WO2005083508A1 - 2次元画像形成装置 - Google Patents

2次元画像形成装置 Download PDF

Info

Publication number
WO2005083508A1
WO2005083508A1 PCT/JP2005/002804 JP2005002804W WO2005083508A1 WO 2005083508 A1 WO2005083508 A1 WO 2005083508A1 JP 2005002804 W JP2005002804 W JP 2005002804W WO 2005083508 A1 WO2005083508 A1 WO 2005083508A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional image
image forming
light
forming apparatus
light source
Prior art date
Application number
PCT/JP2005/002804
Other languages
English (en)
French (fr)
Inventor
Tomoya Sugita
Ken'ichi Kasazumi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006510420A priority Critical patent/JP4256423B2/ja
Priority to EP05719379A priority patent/EP1724637A1/en
Priority to US10/590,928 priority patent/US20080036977A1/en
Publication of WO2005083508A1 publication Critical patent/WO2005083508A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems

Definitions

  • the present invention relates to a two-dimensional image forming apparatus, and more particularly, to a two-dimensional image forming apparatus that can use light emitted from a light source for other purposes in addition to projecting a two-dimensional image. Things.
  • Two-dimensional image forming apparatuses represented by liquid crystal projectors, such as rear projection type and enlarged projection type, are easy to display on a large screen, and are being researched, developed, and commercialized, and their applications are expanding.
  • Patent Document 1 proposes a projection display device having a plurality of screens and displaying an image on an arbitrary screen.
  • Patent Document 2 a method of switching display of an image using a plurality of screens and an RGB projection tube, for example, enabling display switching of one image, a plurality of images, a high-brightness image, an enlarged image, and the like. Has been proposed.
  • Patent Document 3 a transmissive screen and a projection lens are used as a projector device. There has been proposed a device capable of selecting an image display position and a screen size by switching an optical path with a device provided.
  • Patent Document 1 JP-A-3-98037
  • Patent Document 2 Japanese Patent Laid-Open No. 4-70082
  • Patent Document 3 Japanese Patent Application Laid-Open No. 7-49533
  • the proposal regarding the display switching method in the conventional two-dimensional image forming apparatus is based on the assumption that the two-dimensional image forming apparatus is used in a state where it is almost fixed at a predetermined place. For example, there is a problem that it is difficult to apply the present invention to a portable small two-dimensional image forming apparatus.
  • the present invention has been made in view of the above-described problems, and light emitted from a light source can be used for purposes other than two-dimensional image display, and can be downsized for portable use.
  • a two-dimensional image forming apparatus includes a light source, a two-dimensional image forming unit that forms a two-dimensional image by light emitted from the light source, An enlargement projection unit that enlarges and projects the two-dimensional image formed by the two-dimensional image formation unit, an optical path of light emitted from the light source, a first optical path including the two-dimensional image formation unit and the enlargement projection unit, An optical path switching unit that switches to a second optical path that does not include at least one of the two-dimensional image forming unit and the magnifying projection unit.
  • the light source of the two-dimensional image forming apparatus can be used for purposes other than projection display of a two-dimensional image.
  • a two-dimensional image forming apparatus is the two-dimensional image forming apparatus according to claim 1, wherein the second optical path does not include the two-dimensional image forming unit. It is the thing.
  • the second optical path does not include the enlarged projection unit.
  • the optical path switching unit controls the light source to emit light from the light source. Is a rotation mechanism that rotates so as to change the direction.
  • the optical path switching unit can be realized with a simple configuration, and the range of use of the two-dimensional image forming apparatus can be greatly expanded at low cost.
  • the optical path switching unit includes: This is a moving mechanism for moving the emitted light between a position on the optical path and a position other than the optical path.
  • the optical path switching unit can be realized with a simple configuration, and the range of use of the two-dimensional image forming apparatus can be significantly expanded at low cost.
  • the optical path switching unit includes: a mirror; And a movement mechanism for moving the light emitted from the light source between a position on the optical path where the mirror reflects the light and a position other than the light path of the light emitted from the light source.
  • the optical path of the light emitted from the light source can be switched without changing the optical axis of the optical system, and it is possible to prevent the optical axis from being shifted due to the optical path switching.
  • the second optical path includes a magnifying optical system or a diffusion optical system, The optical path of the light emitted from the light source is cut so that the emitted light propagates through the second optical path. When changed, the emitted light is radiated to the outside of the device via the magnifying optical system or the diffusing optical system.
  • the light source light used for purposes other than the projection display of the two-dimensional image can be extracted as safe divergent light or diffused light as illumination light.
  • the two-dimensional image forming apparatus in the two-dimensional image forming apparatus according to claim 1, wherein the second optical path includes a liquid crystal panel, and receives light from the light source.
  • the optical path of the emitted light is switched so that the emitted light propagates through the second optical path, the emitted light is used as a backlight of the liquid crystal panel.
  • a two-dimensional image forming apparatus includes a light source, a two-dimensional image forming part that forms a two-dimensional image by light emitted from the light source, and a two-dimensional image forming part.
  • a magnifying projection unit for magnifying and projecting the formed two-dimensional image, an optical path of light emitted from the light source, and a part of the emitted light forming a first optical path including the two-dimensional image forming unit and the magnifying projection unit.
  • the other part of the emitted light includes an optical path branching unit that branches so as to propagate a second optical path that does not include at least one of the two-dimensional image forming unit and the magnifying projection unit.
  • the light emitted from the light source can be used simultaneously for projection display of a two-dimensional image and other uses.
  • the optical path branching unit includes the light source and the two-dimensional image forming unit. It is the one placed between them.
  • the emitted light from the light source can be used simultaneously for the projection display of the two-dimensional image and for a purpose other than the projection display, and the use range of the two-dimensional image forming apparatus is greatly expanded. That can be S.
  • the optical path branching unit is connected to the two-dimensional image forming unit and the expanding unit. It is arranged between the large projection unit.
  • the light emitted from the light source can be used simultaneously for projection display of a two-dimensional image and irradiation of illumination light for a staging effect.
  • a two-dimensional image forming apparatus is the two-dimensional image forming apparatus according to claim 10 or 11, wherein the optical path branching unit is a half mirror.
  • the light emitted from the light source can be used at the same time by distributing the light amount at an arbitrary ratio to the projection display of the two-dimensional image and other uses, and the two-dimensional image formation can be realized.
  • the range of use of the device can be greatly expanded.
  • a two-dimensional image forming apparatus is the two-dimensional image forming apparatus according to claim 1 or 9, wherein the light source is an LED.
  • the two-dimensional image forming apparatus can be configured to be more compact, and power consumption can be reduced.
  • a two-dimensional image forming apparatus is the two-dimensional image forming apparatus according to claim 1 or 9, wherein the light source is a laser.
  • the two-dimensional image forming apparatus can be configured to be more compact, power consumption can be reduced, and further excellent color reproducibility can be obtained.
  • the apparatus since the apparatus is provided with a very compact and simple optical path switching unit, the light emitted from the light source is used as illumination light in addition to displaying a two-dimensional image. There is an effect that can be.
  • the illumination light can be used as a backlight of the liquid crystal panel.
  • a compact two-dimensional image forming apparatus can be achieved by using an LED or a laser as a light source
  • a highly portable two-dimensional image forming apparatus having a high-luminance illumination function can be realized. effective.
  • the range of colors that can be displayed is expanded as compared with the case where a halogen lamp or the like is used, and the color range can be adjusted and selected as desired.
  • the range of use as illumination is greatly expanded.
  • the two-dimensional image forming apparatus of the present invention if an optical path branching unit such as a half mirror for branching the optical path is provided instead of the optical path switching unit, the light emitted from the light source can be two-dimensionally output. There is an effect that image display and illumination light can be used simultaneously.
  • FIG. 1 is a diagram showing a configuration of a two-dimensional image forming apparatus according to Embodiment 1 of the present invention
  • FIG. 1 (a) is a diagram showing light irradiation before a light emitting direction of a light source is switched by a rotating mechanism.
  • FIG. 2B schematically shows an example of light irradiation when the emission direction of the light source is switched.
  • FIG. 2 is a diagram showing a configuration of a two-dimensional image forming apparatus according to a second embodiment of the present invention
  • FIG. 2 (a) shows an example of light irradiation before a light emitting direction is switched by a movable mirror.
  • FIG. 2B schematically shows an example of light irradiation when the emission direction of the light source is switched.
  • FIG. 3 is a diagram showing a configuration of a two-dimensional image forming apparatus including a diffusion optical system according to a third embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of a two-dimensional image forming apparatus in which a movable mirror and a diffusion plate are integrated in a third embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration of a two-dimensional image forming apparatus including an image display unit according to a fourth embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a two-dimensional image forming apparatus using a laser as a light source according to a fifth embodiment of the present invention.
  • FIG. 7 is a diagram showing another configuration of the two-dimensional image forming apparatus according to the fifth embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of a two-dimensional image forming apparatus including an optical path branching unit according to a sixth embodiment of the present invention.
  • FIG. 9 is a diagram showing a configuration of a two-dimensional image forming apparatus according to a seventh embodiment of the present invention.
  • the present invention provides a new function other than image display on a two-dimensional image forming apparatus by a simple method using the inherent characteristics of the two-dimensional image forming apparatus in addition to the two-dimensional image display function of the two-dimensional image forming apparatus.
  • This paper proposes a configuration of a two-dimensional image forming apparatus to which is added, and verifies its practicality.
  • the two-dimensional image forming apparatus is provided with an optical path switching unit that switches the emission direction of the light emitted from the light source, so that the light from the light source can be two-dimensionally converted.
  • an optical path switching unit that switches the emission direction of the light emitted from the light source, so that the light from the light source can be two-dimensionally converted.
  • FIG. 1 is a diagram showing an example of the configuration of the two-dimensional image forming apparatus according to the first embodiment of the present invention.
  • FIG. 1 (a) uses light emitted from a light source for displaying a two-dimensional image.
  • FIG. 3B shows a state in which light emitted from the light source is used as illumination light.
  • reference numeral 10 denotes the two-dimensional image forming apparatus according to the first embodiment
  • 1 denotes a light source including a halogen lamp
  • 2 denotes an optical integrator optical system
  • 3a, 3b, and 3c denote red, green, and blue light, respectively.
  • 4a and 4b are mirrors
  • 5a, 5b and 5c are two-dimensional image forming units each including a two-dimensional spatial light modulation device
  • 6 is each of the above two-dimensional images.
  • 7 is an enlarged projection unit that also includes a lens set.
  • Reference numeral 11 denotes a rotation mechanism for changing the direction of light emission of the light source 1
  • 11a denotes an installation base on which the light source 1 can be installed
  • lib denotes a lever provided on a side surface of the device 10
  • 11c denotes an installation base. It is a link mechanism that connects the lever.
  • the light source rotation mechanism 11 includes, for example, an installation base 11a, a lever lib, and a link mechanism 11c as shown in FIG. 1, and fixes the light source 1 to the installation base 11a.
  • the mounting table 11a is moved from the position of FIG. 1 (a) to the position of FIG. 1 (b) or by a mechanical method from the outside of the device 10, such as operation of the lever lib by a user. By rotating and moving from the position 1 (b) to the position shown in FIG. 1 (a), it is possible to easily switch the light emission direction from the light source 1.
  • the rotation mechanism 11 of the light source is not limited to the above-described configuration.
  • a motor or the like is built in the installation base 11a, and the installation base 11a is rotated by an electric input, so that the light source 1 is rotated. It is also possible to switch the light emission direction.
  • FIG. 1A light emitted from a light source 1 is almost parallel light, and an in-plane light intensity distribution is made uniform by an optical integrator optical system 2.
  • the distance between the optical integrator optical system 2 and each of the two-dimensional image forming units 5a-5c is set so that the in-plane light intensity distribution is substantially uniform on each surface of the two-dimensional image forming units 5a and 5c. Optimized.
  • dichroic mirrors 3a, 3b, 3c for filtering white light emitted from the light source 1 into light in the R, G, and B wavelength regions are arranged.
  • the dichroic mirror 3a located closest to the light source 1 reflects only light in the red region and transmits light in other wavelength regions. Then, the light in the red region reflected by the dike opening mirror 3a is irradiated to the two-dimensional image forming unit 5a via the mirror 4a.
  • the light transmitted through the dichroic mirror 3a is then reflected only by the dichroic mirror 3b close to the light source 1 in the green region, and the light in other wavelength regions is transmitted.
  • the light in the green region reflected by the dichroic mirror 3b is applied to the two-dimensional image forming unit 5b.
  • only the light in the blue region of the light transmitted through the dichroic mirror 3b is reflected by the dichroic mirror 3c, and the reflected light in the blue region is applied to the two-dimensional image forming unit 5c via the mirror 4b.
  • the light transmitted through each of the two-dimensional image forming units 5a-5c is recombined by the dichroic prism 6, and the two-dimensional images formed in the two-dimensional image forming units 5a-5c are one-to-one.
  • the light is emitted out of the device 10 by the magnifying projection unit 7 that projects the light, and is magnified and projected on a screen (not shown) outside the device.
  • the direction of light emission from the light source 1 is switched by the rotating mechanism 11, and the emitted light LB is output from the device 10.
  • the emitted light LB is light directly emitted from a halogen lamp as a light source, and is, for example, a high-output white light of several hundred W class.
  • the two-dimensional image forming device 10 can exhibit a function as a lighting device different from the two-dimensional image enlarged display function. It becomes.
  • the light source used in the two-dimensional image forming apparatus is a high-output white light source of the order of several hundred watts, so that it is easy to use as a lighting device, and its convenience is high.
  • the two-dimensional image forming apparatus 10 can be widely used as main lighting or indirect lighting.
  • the very common use of a projection-type 2D image forming apparatus at present is to enjoy large-screen images by turning off indoor lighting, as represented by a home theater.
  • a projection type two-dimensional image forming apparatus 10 is used as a magnified projection display apparatus as shown in FIG. 1 (a). It is hard to imagine that it will be used as a lighting device as shown in Fig. 1 (b). It can be said that having the illumination function in addition to the function of enlarging and displaying the two-dimensional image, the two-dimensional image forming apparatus 10 has a useful additional function. The benefits for the ten users are significant.
  • the device 10 includes the rotation mechanism 11 for rotating the light source 1 so that the light emission direction changes, so that the two-dimensional image forming apparatus is used. Out of the light source can be extracted as illumination light.
  • the two-dimensional image forming apparatus can also be used as an illumination device at low cost, and the range of use of the two-dimensional image forming apparatus 10 can be greatly expanded.
  • the optical path switching unit has been described as an example in which the rotation mechanism 11 rotates the light source 1 so as to switch the light emission direction from the light source.
  • the switching unit is not limited to this.
  • the switching unit may be a unit that moves the light source 1 so that the direction of the emitted light is switched. In this case, the same effect can be achieved.
  • the optical path switching unit may be configured to rotate or move the light source 1 itself, and may reflect light emitted from the light source to be switched so that the light emission direction is switched.
  • a movable mirror provided so as to move an optical path switching unit between a position at which light emitted from a light source is reflected and a position at which the emitted light is not reflected,
  • a two-dimensional image forming apparatus constituted by a moving mechanism for moving will be described.
  • FIG. 2 is a diagram illustrating an example of a configuration of a two-dimensional image forming apparatus according to a second embodiment of the present invention.
  • FIG. 2A illustrates light emitted from a light source used for displaying a two-dimensional image.
  • FIG. 3B shows a state in which light emitted from the light source is used as illumination light.
  • reference numeral 20 denotes a two-dimensional image forming apparatus according to the second embodiment
  • reference numeral 21 denotes a light source having a halogen lamp
  • reference numeral 2 denotes an optical integrator optical system
  • reference numerals 3a and 3c denote red, green, and blue wavelength regions, respectively.
  • a dichroic mirror having a function of reflecting only light 4a and 4b are mirrors
  • 5a and 5c are two-dimensional image forming units each composed of a two-dimensional spatial light modulation device
  • 6 is modulated by each of the above two-dimensional image forming units 5a and 5c.
  • Dichroic prism that multiplexes the extracted light 7 is a group lens
  • 22 is a movable mirror
  • 23 is a moving mechanism for moving the movable mirror by user operation.
