ステップ S 1205)。その後、温度制御終了要求のチェック に進む(ステップ S1212)。
[0204] 次に、ステップ S1202で、 PID演算値が下限値を下回った場合の温度制御につい て説明する。これは、図 12のステップ S1206からステップ S1211までの処理である。 前記 PID演算値がそのまま電力設定値として設定できれば何ら問題は無 、が、前述 したように、前記インバータ回路保護のため電力設定値には制限がある。
[0205] 前記 PID演算値が上限値を超える状態になるのは、電力補正制御から温度制御に 移行した直後の場合であり、定常の温度制御中にはこの状態にはなりにくい。しかし 、逆に PID演算値が下限値を下回る場合は、定着装置 200が温まってきて小電力で 事足りるようになってくると頻繁に発生する。
[0206] このように、 PID演算値が下限値を下回った場合には、電力設定値を下限値で設 定し続けると必要とされる電力より多めの電力が供給され続けることになり、誤った情 報で温度制御が行われ温度制御が破綻してしまう。
[0207] また、 PID演算値が下限値を下回った場合には、電力設定値を 0設定してもやはり 必要とされる電力より少な目の電力が供給され続けることになり、誤った情報で温度 制御が行われ、同様に温度制御が破綻してしまう。 [0208] そこで、この温度制御にぉ 、ては、これを防ぐために、 PID演算値と下限値との比 率に応じた PWM制御を行 、、前記インバータ回路の保護と温度制御の両立を図つ ている。
[0209] この温度制御の具体的な方法について以下に説明する。
[0210] 図 12において、供給電力演算部 301は、ステップ S1202で、 PID演算値が下限値 を下回った場合には、電力設定値は下限値を設定しておく(ステップ S 1206)。次に 、供給電力演算部 301は、 PWM制御の ONZOFFの Dutyの算出演算を行う(ステ ップ S 1207)。
[0211] 例えば、下限値を 40 (16進表示) HEXとした場合の PID演算値が 20 (16進) HEX であった場合には、その ON比率は 50%である。従って、この場合には、 ONDuty5 0%、 OFFDuty50%の PWM制御を行えば、擬似的に PID演算値 20HEXを電力 設定したこと〖こなる。
[0212] もう 1例挙げると、下限値を 40 (16進表示) HEXとした場合の PID演算値が 10 (16 進) HEXであった場合には、その ON比率は 25%である。従って、この場合には、 O NDuty25%、 OFFDuty75%の PWM制御を行えば、擬似的に PID演算値 10HE Xを電力設定したことになる。
[0213] このように、 PID演算値が下限値を下回った場合には、上述のようにして演算され た PWM制御の ONZOFFDutyに従って電力設定を行う。ここで、 PWM制御のサ ンプリング周期は、プロセス速度等を変化させながら実験的に求めた値を使用してお り、一例を示すと本例の定常速度(lOOmmZs)時においては 40msとしている。
[0214] 次いで、供給電力演算部 301は、前記 PWM制御の ONZOFFDutyと PWM制御 のサンプリング周期より算出された PWM制御における ON時間分ウェイトする (ステ ップ S1208)。この ON時間分ウェイト後、 IH制御信号を OFFし (ステップ S 1209)、 PWM制御における OFF時間分ウェイトする(ステップ S1210)。
[0215] そして、供給電力演算部 301は、 OFF時間分ウェイト後、 IH制御信号を ONし (ス テツプ S1211)、前記温度制御終了チヱック (ステップ S1212)に進む。ここで、供給 電力演算部 301は、温度制御終了要求があれば温度制御終了して IH制御を停止 する。また、温度制御終了要求が無ければステップ S1201に戻って温度制御を継続 する。
[0216] なお、図 4で説明したように、電力立上制御中、電力補正制御中、温度制御中にお いて、前記インバータ回路に供給される電力がリミット電力以上であると検出された場 合、又は電力設定値がリミット値以上の場合には、発熱量制御手段 300は供給電力 を目標電力より更に小さな値 (例えば目標電力の 80%の電力値)になるように電力設 定値を制御し、前記インバータ回路の破壊やインバータ回路の誤動作による IH制御 不具合を防止する。
[0217] ところで、従来の像加熱装置を用いた定着装置においては、前述したように、その 熱源への供給電力を 2石以上の IGBTを用いて PID制御して!/、るため、コストが高く かつ効率も悪くなるという不具合があった。
[0218] このようなことから、この種の像加熱装置を用いた定着装置としては、その電源とし て 1石の IGBTを用いる構成であることが望ましい。し力し、このように 1石の IGBTの みでリニア制御を行うようにした場合には、低電力時に高周波スイッチング損失が増 加し、 IHの出力として最低電力が 400W程度までしか下がらないという欠点がある。
