WO2005083869A1 - 固定子、モータ、冷媒圧縮機、冷却装置、モータの設計方法 - Google Patents

固定子、モータ、冷媒圧縮機、冷却装置、モータの設計方法 Download PDF

Info

Publication number
WO2005083869A1
WO2005083869A1 PCT/JP2005/002812 JP2005002812W WO2005083869A1 WO 2005083869 A1 WO2005083869 A1 WO 2005083869A1 JP 2005002812 W JP2005002812 W JP 2005002812W WO 2005083869 A1 WO2005083869 A1 WO 2005083869A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
rotor
central axis
tooth portion
stator
Prior art date
Application number
PCT/JP2005/002812
Other languages
English (en)
French (fr)
Inventor
Kiyotaka Nishijima
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2005083869A1 publication Critical patent/WO2005083869A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a motor design.
  • the electromagnetic attraction force acting between a rotor and a stator of a motor has a normal component that is about an order of magnitude greater than a tangent component.
  • the electromagnetic attraction of the normal component is a major cause of motor vibration and noise.
  • Patent Document 1 JP 2002-252956 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-325410
  • Patent Document 3 JP 2002-315243 A
  • Patent Document 4 Japanese Patent No. 3301981
  • Patent Document 5 JP-A-7-308057
  • an object of the present invention is to provide a design technique for making an electromagnetic force acting between a tooth portion and a rotor a desired function, and to propose an optimal shape of a motor.
  • a first aspect of the stator (1) according to the present invention is an annular yoke (12) provided around a central axis, and provided on the central axis side of the annular yoke, and A plurality of spaced apart teeth (10).
  • the tooth portion is provided on a root portion (10R) protruding from the yoke to the central axis and on the central axis side of the root portion.
  • the distance from the center axis of the inner surface (101; 102; 103) opposed to the center axis is (i) the first position (10A) in the second flange, the root, and the second flange.
  • the third distance is larger than the first distance and the second distance is taken, and (iii) a third distance smaller than the first distance is taken between the first position and the second position.
  • a second aspect of the stator (1) according to the present invention is the stator according to the first aspect
  • the distance of the inner surface (103) from the central axis is (iv) the first distance in the positive angular direction (+ side) from the second position (10B).
  • a third aspect of the stator (1) according to the present invention is the stator according to the first aspect or the second aspect, wherein a maximum value of the second distance and the first distance are different. The difference is larger than the difference between the minimum value of the third distance and the first distance.
  • a fourth aspect of the stator (1) according to the present invention is the stator according to the first aspect.
  • the distance of the inner surface (101; 102) from the central axis is (iv) smaller than the first distance between the second position (10B) and the center (10N) of the root (10R). Take the fourth distance.
  • a fifth aspect of the stator (1) according to the present invention is the stator according to the fourth aspect, wherein the difference between the maximum value of the second distance and the first distance is equal to the difference of the first distance.
  • the difference between the minimum value of the third distance and the first distance, which is greater than the difference between the minimum value of the third distance and the first distance, is the difference between the minimum value of the fourth distance and the first distance. Greater than.
  • a sixth aspect of the stator (1) according to the present invention is the stator according to any one of the first to fifth aspects, wherein the tooth portion (10) includes the root portion (10R). Are symmetric with respect to the center (10N).
  • a seventh aspect of the stator (1) according to the present invention is the stator according to the fourth aspect, wherein the distance from the center axis of the inner surface (101) is (V) A fifth distance smaller than the first distance is taken between the center (10N) of the root (10R) and a third position (10C) in the first flange, and (vi) the third distance On the positive direction (+ ⁇ ) side of the position, a sixth distance larger than the first distance is used.
  • An eighth aspect of the stator (1) according to the present invention is the stator according to the seventh aspect, wherein a difference between a maximum value of the second distance and the first distance is:
  • the difference between the minimum value of the third distance and the first distance, which is larger than the difference between the minimum value of the third distance and the first distance, is the difference between the minimum value of the fourth distance and the first distance.
  • the difference between the maximum value of the sixth distance and the first distance, which is larger than the difference of the distance is the difference between the minimum value of the third distance and the first distance, the minimum value of the fourth distance, and It is larger than both the difference from the first distance and the difference between the minimum value of the fifth distance and the first distance.
  • a first aspect of a motor according to the present invention is the motor (1) according to any one of the first to eighth aspects, wherein the stator (1) is located at the same distance about the central axis as the center, and A rotor (2) having an outer surface (200) facing the inner surface (101; 102; 103) of the portion and rotatable in the positive angular direction (+ ⁇ ).
  • a second aspect of the motor according to the present invention is an electric motor, comprising: an annular yoke (12) provided around a central axis; and an electric yoke provided on the central axis side of the annular yoke and separated from each other.
  • a stator (1) having a plurality of teeth (10) on which a child winding is wound, and an inner surface (101; 102; 103) of the teeth on the central axis side, and a permanent magnet
  • a rotor (2) rotatable about the central axis.
  • the gap between the inner surface (101; 102; 103) of the tooth portion facing the rotor and the rotor is set so that the electromagnetic force acting between them has a sine wave shape.
  • a refrigerant compressor according to the present invention employs the first aspect or the second aspect of the motor according to the present invention.
  • a cooling device employs the refrigerant compressor according to the present invention.
  • a motor design method is a motor design method including a stator (1) and a rotor (2).
  • the stator (1) is provided on an annular yoke (12) provided around a central axis and on the central axis side of the annular yoke, and an armature winding is wound apart from each other. It has a plurality of teeth (10).
  • the rotor (2) is surrounded by an inner surface (101; 102; 103) of the tooth portion on the central axis side, has a permanent magnet, and is rotatable around the central axis.
  • the inner surface (101; 102; 103) and the rotor are designed so that the electromagnetic force acting between them has a sinusoidal shape.
  • a second aspect of the motor designing method according to the present invention is as follows: (a) between the inner surface and the rotor, the direction is perpendicular to both the rotation direction (+ ⁇ ) of the rotor and the center axis. Determining a distance (L ( ⁇ , ⁇ )) along the radial direction (D) of the motor for each rotational position ( ⁇ ) of the rotor and for each position ( ⁇ ) of the inner surface (S1); b) obtaining an electromagnetic force (Fn ( ⁇ , ⁇ )) generated in a direction normal to the inner surface for each rotational position ( ⁇ ) of the rotor and for each position ( ⁇ ) of the inner surface (S2); c) updating the distance by multiplying the distance by a square root of a value obtained by dividing the electromagnetic force by a desired function (G ( ⁇ , ⁇ )) of the electromagnetic force (S4).
  • a third aspect of the motor designing method according to the present invention is as follows.
  • (A) The motor is perpendicular to both the rotation direction (+ ⁇ ) of the rotor and the center axis between the inner surface and the rotor. Determining a distance (L ( ⁇ , ⁇ )) along the radial direction (D) of the motor for each rotational position ( ⁇ ) of the rotor and for each position ( ⁇ ) of the inner surface (S1); b) The maximum value ( ⁇ ( ⁇ )) of the electromagnetic force (Fn (0, ⁇ )) generated in the normal direction of the inner surface in a predetermined range of the rotational position ( ⁇ ) of the rotor is determined by the position of the inner surface ( ⁇ ), and (c) multiplying the distance by a square root of a value obtained by dividing the maximum value by a desired function (G ( ⁇ )) for the maximum value. Updating (S4).
  • a fourth aspect of the motor design method according to the present invention is as follows: (a) The motor is arranged between the inner surface and the rotor in a direction perpendicular to both the rotation direction (+) and the center axis of the rotor.
  • a fifth aspect of the motor designing method according to the present invention is as follows.
  • the motor is perpendicular to both the rotation direction (+ ⁇ ) of the rotor and the center axis between the inner surface and the rotor.
  • the motor Determining a distance (L ( ⁇ , ⁇ )) along the radial direction (D) of each of the rotors for each rotational position ( ⁇ ) of the rotor and each position ( ⁇ ) of the inner surface;
  • (b) Obtaining the maximum value of the magnetic flux density ( ⁇ ( ⁇ , ⁇ )) generated in the normal direction of the inner surface in a predetermined range of the rotational position ( ⁇ ) of the rotor for each position ( ⁇ ) of the inner surface;
  • S2, S3 Obtaining the maximum value of the magnetic flux density ( ⁇ ( ⁇ , ⁇ )) generated in the normal direction of the inner surface in a predetermined range of the rotational position ( ⁇ ) of the rotor for each position ( ⁇ ) of the inner surface;
  • (S2, S3) updating the
  • a sixth aspect of the motor design method according to the present invention is the motor design method according to the third aspect or the fifth aspect, wherein the predetermined range includes a rotational position of the rotor. ⁇ )) over all positions.
  • a seventh aspect of the motor designing method according to the present invention is the motor designing method according to the second to sixth aspects, wherein the steps (b) and (c) are repeatedly executed, and The distance is updated multiple times (S7).
  • An eighth aspect of the motor design method according to the present invention is the motor design method according to the second to seventh aspects, wherein the desired function (G ( ⁇ )) is Where m is the total number of parts and ⁇ is the geometrical position angle of the stator (1), which is proportional to sin (m ⁇ / 2)
  • a ninth aspect of the motor design method according to the present invention is a motor design method according to the eighth aspect, wherein the desired function (G ( ⁇ )) has the maximum value. It is proportional to the maximum value (FnO) given near the center of the tooth.
  • a tenth aspect of the motor design method according to the present invention is the motor design method according to any one of the second to seventh aspects, wherein the desired function (G ( ⁇ )) ) Is the maximum value of the desired function (G ( ⁇ )) at the position ( ⁇ 0) of the inner surface where the maximum value gives the maximum value (FnO) near the center of the tooth portion.
  • the position of the inner surface ( ⁇ ) decreases sinusoidally from the position of the inner surface ( ⁇ 0) to the opposite side ( ⁇ ) of the tooth portion from the rotation direction (+ ⁇ ) of the rotor with the applied force. .
  • An eleventh aspect of the motor designing method according to the present invention is the motor designing method according to any one of the second to tenth aspects, wherein the desired function (G (G)) is , On the opposite side (one ⁇ ) from the center of each tooth (10N) to the rotation direction (+ ⁇ ) of the rotor. Is set. In the step (b), the desired function (G ( ⁇ )) is executed within the set range. (D) after the steps (b) and (c), the center of the tooth (ION