  • the movable mirror 22 and the moving mechanism 23 constitute an optical path switching unit that switches the light emission direction, and the movable mirror 22 is moved by the moving mechanism 23 to the light source 21.
  • the position on the optical path position shown in Fig. 2 (b)
  • connecting the two-dimensional image forming units 5a-5c and the position outside the optical path position shown in Fig. 2 (a)
  • the moving mechanism 23 of the movable mirror 22 includes, for example, as shown in FIG. 2, an installation base 23a, an operation lever 23b, and a link mechanism 23c connecting these.
  • the movable mirror 22 is installed on the installation table 23a, and the installation table is mounted on the installation table by a mechanical method from the outside of the apparatus 20, such as a method in which a user operates a lever 23b provided on the side of the apparatus 20, for example.
  • a mechanical method from the outside of the apparatus 20 such as a method in which a user operates a lever 23b provided on the side of the apparatus 20, for example.
  • the moving mechanism 23 of the movable mirror 22 is not limited to the above-described configuration.
  • the mounting table 23a is not limited to the above-described configuration, and a motor or the like is built in the mounting table 23a. The direction of light emission from the light source 1 can be switched.
  • the movable mirror 22 is arranged at a position not on the optical path connecting the light source 21 and the two-dimensional image forming units 5a to 5c (see FIG. 2A).
  • the light emitted from the light source 21 is made uniform in the in-plane light intensity distribution by the optical integrator optical system 2.
  • the distance between the optical integrator optical system 2 and each of the two-dimensional image forming units 5a and 5c is set so that the in-plane light intensity distribution is substantially uniform on each surface of the two-dimensional image forming units 5a and 5c. Optimized for
  • Dichroic mirrors 3a, 3b, and 3c are provided.
  • the dichroic mirror 3a located closest to the light source 21 reflects only light in the red region and transmits light in other wavelength regions. Then, the light in the red region reflected by the dike opening mirror 3a is applied to the two-dimensional image forming unit 5a via the mirror 4a.
  • the light transmitted through the dichroic mirror 3a is then reflected only by the dichroic mirror 3b near the light source 21, and only the light in the other wavelength region is transmitted.
  • the light in the green region reflected by the dichroic mirror 3b is applied to the two-dimensional image forming unit 5b.
  • only the light in the blue region of the light transmitted through the dichroic mirror 3b is reflected by the dichroic mirror 3c, and the reflected light in the blue region is applied to the two-dimensional image forming unit 5c via the mirror 4b. Is done.
  • the light transmitted through each of the two-dimensional image forming units 5a to 5c is combined by the dichroic prism 6, and the two-dimensional image formed by the two-dimensional image forming units 5a and 5c is projected one-to-one.
  • the light is emitted from the projection unit 7 as emission light LA to the outside of the device 20 and is enlarged and projected on a screen (not shown) outside the device.
  • the two-dimensional beam train becomes white light.
  • the two-dimensional image forming apparatus 20 can move between the position on the optical path of the optical integrator optical system 2 and a position other than the optical path.
  • a movable mirror and a moving mechanism for moving the movable mirror, and the light emitted from the light source The path is switched between an optical path that passes through an optical system for forming a two-dimensional image and an optical path that does not pass through this optical system, so that light emitted from the light source of the two-dimensional image forming apparatus is used as illumination light. It can be taken out.
  • the two-dimensional image forming apparatus can also serve as a lighting device at low cost, and the range of use of the two-dimensional image forming apparatus 20 can be greatly expanded.
  • the optical path of the light emitted from the light source of the two-dimensional image forming apparatus is changed by disposing or removing a movable mirror on the optical path of an optical system for forming a two-dimensional image. Since there is no need to move the components of the optical system for forming a two-dimensional image. For this reason, there is an effect that the possibility that the optical axis of the optical component constituting the two-dimensional image forming apparatus 20 is shifted can be reduced, and the deterioration of the display quality of the image due to the shift of the optical axis can be suppressed.
  • the movable mirror 22 is inserted between two optical components (fly lens array) constituting the optical integrator optical system 2.
  • the position is not limited to this.
  • it may be inserted between the light source 21 and the optical integrator optical system 2 or between the optical integrator optical system 2 and the dichroic mirror 3a.
  • the movable mirror 22 is provided in front of the optical integrator optical system 2, that is, as shown in FIG. 2, the force between two sets of lens arrays constituting the optical integrator optical system 2, or the light source 21 and the light source 21. It is desirable to insert the light into the integrator optical system 2.
  • the light integrator optical system 2 is used to efficiently make the light emitted from the light source 21 incident on the optical integrator optical system 2. It is necessary to increase the area of 2 or to introduce a focusing lens between the optical integrator optical system 2 and the movable mirror 22, which may lead to an increase in the size and cost of the entire apparatus. Therefore, taking this point into consideration, the movable mirror 22 is not shown in FIG. As described above, it is more preferable to insert the optical system between the two lens arrays constituting the optical integrator optical system 2. In this case, the effect that the device 20 can be configured more compactly is obtained. .
  • the light source of the two-dimensional image forming apparatus described above has a structure in which a filament, which is a light emitting part, is covered with a transparent glass material, for example, in a halogen lamp, because it is desired that the light source has high luminance. . Therefore, when a light source having such a structure is used as illumination, there is a possibility that a user looks directly at the light source, which poses a safety problem. In particular, scattered light that illuminates a wide area, such as a fluorescent lamp, is desirable as the main lighting or indirect lighting used in the home. Therefore, in the third embodiment, as described above, we propose a configuration that enables the two-dimensional image forming apparatus to be widely used as a lighting device having no safety problem.
  • the two-dimensional image forming apparatus 30 is provided with a diffusion optical system. .
  • FIG. 3 is a diagram illustrating an example of a configuration of the two-dimensional image forming apparatus according to the third embodiment.
  • reference numeral 30 denotes a two-dimensional image forming apparatus according to the third embodiment
  • reference numeral 21 denotes a light source having a halogen lamp
  • reference numeral 2 denotes an optical integrator optical system
  • reference numerals 3a, 3b, and 3c denote red, green, and blue waves, respectively.
  • a dichroic mirror having a function of reflecting only light in a long region 4a and 4b are mirrors
  • 5a, 5b and 5c are two-dimensional image forming units each including a two-dimensional spatial light modulation device
  • 6 is each of the two-dimensional images described above.
  • a dichroic prism that combines the lights modulated by the forming units 5a and 5c, 7 is an enlarged projection unit composed of a group of lenses, 22 is a movable mirror, and 31 is a diffusion plate that functions as a diffusion optical system.
  • the diffusion plate 31 can be easily manufactured, for example, by forming random irregularities on the surface of the glass plate.
  • the movable mirror 22 and its moving mechanism constitute an optical path switching unit that switches the light emission direction, and the movable mirror 22 is moved by the moving mechanism to the light source 21.
  • the position on the optical path connecting the two-dimensional image forming units 5a and 5c (shown by the broken line in FIG. 3).
  • Position) and a position outside the same optical path (the position indicated by the solid line in FIG. 3), the direction of light emitted from the light source 21 of the device 30 can be switched. .
  • the moving mechanism of the movable mirror 22 is similar to that of the second embodiment, for example, by fixing the movable mirror 22 to an installation table or the like, and attaching the installation table to a mechanical method from the outside of the apparatus 30, for example, the apparatus 30.
  • the lever provided on the side surface is moved from the position shown by the solid line to the position shown by the broken line, or from the position shown by the broken line to the position shown by the solid line by operating the lever provided by the user. Can be easily achieved.
  • the moving mechanism of the movable mirror can also be realized by incorporating a motor or the like inside the above-mentioned mounting table and moving the mounting table by electric input.
  • the movable mirror 22 is arranged at a position that is not on the optical path connecting the light source 21 and the two-dimensional image forming units 5a to 5c (see the solid line in FIG. 3).
  • the light integrator optical system 2 makes the in-plane light intensity distribution uniform.
  • the optical integrator optical system 2 and each of the two-dimensional image forming units 5a-5c are so arranged that the in-plane light intensity distribution is substantially uniform on each surface of the two-dimensional image forming units 5a and 5c.
  • the distance has been optimized.
  • Dichroic mirrors 3a to 3c are provided on the optical path between the optical integrator optical system 2 and each of the two-dimensional image forming units 5a-5c.
  • Dichroic mirrors 3a to 3c are provided.
  • the dichroic mirror 3a disposed closest to the light source 21 reflects only light in the red region and transmits light in other wavelength regions.
  • the light in the red region reflected by the dike opening mirror 3a is applied to the two-dimensional image forming unit 5a via the mirror 4a.
  • the light transmitted through the dichroic mirror 3a is then reflected only by the dichroic mirror 3b near the light source 21 in the green region, and the light in other wavelength regions is transmitted.
  • the light in the green region reflected by the dichroic mirror 3b is applied to the two-dimensional image forming unit 5b. Further, the light transmitted through the dichroic mirror 3b is converted by the dichroic mirror 3c into light in the blue region. Only the reflected light in the blue region is applied to the two-dimensional image forming unit 5c via the mirror 4b. After that, the light transmitted through each of the two-dimensional image forming units 5a to 5c is recombined by the dichroic prism 6, and is emitted out of the device 30 by the magnifying projection unit 7 as outgoing light LA. ) Is enlarged and projected on top.
  • the movable mirror 22 When the movable mirror 22 is arranged on the optical path connecting the light source 21 and the two-dimensional image forming units 5a to 5c by the moving mechanism (when the movable mirror 22 is arranged at a position indicated by a broken line in FIG. 3). ), The light emitted from the light source 21 is reflected by the movable mirror 22, and is emitted to the outside of the device 30 as the emitted light LD via the diffusion plate 31. Therefore, in this two-dimensional image forming apparatus, the emitted light LD is scattered light, and there is a safety advantage that the adverse effect on vision when handling a high output light source can be greatly reduced.
  • the diffusion plate 31 can be designed and manufactured with an arbitrary diffusion angle (degree of diffusion), it is possible to change the illumination state (for example, the spread angle) according to the application. There is an effect.
  • the optical path switching unit 22 that switches the optical path of the light emitted from the light source 21 and the illumination light outside the apparatus 30 Since the light source device includes the diffusion plate 31 that diffuses the emitted light source light, the emitted light from the light source of the device 30 can be converted into scattered light. It can be used as illumination light that illuminates a wide area without problems. As a result, it is possible to obtain a two-dimensional image forming apparatus capable of emitting illumination light that can be used for various purposes.
  • the device 30 can be made compact. Power S can.
  • the two-dimensional image forming apparatus has a diffusion optical system including a diffusion plate that diffuses the light emitted from the light source that is output to the outside as illumination light.
  • the image forming apparatus may have a magnifying optical system for converting outgoing light of a light source that is output to the outside as illumination light into divergent light flux, instead of the above-mentioned diffusion optical system.
  • the diffusion plate 31 is not limited to that of the third embodiment.
  • the diffusion plate 31 is not limited to that of the third embodiment.
  • a two-dimensional image forming apparatus 40 of FIG. can get.
  • the new function added to the two-dimensional image forming apparatus is mainly the lighting function
  • the newly added function is not limited to the lighting function.
  • an image display unit such as a liquid crystal panel is arranged on the outer peripheral surface of the device, and the device is two-dimensionally arranged on a screen provided outside the device.
  • a description will be given of an example in which an enlarged projection display function of displaying an image by enlarging and projecting the image and a function of displaying an image on an image display unit provided in the apparatus can be selected.
  • FIG. 5 is a diagram illustrating an example of a configuration of the two-dimensional image forming apparatus according to the fourth embodiment.
  • reference numeral 50 denotes the two-dimensional image forming apparatus according to the fourth embodiment
  • reference numeral 21 denotes a light source having a halogen lamp
  • reference numeral 2 denotes an optical integrator optical system
  • reference numerals 3a, 3b, and 3c denote red, green, and blue waves, respectively.
  • a dichroic mirror having a function of reflecting only light in a long region 4a and 4b are mirrors
  • 5a, 5b and 5c are two-dimensional image forming units each including a two-dimensional spatial light modulation device
  • 6 is each of the two-dimensional images described above.
  • a dichroic prism for multiplexing the lights modulated by the forming units 5a-5c, 7 is an enlarged projection unit composed of an assembled lens
  • 22 is a movable mirror
  • 51 is a liquid crystal panel having an image display function.
  • the optical path switching unit that switches the optical path of the light emitted from the light source 21 includes the movable mirror 22 and a moving mechanism that moves the movable mirror 22. Between the position on the optical path connecting the light source 21 and the two-dimensional image forming units 5a and 5c (the position shown by the broken line in FIG. 5) and the position outside the optical path (the position shown by the solid line in FIG. 5) By moving to any position, the direction of light emitted from the light source 21 of the device 50 can be switched.
  • the moving mechanism is not shown, but is the same as the moving mechanism 23 of the second embodiment.
  • the movable mirror 22 is different from the second and third embodiments in that the optical integrator optical system 2 And the dichroic mirror 3a disposed closest to the light source 21. Also, here, the optical path length from the light source 21 to the two-dimensional image forming unit 5a when the movable mirror 22 is retracted to a position outside the optical path as shown by a solid line in FIG. As shown by the broken line in FIG. 5, the power of the light source 21 when inserted into the optical path is equal to the optical path length to the liquid crystal panel 51.
  • the movable mirror 22 When the movable mirror 22 is disposed at a position outside the optical path connecting the light source 21 and the two-dimensional image forming units 5a and 5c (when the movable mirror 22 is disposed at a position indicated by a solid line in FIG. 5), The light emitted from the light source is made uniform in the in-plane light intensity distribution by the optical integrator optical system 2.
  • the distance between the optical integrator optical system 2 and each of the two-dimensional image forming units 5a and 5c is such that the in-plane light intensity distribution is substantially uniform on each surface of the two-dimensional image forming units 5a to 5c. Optimized for
  • the white light emitted from the light source 21 is emitted from the R, G, and B wavelength regions.
  • Dichroic mirrors 3a to 3c for filtering are provided.
  • the dichroic mirror 3a located closest to the light source reflects only light in the red region and transmits light in other wavelength regions.
  • the light in the red region reflected by the dike opening mirror 3a is applied to the two-dimensional image forming unit 5a via the mirror 4a.
  • the light transmitted through the dichroic mirror 3a is then reflected only by the dichroic mirror 3b near the light source 21 in the green region, and the light in other wavelength regions is transmitted.
  • the light in the green region reflected by the dichroic mirror 3b is applied to the two-dimensional image forming unit 5b. Further, the light transmitted through the dichroic mirror 3b is only reflected in the blue region by the dichroic mirror 3c, and the reflected light in the blue region is applied to the two-dimensional image forming unit 5c via the mirror 4b. You. After that, the light transmitted through each of the two-dimensional image forming units 5a to 5c is recombined by the dichroic prism 6, and is emitted out of the device 50 as the output light LE by the magnifying projection unit 7, and the screen outside the device (shown in FIG. ) Is enlarged and projected on top. [0101] Next, an image display function of the two-dimensional image forming apparatus 50 will be described.
  • the movable mirror 22 When the movable mirror 22 is arranged on the optical path connecting the light source 21 and the two-dimensional image forming units 5a-5c by the moving mechanism described above (when it is arranged at the position shown by the broken line in FIG. 5), The outgoing light from 21 is reflected by the movable mirror 22 and propagates in the free space inside the device 50 as the outgoing light LE. At this time, as described above, the optical path length from the light source 21 to the liquid crystal panel 51 is adjusted when the movable mirror 22 is retracted to a position outside the optical path (when the movable mirror is moved to the position shown by the solid line in FIG. 5).
  • the optical path length from the light source 21 to the two-dimensional image forming unit 5a By setting the optical path length from the light source 21 to the two-dimensional image forming unit 5a to be substantially equal to the optical path length on the liquid crystal panel 51, the light intensity distribution becomes almost uniform in the plane. Can be used as a backlight for the liquid crystal panel 51, and an image can be displayed.
  • a liquid crystal panel 51 capable of displaying an image
  • a light source output An optical path switching unit for switching the optical path of the emitted light, wherein an optical path for guiding the light emitted from the light source 21 to the optical system for performing the above-mentioned enlarged projection and an optical path for guiding the light emitted from the light source 21 to the liquid crystal panel are formed. Since the switching is performed, the device 50 must have an image display function of displaying an image on the liquid crystal panel 51 in addition to an enlarged display function of enlarging and projecting a two-dimensional image on a screen outside the device. Becomes possible.
  • the movable mirror 22 is connected between the light integrator optical system 2 and the dichroic mirror 3a and between the light source 21 and the liquid crystal panel 51 when the movable mirror 22 is disposed on the optical path. Since the optical path length and the optical path length from the light source 21 to the two-dimensional image forming unit 5a when the movable mirror is retracted to a position outside the optical path are substantially equal, the light is emitted from the light source 21. It can be used as a backlight of the liquid crystal panel 51 with almost no loss of light, thereby realizing a very bright and easy-to-view image display on the liquid crystal panel.