[0219] そこで、この定着装置 200の発熱量制御手段 300においては、図 13に示すように 、 PID制御の演算結果力 IH出力として得られる最低電力以上であればリニア制御 を行い、最低電力以下の電力を求められた場合には、最低電力で PWM制御を行う ようにしている。
[0220] つまり、この定着装置 200の発熱量制御手段 300では、温度制御の演算を定着べ ルト 230の回転数に応じて振らずに、 1石の IGBTで温度制御ができる範囲力否かを 判断して制御方式をリニア制御又は PWM制御の 、ずれかに切り替えるようにして!/ヽ る。
[0221] ここで、前記 PWM制御で全範囲の制御を行うことは、理論上可能である力 現実 的には、例えば 0— 1000Wの範囲を細かい時間でオン Zオフすると、電源動摇ゃノ ィズなど色々な弊害が出る。また、制御電力が OWから瞬間的に 1000Wとかになつ た場合には、制御回路が破壊してしまうおそれがある。このようなことから、従来の制 御装置では、 2石以上の IGBTを使用し制御範囲を分けて電源電圧が大きく変化し ないようにしている。 [0222] これに対し、この定着装置 200の発熱量制御手段 300においては、上述のように、 供給電力演算部 301の演算結果、出力が例えば 500W未満のように低い場合には 、 PWM制御により定着ベルト 230の発熱量を制御している。また、出力が例えば 50 OW以上のように高い場合には、リニア制御により定着ベルト 230の発熱量を制御し ている。
[0223] この構成によれば、供給電力演算部 301の演算方法を定着速度に応じて切り替え る必要がなぐ 1つの演算方法で定着ベルト 230の発熱量を制御することができる。 従って、この定着装置 200の発熱量制御手段 300においては、 1石のみのスィッチン グ素子(IGBT)で定着ベルト 230の熱源への供給電力を PID制御することができ、 低コストィ匕及び高効率ィ匕を図ることができ、定着ベルト 230の温度を目標温度に安定 して保つことができるようになる。
[0224] ところで、定着装置 200の電源電圧は、国や地域によって異なっている。図 14は、 定着装置 200の電源電圧と最低電力との関係を示す説明図である。図 14に示すよう に、定着装置 200の最低電力は、電源電圧によって変動し、電源電圧が高いほど最 低電力も上昇する。
[0225] つまり、電源電圧が低くなると、低い電力も出力できるので、例えば基準電力(1石 の IGBTで出力できる最低電力)が 400W位までリニア制御できるようになる。しかし、 逆に、例えば電源電圧が 120vあるいは 130vのように高い環境では、最低電力が 60 0Wを超えてしまうため、基準電力が高くなつてしまうことがある。
[0226] このように、基準電力は、必ずしも前述した 500Wのような一定した値ではなぐ電 源電圧により例えば 400Wになったり 500W以上になったりすることがある。
[0227] そこで、この定着装置 200の発熱量制御手段 300では、基準電力を電源電圧で変 化させるようにしている。この構成によれば、使用環境が異なっても定着ベルト 230の 発熱量を支障なく制御することができる。
[0228] ここで、前記リニア制御と前記 PWM制御との切り替えは、例えば、前記インバータ 回路への出力の電流と電圧とをモニターして電力を演算し、この電力に応じたテープ ルによって適正な制御を選択するようにして!/、る。
[0229] また、この定着装置 200の発熱量制御手段 300においては、画像形成装置 100の プロセス速度に応じて PWM制御のサンプリング周期を変更するようにして!/、る。ここ で、前記プロセス速度が速い場合、操作量を早く反映させる必要があるため、短いサ ンプリング周期が適しており、前記プロセス速度が遅くなるにつれ、長いサンプリング 周期が適当となる。これは、定着ベルト 230の加熱部位と温度検出器 270の温度検 出部位とが離れて 、る場合に顕著である。
[0230] 例えば、図 15に示すように、プロセス速度が 50mmZsecと遅ぐ制御周期が 50ms ecと短い場合には、操作量が反映された結果が温度検出器 270に感知されるまでに 時間がかかる。このため、この場合には、短いサンプリング周期で操作量を変化させ ると、操作量の反映結果を感知できないためどんどん操作量が大きくなつて温度リツ プルが大きくなつてしまう。
[0231] 従って、このようにプロセス速度が 50mmZsecと遅い場合には、図 16に示すように 、制御周期 200msecのようにある程度長 、サンプリング周期が適当となる。
