WO2005061900A1 - スクリュー圧縮機 - Google Patents

スクリュー圧縮機 Download PDF

Info

Publication number
WO2005061900A1
WO2005061900A1 PCT/JP2003/016448 JP0316448W WO2005061900A1 WO 2005061900 A1 WO2005061900 A1 WO 2005061900A1 JP 0316448 W JP0316448 W JP 0316448W WO 2005061900 A1 WO2005061900 A1 WO 2005061900A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
oil
compressor
casing body
casing
Prior art date
Application number
PCT/JP2003/016448
Other languages
English (en)
French (fr)
Inventor
Masaaki Kamikawa
Hiroyuki Yoneda
Souichi Shiraishi
Hiroyuki Yamakawa
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2005512329A priority Critical patent/JP4473819B2/ja
Priority to US10/544,770 priority patent/US20060182647A1/en
Priority to PCT/JP2003/016448 priority patent/WO2005061900A1/ja
Priority to CNB2003801095441A priority patent/CN100387843C/zh
Priority to EP03780975.3A priority patent/EP1705379B1/en
Publication of WO2005061900A1 publication Critical patent/WO2005061900A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/17Tolerance; Play; Gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/048Heat transfer

Definitions

  • the present invention relates to a screw compressor for compressing a refrigerant gas, which seals a gap in a compression chamber, cools oil injected into a compression chamber and a bearing portion for the purpose of lubrication of the bearing, and has a high adiabatic efficiency and a high volumetric efficiency.
  • screw compressor for compressing a refrigerant gas, which seals a gap in a compression chamber, cools oil injected into a compression chamber and a bearing portion for the purpose of lubrication of the bearing, and has a high adiabatic efficiency and a high volumetric efficiency.
  • the difference in thermal expansion due to the temperature difference between the screw hole and the screw bore of the casing body is suppressed, and the screw hole and the screw hole of the casing body are eliminated by eliminating the gap between the screw hole and the screw bore.
  • the present invention relates to a screw compressor in which contact with the screw compressor does not occur. Still further, the present invention relates to a screw compressor in which liquid exchange is suppressed by performing
  • Japanese Patent Application Laid-Open No. 6-42474 discloses that the casing inner cylinder that covers the outer periphery of the screw rotor is prevented from being strongly affected by the temperature from the low-pressure chamber.
  • the discharge gas A screw compressor is shown in which the passage is routed to the vicinity of the end face on the axial suction side of the screw euro so as to be heated by the discharged gas.
  • the present invention has been made to solve the above-mentioned problems, and has a heat insulating efficiency and volume by cooling oil injected into a compression chamber and a bearing portion for the purpose of lubrication of a gap in a compression chamber and a bearing. It aims to provide a highly efficient screw compressor.
  • the present invention provides a Squeeze compression that suppresses the difference in thermal expansion due to the temperature difference with the pore part and eliminates the gap between the screw euro part and the screw part due to the absence of the gap between the screw part and the screw part. It is intended to provide a machine.
  • the present invention provides a screw compressor that suppresses the occurrence of liquid compression by exchanging heat with the liquid refrigerant even in the event of liquid back operation, thereby improving the liquid back resistance.
  • the purpose is.
  • Still another object of the present invention is to provide a screw compressor that suppresses the occurrence of dew condensation on a power supply terminal of a motor built in a casing body. Disclosure of the invention
  • a gap seal in the compression chamber and an oil passage for circulating oil for bearing lubrication to the vicinity of the low pressure side are provided in the casing body.
  • the above-described oil passage is provided on an outer peripheral portion of the screw bore in the casing body.
  • a heat radiation seat is provided in order to increase a heat transfer area for heat exchange with the refrigerant gas that has passed through the motor chamber or the refrigerant in a liquid state.
  • FIG. 1 is a sectional view of a screw compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a screw compressor according to Embodiment 2 of the present invention.
  • FIG. 3 is a sectional view of a screw compressor according to Embodiment 3 of the present invention.
  • FIG. 4 is a screen view showing a third embodiment of the present invention.
  • FIG. 2 is a partial structural diagram of a Y compressor.
  • FIG. 5 is a sectional view of a screw compressor according to Embodiment 4 of the present invention.
  • FIG. 6 is a cross-sectional view of a screw compressor according to Embodiment 5 of the present invention.
  • FIG. 1 is a sectional view showing a screw compressor according to Embodiment 1 for carrying out the present invention.
  • a motor 2 is inscribed and fixed in a cylindrical casing main body 1 constituting a main body of the screw compressor.
  • the motor 2 is composed of a stay 3 fixed to the casing body 1 and a roller 4 arranged inside the stay.
  • a screw opening 5 is disposed in the casing body 1.
  • the screw opening 5 and the motor opening 4 are attached to the screw shaft 6 so as to be arranged on the same axis with each other. I have.
  • a plurality of spiral compression grooves are formed in the screw opening 5 and are connected to the motor 2 by a screw shaft 6 to be driven to rotate.
  • a cover 7 and an oil separator 8 are fixed to both ends of the casing body 1.
  • the oil injected into the compressor is circulated near the low-pressure side, such as the compressor low-pressure chamber 10. That is, in the casing body 1, an oil passage extending from the compression chamber 9 to the compressor low-pressure chamber 10 is formed in the screw pore outer portion 1 b of the screw casing 1 a in which the screw euro 5 is disposed inside. Form 1 1
  • the compression chamber 9 The oil injected into the chiller is cooled by a low-temperature refrigerant near the low-pressure side, and the oil whose temperature has been reduced is injected, whereby the heat of compression can be removed.
  • the screw rotor 5 whose heat capacity is smaller than that of the casing body 1 expands faster than the casing body 1 due to the injection of high-temperature oil equivalent to the discharge gas temperature.
  • cooling the oil near the low pressure side reduces the difference in thermal expansion due to the difference in heat capacity between the casing body 1 and the screw rotor 5. Therefore, even when the initial clearance is reduced, contact between the screw rotor 5 and the casing body 1 is prevented, so that a highly reliable screw compressor can be obtained.
  • the oil passage 11 for circulating the oil near the low pressure side is provided on the outer peripheral portion 1b of the screw pore in the screw casing 1a.
  • the outer peripheral portion 1b of the screw pore is heated at a temperature equivalent to the discharge gas until the vicinity, that is, the temperature reaches the low temperature portion, and the thermal responsiveness of the screw casing portion 1a to the discharge gas temperature is improved. It is possible to reduce the difference in thermal expansion from the screw casing 1a.
  • the oil passage 11 is provided on the outer peripheral portion 1b of the screw casing of the screw casing portion 1a, and by heating the screw casing portion 1a with oil, the high differential pressure at which the discharge gas air volume is reduced. Even under operating conditions, the oil is supplied without reduction, so that the effect of warming the screw casing section 1a is not reduced and that The difference in thermal expansion of the singing part 1a is reduced, and a highly reliable screw compressor can be obtained.
  • the oil circulation path 11 passes from the oil separator 8 to the screw hole 4b through the screw hole outer portion 1b of the screw portion 1a to heat the screw hole portion 4b.
  • the low-pressure side such as a motor room
  • the oil By circulating to the low-pressure side such as a motor room, cooling the oil, and then injecting the oil into the compression chamber 9, the above-described heating of the screw casing 1a by the oil and cooling of the oil
  • FIG. 2 is a sectional view of a screw compressor according to Embodiment 2 of the present invention.
  • the oil passage 11 is structured so that it can be set whether oil flows or not.
  • the solenoid valve 14 is closed and oil is not flown.
  • FIG. 3 is a sectional view of a screw compressor according to Embodiment 3 of the present invention. It is.
  • the oil accumulated in the oil separator 8 is guided to the oil passage 11.
  • An oil temperature control device 13 for controlling the oil temperature is provided on the side.
  • FIG. 3 shows an example in which the oil temperature control device 13 is provided inside the oil tank 14 outside the compressor.
  • the oil temperature control device 13 may be provided in the oil reservoir below the oil separator 8 inside the compressor.
  • the oil temperature controller 13 is divided into two parts before and after passing through the screw hole outer part 1b of the screw casing part 1a, so that the oil becomes hot oil before passing through the screw bore outer part 1b. Oil passing through the outer periphery 1b of the screw bore, so that it becomes low-temperature oil, thereby improving heat insulation efficiency and volumetric efficiency by oil cooling, and improving reliability by heating casing. It can be done effectively.
  • the discharge gas temperature is detected, and the oil temperature is controlled in accordance with the discharge gas temperature or the discharge gas superheat degree. For example, the discharge gas temperature exceeds 100 If it is high, the screw casing section By setting the oil temperature high in order to further expand 1a, it is possible to prevent the screw rotor 5 from coming into contact with the screw pore portion of the screw casing 1a.
  • a gap detecting device 1 such as a non-contact / eddy current type for detecting a gap between the screw casing 1a and the screw euro 5 is used.
  • a gap detecting device 1 such as a non-contact / eddy current type for detecting a gap between the screw casing 1a and the screw euro 5 is used.
  • the oil passage 11 is provided on the outer peripheral portion 1b of the screw hole, and in the third embodiment, the temperature of the circulating oil is controlled.
  • the upper and lower parts are divided. When a refrigerant is sucked into the screw compressor in a wet or liquid-back state, the refrigerant tends to collect at the lower part of the compressor due to its own weight, so the temperature of the screw casing at the lower part of the compressor is more likely to be lower than that at the upper part of the compressor Tend.
  • the upper and lower parts of the oil passage 11 are divided, and the lower heat transfer area of the oil passage 11 shown in Embodiment 1 is made wider than the upper heat transfer area, and the temperature of the oil supplied to the lower part is higher than that of the upper part. Or reduce the temperature difference between the upper and lower parts of the compressor and obtain a highly reliable screw compressor with liquid back resistance by actively heating the lower part of the compressor by flowing oil only to the lower part. Becomes possible.
  • the oil flow rate is adjusted to increase the oil flow rate, so that more optimal control is performed and the liquid back resistance is improved.
  • FIG. 5 is a sectional view of a screw compressor according to Embodiment 4 of the present invention.
  • the oil passage 11 for circulating the high-temperature oil to the vicinity of the low-pressure side is provided.
  • a part or all of the oil passage 11 is extended so that the oil passage 11 is provided in the casing body 1 of the compressor.
  • the structure is such that an oil passage 11b is circulated to the vicinity of the power terminal 16 and the terminal block 17 of the motor 2 installed.
  • a screw compressor when the operating temperature is low, that is, when the suction gas temperature is low, condensation may occur on the terminal block 17 and the power supply terminal section 16 depending on the temperature and humidity of the outside air, and the power supply may be short-circuited. By circulating, it is possible to perform heating for preventing dew condensation, and it is possible to obtain a highly reliable screw compressor.
  • FIG. 6 is a sectional view of a screw compressor according to Embodiment 5 of the present invention.
  • the screw compressor has a structure in which the oil passage 11 is provided to circulate the oil to the vicinity of the low pressure side.
  • the structure is such that oil circulates to the vicinity of the boundary wall 1 c of the casing body 1 that forms the boundary with the low-pressure chamber 10, and straddles the boundary wall 1 c between the motor chamber 2 and the compressor low-pressure chamber 10.
  • the heat radiating seat 18 By attaching the heat radiating seat 18, the heat transfer area of the oil circulated to the boundary wall 1c and cooled can be increased.
  • a radiator seat 18 attached across the boundary wall 1c of the casing body 1 between the two motor chambers and the compressor low-pressure chamber 10 further improves heat exchange, for example, by adding radiator fins to the surface. be able to.
  • the oil injected into the compression chamber is circulated to the vicinity of the low pressure side to cool the oil, and the cooled oil can be injected into the compression chamber to remove the heat of compression.
  • the viscosity of the oil increases with a decrease in the oil temperature, whereby the sealing performance of the gap with the oil is improved, and a highly efficient screw compressor can be obtained.
  • the heat transfer area for oil cooling can be expanded, and oil can be circulated to near low pressure and the heat sink can be installed. Provision of the screw compressor suppresses the occurrence of liquid compression by performing heat exchange with the liquid refrigerant even in the event of a liquid-back operation, thereby providing a screw compressor with improved liquid-back resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

この発明は、圧縮室の隙間シールや軸受潤滑を目的とする油を低圧側近傍まで循環させる油通路をケーシング本体内に設けた断熱効率および体積効率の高いスクリュー圧縮機である。また、この発明は、油通路をケーシング本体内のスクリューボア外周部に設けることにより、スクリューロータとケーシング本体のスクリューボア部との接触が発生しないスクリュー圧縮機である。また、この発明は、モータ室を通過した冷媒ガス、または液状態の冷媒との熱交換用の伝熱面積を大きくするために放熱座を設けることにより、液バック耐力の向上を図ったスクリュー圧縮機である。

Description

明 細 書 スクリユー圧縮機 技術分野
この発明は、 冷媒ガスを圧縮するスクリュ一圧縮機に関するもので、 圧縮室の隙間シールゃ軸受潤滑を目的として圧縮室ゃ軸受部に注入され る油を冷却して、 断熱効率および体積効率の高いスクリユー圧縮機に関 する。 また、 スクリユーロー夕とケーシング本体のスクリューボア部と の温度差による熱膨張差を抑制し、 スクリューロー夕とスクリューボア 部との間の隙間が無くなることによるスクリューロー夕とケーシング本 体のスクリユーボア部との接触が発生しないスクリユー圧縮機に関する。 更にまた、 万一の液バック運転時でも、 液冷媒との熱交換を行うことで 液圧縮の発生を抑制し、 液バック耐力の向上を図ったスクリユー圧縮機 に関する。 背景技術
従来のスクリユー圧縮機においては、 圧縮室の隙間シールゃ軸受潤滑 を目的とする油を高圧側から吐出ガス温度相当の状態で圧縮室や軸受部 に注入する構造を採用していた。 この従来のスクリュー圧縮機では、 圧 縮室の隙間シールゃ軸受潤滑を目的とする油が高圧側から吐出ガス温度 相当の状態で圧縮室ゃ軸受部に注入されていたことにより、 圧縮室の温 度が必要以上に上昇し、 その結果、 吐出ガス温度が上昇して油温も更に 上昇するという悪循環があった。これを抑制するための液冷媒の注入や、 高温での油粘度の低下などにより圧縮機の断熱効率や体積効率を低下さ せるという問題があった。 また、 吐出ガス温度相当となる高温の油が圧 縮室に注入されることにより、 ケーシングのスクリユーボア部に比べて 熱容量の小さいスクリユーロ一夕はケ一シングのスクリユーボア部より も早く熱膨張し、 その結果、 スクリユーロー夕とケーシングのスクリュ —ボア部との隙間が減少し、 初期設定隙間が過小の場合にはスクリユー ロー夕とケーシングのスクリユーポア部とが接触して圧縮機運転不能に なるという問題があった。
さらに、 従来のスクリユー圧縮機においては、 ケーシングのスクリュ 一ポア部の熱膨張差を低減するために、 ケーシングのスクリユーポア部 を温める構造としては吐出ガスによるものがあった。 例えば、 日本特開 平 6— 4 2 4 7 4号公報には、 スクリューロータの外周部を覆うケ一シ ング内筒が、 低圧室からの温度影響を強く受けるのを回避し、 これらス クリユーロ一夕とケーシング内筒との間のシール隙間を殊更大きくする ことなく高い性能を維持しながら、 スクリューロー夕とケ一シング内筒 との間で焼き付きが生じるのを防止できる構造として、 吐出ガス通路を スクリユーロ一夕の軸方向吸入側の端面部近傍まで引き廻すことにより、 吐出ガスで温めるようにしたスクリュ一圧縮機が示されている。
この従来方法では運転条件によっては高差圧となり、 吐出ガス風量が 小さくなってしまう場合があり、 この場合にはケーシングのスクリユー ボア部の熱応答改善効果が小さくなり、 スクリユーロータとケーシング のスクリューボア部で熱膨張差が生じてしまい、 接触に至ってしまうと いう問題があった。
この発明は、 上述のような課題を解決するためになされたもので、 圧 縮室の隙間シールゃ軸受潤滑を目的として圧縮室ゃ軸受部に注入される 油を冷却して、 断熱効率および体積効率の高いスクリユー圧縮機を提供 することを目的としている。
また、 この発明は、 スクリュー口一夕とケーシング本体のスクリュー ポア部との温度差による熱膨張差を抑制し、 スクリユーロ一夕とスクリ ユーポア部との間の隙間が無くなることによるスクリユーロ一夕とケー シング本体のスクリユーポア部との接触が発生しないスクリユー圧縮機 を提供することを目的としている。
また、 この発明は、 万一の液バック運転時でも、 液冷媒との熱交換を 行うことで液圧縮の発生を抑制し、 液バック耐力の向上を図ったスクリ ユー圧縮機を提供することを目的としている。
さらにまた、 この発明は、 ケ一シング本体に内蔵されているモータの 電源取出し端子部への結露発生を抑制するスクリユー圧縮機を提供する ことを目的としている。 発明の開示
この発明に係わるスクリユー圧縮機においては、 圧縮室の隙間シール ゃ軸受潤滑を目的とする油を低圧側近傍まで循環させる油通路をケーシ ング本体内に設けたものである。
また、 この発明は、 上述した油通路をケ一シング本体内のスクリユー ボア外周部に設けたものである。
また、 この発明は、 モータ室を通過した冷媒ガス、 または液状態の冷 媒との熱交換用の伝熱面積を大きくするために放熱座を設けたものであ る。 図面の簡単な説明
第 1図は、 この発明の実施の形態 1を示すスクリユー圧縮機の断面図 である。 第 2図は、 この発明の実施の形態 2を示すスクリユー圧縮機の 断面図である。 第 3図は、 この発明の実施の形態 3を示すスクリュー圧 縮機の断面図である。 第 4図は、 この発明の実施の形態 3を示すスクリ ユー圧縮機の一部構造図である。 第 5図は、 この発明の実施の形態 4を 示すスクリュー圧縮機の断面図である。 第 6図は、 この発明の実施の形 態 5を示すスクリユー圧縮機の断面図である。 発明を実施するための最良の形態
この発明をより詳細に説明するために、 添付の図面に従ってこれを説 明する。
実施の形態 1
第 1図は、 この発明を実施するための実施の形態 1におけるスクリュ —圧縮機を示す断面図である。 第 1図に示すように、 スクリュー圧縮機 の本体を構成する筒状のケーシング本体 1内にモー夕 2が内接して固定 されている。 このモー夕 2はケーシング本体 1に内接固定されたステー 夕 3と、 このステ一夕の内側に配置されたロー夕 4とから構成されてい る。 またケーシング本体 1内には、 スクリユー口一夕 5が配置されてお り、 このスクリューロー夕 5とモータ口一夕 4は互いに同一軸線上に配 置されるようにスクリユー軸 6に取り付けられている。 スクリュー口一 夕 5は複数の螺旋状の圧縮溝が形成され、 スクリユー軸 6によりモー夕 2に連結されて回転駆動される。 またケーシング本体 1の両端部にはモ 一夕カバー 7と、 油分離器 8が固定されている。
上記のように構成されたスクリュー圧縮機において、 ケーシング本体 1内周面とスクリユーロータ 5外周面との間に形成される圧縮室 9の隙 間シールゃ軸受潤滑等を目的として、 圧縮室 9内に注入している油を、 圧縮機低圧室 1 0などの低圧側近傍へ循環させる構造とする。すなわち、 ケーシング本体 1のうち、 スクリユーロ一夕 5が内側に配置されたスク リユーケ一シング部 1 aのスクリュ一ポア外周部 1 bに圧縮室 9から圧 縮機低圧室 1 0へ向かう油通路 1 1を形成する。 これにより、 圧縮室 9 に注入される油が低圧側近傍の低温の冷媒で冷却され、 温度が低下した 油が注入されることによって、 圧縮熱の除去が可能となる。 さらに、 圧 縮熱除去の目的で別途注入している液冷媒による断熱効率および体積効 率の低下を防ぎ、 油温の低下に伴い油の粘度が上昇することによって油 による隙間のシール性が向上し、 高効率のスクリュー圧縮機を得ること ができる。
また、 熱容量がケ一シング本体 1に比べて小さいスクリューロー夕 5 は、 吐出ガス温度相当の高温の油が注入されることによってケーシング 本体 1より早く膨張し、 ケーシング本体 1 とスクリューロー夕 5との隙 間が縮小してしまうという現象が生じるが、 上述するように油を低圧側 近傍で冷却することにより、 ケーシング本体 1とスクリューロー夕 5と の熱容量の違いによる熱膨張差を軽減することができ、 初期隙間を小さ くした場合においてもスクリューロータ 5とケーシング本体 1の接触を 防ぎ、 信頼性の高いスクリユー圧縮機を得ることができる。
また、 低圧側近傍へ油を循環させる際の油通路 1 1をスクリューケー シング部 1 a内のスクリューポア外周部 1 bに設ける構造とすることに より、 油はスクリューケーシング部 1 aの低圧側近傍すなわち低温部分 に到達するまでの間スクリユーポア外周部 1 bを吐出ガス相当の温度で 温めることとなり、 スクリユーケーシング部 1 aの吐出ガス温度に対す る熱応答性が向上し、 スクリューロータ 5とスクリューケ一シング部 1 aとの熱膨張差を軽減することが可能となる。
また、 上記構造のように油通路 1 1をスクリユーケーシング部 1 aの スクリユーポア外周部 1 bに設けて、 油でスクリユーケーシング部 1 a を温めることにより、 吐出ガス風量が減少する高差圧運転条件において も油は減少することなく供給されるため、 スクリユーケーシング部 1 a を温める効果が減少することなくスクリユーロ一夕 5とスクリユーケー シング部 1 aの熱膨張差を低減し、 信頼性の高いスクリュー圧縮機を得 ることが可能となる。
さらに、 例えば油の循環経路 1 1を油分離器 8からスクリユーケ一シ ング部 1 aのスクリユーポア外周部 1 bを通過してスクリユーポア部 4 bを加温し、 その後、 圧縮機低圧室 1 0やモー夕室などの低圧側に循環 し、 油を冷却した後に圧縮室 9に油を注入する構造とすることにより、 上記した油によるスクリューケーシング部 1 aの加温や、 油の冷却によ る断熱効率および体積効率の向上という両方の効果を得ることができ、 高効率で信頼性の高いスクリユー圧縮機を提供することが可能となる。 実施の形態 2
第 2図は、 この発明の実施の形態 2を示すスクリュー圧縮機の断面図 である。 第 2図に示すように、 油通路 1 1に、 ケーシング本体 1の外側 に突出する油外出し通路 1 1 aを別に設け、 この油外出し通路 1 1 aに 電磁弁 1 2を取り付けることにより油通路 1 1に油を流す場合と流さな い場合を設定することができる構造とする。 このような構造とすること により、 例えば通常運転時などスクリューロータ 5の膨張が小さく、 ス クリュ一ケ一シング部 1 aの加温効果を必要としない場合はスクリユー 口一夕 5とスクリユーケーシング部 1 aのスクリユーボア部との隙間を 拡大させないために電磁弁 1 4を閉成して油を流さず、 吐出ガス温度の 上昇などにより、 スクリューロー夕 5が膨張し、 スクリュー口一夕 5と スクリューケーシング部 1 aのスクリユーポア部との隙間が縮小する場 合にのみ油通路 1 1に油を流すことにより、 通常運転時の隙間の拡大に よる体積効率の低下を防ぎながら、 スクリュー圧縮機の信頼性を確保す ることができる。
実施の形態 3
第 3図は、 この発明の実施の形態 3を示すスクリユー圧縮機の断面図 である。 実施の形態 1においては油分離器 8に溜まった油を油通路 1 1 へ導く構造としたが、 この実施の形態 3では、 油を油通路 1 1へ導く前 に、 油通路 1 1の前段側に油の温度を制御する油温制御装置 1 3を設け たものである。 第 3図では油温制御装置 1 3を圧縮機外部の油タンク 1 4内に設けた例を示したが、 圧縮機内部の油分離器 8下部の油溜まり部 に設けるようにしても良い。 油温制御装置 1 3にて油温を調節すること で、 高圧縮比運転時や吐出ガス上昇時にスクリューケーシング部 1 aを 加熱してスクリユーボア部を膨張させることが可能となり、 スクリュー ケーシング部 1 aとスクリユーロ一夕 5の熱膨張差を最小限に抑えてス クリューケ一シング部 1 aとスクリユー口一夕 5の接触を防ぐことで、 信頼性の高いスクリユー圧縮機を得ることが可能となる。 また、 油がス クリューケーシング部 1 aのスクリューボア部を通過し、 スクリューケ 一シング 1 aを温めた後に上記油温制御を行い、 油を冷却してその冷却 された油を圧縮室 9に注入することにより、 スクリユーロー夕 5の膨張 が原因で起こる焼き付き等を防止することができ信頼性が高く、 さらに 油粘度の上昇によってシール性が向上し、 高効率のスクリユー圧縮機を 提供することができる。
さらに、 上記油温制御装置 1 3をスクリユーケ一シング部 1 aのスク リユーポア外周部 1 b通過前後に二つに分割して設けることにより、 ス クリューボア外周部 1 b通過前は高温の油となるように設定し、 スクリ ユーボア外周部 1 b通過後は低温の油となるように設定することで、 油 冷却による断熱効率および体積効率向上、 並びにケ一シングの加温によ る信頼性向上を効果的に行うことができる。
また、 上記油温制御を行う際に、 吐出ガス温度を検出し、 吐出ガス温 度あるいは吐出ガス過熱度に対応して油の温度を制御し、 例えば吐出ガ ス温度が 1 0 0でを超えるような高い場合にはスクリユーケーシング部 1 aをより膨張させるために油温を高く設定することにより、 スクリュ 一ロータ 5とスクリューケ一シング部 1 aのスクリユーポア部との接触 を防ぐことができる。
また、 さらに上記油温制御を行う際に、 第 4図に示すように、 スクリ ユーケ一シング部 1 aとスクリユーロ一夕 5の隙間を検出する非接触 · 渦電流式等の隙間検出装置 1 5を取り付け、 その隙間を検出しながら油 温を制御することで、 スクリユーロ一夕 5とスクリュ一ケ一シング部 1 a間の隙間を最小限の隙間に保つことが可能となる。 これにより、 隙間 からの内部漏れの少ない高性能な圧縮機を得つつ、 信頼性の高いスクリ ユー圧縮機を得ることが可能となる。
また、 実施の形態 1においては油通路 1 1をスクリユーポア外周部 1 bに設けること、 この実施の形態 3では循環させる油の温度制御を行う ことを示したが、 その際、 油通路 1 1の上部と下部を分割した構造とし たものである。 スクリユー圧縮機において湿り状態あるいは液バック状 態で冷媒を吸込む場合、 冷媒が自重によって圧縮機下部に集まり易いた め、 圧縮機上部に比べて圧縮機下部のスクリユーケーシング部温度が低 下しやすい傾向がある。 油通路 1 1の上部と下部を分割し、 実施の形態 1で示した油通路 1 1の下部伝熱面積を上部伝熱面積に比べて広くする ことや下部に供給する油温度を上部より高くするかあるいは下部にのみ 油を流すことなどにより積極的に圧縮機下部を温めることで、 圧縮機上 部下部の温度差を縮小し液バック耐カを有する信頼性の高いスクリユー 圧縮機を得ることが可能となる。
また、 吸入ガスの湿り度が大きい場合には油の流量を多くするなどの 調整を行い、 油の流量を変化させることで、 より最適な制御を行い、 液 バック耐カを向上させる。
実施の形態 4 第 5図は、 この発明の実施の形態 4を示すスクリユー圧縮機の断面図 である。 実施の形態 1では高温の油を低圧側近傍まで循環させる油通路 1 1を設けたが、第 5図では油通路 1 1の一部または全部を延長させて、 圧縮機のケーシング本体 1内に設置されているモー夕 2の電源端子部 1 6および端子台 1 7の付近まで循環させる油通路 1 1 bを付加する構造 としたものである。 スクリュー圧縮機において、 低温運転条件すなわち 吸込みガス温度が低い場合には、 外気の温度湿度条件によっては端子台 1 7および電源端子部 1 6に結露が生じ電源が短絡する恐れがあるが、 油を循環させることで結露防止の加温を行うことが可能となり、 信頼性 の高いスクリユー圧縮機を得ることが可能となる。
実施の形態 5
第 6図は、 この発明の実施の形態 5を示すスクリユー圧縮機の断面図 である。 上記実施の形態 1では、 スクリュー圧縮機において油を低圧側 近傍まで循環させる油通路 1 1を設けた構造としたが、 第 6図に示すよ うに、 例えば低圧側となるモータ 2室と圧縮機低圧室 1 0との境界を成 すケーシング本体 1の境界壁 1 c近傍まで油を循環させる構造とし、 そ の境界壁 1 cにモー夕 2室と圧縮機低圧室 1 0との間に跨る放熱座 1 8 を取り付けることにより、 境界壁 1 cまで循環して冷却される油の伝熱 面積を大きくすることができる。 また、 低圧側近傍まで油を循環させる ことにより冷媒が液状態で吸入された場合においても高温の油によって 冷媒が加熱されるが、 上述した放熱座 1 8を取り付けることにより、 冷 媒と油との熱交換伝熱面積を大きくすることが可能となり、 液バック耐 力が向上した信頼性の高いスクリユー圧縮機を得ることが可能となる。 ケーシング本体 1の境界壁 1 cにモータ 2室と圧縮機低圧室 1 0との 間に跨って取り付けられる放熱座 1 8は、 例えばその表面に放熱フィン を付加することで熱交換をさらに向上させることができる。 産業上の利用可能性
以上のように、 この発明によれば、 圧縮室に注入する油を低圧側近傍 まで循環させることにより油が冷却され、 その冷却された油を圧縮室に 注入することによって圧縮熱の除去が可能となり、 断熱効率および体積 効率の低下を防ぐことが可能となる。 さらに、 油温の低下に伴い油の粘 度が上昇することによって油による隙間のシール性が向上し、 高効率の スクリユー圧縮機を得ることができる。
また、 低圧となるモー夕室と圧縮機低圧室の境界位置近傍に放熱座を 取り付けることにより、 油冷却のための伝熱面積を拡大でき、 さらに油 を低圧近傍まで循環させることや放熱座を設けることにより、 万一の液 バック運転時でも液冷媒との熱交換を行うことで液圧縮の発生を抑制し、 液バック耐力の向上したスクリユー圧縮機を提供することが可能となる。

Claims

請 求 の 範 囲
1 . ケ一シング本体と、 このケーシング本体内に設けられたモ一夕と、 このモータのロー夕とともに前記ケーシング本体内で回転するように配 置されたスクリユーロータと、 このスクリユー口一夕と前記ケ一シング 本体との間に形成された圧縮室とを備えたスクリユー圧縮機において、 前記ケ一シング本体内に、 前記圧縮室の隙間シール又は軸受潤滑のため に圧縮室内に注入する油を圧縮機の低圧側近傍まで循環させる油通路を 設けたことを特徴とするスクリユー圧縮機。
2 . 油通路をケーシング本体内のスクリューボア外周部に設けたことを 特徴とする請求の範囲第 1項記載のスクリユー圧縮機。
3 . 油通路の一部をケ一シング本体の外側に突出させるとともに、 この 外側に突出された油外出し通路に電磁弁を設けたことを特徴とする請求 の範囲第 1項記載のスクリュ一圧縮機。
4 . 油通路の前段側に、 油通路へ導く前の油の温度を調節制御する油温 制御装置を設けたことを特徴とする請求の範囲第 1項記載のスクリユー 圧縮機。
5 . 油温制御装置を、 油通路のスクリューポア外周部通過前後に分割し て設け、 スクリユーボア外周部通過前は高温の油となるように設定し、 スクリユーポア外周部通過後は低温の油となるように設定することを特 徴とする請求の範囲第 4項記載のスクリュ一圧縮機。
6 . ケーシング本体内周部とスクリユーロ一夕との間の隙間を検出する 隙間検出装置を設け、 この隙間検出装置の検出結果により油の温度を制 御することを特徴とする請求の範囲第 4項記載のスクリユー圧縮機。
7 . 油通路をケ一シング本体内に設置されているモータの電源端子部お よび端子台付近まで延長させたことを特徴とする請求の範囲第 1項記載 のスクリユー圧縮機。
8 . 油通路を、 モータ室と圧縮機低圧室との境界を成すケーシング本体 の境界壁近傍まで延長し、 この境界壁に前記モータ室と前記圧縮機低圧 室に跨る放熱座を設けたことを特徴とする請求の範囲第 1項記載のスク リュー圧縮機。
9 . ケ一シング本体と、 このケーシング本体内に設けられたモータと、 このモー夕のロータとともに前記ケーシング本体内で回転するように配 置されたスクリュ一ロータと、 このスクリユーロ一夕と前記モ一夕口一 夕が同一軸線上に配置されるように取り付けられたスクリユー軸と、 こ のスクリュー軸を支持する軸受と、 前記スクリュー口一夕と前記ケーシ ング本体との間に形成された圧縮室とを備えたスクリユー圧縮機におい て、 前記ケーシング本体内に、 前記圧縮室の隙間シール又は軸受潤滑の ために圧縮室内に注入する油を圧縮機の低圧側近傍まで循環させる油通 路を設けたことを特徴とするスクリュ一圧縮機。
PCT/JP2003/016448 2003-12-22 2003-12-22 スクリュー圧縮機 WO2005061900A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005512329A JP4473819B2 (ja) 2003-12-22 2003-12-22 スクリュー圧縮機
US10/544,770 US20060182647A1 (en) 2003-12-22 2003-12-22 Screw compressor
PCT/JP2003/016448 WO2005061900A1 (ja) 2003-12-22 2003-12-22 スクリュー圧縮機
CNB2003801095441A CN100387843C (zh) 2003-12-22 2003-12-22 螺旋压缩机
EP03780975.3A EP1705379B1 (en) 2003-12-22 2003-12-22 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/016448 WO2005061900A1 (ja) 2003-12-22 2003-12-22 スクリュー圧縮機

Publications (1)

Publication Number Publication Date
WO2005061900A1 true WO2005061900A1 (ja) 2005-07-07

Family

ID=34708603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016448 WO2005061900A1 (ja) 2003-12-22 2003-12-22 スクリュー圧縮機

Country Status (5)

Country Link
US (1) US20060182647A1 (ja)
EP (1) EP1705379B1 (ja)
JP (1) JP4473819B2 (ja)
CN (1) CN100387843C (ja)
WO (1) WO2005061900A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829715A (zh) * 2013-12-18 2016-08-03 开利公司 制冷压缩机润滑剂粘性增强

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106787A1 (ja) * 2009-03-16 2010-09-23 ダイキン工業株式会社 スクリュー圧縮機
JP6453682B2 (ja) * 2015-03-19 2019-01-16 三菱重工サーマルシステムズ株式会社 圧縮機駆動用モータおよびその冷却方法
DE102016011504A1 (de) * 2016-09-21 2018-03-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH System für ein Nutzfahrzeug umfassend einen Schraubenkompressor sowie einen Elektromotor
BE1029289B1 (nl) * 2021-04-09 2022-11-17 Atlas Copco Airpower Nv Element, inrichting en werkwijze voor het samenpersen van samen te persen gas met een lage temperatuur

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2914726A1 (de) 1978-05-29 1979-12-06 Luft U Kaeltetechnik Veb K Hermetische motorverdichtereinheit mit schraubenverdichter
WO1983003641A1 (en) 1982-04-13 1983-10-27 Glanvall, Rune Compressor of hermetical type
JPH01167490A (ja) * 1987-12-22 1989-07-03 Sumitomo Heavy Ind Ltd 空気圧縮機の潤滑油冷却方法
JPH01313686A (ja) * 1988-06-10 1989-12-19 Hitachi Ltd 無給油式スクリュー圧縮機
JPH0642474A (ja) 1992-07-24 1994-02-15 Daikin Ind Ltd シングルスクリュー圧縮機
JP2001520352A (ja) * 1997-10-10 2001-10-30 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング 冷却式のねじ型真空ポンプ
JP2003161274A (ja) 2001-11-27 2003-06-06 Mitsubishi Heavy Ind Ltd スクリュー式流体装置
JP2003322093A (ja) 2002-04-26 2003-11-14 Mitsubishi Heavy Ind Ltd スクリュー型流体機械及びこれを備えた冷凍装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1409868A (en) * 1920-08-05 1922-03-14 W M Hardwick Pump
US1672571A (en) * 1926-03-27 1928-06-05 Leonard Pump & Motor Co Compressor
US1706829A (en) * 1928-05-28 1929-03-26 Joseph Mercadante Pump
US2388523A (en) * 1942-06-03 1945-11-06 Gen Electric Lubricant heating system for turbosuperchargers and the like
US2938664A (en) * 1955-01-17 1960-05-31 Leybold S Nachfolger Fa E Pump
US3129877A (en) * 1956-05-17 1964-04-21 Svenska Rotor Maskiner Ab Rotary piston, positive displacement compressor
JPS5776298A (en) * 1980-10-30 1982-05-13 Ebara Corp Screw compressor
JPS57135292A (en) * 1981-02-12 1982-08-20 Ebara Corp Screw compressor
GB2164095B (en) * 1984-09-05 1988-01-27 Hydrovane Compressor Rotary air compressors
JPS61265381A (ja) * 1985-05-20 1986-11-25 Hitachi Ltd スクリユ−圧縮機のガス噴射装置
US4780061A (en) * 1987-08-06 1988-10-25 American Standard Inc. Screw compressor with integral oil cooling
JPH02275089A (ja) * 1989-04-13 1990-11-09 Kobe Steel Ltd スクリュ式真空ポンプ
JPH057985U (ja) * 1991-07-15 1993-02-02 株式会社神戸製鋼所 油冷式スクリユ圧縮機
JP3499110B2 (ja) * 1997-08-11 2004-02-23 株式会社神戸製鋼所 油冷式スクリュ圧縮機
JPH11336684A (ja) * 1998-05-22 1999-12-07 Hitachi Ltd オイルフリースクリュー圧縮機のジャケット冷却装置
US7186101B2 (en) * 1998-07-31 2007-03-06 The Texas A&M University System Gerotor apparatus for a quasi-isothermal Brayton cycle Engine
JP3668616B2 (ja) * 1998-09-17 2005-07-06 株式会社日立産機システム オイルフリースクリュー圧縮機
DE19845993A1 (de) * 1998-10-06 2000-04-20 Bitzer Kuehlmaschinenbau Gmbh Schraubenverdichter
JP3899238B2 (ja) * 2001-04-11 2007-03-28 株式会社神戸製鋼所 油冷式スクリュ圧縮機
US6834513B2 (en) * 2001-05-07 2004-12-28 Carrier Corporation Crankcase heater control
US7059839B2 (en) * 2002-12-10 2006-06-13 Tecumseh Products Company Horizontal compressor end cap with a terminal, a visually transparent member, and a heater well mounted on the end cap projection
US7037091B2 (en) * 2003-05-19 2006-05-02 Bristol Compressors, Inc. Crankcase heater mounting for a compressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2914726A1 (de) 1978-05-29 1979-12-06 Luft U Kaeltetechnik Veb K Hermetische motorverdichtereinheit mit schraubenverdichter
WO1983003641A1 (en) 1982-04-13 1983-10-27 Glanvall, Rune Compressor of hermetical type
JPH01167490A (ja) * 1987-12-22 1989-07-03 Sumitomo Heavy Ind Ltd 空気圧縮機の潤滑油冷却方法
JPH01313686A (ja) * 1988-06-10 1989-12-19 Hitachi Ltd 無給油式スクリュー圧縮機
JPH0642474A (ja) 1992-07-24 1994-02-15 Daikin Ind Ltd シングルスクリュー圧縮機
JP2001520352A (ja) * 1997-10-10 2001-10-30 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング 冷却式のねじ型真空ポンプ
JP2003161274A (ja) 2001-11-27 2003-06-06 Mitsubishi Heavy Ind Ltd スクリュー式流体装置
JP2003322093A (ja) 2002-04-26 2003-11-14 Mitsubishi Heavy Ind Ltd スクリュー型流体機械及びこれを備えた冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1705379A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829715A (zh) * 2013-12-18 2016-08-03 开利公司 制冷压缩机润滑剂粘性增强
US10288069B2 (en) 2013-12-18 2019-05-14 Carrier Corporation Refrigerant compressor lubricant viscosity enhancement
CN105829715B (zh) * 2013-12-18 2019-07-09 开利公司 压缩机组件和用于可移动部件的润滑系统

Also Published As

Publication number Publication date
CN1745252A (zh) 2006-03-08
EP1705379A4 (en) 2011-12-21
CN100387843C (zh) 2008-05-14
JPWO2005061900A1 (ja) 2007-07-12
US20060182647A1 (en) 2006-08-17
JP4473819B2 (ja) 2010-06-02
EP1705379B1 (en) 2015-04-01
EP1705379A1 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
KR101818872B1 (ko) 팽창기 일체형 압축기, 냉동기 및 냉동기의 운전 방법
TWI313729B (en) Multistage rotary compressor
EP2034131B1 (en) Expander and expander-compressor unit
WO2014083901A1 (ja) 圧縮機、冷凍サイクル装置およびヒートポンプ給湯装置
JP5862460B2 (ja) 空気調和装置
JP2006105458A (ja) 冷媒循環装置及び密閉形圧縮機
JP5506953B2 (ja) 冷媒圧縮機
US9207005B2 (en) Device for separating lubricant from a lubricant-refrigerating gas mixture discharged from at least one refrigerant compressor
JP2015042847A (ja) スクリュー圧縮機
JP4473819B2 (ja) スクリュー圧縮機
WO2018090894A1 (zh) 压缩机组件及其控制方法和制冷/制热系统
JP6113259B2 (ja) スクリュー圧縮機
KR101429363B1 (ko) 유랭식 2단 압축기 및 히트 펌프
JP4591402B2 (ja) 冷凍装置
JP2009092060A (ja) オイルセパレータ
KR100963980B1 (ko) 인버터를 포함하는 전동식 압축기
JP4963971B2 (ja) ヒートポンプ式設備機器
CN113286941B (zh) 用于压缩机和发动机的冷却活塞和气缸
JPS63100285A (ja) 圧縮機
CN111322240A (zh) 旋转式压缩机和具有其的制冷系统
JP2007010257A (ja) ヒートポンプ装置
WO2015010260A1 (zh) 旋转压缩机和具有其的冷冻循环装置
JP6927911B2 (ja) 冷凍サイクル装置
JPS59224491A (ja) 圧縮機の給油装置
JP5892261B2 (ja) 冷凍サイクル装置およびヒートポンプ給湯装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005512329

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003780975

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 20038A95441

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006182647

Country of ref document: US

Ref document number: 10544770

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 10544770

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003780975

Country of ref document: EP