  • the method further comprises the step of setting the shape of the tooth portion in line symmetry with respect to ()).
  • the electromagnetic force acting between the inner surface and the rotor is made substantially sinusoidal, so that vibration and noise of the motor can be reduced.
  • the electromagnetic force or magnetic flux density acting between the inner surface of the tooth portion and the rotor when the rotor rotates is reduced to a desired shape, for example, a sine wave shape.
  • vibration and noise of the motor can be reduced.
  • the motor design method since the maximum value of the electromagnetic force or the magnetic flux density at the rotational position of the rotor is set to a desired function, the vibration and noise of the motor are reduced. The design of the gap between the teeth and the rotor is facilitated.
  • the gap between the tooth portion and the rotor can be designed more accurately.
  • the electromagnetic force or the magnetic flux density acting between the inner surface of the tooth portion and the rotor is substantially sinusoidal. Motor vibration and noise can be reduced.
  • a large torque can be obtained without significantly changing the inner surface shape of the tooth portion from the cylindrical shape.
  • the inner shape of the tooth portion can be easily designed.
  • FIG. 1 is a cross-sectional view illustrating the configuration of a motor with a built-in permanent magnet that can be employed as a target of a motor design method according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a portion between an inner surface 100 of a tooth portion 10 and an outer peripheral surface 200 of a rotor 2.
  • FIG. 3 is a graph showing the angle dependence of the magnetomotive force.
  • FIG. 4 is a cross-sectional view showing a position of a magnetomotive force V shown in FIG. 3 and a flow of magnetic flux.
  • FIG. 5 is a flowchart showing a motor designing method according to the first embodiment of the present invention.
  • FIG. 6 is a graph showing the effect of the method of designing a motor according to the first embodiment of the present invention.
  • FIG. 7 is a graph illustrating step S4 of the method for designing a motor according to the first embodiment of the present invention.
  • FIG. 8 is an enlarged sectional view showing a configuration of a tooth portion 10 having an inner surface 101.
  • FIG. 9 is a graph showing the result of step S5.
  • FIG. 10 is a graph showing the results when Steps S2 and S5 are repeated multiple times.
  • FIG. 11 is a graph showing a change in an electromagnetic force Fn (61, ⁇ ) according to rotation of a rotor 2.
  • FIG. 12 is a graph showing a frequency spectrum of an electromagnetic force Fn according to the first embodiment of the present invention.
  • FIG. 13 is a graph illustrating step S4 of the motor designing method according to the second embodiment of the present invention.
  • FIG. 14 is a cross-sectional view illustrating the structure of the tooth portion 10 having the inner surface 103.
  • FIG. 15 is a cross-sectional view illustrating the structure of a tooth portion 10 having an inner surface 102.
  • FIG. 16 is a graph showing the difference in the maximum value ⁇ ( ⁇ ) of the electromagnetic force Fn due to the difference in the inner surface shape of the tooth portion 10.
  • FIG. 17 is a graph showing a frequency spectrum of an electromagnetic force Fn according to the second embodiment of the present invention.
  • FIG. 1 is a cross-sectional view illustrating the configuration of a motor with a built-in permanent magnet that can be employed as a target of the motor design method according to the present invention. From the back of the paper in the figure to the front, the cylindrical coordinate Takes the positive direction of the axial direction Z, and the positive angular direction + clockwise toward the positive direction of the axial direction Z.
  • the motor with a built-in permanent magnet includes a stator 1 and a rotor 2, and the rotor 2 is surrounded by the stator 1.
  • the stator 1 has an annular yoke 12 provided around a central axis parallel to the axial direction, and a plurality of teeth 10 provided on the central axis side of the annular yoke.
  • the teeth 10 are spaced apart from each other, and an armature winding (not shown) is wound in a space 11 between the teeth 10.
  • the rotor 2 has a main body 20, in which three types of gaps 21, 22, 23 are provided.
  • a permanent magnet (not shown) is embedded in the center of the space 21.
  • the end of the air gap 21 extends to the vicinity of the outer peripheral surface of the main body 20 for bypassing the magnetic field at the end of the permanent magnet.
  • the gap 22 is provided closer to the outer peripheral surface than the center of the gap 21.
  • the end of the gap 21 and the gap 22 may be filled with a non-magnetic material for the purpose of maintaining strength as well as bypassing the magnetic field.
  • a shaft (not shown) is inserted through the space 23 in parallel with the axial direction z, and the rotational torque of the rotor 2 is transmitted to the outside by the shaft.
  • FIG. 2 is an enlarged cross-sectional view showing a portion between the inner surface 100 of the tooth portion 10 and the outer peripheral surface 200 of the rotor 2.
  • the electromagnetic force between the inner surface 100 and the outer surface 200 depends on the distance L between them, the magnetomotive force V, the magnetic permeability, and the like.
  • the distance L depends on the shape of the inner surface 100 and the shape of the outer surface 200. However, since both shapes are substantially cylindrical, the distance L along the direction perpendicular to both the rotational direction of the rotor (ie, the positive angular direction + ⁇ ) and the axial direction z, that is, the radial direction D of the motor, Ask for.
  • the distance L taking into account the shape of the inner surface 100 and the shape of the outer peripheral surface 200 is the geometric position angle ⁇ set for the stator 1 and the position angle of the rotor 2 (mechanical angle). ) ⁇ (both along the positive angular direction + ⁇ ). That is, the distance L ( ⁇ , ⁇ ) is determined along the radial direction D of the motor, and the position angle ⁇ , ⁇ can be obtained while adopting the approximation of making the shape of the inner surface 100 and the shape of the outer surface 200 almost cylindrical.
  • the shape of the inner surface 100 The shape of the outer peripheral surface 200 is considered.
  • the normal component of the electromagnetic attraction force acting between the rotor and the stator (hereinafter, simply referred to as "electromagnetic force") Fn, which is a main factor of motor vibration and noise, is Assuming that the normal component of the magnetic flux density is Bn and the tangential component is Bt between the inner surface 100 and the outer surface 200, it is expressed as (Bn-Bn-Bt-Bt) / 2 ⁇ . Since the tangent component Bt on the inner surface 100 is smaller than the normal component Bn, the value obtained by taking the difference between the squares is substantially equal to the square of the normal component Bn as in the calculation in parentheses described above. Therefore, the electromagnetic force Fn can be estimated as a value obtained by dividing the square of the normal component Bn on the inner surface 100 by twice the magnetic permeability ⁇ .
  • the electromagnetic force Fn (or the normal component Bn on the inner surface 100, which is proportional to the square root thereof) may be formed into a desired functional form, for example, an arc or a sine wave. ,. Since the magnetic flux density between the rotor and the stator is proportional to the magnetomotive force V and the magnetic permeability ⁇ , if the magnetomotive force V at which magnetic saturation ceases is constant regardless of the position angles ⁇ and ⁇ , the distance By making L ( ⁇ , ⁇ ) a constant value or a sinusoidal shape, vibration and noise can be reduced.
  • the magnetomotive force V depends on the position angles ⁇ and ⁇ , and magnetic saturation also occurs.
  • the angle dependence of the magnetomotive force V and the fluctuation of the magnetic permeability / due to magnetic saturation are particularly remarkable in a motor with a built-in permanent magnet having a complicated shape.
  • FIG. 3 is a graph showing the angle dependency of the magnetomotive force
  • FIG. 4 is a cross-sectional view showing the position of the magnetomotive force V shown in FIG. 3 and the flow of the magnetic flux.
  • an example is shown in which the shape of the inner surface 100 and the shape of the outer peripheral surface 200 are cylindrical, and thus the distance L is constant.
  • Graph L1 in Fig. 3 shows the magnetomotive force ⁇ ( ⁇ , ⁇ ) when rotor 2 is at the position shown in Fig. 4 (the rotating mechanical angle of rotor 2 at this time is ⁇ 0). Is shown.
  • Graph L2 shows the maximum value of the magnetomotive force V during one rotation of the rotor 2, that is, the maximum value Vm ( ⁇ ) of the magnetomotive force V for the rotating mechanical angle ⁇ of the magnetomotive force V ( ⁇ , ⁇ ). .
  • the electromagnetic force Fn is obtained by magnetic simulation, and the distance L ( ⁇ , ⁇ ) is corrected so as to approach a desired function form, for example, a sine wave.
  • the gap between the inner surface of the tooth portion of the stator and the rotor is set so as to have a sinusoidal electromagnetic force acting between them, so that when the rotor rotates. No m This reduces vibration and noise.
  • FIG. 5 is a flowchart showing a motor designing method according to the first embodiment of the present invention.
  • a gap between the tooth portion 10 and the rotor 2 that is, a distance L ( ⁇ , ⁇ ) is obtained. This is determined by the shape of the inner surface 100 and the outer surface 200. As described above, the distance is determined along the radial direction D perpendicular to both the rotation direction and the central axis of the rotor 2. Then, the distance L ( ⁇ , ⁇ ) is obtained for each rotation position (position angle) ⁇ of the rotor 2 and for each position angle ⁇ of the inner surface 100. For example, if the outer peripheral surface of the rotor 2 is cylindrical with the rotation center axis as the center, the distance L does not depend on the position of the rotor 2 and thus depends only on the position angle ⁇ .
  • step S2 the electromagnetic force Fn (0, ⁇ ) acting in the normal direction of the inner surface 100 is calculated using an electromagnetic simulation. Further, in step S3, the maximum value M ( ⁇ ) of the electromagnetic force Fn ( ⁇ , ⁇ ) is determined according to the rotational position ⁇ of the rotor 2.
  • FIG. 6 is a graph showing the result of the simulation.
  • the vertical axis indicates the electromagnetic force Fn
  • the horizontal axis indicates the position angle ⁇ of the inner surface 100 of one tooth 10. This is the calculation result when the inner surface 100 and the outer surface 200 are cylindrical and the deviation is also cylindrical.
  • the graph LI 1 shows the electromagnetic force Fn ( ⁇ , ⁇ ⁇ ) when the rotor 2 is at the rotational position ⁇ ⁇
  • the graph L 21 shows the maximum value ⁇ ( ⁇ ).
  • the electromagnetic force Fn is set to a desired function form to reduce vibration and noise, it is preferable to use the maximum value. This is because not only a design that does not generate an electromagnetic force having a value larger than the desired function form is possible, but also all the tooth portions 10 can be designed to have the same shape.
  • the tooth portion 10 is formed with a root portion 10R protruding from the yoke 12 toward the center axis. Both are divided into a first flange portion 10P and a second flange portion 10Q protruding from the root portion 10R on the center axis side of the root portion 10R on the positive angle direction + ⁇ and the negative angle direction side, respectively.
  • the first flange 10P and the root 1OR sandwich a boundary 10V
  • the second flange 10Q and the root 1OR sandwich a boundary 10W.
