WO2005078939A1 - 送信電力制御装置 - Google Patents

送信電力制御装置 Download PDF

Info

Publication number
WO2005078939A1
WO2005078939A1 PCT/JP2005/001836 JP2005001836W WO2005078939A1 WO 2005078939 A1 WO2005078939 A1 WO 2005078939A1 JP 2005001836 W JP2005001836 W JP 2005001836W WO 2005078939 A1 WO2005078939 A1 WO 2005078939A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
gain
value
calculation means
correction value
Prior art date
Application number
PCT/JP2005/001836
Other languages
English (en)
French (fr)
Inventor
Hidenori Matsumoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/589,076 priority Critical patent/US7496375B2/en
Priority to CN2005800044422A priority patent/CN1918798B/zh
Publication of WO2005078939A1 publication Critical patent/WO2005078939A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/10Gain control characterised by the type of controlled element
    • H03G2201/103Gain control characterised by the type of controlled element being an amplifying element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/50Gain control characterized by the means of gain control
    • H03G2201/506Gain control characterized by the means of gain control by selecting one parallel amplifying path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/70Gain control characterized by the gain control parameter
    • H03G2201/702Gain control characterized by the gain control parameter being frequency, e.g. frequency deviations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/70Gain control characterized by the gain control parameter
    • H03G2201/708Gain control characterized by the gain control parameter being temperature
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control