[0232] 一方、図 17に示すように、プロセス速度が 200mmZsecと速い場合には、制御周 期 50msecのようにある程度短いサンプリング周期が適当となる。つまり、この場合に は、図 18に示すように、制御周期 200msecのように長いサンプリング周期で操作量 を変化させると、操作量の反映結果を感知できないためどんどん操作量が大きくなつ て温度リップルが大きくなつてしまう。
[0233] このように、この定着装置 200には、操作量が加熱に反映されそれを温度検出器 2 70で読み取り感知する時定数に応じた最適サンプリング周期が存在することになる。 このため、この定着装置 200においては、最適サンプリング周期をはずれると温度リ ップルが大きくなる。
[0234] 図 19は、前記プロセス速度と、前記サンプリング周期と、前記温度リップルとの関係 を示す説明図である。
[0235] PID制御では、単にサンプリング時間だけで最適値を考えることができる。しかし、 P WM制御では、サンプリング時間が長い場合、操作量のレベルを細力べとることが可 能である力 サンプリング時間が短い場合には、図 20A— Eに示すように、 10分割、 20分割、又は 5分割で電源出力を制御した場合、画像形成装置 100の制御周期と の兼ね合 、で数段階しか操作量のレベルをとることができな 、。 [0236] このため、この PWM制御では、より複雑な最適値が存在することとなる。本例では
、前記最適値を最終的に実験で求めた。
[0237] また、 IH制御では、誘導加熱装置 250の磁束分布に応じて発熱ローラ 220及び定 着ベルト 230力 S発熱する。このため、定着ベルト 230は、発熱ローラ 220の断面方向 で見ると均一に加熱されるわけではなぐ励磁コイル 253の形状に応じて最高温度点 ができる。
[0238] 従って、この定着ベルト 230の温度を検出する温度検出器 270は、この最高温度 点に取り付ければ温度制御した結果がすぐに反映されるため望ましい。
[0239] し力しながら、この温度検出器 270は、励磁コイル 253の形状の都合など力も少し ずれた場所に設置される場合が多い。特に、この定着装置 200では、図 21に示すよ うに、像加熱体として定着ベルト 230を使用しているので、最高温度部位 Hから温度 検出器 270の温度検出部位までのセンシング距離 L (本例では、 25mm)が長くなつ ている。
[0240] 従って、この定着装置 200では、前記最高温度部位で加熱された定着ベルト 230 の温度を、所定時間だけ遅れて温度検出器 270によりセンシングすることになる。
[0241] このため、この定着装置 200におけるサンプリング周期は、そのプロセス速度にお V、て、最高温度部位 H力も温度検出器 270の温度検出部位までのセンシング距離 L を移動する時間以下でなければならない。このサンプリング周期は、そのプロセス速 度において、最高温度部位 H力も温度検出器 270の温度検出部位までのセンシン グ距離 Lを移動する時間の 1Z2以下であれば望ましい。
[0242] ちなみに、この定着装置 200においては、例えば、厚紙の定着時のようにプロセス 速度が 50mmZsと遅い場合には、センシングに要する時間が約 500msとなり、最適 制御周期が 200msとなる。また、白黒画像(1分間で 20枚印字)やカラー画像(1分 間で 16枚印字)の定着時のようにプロセス速度が 200mmZsと速い場合には、セン シングに要する時間が約 125msとなり、最適制御周期が 50msとなる。
[0243] なお、 PWM制御にお!、ては、通常、サンプリング周期は一定でパルス幅だけ変更 しているが、この場合には画像形成装置 100の制御周期に応じた分割数の値しか取 ることができない。 [0244] そこで、図 22A— Eに示すように、この PID制御の演算結果に応じて PWM制御の サンプリング周期を変更することにより、より細かい出力レベルを得ることが可能となる
[0245] ここで、サンプリング周期が一定で PWM制御する際には、通常、基準点を固定し て幅を変化させるが、出力は画像形成装置 100の制御周期に応じてオンオフするこ とができるので、図 23A— Eに示すように、オン時間とオフ時間とを分散させて相当の 出力を得ることも可能である。この方式は、オフ時間が長く続かないため、温度リップ ルが少なくなるという利点がある。
[0246] ところで、 PWM制御では、通常、所定のサンプリング周期が終わるまでは、次の制 御に移ることができない。そのため、画像形成装置 100の制御周期ごと (本例では、 1 Oms)に PID制御の計算を行っていても、例えば、図 24に示すように、 200msの PW M制御周期の場合、 200ms過ぎないと次の出力に変更できない。これは、 PWM制 御だけの場合には問題はないが、環境温度変化や電源電圧変化等、何らかの理由 でリニア制御に戻るケースにおいてはそれだけ反応が遅れることになる。