  • the electromagnetic force Fn ( ⁇ ) and its maximum value ⁇ ( ⁇ ⁇ ⁇ ) are large local maxima near the end opposite to the boundary 10W of the second flange portion 10Q, ie, in the negative angle direction-near the end on the ⁇ side. Value. Then, it decreases as the position angle ⁇ increases, and takes a minimum value near the boundary 10W.
  • the position angle ⁇ ⁇ ⁇ ⁇ increases as the position angle ⁇ ⁇ increases, and reaches a local maximum slightly before reaching the center 10N of the root (negative angle direction- ⁇ side). Thereafter, as the position angle ⁇ increases, it almost decreases, but a small local maximum near the end opposite to the boundary 10V of the first flange 10P, that is, near the end on the positive angle direction + ⁇ side. Value.
  • step S4 is executed after step S3.
  • the desired function form G (G)
  • FIG. 7 is a graph illustrating step S4.
  • the graph LO indicates the desired function G ( ⁇ ) for the maximum value ⁇ ( ⁇ ).
  • the maximum value FnO of the function G ( ⁇ ) is a position angle slightly before the center 10N of the root when the inner surface 100 and the outer surface 200 are both cylindrical, ⁇ the maximum value obtained at 0 ⁇ ( ⁇ 0).
  • the present invention is not limited to the case where the maximum value FnO is set in this way.
  • the maximum value FnO in order to obtain a large torque without significantly deforming the newly designed inner surface of the tooth portion 10 from the cylindrical shape, it is desirable to set the maximum value FnO as described above.
  • the graph L21 also shown in FIG. 7 is pulsating with respect to the graph L0. Therefore, if the inner surface 101 of the tooth portion 10 that reduces this pulsation is obtained, the motor can be made quieter while the shape of the outer peripheral surface 200 of the rotor 2 remains cylindrical.
  • the specific calculation is as described in the explanation of step S4.
  • Negative angular direction _ (from the end of H-law) Between the position 10A and the position between the position 10C and the end of the first flange portion 10P in the positive angular direction + ⁇ side, the inner surface 101 of the tooth portion 10 is farther from the central axis than the cylindrical inner surface 100. Further, the inner surface 101 of the tooth portion 10 is closer to the central axis than the cylindrical inner surface 100 between the position 10A and the position 10C where the minimum value of the graph L21 is increased. However, at the position 10B where the position angle ⁇ 0, the distance from the central axis of the inner surface 101 is the same as the distance from the central axis of the inner surface 100. As a result, the maximum value Fn ( ⁇ , ⁇ ) can be made closer to a desired function G ( ⁇ ) in which the maximum value ⁇ ( ⁇ 0) is the maximum value.
  • FIG. 5 the process proceeds from step S4 to step S5.
  • the maximum value ⁇ ( ⁇ ) of the electromagnetic force is calculated again.
  • Figure 9 is a graph showing the result of the recalculation.
  • Graphs L21 and L0 show the maximum value ⁇ ( ⁇ ) of the electromagnetic force and the desired function G ( ⁇ ⁇ ⁇ ⁇ ) on the cylindrical inner surface 100, respectively.
  • Graph L22 is obtained by executing steps S1 and S4 all over. Is the maximum value ⁇ ( ⁇ ). That is, the difference between the distance L ( ⁇ , ⁇ ) obtained in step S1 and the distance L ′ ( ⁇ , ⁇ ) obtained in step S4 appears as a difference between the graphs L12 and L22.
  • step S6 it is determined whether or not the difference between the new maximum value ⁇ ( ⁇ ) and the desired function G ( ⁇ ) is within an allowable range.
  • the permissible range can be variously changed depending on the specification of the motor to be designed and the mode of use.
  • step S4 the shape of the tooth portion 10 is set according to the distance L ′ ( ⁇ , ⁇ ) obtained in step S4. If the distance is not within the allowable range, the process proceeds to step S7, the distance L ( ⁇ , ⁇ ) is updated with the distance L ′ ( ⁇ , ⁇ ) obtained in step S4, and the process returns to step S2. Thus, steps S2 to S5 are repeatedly calculated until the allowable range is reached.
  • FIG. 8 is an enlarged cross-sectional view showing the configuration of the tooth portion 10 having the inner surface 101 facing the central axis (not shown).
  • the shape of the inner surface 101 was determined based on the results obtained by repeating steps S2 to S5 a plurality of times.
  • the outer peripheral surface 200 of the rotor 2 is assumed to be cylindrical. The distance from the central axis of the inner surface 101 opposite to the central axis of the inner surface 101 can be described in detail as follows.
  • the difference between the maximum value of the second distance (obtained near the end opposite to the boundary 10W of the second flange 10Q) and the first distance is the minimum value of the third distance ( (Obtained near the boundary 10W) and the first distance.
  • the difference between the minimum value of the third distance and the first distance is larger than the difference between the minimum value of the fourth distance (obtained near the center ION) and the first distance.
  • the difference between the maximum value of the sixth distance (obtained near the end opposite to the boundary 10V of the first flange 10P) and the first distance is the difference between the minimum value of the third distance and the third distance. It is larger than the difference between the first distance, the difference between the minimum value of the fourth distance and the first distance, and the difference between the minimum value of the fifth distance (obtained near the boundary 10V) and the first distance.
  • FIG. 10 is a graph showing a result when steps S2 to S5 are repeatedly executed a plurality of times.
  • Graph L23 shows the maximum value ⁇ ( ⁇ ) obtained by multiple recalculations, and graphs L21 and LO are also shown.
  • the maximum value obtained by multiple recalculations
  • L21 and LO are also shown.
  • FIG. 11 is a graph showing the change in the resultant force obtained by calculating the electromagnetic force Fn at each position of one tooth 10 of the stator 1 as a whole of the tooth 10. Since the case where the number of poles of the rotor 2 is six is shown here, the case where the position angle ⁇ is 0 to 60 degrees is illustrated. Comparing the case where the inner surface 100 is used (before the measure) and the case where the inner surface 101 obtained by multiple calculations (after the measure) is used, this graph shows that the resultant force of the electromagnetic force Fn is clear. The differences are elusive.
  • FIG. 13 is a graph illustrating step S4 in the present embodiment. Similar to FIG. 7, the graph L21 shows the maximum value ⁇ ( ⁇ ) of the electromagnetic force Fn. On the other hand, the graph L01 shows a desired function G (0) for the maximum value ⁇ ( ⁇ ).
  • a position angle ⁇ ⁇ ⁇ that gives a second maximum value of the maximum value ⁇ ( ⁇ ) on the negative angle direction (1) side than the position angle ⁇ 0 giving the second largest value improve the shape of the inner surface of the tooth 10. Therefore, in the present embodiment, the desired function G ( ⁇ ) coincides with the maximum value ⁇ ( ⁇ ) on the positive angle direction (+ ⁇ ) side of the position angle ⁇ 0.
  • G ( ⁇ ) By using such a function G ( ⁇ ), by obtaining the distance L 'according to the repetitive calculation of the flowchart shown in FIG. 5, the electromagnetic force generated on the negative angle direction (- ⁇ ) side of the tooth portion 10 can be obtained. Large fluctuations in Fn can also be suppressed.
  • FIG. 14 is a cross-sectional view illustrating the structure of the tooth portion 10 having the inner surface 103.
  • the inner surface 103 uses the function G ( ⁇ ) shown in the graph L01 of FIG. 13 and the outer peripheral surface 200 of the rotor 2 has a cylindrical shape based on the distance L ′ obtained according to the flowchart shown in FIG.
  • the inner surface 103 is deformed from a cylindrical shape only in the negative angle direction _ ⁇ side when viewed from the root 10N.
  • the positive side in the positive angle direction has a cylindrical shape.
  • the inner surface 103 also satisfies the above-mentioned conditions (i)-(iii). More specifically, the difference between the maximum value of the second distance and the first distance is larger than the difference between the minimum value of the third distance and the first distance.
  • FIG. 15 is a cross-sectional view illustrating the structure of the tooth portion 10 having the inner surface 102.
  • the inner surface 102 has the shape of the inner surface 103, which is line-symmetric with respect to the center 10N of the root 10R. With such line symmetry, the maximum value ⁇ ( ⁇ ) of the electromagnetic force Fn over the entire tooth portion 10 can be more easily brought closer to the desired function G ( ⁇ ) than in the first embodiment. However, the desired function G ( ⁇ ) is also line-symmetric with respect to the center 1 ON.
  • step S4 is performed in a range where a desired function (G ( ⁇ )) is set, a step of setting a shape line-symmetrically with respect to the center 10N of the root 10R of the tooth portion 10 is necessary. Be executed.
  • FIG. 16 is a graph showing the difference in the maximum value ⁇ ( ⁇ ) of the electromagnetic force Fn due to the difference in the inner surface shape of the tooth portion 10.
  • Graphs L21 and L23 reproduce the one shown in FIG. 10 and correspond to the inner surface 100.101, respectively.
  • Graph L24 shows the maximum value ⁇ ( ⁇ ) when the inner surface 102 is used.
  • the position angle ⁇ ⁇ indicates the position of the center 10N of the root 10R of the tooth 10.
  • FIG. 17 is a graph showing the frequency spectrum of the resultant force of the electromagnetic force Fn.
  • the graphs shown as “Before countermeasures” and “After countermeasures” in Figure 12 are shown here as “Before countermeasures” and “Inside 101 is adopted.
  • FIG. 17 also illustrates a case where the inner surface 102 is employed. From this graph, it can be seen that the harmonics can be reduced on both the inner surfaces 101 and 102.
  • the maximum value ⁇ ( ⁇ ) of the electromagnetic force Fn is close to the desired function G ( ⁇ ).
  • the present invention is not limited to power and such aspects.
  • the electromagnetic force Fn ( ⁇ , ⁇ ) at a certain position angle ⁇ of the rotor 2 may be close to a desired function G ( ⁇ ).
  • the electromagnetic force Fn ( ⁇ , ⁇ ) at a certain position angle ⁇ can be suppressed.
  • the maximum value ⁇ ( ⁇ ) the maximum value of the electromagnetic force Fn within a predetermined range of the position angle ⁇ of the rotor 2 may be adopted. Thereby, the electromagnetic force in the vicinity of a certain position angle ⁇ can be suppressed.
  • the maximum value ⁇ ( ⁇ ) of the normal component Bn of the magnetic flux density may be made closer to a desired function G ( ⁇ ).
  • M ( ⁇ ) / G ( ⁇ ) is multiplied (without taking a square root) by the distance L ( ⁇ , ⁇ ), and a new distance L ′ (6, ⁇ ).
  • the normal component Bn of the magnetic flux density at a certain position angle ⁇ of the rotor 2 may be approximated to a desired function G ( ⁇ ). Further, the normal component Bn of the magnetic flux density within a predetermined range of the position angle ⁇ of the rotor 2 may be adopted as the maximum value ⁇ ( ⁇ ).
  • the stator and the motor according to the present invention it is possible to suppress the vibration and noise of the motor. Therefore, the vibration and noise of the refrigerant compressor equipped with the powerful motor are suppressed, and the vibration and noise of the cooling device employing the powerful refrigerant compressor are also suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Compressor (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 本発明は、歯部と回転子との間に働く電磁力を所望の関数形にすることを目的とする。。歯部10と回転子2との間の距離L(θ,φ)を求める(ステップS1)。電磁シミュレーションを用いて、内面100の法線方向に働く電磁力Fn(θ、φ)を計算する(ステップS2)。回転子2の回転位置φについての電磁力Fn(θ、φ)の最大値M(θ)を求める(ステップS3)。所望の関数形G(θ)を用いて歯部内面と回転子外周面との間の距離を計算する(ステップS4)。具体的には、最大値M(θ)をこの最大値についての所望の関数G(θ)で除した値の平方根を距離L(θ,φ)に乗じて、新たな距離L’(θ,φ)を求める。電磁力の最大値M(θ)を再度計算する(ステップS5)。新たな最大値M(θ)と所望の関数G(θ)との相違が許容範囲にあるか否かが判定される(ステップS6)。許容範囲になければステップS2~S6が繰り返して実行される。