Definitions

  • the present invention relates to a transmission power control apparatus, and is suitably applied to, for example, a wireless communication apparatus such as a base station apparatus and a communication terminal apparatus.
  • the wireless communication apparatus needs to increase transmission power to transmit so that the communication partner can receive, but even if it is increased too much, it causes interference to wireless communication apparatuses other than the communication partner. Therefore, by performing transmission power control, the transmission power is adjusted appropriately.
  • a transmission power control apparatus uses a variable amplification circuit that uses an analog control voltage as an input voltage.
  • the variable amplification circuit has gain characteristics proportional to the analog control voltage generated by the DZA comparator.
  • CD MA Code Division Multiple Access
  • FIG. 1 is a diagram showing gain characteristics of a variable amplification circuit with respect to an analog control voltage.
  • the control voltage DAC code
  • the conventional transmission power control device stores the DAC code for any transmission power in the memory, and reads the DAC code from the memory as needed to control the amplification factor, so that it is accurate. Transmission power can be obtained.
  • the transmission power resolution is determined by the resolution of the DZA converter and the control sensitivity characteristics of the variable amplifier circuit.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-177444
  • FIG. 20 shows the DAC code characteristics of the DZA converter with respect to transmission power when using a variable amplification circuit under analog control. For example, if the designated transmission power values are set at equal intervals, the DAC code that realizes this will not be at equal intervals. That is, it is necessary to obtain DAC codes one by one so as to obtain a predetermined designated transmission power value. At this time, since the linearity is bad, it is necessary to make adjustment for compensating for component variation for each predetermined transmission power.
  • An object of the present invention is to provide a transmission power control apparatus that reduces the number of steps required for adjustment of a transmission power control apparatus and performs high precision transmission power control in a wide dynamic range.
  • the transmission power control apparatus has first and second variable amplifier circuits that amplify input signals with different gain resolutions, and a correction value calculation unit that calculates a correction value that guarantees the accuracy of transmission power.
  • a transmission power designating means for designating transmission power to be output to the communication party based on a signal transmitted from the communication party; and a transmission power for calculating the transmission power by correcting the designated transmission power with the correction value.
  • a configuration comprising: calculation means; and setting value calculation means for calculating gain values to be set in the first and second variable amplifier circuits based on the transmission power calculated by the transmission power calculation means. take.
  • first and second variable amplifier circuits having different gain resolutions are prepared, and a correction value for guaranteeing transmission power accuracy is taken into consideration, and measurement of only one arbitrary transmission power is performed.
  • the overall gain characteristics can be made linear, and optimal gain values can be set for the first and second variable amplifier circuits.
  • the number of processes required can be reduced, and highly accurate transmission power control can be performed over a wide dynamic range.
  • the first variable amplifier circuit and the second variable amplifier circuit having different gain resolutions are prepared, and transmission power accuracy caused by environmental changes such as frequency characteristics and temperature characteristics is prepared.
  • transmission power control device By adjusting the transmission power control device by measuring only one point of the transmission power and adjusting the transmission power controller, taking into consideration the correction value for compensating for the deterioration of the signal and the correction value for compensating for the transmission power error. Since the optimum gain value can be set for the first and second variable amplifier circuits, the number of steps required for adjustment can be reduced, and high precision transmission power can be obtained over a wide dynamic range. Control can be performed.
  • FIG. 2 A figure showing the DAC code characteristics of DZA comparator with respect to transmission power when using a variable amplification circuit by analog control.
  • FIG. 3 A block diagram showing a configuration of a transmission power control apparatus according to Embodiment 1 of the present invention
  • FIG. 4 A diagram in which the correspondence between the first variable amplifier circuit setting gain and the first variable amplifier circuit gain is taped off.
  • FIG. 5 A diagram in which the correspondence between the second variable amplifier circuit setting gain and the second variable amplifier circuit gain is taped off.
  • FIG. 6 A diagram showing gain characteristics of the first variable amplifier circuit according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing gain characteristics of the second variable amplifier circuit in the first embodiment of the present invention.
  • FIG. 8 A diagram showing the configuration of a digital control variable amplification circuit by current control
  • FIG. 9 A diagram showing the configuration of a digitally controlled variable amplifier circuit by changing the number of stages of the amplifier circuit.
  • FIG. 11 A diagram showing a configuration in which a gain set value control unit, a first variable amplification circuit control unit, and a second variable amplification circuit control unit are connected by a serial interface.
  • FIG. 17 is a diagram showing the overall gain characteristic of the transmission power control apparatus according to Embodiment 1 of the present invention.
  • FIG. 18 is a diagram showing a configuration of a transmission power control apparatus according to Embodiment 2 of the present invention.
  • FIG. 19 A diagram showing the appearance of the I channel signal and the Q channel signal under control of the amplitude control unit.
  • FIG. 20 A diagram showing IZQ amplitude characteristics in the second embodiment of the present invention
  • FIG. 3 is a block diagram showing a configuration of a transmission power control apparatus according to Embodiment 1 of the present invention.
  • transmission power specification unit 101 acquires broadcast information transmitted from the other party of communication, and notifies error calculation unit 102 and transmission power calculation unit 107 of the transmission power specified by the broadcast information.
  • the error calculation unit 102 calculates an error between the transmission power notified from the transmission power specification unit 101 and the actual transmission power calculated by the actual transmission power calculation unit 129 described later, and calculates the calculated error. Output to the correction value calculation unit 106.
  • the environmental change information notification unit 103 notifies the correction value calculation unit 106 of these amounts of change.
  • the timing information generation unit 104 generates timing information for calculating a correction value, limits the amount of correction value which is the number of times for calculating the correction value, and manages the calculation period of the correction value. Thereby, for example, in the transmission power control of the CDMA system, the inter-slot correction value can be kept within the specified value.
  • the generated timing information is output to the correction value calculation unit 106.
  • Memory 105 stores a correction value that compensates for deterioration of transmission power accuracy due to component variation, and a correction value that compensates for deterioration of transmission power accuracy due to temperature characteristics and frequency characteristics. These correction values are output to the correction value calculation unit 106.
  • the correction value calculation unit 106 corrects the transmission power with high accuracy based on the information output from the error calculation unit 102, the environment change information notification unit 103, the timing information generation unit 104, and the memory 105. A value is calculated, and the calculated correction value is output to the transmission power calculation unit 107.
  • Transmission power calculation section 107 receives the designated power and correction value notified from transmission power designation section 101. Transmission power is calculated based on the correction value output from calculation unit 106, and the calculated transmission power is output to first set value calculation unit 108 and second set value calculation unit 109. Also, when there is feedback information from the second set value calculation unit 109, the feedback information is reflected in the calculation of the transmission power.
  • First set value calculation section 108 has a table shown in FIG. 4 and, based on the transmission power value output from transmission power calculation section 107, a first variable amplifier circuit 122 according to the table of FIG. The gain value is output to the gain setting value control unit 110.
  • Second set value calculation section 109 has a table shown in FIG. 5, and based on the transmission power value output from transmission power calculation section 107, a second variable amplifier circuit 123 according to the table of FIG. Output the gain value to gain setting value control section 110. Also, when the dynamic range of the second variable amplifier circuit 123 has reached the limit, a feedback signal is output to the transmission power calculation unit 107.
  • gain control can be performed within the dynamic range of the second variable amplification circuit, and the overall gain characteristics of the first variable amplification circuit and the second variable amplification circuit can be kept linear.
  • the gain set value control unit 110 obtains a gain code based on the gain set value output from the first set value calculation unit 108 and the second set value calculation unit 109, and the first gain code is calculated.
  • the variable amplification circuit control unit 111 and the second variable amplification circuit control unit 112 are controlled.
  • the first variable amplification circuit control unit 111 controls the first variable amplification circuit 122 according to the gain code output from the gain setting value control unit 110.
  • the second variable amplification circuit control unit 112 controls the second variable amplification circuit 123 in accordance with the gain code output from the gain setting value control unit 110.
  • Transmission data generation section 113 generates data to be transmitted to the communication partner, and outputs the generated data to IZQ separation section 116.
  • the amplitude control unit 114 outputs a control signal for controlling the amplitude of the IZQ signal to the IZQ separation unit 116.
  • EVM error vector amplitude
  • the DC value control unit 115 outputs a control signal for controlling the DC value of the IZQ signal to the IZQ separation unit 116.
  • EVM characteristics can be secured by reducing carrier admission.
  • the IZQ separation unit 116 transmits the transmission data output from the transmission data generation unit 113 to the I Separates the signal into Q and Q channel signals, and performs amplitude control and DC value control.
  • the I channel signal is output to mixer 119 and the Q channel signal is output to mixer 120.
  • the local oscillator 117 oscillates the carrier frequency, and the oscillation signal is multiplied by the mixer 119 to the I channel signal, while the phase shifter 118 is phase-shifted by 90 ° and the mixer 120 is multiplied by the Q channel signal.
  • the signals multiplied by the oscillation signals by the mixers 119 and 120 are combined by the combining circuit 121 and output to the first variable amplifier circuit 122 as a transmission output signal.
  • the first variable amplifier circuit 122 has the gain characteristics shown in FIG. 6, and can set the gain value for each ldB by digital control. Then, the transmission output signal output from the combining circuit 121 is amplified with a gain value according to the control of the first variable amplification circuit control unit 111, and the transmission output signal after amplification is output to the second variable amplification circuit 123.
  • the table of FIG. 4 included in the above-described first set value calculation unit 108 is a group of gain characteristics shown in FIG.
  • the second variable amplification circuit 123 has the gain characteristics shown in FIG. 7, and can set the gain value every 0.1 dB by digital control. Then, the transmission output signal output from the first variable amplification circuit 122 is amplified with a gain value under the control of the second variable amplification circuit control unit 112, and the transmission output signal after amplification is output to the band limiting filter 124. .
  • the table of FIG. 5 which the above-mentioned second set value calculation unit 109 has is a group of gain characteristics shown in FIG.
  • the first variable amplification circuit 122 and the second variable amplification circuit 123 have the configuration shown in FIG. 8 or FIG.
  • FIG. 8 shows the configuration of a digitally controlled variable amplifier circuit based on current control.
  • gain control based on the current value is performed by connecting a plurality of current sources 1 n and switches SW 1 to SW n in parallel to the variable amplification circuit.
  • switching is performed by digital control and the gain value changes.
  • FIG. 9 shows the configuration of a digitally controlled variable amplifier circuit by changing the number of stages of the amplifier circuit.
  • the n amplification circuits are connected in series, interlock switches are provided in the respective amplification circuits, and gain control is performed by switching the interlock switches to determine whether or not the signal for input to the amplification circuits is input.
  • switching of the interlock switch is performed by digital control, and the gain value changes.
  • the transmission output signal amplified by the second variable amplification circuit 123 is banded by the band limiting filter 124. It is band limited, power amplified by the power amplifier 125, and branched by the power bra 126. One of the branched transmission output signals is transmitted to the communication partner via the antenna 127, and the other is output to the transmission power measurement unit 128.
  • the transmission power measurement unit 128 is a detection diode or the like, measures transmission power, and outputs the measurement result to the actual transmission power calculation unit 129.
  • the actual transmission power calculation unit 129 calculates the transmission power of the signal actually transmitted from the transmission power measurement unit 128 measured by the transmission power measurement unit 128, and outputs the calculated actual transmission power to the error calculation unit 102. .
  • the detection voltage is uniformly low (for example, 25mV). — 44m V) 0 Detection voltage ⁇ et al.
  • the transmission power calculation unit 107 calculates the transmission power error calculated by the error calculation unit 102 as the correction value as long as the measurement accuracy of the actual transmission power is equal to or more than the predetermined transmission power (specified transmission power). Reflected in the calculation. On the other hand, if it is less than a predetermined transmission power (specified transmission power), the transmission power error is not reflected in the calculation of the correction value. This enables highly accurate transmission power control.
  • FIG. 11 is a diagram showing a configuration in which the gain setting value control unit 110, the first variable amplification circuit control unit 111, and the second variable amplification circuit control unit 112 are connected by a serial interface.
  • a data signal D1, a clock signal Cl, and a strobe signal S1 are output from the gain setting value control unit serial interface 801 to the first variable amplification circuit control unit serial interface 802.
  • the data signal D1, the clock signal C1, and the strobe signal S2 are output from the gain setting value control unit serial interface 801 to the second variable amplification circuit control unit serial interface 803.
  • the strobe signals S1 and S2 are signals for determining which of the first variable amplification circuit control unit serial interface 802 and the second variable amplification circuit control unit serial interface 803 the data is set.
  • strobe signals corresponding to each serial interface are prepared. However, as shown in FIG. 12, the strobe signal can be made common by adding a register address for determining which interface has set the data in the serial data.
  • first variable amplification circuit control unit 111 and the second variable amplification circuit control unit 112 are shared by one control unit, one serial interface format can be obtained as shown in FIG. .
  • first variable amplification circuit control unit 111 and the second variable amplification circuit control unit 112 are shared by one control unit, one serial interface format can be obtained as shown in FIG. .
  • the respective transmission power control timings are different, the respective It can control at the timing.
  • specified transmission power value is set to 56-24 dB
  • the setting value of the variable amplifier circuit for obtaining the specified transmission power value is based on FIG. 4 and FIG. It will be.
  • p of the variable amplification circuit setting value indicates an arbitrary gain code within the gain control range of the first variable amplification circuit 122.
  • q indicates an arbitrary gain code within the gain control range of the second variable amplification circuit 123.
  • p and q indicate the component variation correction values adjusted at the time of product shipment for a certain transmission power.
  • FIG. 15 is a diagram showing the relationship between the frequency and the correction value (frequency correction value).
  • fl 1 fl 2 is an arbitrary frequency determined in advance for obtaining a correction value
  • rl 1 r 12 is a frequency correction value corresponding to each of the frequency fl 1 f 12.
  • the frequency correction value can be calculated by performing linear approximation for the frequency between the determined frequencies. For example, when calculating the frequency correction value r for the frequency f between the frequency ⁇ and f 2, for example, it can be obtained by the following equation (1).
  • the relationship between the frequency and the frequency correction value is summarized in a table as shown in FIG. 16 and stored in the memory 105, and the calculation of the equation (1) is performed by the correction value calculation unit 106. Do. This enables high-speed and highly accurate transmission power control when there is a change in frequency.
  • the environment correction value are R, R
  • Equation (2) max indicates the maximum transmission power, and for example, in the case of the above-described W-CDMA system, it is 24 dBm in Power class 3. Also, x represents an arbitrary value smaller than max.
  • the above equation (2) is made up of the ldB resolution term and the 0. ldB resolution term, whereby the gain value can be set for each of the first variable amplification circuits 122 and 0. ldB that can set the gain value for each 1 dB.
  • Optimal gain values can be specified for each of the second variable amplification circuits 123 that can be set. That is, the gain value set in the first variable amplifier circuit 122 is p ⁇ (max ⁇ X) + r.
  • the gain value set in the second variable amplification circuit 123 is q + r.
  • the transmission power is measured at any one output level point, and p and q are obtained from the above equation (2).
  • An overall gain characteristic as shown in 17 can be obtained. That is, as shown in FIG. 17, the accuracy over the entire dynamic range is guaranteed according to the designated transmission power value. Further, since the frequency correction value and the temperature correction value are prepared in advance, even when the frequency or temperature changes, high-accuracy transmission power control can be realized only by updating the environment correction value r. The transmission power error can be similarly corrected.
  • a variable amplifier circuit of ldB resolution and a variable amplifier circuit of 0.1 ldB resolution are prepared, and are generated due to environmental changes such as frequency characteristics and temperature characteristics. Correction of the transmission power accuracy and a correction value to compensate for the transmission power error, and the measurement of only one transmission power point is performed to adjust the transmission power control device.
  • the gain characteristics can be made linear, and optimal gain values can be set for the two variable amplifier circuits, so the number of steps required for adjustment can be reduced, and a wide dynamic range and high accuracy can be achieved.
  • Transmission power control can be performed. In addition, power consumption can be reduced because DZA converter and analog control variable amplifier circuit are not used.
  • the first embodiment has described the case where two variable amplifier circuits having different resolutions are provided, but the second embodiment of the present invention describes the case where one variable amplifier circuit is provided.
  • FIG. 18 is a diagram showing a configuration of a transmission power control apparatus according to Embodiment 2 of the present invention.
  • FIG. 18 differs from FIG. 3 in that the gain setting value control unit 110 is changed to the gain setting value control unit 1501 and that the second variable amplification circuit control unit 112 and the second variable amplification circuit 123 are respectively deleted. is there.
  • Gain set value control unit 1501 obtains and obtains a gain code based on the gain set values output from first set value calculation unit 108 and second set value calculation unit (amplitude value calculation unit) 109.
  • the first variable amplification circuit control unit 111 and the amplitude control unit 114 are controlled by the gain code.
  • Amplitude control section 114 outputs a control signal for controlling the amplitude of the IZQ signal to IZQ separation section 116 according to the gain code outputted from gain setting value control section 1501.
  • FIG. 19 is a diagram showing an aspect of the I channel signal and the Q channel signal which are controlled by the amplitude control unit 114.
  • the maximum amplitude Y + 0.1 l ⁇ kZ2 dB, and the minimum amplitude Y ⁇ 0.1 l ⁇ kZ2 dB with respect to the reference amplitude Y, and the amplitude between the minimum amplitude and the maximum amplitude It shows that it can be controlled.
  • the second set value calculation unit 109 calculates a set value below the minimum amplitude or a set value exceeding the maximum amplitude, it outputs a feedback signal to the transmission power calculation unit 107.
  • the amplitude control of the IZQ signal is made within a predetermined range.
  • the error vector amplitude is degraded due to the change in the carrier leak amount determined by the ratio of the amplitude value of the 1 channel signal and the Q channel signal to the DC value, and distortion in the mixer caused by the amplitude change of the transmission signal.
  • An accompanying degradation of the adjacent channel leakage power ratio may occur.
  • the transmission power calculation unit 107 receives the feedback signal generated by the second set value calculation unit 109 when the amplitude value exceeding the predetermined amplitude range is calculated, the transmission power calculation unit 107 calculates the first set value calculation unit 108.
  • the second set value calculation unit 109 calculates the gain value again, the amplitudes of the I channel signal and the Q channel signal can be kept within a predetermined range, and the error of vector amplitude, adjacent channel It is possible to avoid the deterioration of the leakage power ratio.
  • I dB resolution is realized by the amplitude control of the IZQ signal, and by combining with the variable amplification circuit of I dB resolution, compared to the case where a plurality of variable amplification circuits are provided.
  • the circuit scale can be reduced.
  • first and second variable amplifier circuits that amplify input signals with different gain resolutions, and correction value calculation means for calculating a correction value that guarantees the accuracy of transmission power
  • Transmission power calculation means for specifying transmission power to be output to the communication party based on a signal transmitted from the communication party, and transmission for calculating the transmission power by correcting the designated transmission power with the correction value
  • a transmission power control apparatus comprising: power calculation means; and setting value calculation means for calculating gain values to be set in the first and second variable amplifier circuits based on the transmission power calculated by the transmission power calculation means. It is.
  • first and second variable amplifier circuits with different gain resolutions are prepared, and a correction value for guaranteeing transmission power accuracy is taken into consideration, and measurement of only one arbitrary transmission power is performed. Adjustment of the transmission power control device to make the overall gain characteristics linear. Since it is possible to set optimum gain values for the first and second variable amplifier circuits, it is possible to reduce the number of steps required for adjustment, and to control transmission power with a wide dynamic range and high accuracy. It can be performed.
  • a first variable amplification circuit for amplifying an input signal, an amplitude control means for performing amplitude control of an I channel signal and a Q channel signal, and a correction value for assuring the accuracy of transmission power.
  • the transmission power designation unit designates transmission power to be output to the communication partner based on the signal transmitted from the communication partner, and corrects the designated transmission power with the correction value.
  • transmission power calculation means for calculating transmission power; setting value calculation means for calculating a gain value to be set to the first variable amplification circuit based on the transmission power calculated by the transmission power calculation means; It is a transmission power control apparatus comprising: amplitude value calculation means for calculating an amplitude value to be set in the amplitude control means based on the corrected transmission power calculated by the transmission power calculation means.
  • the transmission power to be output to the communication partner is different in resolution from the first variable amplifier circuit, and the amplitude control means for controlling the amplitudes of the I channel signal and the Q channel signal have different gain values. And adjust the transmission power control device by measuring any one point of the transmission power with the correction value to guarantee the transmission power accuracy taken into account, and make the overall gain characteristics linear. Since it is possible to set optimal gain values for the first and second variable amplifier circuits, it is possible to reduce the number of steps required for adjustment, and to perform accurate transmission power control in a wide dynamic range. Can.
  • the correction value calculation means comprises storage means for storing an environmental characteristic correction value that compensates for deterioration in transmission power accuracy caused by frequency characteristics and temperature characteristics.
  • the transmission power control apparatus calculates a correction value after the environmental change using the environmental characteristic correction value stored in the storage unit.
  • high-speed and high-precision transmission power control can be performed by calculating the correction value after the environmental change using the environmental characteristic correction value stored in the storage unit. It can be performed.
  • the correction value calculation means is configured to transmit the transmission power designated by the transmission power designation means and the actual transmission power actually output to the communication partner.
  • Transmission power which comprises an error calculation means for calculating an error, and based on the transmission power designated by the transmission power designation means, determines whether or not the correction of the error is reflected in the calculation of the correction value. It is a control device.
  • the transmission power of the high area is strictly defined as the accuracy guarantee in the standard. Therefore, based on the transmission power designated by the transmission power designation unit, transmission is performed when the designated transmission power is high by determining whether the correction of the error is to be reflected in the calculation of the correction value. Since the measurement accuracy of power is high, the error correction is reflected, and when the specified transmission power is low, the measurement accuracy of transmission power is low, so that the error correction is not reflected, so that highly accurate transmission power control is possible. It can be performed.
  • the correction value calculation means comprises timing information generation means for generating timing information for calculating the correction value, and the timing information generation means is based on the timing information. It is a transmission power control apparatus that manages the correction value amount limit, which is the number of times the correction value is calculated, and the calculation period of the correction value.
  • the correction value amount limit which is the number of times the correction value is calculated, and the calculation period of the correction value based on the timing information, for example, in transmission power control of a CDMA system, etc.
  • the correction value can be calculated by keeping the inter-slot correction value amount within the specified value.
  • the transmission power calculation means generates the set value calculation means when a gain value outside the dynamic range of the second variable amplifier circuit is calculated.
  • a transmission power control apparatus which causes the set value calculation means to calculate the gain value again.
  • the transmission power calculation means when the gain value out of the dynamic range of the second variable amplifier circuit is calculated, the feedback signal generated by the second set value calculation means is received, and the first setting is performed.
  • the gain control can be performed within the dynamic range of the second variable amplification circuit by causing the value calculation means and the second set value calculation means to calculate the gain value again, and the first variable amplification circuit and the first variable amplification circuit can 2)
  • the overall gain characteristics of the variable amplification circuit can be kept linear.
  • the transmission power calculation means generates a feedback value generated by the amplitude value calculation means when an amplitude value exceeding a predetermined amplitude range is calculated. It is a transmission power control apparatus which receives the back signal and causes the set value calculation means and the amplitude value calculation means to calculate gain values again.
  • the error vector amplitude may be degraded due to the change of the amount, and the adjacent channel leakage power ratio may be degraded due to the distortion in the mixer caused by the amplitude change of the transmission signal
  • the amplitude value beyond the predetermined amplitude range is calculated.
  • the feedback signal generated by the amplitude value calculation means is received, and the first set value calculation means and the amplitude value calculation means recalculate the gain value to calculate the amplitudes of the I channel signal and the Q channel signal. It can be within a predetermined range, and the degradation of error vector amplitude and the degradation of adjacent channel leakage power ratio can be avoided.
  • a first variable amplifier circuit control means for controlling a gain value of the first variable amplifier circuit, and a gain value of the second variable amplifier circuit are controlled.
  • a gain code is determined based on the second variable amplification circuit control means and the gain value calculated by the set value calculation means, and the first variable amplification circuit control means and the second variable amplification circuit control are calculated using the calculated gain code.
  • a transmission power control apparatus comprising: gain setting value control means for independently controlling the means using a predetermined control format.
  • the first variable amplifier circuit and the second variable amplifier circuit control means can be obtained. It is composed of different circuits, and even when the transmission power control timings are different, they can be controlled at each timing.
  • variable amplification circuit control means for controlling the gain value of each of the first variable amplification circuit and the second variable amplification circuit, and calculation by the set value calculation means
  • a transmission power control apparatus comprising: gain set value control means for obtaining a gain code based on the obtained gain value and controlling the variable amplifier circuit control means using a predetermined control format according to the obtained gain code.
  • the first variable amplification circuit control means for controlling the gain value of the first variable amplification circuit, and the gain value calculated by the set value calculation means.
  • Transmission power comprising: gain set value control means for obtaining a gain code based on the obtained gain code and independently controlling the first variable amplification circuit control means and the amplitude control means using a predetermined control format It is a control device.
  • the first variable amplifier circuit and the amplitude control means are configured by different circuits. Even when transmission power control timings are different, control can be performed at each timing.
  • the transmission power control apparatus has the effect of reducing the number of steps required for adjustment and performing high-precision transmission power control in a wide dynamic range, and has the effect of being applied to a wireless communication apparatus. be able to.

Landscapes

  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Amplifiers (AREA)

Abstract

 送信電力制御装置の調整に要する工程数を削減し、広いダイナミックレンジで高精度な送信電力制御を行う送信電力制御装置。分解能が1dBの第1可変増幅回路(122)と分解能が0.1dBの第2可変増幅回路(123)とを備え、周波数特性及び温度特性といった環境の変化によって生じる送信電力精度の劣化を補償する補正値及び送信電力誤差を補償する補正値を補正値算出部(106)が算出し、送信電力算出部(107)が受信信号に基づいて通信相手に出力する指定送信電力を補正値した送信電力を算出し、第1設定値算出部(108)及び第2設定値算出部(109)が補正後の送信電力に基づいて、第1可変増幅回路(122)及び第2可変増幅回路(123)に設定するゲイン値を算出する。

Description

明 細 書
送信電力制御装置
技術分野
[0001] 本発明は、送信電力制御装置に関し、例えば、基地局装置及び通信端末装置な どの無線通信装置に適用して好適なものである。
背景技術
[0002] 無線通信装置は、通信相手が受信できるように送信電力を大きくして送信する必要 があるが、大きくしすぎても通信相手以外の無線通信装置に干渉となってしまう。この ため、送信電力制御を行うことにより、随時、適切な送信電力に調整している。
[0003] 一般に、送信電力制御装置は、特許文献 1に記載されて 、るように、アナログ制御 電圧を入力電圧とする可変増幅回路を用いている。可変増幅回路は DZAコンパ一 タにより生成されたアナログ制御電圧に比例したゲイン特性を有する。ところが、 CD MA (Code Division Multiple Access)方式のように広いダイナミックレンジが要求され る場合、全ての電圧制御範囲で入出力特性 (制御電圧 ゲイン特性)を直線性に保 つことは困難である。これについて、図を用いて説明する。
[0004] 図 1は、アナログ制御電圧に対する可変増幅回路のゲイン特性を示す図である。こ の図が示すように、アナログ電圧によるゲイン制御では、制御電圧 (DACコード)が低 V、ときと高 、ときに非直線性となり、広 、ダイナミックレンジでの制御電圧 ゲイン特性 は均一にならない。そのため、従来の送信電力制御装置は、任意の送信電力に対 する DACコードをメモリに記憶しており、必要に応じて DACコードをメモリから読み 出して増幅率を制御しているため、正確な送信電力を得ることができる。なお、 DZA コンバータの分解能と可変増幅回路の制御感度特性により送信電力分解能が決定 される。
特許文献 1:特開平 11—177444号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、従来の送信電力制御装置では、部品ばらつきを補償する調整を行う ため、広範囲にわたる送信指定電力値に対応する DACコードを求め、求められた D ACコードをメモリに記憶するという工程があり、送信電力制御装置の調整に要する 工程数が増大すると!/ヽぅ問題がある。
[0006] 図 20は、アナログ制御による可変増幅回路を用いた際の送信電力に対する DZA コンバータの DACコード特性を示している。例えば、指定送信電力値を等間隔に設 定する場合、これを実現する DACコードは等間隔にならない。すなわち、所定の指 定送信電力値となるように DACコードを逐一求める必要がある。このとき、直線性が 悪いため、所定の送信電力ごとに部品ばらつきを補償する調整が必要となる。
[0007] 本発明の目的は、送信電力制御装置の調整に要する工程数を削減し、広いダイナ ミックレンジで高精度な送信電力制御を行う送信電力制御装置を提供することである 課題を解決するための手段
[0008] 本発明の送信電力制御装置は、ゲイン分解能が異なり、入力信号を増幅する第 1 及び第 2可変増幅回路と、送信電力の精度を保証する補正値を算出する補正値算 出手段と、通信相手から送信された信号に基づいて、前記通信相手に出力する送信 電力を指定する送信電力指定手段と、前記指定送信電力を前記補正値で補正する ことにより、送信電力を算出する送信電力算出手段と、前記送信電力算出手段によ つて算出された送信電力に基づいて、前記第 1及び第 2可変増幅回路に設定するゲ イン値を算出する設定値算出手段と、を具備する構成を採る。
[0009] この構成によれば、異なるゲイン分解能の第 1及び第 2可変増幅回路を用意し、送 信電力精度を保証する補正値を加味して、任意の送信電力 1ポイントのみの測定を 行って送信電力制御装置の調整を行うことにより、総合ゲイン特性を直線性とするこ とができ、第 1及び第 2の可変増幅回路に最適なゲイン値を設定することができるの で、調整に要する工程数を削減することができ、広いダイナミックレンジで高精度な送 信電力制御を行うことができる。
発明の効果
[0010] 本発明によれば、異なるゲイン分解能の第 1可変増幅回路と第 2可変増幅回路を 用意し、周波数特性及び温度特性といった環境の変化によって生じる送信電力精度 の劣化を補償する補正値及び送信電力誤差を補償する補正値を加味して、任意の 送信電力 1ポイントのみの測定を行って送信電力制御装置の調整を行うことにより、 総合ゲイン特性を直線性とすることができ、第 1及び第 2の可変増幅回路に最適なゲ イン値を設定することができるので、調整に要する工程数を削減することができ、広い ダイナミックレンジで高精度な送信電力制御を行うことができる。
図面の簡単な説明
[図 1]アナログ制御電圧に対する可変増幅回路のゲイン特性を示す図
[図 2]アナログ制御による可変増幅回路を用いた際の送信電力に対する DZAコンパ ータの DACコード特性を示す図
[図 3]本発明の実施の形態 1に係る送信電力制御装置の構成を示すブロック図
[図 4]第 1可変増幅回路設定ゲインと第 1可変増幅回路ゲインとの対応関係をテープ ノレにした図
[図 5]第 2可変増幅回路設定ゲインと第 2可変増幅回路ゲインとの対応関係をテープ ノレにした図
[図 6]本発明の実施の形態 1における第 1可変増幅回路のゲイン特性を示す図
[図 7]本発明の実施の形態 1における第 2可変増幅回路のゲイン特性を示す図
[図 8]電流制御によるディジタル制御可変増幅回路の構成を示す図
[図 9]増幅回路の段数変更によるディジタル制御可変増幅回路の構成を示す図
[図 10]検波ダイオードを用いた送信電力 検波電圧特性を示す図
[図 11]ゲイン設定値制御部と第 1可変増幅回路制御部及び第 2可変増幅回路制御 部とをシリアルインタフェースで接続した構成を示す図
[図 12]本発明の実施の形態 1におけるシリアルインタフェースフォーマットを示す図 [図 13]本発明の実施の形態 1におけるシリアルインタフェースフォーマットを示す図 [図 14]CDMA方式における送信出力指定値と可変増幅回路設定値との対応関係を テープノレにした図
[図 15]周波数と補正値との関係を示す図
[図 16]周波数と補正値との対応関係をテーブルにした図
[図 17]本発明の実施の形態 1に係る送信電力制御装置の総合ゲイン特性を示す図 [図 18]本発明の実施の形態 2に係る送信電力制御装置の構成を示す図
[図 19]振幅制御部の制御を受けた Iチャネル信号及び Qチャネル信号の様子を示す 図
[図 20]本発明の実施の形態 2における IZQ振幅特性を示す図
発明を実施するための最良の形態
[0012] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0013] (実施の形態 1)
図 3は、本発明の実施の形態 1に係る送信電力制御装置の構成を示すブロック図 である。この図において、送信電力指定部 101は、通信相手から送信された報知情 報を取得し、報知情報で指定された送信電力を誤差算出部 102及び送信電力算出 部 107に通知する。
[0014] 誤差算出部 102は、送信電力指定部 101から通知された送信電力と、後述する実 送信電力算出部 129で算出された実際の送信電力との誤差を算出し、算出した誤 差を補正値算出部 106に出力する。環境変化情報通知部 103は、温度及び周波数 といった環境に変化があった場合、これらの変化量を補正値算出部 106に通知する
[0015] タイミング情報生成部 104は、補正値を算出するタイミング情報を生成し、補正値を 算出する回数である補正値量を制限したり、補正値の算出周期を管理したりする。こ れにより、例えば、 CDMA方式の送信電力制御において、スロット間補正値量を規 定値内に収めることができる。生成したタイミング情報は補正値算出部 106に出力さ れる。
[0016] メモリ 105は、部品ばらつきに起因する送信電力精度の劣化を補償する補正値と、 温度特性や周波数特性に起因する送信電力精度の劣化を補償する補正値とが記 憶されており、これらの補正値が補正値算出部 106に出力される。
[0017] 補正値算出部 106は、誤差算出部 102、環境変化情報通知部 103、タイミング情 報生成部 104、メモリ 105から出力された情報に基づいて、送信電力を高精度に補 償する補正値を算出し、算出した補正値を送信電力算出部 107に出力する。
[0018] 送信電力算出部 107は、送信電力指定部 101から通知された指定電力と補正値 算出部 106から出力された補正値とに基づいて送信電力を算出し、算出した送信電 力を第 1設定値算出部 108及び第 2設定値算出部 109に出力する。また、第 2設定 値算出部 109からのフィードバック情報がある場合、送信電力の算出にフィードバッ ク情報を反映する。
[0019] 第 1設定値算出部 108は、図 4に示すテーブルを有し、送信電力算出部 107から 出力された送信電力値に基づいて、図 4のテーブルに従った第 1可変増幅回路 122 用ゲイン値をゲイン設定値制御部 110に出力する。また、第 2設定値算出部 109は、 図 5に示すテーブルを有し、送信電力算出部 107から出力された送信電力値に基づ いて、図 5のテーブルに従った第 2可変増幅回路 123用ゲイン値をゲイン設定値制 御部 110に出力する。また、第 2可変増幅回路 123のダイナミックレンジの限界に達 した場合、送信電力算出部 107にフィードバック信号を出力する。これにより、第 2可 変増幅回路のダイナミックレンジ内でゲイン制御を行うことができ、第 1可変増幅回路 と第 2可変増幅回路の総合ゲイン特性を直線性に保つことができる。
[0020] ゲイン設定値制御部 110は、第 1設定値算出部 108と第 2設定値算出部 109とから 出力されたゲイン設定値に基づいて、ゲインコードを求め、求めたゲインコードで第 1 可変増幅回路制御部 111と第 2可変増幅回路制御部 112とをそれぞれ制御する。
[0021] 第 1可変増幅回路制御部 111は、ゲイン設定値制御部 110から出力されたゲインコ ードに従って第 1可変増幅回路 122を制御する。第 2可変増幅回路制御部 112は、 ゲイン設定値制御部 110から出力されたゲインコードに従って第 2可変増幅回路 12 3を制御する。
[0022] 送信データ生成部 113は、通信相手に送信するデータを生成し、生成したデータ を IZQ分離部 116に出力する。振幅制御部 114は、 IZQ信号の振幅を制御する制 御信号を IZQ分離部 116に出力する。これにより、サイドバンドサブレッシヨンの軽減 によるエラーベクトル振幅 (EVM)特性の確保とミキサ 119及び 120へ入力する信号 の振幅を最適な値に設定することができる。 DC値制御部 115は、 IZQ信号の DC値 を制御する制御信号を IZQ分離部 116に出力する。これにより、キャリアサブレッショ ンの軽減による EVM特性を確保することができる。