  • the movable mirror can be provided with a function as an enlarging optical system, and compared with the two-dimensional image forming unit 5a.
  • Another advantage is that the liquid crystal panel 51 having a much larger size can be uniformly illuminated.
  • the light source of the two-dimensional image forming apparatus is a general halogen lamp as the light source
  • the light source of the two-dimensional image forming apparatus is not limited to this.
  • a light emitting diode (LED) that emits three colors of red (R), green (G), and blue (B), or a device using a laser may be used. The same effect can be obtained.
  • the light source is a laser that emits three colors of red (R), green (G), and blue (B).
  • FIG. 6 is a diagram showing an example of the configuration of the two-dimensional image forming apparatus 60 according to the fifth embodiment.
  • reference numeral 60 denotes a two-dimensional image forming apparatus according to the fifth embodiment
  • reference numerals 61a, 61b, and 61c denote three colors of red (R), green (G), and blue (B), respectively.
  • the emitted laser, 63a, 63b, and 63c are dichroic mirrors that reflect light in the red, green, and blue regions, respectively
  • 2 is an optical integrator optical system
  • 5 is a two-dimensional image forming unit including a two-dimensional spatial light modulation device
  • Reference numeral 7 denotes an enlarged projection unit configured by a lens unit
  • 22 denotes a movable mirror that switches the direction of light emitted from the light sources 61a to 61c
  • 31 denotes a diffusion plate that functions as a diffusion optical system.
  • the diffusion plate 31 can be easily manufactured, for example, by forming random irregularities on the surface of the glass plate.
  • the movable mirror 22 and a moving mechanism (not shown) for moving the movable mirror 22 constitute an optical path switching unit that switches the optical path of the light emitted from the light source.
  • the movable mechanism 22 moves the movable mirror 22 to a position on the optical path connecting the light sources 61a-61c and the two-dimensional image forming unit 5 (a position indicated by a broken line in FIG. 6).
  • the direction of the light emitted from the light source 21 of the device 60 can be switched by moving the light source 21 to or from a position outside the optical path (a position indicated by a solid line in FIG. 6).
  • FIG. 6 when the movable mirror 22 is disposed at a position outside the optical path connecting the light sources 61a to 61c and the two-dimensional image forming unit 5 (the position indicated by the solid line in FIG. 6), Light emitted from a certain red laser 61a, green laser 61b, and blue laser 61c is reflected by the dichroic mirrors 63a 63c so as to have the same optical axis, and is incident on the optical integrator optical system 2.
  • the light transmitted through the optical integrator optical system 2 becomes light having a uniform in-plane intensity distribution on the two-dimensional image forming unit 5 and illuminates the two-dimensional image forming unit 5. Further, the light transmitted through the two-dimensional image forming unit 5 has intensity distribution information, is emitted out of the device 60 as emission light LF by the enlarged projection unit 7, and is enlarged and projected on a screen (not shown) outside the device. You. At this time, the emission timing and emission time of the red laser 61a, the green laser 61b, and the blue laser 61c are adjusted, and irradiation of each color of light onto the two-dimensional image forming unit 5 is performed in a time-division manner.
  • the two-dimensional image forming section 5 enables full-color two-dimensional image formation. For example, when a two-dimensional image is formed at 60 frames per second, the above-described full-color image can be formed by repeating irradiation for 1/180 second for each color.
  • the light source 61a when the movable mirror 22 is arranged on the optical path connecting the light sources 61a-61c and the two-dimensional image forming unit 5 by the moving mechanism (the position indicated by the broken line in FIG. 6), the light source 61a —
  • the outgoing light from 6 lc is reflected by the movable mirror 22 and is emitted to the outside of the device 60 as the outgoing light LG via the diffusion plate 31.
  • the emitted light LG is transmitted through the diffuser plate 31 and becomes scattered light of the light emitted from the light source 61a-6lc, which greatly reduces the adverse effect on vision when handling the laser light source. Benefits can be secured.
  • the diffusion plate 31 can be designed and manufactured with an arbitrary diffusion angle (degree of diffusion), it is also possible to change the state of illumination (for example, the spread angle, etc.) according to the application. There is an effect that there is.
  • the laser is used as the light source in the two-dimensional image forming apparatus. Therefore, compared to the case where the white light source such as the halogen lamp described above is used as the light source, the two-dimensional image forming apparatus is two-dimensional. The number of components such as the image forming unit 5 can be reduced, and the size and cost of the two-dimensional image forming apparatus can be significantly reduced.
  • the two-dimensional image forming unit 5 is not illuminated with light emitted from the red, green, and blue laser light sources 61a 61c to display a two-dimensional image.
  • the light emitted from the red, green, and blue laser light sources 61a-61c enters the polygon mirror 71, and is continuously reflected by the polygon mirror 71 to a one-dimensional area having an appropriate spread by high-speed rotation.
  • the linear light reflected by the polygon mirror 71 may be reflected and projected on a two-dimensional area by the galvanometer mirror 72 to form a two-dimensional image.
  • reference numeral 70 denotes a two-dimensional image forming apparatus using a polygon mirror 71, and a movable mirror 22 is provided at a position outside the optical path connecting the light source 61a 61c and the polygon mirror 71.
  • the light emitted from the red laser 61a, the green laser 61b, and the blue laser 61c, which are the light sources is the same light by the dichroic mirrors 63a-63c, respectively. The light is reflected so as to become the axis, and is incident on the polygon mirror 71.
  • the polygon mirror 71 has a regular polyhedral structure in which each surface is a mirror, and can rotate light incident on the mirror surface in one-dimensional direction by rotating at high speed. Therefore, a one-dimensional image can be obtained by, for example, intensity modulation by the laser light sources 61a and 61c. Further, since the galvanometer mirror 72 can electrically control the angle of the mirror surface, it is possible to perform one-dimensional scanning of incident light in a direction independent of the scanning direction of the polygon mirror 71. Therefore, a two-dimensional image can be easily formed by arranging the scanning direction of the polygon mirror 71 and the scanning direction of the galvano mirror 72 in a perpendicular relationship. The two-dimensional image obtained in this way is emitted as emission light LF to the outside of the device 70 by the enlarged projection unit 7, and is enlarged and projected on a screen (not shown) outside the device.
  • Embodiment 5 Although a case has been described with Embodiment 5 where a laser is used as a light source, red, green, blue and each color LED may be used as a light source. There is.
  • LEDs and lasers have higher luminous efficiency with respect to input power than lamps, it is possible to reduce power consumption when implementing a two-dimensional image forming apparatus that secures the same brightness as lamps.
  • laser light sources are characterized by high monochromaticity and the ability to generate light in a wavelength band that cannot be obtained with lamp output. A considerable area of the possible color range (eg, the color range represented by a chromaticity diagram) can be covered. Therefore, when a laser light source is used as in the fifth embodiment, there is an advantage that remarkably high color reproducibility can be obtained as compared with a two-dimensional image forming apparatus including a lamp light source.
  • the present embodiment is also applicable to a case in which light emitted from light sources 61a and 61c is used as illumination light.
  • the diffusion plate 31 is disposed as a diffusion optical system on the optical path of the output light LG, the light emitted from the light sources 61a to 61c is converted into scattered light, The safety advantage of greatly reducing the adverse effects on vision can be ensured.
  • the diffusion plate 31 is provided on the outer periphery of the device 60.
  • the movable mirror 22 and the diffusion plate 31 In this case, the same effect can be obtained.
  • an image display unit such as a liquid crystal panel is arranged on the outer peripheral surface of the two-dimensional image forming apparatus 60, light emitted from the light sources 61a to 61c can be used as a backlight of the liquid crystal panel, and an image can be displayed.
  • An advantage of such a configuration is that the light emitted from the light source is used as a backlight with little loss, and thus a very bright and easy-to-view image display is possible.
  • the shape of the reflection surface of the movable mirror 22 convex it is possible to have a function as an enlarging optical system.
  • uniform illumination can be performed on the liquid crystal panel.
  • the optical path switching unit is constituted by the movable mirror and the moving mechanism for moving the movable mirror, and the optical path switching unit switches the optical path of the light emitted from the light source.
  • FIG. 8 is a diagram illustrating an example of a configuration of the two-dimensional image forming apparatus according to the sixth embodiment of the present invention having the above-described configuration.
  • reference numeral 80 denotes a two-dimensional image forming apparatus according to Embodiment 6
  • reference numeral 21 denotes a light source having a halogen lamp
  • reference numeral 2 denotes an optical integrator optical system
  • reference numerals 3a to 3c denote red, green, and blue wavelength regions, respectively.
  • Dichroic mirrors having the function of reflecting only the light of the type 4a and 4b are mirrors, 5a and 5c are two-dimensional image forming units each including a two-dimensional spatial light modulation device, and 6 is each of the above two-dimensional image forming units 5a—
  • a dichroic prism for multiplexing the light modulated by 5c 7 is an enlarged projection unit composed of a group of lenses, and 82 is a half mirror.
  • the half mirror 82 is fixed on the optical path, and the light emitted from the light source 21 is divided into the light transmitted through the half mirror 82 and the reflected light.
  • the light emitted from the light source 21 of the device 80 becomes an optical path branching portion.
  • the light emitted from the light source 21 is made uniform in the in-plane light intensity distribution by the optical integrator optical system 2.
  • the distance between the optical integrator optical system 2 and each of the two-dimensional image forming units 5a and 5c is set so that the in-plane light intensity distribution is substantially uniform on each surface of the two-dimensional image forming units 5a and 5c.
  • the light emitted from one lens array of the optical integrator optical system 2 is half-mixed.
  • the output light L1 and the output light L2 are branched by the mirror 82. Then, the emitted light L2 is emitted to the outside of the device 80.
  • This emitted light L2 can be used, for example, as a hand lamp or indirect lighting.
  • the other outgoing light L1 branched by the half mirror 82 is first reflected only by the dichroic mirror 3a located at the position closest to the light source 21 and only the light in the red region. , And light in other wavelength ranges is transmitted. Then, the light in the red region reflected by the dike opening mirror 3a is applied to the two-dimensional image forming unit 5a via the mirror 4a. Next, only the light in the green region is reflected by the dichroic mirror 3b near the light source 21, and the light in the other wavelength regions is transmitted through the dichroic mirror 3a. Then, the light in the green region reflected by the dich opening mirror 3b is applied to the two-dimensional image forming unit 5b.
  • the light in the blue region of the light transmitted through the dichroic mirror 3b is reflected by the dichroic mirror 3c, and the reflected light in the blue region is applied to the two-dimensional image forming unit 5c via the mirror 4b. Is done. Thereafter, the light transmitted through each of the two-dimensional image forming units 5a-5c is multiplexed by the dichroic prism 6, and the two-dimensional images formed in the two-dimensional image forming units 5a-5c are projected one-to-one. The light is emitted out of the device 80 by the magnifying projection unit 7 as the emitted light La, and is magnified and projected on a screen (not shown) outside the device.
  • the optical path branching branches the light emitted from the light source into two optical paths. Since the light source 21 is provided, the light emitted from the light source 21 can be used not only for the enlarged projection display of the two-dimensional image but also for the illumination light.
  • the transmittance of the half mirror 82 can be arbitrarily adjusted from outside the device, it is possible to easily extract the amount of light required by the user as illumination light at the same time as projecting and displaying a two-dimensional image. There is an effect that can be.
  • the force S at which the half mirror 82 is installed between two sets of lens arrays constituting the optical integrator optical system 2 and the installation position of the half mirror are limited to this. Not something.
  • a half mirror as an optical path branching unit may be provided between the two-dimensional image forming unit and the enlarged projection unit.
  • the half mirror 82 is installed between the two lens arrays as in the sixth embodiment, the two-dimensional image forming apparatus 80 becomes more compact. It becomes possible to be.
  • Embodiment 6 the same effect is obtained as in the case where the light source is a halogen lamp as an example, and the power light source may be a laser or LED.
  • the two-dimensional image forming apparatus 80 has a liquid crystal panel, which is a screen display unit, disposed on the outer surface thereof, the light emitted from the light source branched by the half mirror 82 can be used.
  • the emitted light L2 can be used as a backlight of the liquid crystal panel.
  • the optical path switching unit is disposed between the light source and the two-dimensional image forming unit, and the light emitted from the light source can be used for purposes other than displaying a two-dimensional image.
  • a two-dimensional image including an optical path switching unit that switches an optical path of light emitted from a light source between an optical path including an enlarged projection unit and an optical path not including an enlarged projection unit is described. The forming apparatus will be described.
  • FIG. 9 is a diagram illustrating an example of a configuration of the two-dimensional image forming apparatus according to the seventh embodiment of the present invention.
  • reference numeral 90 denotes a two-dimensional image forming apparatus according to the seventh embodiment, and 61a, 61b, and 61c emit three colors of red (R), green (G), and blue (B), respectively.
  • a laser, 63a, 63b, 63c are dichroic mirrors for reflecting light in the red, green, and blue regions, respectively, 2 is an optical integrator optical system, 5 is a two-dimensional image forming unit including a two-dimensional spatial light modulation device, and 97 Is a movable enlarged projection unit composed of a lens unit.
  • the magnifying projection unit 97 is moved by a moving mechanism (not shown) between a position on the optical path of the light emitted from the light source and a position outside the optical path of the light emitted from the light source.
  • the moving mechanism has the same configuration as the moving mechanism 23 of the second embodiment.
  • the magnifying projection unit 97 is fixed to an installation base or the like, and the installation base is used by a mechanical method from the outside of the device 90, for example, using a lever provided on the side surface of the device 90.
  • the user moves from the position shown by the solid line in FIG. 9 to the position shown by the broken line, or from the position shown by the broken line to the position shown by the solid line in response to an operation by the user.
  • the moving mechanism is not limited to a manual moving mechanism as described above.
  • a motor or the like may be built in the mounting table 11 and the mounting table may be moved by an electric input.
  • the light source is a red laser 61a, a green laser 61b, and a blue laser 61c.
  • the emitted lights are reflected by the dichroic mirrors 63a and 63c so as to have the same optical axis, and are incident on the optical integrator optical system 2.
  • the light transmitted through the optical integrator optical system 2 becomes light having a uniform in-plane intensity distribution on the two-dimensional image forming unit 5 and illuminates the two-dimensional image forming unit 5.
  • the light transmitted through the two-dimensional image forming unit 5 has intensity distribution information, is emitted out of the device 90 as emission light LH by the enlargement projection unit 97, and is enlarged and projected on a screen (not shown) outside the device.
  • the output light LI is a two-dimensional image before being enlarged by the enlargement projection unit 97.
  • this two-dimensional image can be used for effect lighting.
  • small stage lighting, particle patterns, polka dots, etc. are used as the stage lighting. It is realized by a method of projecting by combining light sources. Therefore, conventionally, a large-power light source system or a system for controlling a plurality of light sources was required in order to obtain illumination light for effect effects, and therefore, the effect lighting device is large in size and expensive. Met.
  • Embodiment 7 includes an optical path switching unit that switches the optical path of the light emitted from the light source between an optical path that includes the enlarged projection unit and an optical path that does not include the enlarged projection unit.
  • the light emitted from the two-dimensional image forming unit 5 can be emitted outside the device 90 without passing through the enlarged projection unit 97.
  • illumination that can arbitrarily display various patterns without losing the amount of light emitted from the two-dimensional image forming unit 5 becomes possible, and a small-sized and low-cost effect lighting device can be realized.
  • the two-dimensional image obtained in the two-dimensional image forming unit 5 is enlarged and projected one-to-one on the projection surface.
  • the enlarged projection plane is also rectangular.
  • directing lighting is used as rectangular output lighting, and it is rarely used.
  • the moving mechanism retracts the enlarged projection unit 97 from the optical path, and the rectangular output frame emitted from the two-dimensional image forming unit 5 is noticeable.
  • the effect that the emitted light can be used as effect illumination light is great.
  • the shape of the exit window for outputting the emitted light from the light source to the outside of the device is switched to various shapes, or the output window is processed by attaching a diffusion plate or a lens to the exit window. Since it is possible to use the two-dimensional image forming apparatus not only for business use, it also has the advantage that the range of use of the two-dimensional image forming apparatus in a general home can be expanded.
  • the present invention relates to a two-dimensional image forming apparatus in which light emitted from a light source can be used for a purpose different from the two-dimensional image forming, and an image display device such as a television receiver or a video projector is used.
  • an image display device such as a television receiver or a video projector is used.
  • it can be used as a lighting device, and is a useful device that can use light from a light source for multiple purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

 照明装置を兼ねた2次元画像形成装置を低コストで実現し、2次元画像形成装置の利用範囲を大幅に拡大させる。  光源(1)と、上記光源からの出射光により2次元画像を形成する2次元画像形成部(5a)~(5c)と、上記2次元画像形成部により形成された2次元画像を拡大投影する拡大投影部(6)とを備えた2次元画像形成装置(10)において、光源(1)を、その光出射方向が変化するよう回転させる回転機構(11)を備え、該回転機構により光源の光出射方向を変えて、光源からの出射光を照明光として取り出すようにした。

Description

明 細 書
2次元画像形成装置
技術分野
[0001] 本発明は、 2次元画像形成装置に関するものであり、特に、 2次元画像の投影に加 えてそれ以外の用途での光源出射光の利用が可能となる 2次元画像形成装置に関 するものである。
背景技術
[0002] 液晶プロジェクタに代表される 2次元画像形成装置は、背面投写型や拡大投影型 など、大画面画像表示が容易であることから研究開発および商品化が進み用途が広 がっている。
[0003] このような 2次元画像形成装置に対する従来の研究開発の主眼は、装置の小型化 、高輝度高照度化、高コントラスト化、高解像度化など、性能面でのアプローチにあ つた。そして、この研究開発の成果として、拡大投影型の液晶プロジェクタにおいて は、例えば非常にコンパクトで数 1000ANSIルーメンという高輝度のものが実用化さ れている。
[0004] 一方、背面投写型のプロジヱクシヨンモニタにおいては、装置の大きさによりスクリー ンの大きさがほぼ固定されてしまうため、高輝度化、高コントラスト化という装置の性能 面での開発とともに、装置の使い方の多様化を可能にする 2次元画像表示方法につ いての開発が進められている。特に、 2次元画像形成装置の表示切り替え技術は、 装置の用途を多様化させ、様々なニーズに答えることができることから、研究開発が 盛んに行われている。
[0005] 例えば、特許文献 1では、投射型表示装置において、複数のスクリーンを有し、任 意のスクリーン上に画像を表示するものが提案されている。
[0006] また、特許文献 2では、複数のスクリーンと RGB投射管を用いて画像の表示切り替 え、例えば、 1画像、複数画像、高輝度画像、拡大画像等の表示切り替えを可能とす る方法が提案されている。
[0007] また、特許文献 3では、プロジェクタ装置として、透過型スクリーンと投影レンズとを 備えた装置により光路を切り替えることにより画像表示位置 ·画面サイズを選択するこ とが可能なものが提案されている。
特許文献 1:特開平 3 - 98037号公報
特許文献 2:特開平 4 - 70082号公報
特許文献 3:特開平 7 - 49533号公報
発明の開示
発明が解決しょうとする課題
[0008] し力 ながら、上述した従来技術におけるものは、いずれも 2次元画像の表示形態 を切り替えるものであるため、光源から出射される光を 2次元画像表示以外の用途に 使用することは本質的に困難であるという課題を有していた。
[0009] また、従来の 2次元画像形成装置における表示切り替え方法に関する提案は、 2次 元画像形成装置が、決められた場所にほぼ固定された状態で使用される形態が想 定されているため、例えば携帯可能な小型の 2次元画像形成装置には適用が困難 であるという課題があった。
[0010] 本発明は、上記課題に鑑みてなされたものであり、光源から出射される光を、 2次元 画像表示以外の用途に利用可能であり、しかも携帯用として小型化することもできる
2次元画像形成装置を提供することを目的とする。
課題を解決するための手段
[0011] 上記課題を解決するため、本発明の請求項 1にかかる 2次元画像形成装置は、光 源と、上記光源からの出射光により 2次元画像を形成する 2次元画像形成部と、上記 2次元画像形成部により形成された 2次元画像を拡大投影する拡大投影部と、上記 光源からの出射光の光路を、上記 2次元画像形成部及び拡大投影部を含む第 1の 光路と、上記 2次元画像形成部及び拡大投影部の少なくとも一方を含まない第 2の 光路とのいずれかに切り替える光路切り替え部とを備えた、ものである。
[0012] これにより、 2次元画像形成装置の光源を、 2次元画像の投影表示以外の用途に 使用できる。
[0013] さらに、本発明の請求項 2にかかる 2次元画像形成装置は、請求項 1記載の 2次元 画像形成装置において、上記第 2の光路は、上記 2次元画像形成部を含まないもの とした、ものである。
[0014] これにより、 2次元画像の投影表示以外の用途に使用する光源光が、上記 2次元画 像形成部にて減衰されるのを防ぐことができる。
[0015] さらに、本発明の請求項 3にかかる 2次元画像形成装置は、請求項 1記載の 2次元 画像形成装置において、上記第 2の光路は、上記拡大投影部を含まなレ、ものである
、ものである。
[0016] これにより、 2次元画像の投影表示以外の用途に使用する光源光が、上記拡大投 影部にて減衰されるのを防ぐことができる。
[0017] さらに、本発明の請求項 4にかかる 2次元画像形成装置は、請求項 2に記載の 2次 元画像形成装置において、上記光路切り替え部は、上記光源を、該光源からの出射 光の方向が変わるよう回転させる回転機構である、ものである。
[0018] これにより、光路切り替え部を簡単な構成で実現することができ、低コストで、当該 2 次元画像形成装置の利用範囲を大幅に拡大することができる。
[0019] さらに、本発明の請求項 5にかかる 2次元画像形成装置は、請求項 3に記載の 2次 元画像形成装置において、上記光路切り替え部は、上記拡大投影部を、上記光源 力 の出射光の光路上の位置と、該光路以外の位置との間で移動させる移動機構で ある、ものである。
[0020] これにより、光路切り替え部を簡単な構成で実現することができ、当該 2次元画像形 成装置の利用範囲を、低コストで、大幅に拡大することができる。
[0021] さらに、本発明の請求項 6にかかる 2次元画像形成装置は、請求項 1に記載の 2次 元画像形成装置において、上記光路切り替え部は、ミラーと、該ミラーを、上記光源 からの出射光の光路上の、該出射光を該ミラーが反射する位置と、上記光源からの 出射光の光路上以外の位置との間で移動させる移動機構とを有する、ものである。
[0022] これにより、光学系の光軸を変化させずに、光源からの出射光の光路を切り替える ことができ、光路切り替えに伴って光軸のずれが発生するのを防止することができる。
[0023] さらに、本発明の請求項 7にかかる 2次元画像形成装置は、請求項 1記載の 2次元 画像形成装置において、上記第 2の光路は、拡大光学系あるいは拡散光学系を含 み、上記光源からの出射光の光路を、該出射光が該第 2の光路を伝搬するよう切り 替えたとき、該出射光が上記拡大光学系あるいは拡散光学系を介して装置外部に 照射される、ものである。
[0024] これにより、 2次元画像の投影表示以外の用途に使用する光源光を、照明光として 安全な発散光束の光あるいは拡散光として取り出すことができる。
[0025] さらに、本発明の請求項 8にかかる 2次元画像形成装置は、請求項 1に記載の 2次 元画像形成装置において、上記第 2の光路は、液晶パネルを含み、上記光源からの 出射光の光路を、該出射光が該第 2の光路を伝搬するよう切り替えたとき、該出射光 が上記液晶パネルのバックライトとして用いられる、ものである。
[0026] これにより、当該 2次元画像形成装置に、 2次元画像表示機能に加えて、他の画像 表示機能をもたせることが可能となり、当該 2次元画像形成装置の利用範囲を大幅 に拡大させること力 Sできる。
[0027] また、本発明の請求項 9にかかる 2次元画像形成装置は、光源と、上記光源からの 出射光により 2次元画像を形成する 2次元画像形成部と、上記 2次元画像形成部に より形成された 2次元画像を拡大投影する拡大投影部と、上記光源からの出射光の 光路を、該出射光の一部分が上記 2次元画像形成部及び拡大投影部を含む第 1の 光路を、該出射光の他の部分が、上記 2次元画像形成部及び拡大投影部の少なくと も一方を含まない第 2の光路を伝搬するよう分岐する光路分岐部を備えた、ものであ る。
[0028] これにより、光源からの出射光を、 2次元画像の投影表示と、それ以外の用途に同 時に使用できる。
[0029] さらに、本発明の請求項 10にかかる 2次元画像形成装置は、請求項 9に記載の 2 次元画像形成装置において、上記光路分岐部は、上記光源と上記 2次元画像形成 部との間に配置した、ものである。
[0030] これにより、光源からの出射光を、 2次元画像の投影表示と、該投影表示以外の用 途に同時に使用することができ、当該 2次元画像形成装置の利用範囲を大幅に拡大 すること力 Sできる。
[0031] さらに、本発明の請求項 11にかかる 2次元画像形成装置は、請求項 9に記載の 2 次元画像形成装置において、上記光路分岐部を、上記 2次元画像形成部と上記拡 大投影部との間に配置した、ものである。
[0032] これにより、光源からの出射光を、 2次元画像の投影表示と、演出効果用の照明光 の照射とに、同時に使用できる。
[0033] さらに、本発明の請求項 12にかかる 2次元画像形成装置は、請求項 10あるいは 11 に記載の 2次元画像形成装置において、上記光路分岐部は、ハーフミラーである、も のである。
[0034] これにより、光源からの出射光を、 2次元画像の投影表示と、それ以外の用途とに、 光量を任意の割合に分配して同時に使用することを実現でき、当該 2次元画像形成 装置の利用範囲を大幅に拡大することができる。
[0035] さらに、本発明の請求項 13にかかる 2次元画像形成装置は、請求項 1あるいは 9記 載の 2次元画像形成装置において、上記光源は、 LEDである、ものである。
[0036] これにより、当該 2次元画像形成装置を、さらにコンパクトに構成することが可能とな ると共に、低消費電力化が可能という利点がある。
[0037] さらに、本発明の請求項 14にかかる 2次元画像形成装置は、請求項 1あるいは 9記 載の 2次元画像形成装置において、上記光源は、レーザである、ものである。
[0038] これにより、当該 2次元画像形成装置を、さらにコンパクトに構成することが可能とな ると共に、低消費電力化が可能で、さらに格段に高い色再現性が得られるという利点 もめる。
発明の効果
[0039] 本発明の 2次元画像形成装置によれば、当該装置に非常にコンパクトかつ簡便な 光路切り替え部を備えることで、光源からの出射光を 2次元画像表示の他に、照明光 として利用することができるという効果がある。
[0040] また、本発明の 2次元画像形成装置によれば、当該 2次元画像形成装置に液晶パ ネルを一体化することにより、照明光を液晶パネルのバックライトとして利用することが できるという効果がある。
[0041] また特に、光源として LEDやレーザを用いることにより、コンパクトな 2次元画像形 成装置が達成できるため、高輝度照明機能を付加した可搬性の高い 2次元画像形 成装置が実現できるという効果がある。また、光源として、 LEDやレーザを用いた場 合には、ハロゲンランプ等を利用した場合に比べて表示可能な色範囲が拡大され、 さらに任意の色調に調整選択することができるため、照明としての利用範囲が大きく 拡大するという効果がある。
[0042] また、本発明の 2次元画像形成装置によれば、光路切り替え部のかわりに、ハーフ ミラー等の光路を分岐する光路分岐部を設けるようにすれば、光源からの出射光を 2 次元画像表示と、照明光として、同時に利用することができるという効果がある。 図面の簡単な説明
[0043] [図 1]図 1は本発明の実施の形態 1における、 2次元画像形成装置の構成を示す図で あり、図 (a)は回転機構により光源の出射方向を切り替える前の光照射の一例を示し、 図 (b)は光源の出射方向を切り替えた際の光照射の一例を模式的に示す。
[図 2]図 2は本発明の実施の形態 2における、 2次元画像形成装置の構成を示す図で あり、図 (a)は可動ミラーにより光出射方向を切り替える前の光照射の一例を示し、図 (b)は光源の出射方向を切り替えた際の光照射の一例を模式的に示す。
[図 3]図 3は本発明の実施の形態 3における、拡散光学系を備えた 2次元画像形成装 置の構成を示す図である。
[図 4]図 4は本発明の実施の形態 3における、可動ミラーと拡散板が一体化された 2次 元画像形成装置の構成を示す図である。
[図 5]図 5は本発明の実施の形態 4における、画像表示部を備える 2次元画像形成装 置の構成を示す図である。
[図 6]図 6は本発明の実施の形態 5における、光源としてレーザを用いた 2次元画像 形成装置の構成を示す図である。
[図 7]図 7は本発明の実施の形態 5における、 2次元画像形成装置の別の構成を示 す図である。
[図 8]図 8は本発明の実施の形態 6における、光路分岐部を備えた 2次元画像形成装 置の構成を示す図である。
[図 9]図 9は本発明の実施の形態 7における、 2次元画像形成装置の構成を示す図で ある。
符号の説明 [0044] 1 光源
2 光インテグレータ光学系
3a, 3b, 3c, 63a, 63b, 63c ダイクロイツクミラー
4a, 4b ミラー
5, 5a, 5b, 5c 2次元画像形成部
6 タィクロイツクプリズム
7, 97 拡大投影部
10, 20, 30, 40, 50, 60, 70, 80, 90 2次元画像形成装置
11 回転機構
11a, 23a 設置台
l ib, 23b レノ一
11c, 23c リンク機構
22, 42 可動ミラー
31 拡散板
51 液晶パネル
61a, 61b, 61c レーザ
71 ポリゴンミラー
72 ガルバノミラー
82 ハーフミラー
発明を実施するための最良の形態
[0045] 以下、本発明の実施の形態について、図を用いて説明する。
[0046] (実施の形態 1)
本発明は、 2次元画像形成装置の有する 2次元画像の表示機能に加え、該 2次元 画像形成装置が本来有する特性を利用して、簡便な方法で、当該装置に画像表示 以外の新たな機能を付加した 2次元画像形成装置の構成を提案し、その実用性を検 証したものである。
[0047] まず、本実施の形態 1においては、 2次元画像形成装置内に、光源から出射された 光の出射方向を切り替える光路切り替え部を備えることで、光源からの光を、 2次元 画像の表示に加えて、照明光として利用可能としたものについて説明する。
[0048] 図 1は、本発明の実施の形態 1にかかる 2次元画像形成装置の構成の一例を示す 図であり、図 (a)は光源から出射される光を 2次元画像表示に使用する状態を示し、図 (b)は光源出射光を照明光として使用する状態を示す。
[0049] 図 1において、 10は本実施の形態 1の 2次元画像形成装置、 1はハロゲンランプか らなる光源、 2は光インテグレータ光学系、 3a, 3b, 3cはそれぞれ赤、緑、青の波長 領域の光のみを反射する機能を有するダイクロイツクミラー、 4a, 4bはミラー、 5a, 5b , 5cはいずれも 2次元空間光変調デバイスからなる 2次元画像形成部、 6は上記各 2 次元画像形成部 5a 5cで変調された光を合波するダイクロイツクプリズム、 7は組レ ンズカも構成される拡大投影部である。そして、 11は光源 1の光出射の向きを変化さ せる回転機構であり、 11aは光源 1を設置可能な設置台、 l ibは当該装置 10側面に 設けられているレバー、 11cは設置台とレバーをつなぐリンク機構である。
[0050] 上記光源の回転機構 11は、例えば図 1に示すように、設置台 11aと、レバー l ibと 、リンク機構 11cとからなるものであり、上記光源 1を該設置台 11aに固定し、該設置 台 11aを、当該装置 10外部からの力学的手法、例えばレバー l ibを使用者が操作 する等、により、図 1(a)の位置から図 1(b)の位置に、あるいは図 1(b)の位置から図 1(a) の位置に回転移動させるようにすることで、容易に光源 1からの光出射方向を切り替 えることが可能となる。なお、光源の回転機構 11は上述した構成に限るものではなく 、上記設置台 11a内部にモーター等を内蔵し、電気的な入力により、上記設置台 11 aを回転させて、上記光源 1からの光出射方向を切り替えるようにすることも可能であ る。
[0051] 以下、本構成における 2次元画像形成装置の機能と効果について説明する。
[0052] まず、 2次元画像形成装置 10が有する、 2次元画像の拡大表示機能について述べ る。図 1(a)において、光源 1から出射された光はほぼ平行光であり、光インテグレータ 光学系 2により面内光強度分布の均一化がなされる。ここで、光インテグレータ光学 系 2と、各 2次元画像形成部 5a— 5cとの距離は、上記 2次元画像形成部 5a 5cの 各面上で面内光強度分布がほぼ一様になるように最適化されている。
[0053] また、上記光インテグレータ光学系 2と、上記各 2次元画像形成部 5a— 5cとの間の 光路内には、光源 1から出射された白色光を R、 G、 Bそれぞれの波長領域の光にフ ィルタリングするためのダイクロイツクミラー 3a, 3b, 3cが配置されている。例えば、最 も光源 1に近い位置に配置されたダイクロイツクミラー 3aでは、赤色領域の光のみが 反射され、その他の波長領域の光は透過される。そして、該ダイク口イツクミラー 3aで 反射された赤色領域の光は、ミラー 4aを経て 2次元画像形成部 5aに照射される。上 記ダイクロイツクミラー 3aを透過した光は、その次に光源 1に近いダイクロイツクミラー 3bで緑色領域の光のみが反射され、その他の波長領域の光は透過される。そして、 上記ダイクロイツクミラー 3bで反射された緑色領域の光は、 2次元画像形成部 5bに 照射される。さらに、上記ダイクロイツクミラー 3bを透過した光は、ダイクロイツクミラー 3cで青色領域の光のみが反射され、該反射された青色領域の光は、ミラー 4bを経て 2次元画像形成部 5cに照射される。その後、各 2次元画像形成部 5a— 5cを透過した 光は、ダイクロイツクプリズム 6で再び合波され、上記 2次元画像形成部 5a— 5cにお いて形成された 2次元画像を 1対 1に投影する拡大投影部 7により出射光 LAとして装 置 10外へ出射され、装置外スクリーン (図示せず)上に拡大投影される。
[0054] 次に、当該 2次元画像形成装置 10が有する照明機能について述べる。
[0055] 図 1(b)においては、回転機構 11により、光源 1からの光出射方向が切り替えられ、 出射光 LBが当該装置 10より出力される。この出射光 LBは、光源であるハロゲンラン プから直接出射された光であり、例えば、数 100Wクラスの高出力白色光である。
[0056] このようにして、光源 1からの光出射方向を切り替えることにより、当該 2次元画像形 成装置 10は、 2次元画像の拡大表示機能とは異なる、照明装置としての機能を発揮 することとなる。
[0057] 一般に、 2次元画像形成装置に用いられている光源は、数 100Wクラスの高出力白 色光源であるので、照明装置として利用することは容易であり、その利便性も高い。こ の結果、当該 2次元画像形成装置 10をメイン照明、あるいは間接照明として広く使用 すること力 S可能とレ、える。また、現在のごく一般的なプロジェクシヨンタイプの 2次元画 像形成装置の使用方法が、ホームシアターに代表されるように室内の照明を落として 大画面映像を楽しむとレ、つたものであることを考えると、プロジヱクシヨンタイプの 2次 元画像形成装置 10を、図 1(a)に示すように 2次元画像を拡大投影表示装置として使 用しながら、図 1(b)に示すように照明装置としても使用する、ということは考えにくい。 このこと力ら、 2次元画像形成装置 10が、 2次元画像を拡大表示する機能に加えて、 照明機能を持つことは、有用な付加機能を有していると言え、当該 2次元画像形成 装置 10の使用者にとってのメリットは大きいものである。
[0058] 以上のように、本実施の形態 1によれば、当該装置 10において、光源 1を、その光 出射方向が変化するよう回転させる回転機構 1 1を備えたので、 2次元画像形成装置 の光源からの出射光を照明光として取り出すことが可能となる。これにより、 2次元画 像形成装置を、低コストで照明装置を兼ねたものとでき、 2次元画像形成装置 10の 利用範囲を大幅に拡大させることができる。
[0059] なお、本実施の形態 1においては、光路切り替え部は、光源 1を、該光源からの光 出射方向が切り替わるよう回転させる回転機構 11である場合を例に挙げて説明した が、光路切り替え部はこれに限定されるものではなぐ例えば光源 1を、その出射光 の方向が切り替わるよう移動させるものでもよぐこの場合も同様の効果が達成できる
[0060] さらに、上記光路切り替え部は、光源 1自体を回転させたり移動させたりするもので はなぐ光源からの出射光を光出射方向が切り替わるよう反射するものでもよい。
[0061] (実施の形態 2)
以下、本実施の形態 2では、光路切り替え部を、光源からの出射光を反射する位置 と、該出射光を反射しない位置との間を移動するよう設けられた可動ミラーと、該可動 ミラーを移動させる移動機構とで構成した 2次元画像形成装置について説明する。
[0062] 図 2は、本発明の実施の形態 2にかかる 2次元画像形成装置の構成の一例を示す 図であり、図 (a)は光源から出射される光を 2次元画像表示に使用する状態を示し、図 (b)は光源出射光を照明光として使用する状態を示す。
[0063] 図 2において、 20は本実施の形態 2の 2次元画像形成装置、 21はハロゲンランプ 力 なる光源、 2は光インテグレータ光学系、 3a 3cはそれぞれ赤、緑、青の波長領 域の光のみを反射する機能を有するダイクロイツクミラー、 4a, 4bはミラー、 5a 5c はいずれも 2次元空間光変調デバイスからなる 2次元画像形成部、 6は上記各 2次元 画像形成部 5a 5cで変調された光を合波するダイクロイツクプリズム、 7は組レンズ から構成される拡大投影部、 22は可動ミラー、 23は可動ミラーをユーザ操作により移 動させる移動機構である。
[0064] 上述したように、本実施の形態 2では、可動ミラー 22及び移動機構 23が光出射方 向を切り替える光路切り替え部を構成し、該可動ミラー 22を、移動機構 23により、光 源 21と 2次元画像形成部 5a— 5cとを結ぶ光路上の位置(図 2(b)に示す位置)と、同 光路上外の位置(図 2(a)に示す位置)との間で移動させることで、光源 21から出射さ れる光の方向を切り替えることが可能となる。
[0065] 上記可動ミラー 22の移動機構 23は、例えば、図 2に示すように、設置台 23aと、操 作レバー 23bと、これらをつなぐリンク機構 23cとからなる。設置台 23aに可動ミラー 2 2を設置し、該設置台を、装置 20外部からの力学的手法、例えば、装置 20側面に設 けられたレバー 23bを使用者が操作する方法等、により、該可動ミラー 22を図 2(a)の 位置から図 2(b)の位置へ、あるいは図 2(b)の位置から図 2(a)の位置へ移動させること で、容易に光源 1からの光出射方向を切り替えることが可能である。また、可動ミラー 22の移動機構 23は上述した構成に限るものではなぐ上記設置台 23aを内部にモ 一ター等を内蔵したものとし、モータ等の動力により、上記設置台 23aを移動させて、 上記光源 1からの光出射方向を切り替えることも可能である。
[0066] 以下、本構成における 2次元画像形成装置 20の機能と効果について説明する。
[0067] まず、 2次元画像形成装置 20が有する、 2次元画像の拡大表示機能について述べ る。
[0068] 上述した実施の形態 1と同様、図 2(a)において、可動ミラー 22が光源 21と 2次元画 像形成部 5a— 5cとを結ぶ光路上でない位置に配置されている場合(図 2(a)に示す 位置)、光源 21から出射された光は、光インテグレータ光学系 2により面内光強度分 布の均一化がなされる。ここで、光インテグレータ光学系 2と、各 2次元画像形成部 5a 一 5cとの距離は、上記 2次元画像形成部 5a 5cの各面上で面内光強度分布がほ ぼ一様になるように最適化されている。
[0069] また、上記光インテグレータ光学系 2と、 2次元画像形成部 5a— 5cとの間の光路上 には、光源 21から出射された白色光を R、 G、 Bそれぞれの波長領域の光にフィルタ V [0070] ングするためのダイクロイツクミラー 3a, 3b, 3cが配置されている。例えば、最も光源 2 1に近レ、位置に配置されたダイクロイツクミラー 3aでは、赤色領域の光のみが反射さ れ、その他の波長領域の光は透過される。そして、該ダイク口イツクミラー 3aで反射さ れた赤色領域の光は、ミラー 4aを経て 2次元画像形成部 5aに照射される。上記ダイ クロイツクミラー 3aを透過した光は、その次に光源 21に近いダイクロイツクミラー 3bで 緑色領域の光のみが反射され、その他の波長領域の光は透過される。そして、上記 ダイクロイツクミラー 3bで反射された緑色領域の光は、 2次元画像形成部 5bに照射さ れる。さらに、上記ダイクロイツクミラー 3bを透過した光は、ダイクロイツクミラー 3cで青 色領域の光のみが反射され、該反射された青色領域の光は、ミラー 4bを経て 2次元 画像形成部 5cに照射される。その後、各 2次元画像形成部 5a— 5cを透過した光は、 ダイクロイツクプリズム 6で合波され、上記 2次元画像形成部 5a 5cにおいて形成さ れた 2次元画像を 1対 1に投影する拡大投影部 7により出射光 LAとして装置 20外へ 出射され、装置外スクリーン (図示せず)上に拡大投影される。
[0071] 次に、当該 2次元画像形成装置 20が有する照明機能について述べる。
[0072] 図 2(b)においては、可動ミラー 22を、該移動機構により、光源 21と 2次元画像形成 部 5a— 5cとを結ぶ光路上に位置するよう移動させた場合 (図 2(b)に示す位置)、光 源 21からの出射光は可動ミラー 22で反射され出射光 LCとして装置 20外に照射され る。本実施の形態 2では、上記可動ミラー 22が、光インテグレータ光学系 2を構成し ている 2組のレンズアレイの間に設置されているため、出射光 LCは、平行光ではなく 、光源 21であるハロゲンランプから出射された光力 S、上記光インテグレータ光学系 2 を構成する 1枚の光学部品(フライレンズアレイ)の通過光、すなわち、該 1枚のフライ レンズアレイを構成する各レンズより形成される 2次元ビーム列が重なった白色光とな る。このようにして、光源 21からの光出射方向を光路切り替え部 22により切り替えるこ とにより、当該 2次元画像形成装置 20は、 2次元画像の拡大表示機能とは異なる、照 明機能を発揮することになる。
[0073] 以上のように、本実施の形態 2によれば、 2次元画像形成装置 20において、光イン テグレータ光学系 2の光路上の位置と、その光路上以外の位置との間で移動可能な 可動ミラーと、該可動ミラーを移動させる移動機構とを備え、光源からの出射光の光 路を、 2次元画像を形成するための光学系を通る光路と、この光学系を通らない光路 とで切り替えるようにしたので、 2次元画像形成装置の光源からの出射光を照明光と して取り出すことが可能となる。これにより、 2次元画像形成装置を、低コストで照明装 置を兼ねたものとでき、 2次元画像形成装置 20の利用範囲を大幅に拡大させること ができる。
[0074] また、本実施の形態 2では、 2次元画像形成装置の光源からの出射光の光路を、 2 次元画像を形成するための光学系の光路上に可動ミラーを配置したり取り除いたりし て切り替えるので、 2次元画像を形成するための光学系の構成部品を移動させる必 要がない。このため、 2次元画像形成装置 20を構成する光学部品の光軸がずれる可 能性を低減して、光軸のずれによる画像の表示品質の劣化を抑えることができるとい う効果がある。
[0075] なお、本実施の形態 2では、可動ミラー 22を、光インテグレータ光学系 2を構成する 2つの光学部品(フライレンズアレイ)の間に挿入するようにした力 上記可動ミラー 2 2の挿入位置はこれに限るものではなぐ例えば光源 21と光インテグレータ光学系 2 との間や、光インテグレータ光学系 2とダイクロイツクミラー 3aとの間等に挿入するよう にしてもよい。
[0076] 但し、基本的に、プロジェクタ装置においてはコンパクト性の観点から、光インテグ レータ光学系 2から空間光変調器までの距離をできるだけ短くする必要がある。この ことを考慮すると、可動ミラー 22を、光インテグレータ光学系 2の後(2次元画像形成 部 5側)に挿入するようにするのは好ましくない。従って、上記可動ミラー 22は、光ィ ンテグレータ光学系 2の前、すなわち、図 2に示すように光インテグレータ光学系 2を 構成している 2組のレンズアレイの間力、、あるいは光源 21と光インテグレータ光学系 2 との間に揷入するようにすることが望ましレ、。
[0077] また、光源 21と光インテグレータ光学系 2との間に大きな距離が存在すると、光源 2 1からの出射光を効率よく光インテグレータ光学系 2へ入射させるために、該光インテ グレータ光学系 2の面積を大きくしたり、上記光インテグレータ光学系 2と可動ミラー 2 2との間に集束レンズを揷入したりする必要が生じ、装置全体の大型化、高コスト化に つながるおそれがある。従って、この点も考慮すると、可動ミラー 22は、図 2に示すよ うに、光インテグレータ光学系 2を構成している 2組のレンズアレイの間に挿入するよう にすることがより好ましぐこのようにすれば、装置 20をよりコンパクトに構成できる効 果が得られる。
[0078] (実施の形態 3)
一般的に、上述した 2次元画像形成装置の光源は、高輝度であること望ましぐそ のため、例えばハロゲンランプなどでは、発光部であるフィラメントを透明なガラス材 料で覆う構造となっている。従って、このような構造を有する光源を照明として用いた 場合、使用者が光源を直視する可能性もでてくるため、安全上問題がある。また特に 家庭内で使用するメイン照明あるいは間接照明としては、例えば蛍光灯のように広範 囲を照らす散乱された光が望ましい。そこで我々は、本実施の形態 3では、上述した ように 2次元画像形成装置を、安全上問題のない照明装置として広く使用可能にす る構成を提案する。
[0079] 本実施の形態 3では、上述したように 2次元画像形成装置を照明装置として広く使 用可能にするために、当該 2次元画像形成装置 30に拡散光学系を設ける場合つい て説明する。
[0080] 図 3は、本実施の形態 3にかかる 2次元画像形成装置の構成の一例を示す図であ る。
[0081] 図 3において、 30は本実施の形態 3の 2次元画像形成装置、 21はハロゲンランプ 力 なる光源、 2は光インテグレータ光学系、 3a, 3b, 3cはそれぞれ赤、緑、青の波 長領域の光のみを反射する機能を有するダイクロイツクミラー、 4a, 4bはミラー、 5a, 5b, 5cはいずれも 2次元空間光変調デバイスからなる 2次元画像形成部、 6は上記 各 2次元画像形成部 5a 5cで変調された光を合波するダイクロイツクプリズム、 7は 組レンズから構成される拡大投影部、 22は可動ミラー、 31は拡散光学系として機能 する拡散板である。ここで、拡散板 31は、例えばガラス板表面にランダムな凹凸を形 成することにより容易に作製できる。
[0082] 本実施の形態 3では、上記実施の形態 2と同様、可動ミラー 22及びその移動機構 が光出射方向を切り替える光路切り替え部を構成し、該可動ミラー 22を、移動機構 により、光源 21と 2次元画像形成部 5a 5cとを結ぶ光路上の位置(図 3の破線で示 した位置)と、同光路上外の位置(図 3の実線で示した位置)との間で移動させること により、当該装置 30の光源 21から出射される光の方向を切り替えることが可能となる 。そして、上記可動ミラー 22の移動機構は、上記実施の形態 2と同様、例えば可動ミ ラー 22を設置台等に固定し、該設置台を、装置 30外部からの力学的手法、例えば、 装置 30側面に設けられたレバーを使用者が操作する等、により、図 3中の実線で示 した位置から破線で示した位置へ、あるいは破線で示した位置から実線で示した位 置へ移動させるようにすることで、容易に達成できる。また、可動ミラーの移動機構は 、上記設置台内部にモーター等を内蔵し、電気的な入力により、該設置台を移動さ せるようにすることによつても実現可能である。
[0083] 以下、本構成における 2次元画像形成装置 30の機能と効果について説明する。
まず、 2次元画像形成装置 30が有する、 2次元画像の拡大表示機能について述べ る。
[0084] 上述した実施の形態と同様、図 3において、可動ミラー 22が、光源 21と 2次元画像 形成部 5a— 5cとを結ぶ光路上でない位置に配置されている場合(図 3の実線で示 す位置に配置されている場合)、光源 21から出射された光は、光インテグレータ光学 系 2により面内光強度分布の均一化がなされる。このとき、上記 2次元画像形成部 5a 一 5cの各面上で、面内光強度分布がほぼ一様になるように、光インテグレータ光学 系 2と、各 2次元画像形成部 5a— 5cとの距離は最適化されている。
[0085] また、光インテグレータ光学系 2と、各 2次元画像形成部 5a— 5cとの光路上には、 光源 21から出射された白色光を R、 G、 Bそれぞれの波長領域の光にフィルタリング するためのダイクロイツクミラー 3a— 3cが配置されている。例えば、最も光源 21に近 い位置に配置されたダイクロイツクミラー 3aでは、赤色領域の光のみが反射され、そ の他の波長領域の光は透過される。そして、該ダイク口イツクミラー 3aで反射された赤 色領域の光は、ミラー 4aを経て 2次元画像形成部 5aに照射される。上記ダイクロイツ クミラー 3aを透過した光は、次に光源 21に近いダイクロイツクミラー 3bで緑色領域の 光のみが反射され、その他の波長領域の光は透過される。そして、上記ダイクロイツ クミラー 3bで反射された緑色領域の光は、 2次元画像形成部 5bに照射される。さらに 、上記ダイクロイツクミラー 3bを透過した光は、ダイクロイツクミラー 3cで青色領域の光 のみが反射され、該反射された青色領域の光は、ミラー 4bを経て 2次元画像形成部 5cに照射される。その後、各 2次元画像形成部 5a— 5cを透過した光は、ダイクロイツ クプリズム 6で再び合波され、拡大投影部 7により出射光 LAとして装置 30外へ出射さ れ、装置外スクリーン (図示せず)上に拡大投影される。
[0086] 次に、当該 2次元画像形成装置 30が有する照明機能について述べる。
[0087] 上記可動ミラー 22が、該移動機構により、光源 21と 2次元画像形成部 5a— 5cとを 結ぶ光路上に配置された場合(図 3中の破線で示す位置に配置されている場合)、 光源 21からの出射光は可動ミラー 22で反射され、拡散板 31を介して出射光 LDとし て装置 30外に照射される。従って、この 2次元画像形成装置では、出射光 LDは散 乱光となり、高出力光源を扱う上での視覚への悪影響を大幅に低減できるという安全 上の利点がある。また、拡散板 31は、任意の拡散角度 (拡散の度合い)を設計'作製 することが可能であるため、用途に応じて照明の状態(例えば広がり角など)を変更 することも可能であるとレ、う効果がある。
[0088] 以上のように、本実施の形態 3によれば、 2次元画像形成装置 30において、光源 2 1からの出射光の光路を切り替える光路切り替え部 22と、照明光として当該装置 30 外に出射する光源光を拡散する拡散板 31とを備えたので、当該装置 30の光源から の出射光を散乱光にすることができ、これにより、 2次元画像形成装置の光源光を、 安全上も問題なぐ且つ広範囲を照らす照明光として利用することができる。この結 果、様々な用途に使用可能な照明光を出射することが可能な 2次元画像形成装置を 得ること力 Sできる。
[0089] また、本実施の形態 3では、上記可動ミラー 22を、光インテグレータ光学系 2を構成 している 2組のレンズアレイの間に配置しているので、当該装置 30をコンパクトにする こと力 Sできる。
[0090] なお、本実施の形態 3では、 2次元画像形成装置は、照明光として外部に出力する 光源の出射光を拡散する、拡散板からなる拡散光学系を有するものとしているが、 2 次元画像形成装置は、上記拡散光学系に代わる、照明光として外部に出力する光 源の出射光を発散光束光に変換する拡大光学系を有するものであってもよい。
[0091] また、本実施の形態 3では、装置 30側面に拡散板 31を設ける場合を例に挙げたが 、拡散板 31は実施の形態 3のものに限らず、例えば、図 4の 2次元画像形成装置 40 に示すように、拡散板 31は可動ミラー 42と一体化したものでもよぐ同様の効果が得 られる。
[0092] (実施の形態 4)
上述した各実施の形態では、 2次元画像形成装置に付加する新たな機能が主に照 明機能である場合について説明したが、新たに付加される機能は照明機能に限るも のではない。
[0093] 本実施の形態 4では、さらに別の例として、当該装置の外周面に、例えば液晶パネ ルなどの画像表示部を配置し、当該装置が、装置外部に設けたスクリーン上に 2次元 画像を拡大投影して表示する拡大投影表示機能と、装置に設けられた画像表示部 で画像表示を行う機能とを選択可能としたものについて説明する。
[0094] 図 5は、本実施の形態 4にかかる 2次元画像形成装置の構成の一例を示す図であ る。
[0095] 図 5において、 50は本実施の形態 4の 2次元画像形成装置、 21はハロゲンランプ 力 なる光源、 2は光インテグレータ光学系、 3a, 3b, 3cはそれぞれ赤、緑、青の波 長領域の光のみを反射する機能を有するダイクロイツクミラー、 4a, 4bはミラー、 5a, 5b, 5cはいずれも 2次元空間光変調デバイスからなる 2次元画像形成部、 6は上記 各 2次元画像形成部 5a— 5cで変調された光を合波するダイクロイツクプリズム、 7は 組レンズから構成される拡大投影部、 22は可動ミラー、 51は画像表示機能を有する 液晶パネルである。
[0096] 本実施の形態 4では、光源 21からの出射光の光路を切り替える光路切り替え部は 、可動ミラー 22と、該可動ミラー 22を移動させる移動機構とにより構成されており、該 可動ミラー 22を光源 21と 2次元画像形成部 5a 5cとを結ぶ光路上の位置(図 5中の 破線で示される位置)と、同光路上外の位置(図 5中の実線で示される位置)とのいず れかに位置するように移動させることで、当該装置 50の光源 21から出射される光の 方向を切り替えることが可能となる。ここで、移動機構は図示していないが、これは、 実施の形態 2の移動機構 23と同様なものである。
[0097] 上記可動ミラー 22は、上記実施の形態 2, 3とは異なり、光インテグレータ光学系 2 と、もっとも光源 21に近い位置に配置されたダイクロイツクミラー 3aとの間に挿入可能 に配置されている。また、ここでは、該可動ミラー 22が図 5中の実線で示すように上記 光路上外の位置に退避したときの光源 21から 2次元画像形成部 5aまでの光路長は 、可動ミラー 22が図 5中の破線で示すように上記光路上に挿入されたときの光源 21 力、ら液晶パネル 51までの光路長と等しくなつている。
[0098] 以下、本構成における 2次元画像形成装置 50の機能と効果について説明する。
まず、 2次元画像形成装置 50が有する、 2次元画像の拡大表示機能について述べ る。
[0099] 可動ミラー 22が、光源 21と 2次元画像形成部 5a 5cとを結ぶ光路上外の位置に 配置されている場合(図 5の実線で示す位置に配置されている場合)、光源 21から出 射された光は、光インテグレータ光学系 2により面内光強度分布の均一化がなされる 。ここで、光インテグレータ光学系 2と、各 2次元画像形成部 5a 5cとの距離は、上 記 2次元画像形成部 5a— 5cの各面上で面内光強度分布がほぼ一様になるように最 適化されている。
[0100] また、光インテグレータ光学系 2と、各 2次元画像形成部 5a— 5cとの間の光路上に は、光源 21から出射された白色光を R、 G、 Bそれぞれの波長領域の光にフィルタリ ングするためのダイクロイツクミラー 3a— 3cが配置されている。例えば、最も光源に近 い位置に配置されたダイクロイツクミラー 3aでは、赤色領域の光のみが反射され、そ の他の波長領域の光は透過される。そして、該ダイク口イツクミラー 3aで反射された赤 色領域の光は、ミラー 4aを経て 2次元画像形成部 5aに照射される。上記ダイクロイツ クミラー 3aを透過した光は、次に光源 21に近いダイクロイツクミラー 3bで緑色領域の 光のみが反射され、その他の波長領域の光は透過される。そして、上記ダイクロイツ クミラー 3bで反射された緑色領域の光は、 2次元画像形成部 5bに照射される。さらに 、上記ダイクロイツクミラー 3bを透過した光は、ダイクロイツクミラー 3cで青色領域の光 のみが反射され、該反射された青色領域の光は、ミラー 4bを経て 2次元画像形成部 5cに照射される。その後、各 2次元画像形成部 5a— 5cを透過した光は、ダイクロイツ クプリズム 6で再び合波され、拡大投影部 7により出射光 LEとして装置 50外へ出射さ れ、装置外スクリーン (図示せず)上に拡大投影される。 [0101] 次に、当該 2次元画像形成装置 50が有する、画像表示機能について述べる。
[0102] 上述した移動機構により可動ミラー 22が光源 21と 2次元画像形成部 5a— 5cとを結 ぶ光路上に配置された場合(図 5の破線で示す位置に配置された場合)、光源 21か らの出射光は可動ミラー 22で反射され、出射光 LEとして装置 50内部の自由空間を 伝搬する。このとき、上述したように、光源 21から液晶パネル 51までの光路長を、可 動ミラー 22が上記光路上外の位置に退避されたとき(可動ミラーが図 5中の実線で示 す位置に配置されたとき)の光源 21から 2次元画像形成部 5aまでの光路長とほぼ等 しくすることにより、液晶パネル 51面上において光強度分布は面内でほぼ均一となり 、光源 21からの出射光を液晶パネル 51のバックライトとして用レ、、画像表示を行うこ とができる。
[0103] 以上のように、本実施の形態 4によれば、 2次元画像を外部のスクリーン上に拡大 投影する 2次元画像形成装置 50において、画像表示可能な液晶パネル 51と、光源 力 の出射光の光路を切り替える光路切り替え部とを備え、光源 21からの出射光を 上記拡大投影を行うための光学系に導く光路と、光源 21からの出射光を上記液晶 パネルに導く光路とで光路の切り替えを行うようにしたので、当該装置 50に、装置外 部のスクリーン上に 2次元画像を拡大投影する拡大表示機能に加えて、液晶パネル 51上に画像を表示する画像表示機能を持たせることが可能となる。
[0104] さらに、上記可動ミラー 22を、光インテグレータ光学系 2とダイクロイツクミラー 3aとの 間で、且つ該可動ミラー 22が上記光路上に配置されたときの光源 21から液晶パネ ル 51までの光路長と、該可動ミラーが上記光路上外の位置に退避されたときの光源 21から 2次元画像形成部 5aまでの光路長とがほぼ等しくなるようにしたので、光源 2 1から出射される光をほとんど損失することなしに液晶パネル 51のバックライトとして 用いることができ、これにより、液晶パネル上での非常に明るく見やすい画像表示が 実現可能となる。
[0105] また、このとき例えば可動ミラー 22の反射面の形状を凸状にすることにより、可動ミ ラーに拡大光学系としての機能を持たせることができ、 2次元画像形成部 5aに比べ て遙かに大きなサイズの液晶パネル 51を均一照明することができるという利点も得ら れる。 [0106] (実施の形態 5)
上述した各実施の形態では、 2次元画像形成装置の光源が、光源として一般的な ハロゲンランプである場合を例に挙げて説明したが、 2次元画像形成装置の光源は、 これに限るものではなぐ例えば、赤色 (R)、緑色(G)、青色(B)の 3色をそれぞれ発 振する発光ダイオード (LED)や、レーザを用いたものでもよぐこの場合にも、上記 各実施の形態と同様の効果が得られる。
[0107] 本実施の形態 5では、光源が、赤色 (R)、緑色(G)、青色(B)の 3色をそれぞれ出 射するレーザである場合を説明する。
[0108] 図 6は、本実施の形態 5にかかる 2次元画像形成装置 60の構成の一例を示す図で ある。
[0109] 図 6において、 60は本実施の形態 5の 2次元画像形成装置、 61a, 61b, 61cはそ れぞれ赤色(R)、緑色(G)、青色(B)の 3色をそれぞれ出射するレーザ、 63a, 63b, 63cはそれぞれ赤色、緑色、青色領域の光を反射するダイクロイツクミラー、 2は光ィ ンテグレータ光学系、 5は 2次元空間光変調デバイスからなる 2次元画像形成部、 7 は組レンズ力 構成される拡大投影部、 22は光源 61a— 61cから出射された光の方 向を切り替える可動ミラー、 31は拡散光学系として機能する拡散板である。ここで、 拡散板 31は、例えばガラス板表面にランダムな凹凸を形成することにより容易に作製 できる。
[0110] この実施の形態では、可動ミラー 22とこれを移動させる移動機構(図示せず)とによ り、光源からの出射光の光路を切り替える光路切り替え部が構成されており、移動機 構は実施の形態 2のものと同様なものである。従って、上述した実施の形態と同様、 移動機構により、可動ミラー 22を、光源 61a— 61cと 2次元画像形成部 5とを結ぶ光 路上の位置(図 6中に破線で示される位置)と、同光路上外の位置(図 6中に実線で 示される位置)との間で移動させることで、当該装置 60の光源 21から出射される光の 方向を切り替えることが可能となる。
[0111] 以下、本構成における 2次元画像形成装置 60の機能と効果について説明する。
まず、 2次元画像形成装置 60が有する、 2次元画像の拡大表示機能について述べ る。 [0112] 図 6において、可動ミラー 22が光源 61a— 61cと 2次元画像形成部 5とを結ぶ光路 上外の位置に配置されている場合(図 6中に実線で示される位置)、光源である赤色 レーザ 61a、緑色レーザ 61b、青色レーザ 61cからの出射光はそれぞれダイクロイツ クミラー 63a 63cにより同一光軸となるように反射され、光インテグレータ光学系 2に 入射される。光インテグレータ光学系 2を透過した光は、 2次元画像形成部 5上で均 一な面内強度分布を有する光となり、 2次元画像形成部 5を照明する。さらに該 2次 元画像形成部 5を透過した光は、強度分布情報を有し、拡大投影部 7により出射光 L Fとして装置 60外に出射され、装置外スクリーン(図示せず)に拡大投影される。この とき、赤色レーザ 61a、緑色レーザ 61b、青色レーザ 61cの出射タイミング、及び出射 時間を調整して、 2次元画像形成部 5上への各色の光による照射を時分割で行うこと により、単一の 2次元画像形成部 5によって、フルカラーの 2次元画像形成が可能と なる。例えば、一秒間に 60フレームで 2次元画像を形成する場合には、各色 1/180 秒ずつの照射を繰り返すことで、上記のフルカラー画像形成が可能になる。
[0113] 次に、当該 2次元画像形成装置 60が有する照明機能について述べる。
[0114] 図 6において、移動機構により可動ミラー 22が光源 61a— 61cと 2次元画像形成部 5とを結ぶ光路上に配置された場合(図 6中に破線で示される位置)、該光源 61a— 6 lcからの出射光は、可動ミラー 22で反射され、拡散板 31を介して出射光 LGとして 装置 60外に照射される。この出射光 LGは、拡散板 31を透過することで光源 61a— 6 lcから出射される光の散乱光となり、レーザ光源を扱う上での視覚への悪影響を大 幅に低減できるという安全上の利点を確保できる。また、拡散板 31は、任意の拡散角 度 (拡散の度合い)を設計 ·作製することが可能であるため、用途に応じて照明の状 態(例えば広がり角など)を変更することも可能であるという効果がある。
[0115] 本実施の形態 5によれば、 2次元画像形成装置において、光源として、レーザを用 いるようにしたので、上述したハロゲンランプ等の白色光源を光源として用いる場合 に比べて、 2次元画像形成部 5等の部品点数を少なくすることができ、当該 2次元画 像形成装置の小型化やコストの大幅な低減が可能となる。