Description

明 細 書
固定子、モータ、冷媒圧縮機、冷却装置、モータの設計方法
技術分野
[0001] この発明はモータの設計に関する。
背景技術
[0002] モータの回転子と固定子との間に働く電磁吸引力は、法線成分が接線成分に比べ て一桁ほど大きい。そしてこの法線成分の電磁吸引力はモータの振動、騒音の主要 因となっている。
[0003] かかる振動、騒音を軽減するため、回転子や固定子の形状に工夫がなされてきた。
かかる工夫は例えば下記文献に見られる。
[0004] 特許文献 1 :特開 2002 - 252956号公報
特許文献 2:特開 2002 - 325410号公報
特許文献 3 :特開 2002— 315243号公報
特許文献 4:特許 3301981号公報
特許文献 5:特開平 7 - 308057号公報
発明の開示
[0005] し力、しながら、電磁吸引力が有する電気角周波数の偶数倍の高調波を低減するた めの明確な手法は未だ提示されておらず、従ってモータの形状、例えば歯部の最適 形状についても明確には提案されてはいない。
[0006] そこで本発明は、歯部と回転子との間に働く電磁力を所望の関数形にする設計技 術を提供し、またモータの最適形状について提案することを目的としている。
[0007] この発明に力かる固定子(1)の第 1の態様は、中心軸周りに設けられた環状のョー ク(12)と、前記環状ヨークの前記中心軸側に設けられ、相互に離隔した複数の歯部 (10)とを備える。そして前記歯部は、前記ヨークから前記中心軸へと突出する根部( 10R)と、前記根部の前記中心軸側に設けられ、前記中心軸を軸方向(z)に採った 場合に、正の角度方向(+ゆ)側に前記根部から突出する第 1鍔部(10P)及び,負 の角度方向 (一 側に前記根部から突出する第 2鍔部(10Q)とを有する。前記歯部 の前記中心軸に対向する内面(101; 102 ; 103)の前記中心軸からの距離は、(i)前 記第 2鍔部における第 1位置(10A)と、前記根部と前記第 2鍔部との境界(10W)と 前記根部の中心(10N)との間における第 2位置(10B)とにおいて等しい第 1距離を 採り、(ii)前記第 1位置よりも前記負の方向側においては、前記第 1距離よりも大きレ、 第 2距離を採り、(iii湔記第 1位置と前記第 2位置の間においては前記第 1距離よりも 小さい第 3距離を採る。
[0008] この発明にかかる固定子(1)の第 2の態様は、第 1の態様に力、かる固定子であって
、前記内面(103)の前記中心軸からの距離は、(iv)前記第 2位置(10B)から前記正 の角度方向(+ 側において前記第 1距離を採る。
[0009] この発明にかかる固定子(1)の第 3の態様は、第 1の態様又は第 2の態様にかかる 固定子であって、前記第 2距離の最大値と前記第 1距離との差は、前記第 3距離の 最小値と前記第 1距離との差よりも大きい。
[0010] この発明に力かる固定子(1)の第 4の態様は、第 1の態様に力かる固定子であって
、前記内面(101 ; 102)の前記中心軸からの距離は、(iv)前記第 2位置(10B)と前記 根部(10R)の前記中心(10N)の間においては前記第 1距離よりも小さい第 4距離を 採る。
[0011] この発明にかかる固定子(1)の第 5の態様は、第 4の態様にかかる固定子であって 、前記第 2距離の最大値と前記第 1距離との差は、前記第 3距離の最小値と前記第 1 距離との差よりも大きぐ前記第 3距離の最小値と前記第 1距離との差は、前記第 4距 離の最小値と前記第 1距離との差よりも大きい。
[0012] この発明にかかる固定子(1)の第 6の態様は、第 1乃至第 5の態様のいずれかにか かる固定子であって、前記歯部(10)は前記根部(10R)の前記中心(10N)に関して 線対称である。
[0013] この発明にかかる固定子(1)の第 7の態様は、第 4の態様に力、かる固定子であって 、前記内面(101)の前記中心軸からの距離は、(V)前記根部(10R)の前記中心(10 N)と、前記第 1鍔部における第 3位置(10C)との間において前記第 1距離よりも小さ い第 5距離を採り、(vi)前記第 3位置よりも前記正の方向(+ φ )側においては、前記 第 1距離よりも大きい第 6距離を採る。 [0014] この発明に力かる固定子(1)の第 8の態様は、第 7の態様に力かる固定子であって 、前記第 2距離の最大値と前記第 1距離との差は、前記第 3距離の最小値と前記第 1 距離との差よりも大きぐ前記第 3距離の最小値と前記第 1距離との差は、前記第 4距 離の最小値と前記第 1距離との差よりも大きぐ前記第 6距離の最大値と前記第 1距 離との差は、前記第 3距離の最小値と前記第 1距離との差、前記第 4距離の最小値と 前記第 1距離との差、及び前記第 5距離の最小値と前記第 1距離との差のいずれより も大きい。
[0015] この発明に力かるモータの第 1の態様は、第 1乃至第 8の態様のいずれかにかかる 固定子(1)と、前記中心軸を中心として同一の距離にあって、前記歯部の前記内面( 101; 102; 103)と対向する外面(200)を有し、前記正の角度方向(+ φ )に回転可 能な回転子(2)とを備える。
[0016] この発明にかかるモータの第 2の態様は、中心軸周りに設けられた環状のヨーク(1 2)と、前記環状ヨークの前記中心軸側に設けられ、相互に離隔して、電機子卷線が 卷回された複数の歯部(10)と、を有する固定子(1)と、前記歯部の前記中心軸側の 内面(101 ; 102 ; 103)に囲まれ、永久磁石を有し、前記中心軸を中心として回転可 能な回転子(2)とを備える。そして前記歯部の前記回転子に対向する内面(101; 10 2 ; 103)と前記回転子との隙間が、両者間に働く電磁力が正弦波状になるように設 定される。
[0017] この発明に力かる冷媒圧縮機は、この発明に力かるモータの第 1の態様あるいは第 2の態様を採用する。
[0018] この発明にかかる冷却装置は、この発明にかかる冷媒圧縮機を採用する。
[0019] この発明にかかるモータの設計方法は、固定子(1)と回転子(2)とを備えたモータ の設計方法である。前記固定子(1)は、中心軸周りに設けられた環状のヨーク(12) と、前記環状ヨークの前記中心軸側に設けられ、相互に離隔して、電機子卷線が卷 回された複数の歯部(10)とを有する。前記回転子(2)は、前記歯部の前記中心軸 側の内面(101 ; 102 ; 103)に囲まれ、永久磁石を有し、前記中心軸を中心として回 転可能である。
[0020] この発明にかかるモータの設計方法の第 1の態様は、前記歯部の前記内面(101 ; 102; 103)と前記回転子との隙間を、両者間に働く電磁力を正弦波状にするように 設計する。
[0021] この発明にかかるモータの設計方法の第 2の態様は、(a)前記内面と回転子との間 で前記回転子の回転方向(+ φ )及び前記中心軸の両方に垂直である前記モータ の半径方向(D)に沿った距離 (L ( θ , φ ) )を、前記回転子の回転位置( φ )毎及び 前記内面の位置( Θ )毎に求めるステップ(S1)と、 (b)前記内面の法線方向に生じる 電磁力(Fn ( θ , φ ) )を、前記回転子の回転位置( φ )毎及び前記内面の位置( Θ ) 毎に求めるステップ (S2)と、(c)前記電磁力を当該電磁力についての所望の関数( G ( θ , φ ) )で除した値の平方根を前記距離に乗じて、前記距離を更新するステップ (S4)とを備える。
[0022] この発明にかかるモータの設計方法の第 3の態様は、(a)前記内面と回転子との間 で前記回転子の回転方向(+ φ )及び前記中心軸の両方に垂直である前記モータ の半径方向(D)に沿った距離 (L ( θ , φ ) )を、前記回転子の回転位置( φ )毎及び 前記内面の位置( Θ )毎に求めるステップ(S1)と、 (b)前記内面の法線方向に生じる 電磁力(Fn ( 0 , φ ) )の、前記回転子の回転位置(Φ )の所定の範囲における最大 値 (Μ ( θ ) )を前記内面の位置(Θ )毎に求めるステップ(S2, S3)と、(c)前記最大 値を当該最大値についての所望の関数 (G ( Θ ) )で除した値の平方根を前記距離に 乗じて、前記距離を更新するステップ(S4)とを備える。
[0023] この発明に力かるモータの設計方法の第 4の態様は、(a)前記内面と回転子との間 で前記回転子の回転方向(+ゆ)及び前記中心軸の両方に垂直である前記モータ の半径方向(D)に沿った距離 (L ( θ , φ ) )を、前記回転子の回転位置( φ )毎及び 前記内面の位置( Θ )毎に求めるステップ(S1)と、 (b)前記内面の法線方向に生じる 磁束密度(Βη ( θ , φ ) )を、前記回転子の回転位置(φ )毎及び前記内面の位置(Θ )毎に求めるステップと(S2)、(c)前記磁束密度を当該磁束密度についての所望の 関数 (G ( θ , φ ) )で除した値を前記距離に乗じて、前記距離を更新するステップ (S 4)とを備える。
[0024] この発明にかかるモータの設計方法の第 5の態様は、(a)前記内面と回転子との間 で前記回転子の回転方向(+ φ )及び前記中心軸の両方に垂直である前記モータ の半径方向(D)に沿った距離 (L ( θ , φ ) )を、前記回転子の回転位置( φ )毎及び 前記内面の位置( Θ )毎に求めるステップ(S1)と、 (b)前記内面の法線方向に生じる 磁束密度(Βη ( θ , φ ) )の、前記回転子の回転位置(Φ )の所定の範囲における最 大値を前記内面の位置(Θ )毎に求めるステップと(S2, S3)、(c)前記最大値を当該 最大値についての所望の関数 (G ( Θ ) )で除した値を前記距離に乗じて、前記距離 を更新するステップ(S4)とを備える。
[0025] この発明にかかるモータの設計方法の第 6の態様は、第 3の態様、第 5の態様にか かるモータの設計方法であって、前記所定の範囲が前記回転子の回転位置( φ )の 全ての位置に亘る。
[0026] この発明にかかるモータの設計方法の第 7の態様は、第 2乃至第 6の態様にかかる モータの設計方法であって、前記ステップ (b) (c)が繰り返して実行されて前記距離 が複数回更新される(S7)。
[0027] この発明に力かるモータの設計方法の第 8の態様は、第 2乃至第 7の態様にかかる モータの設計方法であって、前記所望の関数 (G ( Θ ) )は、前記歯部の総数を m、前 記固定子(1)についての幾何学的な位置角度を Θとして、 sin (m Θ /2)に比例する
[0028] この発明に力かるモータの設計方法の第 9の態様は、第 8の態様に力かるモータの 設計方法であって、前記所望の関数 (G ( Θ ) )は、前記最大値が前記歯部の中心近 傍で与える極大値 (FnO)に比例する。
[0029] この発明に力かるモータの設計方法の第 10の態様は、第 2乃至第 7の態様のいず れかにかかるモータの設計方法であって、前記所望の関数 (G ( Θ ) )は、前記最大値 が前記歯部の中心近傍で極大値 (FnO)を与える前記内面の位置( Θ 0)において、 前記極大値を前記所望の関数 (G ( Θ ) )のを最大値とし、当該内面の位置( Θ 0)から 前記歯部の前記回転子の回転方向( + φ )とは反対側 (- φ )へと前記内面の位置( Θ )が向力 につれて正弦波状に減少する。
[0030] この発明にかかるモータの設計方法の第 11の態様は、第 2乃至第 10の態様のい ずれかにかかるモータの設計方法であって、前記所望の関数 (G ( Θ ) )は、各々の前 記歯部の中心(10N)から前記回転子の回転方向(+ φ )とは反対側 (一 φ )において 設定される。前記ステップ (b)では当該所望の関数 (G ( θ ) )が設定された範囲にお レ、て実行される。 (d)前記ステップ (b), (c)の後に実行され、前記歯部の中心(ION
)に関して線対称に前記歯部の形状を設定するステップを更に備える。
[0031] この発明の固定子の第 1乃至第 8の態様、及びこの発明のモータの第 1乃至第 2の 態様によれば、回転子が正の角度方向に回転する際の、歯部の内面と回転子との間 に働く電磁力をほぼ正弦波状にし、モータの振動、騒音を低減できる。
[0032] 従ってこの発明にかかる冷媒圧縮機、冷却装置の振動、騒音も低減できる。
[0033] この発明にかかるモータの設計方法によれば、回転子が回転する際の、歯部の内 面と回転子との間に働く電磁力あるいは磁束密度を所望の形状、例えば正弦波状に し、モータの振動、騒音を低減できる。