[0023] IZQ分離部 116は、送信データ生成部 113から出力された送信データを Iチヤネ ル信号と Qチャネル信号とに分離し、振幅制御と DC値の制御を行う。 Iチャネル信号 はミキサ 119に出力され、 Qチャネル信号はミキサ 120に出力される。
[0024] ローカル発振器 117は搬送波周波数を発振し、発振信号がミキサ 119で Iチャネル 信号に乗算される一方、移相器 118で 90° 移相されてミキサ 120で Qチャネル信号 に乗算される。ミキサ 119及び 120で発振信号が乗算された信号は合成回路 121で 合成され、送信出力信号として第 1可変増幅回路 122に出力される。
[0025] 第 1可変増幅回路 122は、図 6に示すゲイン特性を有し、ディジタル制御により ldB 毎にゲイン値を設定することができる。そして、第 1可変増幅回路制御部 111の制御 に従ったゲイン値で合成回路 121から出力された送信出力信号を増幅し、増幅後の 送信出力信号を第 2可変増幅回路 123に出力する。ちなみに、上述した第 1設定値 算出部 108が有する図 4のテーブルは、図 6に示すゲイン特性をまとめたものである
[0026] 第 2可変増幅回路 123は、図 7に示すゲイン特性を有し、ディジタル制御により 0. 1 dB毎にゲイン値を設定することができる。そして、第 2可変増幅回路制御部 112の制 御に従ったゲイン値で第 1可変増幅回路 122から出力された送信出力信号を増幅し 、増幅後の送信出力信号を帯域制限フィルタ 124に出力する。ちなみに、上述した 第 2設定値算出部 109が有する図 5のテーブルは、図 7に示すゲイン特性をまとめた ものである。
[0027] 第 1可変増幅回路 122及び第 2可変増幅回路 123は、図 8又は図 9に示す構成を 有する。図 8は、電流制御によるディジタル制御可変増幅回路の構成を示す。この図 では、可変増幅回路に複数の電流源 1一 nとスィッチ SW1— SWnとを並列に接続す ることにより、電流値によるゲイン制御が行われる。ただし、スィッチの切り替えがディ ジタル制御で行われ、ゲイン値が変化するものである。図 9は、増幅回路の段数変更 によるディジタル制御可変増幅回路の構成を示す。 n個の増幅回路を直列に接続し 、各増幅回路に連動スィッチを設け、増幅回路に信号を入力させる力否かを連動ス イッチの切り替えによりゲイン制御を行う。ここでも、連動スィッチの切り替えがデイジ タル制御で行われ、ゲイン値が変化する。
[0028] 第 2可変増幅回路 123で増幅された送信出力信号は、帯域制限フィルタ 124で帯 域制限され、電力増幅器 125で電力増幅され、力ブラ 126で分岐される。分岐された 送信出力信号のうち一方はアンテナ 127を介して通信相手に送信され、他方は送信 電力測定部 128に出力される。
[0029] 送信電力測定部 128は検波ダイオード等であり、送信電力を測定し、測定結果を 実送信電力算出部 129に出力する。実送信電力算出部 129は、送信電力測定部 1 28で測定された送信電力カゝら実際に送信された信号の送信電力を算出し、算出し た実送信電力を誤差算出部 102に出力する。ただし、検波ダイオードを用いた送信 電力 検波電圧特性は図 10に示すように直線性が悪ぐ低い送信電力区間(11. 5 dBm以下)ではその区間にわたって検波電圧も一様に低い(例えば、 25mV— 44m V) 0検波電圧カゝら ADコンバータにより送信電力を求める際、 ADコンバータの分解 能に対して送信電力の分解能が十分に確保できないため、送信電力の測定精度が 劣化する。このため、送信電力算出部 107は実送信電力の測定精度を満たす範囲、 すなわち、所定の送信電力(指定送信電力)以上であれば、誤差算出部 102により 算出された送信電力誤差を補正値の算出に反映する。一方、所定の送信電力 (指 定送信電力)未満であれば、送信電力誤差を補正値の算出に反映しない。これによ り、高精度な送信電力制御を行うことができる。
[0030] ここで、ゲイン設定値制御部 110と第 1可変増幅回路制御部 111及び第 2可変増 幅回路制御部 112の具体的な構成について図を用いて説明する。図 11は、ゲイン 設定値制御部 110と第 1可変増幅回路制御部 111及び第 2可変増幅回路制御部 11 2とをシリアルインタフェースで接続した構成を示す図である。この図では、ゲイン設 定値制御部シリアルインタフェース 801からデータ信号 Dl、クロック信号 Cl、スト口 ーブ信号 S1が第 1可変増幅回路制御部シリアルインタフェース 802に出力される。ま た、ゲイン設定値制御部シリアルインタフェース 801からデータ信号 Dl、クロック信号 C1、ストローブ信号 S2が第 2可変増幅回路制御部シリアルインタフェース 803に出 力される。なお、ストローブ信号 S1及び S2は、第 1可変増幅回路制御部シリアルイン タフエース 802と第 2可変増幅回路制御部シリアルインタフェース 803のいずれにデ ータを設定したかを判別するための信号である。
[0031] 図 11では、各シリアルインタフェースそれぞれに対応するストローブ信号を用意し ているが、図 12に示すように、シリアルデータ内にいずれのインタフェースにデータを 設定したかを判別するためのレジスタアドレスを追加することにより、ストローブ信号を 共通とすることができる。
[0032] また、第 1可変増幅回路制御部 111と第 2可変増幅回路制御部 112を 1つの制御 部に共通化した場合、図 13に示すように、 1つのシリアルインタフェースフォーマットと することができる。このように、シリアノレインタフェースフォーマットを用いて、第 1可変 増幅回路制御部 111及び第 2可変増幅回路制御部 112を独立に制御することにより 、それぞれの送信電力制御タイミングが異なる場合でも、それぞれのタイミングで制 御することができる。
[0033] 次に、この実施の形態における送信電力制御装置の原理について説明する。例え ば、 CDMA方式では、指定送信電力値カ 56— + 24dBに規定されており、指定送 信電力値を得るための可変増幅回路の設定値は図 4及び図 5に基づいて、図 14の ようになる。
[0034] 図 14において、可変増幅回路設定値の pは、第 1可変増幅回路 122のゲイン制御 範囲内の任意のゲインコードを示す。また、 qは第 2可変増幅回路 123のゲイン制御 範囲内の任意のゲインコードを示す。さらに言うと、 p、 qはある送信電力において、製 品出荷時に調整した部品ばらつき補正値を示して 、る。
[0035] ここで、周波数特性による送信電力精度の劣化を補償する補正値につ!、て説明す る。図 15は、周波数と補正値 (周波数補正値)との関係を示す図である。この図にお いて、 fl一 fl2は予め補正値を求めるために決められた任意の周波数であり、 rl一 r 12は周波数 fl一 f 12のそれぞれに対応した周波数補正値である。このように、予め 周波数と周波数補正値との関係を求めておけば、決められた周波数の間の周波数 については、直線近似を行うことにより、周波数補正値を算出することができる。例え ば、周波数 Πと f 2の間の周波数 fについて周波数補正値 rを算出する場合、例えば、 以下の式(1)により求められる。
[0036] [数 1]
r2 - r\ . r2 - r\ . , ,
r = f + r2 x 2 · . - ( 1 )
/2 - /1 ブ 2 - /1 この実施の形態における送信電力制御装置は、周波数と周波数補正値との関係を 図 16に示すようなテーブルにまとめてメモリ 105が保持し、上式(1)の演算は補正値 算出部 106が行う。これにより、周波数に変化があった場合に高速かつ高精度な送 信電力制御を行うことができる。
[0037] ここでは、周波数補正値の算出について説明したが、温度補正値の算出について も同様の方法で算出することができる。
[0038] ここで、上述した周波数補正値や温度補正値と!/、つた環境補正値を Rとすると、 R
=r +0. l Xrで表すこともできる。このような関係力も補正後の送信電力 Powは以 a b
下の式(2)で表される。
[0039] [数 2]
Pow t max - x) = p - imax- x) + 0. i x q + r
= p - (max- x) + ra + 0. l x (q + rb ) . . . ( 2 )
式(2)において、 maxは最大送信電力を示し、例えば上述した W— CDMA方式の 場合、 Power class 3では、 24dBmとなる。また、 xは maxより小さい任意の値を示す。 上式(2)は ldB分解能の項と 0. ldB分解能の項とにより成り立っており、これにより 1 dB毎にゲイン値を設定可能な第 1可変増幅回路 122及び 0. ldB毎にゲイン値を設 定可能な第 2可変増幅回路 123のそれぞれに最適なゲイン値を指定することができ る。すなわち、第 1可変増幅回路 122に設定されるゲイン値は p— (max— X) +rとなり
a
、第 2可変増幅回路 123に設定されるゲイン値は q+rとなる。
b
[0040] このように第 1可変増幅回路 122と第 2可変増幅回路 123を組み合わせ、任意の出 カレベル 1ポイントで送信電力を測定し、上式(2)から p、 qを求めることにより、図 17 に示すような総合ゲイン特性を得ることができる。すなわち、図 17が示すように指定 送信電力値に従って全ダイナミックレンジでの精度が保証される。また、予め周波数 補正値や温度補正値を用意しておくため、周波数や温度が変化した場合でも、環境 補正値 rを更新するだけで、高精度な送信電力制御を実現することができる。なお、 送信電力誤差も同様に補正することができる。
[0041] このように本実施の形態によれば、 ldB分解能の可変増幅回路と 0. ldB分解能の 可変増幅回路を用意し、周波数特性及び温度特性といった環境の変化によって生じ る送信電力精度の劣化を補償する補正値及び送信電力誤差を補償する補正値を加 味して、任意の送信電力 1ポイントのみの測定を行って送信電力制御装置の調整を 行うことにより、総合ゲイン特性を直線性とすることができ、 2つの可変増幅回路に最 適なゲイン値を設定することができるので、調整に要する工程数を削減することがで き、広いダイナミックレンジで高精度な送信電力制御を行うことができる。また、 DZA コンバータ及びアナログ制御可変増幅回路を使用しないため、消費電力を削減する ことができる。
[0042] (実施の形態 2)
実施の形態 1では、分解能の異なる 2つの可変増幅回路を設けた場合について説 明したが、本発明の実施の形態 2では、 1つの可変増幅回路を設けた場合について 説明する。
[0043] 図 18は、本発明の実施の形態 2に係る送信電力制御装置の構成を示す図である。
ただし、図 18が図 3と共通する部分は、図 3と同一の符号を付し、その詳しい説明は 省略する。図 18が図 3と異なる点は、ゲイン設定値制御部 110をゲイン設定値制御 部 1501に変更した点と、第 2可変増幅回路制御部 112及び第 2可変増幅回路 123 をそれぞれ削除した点である。
[0044] ゲイン設定値制御部 1501は、第 1設定値算出部 108と第 2設定値算出部 (振幅値 算出部) 109とから出力されたゲイン設定値に基づいて、ゲインコードを求め、求めた ゲインコードで第 1可変増幅回路制御部 111と振幅制御部 114とをそれぞれ制御す る。
[0045] 振幅制御部 114は、ゲイン設定値制御部 1501から出力されたゲインコードに従つ て、 IZQ信号の振幅を制御する制御信号を IZQ分離部 116に出力する。
[0046] 図 19は、振幅制御部 114の制御を受けた Iチャネル信号及び Qチャネル信号の様 子を示す図である。この図では、実線で示した波を基準とすると基準振幅 Yに対して 、最大振幅 Y+0. l XkZ2dB、最小振幅 Y— 0. l XkZ2dBとしており、最小振幅と 最大振幅の間で振幅を制御することができることを示している。
[0047] なお、第 2設定値算出部 109では、最小振幅を下回る設定値又は最大振幅を越え る設定値が算出された場合には、送信電力算出部 107にフィードバック信号を出力 することにより、 IZQ信号を所定の範囲内で振幅制御するようにしている。これにより 、1チャネル信号及び Qチャネル信号の振幅値とその DC値の比によって決定される キャリアリーク量の変化に伴うエラーベクトル振幅の劣化や、送信信号の振幅変化に よって生じるミキサでの歪みに伴う隣接チャネル漏洩電力比の劣化が起こり得る。し 力しながら、送信電力算出部 107は、所定の振幅範囲を越えた振幅値が算出された 場合に第 2設定値算出部 109により生成されるフィードバック信号を受け、第 1設定 値算出部 108及び第 2設定値算出部 109にゲイン値の算出を再度行わせることによ り、 Iチャネル信号及び Qチャネル信号の振幅を所定の範囲に収めることができ、エラ 一ベクトル振幅の劣化、隣接チャネル漏洩電力比の劣化を回避することができる。
[0048] 一般に、 IZQ信号の振幅制御によって送信電力を変化させる場合、性能保証した 上で広いダイナミックレンジを得ることは困難である。このため、 0. IdB分解能に相当 するような高い分解能を狭いダイナミックレンジで実現することに適しており、図 20に 示すような IZQ振幅特性が考えられる。このように IZQ信号の振幅を制御することは 、実施の形態 1で述べた 0. IdB分解能の第 2可変増幅回路 123に相当する機能を 実現することになる。
[0049] このように本実施の形態によれば、 0. IdB分解能を IZQ信号の振幅制御で実現し 、 IdB分解能の可変増幅回路と組み合わせることにより、複数の可変増幅回路を設 ける場合に比べ、回路規模を削減することができる。
[0050] 本発明の第 1の態様は、ゲイン分解能が異なり、入力信号を増幅する第 1及び第 2 可変増幅回路と、送信電力の精度を保証する補正値を算出する補正値算出手段と 、通信相手から送信された信号に基づいて、前記通信相手に出力する送信電力を 指定する送信電力指定手段と、前記指定送信電力を前記補正値で補正することによ り、送信電力を算出する送信電力算出手段と、前記送信電力算出手段によって算出 された送信電力に基づいて、前記第 1及び第 2可変増幅回路に設定するゲイン値を 算出する設定値算出手段と、を具備する送信電力制御装置である。
[0051] この構成によれば、異なるゲイン分解能の第 1及び第 2可変増幅回路を用意し、送 信電力精度を保証する補正値を加味して、任意の送信電力 1ポイントのみの測定を 行って送信電力制御装置の調整を行うことにより、総合ゲイン特性を直線性とするこ とができ、第 1及び第 2の可変増幅回路に最適なゲイン値を設定することができるの で、調整に要する工程数を削減することができ、広いダイナミックレンジで高精度な送 信電力制御を行うことができる。
[0052] 本発明の第 2の態様は、入力信号を増幅する第 1可変増幅回路と、 Iチャネル信号 及び Qチャネル信号の振幅制御を行う振幅制御手段と、送信電力の精度を保証する 補正値を算出する補正値算出手段と、通信相手から送信された信号に基づいて、前 記通信相手に出力する送信電力を指定する送信電力指定手段と、前記指定送信電 力を前記補正値で補正することにより、送信電力を算出する送信電力算出手段と、 前記送信電力算出手段によって算出された送信電力に基づいて、前記第 1可変増 幅回路に設定するゲイン値を算出する設定値算出手段と、前記送信電力算出手段 によって算出された補正後の送信電力に基づいて、前記振幅制御手段に設定する 振幅値を算出する振幅値算出手段と、を具備する送信電力制御装置である。
[0053] この構成によれば、通信相手に出力する送信電力を第 1可変増幅回路と、 Iチヤネ ル信号及び Qチャネル信号の振幅を制御する振幅制御手段とがそれぞれ異なる分 解能でゲイン値を設定し、送信電力精度を保証する補正値を加味して、任意の送信 電力 1ポイントのみの測定を行って送信電力制御装置の調整を行うことにより、総合 ゲイン特性を直線性とすることができ、第 1及び第 2の可変増幅回路に最適なゲイン 値を設定することができるので、調整に要する工程数を削減することができ、広いダ イナミックレンジで高精度な送信電力制御を行うことができる。
[0054] 本発明の第 3の態様は、上記構成において、前記補正値算出手段が、周波数特性 及び温度特性に起因する送信電力精度の劣化を補償する環境特性補正値を記憶 する記憶手段を具備し、環境変化があった場合、前記記憶手段に記憶された環境特 性補正値を用いて環境変化後の補正値を算出する送信電力制御装置である。
[0055] この構成によれば、環境変化があった場合、前記記憶手段に記憶された環境特性 補正値を用いて環境変化後の補正値を算出することにより、高速かつ高精度な送信 電力制御を行うことができる。
[0056] 本発明の第 4の態様は、上記構成において、前記補正値算出手段が、前記送信電 力指定手段で指定された送信電力と実際に通信相手に出力された実送信電力との 誤差を算出する誤差算出手段を具備し、前記送信電力指定手段で指定された送信 電力に基づ 、て、前記補正値の算出に前記誤差の補正を反映する力否かを判定す る送信電力制御装置である。
[0057] この構成によれば、送信電力を測定する際には、一般的に送信電力が高い領域し か測定されず、その上、高い領域の送信電力は規格において精度保証が厳しく規定 されているため、送信電力指定手段で指定された送信電力に基づいて、前記補正値 の算出に前記誤差の補正を反映するか否かを判定することにより、指定された送信 電力が高い場合には送信電力の測定精度が高いので、誤差の補正を反映し、指定 された送信電力が低い場合には送信電力の測定精度が低いので、誤差の補正を反 映しないことにより、高精度な送信電力制御を行うことができる。
[0058] 本発明の第 5の態様は、上記構成において、前記補正値算出手段が、補正値を算 出するタイミング情報を生成するタイミング情報生成手段を具備し、前記タイミング情 報に基づ 、て、補正値を算出する回数である補正値量の制限及び補正値の算出周 期を管理する送信電力制御装置である。
[0059] この構成によれば、タイミング情報に基づいて、補正値を算出する回数である補正 値量の制限及び補正値の算出周期を管理することにより、例えば、 CDMA方式等の 送信電力制御において、スロット間補正値量を規定値内に収めて補正値を算出する ことができる。
[0060] 本発明の第 6の態様は、上記構成において、前記送信電力算出手段は、前記第 2 可変増幅回路のダイナミックレンジを外れたゲイン値が算出された場合に前記設定 値算出手段により生成されるフィードバック信号を受け、前記設定値算出手段にゲイ ン値の算出を再度行わせる送信電力制御装置である。
[0061] この構成によれば、前記第 2可変増幅回路のダイナミックレンジを外れたゲイン値が 算出された場合に前記第 2設定値算出手段により生成されるフィードバック信号を受 け、前記第 1設定値算出手段及び前記第 2設定値算出手段にゲイン値の算出を再 度行わせることにより、第 2可変増幅回路のダイナミックレンジ内でゲイン制御を行うこ とができ、第 1可変増幅回路と第 2可変増幅回路の総合ゲイン特性を直線性に保つ ことができる。 [0062] 本発明の第 7の態様は、上記構成において、前記送信電力算出手段が、所定の振 幅範囲を越えた振幅値が算出された場合に前記振幅値算出手段により生成されるフ イードバック信号を受け、前記設定値算出手段及び前記振幅値算出手段にゲイン値 の算出を再度行わせる送信電力制御装置である。
[0063] この構成によれば、 Iチャネル信号及び Qチャネル信号の振幅の変化量を大きくし すぎた場合、 Iチャネル信号及び Qチャネル信号の振幅値とその DC値の比によって 決定されるキャリアリーク量の変化に伴うエラーベクトル振幅の劣化や、送信信号の 振幅変化によって生じるミキサでの歪みに伴う隣接チャネル漏洩電力比の劣化が起 こり得るが、所定の振幅範囲を越えた振幅値が算出された場合に振幅値算出手段に より生成されるフィードバック信号を受け、第 1設定値算出手段及び振幅値算出手段 にゲイン値の算出を再度行わせることにより、 Iチャネル信号及び Qチャネル信号の 振幅を所定の範囲に収めることができ、エラーベクトル振幅の劣化、隣接チャネル漏 洩電力比の劣化を回避することができる。
[0064] 本発明の第 8の態様は、上記構成において、前記第 1可変増幅回路のゲイン値を 制御する第 1可変増幅回路制御手段と、前記第 2可変増幅回路のゲイン値を制御す る第 2可変増幅回路制御手段と、前記設定値算出手段によって算出されたゲイン値 に基づいてゲインコードを求め、求めたゲインコードで前記第 1可変増幅回路制御手 段及び前記第 2可変増幅回路制御手段を所定の制御フォーマットを用いて独立に 制御するゲイン設定値制御手段と、を具備する送信電力制御装置である。
[0065] この構成によれば、第 1可変増幅回路制御手段及び第 2可変増幅回路制御手段を 所定の制御フォーマットで独立に制御することにより、第 1可変増幅回路と第 2可変 増幅回路とが異なる回路で構成されており、それぞれの送信電力制御タイミングが異 なる場合でも、それぞれのタイミングで制御することができる。
[0066] 本発明の第 9の態様は、上記構成において、前記第 1可変増幅回路及び前記第 2 可変増幅回路それぞれのゲイン値を制御する可変増幅回路制御手段と、前記設定 値算出手段によって算出されたゲイン値に基づいてゲインコードを求め、求めたゲイ ンコードで前記可変増幅回路制御手段を所定の制御フォーマットを用いて制御する ゲイン設定値制御手段と、を具備する送信電力制御装置である。 [0067] この構成によれば、可変増幅回路制御手段を所定の制御フォーマットで制御するこ とにより、第 1可変増幅回路と第 2可変増幅回路とが同一の回路で構成されており、 それぞれの送信電力制御タイミングが異なる場合でも、それぞれのタイミングで制御 することができる。
[0068] 本発明の第 10の態様は、上記構成において、前記第 1可変増幅回路のゲイン値を 制御する第 1可変増幅回路制御手段と、前記設定値算出手段によって算出されたゲ イン値に基づいてゲインコードを求め、求めたゲインコードで前記第 1可変増幅回路 制御手段及び前記振幅制御手段を所定の制御フォーマットを用いて独立に制御す るゲイン設定値制御手段と、を具備する送信電力制御装置である。
[0069] この構成によれば、第 1可変増幅回路制御手段及び振幅制御手段を所定の制御 フォーマットで独立に制御することにより、第 1可変増幅回路と振幅制御手段とが異な る回路で構成されており、それぞれの送信電力制御タイミングが異なる場合でも、そ れぞれのタイミングで制御することができる。
[0070] 本明細書は、 2004年 2月 12日出願の特願 2004— 035027に基づくものである。こ の内容は全てここに含めておく。
産業上の利用可能性
[0071] 本願発明にかかる送信電力制御装置は、調整に要する工程数を削減し、広いダイ ナミックレンジで高精度な送信電力制御を行うと!、う効果を有し、無線通信装置に適 用することができる。

Claims

請求の範囲
[1] ゲイン分解能が異なり、入力信号を増幅する第 1及び第 2可変増幅回路と、
送信電力の精度を保証する補正値を算出する補正値算出手段と、
通信相手から送信された信号に基づいて、前記通信相手に出力する送信電力を 指定する送信電力指定手段と、
前記指定送信電力を前記補正値で補正することにより、送信電力を算出する送信 電力算出手段と、
前記送信電力算出手段によって算出された送信電力に基づいて、前記第 1及び第 2可変増幅回路に設定するゲイン値を算出する設定値算出手段と、
を具備する送信電力制御装置。
[2] 入力信号を増幅する第 1可変増幅回路と、
Iチャネル信号及び Qチャネル信号の振幅制御を行う振幅制御手段と、 送信電力の精度を保証する補正値を算出する補正値算出手段と、
通信相手から送信された信号に基づいて、前記通信相手に出力する送信電力を 指定する送信電力指定手段と、
前記指定送信電力を前記補正値で補正することにより、送信電力を算出する送信 電力算出手段と、
前記送信電力算出手段によって算出された送信電力に基づいて、前記第 1可変増 幅回路に設定するゲイン値を算出する設定値算出手段と、
前記送信電力算出手段によって算出された補正後の送信電力に基づいて、前記 振幅制御手段に設定する振幅値を算出する振幅値算出手段と、
を具備する送信電力制御装置。
[3] 前記補正値算出手段は、
周波数特性及び温度特性に起因する送信電力精度の劣化を補償する環境特性 補正値を記憶する記憶手段を具備し、
環境変化があった場合、前記記憶手段に記憶された環境特性補正値を用いて環 境変化後の補正値を算出する請求項 1に記載の送信電力制御装置。
[4] 前記補正値算出手段は、 前記送信電力指定手段で指定された送信電力と実際に通信相手に出力された実 送信電力との誤差を算出する誤差算出手段を具備し、
前記送信電力指定手段で指定された送信電力に基づ!、て、前記補正値の算出に 前記誤差の補正を反映するか否かを判定する請求項 1に記載の送信電力制御装置
[5] 前記補正値算出手段は、
補正値を算出するタイミング情報を生成するタイミング情報生成手段を具備し、 前記タイミング情報に基づいて、補正値を算出する回数である補正値量の制限及 び補正値の算出周期を管理する請求項 3に記載の送信電力制御装置。
[6] 前記送信電力算出手段は、
前記第 2可変増幅回路のダイナミックレンジを外れたゲイン値が算出された場合に 前記設定値算出手段により生成されるフィードバック信号を受け、前記設定値算出 手段にゲイン値の算出を再度行わせる請求項 1に記載の送信電力制御装置。
[7] 前記送信電力算出手段は、
所定の振幅範囲を越えた振幅値が算出された場合に前記振幅値算出手段により 生成されるフィードバック信号を受け、前記設定値算出手段及び前記振幅値算出手 段にゲイン値の算出を再度行わせる請求項 2に記載の送信電力制御装置。
[8] 前記第 1可変増幅回路のゲイン値を制御する第 1可変増幅回路制御手段と、 前記第 2可変増幅回路のゲイン値を制御する第 2可変増幅回路制御手段と、 前記設定値算出手段によって算出されたゲイン値に基づいてゲインコードを求め、 求めたゲインコードで前記第 1可変増幅回路制御手段及び前記第 2可変増幅回路 制御手段を所定の制御フォーマットを用いて独立に制御するゲイン設定値制御手段 と、
を具備する請求項 1に記載の送信電力制御装置。
[9] 前記第 1可変増幅回路及び前記第 2可変増幅回路それぞれのゲイン値を制御する 可変増幅回路制御手段と、
前記設定値算出手段によって算出されたゲイン値に基づいてゲインコードを求め、 求めたゲインコードで前記可変増幅回路制御手段を所定の制御フォーマットを用い て制御するゲイン設定値制御手段と、
を具備する請求項 1に記載の送信電力制御装置。
前記第 1可変増幅回路のゲイン値を制御する第 1可変増幅回路制御手段と、 前記設定値算出手段によって算出されたゲイン値に基づいてゲインコードを求め、 求めたゲインコードで前記第 1可変増幅回路制御手段及び前記振幅制御手段を所 定の制御フォーマットを用いて独立に制御するゲイン設定値制御手段と、
を具備する請求項 2に記載の送信電力制御装置。
PCT/JP2005/001836 2004-02-12 2005-02-08 送信電力制御装置 WO2005078939A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/589,076 US7496375B2 (en) 2004-02-12 2005-02-08 Transmission power control device
CN2005800044422A CN1918798B (zh) 2004-02-12 2005-02-08 发送功率控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004035027A JP3978433B2 (ja) 2004-02-12 2004-02-12 送信電力制御装置
JP2004-035027 2004-02-12