[0247] そこで、この定着装置 200の発熱量制御手段 300においては、図 25に示すように 、 PID制御の演算結果が PWM制御を行う最低電力以上になった時点で、すぐにリ ユア制御に戻るようにして 、る。
[0248] また、この定着装置 200の発熱量制御手段 300においては、図 26に示すように、 通常は、 PWM制御周期が終了した時点で次のリニア制御へ移行するようにしている 。しかし、この制御では、 PWM制御力もリニア制御に移行するまでに時間を要するこ とになる。
[0249] そこで、この定着装置 200の発熱量制御手段 300においては、図 27に示すように 、 PID制御の演算結果が最低電力を上回った時点で、即リニア制御に移行するよう にしてもよい。
[0250] 本発明の像加熱装置の第 1の態様は、記録媒体上の未定着画像を加熱する像カロ 熱体と、前記像加熱体を加熱する発熱手段と、前記像加熱体の温度を検出する温 度検出手段と、前記像加熱体の温度が前記記録媒体への前記未定着画像の加熱 定着に適した画像定着温度に保たれるように前記温度検出手段の検出温度に基づ いて前記発熱手段の発熱量を制御する発熱量制御手段と、を有し、前記発熱量制 御手段が、所定の基準電力でリニア制御と PWM制御とを切り替えて前記発熱手段 の発熱量を制御する構成を採る。
[0251] この構成によれば、前記発熱量制御手段の演算結果、出力が低い場合には前記 P WM制御により前記発熱手段の発熱量を制御し、出力が高い場合には前記リニア制 御により前記発熱手段の発熱量を制御することができる。つまり、この構成によれば、 前記発熱量制御手段の演算方法を定着速度に応じて切り替える必要がなぐ 1つの 演算方法で前記発熱手段の発熱量を制御することができる。従って、この構成にお V、ては、 1石のみのスイッチング素子 (IGBT)で前記発熱手段の熱源への供給電力 を PID制御することができるので、低コストィ匕及び高効率ィ匕を図ることができ、前記像 加熱体の温度を目標温度に安定して保つことができるようになる。
[0252] 本発明の像加熱装置の第 2の態様は、上記第 1の態様に記載の像加熱装置にお いて、前記基準電力は、電源電圧で変化する構成を採る。
[0253] 前記電源電圧は、国や地域によって異なって!/、る。電源電圧が低!、環境では、低 い電力を出力できるようになるので、前記基準電力を下げることが可能になり、例え ば 400W位までリニア制御できるようになる。逆に、電源電圧が高い環境では、低い 電力を出力できなくなり、例えば 500Wでもリニア制御が困難となる。この構成によれ ば、請求項 1記載の発明の効果に加えて、前記基準電力が電源電圧で変化するの で、使用環境が異なっても前記発熱手段の発熱量を支障なく制御することができる。 ここで、前記リニア制御と前記 PWM制御との切り替えは、例えば、前記出力の電流と 電圧とをモニターして電力を演算し、この電力に応じたテーブルによって適正な制御 を選択するようにする。
[0254] 本発明の像加熱装置の第 3の態様は、記録媒体上の未定着画像を加熱する像カロ 熱体と、前記像加熱体を加熱する発熱手段と、前記像加熱体の温度を検出する温 度検出手段と、前記像加熱体の温度が前記記録媒体への前記未定着画像の加熱 定着に適した画像定着温度に保たれるように前記温度検出手段の検出温度に基づ いて前記発熱手段の発熱量を制御する発熱量制御手段と、を有し、前記発熱量制 御手段が所定の基準電力でリニア制御と PWM制御とを切り替えて前記発熱手段の 発熱量を制御し、前記像加熱体の回転速度に応じて前記 PWM制御のサンプリング 周期を変更する構成を採る。
[0255] 前記発熱手段による前記像加熱体の加熱部位と、前記温度検出手段による前記 像加熱体の温度検出部位とが離れて ヽる場合、前記 PWM制御のサンプリング周期 が一定であると、前記像加熱体の回転速度によって前記発熱量制御手段の演算回 数が異なってしまう。つまり、前記像加熱体の回転速度が遅くなると前記発熱量制御 手段の演算回数が多くなる。このため、前記像加熱体の回転速度が遅い場合には、 細力べサンプリングしすぎて空振りが増え出力が上がってしまう。この結果、前記像加 熱体の温度が必要以上に高く設定されてしまい温度リップルが大きくなつて制御幅が 広がってしまう。この構成によれば、前記像加熱体の回転速度に応じて前記 PWM制 御のサンプリング周期を変更して 、るので、前記像加熱体の温度を適正に設定でき 温度リップルを小さくして制御幅を狭くすることができる。ここで、前記 PWM制御のサ ンプリング周期の最適値は、実際には、前記温度検出手段の時定数とか他の要因で も変化するので、前記温度検出手段のセンシングに要する時間の 1Z2以下とするこ とが好ましい。
[0256] 本発明の像加熱装置の第 4の態様は、上記第 3の態様に記載の像加熱装置にお いて、前記発熱量制御手段は、前記像加熱体の複数の回転速度のいずれか 2つの 回転速度のうち、遅い方の回転速度で前記 PWM制御の前記サンプリング周期の値 を大きく設定する構成を採る。