[0034] 特に第 6の態様にかかるモータの設計方法によれば、回転子の回転位置について の電磁力又は磁束密度の最大値を所望の関数形にするので、モータの振動、騒音 を低減するための歯部/回転子間のギャップの設計が容易となる。
[0035] 特に第 7の態様に力かるモータの設計方法によれば、歯部/回転子間のギャップ の設計をより正確に行うことができる。
[0036] 特に第 8の態様に力かるモータの設計方法によれば、回転子が回転する際の、歯 部の内面と回転子との間に働く電磁力あるいは磁束密度をほぼ正弦波状にし、モー タの振動、騒音を低減できる。
[0037] 特に第 9の態様に力かるモータの設計方法によれば、歯部の内面形状を円筒状か ら大きく変形させることなく大きなトルクが得られる。
[0038] 特に第 10乃至第 11の態様に力かるモータの設計方法によれば、歯部の内面形状 を簡易に設計できる。
[0039] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによ つて、より明白となる。
図面の簡単な説明
[0040] [図 1]本発明にかかるモータ設計方法の対象として採用できる、永久磁石内蔵型モ ータの構成を例示する断面図である。
[図 2]歯部 10の内面 100と回転子 2の外周面 200との間を拡大して示す断面図であ る。
[図 3]起磁力の角度依存性を示すグラフである。
[図 4]図 3に示された起磁力 Vの位置及び磁束の流れを示す断面図である。
[図 5]本発明の第 1の実施の形態にかかるモータの設計方法を示すフローチャートで ある。
[図 6]本発明の第 1の実施の形態に力、かるモータの設計方法の効果を示すグラフで ある。
[図 7]本発明の第 1の実施の形態に力、かるモータの設計方法のステップ S4を説明す るグラフである。
[図 8]内面 101を有する歯部 10の構成を拡大して示す断面図である。
[図 9]ステップ S5の結果を示すグラフである。
[図 10]ステップ S2 S5を複数回繰り返して実行した場合の結果を示すグラフである
[図 11]回転子 2の回転に従った電磁力 Fn ( 6 1 , φ )の変化を示すグラフである。
[図 12]本発明の第 1の実施の形態における電磁力 Fnの周波数スペクトルを示すダラ フである。
[図 13]本発明の第 2の実施の形態に力かるモータの設計方法のステップ S4を説明す るグラフである。
[図 14]内面 103を有する歯部 10の構造を例示する断面図である。
[図 15]内面 102を有する歯部 10の構造を例示する断面図である。
[図 16]歯部 10の内面形状の相違による、電磁力 Fnの最大値 Μ ( Θ )の相違を示すグ ラフである。
[図 17]本発明の第 2の実施の形態における電磁力 Fnの周波数スペクトルを示すダラ フである。
発明を実施するための最良の形態
A.本発明の基本的概念.
図 1は、本発明にかかるモータ設計方法の対象として採用できる、永久磁石内蔵型 モータの構成を例示する断面図である。図中紙面奥から手前に向けて、円筒座標の 軸方向 Zの正方向を採り、軸方向 Zの正方向に向かって時計回りに正の角度方向 +
Φを採用する。
[0042] 永久磁石内蔵型モータは固定子 1と回転子 2とを備えており、回転子 2は固定子 1 に囲まれている。
[0043] 固定子 1は軸方向に平行な中心軸周りに設けられた環状のヨーク 12と、環状ヨーク の中心軸側に設けられた歯部 10の複数とを有している。歯部 10は相互に離隔して おり、歯部 10と歯部 10の間の空間 11には電機子卷線(図示せず)が卷回される。
[0044] 回転子 2は本体 20を有しており、これに三種の空隙 21, 22, 23が設けられている。
空隙 21の中央部には永久磁石(図示せず)が埋設される。空隙 21の端部は当該永 久磁石の端部で磁界を迂回させるベぐ本体 20の外周面近傍まで延びている。空隙 22は空隙 21の中央部よりも外周面近傍に設けられている。磁界を迂回させるのみな らず、強度を保つなどの目的で、空隙 21の端部や空隙 22には非磁性体を充填して あよい。
[0045] 空隙 23にはシャフト(図示せず)が軸方向 zに平行に貫挿され、当該シャフトによつ て回転子 2の回転トルクを外部に伝達する。
[0046] 以下、回転子 2は正の角度方向 + φに回転するとして説明する力 S、以下の議論は 回転子 2が負の角度方向一 φに回転する場合についても容易に敷衍できる。
[0047] 図 2は歯部 10の内面 100と回転子 2の外周面 200との間を拡大して示す断面図で ある。内面 100と外周面 200との間における電磁力は、両者間の距離 L、起磁力 V、 透磁率 等に依存する。距離 Lは、内面 100の形状や外周面 200の形状によって異 なる。但し両者の形状はほぼ円筒状であるので、回転子の回転方向(即ち正の角度 方向 + φ )及び軸方向 zの両方に垂直である方向、つまりモータの半径方向 Dに沿つ て距離 Lを求める。
[0048] しかし、内面 100の形状と外周面 200の形状を考慮すベぐ距離 Lは固定子 1につ いて設定された幾何学的な位置角度 Θと、回転子 2の位置角度 (機械角) φ (いずれ も正の角度方向 + φに沿う)の関数とする。即ち距離 L ( Θ, φ )はモータの半径方向 Dに沿って求める点で、内面 100の形状と外周面 200の形状をほぼ円筒状とする近 似を取り入れながらも、位置角度 Θ, φの関数とすることによって、内面 100の形状と 外周面 200の形状を考慮する。
[0049] さて、モータの振動や騒音の主要因となっている、回転子と固定子との間に働く電 磁吸引力の法線成分(以下、単に「電磁力」と称す) Fnは、内面 100と外周面 200と の間では磁束密度の法線成分を Bn,接線成分を Btとすると、 (Bn-Bn-Bt- Bt) /2 μとして表される。そして内面 100における接線成分 Btは法線成分 Bnよりも小さいの で、上述の括弧内の演算のように、それぞれの平方の差を採った値はほぼ法線成分 Bnの平方に等しい。従って電磁力 Fnは、内面 100における法線成分 Bnの平方を透 磁率 μの 2倍で除した値として見積もることができる。
[0050] モータの振動や騒音を低減するためには、電磁力 Fn (あるいはその平方根に比例 する、内面 100における法線成分 Bn)を所望の関数形、例えば円弧、正弦波とすれ ばよレ、。回転子と固定子との間の磁束密度は起磁力 V及び透磁率 μに比例するの で、もしも磁気飽和がなぐ起磁力 Vが位置角度 Θ, φに依存せずに一定であれば、 距離 L ( Θ, φ )をも一定値、あるいは正弦波形状にすることで、振動や騒音を低減で きることになる。
[0051] しかし起磁力 Vは位置角度 θ , φに依存し、磁気飽和も発生する。起磁力 Vの角度 依存性や磁気飽和による透磁率/ の変動は、形状が複雑な永久磁石内蔵型モータ においては特に顕著となる。
[0052] 図 3は起磁力の角度依存性を示すグラフであり、図 4は図 3に示された起磁力 Vの 位置及び磁束の流れを示す断面図である。ここでは内面 100の形状と外周面 200の 形状を円筒状とし、よって距離 Lを一定値とした場合を例示している。
[0053] 図 3のグラフ L1は回転子 2が図 4に示された位置(このときの回転子 2の回転機械 角を Φ 0とする)にある時の起磁力 ν( θ, φ θ)を示す。またグラフ L2は回転子 2が 1 回転する中での起磁力 Vの最大値、即ち起磁力 V ( Θ, φ )の回転機械角 φについ ての起磁力 Vの最大値 Vm ( Θ )を示す。
[0054] そこで本発明ではー且は電磁力 Fnを磁気シミュレーションにより求め、これを所望 の関数形、例えば正弦波に近づけるように距離 L ( Θ, φ )を修正する。
[0055] 本発明を概略的に述べれば、固定子の歯部の内面と、回転子との隙間を、その間 に働く電磁力正弦波状になるように設定することにより、回転子が回転する際のモー タの振動 ·騒音を低減するのである。
[0056] B.第 1の実施の形態.
図 5は本発明の第 1の実施の形態にかかるモータの設計方法を示すフローチャート である。まずステップ S 1において、歯部 10と回転子 2との間のギャップ、即ち距離 L ( Θ , φ )を求める。これは内面 100と外周面 200の形状で決定される。上述のように当 該距離は回転子 2の回転方向及び中心軸の両方に垂直な半径方向 Dに沿って決定 される。そして距離 L ( Θ, φ )は、回転子 2の回転位置 (位置角度) φ毎及び内面 10 0の位置角度 Θ毎に求められる。例えば回転子 2の外周面が回転中心軸を中心とす る円筒状であれば、距離 Lは回転子 2の位置に依存しないので、位置角度 Θのみに 依存する。
[0057] 次にステップ S2において、電磁シミュレーションを用いて、内面 100の法線方向に 働く電磁力 Fn ( 0、 φ )を計算する。更にステップ S3において、回転子 2の回転位置 φにつレ、ての電磁力 Fn ( θ、 φ )の最大値 M ( θ )を求める。
[0058] 図 6は当該シミュレーションの結果を示すグラフである。縦軸には電磁力 Fnを採り、 横軸には一つの歯部 10の内面 100の位置角度 Θを採っている。内面 100及び外周 面 200がレ、ずれも円筒状である場合にっレ、ての計算結果である。グラフ LI 1は回転 子 2が回転位置 φ θにある場合の電磁力 Fn ( θ、 φ θ)であり、グラフ L21は最大値 Μ ( Θ )を示している。
[0059] 図 3のグラフ L1に示されるように、歯部 10が異なれば位置角度 Θも異なるので、起 磁力 Vも異なる。しかし、一般には歯部 10が全て同じ形状で形成されるので、回転子 2の回転位置 φについての最大値を採れば図 3のグラフ L2に示されるようにいずれ の歯部 10においても同じ最大値の形状が示される。これと同様にして、グラフ L21は いずれの歯部 10においても同じ形状が得られる。
[0060] よって電磁力 Fnを所望の関数形にして振動 '騒音を低下させる場合には、その最 大値を用いる方が望ましい。所望の関数形よりも大きな値の電磁力を発生させない 設計が可能であるのみならず、いずれの歯部 10をも同じ形状に設計できるからであ る。
[0061] いま、説明の便宜上、歯部 10を、そのヨーク 12から中心軸へと突出する根部 10Rと 、いずれも根部 10Rの中心軸側で、それぞれ正の角度方向 + φ及び負の角度方向 側に根部 10Rから突出する第 1鍔部 10P、第 2鍔部 10Qに分ける。第 1鍔部 10P と根部 1 ORは境界 10 Vを挟み、第 2鍔部 10Qと根部 1 ORとは境界 10Wを挟む。
[0062] 電磁力 Fn ( Θ )及びその最大値 Μ ( Θ )は、第 2鍔部 10Qの境界 10Wとは反対側の 端部、即ち負の角度方向— Φ側の端部近傍において大きな極大値を呈する。そして 位置角度 Θが増大するにつれて減少し、境界 10W近傍において極小値を採る。そ して位置角度 Θが増大するにつれて増大し、根部の中心 10Nに至る少し手前 (負の 角度方向— Φ側)において再び極大値を採る。その後、位置角度 Θが増大するにつ れてほぼ減少するが、第 1鍔部 10Pの境界 10Vとは反対側の端部近傍、即ち正の角 度方向 + Φ側の端部近傍において小さな極大値を呈する。
[0063] 図 5に戻り、ステップ S3の次にステップ S4が実行される。ここでは所望の関数形 G (
Θ )を用いて歯部内面と回転子外周面との間の距離を計算する。具体的には、最大 値 Μ ( Θ )をこの最大値についての所望の関数 G ( Θ )で除した値の平方根を距離 L ( θ , φ )に乗じて、新たな距離 L' ( θ , φ )を求める。
[0064] 図 7はステップ S4を説明するグラフである。グラフ LOは最大値 Μ ( Θ )についての所 望の関数 G ( Θ )を示す。一般に歯部 10は固定子 1において均等に配置されるので、 ここでは歯部 10の個数を mとして G ( Θ ) =FnO - sin (m Θ /2)とする。但し、関数 G ( Θ )の最大値 FnOは、内面 100及び外周面 200がいずれも円筒状である場合に、根 部の中心 10Nに至る少し手前の位置角度 Θ 0で得られた極大値 Μ ( Θ 0)である。
[0065] もちろん、本発明において最大値 FnOはこのように設定される場合に限定はされな レ、。しかし、歯部 10の新たに設計される内面の形状を円筒状から大きく変形させるこ となく大きなトルクを得るためには、上述のように最大値 FnOを設定することが望まし レ、。
