WO2005068685A1 - 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材 - Google Patents

拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材 Download PDF

Info

Publication number
WO2005068685A1
WO2005068685A1 PCT/JP2005/000734 JP2005000734W WO2005068685A1 WO 2005068685 A1 WO2005068685 A1 WO 2005068685A1 JP 2005000734 W JP2005000734 W JP 2005000734W WO 2005068685 A1 WO2005068685 A1 WO 2005068685A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion barrier
alloy
layer
barrier layer
diffusion
Prior art date
Application number
PCT/JP2005/000734
Other languages
English (en)
French (fr)
Inventor
Toshio Narita
Hiroshi Yakuwa
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to JP2005517142A priority Critical patent/JP4753720B2/ja
Priority to EP05703962A priority patent/EP1715081A1/en
Priority to US10/585,780 priority patent/US7851070B2/en
Publication of WO2005068685A1 publication Critical patent/WO2005068685A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/1284W-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • Y10T428/12854Next to Co-, Fe-, or Ni-base component

Definitions

  • the present invention aims to extend the life of high-temperature equipment members used at high temperatures, such as gas turbine blades, jet engine turbine blades, combustors, nozzles, boiler heat transfer tubes, waste treatment equipment, and semiconductor manufacturing exhaust gas treatment equipment.
  • high-temperature equipment members used at high temperatures
  • TECHNICAL FIELD The present invention relates to an alloy film for a diffusion barrier used as a surface film (coating layer) and a method for producing the same, and a high-temperature device member to which the alloy film is applied.
  • high temperature equipment components such as industrial gas turbine blades and jet engines can have fluid temperatures exceeding 130 ° C, and high temperature oxidation is often the main cause of component damage in metallic materials. Therefore, in order to improve the heat resistance of the member, conventionally, the following coating treatment is generally performed on the surface of the member.
  • TBC Thermal barrier coating
  • the thermal barrier coating consists of a ceramic (topcoat) layer and a corrosion-resistant alloy layer (undercoat (or bond coat)) sequentially laminated on a metal (member) surface.
  • the top coat mainly for lowering the surface temperature of the metal substrate to less than about 1 0 0 0 ° C, such as small Z r 0 2 thermal conductivity is generally used.
  • an alloy containing several to several tens% of A1 (usually referred to as MCrA1Y) is generally used to impart oxidation resistance.
  • the fluid temperature has tended to rise from the viewpoint of improving power generation efficiency, and the surface temperature of the undercoat has also risen accordingly.
  • the oxide film grows thickly at the undercoat / topcoat interface, and at the same time as the topcoat peels off, for example, A1 diffuses from MCrA1Y to the metal substrate side.
  • A1 diffuses from MCrA1Y to the metal substrate side.
  • the life of engine turbine blades, etc. is about half a year even if the surface is coated with a heat shielding coating, and there is a strong demand for the development of technologies to extend the life of these components. It is said that one of the main causes of deterioration of these TBC systems is interdiffusion of alloy components between the undercoat and the metal substrate.
  • TBC systems require several hundred / xm thick topcoats and cooling air to enhance the effect of temperature reduction. For this reason, it is not generally suitable for narrow areas or areas where cooling air cannot be used.
  • the alloy component Z interdiffuses between the metal substrates and the A 1 (or Cr, S i) concentration in the alloy film And it becomes impossible to maintain a healthy corrosion-resistant acid.
  • PVD electron beam evaporation
  • EB-PVD has attracted attention as a method for forming TBC. This is because, unlike PVD, in which it was difficult to form a thick metal film, EB-PVD enables the formation of a dense, thick (several hundred ⁇ ), homogeneous metal film. .
  • the problems common to the above technologies (1) to (6) are that if they are used at a high temperature of about 1000 ° C or more, or if they are used for a long time even at a temperature of 1000 ° C or less, the mutual diffusion between one coating layer (alloy skin II trillions) / metal substrate, a 1 2 0 3, C r 2 0 3, C r to form a corrosion-resistant oxide film, such as S i 0 2, the concentration of the coating layer of A 1, S i decreases, is that the corrosion resistance is impaired.
  • Pt added] 3—N i (Pt) A1 also has a low melting point of Pt of about 1770 ° C, so it can be used at high temperatures of 1000 ° C or more or at 1000 ° C or less. When used for a long time, it is expected that Pt will diffuse into the metal substrate, and the corrosion resistance will be impaired.
  • alloy compositions having excellent diffusion preventing effect include Re—Cr alloy film (see WO 03 038150), Re—Cr—Ni alloy film (see WO 03/038151), And R e — (Cr, Mo, W)-(Ni, Co, Fe) alloy coatings (see WO 03/038152), respectively.
  • These diffusion barrier alloy films are mainly composed of the Re_Cr alloy ⁇ phase as a basic composition, and the composition of the alloy film can be optimized depending on the base material, application, and operating temperature range. Disclosure of the invention
  • the melting point of Re is 3180 ° C and the melting point of Cr is 1857 ° C. Therefore, it can be seen that the alloy film for a diffusion barrier having a basic composition of a Re—Cr alloy can have a melting point of about 2500 ° C. and has excellent diffusion barrier properties.
  • a component having a melting point of 1450 to 1550 ° C, such as Ni, Fe, Co, etc. is added to the Re—Cr alloy, the melting point as a diffusion barrier is lowered, and compared to the Re_Cr alloy. Therefore, the diffusion barrier characteristics are slightly reduced. Depending on the application and operating temperature range, even with this, sufficient diffusion barrier characteristics can be maintained, which sufficiently contributes to extending the life of high-temperature equipment members. In some cases, better diffusion barrier properties may be required.
  • Ni, Fe, and Co are most commonly used as a material for a heat-resistant alloy base material.
  • these elements are converted to a diffusion barrier alloy. It is generally difficult to completely prevent the contamination of the film.
  • the Re—Cr system ⁇ phase has a strong affinity for Cr, and Cr in the metal substrate tends to diffuse into the diffusion barrier alloy film composed of the Re_Cr system ⁇ phase.
  • Cr is corrosion resistant It is an element that is always contained in the heat-resistant alloy base material from the viewpoint of resistance, and may exhibit sufficient corrosion resistance even if the concentration is reduced by several percent.
  • the amount of Cr added has tended to be reduced from the viewpoint of strength, and only a minimum amount (for example, 5 to 10% by mass) has been added. Therefore, if Cr diffuses from the heat-resistant alloy base material into the coating layer (alloy film), Cr deficiency will occur on the surface of the metal base material, resulting in a decrease in the corrosion resistance of the metal base material and a loss of phase stability. It is also conceivable that the characteristics are lowered.
  • Mo and W are elements belonging to the same group as Cr, and therefore have the same properties as Cr. And high melting point, it is further alloyed with the Re—Cr— (Ni, Co, Fe) alloy to form Re— (Cr, Mo, W)-(Ni, Co, F e) It is expected that the alloy will exhibit better diffusion barrier properties. However, the optimum alloy composition of W and Mo and its properties as an alloy coating have not been clarified.
  • the present invention has been made in view of the above circumstances, and has a diffusion barrier characteristic superior to that of a Re—Cr alloy film, and can withstand use at a higher temperature (for example, 1150 ° C. or higher). It is an object of the present invention to provide an alloy film for use, a method for producing the same, and a high-temperature device member to which the alloy film is applied.
  • the alloy film for a diffusion barrier according to the present invention contains W in an atomic composition of 12.5 to 56.5%, and, except for unavoidable impurities, the remainder is Re, and the rest is Re-W based ⁇ phase.
  • a diffusion barrier layer composed of
  • An object of the present invention is to provide a heat- and corrosion-resistant coating by a diffusion barrier, in order to use a metal material safely for a long period of time, especially at an ultra-high temperature of 1000 ° C or more.
  • a diffusion barrier consisting essentially of a Re_Cr system ⁇ phase
  • the alloy film composed of this Re_Cr-based ⁇ phase shows sufficient diffusion barrier properties at ultra-high temperatures of 1000 ° C or more, but also has the following disadvantages.
  • Ni, Fe, Co, etc. are diffused from the metal substrate and alloyed to lower the melting point. As a result, the diffusion barrier characteristics are slightly reduced.
  • the diffusion barrier alloy film of the present invention has a diffusion barrier layer composed of a Re-W system ⁇ phase instead of a 6_ : 1: system phase. Since the melting point of W is 3410 ° C, the alloy of W and Re is also expected to have a melting point of about 3000 ° C. Therefore, even if Ni, Fe, Co, etc. diffuse from the metal substrate and are alloyed, the decrease in melting point of the Re-W system ⁇ phase is smaller than that of the Re-Cr system ⁇ phase. . Since W is an element belonging to the same group as Cr, it is expected that tr will diffuse from the metal base material into the diffusion barrier layer made of the Re_W alloy and form a Cr-deficient layer in the metal base material.
  • the Re-W alloy has a tendency to exclude Cr rather.
  • a diffusion barrier layer made of a Re-W alloy is formed on the surface of a metal base material containing Ni, Fe, Co, etc. as a main component, Ni, Fe, Co, etc.
  • the diffusion of the Cr into the diffusion barrier layer does not impair the diffusion barrier characteristics, and the Cr-depleted layer is not formed due to the diffusion of Cr from the metal base material during the metal layer.
  • the diffusion barrier layer must have a composition that is effective in suppressing the diffusion of A1, which is harmful to the strength of the metal substrate, and Ti, Ta, etc., which are harmful to maintaining oxidation resistance. It is necessary to have the property of being able to stably exist for a long time in contact with the A1 containing alloy layer or the metal substrate having the property. That is,
  • the cast energy of the reaction with the A1 containing alloy layer and the metal substrate take a positive value, or that the absolute value is small even if it is negative.
  • the diffusion barrier layer as a continuous layer consisting of a Re-W sigma phase containing 12.5 to 56.5% of W in atomic composition and excluding unavoidable impurities and leaving the remainder as Re is as follows. The requirement as a diffusion barrier can be satisfied.
  • Another alloy film for a diffusion barrier according to the present invention contains 12.5 to 56.5% of W and 20 to 60% of Re in atomic composition, and the total amount of Re and W is 50% or more. Except for the pure substance, the rest is at least one selected from Cr, Ni, C ⁇ and Fe. And a diffusion barrier layer consisting essentially of the Re-W sigma phase.
  • the diffusion barrier layer of the diffusion barrier alloy film of the present invention may be formed, for example, by applying R e or R e alloy plating and W or W alloy plating to the surface of a metal substrate,
  • It is formed by performing a heat treatment at 0 ° C. or more.
  • the alloy film for a diffusion barrier of the present invention further has a Re dispersion layer in which Re is dispersed at an interface between the diffusion barrier layer and a metal substrate on which the diffusion barrier layer is coated. ,.
  • the bonding force between the diffusion barrier layer and the metal layer is increased.
  • the macroscopic coefficient of thermal expansion can be set to an intermediate value between the diffusion barrier layer and the metal s.
  • the Re alloy plating is performed in two steps, and after performing the W alloy plating, heat treatment is performed at 1200 ° C. or more, so that the Re dispersion layer and the The diffusion barrier layer can be formed.
  • the surface of the diffusion barrier layer may be coated with a diffusion infiltration alloy layer containing A1, Cr or Si in an atomic composition of 10% or more and less than 50%.
  • the alloy film for diffusion barrier of the present invention may further include a W dispersion layer in which W is dispersed at an interface between the diffusion barrier layer and the alloy layer for diffusion and penetration.
  • the diffusion barrier layer and the diffusion / penetration alloy layer can be separated from each other.
  • the macroscopic thermal expansion coefficient can be set to an intermediate value between the diffusion barrier layer and the diffusion-penetrating alloy film.
  • the method for producing an alloy film for a diffusion barrier comprises the steps of: applying R e or R e alloy plating and W or W alloy plating to the surface of a metal base material; A heat treatment is performed to form a diffusion barrier layer made of a Re-W alloy.
  • Another method of manufacturing an alloy film for a diffusion barrier according to the present invention is as follows. After performing Re alloy plating on the surface of a metal substrate in two steps, and then performing W alloy plating, the temperature is set to 120 ° C. or more. Then, a heat treatment is performed to form a dispersion layer in which Re is dispersed and a diffusion barrier layer made of a Re-W alloy.
  • Still another method for producing an alloy film for a diffusion barrier according to the present invention is to form a diffusion barrier layer made of an Re—W alloy on a surface of a metal substrate by melting and salting.
  • a diffusion infiltration alloy layer containing 1, Cr or Si having an atomic composition of 10% or more and less than 50% is formed by molten salt coating.
  • Still another method of manufacturing an alloy film for a diffusion barrier according to the present invention includes forming irregularities on the surface of a metal substrate, and forming a diffusion barrier layer made of a Re_W alloy on the surface of the substrate having the irregularities. Irregularities are formed on the surface of the diffusion barrier layer, and a corrosion-resistant alloy layer is formed on the surface of the diffusion barrier layer having the irregularities.
  • Still another method of manufacturing an alloy film for a diffusion barrier according to the present invention includes forming irregularities on the surface of a metal substrate, forming a diffusion barrier layer made of a Re_W alloy on the surface of the substrate on which the irregularities have been formed, Irregularities are formed on the surface of the diffusion barrier layer, and a wear-resistant layer is formed on the surface of the diffusion barrier layer having the irregularities.
  • the Re-W alloy contains, for example, 12.5 to 56.5% of W in atomic composition, and is composed of a Re-W-based ⁇ phase in which the remainder is Re except for unavoidable impurities.
  • the Re-W alloy contains 12.5 to 56.5% of W and 20 to 60% of Re in atomic composition, and the total amount of Re and W is 50% or more. Except for inevitable impurities, the remainder may be at least one or more selected from Cr, Ni, C0 and Fe, and may consist essentially of the Re-W system ⁇ phase.
  • a 1, Cr or Si is subjected to a diffusion transmission treatment to form a diffusion barrier film.
  • a diffusion-penetration alloy film may be formed on the surface.
  • the surface of the metal substrate may be subjected to Cr plating in advance.
  • the high-temperature apparatus member of the present invention includes a diffusion barrier layer composed of a Re_W-based ⁇ phase containing 12.5 to 56.5% of W in atomic composition, excluding unavoidable impurities, and remaining as Re. Was coated on the surface of the metal substrate.
  • Another high-temperature apparatus member includes W in an atomic composition of 12.5 to 56.5% and Re of 20 to 60%, and the total amount of Re and W is 50% or more.
  • a diffusion barrier layer consisting essentially of a Re-W based ⁇ phase, excluding unavoidable impurities, and remaining at least one selected from Cr, Ni, Co and Fe. was coated on the surface of the metal substrate.
  • the surface of the diffusion barrier layer is coated with a diffusion infiltration alloy layer containing A1, Cr or Si in an atomic composition of 10% or more and less than 50%.
  • the effect of the alloy film for a diffusion barrier of the present invention as a diffusion barrier is exhibited even at a high temperature of 100 ° C. or more, and even at a temperature of 115 ° C. or more. It is known that in such a high temperature range, the alumina film exhibits good oxidation resistance. In order to maintain a sound alumina film over a long period of time, it is necessary for the surface of the member (metal substrate) to contain at least 10 atomic% of A1. Further, as described above, it is necessary that the alumina film has a low reactivity with the diffusion barrier layer composed of the Re-W alloy ⁇ phase and has a composition. For that purpose, the A1 concentration of the alumina film must be less than 50 atomic%.
  • the A 1 concentration of the alloy layer for diffusion infiltration which is formed of, for example, an A 1 rich layer, which is coated on the surface of the diffusion barrier layer, be 10 atomic% or more and less than 50 atomic%.
  • the metal substrate is a Ni-A1-based or Ni-A1-Pt-based alloy, a transformation occurs when the A1 concentration decreases. For this reason, it is not preferable to set the A 1 concentration of the alloy layer for diffusion and infiltration comprising the A 1 rich layer to 50 atomic% or more.
  • R e dispersion layer in which R e is dispersed, is further provided between the metal substrate and the diffusion barrier layer.
  • a w-dispersion layer in which W is dispersed may be further provided between the diffusion barrier layer and the diffusion-penetration alloy film.
  • the surface of the alloy layer for diffusion and infiltration may be covered with a ceramics layer, and the surface of the diffusion barrier layer may be coated with a heat-resistant alloy film or a wear-resistant film.
  • a diffusion barrier layer consisting essentially of a Re-W alloy sigma phase is provided on the surface of a metal substrate, and, if necessary, A
  • A1 containing alloy layer alloy layer for diffusion and infiltration
  • the life of high-temperature equipment members can be extended over a longer period of time, and the C r from metal substrates can be extended, as compared with the conventional R e—C r (-N i) -based alloy coating. Since the diffusion of chromium can be eliminated, the formation of a Cr-deficient layer on the surface of the metal substrate can be suppressed. This allows the use of diffusion barrier alloy coatings for more and a wider range of applications.
  • FIGS. 1A to 1C are diagrams showing an example of manufacturing steps of a high-temperature device member having an alloy film for a diffusion barrier according to an embodiment of the present invention in the order of steps.
  • FIG. 2 is a diagram schematically illustrating a cross section of a sample after A1 diffusion processing in the example.
  • FIG. 3 is a diagram schematically showing a cross section of a sample after oxidizing in an atmosphere of 115 ° C. for 2 weeks in the example.
  • FIG. 4 is a diagram schematically illustrating a cross section of a sample after A1 diffusion processing in a comparative example.
  • FIG. 5 is a diagram schematically illustrating a cross section of a sample after oxidation in an atmosphere at 115 ° C. for two weeks in a comparative example.
  • FIG. 6 is a diagram schematically showing a cross section of a high-temperature device having a diffusion barrier alloy film according to another embodiment of the present invention.
  • FIG. 7 is a diagram schematically showing a cross section in which a ceramic layer is formed on the surface of the high-temperature device member shown in FIG.
  • FIG. 8A is a diagram schematically showing a cross section in which a Ni (Cr) alloy layer is formed on the surface of the diffusion barrier layer in the modification of FIG. 6, and FIG. 8B is a diagram showing the diffusion in the modification of FIG.
  • FIG. 3 is a diagram schematically showing a cross section in which a diffusion / penetration alloy layer composed of a Ni (Cr) -Al (X) alloy layer is formed on the surface of a barrier layer.
  • FIG. 9 is a diagram schematically showing a cross section of a high temperature device member having a diffusion barrier alloy film according to still another embodiment of the present invention.
  • FIG. 10 is a diagram schematically showing a cross section in which a ceramic layer is formed on the surface of the high-temperature device member shown in FIG.
  • FIG. 11 is a diagram schematically showing a cross section of a high-temperature device having a diffusion barrier alloy film according to still another embodiment of the present invention.
  • FIG. 12 is a diagram schematically showing a cross section in which a ceramic layer is formed on the surface of the high-temperature device member shown in FIG.
  • FIG. 13 is a diagram schematically showing a cross section of a high-temperature device having a diffusion barrier alloy film according to still another embodiment of the present invention.
  • FIG. 14 is a perspective view of a micro gas turbine combustor liner to which the present invention is applied.
  • FIG. 15 is a partial cross-sectional view of the micro gas turbine combustor liner shown in FIG.
  • FIG. 16 is a perspective view of a micro gas turbine nozzle to which the present invention is applied.
  • FIG. 17 is a perspective view of an automobile exhaust manifold to which the present invention is applied.
  • FIG. 18 is a diagram showing an example in which an aqueous solution is applied to the combustion injection nozzle of the micro gas turbine combustor liner shown in FIG.
  • FIG. 19 is a diagram showing an example in which aqueous plating is performed on the combustion gas inlet of the micro gas turbine nozzle shown in FIG.
  • FIG. 20 is a perspective view of a micro gas turbine blade to which the present invention is applied.
  • FIG. 21 is a diagram showing an example in which an aqueous solution is applied to the micro gas turbine blade shown in FIG.
  • FIG. 22A is a perspective view of a gas turbine combustor to which the present invention is applied
  • FIG. 22B is an enlarged sectional view of a part A in FIG. 22A.
  • FIG. 23 is a perspective view showing a gas turbine bucket to which the present invention is applied.
  • FIG. 24 is a perspective view showing a gas turbine stationary blade to which the present invention is applied.
  • FIG. 25 is a sectional view of an automotive catalytic converter to which the present invention is applied.
  • FIG. 26 is an enlarged view of a main part in which an alloy film for a diffusion barrier is formed on the automotive catalytic converter shown in FIG. 25.
  • FIG. 27 is a diagram schematically showing a semiconductor manufacturing exhaust gas treatment apparatus to which the present invention is applied.
  • FIG. 28 is a diagram showing a burner to which the present invention is applied.
  • FIG. 29 is a diagram showing a thermocouple protection tube to which the present invention is applied.
  • FIG. 30 is a cross-sectional view of a diffuser blade to which the present invention is applied.
  • FIG. 1A to 1C show a manufacturing example of a high-temperature equipment member having an alloy film for a diffusion barrier according to an embodiment of the present invention in the order of steps.
  • a metal base material 10 made of, for example, a Ni-based alloy and serving as a base material of a mounting member is prepared.
  • the metal composed of this Ni-based alloy most of Ni-Cr-based heat-resistant alloys can be used, such as Hastelloy X and Haynes, which are Ni-20% Cr-based alloys. 23 0, Inconel 6 25, ⁇ Sparoy, Inconel 718, Inconel 738, etc., Mar-M247 and CM SX which are Ni-Cr-A1 alloys used for turbine blades, etc. — 4, CM SX-10, TMS-138, and Ni-40% Cr-W alloys.
  • a Co-based alloy or a Fe-based alloy may be used as the metal substrate 10 in addition to the Ni-based alloy.
  • the surface of the metal substrate 10 contains 12.5 to 56.5% of W in atomic composition, except for unavoidable impurities, and the rest as Re.
  • a diffusion barrier layer (R e—W (M) alloy layer) 18 composed of the ⁇ phase and constituting the diffusion barrier alloy film is formed.
  • This unavoidable impurity M is mainly Ni when, for example, a Ni base alloy is used as the metal substrate 10.
  • the inevitable impurities X include Ni, Cr, Fe, Mo, and Co.
  • the diffusion barrier layer 18 constituting this diffusion barrier alloy film contains 12.5 to 56.5% of W and 20 to 60% of Re in atomic composition, and the total amount of Re and W is 50% or more. Except for essential impurities, and the remainder is at least one selected from Cr, Ni, Co and Fe, and may consist essentially of the Re-W system ⁇ phase.
  • the alloy of W and Re is also expected to have a melting point of 3000 ° C3 ⁇ 43 ⁇ 4. Therefore, by forming an alloy film for a diffusion barrier with the diffusion barrier layer 18 composed of a Re—W-based phase, Ni, Fe, Co, etc. diffuse into the diffusion barrier layer 18 from the metal substrate 10. Even when alloying is performed, the decrease in the melting point of the diffusion barrier layer 18 is smaller than when the diffusion barrier layer (alloy coating for diffusion barrier) is composed of the Re_Cr-based phase, and does not impair the diffusion barrier characteristics. .
  • the Re-W alloy has a tendency to exclude Cr, so that it is used at a high temperature to diffuse Cr into the metal base material 10 due to its use. No Cr deficiency layer is formed.
  • the diffusion barrier layer 18 composed of the Re-W-based ⁇ phase having the above-described composition prevents diffusion of A 1 harmful to the strength of the metal base material 10 and Ti and Ta harmful to maintaining the oxidation resistance. Suppressed, has oxidation resistance, and has the property of being able to stably exist for a long time in contact with the following alloy layers for diffusion and infiltration (A1 containing alloy layer) 20 and metal base material 10, and is required as a diffusion barrier Meet the required requirements.
  • a 1, Cr or Si having an atomic composition of 10% or more and less than 50% is applied to the surface of the metal substrate 10 on which the diffusion barrier layer 18 is formed.
  • the diffusion-penetration alloy layer 20 is coated, thereby forming a coating layer having the diffusion barrier layer 18 and the diffusion-penetration alloy layer 20.
  • the effect of the diffusion barrier layer 18 as a diffusion barrier is exhibited at a high temperature of 1000 ° C. or more, and even at 1150 ° C. or more. It is known that the alumina film exhibits good oxidation resistance in such a high temperature range.
  • the alumina film In order to maintain a sound alumina film over a long period of time, it is necessary that A1 of 10 atomic% or more exists on the surface of the metal substrate 10. Further, as described above, it is necessary that the alumina film has a composition having low reactivity with the diffusion barrier layer 18 composed of the Re-W alloy ⁇ phase, and for that purpose, the A1 concentration needs to be less than 50 atomic%. is there. For this reason, it is preferable that the A 1 concentration of the diffusion-penetration alloy layer 20 made of, for example, an A 1 -containing alloy layer coated on the surface of the diffusion barrier layer 18 be 10 atomic% or more and less than 50 atomic%.
  • the metal is a Ni-A1 or Ni-A1-Pt alloy
  • transformation occurs when the A1 concentration decreases.
  • the A1 concentration of the alloy layer 20 for diffusion and penetration is 50 atomic% or more.
  • the diffusion barrier layer 18 constituting the same alloy film for the diffusion barrier can be obtained. Can be obtained.
  • the surface of the diffusion barrier layer 18 is sprayed using an A 1 (or S i, Cr) alloy powder selected according to the operating temperature and environment.
  • a diffusion infiltration alloy layer 20 made of an alloy film containing A 1 (or Si, Cr) is formed.
  • a diffusion barrier layer 18 that constitutes an alloy film for a diffusion barrier on a metal substrate (part) 10 having a complex shape with pores, etc.
  • a metal substrate 10 such as a Ni, Co or Fe-based alloy
  • the surface of a metal substrate 10 such as a Ni, Co or Fe-based alloy is coated with a Re or Re alloy by plating with an aqueous solution to form a Re or Re alloy film.
  • Apply W or W alloy by water-soluble plating to the surface to form a W or W alloy film.
  • the metal substrate 10 after the attachment is heat-treated in a vacuum of 1200 ° C. or more or in an inert atmosphere, thereby forming a diffusion barrier layer 18 having a uniform composition and thickness. .
  • the surface of the diffusion barrier layer 18 is coated with Ni (or Fe, Co) and diffused with A1 (or Cr, Si), thereby containing A1 (or Cr, Si).
  • An alloy layer 20 for diffusion and infiltration made of an alloy film is formed.
  • the molten salt plating method almost all elements can be plated. Further, since the molten salt plating is generally performed at a high temperature, the heat treatment step can be omitted, which is advantageous in terms of process and economy. That is, the surface of the metal substrate 10 made of Ni, Co or Fe-based alloy is molten and salt-coated with Re using, for example, a chloride or fluoride bath, and thereafter, for example, a halogen bath is used. The molten salt is applied to W using. As a result, the diffusion barrier layer 18 constituting the diffusion barrier alloy film is formed on the surface of the metal substrate 10 as it is. More preferably, the metal substrate 10 after plating is heated to a vacuum of 1200 ° C or more.
  • a diffusion barrier layer 18 having a more uniform composition is formed on the surface of the metal substrate 10. Further, the surface of the diffusion barrier layer 18 is melted with Ni (or Fe, Co) and A1 (or Cr, Si) to form A1 (or Cr, Si). ) A diffusion / penetration alloy layer 20 composed of the contained alloy film is formed. Any of the above methods (1) to (3) may be partially adopted.
  • the diffusion barrier layer 18 may be manufactured by a combination of the plating with an aqueous solution and heat treatment, and the diffusion-penetration alloy layer 20 made of an A1 (or Cr, Si) -containing alloy film may be manufactured by a thermal spraying method. Good. These methods can be freely selected depending on the composition of the metal, the shape of the member, the cost, and the like.
  • a strip specimen of Ni-based alloy (CMSX-4) was used as a metal substrate.
  • the surface of the metal substrate (test piece) was polished with Si C # 240, degreased, and then tested.
  • the construction method that combines solution plating and diffusion treatment was adopted, with consideration given to the construction of parts with complex shapes.
  • a Re—Ni alloy was deposited at a current density of 0.1 AZcm 2 for 30 minutes using a Re—Ni alloy plating bath with an ammoniacal citrate bath having the following bath composition.
  • W_Ni plating was performed at a current density of 0.1 A / cm 2 for 30 minutes.
  • test piece a heat treatment of 1 0 h was performed in a vacuum of 1300 ° C, 10 one 3 P a. Further, the test piece after the heat treatment, using a Watts bath, after N i plating for 60 minutes at a current density of 5 mA ZCM 2, in N i A 1 and A 1 2 0 3 of mixed-powder, A1 diffusion treatment was performed at 900 for 5 hours.
  • FIG. 2 shows a schematic view of the cross section of the test piece after the treatment.
  • Table 1 shows the results of elemental analysis at each point in the cross section in FIG. (1) to (5) in Tape No. 1 correspond to (1) to (5) in FIG.
  • the surface of the metal substrate (Ni-based alloy substrate) 10a has 42 atomic%! 3 ⁇ 4e—36 atomic% alloy layer (the remaining Ni%, Co, Cr , Mo) Diffusion barrier layer 18 a composed of Ni-atomic 40 atomic% 1 alloy film (the remainder contains several% of Co and Cr) It can be seen that the following diffusion / penetration alloy layers 20a are formed. Al is hardly diffused on the metal substrate 10a side. Further, the Cr concentration in the metal substrate 10a is about 7%, both in the vicinity of the surface of the metal substrate 10a and inside the metal substrate 10a. It can be seen that no depletion layer was formed.
  • the diffusion barrier layer 18a and the diffusion infiltration alloy layer 20a were continuous layers having a substantially uniform composition and thickness over the entire surface of the test piece, including not only the flat portion but also the end portion. .
  • Fig. 3 shows a schematic diagram of a cross section of the test piece after oxidizing it for 2 weeks in an atmosphere at 1150 ° C. Show.
  • the result of elemental analysis at each point in the cross section in FIG. (1) to (6) in Tape No. 2 correspond to (1) to (6) in Fig. 3, respectively.
  • ⁇ alumina film As shown in FIG. 3, on the surface of the diffusion coating alloy layer 20 a, a few microns thick of ⁇ alumina film (A 1 2 0 3) 22 a was present.
  • the A1 concentration of the diffusion infiltration alloy layer (A1 containing alloy layer) 20a directly below it is about 38.5 atomic%, and the diffusion barrier layer 18a directly below it is about 42.2 atomic% e, which is the same as before oxidation.
  • 37.0 atomic% ⁇ alloy layer including Ni, Co, Cr and Mo by several% in the balance). Al diffusion into the metal substrate 10a was hardly observed.
  • the Re-W binary alloy is inherently more stable than that containing several percent of Cr, Ni, etc., and as a diffusion barrier You can see that it is better.
  • Cr tends to be rather eliminated from the Re—W alloy layer, which is the diffusion barrier layer 18a, and essentially forms a Cr-depleted layer on the surface of the metal substrate 10a. Unfortunately, it can be seen that it has characteristics.
  • Fig. 4 shows a schematic diagram of the cross section of the sample after the treatment.
  • Table 3 shows the elemental analysis results for each point in the cross section in FIG. (1) to (5) in the tape holder 3 correspond to (1) to (5) in FIG.
  • Mouth ⁇ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 As shown in FIG. 4, on the surface of the metal substrate (Ni-based alloy substrate) 10b, 40 atomic% 1 e -40 atomic% Cr-17 atoms. A diffusion barrier layer 18b composed of a / oNi alloy layer (containing a few percent of Co in the balance) is coated on the surface of the diffusion barrier layer 18b with a ⁇ -39.4 atomic% A1 containing alloy layer (the balance is % Co and Cr) are formed, respectively. Although Al is hardly diffused on the metal substrate 10b side, the Cr concentration near the diffusion barrier layer 18b in the metal substrate 10b is smaller than the bulk concentration of the metal substrate 10b. It can be seen that it has decreased slightly.
  • FIG. 5 shows a schematic diagram of a cross section of the test piece after being oxidized in an atmosphere at 1150 ° C. for 2 weeks.
  • the result of elemental analysis at each point in the cross section in FIG. (1) to (6) in Table 4 correspond to (1) to (6) in Fig. 5, respectively.
  • the A 1 concentration of the diffusion-penetration alloy layer (A 1-containing alloy layer) 20a was 38.4 to 38.5 atomic% even after oxidation
  • This comparative example It can be seen that in the alloy layer for diffusion and infiltration (A1 containing alloy layer) 20b, the amount decreased to 35.0 to 35.5 atomic%. Further, in this comparative example, it can be seen that the Cr-deficient layer is still formed even after oxidation immediately below the diffusion barrier layer 18b, and that the A1 concentration is slightly increased.
  • the diffusion barrier layer 18b made of a Re—Cr—Ni-based alloy As described above, even with the diffusion barrier layer 18b made of a Re—Cr—Ni-based alloy, the diffusion barrier characteristic is exhibited at 1150 ° C., but the Cr-deficient layer immediately below the diffusion barrier layer 18a. The formation of and a small amount of A1 concentration decrease in the diffusion-penetration alloy layer (A1-containing alloy layer) 20b and the diffusion of A1 into metal S # 10b are observed. On the other hand, these phenomena are not observed in the diffusion barrier layer 18a made of the Re—W-based alloy of the present invention, suggesting that the diffusion barrier layer 18a is a more excellent diffusion barrier. In the above-described example, as shown in FIG.
  • a diffusion barrier layer (Re—W (M) alloy) constituting a diffusion barrier alloy film is formed on the surface of a metal substrate 10 made of an Ni-based alloy.
  • a Ni (Cr) alloy layer is formed on the surface of the diffusion barrier layer 18.
  • an alloy layer 28 for diffusion and infiltration composed of, for example, a Ni (Cr) -Al (X) alloy layer is formed on the surface of the diffusion barrier layer 18. You can even do the coating.
  • FIG. 9 shows a high temperature device member having an alloy film for a diffusion barrier according to another embodiment of the present invention.
  • a Re dispersed layer 30 in which Re is dispersed, a diffusion barrier layer (Re—W (M) alloy layer) 18, and the like are dispersed on the surface of a metal substrate 10 such as a Ni-based alloy.
  • W dispersion layers 32 are sequentially formed, and the surface of the W dispersion layers 32 is, for example, Ni—A 1 (X)
  • the Re dispersion layer 30 was interposed between the metal substrate 10 and the diffusion barrier layer 18, and the W dispersion layer 32 was interposed between the diffusion barrier layer 18 and the diffusion transmission alloy layer 20, respectively.
  • the W dispersion layer 32 was interposed between the diffusion barrier layer 18 and the diffusion transmission alloy layer 20, respectively.
  • the Re-dispersion layer 30 is a layer having a thickness of 1 to 100 ⁇ in which, for example, Re particles having a particle size of 0.1 to 20 / xm are dispersed at a volume ratio of 10 to 8 °%, and a W-dispersion layer.
  • Reference numeral 32 denotes a layer having a thickness of 10 to: L 00 m in which, for example, W particles of 1 to 20 / xm are dispersed in a volume ratio of 20 to 80%.
  • the R e dispersion layer 30, the diffusion barrier layer 18 and the W dispersion layer 32 are, for example, coated with the first Re—Ni alloy having a low concentration of Re (25 to 40 at. (65 to 90 atomic%) after the second Re-Ni alloy plating is performed sequentially, followed by W_Ni alloy plating, Ni plating, and W-Ni alloy plating, followed by heat treatment. It can be formed by This is because the low-concentration Re-Ni layer adjacent to the metal substrate 10 has two phases, Ni phase in which Re forms a solid solution and Re phase in which Ni forms a solid solution, and the diffusion-permeability alloy layer 20. The resulting Ni_W layer is separated into two phases, a Ni phase in which W forms a solid solution and a W phase in which Ni forms a solid solution.
  • the surface of the diffusion coating alloy layer 20 is subjected to a Z r 0 2 ceramics coating (so-called heat shield coating)
  • a thickness of forces from 00 to 400 A / im ceramic layer 24 may be formed.
  • FIG. 11 shows a high-temperature device having a diffusion barrier alloy film according to still another embodiment of the present invention.
  • a diffusion barrier layer (Re—W (M) alloy layer) 18 constituting an alloy film for a diffusion barrier is formed on a surface of a metal base material 10 such as a Ni-based alloy, which is provided with irregularities in advance, using, for example, PVD. 0.5 to 30 / m coating, this diffusion barrier layer 18
  • a corrosion-resistant alloy layer 34 made of, for example, a CoNiCrA1Y alloy is coated with a thickness of 30 to 400 ⁇ by thermal spraying or the like. .
  • the surface of the corrosion-resistant alloy layer 3 4 for example by subjecting Z r 0 2 ceramics coating (so-called heat shield coating), for example, a thickness
  • a ceramic layer 24 of 100 to 400 ⁇ may be formed.
  • FIG. 13 shows an elevated member having an alloy coating for a diffusion barrier according to still another embodiment of the present invention.
  • a diffusion barrier layer (R e _W (M) alloy layer) 18 constituting a diffusion barrier alloy film is provided on the surface of a metal substrate 10 such as a Ni-based alloy, which is provided with irregularities in advance. Coating with a thickness of 10 to 50 / im by thermal spraying, and after forming irregularities on the surface of the diffusion barrier layer 18, for example, W carbide or Cr carbide 36 is dispersed.
  • the wear-resistant layer 38 made of iCrA1Y alloy is coated with a thickness of 30 to 400 ⁇ m by a thermal spraying method or the like.
  • the depth of the concave portion in the unevenness provided on the surface of the metal base 10 and the diffusion barrier layer 18 is, for example, 1 to 20 ⁇ , and It is formed by shot plus.
  • FIG. 14 is a perspective view of a micro gas turbine combustor liner to which the present invention is applied
  • FIG. 15 is a partial cross-sectional view thereof
  • FIG. 16 is a perspective view of a micro gas turbine nozzle to which the present invention is applied
  • FIG. 17 is a perspective view of an automobile exhaust manifold.
  • the fuel injection nozzle 42 is provided, and in the microphone gas turbine nozzle 44 shown in FIG. 16, the combustion gas inlet 46 is provided in the circumferential direction. They are installed at equal intervals.
  • the exhaust manifold 48 shown in FIG. 17 is constituted by a tube 50 having a »shape. In each case, these members have a narrow cavity shape (pore portion) such as the fuel injection nozzle 42 in the micro gas turbine combustor liner 40, and are diffused into the pore portion. It is necessary to uniformly form the barrier alloy film.
  • the diffusion barrier layer (R e- W (M) alloy shown in FIG. 6) is formed in the pores of the fuel injection nozzle 42 of the micro gas turbine combustor liner 40 by the aqueous solution plating.
  • Layer A film such as 18 is formed with a uniform thickness.
  • the fuel injection nos of the micro gas turbine combustor liner 40 immersed in the plating solution 54 in the plating tank 52.
  • the stirring blade 60 disposed at the bottom of the plating tank 52 is rotated to rotate the plating tank 52.
  • the plating liquid 54 is agitated, and at the same time, a plating voltage is applied between the anode 56 and the micro gas turbine combustor liner 40 that has been forged, and the fuel injection nozzle of the micro gas turbine combustor liner 40 is applied. 4
  • the inside (surface) of 2 is plated.
  • the anode 56 is located in the combustion gas inlet 46 of the micro gas turbine nozzle 44, and almost the same as the above-described example, while injecting the plating solution 54 from the plating solution supply pipe 58 toward the combustion gas inlet 46, the inside (surface) of the combustion gas inlet 46 of the micro gas turbine nozzle 44 is plated. I have to.
  • a diffusion barrier layer (R e _W (M) alloy layer) shown in FIG. 6 is provided on the surface of the pores of the material having the pores, including the exhaust manifold 48. Also when forming a film such as 8 etc., as in the above example, insert the hair node into the pores according to the shape of the member, and apply plating while spraying the dipping solution into the pores. A film having a uniform thickness can be formed.
  • micro gas turbine combustor liner 40 and the micro gas turbine nozzle 44 were connected to a Ni-based alloy Hastelloy X (N i -22% Cr-19% Fe-9% Mo-0. Although it is made of 1% C), a uniform film can be formed on the pores of other high-temperature members by the same method.
  • the member such as the micro gas turbine combustor liner 40 is immersed in a sodium hydrogen sulfate / sodium fluoride solution for 30 to 120 seconds. Then, the surface is activated. Thereafter, Ni strike plating is performed at room temperature at a current density of 100 to 50 OmAZcm 2 for 0.5 to 5 minutes. Thereafter, R e — Ni plating is performed.
  • Re- N i plating for example, a ReO 4 0. 02 ⁇ 0. 2 mol Bruno L, N i SO 4 to 0. 02 ⁇ 0. 2 mo 1 / L , 0.
  • Ni strike plating is performed again under the above conditions, and Ni-W plating is performed.
  • N i-W plating N i S0 4 to 0. 05 ⁇ 0. 2mo l / L, NaW0 4 to 0. 1 ⁇ 0. 4mo l / L, the Kuen acid 0. 1 ⁇ 0. 8mo l / L
  • the plating conditions are 50 to 80 ° C, 20 to 150 mAZcm 2 and 10 to 60 minutes are suitable.
  • Ni—W plating After the Ni—W plating, the Ni strike is applied under the above-mentioned conditions, and then the Ni plating is performed in a Ni pet bath.
  • Ni plating conditions in a Ni bath are 40 to 60 ° C and 5 to 50 mA / cm 2 for 5 to 120 minutes.
  • 10 _3 vacuum of Pa processes 1 to 20 hours heat at 1200 to 1350 ° C.
  • a member made of Hastelloy X containing about 20% Cr was used, a simple vacuum heat treatment was used.
  • the Cr concentration in the metal base material was less than 20%, N i— and C r alloy or C r, a 1 2 0 ( a 1 2 0 3 at a volume ratio of 1 or more) in the powder mixture of 3 may be heat-treated in an alumina crucible member to.
  • the member is further subjected to Ni strike plating and Ni plating in a Ni pet bath in which 0.01 to 5% by weight ⁇ r 4 + is dissolved. Apply As a result, a Ni plating layer containing 0.01 to 0.5 atomic% ⁇ r is formed, and thereafter, an A1 diffusion process is performed.
  • N i plating in N i Watto bath to dissolve the Z r 4 + Z r powder having a particle size of from 0.5 to 50 or N i Z r alloy powder,, Z r S i 2 powder , Y powder or the like may be dispersed in a Ni watt bath in which 1 to 1.0% is dispersed.
  • a 1 diffusion processing is performed, for example A 1 + A 1 2 0 3 + NH 4 C 1 mixed powder, 1 0 3 under a vacuum of P a, 1 0 minutes to 5 hours at 800 ⁇ 1 1 00 ° C.
  • the composition of the A 1 + A 1 2 0 3 + NH 4 C 1 powder mixture, in a weight ratio, A 1 2 0 3 / A 1 is 1 or more, NH 4 C 1 is a 0.1 to 1 0% of the total I do.
  • an inert atmosphere for example, Ar
  • Hot-dip A1 plating may be applied instead of the A1 diffusion treatment. Melting A1 is performed, for example, by immersing the member in a molten A1 plating bath at 700 to 900 ° C for 10 minutes to 5 hours.
  • FIG. 20 is a perspective view of a micro gas turbine blade to which the present invention is applied.
  • the micro gas turbine moving blade 62 is a radial moving blade, and has a plurality of blades 64 having a large curvature.
  • the surface of the micro gas turbine rotor blade 62 including the surface of the blade 64 is mainly attached to the surface of the micro gas turbine rotor blade 62 by an aqueous solution, as shown in FIGS. 8A and 8B.
  • Diffusion barrier layer R e— W (M) Alloy layer
  • a coating such as 18 is formed with a uniform thickness.
  • the micro gas turbine blade 62 is connected to the lower end of a rotating shaft 68 that rotates with the driving of the motor 66, and the plating in the storage tank 72 is surrounded by a cylindrical anode 70. Immerse in liquid 74. Then, while rotating the micro gas turbine blade 62 via the motor 66, the plating voltage is applied between the anode 70 and the micro gas turbine blade 62 which has been cathode through the sliding contact 76, and the micro gas is applied. The surface of the turbine blade 62 is plated.
  • a coating such as a diffusion barrier layer (Re—W (M) alloy layer) 18 shown in FIGS. 8A and 8B on the surface of a turbocharger for an automobile, etc.
  • a film having a uniform thickness can be formed on the surface of the member.
  • the micro gas turbine rotor blade 62 is made of Ni-based alloy Mar-M24 7 (Ni-8% Cr-10% Co-5% A1-10% W—Ta—Ti ), But even on high-temperature members with similar shapes, such as turbochargers for automobiles, a uniform film can be formed on the wing surface in the same manner.
  • the member such as the micro gas turbine blade 62 is immersed in a sodium hydrogen sulfate / sodium fluoride solution for 30 to 120 seconds to activate the surface, and thereafter, the Cr plating is performed.
  • C r plating, Cr ( ⁇ ) bath eg, C r C l 3 to 0. 1 ⁇ 0. 5mo lZL, HCOOH and 0.1 1 to 1.
  • room temperature to 30 ° C.
  • a Cr (VI) bath (Sergent bath) may be used instead of the Cr ( ⁇ ) bath. Care should be taken when using a C r (VI) bath, since the adhesion of the subsequent plating is slightly reduced.
  • Ni strike plating is performed at room temperature at a current density of 100 to 50 OmAZcm 2 for 0.5 to 5 minutes.
  • Re-Ni plating at 40-60 ° C and 10-150 mAZcm 2 for 10-60 minutes.
  • Re—Ni alloy plating The bath is preferably the same as in the above embodiment. Thereafter, Ni strike plating is performed again under the above conditions, and then Ni-W plating is performed. N i-W plating conditions, 50 ⁇ 80 ° C, 20 ⁇ : in L 5 OmA / cm 2, is suitable for 10 to 60 minutes. The same bath as that of the above embodiment is also preferable for the Ni—W alloy plating bath.
  • Ni strike plating is further performed under the above conditions, and then Ni plating is performed in a Ni bath.
  • Ni plating conditions in a Ni bath are preferably 40 to 60 ° C and 5 to 50111 / (: 1112 for 5 to 120 minutes.
  • 0.01 to 5 weight 0 / oZ r 4 + may be used N i watt bath having dissolved therein, in this case, the a 1 diffusion process to be described later, a Z r (Z rOC l 2, Z r C 1 4, Y, YC 1 3 Etc.) without mixing.
  • 10 _3 vacuum of P a handles 20 hours heat at 1200 to 1350 ° C.
  • the N i-C r alloy or C r, A 1 2 0 ( A 1 2 0 3 at a volume ratio of 1 or more) in the powder mixture of 3 may be heat-treated in an alumina crucible member to.
  • the coating layer having the diffusion barrier layer 18 and the Ni (Cr) alloy layer 26 shown in FIG. Can be formed.
  • inert atmosphere vacuum processing e.g. A r
  • Z instead of Z r r OC 1 2, Z r C l 4, Y, or the like may be used YC 1 3.
  • the coating layer having the diffusion barrier layer 18 and the diffusion infiltration alloy layer 28 composed of the Ni (Cr) —A 1 (X) alloy layer shown in FIG. It can be formed uniformly on the blade surface of the turbine blade 62 or the like.
  • the microturbine rotor blades and automotive turbochargers with this coating layer do not undergo fatal oxidation or corrosion for more than 1000 hours even when the coating surface temperature reaches 1100 to 1200 ° C, and maintain the soundness of the equipment. Can maintain sex. (3) Gas turbine components, jet engine components, automotive exhaust holders, catalytic converters, etc.
  • FIGS. 22A and 22B show a gas turbine combustor to which the present invention is applied
  • FIG. 23 shows a gas turbine rotor blade
  • FIG. 24 shows a gas turbine stationary blade
  • FIGS. 25 and 26 are sectional views of a catalytic converter for an automobile to which the present invention is applied
  • FIGS. 17 and 17 are perspective views of an exhaust manifold for an automobile.
  • the gas turbine rotor blades 80 shown in FIG. 23 and the gas turbine stator blades 82 shown in FIG. 24 shown in FIG. 24 high stress is expected to be applied during operation or during start / stop.
  • the exhaust manifold for automobiles 48 shown in FIG. 17 there is a concern about fatigue fracture caused by vibrations during driving.
  • the catalytic converter 90 for an automobile shown in FIGS. 25 and 26 is generally quite complicated, having a large number of honeycomb-shaped vents 96 partitioned by, for example, a flat bed 92 and a wavy bed 94. Shape. Therefore, in these members, when a coating layer having a diffusion barrier layer 18 and a diffusion infiltration alloy layer 20 is formed on the surface of the metal substrate 10 as shown in FIG. It is necessary that the thickness of the diffusion barrier layer 18 having a thermal expansion coefficient different from that of t10 and the alloy layer 20 for diffusion and infiltration be made thinner and more uniform to prevent rupture of the coating layer.
  • a gas turbine blade 80 made of a Ni-base superalloy (Ni-6% Cr_5% A1-6% W-9% Co_6% Ta-3% Re) is used.
  • Ni-base superalloy Ni-6% Cr_5% A1-6% W-9% Co_6% Ta-3% Re
  • An example of application is shown, but the present invention can be similarly applied to a gas turbine combustor liner, a gas turbine stationary blade, a jet engine member, an exhaust manifold, or a catalytic converter.
  • the member such as the gas turbine blade 80 is immersed in a sodium hydrogen sulfate / sodium fluoride solution for 30 to L: 20 seconds to activate the surface.
  • Ni strike plating is performed at room temperature at a current density of 100 to 50 OmAZcm 2 for 0.5 to 5 minutes, and then Ni-W plating is performed.
  • Ni—W plating conditions were 50 to 80 ° C. and 20 to 100 m using the same Ni—W alloy plating bath as in the above example. /. 15 to 30 minutes at 111 2 is suitable.
  • Ni strike plating is further performed under the above conditions, and then Re—Ni plating is performed.
  • Re-Ni plating conditions are suitably from 20 to 45 minutes at 40 to 60 ° C and 20 to 12 OmAZcm 2 using the same Re-Ni alloy plating bath as in the above embodiment.
  • Ni strike plating is performed again under the above conditions, and Ni plating is performed in a Ni bath.
  • Ni plating conditions in Ni watt bath are 40 ⁇ 60 ° C, 5 ⁇ 50
  • the diffusion barrier layer (Re—W (M) alloy layer) 18 shown in FIG. It can be formed on the surface.
  • the members such as the gas turbine blades 80 are further subjected to Ni strike plating, and then Ni plating is performed in a Ni pet bath.
  • N i plating conditions at N i Watto bath, 40 to 60 ° C, is not good 5-120 minutes at 5 ⁇ 5 OmAZc m 2.
  • a Ni watt bath in which 0.01 to 5 weight 0 / oZr4 + is dissolved may be used.In this case, Zr (Z r OC l 2, Z r C l 4, Y, etc. YC 1 3) may not be mixed.
  • inert atmosphere vacuum treatment e.g., A r
  • Z instead of Z r r OC 1 2, Z r C 1 4, Y, or the like may be used YC 1 3.
  • the diffusion barrier layer (R e-W (M) alloy layer) 18 shown in Figure 6? ⁇ _ 1 (X) alloy layer (X Zr, Y, Si) with diffusion-penetration alloy layer 20 and a coating layer with a thickness of 1 to 15 is formed uniformly on the member surface be able to. Further, the surface of the coating layer, if necessary, as shown in Figure 7, is subjected to Z r 0 2 ceramics coating (so-called heat shield coating), the thickness 1 0 0 ⁇ 4 0 0 / xm of By forming the cellamitas layer 24, higher temperature combustion can be achieved than before, and a gas turbine or a jet engine with high thermal efficiency can be realized.
  • honeycombed number R e-W (M) alloy layer 18 and the diffusion / penetration alloy layer 20 are provided on the surface of the flat bed 92 and the wavy bed 94, which form the ventilation holes 96. It is preferably used in a structure having a coating layer formed thereon.
  • Gas turbine members and jet engine members provided with this coating layer can be used for more than 100 hours even when the coating surface temperature reaches 110 ° C to 120 ° C. And maintain the soundness of the equipment.
  • the gas turbine combustor 84 shown in FIGS. 22A and 22B has a double structure having an inner cylinder 86 and an outer cylinder 88 for passing cooling air. Uniform film formation is also required on the outer peripheral surface of 86 and the inner peripheral surface of outer cylinder 88. Therefore, in the case of forming a coating layer having a diffusion barrier layer 18 and a diffusion-penetrating alloy layer 20 on the surface of the metal substrate 10 as shown in FIG.
  • the gas turbine blade 80 made of Ni-base superalloy (Ni-6% Cr-5% A1-6% W-9% Co-6% Ta-3% Re) Examples of application are shown, but the same can be applied to gas turbine combustor liners, gas turbine vanes, jet engine components, or exhaust manifolds for automobiles. Noh.
  • the member such as the gas turbine blade 80 is immersed in a sodium hydrogen sulfate / sodium fluoride solution for 30 to 120 seconds to activate the surface, and then N i Strike plating is performed at room temperature at a current density of 100 to 50 OmA / cm 2 for 0.5 to 5 minutes, and then, Re_Ni plating is performed.
  • R e—Ni plating uses the following two plating baths. First, ammoniacal Kuen acid bath (e.g., Re 0 4 to 0. 02 ⁇ 1 Omo 1 ZL, 0. The N i S0 4 02 ⁇ :. L. Omo l / L, 0. The Kuen acid 04 ⁇ 2.
  • N i strike plated by the above conditions After two stages of R e -N i plating, subjected to N i strike plated by the above conditions, after deer that, 50 to 80 ° C,-out N i _W flashing at 20 ⁇ 15 OmAZcm 2 10 ⁇ 60 minutes Is applied.
  • Ni—W plating it is preferable to use the same Ni—W alloy plating bath as in the above embodiment. Thereafter, Ni strike plating is performed again under the above conditions. The plating time at that time shall be 5 to 20 minutes. Thereafter, Ni-W plating is performed again under the above conditions.
  • N i _ (20 ⁇ 50)% C r alloy or C r and, A 1 2 0 (A 1 2 O 3 is 1 or more in volume ratio) 3 mixed-powder in the gas turbine rotor blade is buried a member 80 such as, under vacuum of 10- 3 P a, heat-treated for 1 to 20 hours at 1200 to 1350 ° C.
  • the mixed powder of A 1 2 ⁇ 3 A simple vacuum heat treatment or an inert atmosphere (for example, Ar) treatment may be used without causing members such as the gas turbine blade 80 to be immersed.
  • the members such as the gas turbine rotor blade 80 after the heat treatment are further subjected to Ni strike plating and Ni plating in a Ni-pet bath, and then subjected to A1 diffusion treatment.
  • the pet bath may use a Ni watt in which 0.01% to 5% by weight of ⁇ r 4 + is dissolved.
  • Zr Zr OC 1 2, Z r C 1 4 , Y, may not be mixed YC etc. 1 3).
  • a 1 diffusion process A 1 + A 1 2 0 3 + NH 4 C 1 + Z r mixed powder under vacuum of 10- 3 Pa, and 10 minutes to 5 hours at from 800 to 1 100 ° C.
  • inert atmosphere vacuum treatment e.g., Ar
  • Z instead of Z r r OC 1 2, Z r C 1 4, Y, or the like may be used YC 1 3.
  • the low-concentration Re-Ni layer has two phases: a Ni phase in which Re forms a solid solution and a Re phase in which Ni forms a solid solution. This is due to separation into two phases, a Ni phase in which W is dissolved and a W phase in which Ni is dissolved.
  • a so-called “wedge structure” having a Re dispersion layer 30 at the interface between the metal substrate 10 and the diffusion barrier layer 18 and a W dispersion layer 32 at the interface between the diffusion barrier layer 18 and the alloy layer 20 for diffusion and infiltration is provided.
  • the Re dispersed layer 30 in which Re particles having a particle size of 0.1 to 20 / zm are dispersed in a volume ratio of 10 to 80% is formed between the metal substrate 10 and the diffusion barrier layer 18 so that the particle size is reduced.
  • the surface of the coating layer is subjected Z r 0 2 ceramics coating (so-called heat shield coating), as shown in FIG. 1 0, of the Serammikusu layer 2 4 1 0 0 to 4 0 0 / im
  • Z r 0 2 ceramics coating so-called heat shield coating
  • the gas turbine and jet engine members provided with this coating layer can be used for more than 1000 hours even when the coating surface temperature reaches 110 ° C to 120 ° C. It does not suffer from corrosion and can maintain the soundness of the equipment.
  • Fig. 27 shows an outline of a semiconductor manufacturing flue gas treatment system to which the present invention is applied
  • Fig. 28 and Fig. 29 show burner and thermocouple protection tubes used for waste incineration and gasification equipment, respectively.
  • a semiconductor manufacturing exhaust gas treatment device burns with a burner 104 using air supplied from an exhaust gas supply pipe 100 and blown out from a combustion assist air nozzle 102.
  • the treated exhaust gas is introduced into a reaction tower 106 surrounded by a water-cooling jacket 105 for treatment, and the treated exhaust gas is cooled by cooling water jetted from a cooling spray 108 to the outside. It is configured to discharge.
  • the reaction tower 106 high-temperature halogen-based gas is handled.
  • the apparatus may be violently damaged.
  • a burner of a waste incinerator or a gasifier that is attached to the furnace wall 110 and that is exposed to the inside of the furnace wall 110 and ejects a flame is also provided.
  • a reaction tower 106 of a semiconductor manufacturing exhaust gas treatment device made of a Ni-based alloy (Ni-22% Cr-19% Fe-9% Mo-0.1% C) will be described.
  • semiconductor manufacturing flue gas treatment equipment for example, it is exposed to a high-temperature chloride corrosion environment, such as a waste incineration and gasification equipment panner 112 shown in Fig. 28 and a thermocouple protection tube 118 shown in Fig. 29.
  • a physical method such as thermal spraying is not possible due to its complicated shape like the exhaust manifold for automobiles 48 shown in Fig. 17, it is a member that requires a high degree of reliability, or a gas turbine member or a jet engine.
  • the present invention can be similarly applied to a member such as a member that requires a particularly sound film.
  • the member such as the reaction tower 106 was immersed in a sodium hydrogen sulfate Z sodium fluoride solution for 30 to 120 seconds to activate the surface, and thereafter, KC 1 -Na C 1
  • the Re salt and the W salt are dissolved in the system supporting salt, the molten salt plating is performed at 700 to 1000 ° C, and the Re—W alloy is electrodeposited on the surface of the member such as the reaction tower 106.
  • N i in C l 2 -A l C l 3 -Na C l -Z r C l 4 molten salts performs soluble Torushio plated at 200 ⁇ 800 ° C
  • Z r C 1 to 4 of the change or the like may be used YC 1 3.
  • the diffusion barrier layer (Re-W (M) alloy layer) 18 shown in Fig. 6 has a dense porosity of less than 0.1% and very few defects by the molten salt deposition process.
  • N i -A 1 (X) alloy layer (X Zr, Y)
  • a coating layer having a diffusion / penetration alloy layer 20 composed of force can be formed.
  • the soundness of the equipment can be maintained for a longer time than before, and the equipment can be used at high temperatures.
  • an auxiliary combustion device is not required, which simplifies the device and is advantageous in cost.
  • the coating surface temperature can reach 1100-1200 ° C. However, it does not undergo fatal oxidation or corrosion for more than 1000 hours, so that the integrity of the equipment can be maintained and high-temperature combustion can be achieved.
  • the gas turbine combustor 84 shown in FIGS. 22A and 22b, the gas turbine rotor blade 80 shown in FIG. 23, and the gas turbine stationary blade 82 shown in FIG. 24 have a small curvature and are relatively simple. There are locations exposed to shaped hot combustion gases. At these locations, thermal spraying or physical vapor deposition (PVD) can be used.
  • PVD physical vapor deposition
  • a film is formed by a physical method, adhesion between the film and the metal substrate is poor, and peeling of the film may be a problem. For this reason, it is necessary to improve the adhesion of the film to the metal substrate by imparting an appropriate roughness to the surface of the metal substrate in advance to impart an anchor effect to the film.
  • the present invention is applied to a gas turbine combustor 84 made of a Co-based alloy stellite 250 (Co—30% Cr-10% Fe) is shown.
  • the gas turbine stationary blade, the gas turbine blade, or the jet engine member Can be implemented in the same manner.
  • the member such as the gas turbine combustor 84 is subjected to an alumina shot blast to remove oxides on the surface and to provide appropriate irregularities on the surface of the member.
  • the depth of the concave portion in the concave and convex is preferably about 1 to 20 / Zm.
  • a Re-W alloy having a thickness of, for example, 0.5 to 30 / xm is coated with PVD.
  • a CoNiCrA1Y alloy is sprayed at a thickness of, for example, 30 to 400 / zm.
  • the coating layer having the diffusion barrier layer (R e _W (M) alloy layer) 18 and the corrosion-resistant alloy layer made of the CoNiCrA1Y alloy shown in FIG. Can be formed on the surface of the member. May remain If this ambient temperature is used in 1200 ° C following environments, when used in 1200 ° C or more environments, this surface, as shown in FIG. 12, Z r O 2 based ceramic coating ( The so-called thermal barrier coating is applied to form the ceramics layer 24 with a thickness of 100 to 400 m. As a result, higher temperature combustion can be achieved than before, and a gas turbine or jet engine with high thermal efficiency can be realized.
  • FIG. 30 shows a cross-section of a diffuser nozzle of a fluidized bed type waste combustion device or gasifier to which the present invention is applied.
  • This type of diffuser nozzle 120 shown in FIG. 30 has a steam or gas flow path 122 inside, and is generally in a flowing atmosphere of sand containing a large amount of high-temperature salty matter. Used in. Therefore, wear resistance is required in addition to high corrosion resistance. Therefore, it is necessary to provide abrasion resistance by coating the surface with a hard film.
  • This example is not limited to the fluidized-bed waste combustion or the air diffuser nozzle of the gasifier, and can be similarly implemented as long as it is an installation member requiring corrosion resistance, heat resistance, and wear resistance.
  • alumina shot blasting is performed on the member, such as the diffuser nozzle 120, to remove oxides on the surface and to provide appropriate irregularities on the surface of the member.
  • the depth of the concave portion in the concave and convex is preferably about 1 to 20 Aim.
  • a Re-W alloy having a thickness of, for example, 10 to 50 m is coated by thermal spraying.
  • a CoNiCrA1Y alloy in which W carbide or Cr carbide is dispersed is, for example, 30 to 400 ⁇ Spray with thickness.
  • the CoNiCrA1Y alloy in which the diffusion barrier layer (R e _W (M) alloy layer) 18 and the W carbide or Cr carbide 36 are dispersed as shown in Fig. 13 is shown.
  • a coating layer having an abrasion resistant layer 38 made of a material such as the air diffuser nozzle 120 can be formed.
  • a member coated with this coating can maintain the soundness of the equipment for a long time in an environment where wear resistance is required in addition to high-temperature corrosion resistance, so that the reliability of the equipment can be improved. Since it increases the temperature of the working fluid, it is possible to improve the device I 1 production capability.
  • the present invention is applicable to a surface coating of a high-temperature device member used at a high temperature, such as a gas turbine blade, a turbine blade of a jet engine, a combustor, a nozzle, a boiler heat transfer tube, a waste treatment device, and a semiconductor manufacturing exhaust gas treatment device.
  • a gas turbine blade a turbine blade of a jet engine
  • a combustor a turbine blade of a jet engine
  • a combustor a nozzle
  • a boiler heat transfer tube a waste treatment device
  • a waste treatment device such as a semiconductor manufacturing exhaust gas treatment device.
  • the gas turbine blade and the Life span of power generation equipment using gas turbine blades, jet engine turbine blades, combustors, nozzles and passenger cars, jet aircraft, boiler low heat tubes, waste treatment equipment, and semiconductor manufacturing exhaust gas treatment equipment using these equipment Can be extended to extend the maintenance period.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

拡散バリヤ用合金皮膜は、Re−Cr合金皮膜よりも優れた拡散バリヤ特性を持ち、より高温(1150℃以上)での使用にも耐え得る拡散バリヤ層を有する。拡散バリヤ層18は、原子組成でWを12.5~56.5%含み、不可避的な不純物を除いて、残りをReとしたRe−W系σ相からなる。金属基材10の表面に拡散バリヤ層18をコーティングし、更に、必要に応じて、拡散バリヤ層18の表面に、原子組成で10%以上50%未満のAl,CrまたはSiを含む拡散浸透用合金層20をコーティングすることで高温装置部材が構成される。

Description

明細書 拡散バリヤ用合金皮膜及びその製造方法、 並びに高温装置部材 技術分野
本発明は、 ガスタービン翼、 ジェッ トエンジンのタービン翼、 燃焼器、 ノズル、 ボイラ伝熱管、廃棄物処理装置及び半導体製造排ガス処理装置などの高温で用いら れる高温装置部材の寿命を延伸するための表面皮膜 (コーティング層) として使用 される拡散バリャ用合金皮膜及びその製造方法、 並びに該合金皮膜を適用した高温 装置部材に関する。 背景技術
例えば、 産業用ガスタービン翼やジェットエンジンなどの高温装置部材は、 流体 温度が 1 3 0 0 °Cを超える場合があり、金属材料では高温酸化が部材損傷の主原因 となることがしばしばある。 そこで、 部材の耐熱性を向上させるために、 従来、 部 材表面に以下のようなコーティング処理を施すことが一般に行われている。
( 1 ) 熱遮蔽コーティング (T B C)
熱遮蔽コーティング (T B C) は、 金属 (部材) 表面に、 トップコートと呼 ばれるセラミックス層と、 アンダーコート (あるいはボンドコート) と呼ばれる耐 食合金層を順次積層するようにしたものである。 トップコートには、 主に金属基材 の表面温度を約 1 0 0 0 °C以下に低下させるため、 熱伝導率の小さい Z r 02など が一般に用いられる。 一方、 アンダーコートには、 耐酸化性を付与するため、 A 1 を数〜数十%含んだ合金 (通常 MC r A 1 Yと呼ばれる) が一般に用いられる。 近年、 発電効率向上の観点から、 流体温度が上昇する傾向にあり、 それに伴って アンダーコートの表面温度も上昇する。 このため、 アンダーコート/トップコート 界面に酸化皮膜が厚く成長して、 トップコートが剥離すると同時に、 例えば A 1が MC r A 1 Yから金属基材側に拡散することによって、金属基材の強度が低下する ことが大きな問題となっている。 また、 従来の温度においても、 例えば、 ジェット エンジンのタービン翼などでは、 表面に熱遮蔽コーティングを施しても、 寿命が半 年程度と言われており、 これらの部材の寿命を延伸させる技術の開発が強く望まれ ている。 これら T B Cシステムの劣化は、 アンダーコート/金属基材間における合 金成分の相互拡散が主原因の一つと言われている。
更に、 T B Cシステムは、 温度低下の効果を高めるため、 数百/ x mの厚さのトツ プコートと冷却空気を必要とする。 このため、 狭い部位や冷却空気を利用できない 部位には一般に適さない。
( 2 ) A 1 (または C r , S i ) 拡散浸透処理
1 0 0 0 °C以下で耐酸化性及び耐高温腐食性を必要とする部材 (金属細には、 しばしば、 A 1, C rまたは S iなどの拡散浸透処理が施される。 これらの元素の 酸化物は、 その中のイオン拡散能が小さく、 このため、 部材表面をこれらで被覆す ることで高温酸ィヒ及び高 食を抑制できることが知られている。 従って、 これら の酸化物を形成するため、 部材表面を、 これらの元素を数十%含んだ合金皮膜で被 覆するコーティング法が採られる。 その代表的な手法が拡散浸透処理である。 この 手法で形成した合金皮膜 (コーティング層) は、 拡散層を形成するため部材 (金属 基材) との密着性が良く、 かつ、 複雑な形状を有する部品や狭い部位にも適用可能 である。
し力 し、 上記 T B Cシステムと同様に、 高温下で長時間使用すると、 合金皮膜 Z 金属基材間において合金成分の相互拡散が生じ、 合金皮膜中の A 1 (または C r, S i ) 濃度が低下して、 健全な耐食性酸ィヒ物を維持できなくなる。
( 3 ) N i— C rあるいは MC r A 1 Y溶射
金属基材の表面に向けて N i— C rあるいは M C r A 1 Yを溶射して合金皮膜 を形成することも一般に行われている。 溶射法によれば、 合金皮膜の組成を自由に 設定できる利点がある。 しカゝし、 合金皮膜が多孔質の膜であり、 このため耐高 ¾ 食コーティング層として良質の皮膜を形成することが一般に困難である。 更に、 溶 射ガンを用いるため、 適用できる部材の形状に制限があること、 及び 1 Ο μ πι程度 以下の薄膜の形成が困難であるなどの欠点がある。また、短期間の使用には良いが、 高温下で長期間使用すると、 上記 ( 2 ) と同様の理由で、 金属基材 (部材) の耐食 性が低下する。
(4) 蒸着法 (PVD) 、 特に電子ビーム蒸着法 (EB— PVD)
近年、 TBCの形成方法として、 EB— PVDが注目されている。 これは、 膜厚 の厚い金属皮膜の形成が困難であった PVDと異なり、 EB— PVDによれば、 緻 密で厚く (数百 μπ) 、 均質な金属皮膜の形成が可能となるためである。
しかし、 EB— PVDによれば、 金属薪才を回転させることによって、 曲面への 施工も可能であるが、 クリアランスの狭い部位などへの適用は一般に困難である。 また、 非常にコストの高い施工法である。 更に、 上記 (1) 〜(3) と同様、 長期 間あるいは超高温下での使用におレヽては、合金皮膜/金属基材間における相互拡散 に起因する合金皮膜の劣化が避けられない。
(5) P t電気めつき + A 1拡散処理
近年、 例えばジェットエンジン用タービン翼の耐酸化コーティングとして、 金属 基材 (部材) の表面に P tからなるめっき皮膜を電気めつきで形成し、 その後、 A 1拡散処理を行うことが知られている。 これは、 耐食層として広く用いられている ニッケル.アルミナイド ( 一 N i Al) に P tを添加することで、 その安定化を 図り、 合金皮膜 (コーティング層) を長時間健全に維持できるようにしたものであ る。
(6) Reを添加したアンダーコートを兼ね備えた TBCシステム
R eを TBCのアンダーコートに 12重量% (mo 1 %で数0 /0) 以下添加した T B Cシステムが提案されている (例えば、 特開平 1 1— 61439号公報参照) 。 また、 Reを 35〜 60重量% (m o 1 %で約 15 %~ 30 %) 含んだ T B Cのァ ンダーコートが提案されている (例えば、 特表 2000— 51 1236号公報参 照) 。 しカゝし、 この際の Reの役割については詳細な説明がなされておらず、 効果 も定かでない。
(7) Re— C r系合金による拡散バリヤ
上記 (1) 〜(6) の技術に共通の問題点は、 約 1000°C以上の高温で使用し たり、 あるいは 1000°C以下であっても、 長期間に亘つて使用したりすると、 コ 一ティング層 (合金皮 II莫) /金属基材間の相互拡散によって、 A 1203, C r 203, S i 02などの耐食性酸化物皮膜を形成する C r , A 1 , S iのコーティング層中 の濃度が低下して、 耐食性が損なわれてしまうことである。 P tを添加した ]3— N i (P t) A 1においても、 P tの融点が約 1770°Cと低いことから、 1000 °C以上の高温下での使用や、 1000°C以下においての長時間の使用では、 P tが 金属基材中へ拡散してしまい、 耐食性が損なわれることが予想される。
そこで、 発明者らは、 コーティング層ノ金属基材間の相互拡散を防止する拡散バ リャとして使用される Re合金皮膜を提案した (特開 2001— 323332号公 報参照) 。 また、 拡散防止効果の優れた合金皮膜組成として、 Re— C r合金皮膜 (国際公開第 03 038150号参照) 、 R e— C r— N i合金皮膜 (国際公開 第 03/038151号参照) 、 及び R e— (C r, Mo, W) - (N i , Co, F e) 合金皮膜 (国際公開第 03/038152号参照) をそれぞれ提案した。 こ れらの拡散バリヤ用合金皮膜は、主に、 R e _C r合金 σ相を基本組成としており、 基材ゃ用途、 使用温度域によって、 合金皮膜の組成を最適化することができる。 発明の開示
R eの融点は 3180°Cで、 C rの融点は 1857°Cである。 このため、 Re— C r合金を基本組成とした拡散バリヤ用合金皮膜は、約 2500°C前後の融点が期 待でき、 拡散バリヤ特性に優れることが分かる。 一方で、 この Re— C r合金に、 N i, F e, Coなど、 1450〜1550°Cの融点を持つ成分が合金ィ匕すると、 拡散バリヤとしての融点が低下し、 Re_Cr合金と比較して、 拡散バリヤ特性が やや低下する。 用途、 使用温度域によっては、 これでも十分な拡散バリヤ特性を維 持するため、 高温装置部材の延命に十分寄与する。 し力 ^し、 場合によっては、 より 優れた拡散バリャ特性を必要とする場合もある。
なお、 N i , F e, Coは、 耐熱合金基材の材料として、 最も汎用的に利用され ており、 この表面に拡散バリヤ用合金皮膜を形成する過程において、 これらの元素 が拡散バリヤ用合金皮膜中に混入するのを完全に防ぐことは一般に困難である。 また、 Re— C r系 σ相は、 C rとの親和力が強く、 金属基材中の C rが R e _ C r系 σ相からなる拡散バリヤ用合金皮膜中に拡散する傾向にある。 C rは、 耐食 性の観点から耐熱合金基材中に必ず含まれる元素であり、数%の濃度低下が生じて も十分な耐食性を示す場合もある。 し力 し、 近年は、 強度の観点から C r添加量を 低減する傾向にあり、 最低限の量 (例えば、 5〜10質量%) のみを添加するよう になってきている。 従って、 耐熱合金基材から C rがコーティング層 (合金皮膜) へ拡散してしまうと、 金属基材表面で C r欠乏が生じ、 金属基材の耐食性低下や、 相安定性が崩れることによる強度特性の低下を招くことも考えられる。
以上の観点から、 用途、 使用温度域、 基材の種類などによっては、 Re— C r系 σ相からなる拡散バリヤ用合金皮膜にも、 改良の余地があると考えられる。
なお、 前述の R e - (Cr, Mo, W) - (N i , Co, F e) 合金皮膜のうち、 Moと Wは、 C rと同属元素であることから、 C rと同様の特性を持ち、 かつ高融 点であることから、 Re—C r— (N i , Co, F e) 合金と更に合金化して Re ― (C r, Mo, W) - (N i , Co, F e) 合金とすることで、 より優れた拡散 バリヤ特性を示すことが予想される。 しカゝし、 Wと Moの最適合金組成及び合金皮 膜としての特性については明らかにされていない。
本発明は、 上記事情に鑑みてなされたもので、 Re—C r合金皮膜よりも優れた 拡散バリヤ特性を持ち、 より高温 (例えば、 1150°C以上) での使用にも耐え得 る拡散バリャ用合金皮膜及びその製造方法、並びに該合金皮膜を適用した高温装置 部材を提供することを目的とする。
上記目的を達成するため、 本発明の拡散バリヤ用合金皮膜は、 原子組成で Wを 1 2.5〜 56. 5%含み、 不可避的な不純物を除いて、 残りを Reとした Re—W系 σ相からなる拡散バリャ層を有する。
本発明の目的は、 特に 1000°C以上の超高温下において、 金属材料を長期間健 全に使用するため、 拡散バリャによる耐熱 ·耐食コーティングを提供することであ る。 その好適な例として、 これまで、 本質的に R e _C r系 σ相からなる拡散バリ ャ用合金皮膜を提案してきた。 この Re _C r系 σ相からなる合金皮膜は、 100 0°C以上の超高温下において十分な拡散バリヤ特性を示すが、 以下のような欠点も 併せ持つ。
1 ) N i, F e , C oなどが金属基材から拡散して合金化することで融点が下が り、 拡散バリャ特性がやや低下する。
2) 金属 才から C i"が拡散してくることで、 金属基材中に C r欠乏層が形成さ れる。
本発明の拡散バリヤ用合金皮膜は、 6 _〇 1:系び相ではなく、 Re—W系σ相 からなる拡散バリヤ層を有する。 Wの融点は、 3410°Cであるため、 Wと Reと の合金も 3000°C程度の融点を有することが予想される。 従って、 N i, F e, C oなどが金属基材から拡散してきて合金化しても、 Re— W系 σ相の方が R e— C r系 σ相よりも融点の低下が小さレ、。 Wは C rと同属元素であるため、 R e _W 合金からなる拡散バリヤ層中へ金属基材から t rが拡散してきて、金属基材中に C r欠乏層を形成することが予想される。 しかし、 発明者らの研究の結果、 R e—W 合金は、 むしろ C rを排除する傾向を有することが分かった。 すなわち、 N i, F e, Coなどを主成分とする金属基材の表面に、 Re— W合金からなる拡散バリヤ 層を形成すると、 高温下での使用によって、 N i, F e, Coなどが拡散バリヤ層 中へ拡散してきても、 拡散バリヤ特性を損なうことはなく、 また、 金属 £才中に金 属基材からの C rの拡散による C r欠乏層も形成されない。
拡散バリヤ層は、 金属基材の強度に有害な A 1や、 耐酸化性維持に有害な T i , T aなどの拡散を抑制するのに有効な組成である必要があり、 かつ、 耐酸化性を有 する A 1含有合金層や金属基材に接して長時間安定に存在できる特性を有する必 要がある。 すなわち、
1 ) A 1, T i, T aなどの透過能が小さく、 かつ、
2) A 1含有合金層や金属基材との反応のギプスエネルギが正の値を取る力、 あ るいは負であっても絶対値の小さいものが好ましい。
原子組成で Wを 12.5〜56.5%含み、 不可避的な不純物を除いて、 残りを R eとした Re—W系 σ相からなる連続層としての拡散バリヤ層 (合金皮膜) は、 こ のような拡散バリヤとしての要求を満たすことができる。
本発明の他の拡散バリャ用合金皮膜は、 原子組成で Wを 12.5〜 56.5 %、 R eを 20〜 60 %含み、 かつ、 R eと Wの総量が 50 %以上であり、 不可避的な不 純物を除き、 残りを C r, N i , C ο及び F eから選ばれる少なくとも一つ以上と した、 本質的に R e—W系 σ相からなる拡散バリヤ層を有する。
このような組成の合金皮膜にあっても、 前述と同様に、 拡散バリヤとして要求さ れる要件を満たすことができる。
本発明の拡散バリヤ用合金皮膜の拡散バリヤ層は、 例えば、 金属基材の表面に、 R eまたは R e合金めつきと、 Wまたは W合金めつきとをそれぞれ施した後、 1 2
0 o°c以上で熱処理を施すことによって形成される。
例えば、 細孔部への施工のために水溶液めつきを用いる場合、 W合金めつきとし て、 金属錯化剤としてのクェン酸を含み、 アンモニアの添加によって p Hを調整し たアンモニア性クェン酸浴による N i—W合金めつきを行うことで、 クラックが生 じにくく、 均一な膜厚の拡散バリヤ層を形成することができる。
本発明の拡散バリヤ用合金皮膜は、前記拡散バリヤ層と該拡散バリヤ層がコーテ ィングされる金属基材との界面に、 R eを分散させた R e分散層を更に有すること が好ましレ、。
拡散バリャ層と該拡散バリャ層がコーティングされる金属基材の界面に、 R eを 分散させた R e分散層を挿入することで、 拡散バリヤ層と金属 才との結合力を高 めるとともに、 マクロ的な熱膨張係数を、 拡散バリヤ層と金属 s の中間的な値に することができる。
金属基材の表面に、 R e合金めつきを 2段階に分けて行い、 W合金めつきを行つ た後、 1 2 0 0 °C以上で熱処理を施すことによって、 前記 R e分散層及び前記拡散 バリヤ層を形成することができる。
前記拡散バリャ層の表面に、 原子組成で 1 0 %以上 5 0 %未満の A 1, C rまた は S iを含む拡散浸透用合金層をコーティングしてもよレ、。
これにより、 従来よりも高温燃焼が達成でき、 高い熱効率を有するガスタービン ゃジエツトエンジン等を実現することができる。
本発明の拡散バリャ用合金皮膜は、 前記拡散バリャ層と前記拡散浸透用合金層と の界面に、 Wを分散させた W分散層を更に有するようにしても良い。
拡散バリヤ層と該拡散バリヤ層の表面に形成される拡散浸透用合金層の界面に、 Wを分散させた W分散層を挿入することで、 拡散バリャ層と拡散浸透用合金層との 間の層間結合力を高めるとともに、 マクロ的な熱膨張係数を、 拡散バリヤ層と拡散 浸透用合金膜の中間的な値にすることができる。
本発明の拡散バリヤ用合金皮膜の製造方法は、 金属基材の表面に、 R eまたは R e合金めつきと、 Wまたは W合金めつきとをそれぞれ施した後、 1 2 0 0 °C以上で 熱処理を施して、 R e—W合金からなる拡散バリヤ層を形成する。
本発明の他の拡散バリヤ用合金皮膜の製造方法は、 金属基材の表面に、 R e合金 めっきを 2段階に分けて行い、 W合金めつきを行った後、 1 2 0 0 °C以上で熱処理 を施して、 R eを分散させた R e分散層と R e一 W合金からなる拡散バリヤ層を形 成する。
本発明の更に他の拡散バリヤ用合金皮膜の製造方法は、 金属基材の表面に、 R e — W合金からなる拡散バリャ層を溶融塩めつきで形成し、前記拡散バリャ層の表面 に、 原子組成で 1 0 %以上5 0 %未満の 1 , C rまたは S iを含む拡散浸透用合 金層を溶融塩めつきで形成する。
本発明の更に他の拡散バリヤ用合金皮膜の製造方法は、金属基板の表面に凹凸を 形成し、 前記凹凸を形成した基板の表面に、 R e _W合金からなる拡散バリヤ層 を形成し、 前記拡散バリヤ層の表面に凹凸を形成し、 前記凹凸を形成した拡散バリ ャ層の表面に耐食合金層を形成する。
本発明の更に他の拡散バリヤ用合金皮膜の製造方法は、金属基板の表面に凹凸を 形成し、 前記凹凸を形成した基板の表面に、 R e _W合金からなる拡散バリャ層を 形成し、 前記拡散バリヤ層の表面に凹凸を形成し、 前記凹凸を形成した拡散バリヤ 層の表面に耐摩耗層を形成する。
前記 R e— W合金は、 例えば原子組成で Wを 1 2 . 5〜 5 6 . 5 %含み、 不可避的 な不純物を除いて、 残りを R eとした R e—W系 σ相からなる。
前記 R e—W合金は、 原子組成で Wを 1 2 . 5〜 5 6 . 5 %、 R eを 2 0〜 6 0 % 含み、 かつ、 R eと Wの総量が 5 0 %以上であり、 不可避的な不純物を除き、 残り を C r , N i , C ο及び F eから選ばれる少なくとも一つ以上とした、 本質的に R e—W系 σ相からなるものであっても良い。
前記熱処理後に A 1 , C rまたは S iの拡散透過処理を行って、 拡散バリヤ膜の 表面に拡散浸透用合金膜を形成するようにしても良い。
金属基材の表面に、 予め C rめっきを行うようにしてもよい。
これにより、 金属基板の表面に C rを補給して、 例えば、 C rの含有量が 1 0 % 未満の金属基材を使用した時に、金属基板の表面に C rの拡散による C r欠乏層が 形成されるのを防止することができる。
本発明の高温装置部材は、 原子組成で Wを 1 2 . 5〜5 6 . 5 %含み、 不可避的な 不純物を除いて、残りを R eとした R e _W系 σ相からなる拡散バリヤ層を金属基 材の表面にコーティングした。
本発明の他の高温装置部材は、 原子組成で Wを 1 2 . 5〜 5 6 . 5 %、 R eを 2 0 〜 6 0 %含み、 かつ、 R eと Wの総量が 5 0 %以上であり、 不可避的な不純物を除 き、 残りを C r, N i , C o及び F eから選ばれる少なくとも一つ以上とした、 本 質的に R e—W系 σ相からなる拡散バリヤ層を金属基材の表面にコーティングし た。
前記拡散バリャ層の表面に、 原子組成で 1 0 %以上 5 0 %未満の A 1, C rまた は S iを含む拡散浸透用合金層をコーティングすることが好ましい。
本発明の拡散バリヤ用合金皮膜の拡散バリヤとしての効果は、 1 0 0 0 °C以上の 高温下、 更には、 1 1 5 0 °C以上であっても発揮される。 このような高温域では、 アルミナ皮膜が良好な耐酸化性を示すことが知られている。健全なアルミナ皮膜を 長時間に亘つて維持するためには、 部材 (金属基材) の表面に 1 0原子%以上の A 1が存在することが必要である。 更に、 上述したように、 アルミナ皮膜を R e—W 合金 σ相からなる拡散バリャ層との反応性が小さレ、組成とする必要がある。 そのた めには、 アルミナ皮膜の A 1濃度を 5 0原子%未満とする必要がある。 このため、 拡散バリヤ層の表面にコーティングする、例えば A 1 リツチ層からなる拡散浸透用 合金層の A 1濃度は、 1 0原子%以上 5 0原子%未満とすることが好ましい。特に、 金属基材が N i -A 1系または N i -A 1 - P t系合金である場合、 A 1濃度が低 下すると変態が生じる。 このため、 A 1 リツチ層からなる拡散浸透用合金層の A 1 濃度を 5 0原子%以上とすることは好ましくない。
前記金属基材と前記拡散バリヤ層との間に、 R eを分散させた R e分散層を更に 有するようにしても良く、 前記拡散バリヤ層と前記拡散浸透用合金膜との間に、 W を分散させた w分散層を更に有するようにしても良い。
前記拡散浸透用合金層の表面をセラッミクス層で被覆しても良く、前記拡散バリ ャ層の表面に、 耐熱合金膜または耐摩耗膜をコーティングしても良い。
本発明によれば、 金属基材の表面に、 本質的に R e— W合金 σ相からなる拡散バ リャ層と、 更にその表面に、 必要に応じて、 A 1を 1 0原子%以上 5 0原子%未満 含む A 1含有合金層 (拡散浸透用合金層) をコーティングすることで、 超高温下に おいても高温装置部材の耐食性を長時間維持することが可能となる。 これによつ て、 これまでの R e— C r (- N i ) 系合金皮膜と比較して、 より長期間に渡って 高温装置部材の寿命を延伸するとともに、金属基材からの C rの拡散を排除できる ので、 金属基材表面における C r欠乏層の形成を抑制できる。 これによつて、 より 多くの、 かつ幅広いアプリケーションへの拡散バリヤ用合金皮膜の利用が可能とな る。
また、 R eまたは R e合金めつき、 Wまたは W合金めつき及び熱処理を組み合わ せたプロセスによって R e一 W系 σ相からなる拡散バリヤ層を作製することで、欠 陥がなく、 厚さが均一な連続層としての合金皮膜を容易に形成できる。 図面の簡単な説明
図 1 Α乃至 1 Cは、本発明の実施の形態における拡散バリヤ用合金皮膜を有する 高温装置部材の作製例を工程順に示す図である。
図 2は、 実施例における A 1拡散処理後の試料断面を模式的に示す図である。 図 3は、 実施例における 1 1 5 0 °Cの大気中で 2週間酸化した後の試料断面を模 式的に示す図である。
図 4は、 比較例における A 1拡散処理後の試料断面を模式的に示す図である。 図 5は、 比較例における 1 1 5 0 °Cの大気中で 2週間酸化した後の試料断面を模 式的に示す図である。
図 6は、本発明の他の実施の形態における拡散バリャ用合金皮膜を有する高温装 置部材の断面を模式的に示す図である。 図 7は、 図 6に示す高温装置部材の表面にセラミックス層を形成した断面を模式 的に示す図である。
図 8 Aは、 図 6の変形例における拡散バリヤ層の表面に N i (C r ) 合金層を形 成した断面を模式的に示す図で、 図 8 Bは、 図 6の変形例における拡散バリャ層の 表面に N i (C r ) -A l (X) 合金層からなる拡散浸透用合金層を形成した断面 を模式的に示す図である。
図 9は、本発明の更に他の形態における拡散バリャ用合金皮膜を有する高温装置 部材の断面を模式的に示す図である。
図 1 0は、 図 9に示す高温装置部材の表面にセラミックス層を形成した断面を模 式的に示す図である。
図 1 1は、本発明の更に他の形態における拡散バリヤ用合金皮膜を有する高温装 置部材の断面を模式的に示す図である。
図 1 2は、 図 1 1に示す高温装置部材の表面にセラミックス層を形成した断面を 模式的に示す図である。
図 1 3は、本発明の更に他の形態における拡散バリャ用合金皮膜を有する高温装 置部材の断面を模式的に示す図である。
図 1 4は、本発明が適用されるマイクロガスタービン燃焼器ライナの斜視図であ る。
図 1 5は、 図 1 4に示すマイクロガスタービン燃焼器ライナの部分断面図であ る。
図 1 6は、 本発明が適用されるマイクロガスタービンノス 'ノレの斜視図である。 図 1 7は、本発明が適用される自動車用ェキゾーストマ二ホールドの斜視図であ る。
図 1 8は、 図 1 5に示すマイクロガスタービン燃焼器ラィナの燃焼噴射ノズノレに 水溶液めつきを行う例を示す図である。
図 1 9は、 図 1 6に示すマイクロガスタービンノズノレの燃焼ガス導入口に水溶液 めっきを行う例を示す図である。
図 2 0は、 本発明が適用されるマイクロガスタービン動翼の斜視図である。 図 2 1は、 図 2 0に示すマイクロガスタービン動翼に水溶液めつきを行う例を示 す図である。
図 2 2 Aは、 本発明が適用されるガスタービン燃焼器の斜視図で、 図 2 2 Bは、 図 2 2 Aの A部拡大断面図である。
図 2 3は、 本宪明が適用されるガスタービン動翼を示す斜視図である。
図 2 4は、 本発明が適用されるガスタービン静翼を示す斜視図である。
図 2 5は、 本発明が適用される自動車用触媒コンバータの断面図である。
図 2 6は、 図 2 5に示す自動車用触媒コンバータに拡散バリヤ用合金皮膜を形成 した要部拡大図である。
図 2 7は、 本発明が適用される半導体製造排ガス処理装置の概略を示す図であ る。
図 2 8は、 本発明が適用されるバーナーを示す図である。
図 2 9は、 本発明が適用される熱電対の保護管を示す図である。
図 3 0は、 本発明が適用される散気ノス 'ノレの断面図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して説明する。
図 1 A乃至 1 Cは、本発明の実施の形態の拡散バリャ用合金皮膜を有する高温装 置部材の製造例を工程順に示す。 先ず、 図 1 Aに示すように、 例えば N i基合金か らなり、 高 ¾置部材の基材となる金属基材 1 0を用意する。 この N i基合金から なる金属 ¾+才1 0としては、 N i _ C r系の耐熱合金のほとんどが使用でき、 例え ば、 N i— 2 0 % C r系合金であるハステロィ Xやヘインズ 2 3 0 , インコネル 6 2 5, ヮスパロイ, インコネル 7 1 8 , インコネル 7 3 8などや、 N i— C r— A 1系合金でタービン翼等に用いられる M a r -M 2 4 7や CM S X— 4, CM S X - 1 0 , TM S— 1 3 8など、 更には、 N i— 4 0 % C r—W錄造合金などが挙げ られる。
なお、 金属基材 1 0として、 N i基合金の他に、 C o基合金や F e基合金を使用 してもよいことは勿論である。 そして、 図 1 Bに示すように、 金属基材 10の表面に、 原子組成で Wを 12.5 〜56. 5%含み、 不可避的な不純物を除いて、 残りを R eとした R e— W系 σ相 からなり、拡散バリャ用合金皮膜を構成する拡散バリャ層 (R e— W (M)合金層) 18を形成する。 この不可避的な不純物 Mは、 例えば金属基材 10として N i基合 金を使用した場合、 主に N iである。 この不可避的な不純物 Xとしては、 N iの他 に、 C r, F e, Mo, Co等が挙げられる。
この拡散バリャ用合金皮膜を構成する拡散バリャ層 18は、 原子組成で Wを 1 2.5〜 56.5%、 Reを 20〜 60 %含み、 かつ、 R eと Wの総量が 50 %以上 であり、 不可避的な不純物を除き、 残りを Cr, N i , Co及び F eから選ばれる 少なくとも一つ以上とした、 本質的に R e—W系 σ相からなるものであってもよ レ、。
Wの融点は、 3410°Cであるため、 Wと R eとの合金も 3000°C¾¾の融点 を有することが予想される。 このため、 R e—W系び相からなる拡散バリヤ層 18 で拡散バリヤ用合金皮膜を構成することで、 N i, Fe, Coなどが金属基材 10 力 ら拡散バリヤ層 18に拡散してきて合金ィ匕しても、 Re_C r系ひ相で拡散バリ ャ層 (拡散バリヤ用合金皮膜) を構成した時に比べて、 拡散バリヤ層 18の融点の 低下が小さく、 拡散バリヤ特性を損なうことはない。 し力 も、 Wは C rと同属元素 であるが、 Re— W合金は、 C rを排除する傾向を有するため、 高温下での使用に よって、 金属基材 10中に C rの拡散による C r欠乏層が形成されることはない。 更に、 前述の組成の R e—W系 σ相からなる拡散バリヤ層 18は、 金属基材 10 の強度に有害な A 1や、 耐酸化性維持に有害な T i, T aなどの拡散を抑制し、 か つ、 耐酸化性を有する、 下記の拡散浸透用合金層 (A 1含有合金層) 20及び金属 基材 10に接して長時間安定に存在できる特性を有し、拡散バリヤとして要求され る要件を満たす。
次に、 必要に応じて、 図 1 Cに示すように、 拡散バリャ層 18を形成した金属基 材 10の表面に、 原子組成で 10 %以上 50 %未満の A 1 , C rまたは S iを含む 拡散浸透用合金層 20をコーティングし、 これによつて、 拡散バリヤ層 18と拡散 浸透用合金層 20を有するコーティング層を形成する。 拡散バリャ層 18の拡散バリャとしての効果は、 1000°C以上の高温下、 更に は、 1150°C以上であっても発揮される。 このような高温域では、 アルミナ皮膜 が良好な耐酸化性を示すことが知られている。健全なアルミナ皮膜を長時間に亘っ て維持するためには、金属基材 10の表面に 10原子%以上の A 1が存在すること が必要である。 更に、 上述したように、 アルミナ皮膜を Re—W合金 σ相からなる 拡散バリヤ層 18との反応性が小さい組成とする必要があり、 そのためには、 A1 濃度を 50原子%未満とする必要がある。 このため、 拡散バリヤ層 18の表面にコ 一ティングする、例えば A 1含有合金層からなる拡散浸透用合金層 20の A 1濃度 は、 10原子%以上 50原子%未満とすることが好ましい。 特に、 金属 £|才 10が N i— A 1系または N i -A 1 -P t系合金である場合、 A 1濃度が低下すると変 態が生じる。 このため、 拡散浸透用合金層 20の A 1濃度が 50原子%以上あるこ とは好ましくなレ、。
次に、 図 1 A乃至 1 Cに示す高温装置部材の作製例をより具体的に説明する。 (1) 溶射法、 PVD法、 スパッタリング法などの物理的方法による皮膜形成 まず、 予め用意した Re— W合金粉末を用レ、、 溶射法によって、 金属 ¾才 10の 表面に R e—W合金からなり、拡散バリャ用合金皮膜を構成する拡散バリャ層 18 を形成する。 そのままでもよいが、 好ましくは、 1200°C以上の真空下で熱処理 して、 拡散バリヤ層 18に金属基材 10との密着性を付与する。 この際、 金属基材 10から拡散バリヤ層 18中に、 N i, Co, F eなどが拡散するが、 この拡散バ リャ層 18の拡散バリャ特性は低下しない。
なお、 R e—W合金粉末を用いず、 Re粉末と W粉末を溶射法によって積層し、 しかる後に上記の条件で熱処理しても、 同様の拡散バリヤ用合金皮膜を構成する拡 散バリャ層 18を得ることができる。
拡散バリヤ層 18を金属基材 10の表面に形成した後、使用温度や環境によって 選定した A 1 (あるいは S i, C r) 合金粉末を用いて、 溶射法により拡散バリヤ 層 18の表面に、 A 1 (あるいは S i, C r) 含有合金皮膜からなる拡散浸透用合 金層 20を形成する。
以上、 溶射法と記した箇所は、 PVD法、 あるいはスパッタリング法などに置き 換えても、 同様の拡散バリヤ層 18及び拡散浸透用合金層 20を得ることができ る。
(2) 水溶液めつきと拡散処理の組み合わせによる皮膜形成
細孔部などを有する複雑な形状を有する金属基材 (部品) 10に対して、 拡散バ リャ用合金皮膜を構成する拡散バリヤ層 18を安価に形成するには、水溶液めつき と拡散処理の組み合わせが好適である。 すなわち、 N i, C oあるいは F e基合金 等の金属基材 10の表面に、水溶液めつきによる Reあるいは Re合金めつきを施 して、 Reあるいは Re合金皮膜を形成し、 しかる後、 この表面に、 水溶性めつき による Wあるいは W合金めつきを施して、 Wあるいは W合金皮膜を形成する。次に、 このめつき後の金属基材 10を、 1200°C以上の真空中あるいは不活性雰囲気中 において熱処理し、 これによつて、 均一な組成及び厚さを有する拡散バリヤ層 18 を形成する。
更に、 拡散バリヤ層 18の表面に、 N i (あるいは Fe, Co) をめつきし、 A 1 (あるいは Cr, S i) を拡散処理することによって、 A 1 (あるいは C r, S i ) 含有合金皮膜からなる拡散浸透用合金層 20を形成する。
(3) 溶融塩めつきによる皮膜形成
溶融塩めつき法によれば、ほとんど全ての元素をめつきすることができる。更に、 溶融塩めつきは、 一般に高温下でなされるため、 熱処理工程を省くことができ、 プ ロセス的にも、 経済的にも有利である。 すなわち、 N i , Coあるいは F e基合金 からなる金属基材 10の表面に、例えば塩ィヒ物あるいはフッ化物浴を用いて R eを 溶融塩めつきし、しかる後、例えばハロゲンィ匕物浴を用いて Wを溶融塩めつきする。 これにより、 そのままでも、 金属基材 10の表面に拡散バリヤ用合金皮膜を構成す る拡散バリヤ層 18が形成されるが、 より好ましくは、 めっき後の金属基材 10を 1200°C以上の真空中あるいは不活性雰囲気中において熱処理することで、金属 基材 10の表面に、 より均一な組成を有する拡散バリヤ層 18が形成される。 更に、 拡散バリヤ層 18の表面に、 N i (あるいは F e, Co) 及び A 1 (ある いは C r, S i ) を溶融塩めつきすることによって、 A 1 (あるいは C r, S i) 含有合金皮膜からなる拡散浸透用合金層 20を形成する。 以上の (1) 〜 (3) の方法は、 部分的にどの方法を採用してもよレ、。 例えば、 拡散バリヤ層 18を水溶液めつきと熱処理との組み合わせによって作製し、 A 1 (あるいは C r, S i) 含有合金皮膜からなる拡散浸透用合金層 20を溶射法によ つて作製してもよい。 これらの方法は、 金属 の組成、 部材の形状、 コスト などによって自由に選択できる。
<実施例〉
金属基材として N i基合金 (CMSX-4) の短冊形試験片を用いた。 金属基材 (試験片) の表面を S i C# 240で研磨した後、 脱脂してから供試した。 ここで は、 複雑な形状の部品への施工を念頭に置き、 水溶液めつきと拡散処理とを組み合 わせた施工法を採用した。 先ず、 下記の浴組成のアンモニア性クェン酸浴による R e—N i合金めつき浴を用いて、 0. 1 AZcm2の電流密度で 30分間の R e— N i合金めつきを行った。 その後、 下記の浴組成のアンモニア性クェン酸浴による N i—W合金めつき浴を用いて、 0. 1 A/cm2の電流密度で 30分間の W_N i合 金めつきを行った。 しかる後、 試験片を、 1300°C、 10一3 P aの真空中にて 1 0時間の熱処理を行った。 更に、 熱処理後の試験片に、 ワット浴を用いて、 5mA Zcm2の電流密度で 60分間の N iめっきを行った後、 N i A 1と A 1203の混 合粉末中で、 900でで 5時間の A 1拡散処理を施した。
R e -N i合金めつき浴
-過レニウム酸イオン: 0. lmo l /L
'硫酸ニッケル: 0. 1 mo 1 /L
• クェン酸: 0. 1 mo 1 ZL
• pH=8 (アンモニア水で調整)
•浴温: 50 °C
N i—W合金めつき浴
' タングステン酸ナトリウム: 0. 2mo l ZL
•硫酸二ッケル: 0. 1 m o 1 L
- クェン酸: 0. 4mo 1 ZL
• pH=6 (アンモニア水で調整) ■浴温: 70 °C
処理後の試験片断面の模式図を図 2に示す。 図 2中の断面における各点の元素分 析結果をテーブル 1に示す。 テープノレ 1中の (1) 〜 (5) は、 図 2中の (1) 〜 (5) にそれぞれ対応する。
テーブル 1
Figure imgf000019_0001
図 2に示すように、 金属基材 (N i基合金基材) 10 aの表面に、 42原子%!¾ e— 36原子% 合金層 (残部に数%ずつ N i, C o, C r, Moを含む) からな る拡散バリヤ層 1 8 a力 この拡散バリヤ層 1 8 aの表面に、 N i— 40原子% 1合金皮膜 (残部に数%の C o, C rを含む) からなる拡散浸透用合金層 20 aが それぞれ形成されていることが分かる。 また、 金属基材 10 a側に A 1は殆ど拡散 していない。 更に、 金属基材 10 a中の C r濃度は、 金属基材 1 0 aの表面近傍で あっても、 金属基材 10 aの内部であっても、 いずれも約 7%であり、 C r欠乏層 が形成されていないことが分かる。 この拡散バリヤ層 1 8 a及び拡散浸透用合金層 20 aは、 試験片の平坦部のみならず、 端部も含め、 試験片全面に亘つてほぼ均一 な組成及び厚さの連続層であつた。
この試験片を、 1 1 50°Cの大気中で 2週間酸ィ匕した後の断面の模式図を図 3に 示す。 図 3中の断面における各点の元素分析結果をテープノレ 2に示す。 テープノレ 2 中の (1) 〜 (6) は、 図 3中の (1) 〜 (6) にそれぞれ対応する。
テーブル 2
Figure imgf000020_0001
図 3に示すように、 拡散浸透用合金層 20 aの表面には、 数ミクロンの厚さのァ ルミナ皮膜 (A 1203) 22 aが存在した。 その直下の拡散浸透用合金層 (A 1含 有合金層) 20 aの A 1濃度は約 38. 5原子%を、 さらにその直下の拡散バリヤ 層 18 aは酸化前と同じ約 42.2原子% e— 37.0原子%\¥合金層 (残部に数 %ずつ N i , Co, C r, Moを含む) を維持していた。 そして、 金属基材 10 a 中への A 1拡散は殆ど見られなかつた。
ここで注目すべきは、 酸化前には、 拡散バリヤ層 18 a中に数%ずつ含まれてい た N i及び C r力 S、 酸化後ではやや減少する傾向にあることである。 つまり、 1 1 50°Cという超高温下では、 C r , N iなどを数%含んだものよりも、 本質的に R e—W二元系合金の方がより安定であり、 拡散バリヤとしてより優れていることが 分かる。 また、 C rは、 拡散バリヤ層 18 aである R e—W合金層から、 むしろ排 除される傾向にあり、 本質的に、 金属基材 10 aの表面において、 C r欠乏層を形 成しにくレ、特性を持つことが分かる。
<比較例〉 金属基材として N i基合金 (CMSX-4) の短冊形試験片を用いた。 金属基材 (試験片) の表面を S i C# 240で研磨した後、 脱脂してから供試した。 先ず、 下記の浴組成の高濃度 R e_N i合金めつき浴を用いて、 0. lA/Zcm2の電流密 度で 30分間寸D Iの Re— N i合金めつきを行った。 その後、試験片を C r+A l 203
d
粉末中に埋没してn O i、 1 100°C、 10— 3P aの真空中において 5時間の熱処理を行 つた。 更に、 熱処理後の試験片に、 ワット浴を用いて、 5mAZcm2の電流密度
ω
で 60分間の N iめっきを行った後、 N i A 1と A 1203の混合粉末中、 900°C で 5時間の A 1拡散処理を施寸ォした。
高濃度 Re— N i合金めつき浴
o o
'過レニウム酸イオン: 0. 1〜8. Omo 1 /L
• N iイオンの総量: 0. 005〜2. Omo 1 /L
• C r (m) イオン: 0. 1〜4. Omo 1 /L
D I
■ L iイオン及び Zまたは N aイオンの総量ォ': 0. 0001〜5. Omo l/L 以下
· pH=0〜8
•液温: 10〜80。C
処理後の試料断面の模式図を図 4に示す。 図 4中の断面における各点の元素分析 結果をテーブル 3に示す。テープノレ 3中の(1) 〜(5) は、図 4中の (1) 〜(5) にそれぞれ対応する。
テープノレ 3
(1) (2) (3) (4) (5)
Re 0.0 0.0 1.2 1.0
Ni 51.6 17.0
Cr 4.5 5.0 6.0 7.2
Co 3.0 4.0 3.0 9.0 9.0
W 0.0 0.0 0.0 1.8 2. 1
Mo 0.0 0.0 0.0 0.3 0.4
Ta 0.0 0.0 0.0 2.0 2.2
Al 0.0 12.5 12.5
Ti 0.0 0.0 0.0 1.3 1.
0 0.0 0.0 0.0 0.0 0.0
ム +
口 πΤ 100.0 100.0 100.0 100.0 100.0 図 4に示すように、 金属基材 (N i基合金基材) 10 bの表面に、 40原子%1 e -40原子%C r一 17原子。 /oN i合金層 (残部に数%の C oを含む) からなる 拡散バリヤ層 18 bが、 この拡散バリヤ層 18 bの表面に、 ^^ー39.4原子% A 1含有合金層 (残部に数%の Co, C rを含む) からなる拡散浸透用合金層 20 bがそれぞれ形成されている。 また、 金属基材 10 b側には A 1は殆ど拡散してい ないが、 金属基材 10 bにおける拡散バリヤ層 18 b近傍の C r濃度が、 金属基材 10 bのバルク濃度と比較して、 やや減少していることが分かる。
この試験片を、 1 150°Cの大気中で 2週間酸化した後の断面の模式図を図 5に 示す。 図 5中の断面における各点の元素分析結果をテープノレ 4に示す。 テーブル 4 中の (1) 〜 (6) は、 図 5中の (1) 〜 (6) にそれぞれ対応する。 テープノレ 4
Figure imgf000022_0001
図 5に示すように、 拡散浸透用合金層 20 bの表面には、 図 3に示した実施例と 同様に、 数ミクロンの厚さのアルミナ皮膜 (A 1203) 22 bが存在している。 し かし、 図 3に示した通り、 実施例では、 拡散浸透用合金層 (A 1含有合金層) 20 aの A 1濃度が、 酸化後も 38.4〜38.5原子%であったのに対し、 この比較例 の拡散浸透用合金層 (A 1含有合金層) 20 bにおいては、 35.0〜 35. 5原子 %に低下している様子が分かる。 更に、 この比較例では、 拡散バリヤ層 18 bの直 下において、 酸化後も C r欠乏層が形成したままで、 しかも、 A 1濃度がやや上昇 している様子が分かる。
以上のように、 Re—C r—N i系合金からなる拡散バリヤ層 18 bであって も、 1150°Cにおいて拡散バリヤ特性を発揮するが、 拡散バリヤ層 18 a直下に おける C r欠乏層の形成、 及び、 少量ではあるが、 拡散浸透用合金層 (A 1含有合 金層) 20 bにおける A 1濃度低下と金属 S#l 0 bへの A 1拡散が見られる。 こ れに対して、 この発明の Re— W系合金からなる拡散バリヤ層 18 aでは、 これら の現象が観察されないことから、 より優れた拡散バリヤであることが示唆される。 前述の例にあっては、 図 6に示すように、 例えば N i基合金からなる金属基材 1 0の表面に、 拡散バリヤ用合金皮膜を構成する拡散バリヤ層 (Re— W (M) 合金 層) 18をコーティングし、 必要に応じて、 拡散バリヤ層 18の表面に、 例えば N
1 -A 1 (X) 合金層 (X = Z r, Y, S i) からなる拡散浸透用合金層 20をコ 一ティングして高温装置部材を形成している。 更に、 必要に応じて、 図 7に示すよ うに、 拡散浸透用合金層 20の表面に、 例えば Z r〇2系セラミックス被覆 (いわ ゆる遮熱コーティング) を施して、 熱伝導率の低い Z r 02系セラミックスからな るセラミックス層 24を形成してもよレ、。 このセラッミタス層 24の厚さは、 例え ば 100〜400 mである。 これにより、 従来よりも高温燃焼が達成でき、 高熱 効率なガスタービンゃジエツトエンジン等を実現できる。
ここに、 図 8 Aに示すように、 拡散バリヤ層 18の表面に、 N i (C r) 合金層
26を予め形成しておくことで、図 8 Bに示すように、拡散バリャ層 18の表面に、 例えば N i (C r) -A l (X) 合金層からなる拡散浸透用合金層 28をコーティ ングするようにしてもよレ、。
図 9は、 本発明の他の実施の形態の拡散バリャ用合金皮膜を有する高温装置部材 を示す。 この例は、 N i基合金等の金属基材 10の表面に、 R eを分散させた R e 分散層 30、 拡散バリヤ層 (Re—W (M) 合金層) 18、 及ひ を分散させた W 分散層 32を順次形成し、 この W分散層 32の表面に、 例えば N i— A 1 (X) 合 金層 (X = Z r , Y, S i) カ らなる拡散浸透用合金層 20をコーティングしてい る。 このように、 金属基材 10と拡散バリヤ層 18との間に R e分散層 30を、 拡 散バリヤ層 18と拡散透過用合金層 20との間に W分散層 32をそれぞれ介在さ せた、 いわゆる "くさび構造" にして、 Re分散層 30と W分散層 32に "アンカ 一効果" を付与することで、 金属基材 10と拡散バリャ層 18との間、 及び拡散バ リャ層 18と拡散透過用合金層 20との間の結合力を高め、 し力 も、 マクロ的な熱 膨張係数を、 各層の中間的な値にすることができる。
この R e分散層 30は、 例えば粒径が 0. l〜20/xmの Re粒子を、 体積比で 10〜8◦%分散させた、 厚さ 1〜100 μπιの層であり、 W分散層 32は、 例え ば 1〜20 /xmの W粒子を、 体積比で 20〜80%分散させた、 厚さ 10〜: L 00 mの層である。
この R e分散層 30、 拡散バリャ層 18及び W分散層 32は、 例えば R eが低濃 度 (25〜40原子%) の第 1の Re— N i合金めつき、 R eが高濃度 (65〜9 0原子%) の第 2の R e—N i合金めつきを順次行った後、 W_N i合金めつき、 N iめっき、 W— N i合金めつきを順次行ない、 さらに熱処理を施すことで形成で きる。 これは、 金属基材 10に隣接した低濃度 Re— N i層は、 Reが固溶した N i相と N iが固溶した R e相の 2相に、拡散透過用合金層 20に隣接した N i _W 層は、 Wが固溶した N i相と N iが固溶した W相の 2相に、 それぞれ分離すること による。
更に、 図 10に示すように、 必要に応じて、 拡散浸透用合金層 20の表面に、 例 えば Z r 02系セラミックス被覆 (いわゆる遮熱コーティング) を施して、 例えば 厚さ力 00〜400 /imのセラミックス層 24を形成してもよい。 これにより、 従来よりも高温燃焼が達成でき、 高熱効率なガスタービンゃジエツトエンジン等を 実現できる。
図 1 1は、本発明の更に他の実施の形態の拡散バリャ用合金皮膜を有する高温装 置部材を示す。この例は、予め凹凸を設けた N i基合金等の金属基材 10の表面に、 拡散バリヤ用合金皮膜を構成する拡散バリヤ層 (Re— W (M) 合金層) 18を、 例えば PVDで 0. 5〜30 / mの厚さでコーティングし、 この拡散バリヤ層 18 の表面に、 凹凸を設けた後、 例えば C o N i C r A 1 Y合金からなる耐食合金層 3 4を、 溶射法等で 3 0 ~ 4 0 0 μ πιの厚さでコーティングしている。
この例にあっても、 図 1 2に示すように、 必要に応じて、 耐食合金層 3 4の表面 に、 例えば Z r 0 2系セラミックス被覆 (いわゆる遮熱コーティング) を施して、 例えば厚さが 1 0 0〜4 0 0 μ πιのセラミックス層 2 4を形成してもよレ、。
図 1 3は、本発明の更に他の実施の形態の拡散バリヤ用合金皮膜を有する高 置部材を示す。この例は、予め凹凸を設けた N i基合金等の金属基材 1 0の表面に、 拡散バリヤ用合金皮膜を構成する拡散バリヤ層 (R e _W (M) 合金層) 1 8を、 例えば溶射法で 1 0〜5 0 /i mの厚さでコーティングし、 この拡散バリヤ層 1 8の 表面に、 凹凸を設けた後、 例えば W炭化物または C r炭化物 3 6を分散させた、 C o N i C r A 1 Y合金からなる耐摩耗層 3 8を、溶射法等で 3 0〜4 0 0 μ mの厚 さでコーティングしている。
上記の図 1 1乃至図 1 3に示す各例において、金属基材 1 0及び拡散バリャ層 1 8の表面に設けられる凹凸における凹部の深さは、 例えば 1〜2 0 μ πιで、 アルミ ナショットプラスによって形成される。
次に、 本発明が適用される高温装置部材の具体例、 及び該高温装置部材に適した 拡散バリャ用合金皮膜の形成例を以下に説明する。
( 1 ) マイクロガスタービン燃焼器ライナ、 タービンノス'ノレ、 ェキゾ一ストマユホ ールド等
本発明が適用されるマイクロガスタービン燃焼器ライナの斜視図を図 1 4に、 そ の部分断面図を図 1 5に示す。 また、 本発明が適用されるマイクロガスタービンノ ズルの斜視図を図 1 6に、 自動車用ェキゾーストマ二ホールドの斜視図を図 1 7に 示す。 図 1 4及び図 1 5に示すマイクロガスタービン燃焼器ライナ 4 0では燃料噴 射ノズル 4 2が、図 1 6に示すマイク口ガスタービンノズル 4 4では燃焼ガス導入 口 4 6力 円周方向に等間隔で取り付けられている。 また、 図 1 7に示すェキゾ一 ストマ二ホールド 4 8は、 »形状のチューブ 5 0から構成されている。 これらの 部材は、 マイクロガスタービン燃焼器ライナ 4 0にあっては燃料噴射ノズル 4 2 等、 いずれの場合も狭い空洞の形状 (細孔部) を有しており、 この細孔部内に拡散 バリャ用合金皮膜を均一に形成することが必要となる。
このため、 この例では、 水溶液めつきによって、 マイクロガスタービン燃焼器ラ イナ 4 0の燃料噴射ノズノレ 4 2等の細孔部内に、 図 6に示す拡散バリャ層 (R e— W (M) 合金層) 1 8等の皮膜を均一な膜厚で形成するようにしている。
すなわち、 マイクロガスタービン燃焼器ライナ 4 0にあっては、 図 1 8に示すよ うに、 めっき槽 5 2内のめっき液 5 4中に浸漬させたマイクロガスタービン燃焼器 ライナ 4 0の燃料噴射ノス 'ノレ 4 2の内部にアノード 5 6を位置させる。 そして、 め つき液供給管 5 8から燃料噴射ノズノレ 4 2に向けてめっき液 5 4を噴射しながら、 めっき槽 5 2の底部に配置した攪拌羽根 6 0を回転させてめっき槽 5 2內のめつ き液 5 4を攪拌し、 同時にアノード 5 6と力ソードしたマイクロガスタービン燃焼 器ライナ 4 0との間にめつき電圧を印加して、マイクロガスタービン燃焼器ライナ 4 0の燃料噴射ノズル 4 2の内部 (表面) にめつきを行うようにしている。
マイクロガスタービンノス'ノレ 4 4にあっては、 図 1 9に示すように、 マイクロガ スタービンノズル 4 4の燃焼ガス導入口 4 6内にアノード 5 6を位置させ、 前述の 例とほぼ同様に、 めっき液供給管 5 8からめつき液 5 4を燃焼ガス導入口 4 6に向 けて噴射しながら、 マイクロガスタービンノズル 4 4の燃焼ガス導入口 4 6の内部 (表面) にめつきを行うようにしている。
なお、 図示しないが、 ェキゾ一ストマ二ホールド 4 8を含め、 細孔部を有する部 材の該細孔部の表面に、 図 6に示す拡散バリャ層 (R e _W (M) 合金層) 1 8等 の皮膜を形成する場合にも、 前述の例のように、 部材の形状に合わせて細孔部ヘア ノードを挿入し、 かつめつき液を細孔部へ噴射しながらめっきを施すことで、 均一 な膜厚の皮膜を形成することができる。
なお、 この例では、 マイクロガスタービン燃焼器ライナ 4 0およびマイクロガス タービンノズノレ 4 4を N i基合金ハステロィ X (N i - 2 2 % C r - 1 9 % F e - 9 %M o - 0 . 1 % C) 製としているが、 他の高温部材にも、 同様の方法で、 細孔 部に均一な成膜が可能となる。
より具体的に説明すると、 先ず、 マイクロガスタービン燃焼器ライナ 4 0等の当 該部材を硫酸水素ナトリゥム /フッ化ナトリゥム溶液中に 3 0〜 1 2 0秒間浸漬 して表面を活性化させ、 しかる後、 N iストライクめっきを、 例えば、 常温、 10 0〜50 OmAZcm2の電流密度で 0. 5〜 5分間実施する。 その後、 R e— N iめっきを施す。 Re— N iめっきは、 例えば、 ReO4 を 0. 02〜0. 2 m o lノL、 N i SO4を0. 02〜0. 2 m o 1 /L、 C r C 13を 0. 1〜0. 5m o l/L、 タエン酸を 0. 1〜0. 5mo 1 ZL、 セリンを 0. 5〜1. 5mo l /L、 pHを硫酸で 2〜4に調整にしためつき浴を用い、 めっき条件は、 40〜6 0°C、 10〜 150111 /<:1112で10〜60分間が適している。
その後、 再び N iストライクめつきを前記の条件で施してから、 N i—Wめっき を施す。 N i—Wめっきは、 N i S04を 0. 05〜0. 2mo l/L、 NaW04 を 0. 1〜0. 4mo l/L、 クェン酸を 0. 1〜0. 8mo l/L、 pHをアン モニァ水で 6〜9に調整しためっき浴を用い、 めっき条件は、 50〜80°C、 20 〜150mAZcm2で、 10〜 60分間が適している。
N i— Wめっき後、 更に N iストライクめつきを前記の条件で施してから、 N i ヮット浴で N iめっきを施す。 N iヮット浴での N iめっき条件は、 40〜60°C、 5〜50mA/cm2で 5〜120分間が良レヽ。
一連のめっき後、 10_3Paの真空下、 1200〜1350°Cで 1〜20時間熱 処理する。 この例では、約 20%の C rを含有したハステロィ X製の部材を用いた ため、単なる真空熱処理としたが、金属基材中の C r濃度が 20%未満の場合には、 N i— C r合金または C rと、 A 1203の混合粉末中(体積比で A 1203が 1以上) に部材を埋没させで熱処理しても良い。 これらの条件でめっきおよび熱処理を施す ことで、例えばマイクロガスタービン燃焼器ライナ 40の燃料噴射ノズル 42等の 細孔部の内部 (表面) に、 図 6に示す拡散バリヤ層 (Re_W (M) 合金膜) 18 を、 0. 5〜 30 /zmの厚さで均一に形成することができる。 この拡散バリヤ層 1 8は、 主に金属基材から拡散した X (=C r、 N i、 Fe、 Mo) を内部に数%含 むことがあるが、 本質的に、 R eを 30原子%以上、 Wを 20原子%以上含んだ R e -W (M) 合金である。
前述のようにして、 拡散バリヤ層 18を形成した後の部材に、 更に N iストライ めっき、および 0. 01~5重量%∑ r4 +を溶解させた N iヮット浴中での N iめ つきを施す。 これによつて、 0. 0 1〜0. 5原子%∑ rを含んだ N iめっき層を 形成し、 しかる後、 A 1拡散処理を施す。 Z r 4 +を溶解させた N iヮット浴中での N iめっきの変わりに、 0. 5〜50 の粒径の Z r粉末、 あるいは N i Z r合 金粉末、 Z r S i 2粉末、 Y粉末等を◦ . 1〜 1. 0 %分散させた N iワット浴中 での分散めつきを施してもよい。 その場合、 めっき後に、 800〜900°〇で1〜 20時間、 900〜 1 000°Cで 1〜: L 0時間、 1 000〜 1 200°Cで 1〜 1 0 時間の 3段階熱処理を施すことで N i (X) 層 (X=Z r, S i , Y) を形成し、 しかる後、 A 1拡散処理を施す。
A 1拡散処理は、 例えば A 1 +A 1 203 + NH4C 1混合粉末中、 1 0— 3P aの 真空下、 800~ 1 1 00°Cで 1 0分間〜 5時間行う。 A 1 +A 1203 + NH4C 1混合粉末の組成は、 重量比で、 A 1 203/A 1が 1以上、 NH4C 1は全体の 0. 1〜1 0%とする。 真空処理の代わりに、 不活性雰囲気 (例えば A r) 処理として も良い。 A 1拡散処理の代わりに、 溶融 A 1めっきを施しても良い。 溶融 A 1めつ きは、 例えば 700〜900°Cの溶融 A 1めっき浴に、 部材を 1 0分間〜 5時間浸 漬させて行う。
以上の過程を経ることで、 図 6に示す、 拡散バリヤ層 (R e— W (M) 合金層) 1 8とN i—A l (X) 合金層 (X = Z r , Y, S i ) からなる拡散浸透用合金層 20を有するコーティング層を、例えばマイクロガスタービン燃焼器ライナ 40の 燃料噴射ノズル 42等の細孔部の表面に均一に形成することができる。 このコーテ イング層を付帯した燃焼器ライナおよびタービンノズルは、 コーティング表面^^ が 1 1 00〜 1 200°Cに達しても、 1 000時間以上致命的な酸化や腐食を受け ず、 装置の健全性を維持できる。
(2) マイクロガスタービン動翼、 自動車用ターボチャージヤー等
本発明が適用されるマイクロガスタービン動翼の斜視図を図 20に示す。 図 20 に示すように、 マイクロガスタービン動翼 6 2はラジアル型動翼で、 曲率の大きな 形状の複数の翼 64を有している。 このため、 この例では、 マイクロガスタービン 動翼 6 2を回転させながら、 主に翼 64の表面を含むマイクロガスタービン動翼 6 2の表面に、 水溶液めつきによって、 図 8 A及び 8 B示す拡散バリヤ層 (R e— W (M) 合金層) 18等の皮膜を均一な膜厚で形成するようにしている。
すなわち、 図 21に示すように、 マイクロガスタービン動翼 62をモータ 66の 駆動に伴って回転する回転軸 68の下端に連結して、 円筒状のアノード 70で囲ま れためつき槽 72内のめっき液 74中に浸漬させる。 そして、 モータ 66を介して マイクロガスタービン動翼 62を回転させながら、 アノード 70と摺動接点 76を 介してカソードしたマイクロガスタービン動翼 62との間にめつき電圧を印加し て、 マイクロガスタービン動翼 62の表面にめっきを行うようにしている。
なお、 図示しないが、 自動車用ターボチャージヤー等の表面に、 図 8 A及び 8 B に示す拡散バリヤ層 (Re— W (M) 合金層) 18等の皮膜を形成する場合にも、 前述の例のように、 部材を回転させつつめっきを施すことで、 部材の表面に均一な 膜厚の皮膜を形成することができる。
なお、 この例では、 マイクロガスタービン動翼 62を N i基合金 Ma r -M24 7 (N i -8%C r - 10%C o- 5%A 1 - 10%W— T a— T i ) 製としてい るが、 例えば自動車用ターボチャージヤーなど、 類似の形状の高温部材にも、 同様 の方法で、 翼面に均一な成膜が可能となる。
より具体的に説明すると、 先ず、 マイクロガスタービン動翼 62等の当該部材を 硫酸水素ナトリゥム/フッ化ナトリゥム溶液中に 30〜 120秒間浸漬して表面 を活性化させ、 しかる後、 C rめっきを施す。 C rめっきは、 Cr (ΠΙ) 浴 (例え ば、 C r C l 3を 0. 1〜0. 5mo lZL、 HCOOHを 0. 1〜1. 5mo l ノ 、 H3B03を 0. 1〜1. 5mo 1 /L、 NH4C 1を 0. 1〜1. 5mo l //し、 1:81"を0. 05~0. 3mo 1 /L、 pHを硫酸で 2〜4に調整) を用い、 例えば、常温〜 30°C、 50〜150 mA/ cm2で 15〜60分間行う。 C r (ΠΙ) 浴の代わりに、 C r (VI) 浴 (サージェント浴) を用いてもよい。 C r (VI) 浴を 用レ、た場合、 その後のめっきの密着性がやや低下するので注意を要する。
その後、 再び、 硫酸水素ナトリウム フッ化ナトリウム溶液中で活性化処理して から、 N iストライクめっきを、 常温、 100〜50 OmAZcm2の電流密度で 0. 5〜5分間実施する。 N iストライクめっき後、 40〜60°C、 10〜150 mAZcm2で 10〜60分間、 Re— N iめっきを施す。 Re— N i合金めつき 浴は、 前記実施例と同様のものが良い。 その後、 再び N iストライクめっきを前記 の条件で施してから、 N i— Wめっきを施す。 N i— Wめっき条件は、 50〜80 °C、 20〜: L 5 OmA/ cm2で、 10 ~ 60分間が適している。 N i— W合金め つき浴も前記実施例と同様のものが良い。
N i—Wめっき後、 更に N iストライクめっきを前記の条件で施してから、 N i ヮット浴で N iめっきを施す。 N iヮット浴での N iめっき条件は、 40〜60°C、 5〜50111 /(:1112で5〜120分間が良い。 ヮット浴による N iめっきの際、 0. 01〜5重量0 /oZ r 4 +を溶解させた N iワット浴を用いても良く、 この場合、 後述する A 1拡散処理において、 Z r (Z rOC l 2, Z r C 14, Y, YC 13な ど) を混合しなくとも良レ、。
一連のめっき後、 10_3P aの真空下、 1200〜1350°Cで 1〜20時間熱 処理する。 その際、 N i— C r合金または C rと、 A 1203の混合粉末中 (体積比 で A 1203が 1以上) に部材を埋没させで熱処理しても良い。 これらの条件でめつ きおよび熱処理を施すことで、 図 8 Aに示す、 拡散バリヤ層 18と N i (Cr) 合 金層 26とを有するコーティング層を、マイクロガスタービン動翼 62等の表面に 形成することができる。
その後、 A 1 +A 1203 + NH4C 1 +Z r混合粉末中、 10— 3P aの真空下、 800〜: L 100°Cで 10分間〜 5時間の A 1拡散処理を行う。 A 1 + A 1203 + NH4C 1 +Z r混合粉末の組成は、重量比で、 A 1203/A 1が 1以上、 NH4 C 1 と Z rはそれぞれ全体の 0. 1〜 10 %とする。 真空処理の代わりに不活性雰 囲気 (例えば A r) 処理としても良く、 また、 Z rの変わりに Z r OC 12, Z r C l 4, Y, YC 13などを用いても良い。
以上の過程を経ることで、 図 8 Bに示す、 拡散バリヤ層 18と N i (Cr) —A 1 (X) 合金層からなる拡散浸透用合金層 28とを有するコーティング層を、 マイ クロガスタービン動翼 62等の翼面に均一形成することができる。 このコーティン グ層を付帯したマイクロタービン動翼や自動車用ターボチャージヤーは、 コーティ ング表面温度が 1100〜 1200°Cに達しても、 1000時間以上致命的な酸化 や腐食を受けず、 装置の健全性を維持できる。 ( 3 ) ガスタービン部材、 ジェットエンジン部材、 自動車用ェキゾ一ス トマ二ホー ルド、 触媒コンバータ等
本発明が適用されるガスタービン燃焼器を図 2 2 A及び 2 2 Bに、 ガスタービン 動翼を図 2 3に、 ガスタービン静翼を図 2 4にそれぞれ示す。 また、 本発明が適用 される自動車用触媒コンバータの断面図を図 2 5及び図 2 6に、 自動車用ェキゾ一 ストマ二ホールドの斜視図を図 1 7に示す。 図 2 3に示すガスタービン動翼 8 0や 図 2 4に示すガスタービン静翼 8 2にあっては、運転中や起動停止によって高い応 力が負荷されることが予想される。 また、 図 1 7に示す自動車用ェキゾーストマ二 ホールド 4 8においては、運転による振動に起因する疲労破壊が懸念される。更に、 図 2 2 A及び 2 2 Bに示すガスタービン燃焼器 8 4は、 冷却空気を通すため、 内筒 8 6と外筒 8 8を有する二重構造にしており、互いに重なり合った内筒 8 6の外周 面と外筒 8 8の内周面にも均一な成膜が要求される。 更に、 図 2 5及び図 2 6に示 す自動車用触媒コンバータ 9 0は、例えば平泊 9 2と波泊 9 4で区画されたハニカ ム状の多数の通気口 9 6を有する、一般にかなり複雑な形状を有している。従って、 これらの部材にあっては、 特に図 6に示す、 拡散バリヤ層 1 8と拡散浸透用合金層 2 0とを有するコーティング層を金属基材 1 0の表面に形成する場合に、金属 ¾ t 1 0及び拡散浸透用合金層 2 0と異なる熱膨張係数を有する拡散バリヤ層 1 8の 厚さをより薄く、 かつ均一に形成して、 コーティング層の破壌を防止する必要があ る。
ここでは、 N i基超合金 (N i — 6 % C r _ 5 %A 1— 6 %W— 9 % C o _ 6 % T a - 3 %R e ) 製のガスタービン動翼 8 0に適用した例を示すが、 ガスタービン 燃焼器ライナ、 ガスタービン静翼、 ジェットエンジン部材、 ェキゾ一ストマ二ホー ルド、 あるいは触媒コンバータにおいても同様に実施が可能である。
この例にあっては、 まず、 ガスタービン動翼 8 0等の当該部材を硫酸水素ナトリ ゥム /フッ化ナトリウム溶液中に 3 0〜: L 2 0秒間浸潰して表面を活性化させ、 し かる後、 N iストライクめっきを、 常温、 1 0 0〜5 0 O mAZ c m 2の電流密度 で 0 . 5〜 5分間実施し、その後、 N i—Wめっきを施す。 N i—Wめっき条件は、 上記実施例と同じ N i—W合金めつき浴を用いて、 5 0 ~ 8 0 °C、 2 0〜1 0 0 m /。1112で15〜30分間が適している。 N i— Wめっき後、 更に N iストライ クめっきを前記の条件で施してから、 Re— N iめっきを施す。 Re— N iめっき 条件は、 上記実施例と同様な Re— N i合金めつき浴を用いて、 40〜60°C、 2 0〜12 OmAZcm2で 20〜45分間が適している。
その後、 再び N iストライクめつきを前記の条件で施してから、 N iヮット浴で N iめっきを施す。 N iワット浴での N iめっき条件は、 40~60°C、 5〜50
!!! !!^で 〜丄 20分間が良い。
一連のめっき後、 N i _ (20〜50) %C r合金または C rと、 A 1203の混 合粉末中 (体積比で A 1203が1以上) にガスタービン動翼 80等の部材を埋没さ せ、 10— 3 Paの真空下、 1200〜1350°Cで 3〜20時間熱処理する。 これ らの条件でめっきおよび熱処理を施すことで、 図 6に示す拡散バリヤ層 (Re— W (M) 合金層) 18を、 1〜15 μπιの厚さでガスタービン動翼 80等の部材の表 面に形成することができる。
拡散バリヤ層 18を形成した後のガスタービン動翼 80等の部材に、 更に N iス トライクめつきを施してから、 N iヮット浴で N iめっきを施す。 N iヮット浴で の N iめっき条件は、 40〜60°C、 5〜5 OmAZc m2で 5〜 120分間が良 い。 ワット浴による N iめっきの際、 0. 01〜5重量0 /oZ r 4 +を溶解させた N i ワット浴を用いても良く、 この場合、 後述する A 1拡散処理において、 Z r (Z r OC l 2, Z r C l 4, Y, YC 13など) を混合しなくとも良い。
その後、 A 1 +A 1203 + NH4C 1 +Z r混合粉末中、 10_3P aの真空下、 800〜1 100°Cで 10分間〜 5時間の A 1拡散処理を行う。 A 1 + A 123 + NH4C 1混合粉末の組成は、重量比で、 A 1203/A 1が 1以上、 NH4C 1と Z rは全体の 0. 1〜 5 %とする。真空処理の代わりに不活性雰囲気(例えば A r ) 処理としても良く、 また、 Z rの変わりに Z r OC 12, Z r C 14, Y, YC 13 などを用いても良い。
以上の過程を経ることで、 図 6に示す、 拡散バリャ層 (R e— W (M) 合金層) 18と?^ _ 1 (X) 合金層 (X = Z r, Y, S i) からなる拡散浸透用合金層 20とを有し、厚さが 1〜15 のコーティング層を部材表面に均一に形成する ことができる。 更に、 このコーティング層の表面に、 必要に応じて、 図 7に示すよ うに、 Z r 0 2系セラミックス被覆 (いわゆる遮熱コーティング) を施して、 厚さ 1 0 0〜4 0 0 /x mのセラッミタス層 2 4を形成することで、従来よりも高温燃焼 が達成でき、 高熱効率なガスタービンあるいはジエツトエンジンを実現できる。 また、 図 2 5に示す自動車用触媒コンバータ 9 0に適用する場合は、 Z r〇2系 セラミックス被覆 (いわゆる遮熱コ ティング) を施すことなく、 図 2 6に示すよ うに、 ハニカム状の多数の通気口 9 6を区画形成する平泊 9 2及び波泊 9 4の表面 に、 拡散バリヤ層 (R e— W (M) 合金層) 1 8と拡散浸透用合金層 2 0とを有す るコーティング層を形成した構造で使用することが好ましい。
このコーティング層を付帯したガスタービン部材およびジエツトエンジン部材 は、 コーティング表面温度が 1 1 0 0〜1 2 0 0 °Cに達しても、 1 0 0 0時間以上 致命的な酸ィ匕ゃ腐食を受けず、 装置の健全性を維持できる。
( 4 ) ガスタービン部材、 ジェットエンジン部材、 自動車用ェキゾ一ストマ二ホー ルド等
前述のように、 図 2 3に示すガスタービン動翼 8 0や図 2 4に示すガスタービン 静翼 8 2にあっては、 中や起動停止によって高い応力が負荷されることが予想 される。 また、 図 1 7に示す自動車用ェキゾ一ストマ二ホールド 4 8においては、 運転による振動に起因する疲労破壊が懸念される。 更に、 図 2 2 A及び 2 2 Bに示 すガスタービン燃焼器 8 4は、 冷却空気を通すため、 内筒 8 6と外筒 8 8を有する 二重構造にしており、 互いに重なり合った内筒 8 6の外周面と外筒 8 8の内周面に も均一な成膜が要求される。 従って、 これらの部材にあっては、 特に図 9に示す、 拡散バリャ層 1 8と拡散浸透用合金層 2 0とを有するコーティング層を金属基材 1 0の表面に形成する場合に、金属基材 1 0及び拡散浸透用合金層 2 0と異なる熱 膨張係数を有する拡散バリヤ層 1 8の該金属基材 1 0及び拡散浸透用合金層 2 0 との密着性をよくする必要がある。 ここでは、 N i基超合金 (N i— 6% C r— 5 %A 1 - 6 %W- 9 % C o - 6 % T a - 3 % R e ) 製のガスタービン動翼 8 0へ適 用した例を示すが、 ガスタービン燃焼器ライナ、 ガスタービン静翼、 ジェットェン ジン部材、 あるいは自動車用ェキゾーストマ二ホールドにおいても同様に実施が可 能である。
この例にあっては、 先ず、 ガスタービン動翼 80等の当該部材を硫酸水素ナトリ ゥム /フッ化ナトリゥム溶液中に 30〜 120秒間浸潰して表面を活性化させ、 し かる後、 N iストライクめっきを、 常温、 100〜50 OmA/cm2の電流密度 で 0. 5〜5分間実施し、その後、 R e _N iめっきを施す。 R e— N iめっきは、 以下の 2つのめつき浴を用いる。 第 1に、 アンモニア性クェン酸浴 (例えば、 Re 04 を 0. 02〜1. Omo 1 ZL、 N i S04を 0. 02〜: L. Omo l/L、 クェン酸を 0. 04〜2. Omo l/L、 ρ Hをアンモニア水で 6〜 8に調整) を 用レヽ、 40〜60°C、 20〜: 15 OmAノ c m2で 20〜40分間の R e _N i合 金めつきを施す。 このめつきによって 25〜40原子0 /0の R eを含有した R e—N i合金皮膜が形成される。 第 2に、 他の Re— N i浴 (例えば、 Re〇4 を 0. 0 2〜0. 2mo 1 ZL、 N i S04を 0. 02〜0. 2 m o 1 ZL、 C r C 13を 0. 1〜0. 5mo 1 ZL、 タエン酸を 0. 1〜0. 5 m o 1 /L、 セリンを 0. 5〜 1. 5mo l/L、 pHを硫酸で 2〜4に調整) を用い、 40〜60°C、 20〜1 5 OmA/cm2で 20〜40分間の R e— N iめっきを施す。 このめつきによつ て 65〜 90原子%の Reを含有した Re— N i合金皮膜が形成される。
2段階の R e -N iめっき後、 前記の条件で N iストライクめつきを施し、 しか る後、 50〜80°C、 20〜15 OmAZcm2で 10〜60分間の N i _Wめつ きを施す。 N i—Wめっきは上記実施例と同じ N i _W合金めつき浴を用いると良 い。 その後、 再び、 N iストライクめっきを前記の条件で施す。 その際のめっき時 間を 5〜20分間とする。 その後、 再び前記の条件にて N i—Wめっきを施す。 一連のめっき後、 N i _ (20〜50) %C r合金または C rと、 A 1203の混 合粉末中 (体積比で A 12O3が 1以上) にガスタービン動翼 80等の部材を埋没さ せ、 10— 3P aの真空下、 1200〜1350°Cで 1〜20時間熱処理する。 その 際、 部材に用いた合金中に 20%以上の C rを含有する場合は、 N i— (20〜5 0) %C r合金または C rと、 A 123の混合粉末中にガスタービン動翼 80等の 部材を坦没させることなく、単なる真空熱処理あるいは不活性雰囲気(例えば A r ) 処理でも良い。 熱処理後のガスタービン動翼 80等の部材に、 更に N iストライクめっき、 およ び N iヮット浴中での N iめっきを施した後、 A 1拡散処理を施す。 ヮット浴は、 0. 01〜5重量%∑ r 4 +を溶解させた N iワットを用いても良く、 その場合は、 後述する A 1拡散処理において、 パック粉末中に Z r (Z r OC 12, Z r C 14, Y, YC 13など) を混合しなくとも良い。
A 1拡散処理は、 A 1 +A 1203 + NH4C 1 +Z r混合粉末中、 10— 3Paの 真空下、 800〜1 100°Cで 10分間〜 5時間とする。 A 1 +A 1203 + NH4 C 1混合粉末の組成は、 重量比で、 A 1203/A 1が 1以上、 NH4C 1 と Z rは 全体の 0. 1〜5%とする。 真空処理の代わりに不活性雰囲気 (例えば Ar) 処理 としても良く、 また、 Z rの変わりに Z r OC 12, Z r C 14, Y, YC 13など を用いても良い。
以上の過程を経ることで、 図 9に示す、 Reを分散させた Re分散層 30、 拡散 バリヤ層 (Re— W (M) 合金層) 18、 Wを分散させた W分散層 32、 及び N i -A 1 (X) 合金層 (X=Z r, Y, S i) からなる拡散浸透用合金層 20を有す るコーティング層を形成することができる。 これは、 第 1の R e— N i合金めつき での Reが低濃度 (25〜40原子0 /。) であり、 第 2の R e— N i合金めつきでの Reが高濃度 (65〜90原子0 /0) であること、 更に N i—W合金めつきの Wが低 濃度 (約 25原子%) であることから、 金属基材 (N i基合金基材) 10に隣接し た低濃度 R e— N i層は、 R eが固溶した N i相と N iが固溶した R e相の二相 に、 拡散浸透用合金層 20に隣接した N i—W層は、 Wが固溶した N i相と N iが 固溶した W相の二相に、 それぞれ分離することによる。
その結果、 金属基材 10と拡散バリャ層 18との界面に R e分散層 30を、 拡散 バリヤ層 18と拡散浸透用合金層 20との界面に W分散層 32をそれぞれ有する、 いわゆる "くさび構造" にして、 R e分散層 30及ひ 分散層 32に "アンカー効 果" を付与し、 これによつて、 金属基材 10と拡散バリヤ層 18、 及び拡散バリヤ 層 18と拡散浸透用合金層 20の結合力を高めることができる。 しかも、粒径が 0. l〜20 /zmの Re粒子を体積比で 10〜 80 %分散させた R e分散層 30を金 属基材 10と拡散バリャ層 18との間に、 粒径が 0. 1〜 20 i mの W粒子を体積 比で 1 0〜8 0 %分散させた W分散層 3 2を拡散バリヤ層 1 8と拡散浸透用合金 層 2 0との間に、 1〜1 0 0 mの厚さでそれぞれ挿入することができ、 これによ つて、 マクロ的な熱膨張係数を、 各層の中間的な値にすることができる。
これにより、 一般に、 N i基、 C o基または F e基合金とは著しく異なる熱膨張 係数を有し、 起動停止などの熱応力により剥離しやすい性質を有する R e一 W合金 力 らなる拡散バリヤ層 1 8力 タービン部材等から剥離するのを防止することがで さる。
更に、 前記のコーティング層の表面に、 Z r 02系セラミックス被覆 (いわゆる 遮熱コーティング) を施して、 図 1 0に示すように、 セラッミクス層 2 4を 1 0 0 〜4 0 0 /i mの厚さで形成することで、 従来よりも高温燃焼が達成でき、 高熱効率 なガスタービンあるいはジエツトエンジンを実現できる。 このコーティング層を付 帯したガスタ一ビンおよびジェットェンジン部材は、 コーティング表面温度が 1 1 0 0〜 1 2 0 0 °Cに達しても、 1 0 0 0時間以上致命的な酸ィヒゃ腐食を受けず、 装 置の健全性を維持できる。
( 5 ) 排ガス処理装置部材、 廃棄物焼却部材、 ガス化装置部材等
本発明が適用される半導体製造排ガス処理装置の概略を図 2 7に、廃棄物焼却や ガス化装置に使用されるバーナー及び熱電対の保護管を図 2 8及び図 2 9にそれ ぞれ示す。 例えば、 半導体製造排ガス処理装置は、 図 2 7に示すように、 排ガス供 給管 1 0 0から供給され、助燃空気ノズノレ 1 0 2から噴出される空気を利用してバ ーナー 1 0 4で燃焼させた排ガスを、水冷ジャケット 1 0 5で包囲された反応塔 1 0 6の内部に導入して処理し、処理後の排ガスを冷却スプレー 1 0 8から噴出され る冷却水で冷却して外部に排出するように構成されている。 特に反応塔 1 0 6にあ つては、 高温のハロゲン系ガスを取り扱う。 このため、 反応塔 1 0 6を高温のハロ ゲン系ガスから保護するコ一ティング層に欠陥等があつた場合、装置が激しレ、腐食 を受ける可能性がある。 また、 図 2 8に示す、 炉壁 1 1 0に取り付けられて、 該炉 壁 1 1 0の内部の内部に露出して炎を噴出する廃棄物焼却装置やガス化装置のバ ーナー 1 1 2や、 図 2 9に示す、 炉壁 1 1 4の内部に配置される熱電対 1 1 6の周 囲を覆って該熱電対 1 1 6を保護する保護管 1 1 8などは、 高温塩化腐食環境に曝 される。 このため、 これらの部材は、 特に緻密で欠陥の少ないコーティング層で保 護することが要求される。 従って、 溶融塩めつき法により緻密で欠陥の少ない皮膜 を形成することが望ましい。
ここでは、 N i基合金 (N i - 22%C r - 19%F e - 9 %M o - 0. 1 %C) 製の半導体製造排ガス処理装置の反応塔 106に適用した例を示すが、半導体製造 排ガス処理装置に限らず、 例えば、 図 28に示す廃棄物焼却やガス化装置のパーナ 一 1 12や、 図 29に示す熱電対の保護管 1 18など、 高温塩化腐食環境に曝され る部材にも同様に実施できる。 更に、 図 17に示す、 自動車用ェキゾ一ス トマニホ 一ルド 48のように複雑形状で溶射などの物理的方法がとれないが、 高度に信頼性 が要求される部材、 あるいはガスタービン部材ゃジェットエンジン部材のように、 特に皮膜の健全性が要求される部材などにも同様に実施できる。
この例にあっては、 先ず、 反応塔 106等の当該部材を硫酸水素ナトリゥム Zフ ッ化ナトリゥム溶液中に 30〜 120秒間浸漬して表面を活性化させ、 しかる後、 KC 1 -Na C 1系支持塩に R e塩と W塩を溶解し、 700~1000°Cで溶融塩 めっきを行い、反応塔 106等の部材の表面に R e—W合金を電析させる。ついで、 N i C l 2-A l C l 3-Na C l -Z r C l 4系溶融塩中、 200〜800°Cで溶 融塩めっきを行い、 N i— A 1 (X) 合金 (X=Z r , Y) を、 反応塔 106等の 部材の表面に電析させる。 Z r C 14の変わりに YC 13などを用いても良い。 以上のように溶融塩めつきプロセスによって、 気孔率が体積で 0. 1%未満の緻 密で欠陥の極少ない、 図 6に示す、 拡散バリヤ層 (Re— W (M) 合金層) 18と N i -A 1 (X) 合金層 (X = Z r, Y) 力 らなる拡散浸透用合金層 20を有する コーティング層を形成することができる。 これによつて、 従来よりも長時間、 装置 の健全性を維持することができるだけでなく、装置を高温で使用できるため、従来、 1 100°C以上での使用の際に用いていたセラミックス製の反応塔 106を、金属 材料に代替することが可能となる。 その結果、 金属の伝熱を利用できるため、 付帯 の燃焼装置が不要となり、 装置が簡単になるのに加え、 コス ト的にも有利となる。 また、 自動車用ェキゾ一ストマ二ホールド、 ガスタービン部材またはジェットェ ンジン部材などに適用すると、 コーティング表面温度が 1 100〜1200°Cに達 しても、 1000時間以上致命的な酸化や腐食を受けないため、 装置の健全性を維 持できるとともに、 高温燃焼が達成できるようになる。
(6) ガスタービン部材、 ジェットエンジン部材等
例えば、 図 22 A及び 22 bに示すガスタービン燃焼器 84、 図 23に示すガス タービン動翼 80、 図 24に示すガスタービン静翼 82等にあっては、 曲率も小さ く、 比較的単純な形状をした高温燃焼ガスに曝される箇所が存在する。 これらの箇 所にあっては、 溶射や物理的蒸着法 (PVD) によっての施工が可能である。 しか し、 物理的な方法で成膜した場合、 皮膜と金属基材との密着性が悪く、 皮膜の剥離 が問題になることがある。 そのため、 予め金属基材の表面に適度な粗さの凹凸を付 与して皮膜にアンカー効果を付与し、皮膜の金属基材との密着性を向上させる必要 がある。 ここでは、 Co基合金ステライト 250 (Co— 30%C r - 10%F e) 製のガスタービン燃焼器 84へ適用した例を示すが、 ガスタービン静翼、 ガスター ビン動翼あるいはジエツトエンジン部材においても同様に実施が可能である。 この例では、 先ず、 ガスタービン燃焼器 84等の当該部材に、 アルミナショット ブラス トを実施して、 表面の酸化物を除去するとともに、 部材の表面に適度な凹凸 を付与する。 この凹凸における凹部の深さは、 1〜 20 /Z m程度が好ましい。 その 後、 例えば 0. 5〜30 /xmの厚さ R e— W合金を、 P VDでコーティングする。 更に、 R e—W合金の表面にアルミナショットブラス トを施してから、 CoN i C r A 1 Y合金を、 例えば 30〜400 /z mの厚さで溶射する。
以上により、 図 11に示す、 拡散バリヤ層 (R e _W (M) 合金層) 18と Co N i C r A 1 Y合金からなる耐食合金層 34を有するコーティング層を、 ガスター ビン燃焼器 84等の部材の表面に形成することができる。 雰囲気温度が 1200°C 以下の環境で使用する場合はこのままでよいが、 1200°C以上の環境で使用する 場合は、 この表面に、 図 12に示すように、 Z r O2系セラミックス被覆 (いわゆ る遮熱コーティング) を施して、 セラッミクス層 24を 100〜400 mの厚さ で形成する。 これにより、 従来よりも高温燃焼が達成でき、 高熱効率なガスタービ ンあるいはジエツトエンジンを実現できる。
( 7 ) 廃棄物処理装置流動床散気ノズル等 本発明が適用される流動床式の廃棄物燃焼装置あるいはガス化装置の散気ノズ ルの断面を図 3 0に示す。 この種の図 3 0に示す散気ノズノレ 1 2 0は、 内部に蒸気 またはガスの流路 1 2 2を有し、一般に高温の塩ィ匕物を多量に含んだ砂の流動雰囲 気中で使用される。 このため、 耐高 食性に加え、 耐摩耗性が要求される。 従つ て、 表面に硬い皮膜を被覆して、 耐摩耗性を付与する必要がある。 この例は、 流動 床 棄物燃焼あるいはガス化装置の散気ノズルに限らず、 耐食 ·耐熱 ·耐摩耗性 を必要とする高 ¾置部材であれば、 同様に実施が可能である。
この例では、 先ず、 散気ノズノレ 1 2 0等の当該部材に、 アルミナショットブラス トを実施して、 表面の酸化物を除去するとともに、 部材の表面に適度な凹凸を付与 する。 この凹凸における凹部の深さは、 1 〜 2 0 Ai m程度が好ましい。 その後、 例 えば 1 0〜 5 0 mの厚さ R e— W合金を、 溶射法でコーティングする。 更に、 R e—W合金の表面にアルミナショットブラストを施してから、 W炭化物または C r 炭化物を分散させた C o N i C r A 1 Y合金を、例えば 3 0〜4 0 0 μ πιの厚さで 溶射する。
以上で、 図 1 3に示す、 拡散バリヤ層 (R e _W (M) 合金層) 1 8と、 W炭化 物または C r炭化物 3 6を分散させた、 C o N i C r A 1 Y合金からなる耐摩耗層 3 8とを有するコーティング層を、散気ノズル 1 2 0等の部材の表面に形成するこ とができる。 このコーティングを施した部材は、 耐高温腐食性に加え、 耐摩耗性が 要求される環境で、 長時間装置の健全性を維持できるため、 当該装置の信頼性向上 が図れる。 また、 作動流体の温度を上昇できるので、 装置 I1生能を向上させることが できる。
本発明は上述の実施形態に限定されず、 その技術的思想の範囲内において種々異 なる形態にて実施されてよいものであることは言うまでもない。 産業上の利用の可能性
本発明は、 ガスタービン翼、 ジェッ トエンジンのタービン翼、 燃焼器、 ノズル、 ボイラ伝熱管、廃棄物処理装置及び半導体製造排ガス処理装置などの高温で用いら れる高温装置部材の表面皮膜として用いることにより、例えばガスタービン翼と該 ガスタービン翼を用いた発電装置、 ジェットエンジンのタービン翼、 燃焼器、 ノズ ルとこれらの機器を用いた乗用車、 ジェット機航空機、 ボイラ低熱管、 廃棄物処理 装置、 及び半導体製造排ガス処理装置等の寿命を延伸し、 メインテナンス期間を延 伸することができる。

Claims

請求の範囲
1. 原子組成で Wを 12.5 ~ 56.5 %含み、 不可避的な不純物を除いて、 残り を R eとした R e—W系 σ相からなる拡散バリヤ層を有する拡散バリヤ用合金皮 膜。
2. 原子組成で Wを 12. 5〜 56.5%、 Reを 20〜 60 %含み、 かつ、 R e と Wの総量が 50%以上であり、 不可避的な不純物を除き、 残りを C r, N i , C o及び F eから選ばれる少なくとも一つ以上とした、本質的に R e— W系 σ相から なる拡散バリヤ層を有する拡散バリヤ用合金皮膜。
3. 金属基材の表面に、 Reまたは Re合金めつきと、 Wまたは W合金めつきと をそれぞれ施した後、 1200°C以上で熱処理を施すことによって前記拡散バリャ 層を形成した請求項 1または 2記載の拡散バリャ用合金皮膜。
4 · 前記拡散バリャ層と該拡散バリャ層がコーティングされる金属基材との界面 に、 R eを分散させた R e分散層を更に有する請求項 1または 2記載の拡散バリャ 用合金皮膜。
5. 金属基材の表面に、 Re濃度の異なる Re合金めつきを 2段階に分けて行い、 W合金めつきを行った後、 1200°C以上で熱処理を施すことによって、 前記 R e 分散層及び前記拡散バリャ層を形成した請求項 4記載の拡散バリャ用合金皮膜。
6. 前記拡散バリャ層の表面に、 原子組成で 10 %以上 50。/。未満の A 1 , C r または S iを含む拡散浸透用合金層をコーティングした請求項 1または 2記載の 拡散バリヤ用合金皮膜。
7 . 前記拡散バリヤ層と前記拡散浸透用合金層との間に、 Wを分散させた W分散 層を更に有する請求項 6記載の拡散バリヤ用合金皮膜。
8 . 金属基材の表面に、 R eまたは R e合金めつきと、 Wまたは W合金めつきと をそれぞれ施した後、 1 2 0 0 °C以上で熱処理を施して、 R e _W合金からなる拡 散バリャ層を形成する拡散バリャ用合金皮膜の製造方法。
9 . 金属基材の表面に、 R e合金めつきを 2段階に分けて行い、 W合金めつきを 行った後、 1 2 0 0 °C以上で熱処理を施して、 R eを分散させた R e分散層と R e —W合金からなる拡散バリャ層を形成する拡散バリャ用合金皮膜の製造方法。
1 0 . 金属基材の表面に、 R e— W合金からなる拡散バリヤ層を溶融塩めつきで 形成し、
前記拡散バリャ層の表面に、原子組成で 1 0 %以上 5 0 %未満の A 1, C rまた は S iを含む拡散浸透用合金層を溶融塩めつきで形成する拡散バリヤ用合金皮膜 の形成方法。
1 1 . 金属基板の表面に凹凸を形成し、
前記凹凸を形成した基板の表面に、 R e一 W合金からなる拡散バリヤ層を形成 し、
前記拡散バリャ層の表面に凹凸を形成し、
前記凹凸を形成した拡散バリャ層の表面に耐食合金層を形成する拡散バリャ用 合金皮膜の形成方法。
1 2 . 金属基板の表面に凹凸を形成し、
前記凹凸を形成した基板の表面に、 R e一 W合金からなる拡散バリヤ層を形成 し、
前記拡散バリャ層の表面に凹凸を形成し、
前記凹凸を形成した拡散バリヤ層の表面に耐摩耗層を形成する拡散バリヤ用合 金皮膜の形成方法。
1 3 . 前記 R e— W合金は、 原子組成で Wを 1 2 . 5〜 5 6 . 5 %含み、 不可避的 な不純物を除いて、残りを R eとした R e— W系ひ相からなる請求項 8乃至 1 2の いずれかに記載の合金皮膜の拡散バリャ用形成方法。
1 4 . 前記 R e— W合金は、 原子組成で Wを 1 2 . 5〜 5 6 . 5 %、 R eを 2 0〜 6 0 %含み、かつ、 R eと Wの総量が 5 0 %以上であり、不可避的な不純物を除き、 残りを C r, N i , C o及び F eから選ばれる少なくとも一つ以上とした、 本質的 に R e— W系 σ相からなる請求項 8乃至 1 2のいずれかに記載の拡散バリヤ用合 金皮膜の形成方法。
1 5 . 前記熱処理後に A 1 , C rまたは S iの拡散透過処理を行う請求項 8また は 9記載の拡散バリャ用合金皮膜の形成方法。
1 6 . 金属基材の表面に、 予め C rめっきを行う請求項 8または 9記載の拡散バ リャ用合金皮膜の形成方法。
1 7 . 原子組成で Wを 1 2 . 5〜 5 6 . 5 %含み、 不可避的な不純物を除いて、 残 りを R eとした R e—W系 σ相からなる拡散バリヤ層を金属基材の表面にコーテ イングした高温装置部材。
18. 原子組成で Wを 12.5〜 56.5%、 Reを 20〜 60。/。含み、 かつ、 R eと Wの総量が 50%以上であり、 不可避的な不純物を除き、 残りを C r, N i , C ο及び F eから選ばれる少なくとも一つ以上とした、本質的に Re _W系 σ相か らなる拡散バリヤ層を金属基材の表面にコーティングした高温装置部材。
19. 前記拡散バリャ層の表面に、 原子組成で 10 %以上 50 %未満の A 1, C rまたは S iを含む拡散浸透用合金層をコーティングした請求項 1 7または 18 記載の高 ^^置部材。
20. 前記金属基材と前記拡散バリヤ層との間に、 Reを分散させた Re分散層 を更に有する請求項 17または 18記載の高温装置部材。
21. 前記拡散バリャ層と前記拡散浸透用合金膜との間に、 Wを分散させた W分 散層を更に有する請求項 19記載の高温装置部材。
22. 前記拡散浸透用合金層の表面をセラッミクス層で被覆した請求項 19記載 の高温装置部材。
23. 前記拡散バリャ層の表面に、 耐熱合金膜をコーティングした請求項 17ま たは 18記載の高温装置部材。
24. 前記拡散バリヤ層の表面に、 耐摩耗膜をコーティングした請求項 17また は 18記載の高温装置部材。
PCT/JP2005/000734 2004-01-15 2005-01-14 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材 WO2005068685A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005517142A JP4753720B2 (ja) 2004-01-15 2005-01-14 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材
EP05703962A EP1715081A1 (en) 2004-01-15 2005-01-14 Alloy coating for diffusion barrier, method for forming same, and high-temperature device member
US10/585,780 US7851070B2 (en) 2004-01-15 2005-01-14 Diffusion barrier alloy film and high-temperature apparatus member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-007540 2004-01-15
JP2004007540 2004-01-15

Publications (1)

Publication Number Publication Date
WO2005068685A1 true WO2005068685A1 (ja) 2005-07-28

Family

ID=34792185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000734 WO2005068685A1 (ja) 2004-01-15 2005-01-14 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材

Country Status (5)

Country Link
US (1) US7851070B2 (ja)
EP (1) EP1715081A1 (ja)
JP (1) JP4753720B2 (ja)
CN (1) CN1910307A (ja)
WO (1) WO2005068685A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059971A1 (fr) * 2006-11-16 2008-05-22 National University Corporation Hokkaido University Film de revêtement en alliage multicouche, élément métallique résistant à la chaleur muni de ce film de revêtement et procédé de fabrication d'un film de revêtement en alliage multicouche
JP2013234378A (ja) * 2012-05-11 2013-11-21 Dbc System Kenkyusho:Kk 耐熱合金部材およびその製造方法ならびに合金皮膜およびその製造方法
JP2013249487A (ja) * 2012-05-30 2013-12-12 Hitachi Ltd 発電用ガスタービン翼、発電用ガスタービン
JP2020033589A (ja) * 2018-08-29 2020-03-05 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法ならびに耐熱合金部材製造用部材

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544424B2 (en) * 2006-11-30 2009-06-09 General Electric Company Ni-base superalloy having a coating system containing a stabilizing layer
RU2008111820A (ru) 2007-03-29 2009-10-10 Ибара Корпорейшн (JP) Электролит для нанесения гальванических покрытий методом химического восстановления и способ получения элемента высокотемпературного устройства с применением такого электролита
US20090217537A1 (en) * 2008-02-29 2009-09-03 Macdonald Leo Spitz Novel advanced materials blades and cutting tools
DE102008021636B3 (de) * 2008-04-30 2009-11-19 Esk Ceramics Gmbh & Co. Kg Verfahren zum Fixieren eines Verbindungselements auf einem Werkstück und Bauteil aus einem Werkstück mit einem darauf fixierten Verbindungselement
US8795845B2 (en) * 2008-11-10 2014-08-05 Wisconsin Alumni Research Foundation Low-temperature synthesis of integrated coatings for corrosion resistance
US9481923B2 (en) * 2009-05-21 2016-11-01 Battelle Memorial Institute Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum
US10577694B2 (en) * 2009-05-21 2020-03-03 Battelle Memorial Institute Protective aluminum oxide surface coatings and low-temperature forming process for high-temperature applications
US10378094B2 (en) 2009-05-21 2019-08-13 Battelle Memorial Institute Reactive coating processes
CN101914774B (zh) * 2010-08-19 2012-07-25 上海应用技术学院 具有Re-Ni-Cr合金扩散障碍层的粘结层材料的制备方法
JP6083710B2 (ja) * 2011-10-26 2017-02-22 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材の製造方法
US10676403B2 (en) 2014-01-16 2020-06-09 Honeywell International Inc. Protective coating systems for gas turbine engine applications and methods for fabricating the same
US10392994B2 (en) * 2014-12-05 2019-08-27 Cummins, Inc. Reductant injection exhaust manifold
EP3170609A1 (de) * 2015-11-19 2017-05-24 MTU Aero Engines GmbH Verfahren zum herstellen eines beschaufelten rotors für eine strömungsmaschine ; entsprechender beschaufelter rotor
CN107034497A (zh) * 2017-04-28 2017-08-11 长安大学 一种用于油井管接箍内表面的电镀装置
EP3470680A1 (en) * 2017-10-16 2019-04-17 OneSubsea IP UK Limited Erosion resistant blades for compressors
JP2019100207A (ja) * 2017-11-29 2019-06-24 株式会社デンソー 燃料噴射弁
CN111850529B (zh) * 2020-07-30 2022-07-08 西安热工研究院有限公司 一种发电机组高温蒸汽阀门螺栓抗氧化涂层及其制备方法
CN112247477A (zh) * 2020-10-28 2021-01-22 重庆水泵厂有限责任公司 一种零件内孔尺寸超差修复方法
JP7369499B2 (ja) * 2021-04-02 2023-10-26 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法
CN114293147B (zh) * 2021-11-16 2022-10-11 南京航空航天大学 一种镍基高温合金材料及其制备方法
US20240068081A1 (en) * 2022-08-25 2024-02-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for converting an existing industrial unit to produce hydrogen from ammonia

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215937A (ja) * 1988-02-24 1989-08-29 Toshiba Corp 耐熱複合体
JPH09143667A (ja) * 1995-11-21 1997-06-03 Mitsubishi Heavy Ind Ltd Re製高温部材の製造方法
JP2001323332A (ja) * 2000-03-07 2001-11-22 Ebara Corp 合金皮膜及びその形成方法、並びに高温装置部材
WO2002027067A1 (fr) * 2000-09-28 2002-04-04 Japan Ultra-High Temperature Materials Research Institute Materiau resistant a la chaleur comprenant un alliage a base de niobium
WO2003038152A1 (fr) * 2001-10-31 2003-05-08 Japan Science And Technology Agency Revetement en alliage re pour barriere de diffusion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417173A (en) * 1980-12-09 1983-11-22 E M I-Varian Limited Thermionic electron emitters and methods of making them
US5556713A (en) 1995-04-06 1996-09-17 Southwest Research Institute Diffusion barrier for protective coatings
US6306524B1 (en) 1999-03-24 2001-10-23 General Electric Company Diffusion barrier layer
US6746782B2 (en) 2001-06-11 2004-06-08 General Electric Company Diffusion barrier coatings, and related articles and processes
EP1449938A4 (en) 2001-10-31 2004-11-24 Japan Science & Tech Agency ReCr ALLOY COVER FOR DIFFUSION BARRIER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215937A (ja) * 1988-02-24 1989-08-29 Toshiba Corp 耐熱複合体
JPH09143667A (ja) * 1995-11-21 1997-06-03 Mitsubishi Heavy Ind Ltd Re製高温部材の製造方法
JP2001323332A (ja) * 2000-03-07 2001-11-22 Ebara Corp 合金皮膜及びその形成方法、並びに高温装置部材
WO2002027067A1 (fr) * 2000-09-28 2002-04-04 Japan Ultra-High Temperature Materials Research Institute Materiau resistant a la chaleur comprenant un alliage a base de niobium
WO2003038152A1 (fr) * 2001-10-31 2003-05-08 Japan Science And Technology Agency Revetement en alliage re pour barriere de diffusion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059971A1 (fr) * 2006-11-16 2008-05-22 National University Corporation Hokkaido University Film de revêtement en alliage multicouche, élément métallique résistant à la chaleur muni de ce film de revêtement et procédé de fabrication d'un film de revêtement en alliage multicouche
US8133595B2 (en) 2006-11-16 2012-03-13 National University Corporation Hokkaido University Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
JP5182669B2 (ja) * 2006-11-16 2013-04-17 国立大学法人北海道大学 多層合金皮膜、それを有する耐熱性金属部材および多層合金皮膜の製造方法
JP2013234378A (ja) * 2012-05-11 2013-11-21 Dbc System Kenkyusho:Kk 耐熱合金部材およびその製造方法ならびに合金皮膜およびその製造方法
JP2013249487A (ja) * 2012-05-30 2013-12-12 Hitachi Ltd 発電用ガスタービン翼、発電用ガスタービン
JP2020033589A (ja) * 2018-08-29 2020-03-05 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法ならびに耐熱合金部材製造用部材
JP7138339B2 (ja) 2018-08-29 2022-09-16 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法

Also Published As

Publication number Publication date
US7851070B2 (en) 2010-12-14
JP4753720B2 (ja) 2011-08-24
EP1715081A1 (en) 2006-10-25
CN1910307A (zh) 2007-02-07
JPWO2005068685A1 (ja) 2007-09-06
US20080081214A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
WO2005068685A1 (ja) 拡散バリヤ用合金皮膜及びその製造方法、並びに高温装置部材
JP4405021B2 (ja) 物品の離散選択表面の皮膜
US6273678B1 (en) Modified diffusion aluminide coating for internal surfaces of gas turbine components
EP1791989B1 (en) Chromium and active elements modified platinum aluminide coatings
US6332926B1 (en) Apparatus and method for selectively coating internal and external surfaces of an airfoil
US6383570B1 (en) Thermal barrier coating system utilizing localized bond coat and article having the same
JP5147682B2 (ja) マトリックスおよび層系
US6387527B1 (en) Method of applying a bond coating and a thermal barrier coating on a metal substrate, and related articles
US7157151B2 (en) Corrosion-resistant layered coatings
US6998151B2 (en) Method for applying a NiAl based coating by an electroplating technique
JP2005330586A (ja) 遮熱コーティング用の多孔度の制御された二層hvof皮膜
JP2007177789A (ja) ガスタービン用ノズルセグメント及びその製造方法
JPH10176283A (ja) 超合金の高温腐食に対して高い効果をもつ保護コーティングの製造方法、前記方法により得られる保護コーティング及び前記コーティングにより保護された部品
US7604726B2 (en) Platinum aluminide coating and method thereof
JP2991990B2 (ja) 耐高温環境用溶射被覆部材およびその製造方法
US9267198B2 (en) Forming reactive element modified aluminide coatings with low reactive element content using vapor phase techniques
US20080080978A1 (en) Coated turbine engine components and methods for making the same
CN116904905A (zh) 在表面上形成涂布系统的方法和修复现有涂布系统的方法
US20180058228A1 (en) Hot corrosion-resistant coatings for gas turbine components
JP4643546B2 (ja) アルミナイド表面上にボンディングコート及び断熱皮膜を施工する方法
JP2013515860A (ja) コーティングを電解堆積するための方法および組立体
JP2004035902A (ja) 耐高温酸化性耐熱合金部材の製造方法
JP3810330B2 (ja) 耐高温腐食性に優れた耐熱合金材料およびその製造方法
JP2002332563A (ja) 合金皮膜、該皮膜を有する耐熱部材およびその製造方法
JP3597709B2 (ja) 耐高温溶射被覆部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580002456.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005703962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005517142

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005703962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10585780

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10585780

Country of ref document: US