[0257] 前記像加熱体の複数の回転速度のいずれか 2つの回転速度のうち、回転速度が 遅い方が前記温度検出手段のセンシングに要する時間が長くなる。この構成によれ ば、前記回転速度が遅!、方で前記 PWM制御の前記サンプリング周期の値を大きく して 、るので、前記発熱量制御手段の空振り制御による温度リップル幅の増大を防 止することができる。
[0258] 本発明の像加熱装置の第 5の態様は、上記第 3の態様に記載の像加熱装置にお いて、前記発熱量制御手段は、前記像加熱体の最高温度部位から前記温度検出手 段の温度検出部位までの距離を前記像加熱体が所定のプロセス速度で移動する時 間より短いサンプリング周期で前記 PWM制御を行う構成を採る。 [0259] この構成によれば、前記距離を前記像加熱体が所定のプロセス速度で移動する時 間より短!、サンプリング周期で前記 PWM制御を行うので、前記発熱量制御手段の 制御を確実に反映させることができるようになる。
[0260] 本発明の像加熱装置の第 6の態様は、上記第 1の態様に記載の像加熱装置にお いて、前記発熱量制御手段により演算された前記 PWM制御の Duty比によって前 記 PWM制御のサンプリング周期を変更する構成を採る。
[0261] PWM制御においては、通常、サンプリング周期は一定でパルス幅だけ変更してい る力 この場合には画像形成装置の制御周期に応じた分割数の値しか取ることがで きない。この構成によれば、前記 PWM制御の Duty比によって前記 PWM制御のサ ンプリング周期を変更しているので、より細かい出力レベルを得ることが可能となる。
[0262] 本発明の像加熱装置の第 7の態様は、上記第 3の態様に記載の像加熱装置にお いて、前記発熱量制御手段は、前記 PWM制御のオン時間を制御周期内で分散さ せる構成を採る。
[0263] 前記サンプリング周期が一定で PWM制御する際には、通常、基準点を固定して幅 を変化させるが、出力は画像形成装置の制御周期に応じてオンオフすることができる ので、オン時間とオフ時間とを分散させて相当の出力を得ることも可能である。この構 成によれば、前記 PWM制御のオン時間を制御周期内で分散させているので、オフ 時間が長く続くことがなく温度リップルが少なくなる。
[0264] 本発明の像加熱装置の第 8の態様は、上記第 1の態様に記載の像加熱装置にお いて、前記発熱量制御手段は、前記リニア制御の PID制御周期が前記 PWM制御の 制御周期より小さぐかつ前記 PWM制御の制御周期内で前記リニア制御に移行で きる条件になった時点で、前記 PWM制御の一周期終了を待たずに前記リニア制御 に切り替える構成を採る。
[0265] 前記 PWM制御では、通常、所定のサンプリング周期が終わるまでは、次の制御に 移ることができない。そのため、画像形成装置の制御周期ごとに PID制御の計算を 行っていても、例えば、 200msの PWM制御周期の場合、 200ms過ぎないと次の出 力に変更できない。これは、 PWM制御だけの場合には問題はないが、環境温度変 化や電源電圧変化等、何らかの理由でリニア制御に戻るケースにおいてはそれだけ 反応が遅れることになる。この構成によれば、前記リニア制御に移行できる条件にな つた時点で、前記 PWM制御の一周期終了を待たずに前記リニア制御に切り替える ので、サンプリング周期による制御の遅れを防止することができる。
[0266] 本発明の定着装置の第 9の態様は、記録媒体上の未定着画像を加熱する像加熱 手段を備え、前記像加熱手段として、上記第 1の態様に記載の像加熱装置を用いる 構成を採る。
[0267] この構成によれば、前記像加熱手段として上記第 1の態様に記載の像加熱装置を 用いているので、像加熱体の温度を目標温度に安定して保つことができる低コストで 高効率な構成の定着装置を提供することができる。
[0268] 本発明の画像形成装置の第 10の態様は、記録媒体上に未定着画像を形成する 作像手段と、前記記録媒体上に形成された未定着画像を加熱定着する定着手段と を備え、前記定着手段として上記第 9の態様に記載の定着装置を用いる構成を採る
[0269] この構成によれば、前記定着手段として上記第 9の態様に記載の定着装置を用い て ヽるので、記録媒体上の未定着画像を適切な定着温度で加熱定着することができ る画像形成装置を提供することができる。
[0270] 本明細書は、 2004年 3月 10日出願の特願 2004— 068032に基づく。この内容は すべてここに含めておく。
産業上の利用可能性
[0271] 本発明は、複写機、ファクシミリ及びプリンタ等の画像形成装置の定着装置の定着 速度が変化しても像加熱体の温度を目標温度に安定して保つことができ、また低コ ストイ匕及び高効率ィ匕を図ることを可能にすることである。

Claims

請求の範囲
[1] 記録媒体上の未定着画像を加熱する像加熱体と、
前記像加熱体を加熱する発熱手段と、
前記像加熱体の温度を検出する温度検出手段と、
前記像加熱体の温度が前記記録媒体への前記未定着画像の加熱定着に適した 画像定着温度に保たれるように前記温度検出手段の検出温度に基づいて前記発熱 手段の発熱量を制御する発熱量制御手段と、を有し、
前記発熱量制御手段が所定の基準電力でリニア制御と PWM制御とを切り替えて 前記発熱手段の発熱量を制御する像加熱装置。
[2] 前記基準電力は、電源電圧で変化する請求項 1記載の像加熱装置。
[3] 記録媒体上の未定着画像を加熱する像加熱体と、
前記像加熱体を加熱する発熱手段と、
前記像加熱体の温度を検出する温度検出手段と、
前記像加熱体の温度が前記記録媒体への前記未定着画像の加熱定着に適した 画像定着温度に保たれるように前記温度検出手段の検出温度に基づいて前記発熱 手段の発熱量を制御する発熱量制御手段と、を有し、
前記発熱量制御手段が所定の基準電力でリニア制御と PWM制御とを切り替えて 前記発熱手段の発熱量を制御し、
前記像加熱体の回転速度に応じて前記 PWM制御のサンプリング周期を変更する 像加熱装置。
[4] 前記発熱量制御手段は、前記像加熱体の複数の回転速度のいずれか 2つの回転 速度のうち、遅い方の回転速度で前記 PWM制御の前記サンプリング周期の値を大 きく設定する請求項 3記載の像加熱装置。
[5] 前記発熱量制御手段は、前記像加熱体の最高温度部位から前記温度検出手段の 温度検出部位までの距離を前記像加熱体が所定のプロセス速度で移動する時間よ り短いサンプリング周期で前記 PWM制御を行う請求項 3記載の像加熱装置。
[6] 前記発熱量制御手段により演算された前記 PWM制御の Duty比によって前記 PW M制御のサンプリング周期を変更する請求項 1記載の像加熱装置。
[7] 前記発熱量制御手段は、前記 PWM制御のオン時間を制御周期内で分散させる 請求項 3記載の像加熱装置。
[8] 前記発熱量制御手段は、前記リニア制御の PID制御周期が前記 PWM制御の制 御周期より小さぐかつ前記 PWM制御の制御周期内で前記リニア制御に移行できる 条件になった時点で、前記 PWM制御の一周期終了を待たずに前記リニア制御に切 り替える請求項 1記載の像加熱装置。
[9] 記録媒体上の未定着画像を加熱する像加熱手段を備え、前記像加熱手段として、 請求項 1記載の像加熱装置を用いる定着装置。
[10] 記録媒体上に未定着画像を形成する作像手段と、前記記録媒体上に形成された 未定着画像を加熱定着する定着手段とを備え、前記定着手段として請求項 9記載の 定着装置を用いる画像形成装置。
PCT/JP2005/003889 2004-03-10 2005-03-07 像加熱装置 WO2005088407A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006519396A JP4460578B2 (ja) 2004-03-10 2005-03-07 像加熱装置
US10/554,945 US7379685B2 (en) 2004-03-10 2005-03-07 Image heating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-068032 2004-03-10
JP2004068032 2004-03-10

Publications (1)

Publication Number Publication Date
WO2005088407A1 true WO2005088407A1 (ja) 2005-09-22

Family

ID=34975751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003889 WO2005088407A1 (ja) 2004-03-10 2005-03-07 像加熱装置

Country Status (4)

Country Link
US (1) US7379685B2 (ja)
JP (1) JP4460578B2 (ja)
CN (1) CN100474171C (ja)
WO (1) WO2005088407A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298834A (ja) * 2006-05-01 2007-11-15 Konica Minolta Business Technologies Inc 画像形成装置
JP2011003396A (ja) * 2009-06-18 2011-01-06 Canon Inc 誘導加熱装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257945A (ja) * 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd 像加熱装置
US7880995B2 (en) * 2008-01-31 2011-02-01 Hitachi Global Storage Technologies Netherlands B.V. Method, system, and computer program product for thermally assisted recording systems
JP5458594B2 (ja) * 2008-06-03 2014-04-02 株式会社リコー 画像形成装置
JP5471618B2 (ja) * 2010-03-05 2014-04-16 株式会社リコー ヒータ制御装置、画像形成装置、ヒータ制御方法およびプログラム
JP5058285B2 (ja) * 2010-03-25 2012-10-24 シャープ株式会社 画像形成装置
CA2778322C (en) 2011-07-06 2018-09-04 Technologie Demtroys Inc. Method of operating a remotely-controlled switching device of an energy management system
KR101873033B1 (ko) * 2011-12-01 2018-07-03 에이치피프린팅코리아 주식회사 전압 공용화 화상 형성 장치 및 이의 정착 온도 제어 방법
CN104093232B (zh) * 2014-04-03 2016-03-02 湖南华冶微波科技有限公司 控制工业微波设备的温度的方法及装置
JP6632330B2 (ja) 2015-10-30 2020-01-22 キヤノン株式会社 演算装置及び演算装置を備えた画像形成装置
JP6813791B2 (ja) * 2016-05-20 2021-01-13 株式会社リコー 画像形成装置の制御方法
CN106444899B (zh) * 2016-11-16 2018-07-24 中南大学 一种3d打印机温度控制系统
KR102445886B1 (ko) * 2017-12-20 2022-09-22 현대자동차주식회사 온도센서 고장 판단방법 및 판단시스템
WO2020013854A1 (en) 2018-07-13 2020-01-16 Hewlett-Packard Development Company, L.P. Control of a heated system temperature
CN111473369B (zh) * 2019-01-23 2022-03-15 浙江绍兴苏泊尔生活电器有限公司 温度确定方法、装置及电磁炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175409A (ja) * 1984-09-19 1986-04-17 Ricoh Co Ltd 交流負荷電力制御装置
JPH07175363A (ja) * 1993-12-20 1995-07-14 Ricoh Co Ltd 画像形成装置におけるヒータ温度制御方法
JPH096180A (ja) * 1995-06-22 1997-01-10 Canon Inc 電力制御装置及び定着装置
JP2000259018A (ja) * 1999-03-10 2000-09-22 Ricoh Co Ltd 誘導加熱用インバータ回路を用いた定着装置
JP2002169410A (ja) * 2000-12-01 2002-06-14 Canon Inc 定着装置および画像形成装置
JP2002304083A (ja) * 2001-04-03 2002-10-18 Canon Inc 画像形成装置および電力供給制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US146253A (en) * 1874-01-06 Improvement in compression-faucets
US106211A (en) * 1870-08-09 Improved curtain-fixture
US201768A (en) * 1878-03-26 Improvement in carriage-jacks
US41991A (en) * 1864-03-22 Mode of canceling revenue and other stamps
US199613A (en) * 1878-01-29 Improvement in car-axle boxes
US5789723A (en) * 1996-08-23 1998-08-04 Hewlett-Packard Company Reduced flicker fusing system for use in electrophotographic printers and copiers
KR100385997B1 (ko) * 2001-09-06 2003-06-02 삼성전자주식회사 전자사진 화상형성장치의 정착 장치
WO2005010622A2 (en) 2003-07-25 2005-02-03 Matsushita Electric Industrial Co., Ltd. Image fixing apparatus
JP2005257945A (ja) 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd 像加熱装置
US7157673B2 (en) 2004-03-12 2007-01-02 Matsushita Electric Industrial Co., Ltd. Image heating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175409A (ja) * 1984-09-19 1986-04-17 Ricoh Co Ltd 交流負荷電力制御装置
JPH07175363A (ja) * 1993-12-20 1995-07-14 Ricoh Co Ltd 画像形成装置におけるヒータ温度制御方法
JPH096180A (ja) * 1995-06-22 1997-01-10 Canon Inc 電力制御装置及び定着装置
JP2000259018A (ja) * 1999-03-10 2000-09-22 Ricoh Co Ltd 誘導加熱用インバータ回路を用いた定着装置
JP2002169410A (ja) * 2000-12-01 2002-06-14 Canon Inc 定着装置および画像形成装置
JP2002304083A (ja) * 2001-04-03 2002-10-18 Canon Inc 画像形成装置および電力供給制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298834A (ja) * 2006-05-01 2007-11-15 Konica Minolta Business Technologies Inc 画像形成装置
JP2011003396A (ja) * 2009-06-18 2011-01-06 Canon Inc 誘導加熱装置

Also Published As

Publication number Publication date
US20070036570A1 (en) 2007-02-15
JP4460578B2 (ja) 2010-05-12
CN100474171C (zh) 2009-04-01
CN1806209A (zh) 2006-07-19
US7379685B2 (en) 2008-05-27
JPWO2005088407A1 (ja) 2008-01-31

Similar Documents

Publication Publication Date Title
WO2005088407A1 (ja) 像加熱装置
JP2005257945A (ja) 像加熱装置
US6959158B2 (en) Fixing device and image forming apparatus
US9665048B2 (en) Image forming apparatus having a temperature setting portion to control a target temperature
JP3880326B2 (ja) 加熱装置及びこの加熱装置を備える画像形成装置
JP2005221677A (ja) 画像形成装置
JP2002169410A (ja) 定着装置および画像形成装置
JP4510880B2 (ja) 定着装置及び画像形成装置
JP3993476B2 (ja) 定着装置
JPH10301442A (ja) 加熱装置、定着装置及び画像形成装置
JP2011107447A (ja) 画像形成装置
JP2006039027A (ja) 画像形成装置
US11835909B2 (en) Image forming apparatus including heater powered with cycle-switched current and fixing device including the heater
US7277650B2 (en) Image fixing controller with time/temperature control
JP2001203072A (ja) 加熱装置、像加熱装置および画像形成装置
WO2005085960A1 (ja) 定着装置
JP5822592B2 (ja) 画像形成装置
JP3507282B2 (ja) 定着装置及び画像形成装置
JP2004191966A (ja) 定着装置および画像形成装置
JP5516310B2 (ja) 定着処理のための加熱制御方法と当該加熱制御方法を実施する定着装置並びに画像形成装置
JP4944417B2 (ja) 画像形成装置
JPH0764438A (ja) 画像形成装置
JP4845919B2 (ja) 画像形成装置
JP4194530B2 (ja) 定着装置
JPH11125988A (ja) 画像形成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000513.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006519396

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2007036570

Country of ref document: US

Ref document number: 10554945

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 10554945

Country of ref document: US

122 Ep: pct application non-entry in european phase