[0066] 図 7にも併記されたグラフ L21は、グラフ L0に対して脈動している。よってこの脈動 を小さくするような歯部 10の内面 101を得れば、回転子 2の外周面 200の形状を円 筒状のままにしつつも、モータの静音化を図ることができる。具体的な計算はステップ S4の説明において述べたとおりである力 より概略的に述べると以下のようになる。
[0067] グラフ L21の極大値を下げるベぐ第 2鍔部 10Qの負の角度方向 _ (H則の端部から 位置 10A迄の間と、位置 10Cから第 1鍔部 10Pの正の角度方向 + φ側の端部迄の 間で、歯部 10の内面 101を円筒状の内面 100よりも中心軸から遠ざける。またグラフ L21の極小値を上げるベぐ位置 10A力 位置 10C迄の間で、歯部 10の内面 101 を円筒状の内面 100よりも中心軸に近づける。但し、位置角度 Θ 0の位置 10Bにお いて、内面 101の中心軸からの距離は内面 100の中心軸からの距離と同じ距離にす る。これにより極大値 Μ ( Θ 0)を最大値とする所望の関数 G ( Θ )へと最大値 Fn ( Θ, Φ )を近づけることができる。
[0068] 図 5に戻り、処理はステップ S4からステップ S5へと進む。ここでは電磁力の最大値 Μ ( Θ )を再度計算する。図 9は再計算の結果を示すグラフである。グラフ L21、 L0は それぞれ円筒状の内面 100での電磁力の最大値 Μ ( Θ )、所望の関数 G ( Θ )を示し ており、グラフ L22はステップ S 1 S4を一通り実行して得られた後の最大値 Μ ( Θ ) である。つまり、ステップ S 1で得た距離 L ( Θ, φ )とステップ S4で得た距離 L' ( Θ, φ )の相違が、グラフ L12, L22の相違として現れていることになる。
[0069] 処理はステップ S5からステップ S6へと進む。ステップ S6において、新たな最大値 Μ ( θ )と所望の関数 G ( Θ )との相違が許容範囲にあるか否かが判定される。当該許 容範囲は設計対象たるモータの仕様、使用される態様によって種々変更することが できる。
[0070] 両者の相違が許容範囲であれば、ステップ S4で得られた距離 L' ( θ , φ )に則って 歯部 10の形状を設定する。許容範囲になければ、ステップ S7に処理を進め、ステツ プ S4で得られた距離 L' ( θ , φ )を以て距離 L ( θ , φ )を更新し、ステップ S2に戻る 。このようにして、許容範囲に至るまで、ステップ S2— S5が繰り返して計算される。
[0071] 図 8は中心軸(図示せず)に対向する内面 101を有する歯部 10の構成を拡大して 示す断面図である。内面 101はステップ S2— S5の複数回の繰り返しによって得られ た結果に基づいて、その形状を決定した。但し回転子 2の外周面 200は円筒状であ るとしてレ、る。内面 101の中心軸に対向する内面 101の中心軸からの距離は、以下 のように詳述できる。
[0072] (i)第 2鍔部 10Qにおける第 1位置 10Aと、境界 10Wと根部 10Rの中心 10Nとの間 における第 2位置 10Bとにおいて等しい第 1距離を採り、 (ii)第 1位置 10Aよりも負の角度方向- φ側においては、第 1距離よりも大きい第 2距 離を採り、
(iii)第 1位置 10Aと第 2位置 10Bの間においては第 1距離よりも小さい第 3距離を採 り、
(iv)第 2位置 10Bと第 1鍔部 10Pにおける第 3位置 10Cとの間において第 1距離より も小さい距離を採り、
(V)第 3位置 10Cよりも正の角度方向 + φ側においては、第 1距離よりも大きい距離 を採る。
[0073] 上記条件 (iv) (v)は中心 IONを境にして分けて、以下のように説明することもできる
[0074] (iv)第 2位置 10Bと根部 10Rの中心 IONの間においては第 1距離よりも小さい第 4 距離を採り、
(V)根部 10の中心 IONと、第 1鍔部 10Pにおける第 3位置 10Cとの間において第 1 距離よりも小さい第 5距離を採り、
(vi)第 3位置 10Cよりも正の角度方向 + φ側においては、第 1距離よりも大きい第 6 距離を採る。
[0075] より詳細には第 2距離の最大値 (第 2鍔部 10Qの境界 10Wとは反対側の端部近傍 で得られる)と第 1距離との差は、第 3距離の最小値 (境界 10W近傍で得られる)と第 1距離との差よりも大きい。
[0076] また、第 3距離の最小値と第 1距離との差は、第 4距離の最小値(中心 ION近傍で 得られる)と第 1距離との差よりも大きい。
[0077] また、第 6距離の最大値 (第 1鍔部 10Pの境界 10Vとは反対側の端部近傍で得られ る)と第 1距離との差は、第 3距離の最小値と第 1距離との差、第 4距離の最小値と第 1距離との差、及び第 5距離の最小値 (境界 10V近傍で得られる)と第 1距離との差の いずれよりも大きい。
[0078] 図 10はステップ S2— S5を複数回繰り返して実行した場合の結果を示すグラフであ る。グラフ L23は複数回の再計算で得られた最大値 Μ ( Θ )を示しており、グラフ L21 、LOも併記している。 [0079] 図 9のグラフ L22と比較すると、図 10のグラフ L23の方が、所望の関数 G ( Θ )により 近づいていることが判る。
[0080] 図 11は固定子 1のある一つの歯部 10の各位置における電磁力 Fnを、その歯部 10 の全体としてカ卩算した合力の変化を示すグラフである。ここでは回転子 2の極数が 6 個の場合を示しているので、位置角度 φとして 0— 60度の場合を例示している。内面 100を用いた場合 (対策前)と、複数回の繰り返し計算によって求められた内面 101 を用いた場合 (対策後)とを比較しても、このグラフからは電磁力 Fnの合力の明確な 相違は判りづらい。
[0081] そこで電磁力 Fnの上記合力の周波数スぺクトノレを求め、これを図 12にグラフ化し た。内面 100を用レ、た場合 (対策前)と、内面 101を用いた場合 (対策後)の比較を行 つている。対策後の方が対策前と比較して、明らかに電磁力 Fnの合力の高調波成 分が減少してレ、ること力 S半 IJる。
[0082] 以上のように、本実施の形態によれば電磁吸引力が有する電気角周波数の偶数 倍の高調波を低減することができ、またモータの形状、例えば歯部の最適形状につ いても提示できる。
[0083] C.第 2の実施の形態.
本実施の形態においても図 5に示されたフローチャートが採用される。図 13は本実 施の形態におけるステップ S4を説明するグラフである。図 7と同様にグラフ L21は電 磁力 Fnの最大値 Μ ( Θ )を示している。一方、グラフ L01は最大値 Μ ( Θ )について の所望の関数 G ( 0 )を示す。
[0084] 本実施の形態においては、一つの歯部 10について、最大値 Μ ( Θ )の二つ目に大 きな極大値を与える位置角度 Θ 0よりも負の角度方向(一 )側で歯部 10の内面の形 状を改善する。よって本実施の形態では所望の関数 G ( Θ )は位置角度 Θ 0よりも正 の角度方向(+ φ )側で最大値 Μ ( Θ )と一致している。このような関数 G ( Θ )を用レ、、 図 5に示されたフローチャートの繰り返し計算に従って距離 L'を得ることにより、歯部 10の負の角度方向(- Φ )側で生じる、電磁力 Fnの大きな変動を抑制することもでき る。
[0085] ここでは関数 G ( Θ )は、位置角度 Θ 0において最大値 FnO = M ( Θ 0)を採り、位置 角度 θ 0よりも負の角度方向(一ゆ)側で正弦波状に減少する形状を呈している。
[0086] 図 14は内面 103を有する歯部 10の構造を例示する断面図である。内面 103は図 1 3のグラフ L01に示された関数 G ( Θ )を用レ、、図 5に示されたフローチャートに従って 得られた距離 L'に基づき、回転子 2の外周面 200が円筒形状である場合の歯部 10 の内面である。
[0087] 内面 103は根部 10Nから見て、負の角度方向 _ φ側のみで円筒形状から変形させ ている。根部 10Nから見て、正の角度方向 + 側は円筒形状を呈している。このよう に根部 10Nから見て、負の角度方向 _ (Η則のみで円筒形状から変形させても、第 2 鍔部 10Qの負の角度方向一 φ側の端部近傍で現れる最大値 Μ ( Θ )の極大値や境 界 10W近傍に現れる最大値 Μ ( Θ )の極小値を低減することができる。
[0088] 内面 103も上述の条件 (i)一 (iii)を満足している。そして詳細には、第 2距離の最大 値と第 1距離との差は、第 3距離の最小値と第 1距離との差よりも大きい。
[0089] 図 15は内面 102を有する歯部 10の構造を例示する断面図である。内面 102は内 面 103の形状を、根部 10Rの中心 10Nに関して線対称の形状を有している。このよう に線対称とすることにより、実施の形態 1よりも簡易に、歯部 10全体での電磁力 Fnの 最大値 Μ ( Θ )を、所望の関数 G ( Θ )に近づけやすくなる。但し所望の関数 G ( Θ )も 中心 1 ONに関して線対称である。
[0090] この場合、ステップ S4は所望の関数 (G ( Θ ) )が設定された範囲において実行され れば足りる一方、歯部 10の根部 10Rの中心 10Nに関して線対称に形状を設定する ステップが実行される。
[0091] 図 16は歯部 10の内面形状の相違による、電磁力 Fnの最大値 Μ ( Θ )の相違を示 すグラフである。グラフ L21、 L23は図 10に示したものを再掲しており、それぞれ内 面 100. 101に相当する。グラフ L24は内面 102を用いた場合の最大値 Μ ( θ )を示 している。位置角度 θ Νは歯部 10の根部 10Rの中心 10Nの位置を示している。
[0092] グラフ L24はグラフ L21と比較するとより正弦波形状に近いものの、グラフ L23と比 較すると、位置角度 θ Νよりも正の角度方向 + φ側で脈動が大きいことが判る。
[0093] 図 17は上述した電磁力 Fnの合力の周波数スぺクトノレを示すグラフである。図 12に おいて「対策前」「対策後」として示されたグラフを、ここではそれぞれ「対策前」「内面 101を採用」として示してレ、る。図 17では更に内面 102を採用した場合をも描画して いる。このグラフから見れば、内面 101 , 102のいずれも高調波を低減できていること が判る。
[0094] D.第 3の実施の形態.
上記第 1の実施の形態及び第 2の実施の形態では、電磁力 Fnの最大値 Μ ( Θ )を 所望の関数 G ( Θ )に近づけていた。し力 ながら、本発明は力、かる態様に限定される ものではない。
[0095] 例えば回転子 2のある位置角度 φでの電磁力 Fn ( θ , φ )を所望の関数 G ( Θ )に 近づけてもよい。これにより、ある位置角度 φにおける電磁力 Fn ( θ , φ )を抑制でき る。
[0096] また例えば最大値 Μ ( Θ )は、回転子 2の位置角度 φの所定の範囲内での電磁力 Fnの最大値を採用してもよい。これによりある位置角度 φの近傍における電磁力を 抑えることができる。
[0097] また電磁力 Fnは磁束密度の法線成分 Bnの平方に比例するので、磁束密度の法 線成分 Bnの最大値 Μ ( Θ )を所望の関数 G ( Θ )に近づけてもよい。この場合、ステツ プ S4におレ、ては M ( Θ ) /G ( Θ )が(平方根を採ることなく)距離 L ( θ , φ )に乗じら れて、新たな距離 L' ( 6, φ )を得ることになる。
[0098] また回転子 2のある位置角度 φでの磁束密度の法線成分 Bnを所望の関数 G ( Θ ) に近づけてもよい。また回転子 2の位置角度 φの所定の範囲内での磁束密度の法 線成分 Bnを最大値 Μ ( Θ )として採用してもよい。
[0099] E.本発明の応用.
本発明にかかる固定子、モータを採用することにより、モータの振動、騒音を抑制 すること力 Sできる。よって力かるモータを搭載した冷媒圧縮機の振動、騒音も抑制さ れ、力かる冷媒圧縮機を採用した冷却装置の振動、騒音も抑制される。
[0100] この発明は詳細に説明された力 上記した説明は、すべての局面において、例示 であって、この発明がそれに限定されるものではなレ、。例示されていない無数の変形 例が、この発明の範囲から外れることなく想定され得るものと解される。