[0116] なお、図 6に示すように、 2次元画像形成部 5を、赤、緑、青のレーザ光源 61a 61 cから出射された光で照明して 2次元画像の表示を行うのではなぐ図 7に示すよう、 赤、緑、青のレーザ光源 61a— 61cから出射された光を、ポリゴンミラー 71に入射し、 該ポリゴンミラー 71において高速回転により適当な広がりを持った 1次元の領域に連 続的に反射し、該ポリゴンミラー 71によって反射された線状の光を、ガルバノミラー 7 2で 2次元領域に反射投影することで、 2次元画像形成を行うようにしてもよい。
[0117] 具体的に述べると、図 7において、 70は、ポリゴンミラー 71を用いた 2次元画像形成 装置であり、可動ミラー 22が、光源 61a 61cとポリゴンミラー 71とを結ぶ光路上外 の位置に配置されている場合(図 7中の実線で示される位置)、光源である赤色レー ザ 61a、緑色レーザ 61b、青色レーザ 61cからの出射光は、それぞれダイクロイツクミ ラー 63a— 63cにより同一光軸となるように反射され、ポリゴンミラー 71に入射される。 ポリゴンミラー 71は各面がミラーである正多面体構造を有し、高速回転させることによ りミラー面に入射された光を 1次元方向にスキャンすることができる。よって、例えばレ 一ザ光源 61a 61cでの強度変調により、 1次元画像を得ることができる。また、ガル バノミラー 72は電気的にミラー面の角度を制御することができるため、入射された光 を上記ポリゴンミラー 71のスキャン方向と独立な方向に 1次元スキャンすることが可能 である。従って、ポリゴンミラー 71のスキャン方向と、ガルバノミラー 72のスキャン方向 とが垂直な関係になるように配置することにより、 2次元画像を容易に形成することが 可能である。このようにして得られた 2次元画像は、拡大投影部 7により出射光 LFとし て装置 70外部に出射され、装置外スクリーン (図示せず)に拡大投影される。
[0118] また、図 7に示すように、移動機構により、可動ミラー 22が光源 61a— 61cとポリゴン ミラー 71とを結ぶ光路上に配置された場合(図 7中の破線で示される位置)、光源 61 a— 61cからの出射光は可動ミラー 22で反射され、拡散板 31を介して出射光 LGとし て装置 70外に照射される。
[0119] なお、本実施の形態 5では、光源としてレーザを用いた場合について説明してきた が、赤、緑、青、各色の LEDを光源として用いてもよぐこの場合においても同様の効 果がある。
[0120] 上述したレーザや LEDは、小型で高出力なデバイスが開発されており、また特にレ 一ザは出射光の指向性が高いため、光源としてレーザを用いれば、 2次元画像形成 装置の各構成部品のサイズをさらに小さくすることが可能となり、この結果、当該装置 を、非常に小型で可搬性に優れた大画面プロジヱクシヨン装置として、様々なシーン での利用が期待できる。
[0121] また、 LEDやレーザは投入電力に対する発光効率がランプよりも高いので、ランプ と同等の輝度を確保する 2次元画像形成装置を実現するときに、低消費電力化が可 能であるという利点もある。また特に、レーザ光源は単色性が高い点と、ランプ出力で は得られない波長帯の光を発生できる点とに特長があるため、これらの特性を利用 することにより、例えば人間の目で認識できる色範囲(例えば色度図で表される色範 囲)のかなりの領域をカバーすることができる。従って、本実施の形態 5のようにレー ザ光源を用いれば、ランプ光源からなる 2次元画像形成装置に比べ、格段に高い色 再現性が得られるという利点も有している。
[0122] また、光源 61a 61cからの出射光を照明光として用いる場合にも、本実施の形態
5に示すように光源としてレーザを用いれば、様々な色調を任意に選択することがで きるという利点が得られる。例えば白色光として昼白色、昼光色、白色、電球色など 現在一般的に使用されている蛍光灯色の全てを出力することができることに加え、色 照明も容易に実現可能である。
[0123] また、本実施の形態 5では、出射光 LGの光路上に、拡散光学系として拡散板 31を 配置しているので、光源 61a— 61cから出射される光を散乱光に変換し、視覚への悪 影響を大幅に低減できるという安全上の利点を確保することができる。
[0124] なお、本実施の形態 5では、装置 60の外周部に拡散板 31を設けたが、上記実施 の形態 3で図 5を用いて示したように、可動ミラー 22と拡散板 31とを一体化させたも のを用いてもよぐこの場合も同様の効果が得られる。
[0125] また、上記実施の形態 4で図 5を用いて説明したように、出射光 LGの光路上である
2次元画像形成装置 60の外周面に、例えば液晶パネルなどの画像表示部を配置す れば、光源 61a— 61cからの出射光を液晶パネルのバックライトとして用レ、、画像表 示を行うことができる。このような構成による利点は、光源から出射される光をほとんど 損失することなしでバックライトとして用いることにあり、これにより、非常に明るく見や すい画像表示が可能である。また、このとき例えば可動ミラー 22の反射面の形状を 凸状にすることにより拡大光学系としての機能を持たせることができ、任意のサイズの 液晶パネルに対して、均一照明することができるという利点も有している。
[0126] さらに、上記各実施の形態 2— 5においては、光路切り替え部を可動ミラーと、これ を移動させる移動機構とで構成し、光路切り替え部により、光源から出射される光の 光路を切り替えることで、該光源からの出射光を、 2次元画像の表示に使用するか、 あるいは照明光あるいは液晶パネルのバックライトとして使用するかを選択することが 可能であることを説明したが、上記光路切り替え部において光源からの出射光路を 切り替えるのではなぐ光路を分岐することで、その一方を光源からの出射光を、 2次 元画像の拡大投影表示に使用すると同時に、その他方を照明光あるいは液晶パネ ルのバックライトとして使用するようにすることも可能である。
[0127] (実施の形態 6)
図 8は、上述したような構成を有する、本発明の実施の形態 6にかかる 2次元画像 形成装置の構成の一例を示す図である。
[0128] 図 8において、 80は本実施の形態 6の 2次元画像形成装置、 21はハロゲンランプ 力 なる光源、 2は光インテグレータ光学系、 3a— 3cはそれぞれ赤、緑、青の波長領 域の光のみを反射する機能を有するダイクロイツクミラー、 4a, 4bはミラー、 5a— 5c はいずれも 2次元空間光変調デバイスからなる 2次元画像形成部、 6は上記各 2次元 画像形成部 5a— 5cで変調された光を合波するダイクロイツクプリズム、 7は組レンズ から構成される拡大投影部、 82はハーフミラーである。
[0129] そして、この実施の形態では、ハーフミラー 82は光路上に固定されており、上記光 源 21からの出射光を、該ハーフミラー 82を透過する光と、反射される光との 2つに分 岐することで、当該装置 80の光源 21から出射される光を分岐する光路分岐部となつ ている。
[0130] 以下、本構成における 2次元画像形成装置 80の機能と効果について説明する。
[0131] まず、光源 21から出射された光は、光インテグレータ光学系 2により面内光強度分 布の均一化がなされる。ここで、光インテグレータ光学系 2と、各 2次元画像形成部 5a 一 5cとの距離は、上記 2次元画像形成部 5a 5cの各面上で面内光強度分布がほ ぼ一様になるように最適化されている。
[0132] 上記光インテグレータ光学系 2の一方のレンズアレイから出射された光は、ハーフミ ラー 82により、出射光 L1と出射光 L2とに分岐される。そして、出射光 L2は装置 80外 部に出射される。この出射光 L2は例えば、手元灯や間接照明として使用することが 可能となる。
[0133] 一方、上記ハーフミラー 82にて分岐されたもう一方の出射光 L1は、まず最も光源 2 1に近レ、位置に配置されたダイクロイツクミラー 3aで、赤色領域の光のみが反射され 、その他の波長領域の光は透過される。そして、該ダイク口イツクミラー 3aで反射され た赤色領域の光は、ミラー 4aを経て 2次元画像形成部 5aに照射される。上記ダイク口 イツクミラー 3aを透過した光は、その次に光源 21に近いダイクロイツクミラー 3bで緑色 領域の光のみが反射され、その他の波長領域の光は透過される。そして、上記ダイク 口イツクミラー 3bで反射された緑色領域の光は、 2次元画像形成部 5bに照射される。 さらに、上記ダイクロイツクミラー 3bを透過した光は、ダイクロイツクミラー 3cで青色領 域の光のみが反射され、該反射された青色領域の光は、ミラー 4bを経て 2次元画像 形成部 5cに照射される。その後、各 2次元画像形成部 5a— 5cを透過した光は、ダイ クロイツクプリズム 6で合波され、上記 2次元画像形成部 5a— 5cにおいて形成された 2次元画像を 1対 1に投影する拡大投影部 7により出射光 Laとして装置 80外へ出射 され、装置外スクリーン (図示せず)上に拡大投影される。
[0134] 以上のように、本実施の形態 6によれば、 2次元画像を外部のスクリーン上に拡大 投影する 2次元画像形成装置 80において、光源出射光を 2つの光路に分岐する光 路分岐部を備えたので、光源 21からの出射光を、 2次元画像の拡大投影表示に使 用すると同時に、照明光としても使用することが可能となる。
[0135] また、ハーフミラー 82の透過率を、装置外部より任意に調整可能にしておけば、 2 次元画像の投影表示と同時に、照明光として使用者が必要とする光量を簡単に取り 出すことができる効果がある。
[0136] また、本実施の形態 6によれば、上記ハーフミラー 82を、光インテグレータ光学系 2 を構成する 2組のレンズアレイの間に設置した力 S、ハーフミラーの設置位置はこれに 限るものではない。例えば、光路分岐部であるハーフミラーを、 2次元画像形成部と 上記拡大投影部との間に設置してもよい。但し、本実施の形態 6のように、ハーフミラ 一 82を 2組のレンズアレイの間に設置すれば、 2次元画像形成装置 80をよりコンパク トにすることが可能となる。
[0137] なお、本実施の形態 6では、光源がハロゲンランプである場合を例に挙げた力 光 源はレーザや LEDであってもよぐ同様の効果が得られる。
[0138] また、上記 2次元画像形成装置 80を、その外側面に配置された、画面表示部であ る液晶パネルを有するものとするすれば、ハーフミラー 82で分岐された、光源からの 出射光 L2を、上記液晶パネルのバックライトとして使用することもできる。
[0139] (実施の形態 7)
上述した実施の形態 2 4では、光路切り替え部を、光源と 2次元画像形成部との 間に配置し、光源力 出射される光を、 2次元画像の表示以外の用途に利用可能と したものを示したが、本実施の形態 7では、光源からの出射光の光路を、拡大投影部 を含む光路と、拡大投影部を含まない光路との間で切り替える光路切り替え部を備 えた 2次元画像形成装置について説明する。
[0140] 図 9は、本発明の実施の形態 7にかかる 2次元画像形成装置の構成の一例を示す 図である。
[0141] 図 9において、 90は実施の形態 7の 2次元画像形成装置、 61a, 61b, 61cはそれ ぞれ赤色(R)、緑色(G)、青色(B)の 3色をそれぞれ出射するレーザ、 63a, 63b, 6 3cはそれぞれ赤色、緑色、青色領域の光を反射するダイクロイツクミラー、 2は光イン テグレータ光学系、 5は 2次元空間光変調デバイスからなる 2次元画像形成部、 97は 、組レンズ力 構成される移動可能な拡大投影部である。ここで、拡大投影部 97は、 図示しない移動機構により、光源からの出射光の光路上の位置と、光源からの出射 光の光路上外の位置との間で移動するものである。ここで、移動機構は、実施の形態 2の移動機構 23と同様な構成となっている。
[0142] 具体的には、上記拡大投影部 97は、設置台等に固定され、該設置台を、当該装 置 90外部からの力学的手法、例えば、装置 90側面に設けられたレバーを使用者が 操作する等、により、図 9の実線に示される位置から破線で示される位置に、あるいは 破線で示される位置から実線で示される位置に移動するものである。また、上記移動 機構は、上記のように手動のものに限らず、例えば、設置台 11内部にモーター等を 内蔵し、電気的な入力により、上記設置台を移動させるようにしたものでもよい。 [0143] 以下、本構成における 2次元画像形成装置 90の機能と効果について説明する。 まず、 2次元画像形成装置 90が有する、 2次元画像の拡大表示機能について述べ る。
[0144] 図 9において、拡大投影部 97が出射光路上に配置されている場合(図 9中の実線 で示された位置)、光源である赤色レーザ 61a、緑色レーザ 61b、青色レーザ 61cか らの出射光は、それぞれダイクロイツクミラー 63a 63cにより同一光軸となるように反 射され、光インテグレータ光学系 2に入射される。光インテグレータ光学系 2を透過し た光は、 2次元画像形成部 5上で均一な面内強度分布を有する光となり、該 2次元画 像形成部 5を照明する。さらに、 2次元画像形成部 5を透過した光は強度分布情報を 有し、拡大投影部 97により出射光 LHとして装置 90外に出射され、装置外スクリーン (図示せず)に拡大投影される。
[0145] 次に、当該 2次元画像形成装置 90が有する照明機能について述べる。
[0146] 図 9に示すように、移動機構により、拡大投影部 97が 2次元画像形成部 5からの出 射光路上外の位置(図 9中の破線で示された位置)に退避された場合、光源からの 出射光は拡大投影部 97を通過しない出射光 LIとして装置 90外に照射される。
[0147] この出射光 LIは、拡大投影部 97により拡大される前の 2次元画像であり、例えば、 この 2次元画像は、演出照明の用途に用いることが可能である。一般的な演出照明と して、例えば細かレ、粒子模様や水玉模様などの照明が用いられてレ、る力 従来では 演出照明は、光源からの光を遮る開口を用いたり、また大小複数の光源を組み合わ せて投影したりする方法により実現されている。従って、従来では、演出効果用の照 明光を得るために、大パワーの光源システムや複数の光源を制御するシステムが必 要であったため、該演出照明装置は、そのサイズが大きぐ且つ高価格であった。
[0148] 本実施の形態 7では、光源からの出射光の光路を、拡大投影部を含む光路と、拡 大投影部を含まない光路との間で切り替える光路切り替え部を備えたので光路切り 替え部により、 2次元画像形成部 5からの出射光を、拡大投影部 97を透過させずに 装置 90外に出射させることができる。このため、 2次元画像形成部 5から出射された 光量を損失させることなぐ様々な模様を任意に表示可能な照明が可能となり、小規 模且つ低コストの演出照明装置を実現可能となる。 [0149] ここで、拡大投影部 97を透過し、拡大された出射光を演出効果用の照明光として 使用することも考えられる。しかし、 2次元画像形成部 5からの出射光が拡大投影部 9 7を透過すると、 2次元画像形成部 5において得られる 2次元画像が投影面に一対一 で拡大投影されるため、上記 2次元画像形成部 5として矩形のものを用いた場合には 、その拡大投影面も矩形となる。しかしながら、一般的に演出照明は、矩形出力の照 明として用レ、るケースは少なレ、。
[0150] 従って、本実施の形態 7に示すように、移動機構により、拡大投影部 97を光路上か ら退避させ、上記 2次元画像形成部 5から出射される、矩形の出力枠が気にならない 出射光を、演出照明光として用いることができる効果は大きい。
[0151] また、例えば、光源からの出射光を装置外部に出力する出射窓の形状を様々な形 に切り替えたり、該出射窓に拡散板やレンズを装着して出力光の加工を行ったりする ことも可能であるので、業務用としてのみではなぐ一般家庭での 2次元画像形成装 置の使用の幅も広げることができるという利点も有している。
産業上の利用可能性
[0152] 本発明は、 2次元画像形成装置において、その光源からの出射光を 2次元画像形 成と異なる用途に使用可能としたものであり、テレビ受像器、映像プロジェクタなどの 画像表示装置を、例えば照明装置としても利用可能なものであり、光源光を多目的 に利用できる有用なものである。