Publications (1)

Publication Number Publication Date
WO2005078939A1 true WO2005078939A1 (ja) 2005-08-25

Family

ID=34857670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001836 WO2005078939A1 (ja) 2004-02-12 2005-02-08 送信電力制御装置

Country Status (4)

Country Link
US (1) US7496375B2 (ja)
JP (1) JP3978433B2 (ja)
CN (1) CN1918798B (ja)
WO (1) WO2005078939A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161759A1 (ja) * 2010-06-22 2011-12-29 ルネサスエレクトロニクス株式会社 半導体装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7899419B2 (en) * 2004-01-16 2011-03-01 Research In Motion Limited Method and apparatus for compensating code channel power in a transmitter
JP2007295472A (ja) * 2006-04-27 2007-11-08 Kyocera Corp Agc回路及びこれを用いた無線機
US7940859B2 (en) * 2006-08-04 2011-05-10 Panasonic Corporation Transmission circuit and communication device
EP2102992B1 (en) 2006-12-21 2012-07-04 Icera Canada ULC Closed-loop digital power control for a wireless transmitter
JP5088131B2 (ja) * 2007-12-28 2012-12-05 富士通株式会社 電力制御回路及び電力制御方法
KR101549572B1 (ko) * 2008-11-25 2015-09-02 삼성전자주식회사 멀티 셀 hsdpa를 지원하는 이동통신 시스템에서 채널 품질 인식자 전송용 물리제어채널의 전송전력을 조절하는 방법 및 장치
US8618983B2 (en) * 2009-09-13 2013-12-31 International Business Machines Corporation Phased-array transceiver for millimeter-wave frequencies
WO2018110620A1 (ja) * 2016-12-15 2018-06-21 株式会社Nttドコモ ユーザ端末及び無線通信方法
US20210176714A1 (en) * 2018-08-21 2021-06-10 Ntt Docomo, Inc. User equipment and transmission power control method
CN109450564B (zh) * 2018-10-19 2019-10-08 小唐科技(上海)有限公司 一种pa发送功率校准和补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331108A (ja) * 1995-05-31 1996-12-13 Fujitsu Ltd 線路終端回路
JPH1174806A (ja) * 1997-08-27 1999-03-16 Daihen Corp 送信増幅器の非線形歪補償回路
JP2000013254A (ja) * 1998-06-24 2000-01-14 Hitachi Denshi Ltd 無線機
JP2003243997A (ja) * 2002-02-21 2003-08-29 Sony Ericsson Mobilecommunications Japan Inc 送信出力回路および移動体通信端末
JP2003258654A (ja) * 2002-03-06 2003-09-12 Nec Saitama Ltd 送信電力制御装置及びその方法
JP2004032447A (ja) * 2002-06-26 2004-01-29 Nec Saitama Ltd 無線装置の送信機とその送信レベル制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452473A (en) * 1994-02-28 1995-09-19 Qualcomm Incorporated Reverse link, transmit power correction and limitation in a radiotelephone system
JP3094955B2 (ja) * 1997-06-23 2000-10-03 日本電気株式会社 送信増幅器制御回路
JPH11177444A (ja) 1997-12-15 1999-07-02 Matsushita Electric Ind Co Ltd 送信電力制御装置及び方法
JP3570898B2 (ja) * 1998-08-24 2004-09-29 日本電気株式会社 プレディストーション回路
JP4156735B2 (ja) 1999-01-08 2008-09-24 松下電器産業株式会社 無線装置、無線装置における送信電力制御方法および記録媒体
US6438360B1 (en) * 1999-07-22 2002-08-20 Motorola, Inc. Amplifier system with load control to produce an amplitude envelope
US6819938B2 (en) 2001-06-26 2004-11-16 Qualcomm Incorporated System and method for power control calibration and a wireless communication device
US7058139B2 (en) * 2001-11-16 2006-06-06 Koninklijke Philips Electronics N.V. Transmitter with transmitter chain phase adjustment on the basis of pre-stored phase information
US6594501B2 (en) * 2001-12-14 2003-07-15 Qualcomm Incorporated Systems and techniques for channel gain computations
JP4043824B2 (ja) 2002-03-29 2008-02-06 松下電器産業株式会社 非線形歪補償装置および非線形歪補償方法
US6870435B2 (en) * 2003-06-30 2005-03-22 Mia-Com, Inc. Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
JP3970177B2 (ja) * 2002-12-26 2007-09-05 パナソニック モバイルコミュニケーションズ株式会社 無線通信装置
US7424064B2 (en) * 2003-11-20 2008-09-09 Nokia Corporation Polar transmitter with digital to RF converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331108A (ja) * 1995-05-31 1996-12-13 Fujitsu Ltd 線路終端回路
JPH1174806A (ja) * 1997-08-27 1999-03-16 Daihen Corp 送信増幅器の非線形歪補償回路
JP2000013254A (ja) * 1998-06-24 2000-01-14 Hitachi Denshi Ltd 無線機
JP2003243997A (ja) * 2002-02-21 2003-08-29 Sony Ericsson Mobilecommunications Japan Inc 送信出力回路および移動体通信端末
JP2003258654A (ja) * 2002-03-06 2003-09-12 Nec Saitama Ltd 送信電力制御装置及びその方法
JP2004032447A (ja) * 2002-06-26 2004-01-29 Nec Saitama Ltd 無線装置の送信機とその送信レベル制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161759A1 (ja) * 2010-06-22 2011-12-29 ルネサスエレクトロニクス株式会社 半導体装置
JP5564111B2 (ja) * 2010-06-22 2014-07-30 ルネサスエレクトロニクス株式会社 半導体装置

Also Published As

Publication number Publication date
JP3978433B2 (ja) 2007-09-19
US20070176681A1 (en) 2007-08-02
JP2005229274A (ja) 2005-08-25
US7496375B2 (en) 2009-02-24
CN1918798A (zh) 2007-02-21
CN1918798B (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
WO2005078939A1 (ja) 送信電力制御装置
JP5221716B2 (ja) 通信システムのための送信機のアーキテクチャ
US8369802B2 (en) Polar modulation transmission apparatus and polar modulation transmission method
US7792214B2 (en) Polar modulation transmitter circuit and communications device
JP2007180782A (ja) 極座標変調送信装置及び適応歪補償処理システム並びに極座標変調送信方法及び適応歪補償処理方法
US7912148B2 (en) Transmission circuit and communication device
JP2006333450A (ja) 極座標変調回路、極座標変調方法、集積回路および無線送信装置
US7848455B2 (en) Transmission circuit comprising multistage amplifier, and communication device
JP2007060455A (ja) 送信装置
US20040004516A1 (en) Power amplifier distortion compensation apparatus and method thereof
JP2004534469A (ja) 高周波信号の増幅を制御する方法
EP2120335B1 (en) Power voltage forming device and polar modulation transmission device
JP5069211B2 (ja) 温度補償回路および温度補償方法
US7911248B2 (en) Apparatus for linearization of digitally controlled oscillator
JP3197467B2 (ja) 送信出力制御装置
US7403747B2 (en) Tuning a station
US20060083330A1 (en) Distortion compensation table creation method and distortion compensation method
JP2001326541A (ja) 振幅位相変化装置
JP4123225B2 (ja) 歪補償増幅器
JP2001267851A (ja) 歪補償増幅器
US7760043B2 (en) Polar modulation apparatus
JP2010011370A (ja) 歪補償増幅器
JP3107680B2 (ja) 線形送信回路
JP2006186873A (ja) 無線装置および送信出力変更方法
JP2002353756A (ja) 携帯端末装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580004442.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10589076

Country of ref document: US

Ref document number: 2007176681

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10589076

Country of ref document: US