Claims

請求の範囲
中心軸周りに設けられた環状のヨーク(12)と、
前記環状ヨークの前記中心軸側に設けられ、相互に離隔した複数の歯部(10)と を備え、
前記歯部は
前記ヨークから前記中心軸へと突出する根部(10R)と、
前記根部の前記中心軸側に設けられ、前記中心軸を軸方向(z)に採った場合に、 正の角度方向(+ 側に前記根部から突出する第 1鍔部(10P)及び,負の角度方 向 (一ゆ)側に前記根部から突出する第 2鍔部(10Q)とを有し、
前記歯部の前記中心軸に対向する内面(101; 102; 103)の前記中心軸からの距 離は、
(i)前記第 2鍔部における第 1位置(10A)と、前記根部と前記第 2鍔部との境界(10 W)と前記根部の中心(10N)との間における第 2位置(10B)とにおいて等しい第 1距 離を採り、
(ii)前記第 1位置よりも前記負の方向側においては、前記第 1距離よりも大きい第 2 距離を採り、
(iii湔記第 1位置と前記第 2位置の間においては前記第 1距離よりも小さい第 3距離 を採る、
固定子(1)。
前記内面(103)の前記中心軸からの距離は、
(iv)前記第 2位置(10B)から前記正の角度方向(+ φ )側において前記第 1距離を 採る
請求項 1記載の固定子(1)。
前記第 2距離の最大値と前記第 1距離との差は、前記第 3距離の最小値と前記第 1 距離との差よりも大きい、請求項 1に記載の固定子(1)。
前記第 2距離の最大値と前記第 1距離との差は、前記第 3距離の最小値と前記第 1 距離との差よりも大きい、請求項 2に記載の固定子(1)。
前記内面(101 ; 102)の前記中心軸からの距離は、 (iv)前記第 2位置(10B)と前記根部(10R)の前記中心(ION)の間においては前 記第 1距離よりも小さい第 4距離を採る
請求項 1記載の固定子(1)。
前記第 2距離の最大値と前記第 1距離との差は、前記第 3距離の最小値と前記第 1 距離との差よりも大きぐ
前記第 3距離の最小値と前記第 1距離との差は、前記第 4距離の最小値と前記第 1 距離との差よりも大きい、請求項 5記載の固定子(1)。
前記歯部(10)は前記根部(10R)の前記中心(10N)に関して線対称である、請求 項 1に記載の固定子(1)。
前記歯部(10)は前記根部(10R)の前記中心(10N)に関して線対称である、請求 項 2に記載の固定子(1)。
前記歯部(10)は前記根部(10R)の前記中心(10N)に関して線対称である、請求 項 3記載の固定子(1)。
前記歯部(10)は前記根部(10R)の前記中心(10N)に関して線対称である、請求 項 4に記載の固定子(1)。
前記歯部(10)は前記根部(10R)の前記中心(10N)に関して線対称である、請求 項 5に記載の固定子(1)。
前記歯部(10)は前記根部(10R)の前記中心(10N)に関して線対称である、請求 項 6に記載の固定子(1)。
前記内面(101)の前記中心軸からの距離は、
(V)前記根部(10R)の前記中心(10N)と、前記第 1鍔部における第 3位置(10C)と の間において前記第 1距離よりも小さい第 5距離を採り、
(vi)前記第 3位置よりも前記正の方向(+ φ )側においては、前記第 1距離よりも大き い第 6距離を採る、
請求項 5記載の固定子(1)。
前記第 2距離の最大値と前記第 1距離との差は、前記第 3距離の最小値と前記第 1 距離との差よりも大きぐ
前記第 3距離の最小値と前記第 1距離との差は、前記第 4距離の最小値と前記第 1 距離との差よりも大きぐ
前記第 6距離の最大値と前記第 1距離との差は、前記第 3距離の最小値と前記第 1 距離との差、前記第 4距離の最小値と前記第 1距離との差、及び前記第 5距離の最 小値と前記第 1距離との差のいずれよりも大きい、
請求項 13記載の固定子(1)。
請求項 1乃至請求項 14のいずれか一つに記載の固定子(1)と、
前記中心軸を中心として同一の距離にあって、前記歯部の前記内面(101; 102 ; 1 03)と対向する外面(200)を有し、前記正の角度方向( + φ )に回転可能な回転子( 2)と
を備えるモータ。
中心軸周りに設けられた環状のヨーク(12)と、
前記環状ヨークの前記中心軸側に設けられ、相互に離隔して、電機子卷線が卷回 された複数の歯部(10)と、
を有する固定子(1)と、
前記歯部の前記中心軸側の内面(101 ; 102 ; 103)に囲まれ、永久磁石を有し、前 記中心軸を中心として回転可能な回転子(2)と
を備え、
前記歯部の前記回転子に対向する内面(101; 102; 103)と前記回転子との隙間 が、両者間に働く電磁力が正弦波状になるように設定されることを特徴とするモータ。 請求項 15に記載のモータを採用する、冷媒圧縮機。
請求項 16に記載のモータを採用する、冷媒圧縮機。
請求項 17記載の冷媒圧縮機を採用する、冷却装置。
請求項 18記載の冷媒圧縮機を採用する、冷却装置。
中心軸周りに設けられた環状のヨーク(12)と、
前記環状ヨークの前記中心軸側に設けられ、相互に離隔して、電機子卷線が卷回 された複数の歯部(10)と、
を有する固定子(1)と、
前記歯部の前記中心軸側の内面(101 ; 102 ; 103)に囲まれ、永久磁石を有し、前 記中心軸を中心として回転可能な回転子(2)と
を備えたモータの設計方法であって、
前記歯部の前記内面(101; 102; 103)と前記回転子との隙間を、両者間に働く電 磁力を正弦波状にすべく設計する、モータの設計方法。
[22] 中心軸周りに設けられた環状のヨーク(12)と、
前記環状ヨークの前記中心軸側に設けられ、相互に離隔して、電機子卷線が卷回 された複数の歯部(10)と、
を有する固定子(1)と、
前記歯部の前記中心軸側の内面(101 ; 102 ; 103)に囲まれ、永久磁石を有し、前 記中心軸を中心として回転可能な回転子(2)と
を備えたモータの設計方法であって、
(a)前記内面と回転子との間で前記回転子の回転方向(+ φ )及び前記中心軸の 両方に垂直である前記モータの半径方向(D)に沿った距離 (L ( Θ, φ ) )を、前記回 転子の回転位置( φ )毎及び前記内面の位置( Θ )毎に求めるステップ(S1)と、
(b)前記内面の法線方向に生じる電磁力(Fn ( θ , φ ) )を、前記回転子の回転位 置( Φ )毎及び前記内面の位置( Θ )毎に求めるステップ(S2)と、
(c)前記電磁力を当該電磁力についての所望の関数 (G ( Θ, φ ) )で除した値の平 方根を前記距離に乗じて、前記距離を更新するステップ (S4)と
を備えるモータの設計方法。
[23] 中心軸周りに設けられた環状のヨーク(12)と、
前記環状ヨークの前記中心軸側に設けられ、相互に離隔して、電機子卷線が卷回 された複数の歯部(10)と、
を有する固定子(1)と、
前記歯部の前記中心軸側の内面(101 ; 102 ; 103)に囲まれ、永久磁石を有し、前 記中心軸を中心として回転可能な回転子(2)と
を備えたモータの設計方法であって、
(a)前記内面と回転子との間で前記回転子の回転方向(+ φ )及び前記中心軸の 両方に垂直である前記モータの半径方向(D)に沿った距離 (L ( Θ, φ ) )を、前記回 転子の回転位置( φ )毎及び前記内面の位置( θ )毎に求めるステップ(SI)と、
(b)前記内面の法線方向に生じる電磁力(Fn ( θ , φ ) )の、前記回転子の回転位 置( Φ )の所定の範囲における最大値 (M ( Θ ) )を前記内面の位置( Θ )毎に求めるス テツプ(S2, S3)と、
(c)前記最大値を当該最大値についての所望の関数 (G ( Θ ) )で除した値の平方 根を前記距離に乗じて、前記距離を更新するステップ (S4)と
を備えるモータの設計方法。
[24] 中心軸周りに設けられた環状のヨーク(12)と、
前記環状ヨークの前記中心軸側に設けられ、相互に離隔して、電機子卷線が卷回 された複数の歯部(10)と、
を有する固定子(1)と、
前記歯部の前記中心軸側の内面(101 ; 102 ; 103)に囲まれ、永久磁石を有し、前 記中心軸を中心として回転可能な回転子(2)と
を備えたモータの設計方法であって、
(a)前記内面と回転子との間で前記回転子の回転方向(+ φ )及び前記中心軸の 両方に垂直である前記モータの半径方向(D)に沿った距離 (L ( Θ, φ ) )を、前記回 転子の回転位置( φ )毎及び前記内面の位置( Θ )毎に求めるステップ(S1)と、
(b)前記内面の法線方向に生じる磁束密度(Βη ( Θ, φ ) )を、前記回転子の回転 位置( Φ )毎及び前記内面の位置( Θ )毎に求めるステップと(S2)、
(c)前記磁束密度を当該磁束密度についての所望の関数 (G ( Θ, φ ) )で除した値 を前記距離に乗じて、前記距離を更新するステップ (S4)と
を備えるモータの設計方法。
[25] 中心軸周りに設けられた環状のヨーク(12)と、
前記環状ヨークの前記中心軸側に設けられ、相互に離隔して、電機子卷線が卷回 された複数の歯部(10)と、
を有する固定子(1)と、
前記歯部の前記中心軸側の内面(101 ; 102 ; 103)に囲まれ、永久磁石を有し、前 記中心軸を中心として回転可能な回転子(2)と を備えたモータの設計方法であって、
(a)前記内面と回転子との間で前記回転子の回転方向(+ φ )及び前記中心軸の 両方に垂直である前記モータの半径方向(D)に沿った距離 (L ( Θ, φ ) )を、前記回 転子の回転位置( φ )毎及び前記内面の位置( Θ )毎に求めるステップ(S1)と、
(b)前記内面の法線方向に生じる磁束密度(Βη ( θ , φ ) )の、前記回転子の回転 位置( φ )の所定の範囲における最大値を前記内面の位置( Θ )毎に求めるステップ と(S2, S3)、
(c)前記最大値を当該最大値についての所望の関数 (G ( Θ ) )で除した値を前記 距離に乗じて、前記距離を更新するステップ (S4)と
を備えるモータの設計方法。
[26] 前記所定の範囲は前記回転子の回転位置( φ )の全ての位置に亘る、請求項 23に 記載のモータの設計方法。
[27] 前記所定の範囲は前記回転子の回転位置( φ )の全ての位置に亘る、請求項 25に 記載のモータの設計方法。
[28] 前記ステップ (b) (c)が繰り返して実行されて前記距離が複数回更新される(S7)、請 求項 22に記載のモータの設計方法。