Claims

請求の範囲
[1] 光源と、
上記光源からの出射光により 2次元画像を形成する 2次元画像形成部と、 上記 2次元画像形成部により形成された 2次元画像を拡大投影する拡大投影部と、 上記光源からの出射光の光路を、上記 2次元画像形成部及び拡大投影部を含む 第 1の光路と、上記 2次元画像形成部及び拡大投影部の少なくとも一方を含まない 第 2の光路とのいずれかに切り替える光路切り替え部とを備えた、
ことを特徴とする 2次元画像形成装置。
[2] 請求項 1記載の 2次元画像形成装置において、
上記第 2の光路は、上記 2次元画像形成部を含まないものである、
ことを特徴とする 2次元画像形成装置。
[3] 請求項 1記載の 2次元画像形成装置において、
上記第 2の光路は、上記拡大投影部を含まないものである、
ことを特徴とする 2次元画像形成装置。
[4] 請求項 2に記載の 2次元画像形成装置において、
上記光路切り替え部は、上記光源を、該光源からの出射光の方向が変わるよう回 転させる回転機構である、
ことを特徴とする 2次元画像形成装置。
[5] 請求項 3に記載の 2次元画像形成装置において、
上記光路切り替え部は、上記拡大投影部を、上記光源からの出射光の光路上の位 置と、該光路以外の位置との間で移動させる移動機構である、
ことを特徴とする 2次元画像形成装置。
[6] 請求項 1に記載の 2次元画像形成装置にぉレ、て、
上記光路切り替え部は、
ミラーと、
該ミラーを、上記光源からの出射光の光路上の、該出射光を該ミラーが反射する位 置と、上記光源からの出射光の光路上以外の位置との間で移動させる移動機構とを 有する、 ことを特徴とする 2次元画像形成装置。
[7] 請求項 1記載の 2次元画像形成装置において、
上記第 2の光路は、拡大光学系あるいは拡散光学系を含み、
上記光源からの出射光の光路を、該出射光が該第 2の光路を伝搬するよう切り替え たとき、該出射光が上記拡大光学系あるいは拡散光学系を介して装置外部に照射さ れる、
ことを特徴とする 2次元画像形成装置。
[8] 請求項 1に記載の 2次元画像形成装置にぉレ、て、
上記第 2の光路は、液晶パネルを含み、
上記光源からの出射光の光路を、該出射光が該第 2の光路を伝搬するよう切り替え たとき、該出射光が上記液晶パネルのバックライトとして用いられる、
ことを特徴とする 2次元画像形成装置。
[9] 光源と、
上記光源からの出射光により 2次元画像を形成する 2次元画像形成部と、 上記 2次元画像形成部により形成された 2次元画像を拡大投影する拡大投影部と、 上記光源からの出射光の光路を、該出射光の一部分が上記 2次元画像形成部及 び拡大投影部を含む第 1の光路を、該出射光の他の部分が、上記 2次元画像形成 部及び拡大投影部の少なくとも一方を含まない第 2の光路を伝搬するよう分岐する光 路分岐部を備えた、
ことを特徴とする 2次元画像形成装置。
[10] 請求項 9に記載の 2次元画像形成装置において、
上記光路分岐部は、
上記光源と上記 2次元画像形成部との間に配置した、
ことを特徴とする 2次元画像形成装置。
[11] 請求項 9に記載の 2次元画像形成装置において、
上記光路分岐部を、上記 2次元画像形成部と上記拡大投影部との間に配置した、 ことを特徴とする 2次元画像形成装置。
[12] 請求項 10あるいは 11に記載の 2次元画像形成装置にぉレ、て、 上記光路分岐部は、ハーフミラーである、 ことを特徴とする 2次元画像形成装置。
[13] 請求項 1あるいは 9記載の 2次元画像形成装置において、 上記光源は、 LEDである、
ことを特徴とする 2次元画像形成装置。
[14] 請求項 1または 9記載の 2次元画像形成装置において、 上記光源は、レーザである、
ことを特徴とする 2次元画像形成装置。
PCT/JP2005/002804 2004-02-27 2005-02-22 2次元画像形成装置 WO2005083508A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006510420A JP4256423B2 (ja) 2004-02-27 2005-02-22 2次元画像形成装置
EP05719379A EP1724637A1 (en) 2004-02-27 2005-02-22 Two-dimensional image forming device
US10/590,928 US20080036977A1 (en) 2004-02-27 2005-02-22 Two-Dimensional Image Forming Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004054095 2004-02-27
JP2004-054095 2004-02-27

Publications (1)

Publication Number Publication Date
WO2005083508A1 true WO2005083508A1 (ja) 2005-09-09

Family

ID=34908781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002804 WO2005083508A1 (ja) 2004-02-27 2005-02-22 2次元画像形成装置

Country Status (5)

Country Link
US (1) US20080036977A1 (ja)
EP (1) EP1724637A1 (ja)
JP (1) JP4256423B2 (ja)
CN (1) CN100517055C (ja)
WO (1) WO2005083508A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025355A (ja) * 2005-07-19 2007-02-01 Matsushita Electric Works Ltd 空間演出照明装置
JP2009187926A (ja) * 2008-02-01 2009-08-20 Au Optronics Corp 電子装置及び電子装置の使用方法
JP2012512508A (ja) * 2008-12-18 2012-05-31 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 照明手段及び同照明手段を少なくとも1つ有するプロジェクタ
JP2014038240A (ja) * 2012-08-17 2014-02-27 Seiko Epson Corp 情報端末、携帯情報端末および映像表示システム
JP2014059514A (ja) * 2012-09-19 2014-04-03 Casio Comput Co Ltd 投影装置
JP2016184067A (ja) * 2015-03-26 2016-10-20 セイコーエプソン株式会社 プロジェクター
WO2018056196A1 (ja) * 2016-09-21 2018-03-29 日本電気株式会社 表示システム
WO2020100371A1 (ja) * 2018-11-13 2020-05-22 三菱重工業株式会社 光学システムおよび光学補正方法
WO2021014928A1 (ja) * 2019-07-23 2021-01-28 パナソニックIpマネジメント株式会社 投写型映像表示装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080105282A (ko) * 2007-05-30 2008-12-04 삼성전자주식회사 투사형 디스플레이 장치 및 그 오프빔 제어방법
JP2013225101A (ja) * 2012-03-22 2013-10-31 Ricoh Co Ltd プロジェクタ
JP6123249B2 (ja) * 2012-11-16 2017-05-10 セイコーエプソン株式会社 プロジェクターおよびその制御方法
CN103034037A (zh) * 2012-11-26 2013-04-10 海信集团有限公司 一种投影机
JP2014126723A (ja) * 2012-12-27 2014-07-07 Funai Electric Co Ltd 画像表示装置
JP6225532B2 (ja) * 2013-07-22 2017-11-08 セイコーエプソン株式会社 プロジェクター、および、プロジェクターの制御方法
CN104421747A (zh) * 2013-08-21 2015-03-18 鸿富锦精密工业(深圳)有限公司 光源装置
FR3011644B1 (fr) * 2013-10-03 2016-01-01 Commissariat Energie Atomique Dispositif d'affichage en retroprojection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862721A (ja) * 1995-07-25 1996-03-08 Casio Comput Co Ltd 液晶テレビ
JPH0983915A (ja) * 1995-09-13 1997-03-28 Nikon Corp 投写表示装置
JPH10142689A (ja) * 1996-11-08 1998-05-29 Nikon Corp 液晶プロジェクタ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960013009A (ko) * 1994-09-15 1996-04-20 이헌조 슬라이드 겸용 프로젝터
US5851060A (en) * 1995-09-13 1998-12-22 Nikon Corporation Projective display device
US7133078B2 (en) * 1997-05-21 2006-11-07 Olympus Optical Co., Ltd. Automatic focal point sensing device
US6587159B1 (en) * 1998-05-29 2003-07-01 Texas Instruments Incorporated Projector for digital cinema
US6422704B1 (en) * 1998-06-26 2002-07-23 Matsushita Electric Industrial Co., Ltd. Projector that automatically adjusts the projection parameters
US6364487B1 (en) * 1999-01-29 2002-04-02 Agilent Technologies, Inc. Solid state based illumination source for a projection display
US6636274B1 (en) * 1999-08-10 2003-10-21 Kabushiki Kaisha Toshiba Image display device
JP2001092419A (ja) * 1999-09-22 2001-04-06 Canon Inc 表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862721A (ja) * 1995-07-25 1996-03-08 Casio Comput Co Ltd 液晶テレビ
JPH0983915A (ja) * 1995-09-13 1997-03-28 Nikon Corp 投写表示装置
JPH10142689A (ja) * 1996-11-08 1998-05-29 Nikon Corp 液晶プロジェクタ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025355A (ja) * 2005-07-19 2007-02-01 Matsushita Electric Works Ltd 空間演出照明装置
JP2009187926A (ja) * 2008-02-01 2009-08-20 Au Optronics Corp 電子装置及び電子装置の使用方法
JP2012129213A (ja) * 2008-02-01 2012-07-05 Au Optronics Corp 電子装置
JP2012512508A (ja) * 2008-12-18 2012-05-31 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 照明手段及び同照明手段を少なくとも1つ有するプロジェクタ
JP2014038240A (ja) * 2012-08-17 2014-02-27 Seiko Epson Corp 情報端末、携帯情報端末および映像表示システム
JP2014059514A (ja) * 2012-09-19 2014-04-03 Casio Comput Co Ltd 投影装置
JP2016184067A (ja) * 2015-03-26 2016-10-20 セイコーエプソン株式会社 プロジェクター
WO2018056196A1 (ja) * 2016-09-21 2018-03-29 日本電気株式会社 表示システム
JPWO2018056196A1 (ja) * 2016-09-21 2019-06-24 日本電気株式会社 表示システム
US10788742B2 (en) 2016-09-21 2020-09-29 Nec Corporation Display system
WO2020100371A1 (ja) * 2018-11-13 2020-05-22 三菱重工業株式会社 光学システムおよび光学補正方法
JP2020080367A (ja) * 2018-11-13 2020-05-28 三菱重工業株式会社 光学システムおよび光学補正方法
JP7207648B2 (ja) 2018-11-13 2023-01-18 三菱重工業株式会社 光学システムおよび光学補正方法
US11802990B2 (en) 2018-11-13 2023-10-31 Mitsubishi Heavy Industries, Ltd. Optical system and optical compensation method
WO2021014928A1 (ja) * 2019-07-23 2021-01-28 パナソニックIpマネジメント株式会社 投写型映像表示装置

Also Published As

Publication number Publication date
US20080036977A1 (en) 2008-02-14
JP4256423B2 (ja) 2009-04-22
JPWO2005083508A1 (ja) 2007-08-09
EP1724637A1 (en) 2006-11-22
CN1926465A (zh) 2007-03-07
CN100517055C (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
JP4256423B2 (ja) 2次元画像形成装置
JP3788622B2 (ja) 光学インテグレータ、照明装置、及び投影型画像表示装置
KR101623004B1 (ko) 광원 유닛 및 프로젝터
US6918682B2 (en) Illumination system and projection system employing the same
JP6583664B2 (ja) 光源装置及び投影装置
US20090128781A1 (en) LED multiplexer and recycler and micro-projector incorporating the Same
JP2004184777A (ja) 光源装置及び投写型表示装置
JP2006023436A (ja) 照明装置及びプロジェクタ
WO2004031850A1 (ja) 投影表示装置
JP2011511324A (ja) 光モジュールデバイス
JP2004501398A (ja) 光ファイバ照明を利用した投影システム
EP2255242A1 (en) Light multiplexer and recycler, and micro-projector incorporating the same
JP2011133782A (ja) 光源ユニット及びプロジェクタ
JP2006337609A (ja) 照明装置、投写型映像表示装置
CN111123631B (zh) 照明装置以及投影型影像显示装置
CN216595871U (zh) 三色激光光源及激光投影设备
JP4183663B2 (ja) 照明装置及び投写型映像表示装置
WO2020021980A1 (ja) 照明装置、およびプロジェクタ
JP2019062463A (ja) 投影装置及び投影方法
JP2004126203A (ja) 光学エンジン
JP2018045111A (ja) 光源装置及び投影装置
JP4564757B2 (ja) 光源装置と投写型表示装置
KR20120105286A (ko) 휴대형 레이저 프로젝터
JP4168882B2 (ja) 照明装置及び投射型表示装置
JP4128180B2 (ja) 照明装置及び投写型映像表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510420

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580006127.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005719379

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10590928

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005719379

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10590928

Country of ref document: US