[29] 前記ステップ (b) (c)が繰り返して実行されて前記距離が複数回更新される(S7)、請 求項 23に記載のモータの設計方法。
[30] 前記ステップ (b) (c)が繰り返して実行されて前記距離が複数回更新される(S7)、請 求項 24に記載のモータの設計方法。
[31] 前記ステップ (b) (c)が繰り返して実行されて前記距離が複数回更新される(S7)、請 求項 25に記載のモータの設計方法。
[32] 前記ステップ (b) (c)が繰り返して実行されて前記距離が複数回更新される(S7)、請 求項 26に記載のモータの設計方法。
[33] 前記ステップ (b) (c)が繰り返して実行されて前記距離が複数回更新される(S7)、請 求項 27に記載のモータの設計方法。
[34] 前記所望の関数 (G ( Θ ) )は、前記歯部の総数を m、前記固定子(1)についての幾 何学的な位置角度を Θとして、 sin (m Θ /2)に比例する、請求項 22乃至請求項 33 のいずれか一つに記載のモータの設計方法。
[35] 前記所望の関数 (G ( Θ ) )は、前記最大値が前記歯部の中心近傍で与える極大値
(FnO)に比例する、請求項 34記載のモータの設計方法。
[36] 前記所望の関数 (G ( 0 ) )は、
前記最大値が前記歯部の中心近傍で極大値 (FnO)を与える前記内面の位置( Θ 0)におレ、て、前記極大値を前記所望の関数 (G ( Θ ) )のを最大値とし、
当該内面の位置( Θ 0)から前記歯部の前記回転子の回転方向(+ φ )とは反対側 (一 )へと前記内面の位置( Θ )が向力 につれて正弦波状に減少する、 請求項 22乃至請求項 33のいずれか一つに記載のモータの設計方法。
[37] 前記所望の関数 (G ( Θ ) )は、各々の前記歯部の中心(1 ON)から前記回転子の回 転方向(+ Φ )とは反対側 (一 φ )において設定され、
前記ステップ (c)では当該所望の関数 (G ( Θ ) )が設定された範囲において実行さ れ、
(d)前記ステップ (b), (c)の後に実行され、前記歯部の中心(10N)に関して線対 称に前記歯部の形状を設定するステップ
を更に備える、請求項 22乃至請求項 33のいずれか一つに記載のモータの設計方 法。
[38] 前記所望の関数 (G ( Θ ) )は、各々の前記歯部の中心(10N)から前記回転子の回 転方向(+ Φ )とは反対側 (一 φ )において設定され、
前記ステップ (c)では当該所望の関数 (G ( Θ ) )が設定された範囲において実行さ れ、
(d)前記ステップ (b), (c)の後に実行され、前記歯部の中心(10N)に関して線対 称に前記歯部の形状を設定するステップ
を更に備える、請求項 34に記載のモータの設計方法。
[39] 前記所望の関数 (G ( Θ ) )は、各々の前記歯部の中心(1 ON)から前記回転子の回 転方向(+ Φ )とは反対側 (一 φ )において設定され、
前記ステップ (c)では当該所望の関数 (G ( Θ ) )が設定された範囲において実行さ れ、 (d)前記ステップ (b), (c)の後に実行され、前記歯部の中心(ION)に関して線対 称に前記歯部の形状を設定するステップ
を更に備える、請求項 35に記載のモータの設計方法。
前記所望の関数 (G ( Θ ) )は、各々の前記歯部の中心(1 ON)から前記回転子の回 転方向(+ Φ )とは反対側 (一 φ )において設定され、
前記ステップ (c)では当該所望の関数 (G ( Θ ) )が設定された範囲において実行さ れ、
(d)前記ステップ (b), (c)の後に実行され、前記歯部の中心(10N)に関して線対 称に前記歯部の形状を設定するステップ
を更に備える、請求項 36に記載のモータの設計方法。
PCT/JP2005/002812 2004-02-26 2005-02-22 固定子、モータ、冷媒圧縮機、冷却装置、モータの設計方法 WO2005083869A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-051938 2004-02-26
JP2004051938A JP3797364B2 (ja) 2004-02-26 2004-02-26 モータの設計方法

Publications (1)

Publication Number Publication Date
WO2005083869A1 true WO2005083869A1 (ja) 2005-09-09

Family

ID=34908650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002812 WO2005083869A1 (ja) 2004-02-26 2005-02-22 固定子、モータ、冷媒圧縮機、冷却装置、モータの設計方法

Country Status (2)

Country Link
JP (1) JP3797364B2 (ja)
WO (1) WO2005083869A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150022044A1 (en) * 2013-07-22 2015-01-22 Steering Solutions Ip Holding Corporation System and method for reducing torque ripple in an interior permanent magnet motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0618729D0 (en) * 2006-09-22 2006-11-01 Hobby Roger B Flux impulse motor
KR101600001B1 (ko) * 2014-09-22 2016-03-14 주식회사 져스텍 모터의 최적 설계 방법
CN112994290B (zh) * 2021-02-07 2022-03-11 珠海格力节能环保制冷技术研究中心有限公司 一种转子结构和永磁同步电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112195A (ja) * 1999-10-07 2001-04-20 Meidensha Corp 回転電機のスロット歯構造
JP3301981B2 (ja) * 1998-12-18 2002-07-15 三洋電機株式会社 集中巻方式のブラシレスdcモータ
JP2003018773A (ja) * 2001-06-28 2003-01-17 Sankyo Seiki Mfg Co Ltd コア付きモータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301981B2 (ja) * 1998-12-18 2002-07-15 三洋電機株式会社 集中巻方式のブラシレスdcモータ
JP2001112195A (ja) * 1999-10-07 2001-04-20 Meidensha Corp 回転電機のスロット歯構造
JP2003018773A (ja) * 2001-06-28 2003-01-17 Sankyo Seiki Mfg Co Ltd コア付きモータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150022044A1 (en) * 2013-07-22 2015-01-22 Steering Solutions Ip Holding Corporation System and method for reducing torque ripple in an interior permanent magnet motor

Also Published As

Publication number Publication date
JP2005245131A (ja) 2005-09-08
JP3797364B2 (ja) 2006-07-19

Similar Documents

Publication Publication Date Title
JP6422595B2 (ja) 電動機および空気調和機
JP6873250B2 (ja) コンシクエントポール型ロータ、電動機、圧縮機、送風機、及び空気調和機
JP4314816B2 (ja) ブラシレスdcモータおよびブラシレスdcモータ制御装置
WO2004093298A1 (ja) 永久磁石式電動機
KR101506417B1 (ko) 영구 자석식 회전 전기 기기
US8653771B2 (en) Controller for motor
WO2012014834A1 (ja) 回転電機用ローター
US20110012461A1 (en) Permanent Magnet Synchronization Motor
TWI500239B (zh) Permanent magnetic synchronous motors and compressors using them
KR20110091028A (ko) 영구자석 동기 전동기 및 밀폐형 압축기
WO2007026802A1 (ja) 回転電機
WO2005004307A1 (ja) 電動機
JP2006166688A (ja) 永久磁石電動機
JP2008113480A (ja) モータ
US20140103755A1 (en) Electric motor having stator core for reducing cogging torque
JP2003284276A (ja) 回転電機
WO2005083869A1 (ja) 固定子、モータ、冷媒圧縮機、冷却装置、モータの設計方法
JP5985119B1 (ja) 永久磁石式回転電機
JP2001037127A (ja) 永久磁石形モータ
JP2001359266A (ja) ブラシレスdcモータの構造
CN110651417A (zh) 旋转电机
JP4442579B2 (ja) 固定子、モータ、冷媒圧縮機、冷却装置
JP6428458B2 (ja) 埋込磁石型モータ
JP2000152577A (ja) リラクタンスモータ
WO2022168302A1 (ja) 回転電機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase