WO2005061757A1 - フッ化マグネシウム薄膜の製造方法、フッ化マグネシウム薄膜、積層膜、透明プラスチックフィルム、および有機el素子 - Google Patents

フッ化マグネシウム薄膜の製造方法、フッ化マグネシウム薄膜、積層膜、透明プラスチックフィルム、および有機el素子 Download PDF

Info

Publication number
WO2005061757A1
WO2005061757A1 PCT/JP2004/018617 JP2004018617W WO2005061757A1 WO 2005061757 A1 WO2005061757 A1 WO 2005061757A1 JP 2004018617 W JP2004018617 W JP 2004018617W WO 2005061757 A1 WO2005061757 A1 WO 2005061757A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film
magnesium fluoride
magnesium
transparent plastic
Prior art date
Application number
PCT/JP2004/018617
Other languages
English (en)
French (fr)
Inventor
Yasushi Okubo
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2005516464A priority Critical patent/JP4752507B2/ja
Publication of WO2005061757A1 publication Critical patent/WO2005061757A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a method for producing a magnesium fluoride thin film having high transparency and excellent water vapor barrier properties, and having a low refractive index and high planarity. Further, the present invention relates to a magnesium fluoride thin film or a laminated film thereof having high adhesion to a plastic substrate. Also, the present invention relates to a transparent plastic film and an organic EL device having high light extraction efficiency.
  • the plastic base material has gas permeability, it is degraded by moisture or oxygen to deteriorate its performance, especially for organic electorophore luminescence display devices.
  • the problem was how to seal it, which is difficult to apply.
  • a layer for preventing various gases from passing through the plastic base material.
  • Silicon oxide film, silicon nitride film, silicon oxynitride film, silicon carbide film, aluminum oxide film, aluminum oxynitride film, titanium oxide film, dinoleconium oxide film, magnesium oxide, boron nitride film, carbon nitride film, Diamond-like carbon films, magnesium fluoride, aluminum fluoride films and the like are known.
  • a gas barrier film in which an inorganic thin film having high gas barrier properties and a flexible organic thin film are laminated is also known (International Patent Publication wooo-
  • the magnesium fluoride film is highly transparent up to the ultraviolet region. It is one of the inorganic materials that has a low refractive index (1.36-1.39) among inorganic materials, and has a small refractive index difference from air. The critical angle can reduce the reflectivity of the broader external light.
  • the electron beam vacuum deposition is low usually 1. requires a high vacuum of 33 X 10- 3 Pa productivity to generate a force electron beams could be hard film transparent get. Further, the temperature of the substrate on which the film is formed must also be 300 ° C.
  • Thermal CVD has also been attempted as a process under atmospheric pressure that does not require a high vacuum, and a magnesium fluoride film with sufficient film quality in terms of optical and intensity has been obtained. ° C and cannot be applied to film formation on plastic substrates. Atmospheric pressure processes have also been attempted as a coating method such as coating and baking a magnesium trifluoroacetate solution.However, baking of the applied magnesium fluoride precursor requires heating at about 450 ° C. It cannot be applied to film formation for
  • Patent Document 1 discloses the formation of a metal fluoride thin film by the plasma CVD method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-223707
  • a first object of the present invention is to provide a method for producing a transparent magnesium fluoride thin film having a high gas barrier property by a method with high productivity without using a vacuum process and a magnesium fluoride thin film obtained by the method. It is to be.
  • a second object is to provide a transparent plastic film having high adhesion to a transparent plastic substrate, high gas barrier properties, low external light reflectance, and also having conductivity.
  • a third object is to provide a laminated film of a magnesium fluoride thin film and an organic EL device having high light extraction efficiency.
  • liquid crystal or organic electroluminescent (EL) display devices, electronic optical devices, and the like are more flexible, have higher flexibility, are less likely to break, and are lighter than plastic substrates.
  • the adoption of is considered.
  • the present inventors have conducted intensive studies on these problems, and as a result, have found that under certain conditions, it is possible to form a magnesium fluoride film by a plasma CVD method under atmospheric pressure, and It has been found that the gas barrier property is higher than that of the magnesium fluoride film formed by the conventional electron beam evaporation method, the surface hardness and the flatness are good, and the film forming speed is high. It was completed.
  • FIG. 1 is a diagram showing a schematic configuration of a thin film forming apparatus according to the present embodiment.
  • FIG. 2 is a perspective view showing a support member provided in the thin film forming apparatus.
  • FIG. 3 is a side view showing a thin film forming unit provided in the thin film forming apparatus.
  • FIG. 4 is another side view showing the thin film forming unit.
  • FIG. 5 is a perspective view showing an electrode provided in the thin film forming unit.
  • FIG. 6 is a block diagram showing a main control part of the thin film forming apparatus.
  • FIG. 7 is an explanatory diagram showing a release state of a thin film forming raw material contained in a cleaning film when a thin film is formed by the thin film forming apparatus.
  • FIG. 8 is a schematic configuration diagram illustrating a modification of the thin film forming apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • the object of the present invention is achieved by the following configurations.
  • a reactive gas containing a fluorine compound and an organic magnesium compound is supplied between opposing electrodes under an atmospheric pressure or a pressure near the atmospheric pressure, and the reactive gas is excited by applying a high-frequency voltage. And exposing the substrate to a reactive gas in an excited state.
  • Oml / mVd A magnesium fluoride thin film characterized by the following.
  • the magnesium fluoride thin film according to any one of the above (5) to (9) is formed on a transparent plastic film substrate, and a transparent conductive film is formed on the opposite surface.
  • a transparent plastic film wherein the laminated film according to (13) is formed on a transparent plastic film substrate.
  • a method for producing a transparent magnesium fluoride thin film having a high gas barrier property by a method with high productivity without using a vacuum process and a magnesium fluoride thin film obtained by the method are provided. can do.
  • a plastic substrate that is usually produced has a higher permeability of moisture and oxygen than a glass substrate. Therefore, when a plastic substrate is used for an organic electroluminescent display device, the moisture gradually decreases. In such a case, there arises a problem that the liquid crystal is diffused into the display device and the durability of the display device or the like is reduced due to the effect of the diffused water.
  • an inorganic thin film having low water vapor permeability such as glass, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, aluminum oxide, aluminum oxynitride, or oxide Attempts have been made to obtain composite materials in which thin films such as titanium, zirconium oxide, boron nitride, carbon nitride, fusidium magnesium, aluminum fluoride, and diamond-like carbon have been formed, and among them, silicon oxide thin films are often used.
  • these inorganic films and plastic substrates each have a unique refractive index.
  • the refractive index of titanium oxide is 2.35
  • that of dinoreconium oxide is 2.07
  • the typical transparent conductive film is indium.
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ is 1.49 for plastic materials, 1.65 for PES (polyethersulfone), 1.60 for PET (polyethylene terephthalate), 1.59 for polycarbonate, and 1.59 for plastic films.
  • the ratio of lorefin polymer is 1.51, that of TAC (triacetylcellulose) is 1.48, and that of Teflon (registered trademark) is 1.30.
  • a transparent conductive film is formed by combining these materials.
  • materials having different refractive indices are not properly combined, especially when materials having a large difference in refractive index are laminated.
  • the transmittance of the transparent conductive film decreases, and the reflectance of external light increases.
  • the light source is located very close to the transparent conductive film, and unlike a light source at infinity, most of the emitted light does not enter the transparent conductive film at a certain angle but is incident at a certain angle. Will be incident. If the refractive index difference between the interfaces is large, the critical angle at which the incident light is totally reflected becomes large, and as a result, most of the light emitted from the organic EL element is guided without exiting the front surface of the transparent conductive film. As a result, the light was emitted from the edge of the transparent conductive film, and the light extraction efficiency of the organic EL element was low (20-25%).
  • an antireflection film is formed by using a low-refractive-index material or a combination of a high-refractive-index material and a low-refractive-index material. It is known that low reflectance plastic film can be obtained by doing
  • the gas barrier layer In order for the gas barrier layer to also serve as an antireflection layer, it is preferable that the gas barrier layer satisfies the following expression (1).
  • nl / nb nb / n2 Equation (1)
  • the refractive index of the gas barrier layer is nb, the refractive index of one material in contact with the gas barrier layer is nl, and the refractive index of the other material in contact with the gas barrier layer is n2)
  • the film thickness of the gas barrier layer is also important.
  • the refractive index of PES is 1.65 and the refractive index of air is 1.00, so that the refractive index of the gas barrier layer is 1.
  • the refractive index of the gas barrier layer is 1.
  • inorganic materials having a refractive index of 1.28 have low packing ratios, such as porous silica air-gel, and have no gasoline-free materials and materials. Since there is no material having a high gas barrier property and a high gas barrier property, a material having a refractive index preferably close to 1.28 and having a high gas barrier property is preferable as a material constituting the gas barrier layer.
  • magnesium fluoride as a raw material is evaporated by an electron beam or a resistance heating method, and relatively large clusters of magnesium fluoride fly over a substrate with relatively low kinetic energy.
  • the film is formed by a process of attaching and attaching. Therefore, relatively The problem is that the film tends to be a film having many voids, and the adhesion to the substrate is poor.
  • the vacuum evaporation method requires a high degree of reduced pressure, and was a method with low productivity.
  • the inventors of the present invention applied atmospheric pressure plasma CVD as a film forming method capable of forming a film under atmospheric pressure and at a temperature at which a plastic film can be formed, thereby achieving desired physical properties.
  • the present inventors have found that a magnesium fluoride film satisfying the conditions can be obtained, and completed the present invention.
  • near atmospheric pressure means a pressure of 20-110 kPa, and more preferably 93-104 kPa.
  • FIG. 1 is a diagram showing a schematic configuration of a thin film forming apparatus 1.
  • This thin film forming apparatus 1 is a thin film forming apparatus that forms a thin film on a base material by generating discharge plasma at or near atmospheric pressure, and the base material enters the plasma space. It is a thin film forming apparatus that can be applied to both Shina, plasma jet method and direct plasma method in which the substrate enters the plasma space.
  • the thin-film forming apparatus 1 is provided with a support member 10 for bringing the sheet-shaped substrate 2 into close contact with the peripheral surface thereof and conveying the same, and is rotatable.
  • FIG. 2 is a perspective view showing the support member 10.
  • the support member 10 is a roll-shaped dielectric member in which the surface of a conductive metal base material 11 is covered with a dielectric 12.
  • a temperature control medium such as water or silicone oil can be circulated inside the support member 10 in order to adjust the surface temperature.
  • a temperature controller 4 is connected through a pipe 3. Further, on the periphery of the support member 10, a substrate transport mechanism 13 for transporting the substrate 2 in close contact with the peripheral surface of the support member 10, and a plurality of thin films for forming a thin film on the substrate 2 A forming unit 20 is provided.
  • the substrate transport mechanism 13 includes a first guide roller 14 and a nip roller 15 for guiding the substrate 2 to the peripheral surface of the support member 10, and a peeling of the substrate 2 adhered to the peripheral surface.
  • a second guide roller 16 for guiding the first guide roller 14, a drive source 51 (see FIG. 6) for rotating the first guide roller 14, the second guide roller 16 and the support member 10 in an interlocked manner.
  • FIG. 3 is a side view showing the direct plasma type thin film forming unit 20.
  • a support member 10 provided in the thin film forming unit 20 is connected to a first power supply 9 via a filter 8, and serves as an electrode while conveying the base material 2 and faces the support member 10 of the electrodes 21A and 21B.
  • the surfaces 21a and 21b function as discharge surfaces. That is, when gas is ejected from the gas supply unit 24 to fill the gap h between the support member 10 and the electrodes 21A and 21B with gas, and an electric field is applied to the support member 1OA and the electrodes 21A and 21B, Discharge plasma is generated within the interval h. Since the substrate 2 is disposed in the plasma space, the substrate 2 is exposed to the activated gas to form a thin film on its surface. When the discharge plasma is generated at a single frequency, the first power supply 9 is connected to the ground potential without applying a voltage.
  • the distance between the electrodes forming the discharge space is preferably 0.3 mm to 20 mm, particularly preferably lmm ⁇ 0. 0 in both cases of the plasma jet method and the direct plasma method from the viewpoint of uniform discharge. 5 mm.
  • the distance between the electrodes is determined in consideration of the thickness of the dielectric around the electrodes and the magnitude of the applied voltage.
  • FIG. 5 is a perspective view showing the electrodes 21 A and 21 B.
  • the electrodes 21 A and 21 B are square pole electrodes in which the surface of a conductive metal base material 211 is covered with a dielectric 212.
  • the electrodes 21A and 21B are hollow inside, and a temperature controller 6 is connected to the hollow portion 213 via a pipe 5 as shown in FIG. By flowing a medium for temperature adjustment through the hollow portion 213, the temperature of the electrode surface can be adjusted.
  • a second power supply 23 is connected to the electrodes 21A and 21B of each thin film forming unit 20 via a filter 22.
  • the thin film forming unit 20 has a gas supply unit 24 for ejecting discharge gas toward the gap b between the pair of electrodes 21A and 21B so as to face the gap b.
  • the gap b functions as a flow path for guiding the discharge gas supplied from the gas supply unit 24 to the base material 2 on the support member 10.
  • the gas supply unit 24 has a nozzle body 25 having a gas flow path formed therein and a gas ejection projecting from the nozzle body 25 toward the flow path and communicating with the gas flow path to discharge the discharge gas. Part 26 is provided.
  • the thin film forming unit 20 includes a film transport mechanism 30 for transporting the cleaning film 27 continuously or intermittently while keeping the cleaning film 27 in close contact with the electrodes 21A and 21B. It is provided according to 21B.
  • the raw material fine particles generated in the plasma space are deposited not only on the target base material but also on the discharge electrode. If such dirt on the electrode is left undisturbed, the discharge state will become unstable, and the transition from stable 'homogeneous glow discharge' to unstable and local arc discharge will occur, making it impossible to obtain a uniform thin film under arc discharge. It is very effective to obtain a uniform thin film by covering the discharge electrode with a taring film, preventing contamination on the discharge electrode, and keeping the discharge electrode clean at all times.
  • the cleaning film transport mechanism 30 is provided with a first cleaning film guide roller 31 for guiding the talling film 27 near the gas supply unit 24. On the upstream side of the first cleaning film guide roller 31, there is provided an unshown unwinding roller for the tallying film 27 or an original winding of the cleaning film 27.
  • a winding unit 29 that winds the cleaning film 27 through the second cleaning film guide roller 32 farther from the gas supply unit 24 than the first cleaning film guide roller 31.
  • the entire width of the first cleaning film guide roller 31, the second cleaning film guide roller 32, and the cleaning film 27 is set longer than the entire width of the support member 10, as shown in FIG. Specifically, it is preferable that the entire width of the clear film 27 is set so that both ends protrude from the both ends of the support member 11 by 1 to 100 mm. As a result, the cleaning film 27 becomes larger than the discharge space B.
  • the electrodes 21A and 21B are covered with the cleaning film 27, they are not exposed to the discharge plasma, thereby preventing the electrodes 21A and 21B from being stained. In addition, since the edge of the cleaning film 27 does not enter the discharge space B, arc discharge due to discharge concentration can be prevented.
  • the thin film forming unit 20 is provided with the discharge surfaces 21a and 21b of the electrodes 21A and 21B.
  • a heating member 28 for heating the cleaning film 27 is provided on the upstream side in the transport direction of the cleaning film 27.
  • the cleaning film 27 is wound by the cleaning film transport mechanism 30. After being pulled out from the exit roller, it is guided by the first cleaning film guide roller 31 and contacts the peripheral edge of the nozzle body 25 of the gas supply unit 24, and then contacts the surface of the heating member 28 and is heated. Then, they come into contact with the discharge surfaces 21a and 21b via the corners 215 of the electrodes 21A and 21B, and are then guided by the second cleaning film guide roller 32 and wound up by the winding unit 29. I have.
  • the corner portion 215 is formed in an arc shape, the pulling force when the clean ninde film 27 moves from a surface other than the discharge surface 21a (the surface of the corner portion 215) to the discharge surfaces 21a and 21b, Can be prevented, and can be transported smoothly.
  • the discharge surfaces 21a and 21b of the electrodes 21A and 21B are flat surfaces.
  • the discharge surfaces 21a and 21b may be formed as curved surfaces that are convex toward the other discharge surfaces 21a and 21b.
  • the adhesion between the discharge surfaces 21a and 21b of the electrodes 21A and 21B and the cleaning finolem 27 can be further enhanced.
  • the cleaning film 27 is in contact with the nozzle body 25, the space from the gas supply unit 24 to the discharge space B is partitioned by the cleaning film 27.
  • the discharge gas can be prevented from flowing out of the flow path.
  • Examples of the material of the cleaning film 27 include, for example, cellulose esters such as cellulose triacetate, cenorellose diacetate, cenorellose acetate propyl acetate or cenorellose acetate butyrate, and polyesters such as polyethylene terephthalate and polyethylene naphthalate.
  • cellulose esters such as cellulose triacetate, cenorellose diacetate, cenorellose acetate propyl acetate or cenorellose acetate butyrate
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate.
  • Polyolefins such as polyethylene and polypropylene, polyvinylidene chloride, polyvinyl chloride, polyvinyl alcohol, ethylene vinyl alcohol copolymer, syndiotactic polystyrene, polycarbonate, nonolevonolene resin, polymethylpentene, polyetherketone, polyimide, Polyethersulfone, polysulfone, polyetherimide, polyamide, fluororesin, polymethylatali Over preparative include Atari rates copolymers and the like.
  • the cleaning film is transported on the discharge electrode having a square shape, a film having high slipperiness is preferable.
  • This sliding property can be applied even if the cleaning film substrate itself has poor sliding properties, even if the sliding agent such as silicone oil is applied to the surface in contact with the discharge electrode.
  • the lubricity may be imparted by thinly laminating a polymer such as Teflon (registered trademark) having high viscosity.
  • the thin film forming apparatus 1 is provided with a control device 50 for controlling each drive unit.
  • the control device 50 includes a drive source 51, a storage unit 52, a first power supply 9, a second power supply 23, a gas supply unit 24, a heating member 28, temperature control devices 4, 6, and a winding unit 29. It is connected. It should be noted that the drive unit and the like of the thin film forming apparatus 1 are connected to the control device 50 in addition to the above.
  • the control device 50 controls various devices in accordance with control programs and control data written in the storage unit 52.
  • the film forming speed is increased and the carbon content is controlled within a predetermined ratio.
  • a power supply that can supply a relatively large amount of power with a high-frequency voltage is preferable.
  • a high-frequency power supply of 1 kHz or more and 2500 MHz or less is used, and a voltage of any frequency between 1 kHz and 11 MHz and a voltage of any frequency between 11 2500 MHz are superimposed and applied. Is more preferable.
  • the frequencies required to excite various gases present in the discharge space may be different, and the application of multiple frequencies accelerates the decomposition of the source gas and increases the film forming speed. is there.
  • the first power supply connected to the support member 10 is a low-frequency power supply. This is because power can be transmitted more efficiently to a rotating member such as the support member 10 at a low frequency.
  • the lower limit of the power supplied between the electrodes 0. lW / cm 2 or more 50 W / cm 2 or less der Rukoto is preferred instrument limit is more and more long 0. 5W / cm 2 or more I like it.
  • the 2500 MHz voltage is preferably smaller than the 1 kHz-1 MHz frequency voltage, and is preferably 210-80% of the lk Hz-1 MHz voltage.
  • the voltage application area (cm 2 ) at the electrode is the area in which discharge occurs.
  • the high-frequency voltage applied between the electrodes may be an intermittent pulse wave or a continuous sin wave. Is preferred
  • Such a power supply is not particularly limited, but includes a high frequency power supply (3 kHz) manufactured by Shinko Electric, a high frequency power supply (5 kHz) manufactured by Shinko Electric, a high frequency power supply (15 kHz) manufactured by Shinko Electric, and a power supply of Shinko Electric.
  • High frequency power supply (50kHz), high frequency power supply from Heiden Laboratory (continuous mode, 100kHz), high frequency power supply from Pearl Industries (200kHz), high frequency power supply from Pearl Industries (800kHz), high frequency power supply from Pearl Industries (2 MHz), a high frequency power supply (13.56 MHz) manufactured by JEOL, a high frequency power supply (27 MHz) manufactured by Pearl Industries, and a high frequency power supply (150 MHz) manufactured by Pearl Industries can be used.
  • a power supply that oscillates 433 MHz, 800 MHz, 1.3 GHz, 1.5 GHz, 1.9 GHz, 2.45 GHz, 5.2 GHz, 10 GHz, and 28 GHz may be used.
  • efficient introduction into the plasma space and uniform introduction are difficult with a power supply of 2500 MHz or higher, so a power supply of 2500 MHz or lower is preferred.
  • the temperature control devices 4 and 6 reduce the temperature of the base material to a normal temperature of 250 ° C in order to suppress adverse effects due to high temperature during discharge or to adjust the composition of the thin film to be formed.
  • the discharge electrodes 21A and 21B, the support member 10 and the like are cooled or heated as necessary so that the adjustment can be performed.
  • the metallic base materials 11, 211 and the dielectrics 12, 212 one having characteristics matching between the two is preferable.
  • One of the characteristics is that the metallic base materials 11, 211 and the dielectric 12 are preferable.
  • the linear thermal expansion coefficient is a physical property value of a known material.
  • the metallic base material is pure titanium or a titanium alloy, the dielectric is a ceramic sprayed coating
  • the metallic base material is pure titanium or a titanium alloy, and the dielectric is glass lining.
  • Metallic base material is ceramic and iron composite material, dielectric material is glass lining, (7)
  • Metallic base material is ceramic and aluminum composite material, (8)
  • the base material is a composite material of ceramic and aluminum, and the dielectric is glass lining. From the viewpoint of the difference in linear thermal expansion coefficient, the above (1) or (2) and (5) and (8) are preferred, and particularly (1) is preferred.
  • the metallic base materials 11, 211 titanium or a titanium alloy is particularly useful.
  • titanium or a titanium alloy for the metal base materials 11 and 211 and a material corresponding to the above combination for the dielectrics 12 and 212, the electrode under use can be used under severe conditions where deterioration, especially cracking, peeling, falling off, etc., does not occur. Can be used for a long time.
  • Metallic base materials 11 and 211 of the electrode useful in the present invention are titanium alloys or titanium metals containing 70% by mass or more of titanium.
  • the content of titanium in the titanium alloy or titanium metal is 70% by mass or more, it can be used without any problem.
  • those containing 80% by mass or more of titanium are preferable. Les ,.
  • As titanium alloys or titanium metals useful in the present invention those generally used as industrial pure titanium, corrosion-resistant titanium, high-strength titanium and the like can be used.
  • Industrial pure titanium includes, for example, TIA, TIB, TIC, TID, etc., all of which contain very little iron, carbon, nitrogen, oxygen, hydrogen, etc. Has a content of 99% by mass or more.
  • T15PB can be preferably used, and contains lead in addition to the above-mentioned contained atoms, and the titanium content is 98% by mass or more.
  • the titanium alloy in addition to the above atoms except for lead, for example, T64, 325, 525, and 3 containing aluminum and containing vanadium tin can be preferably used. However, the content of titanium is 85% by mass or more.
  • These titanium alloys or metals are thermally expanded compared to stainless steel, e.g. AISI316.
  • a metal base material whose coefficient is smaller by about 1/2, combined with a titanium alloy or a dielectric 12,212 coated on titanium metal as a metal 211, 212, capable of withstanding long-term use at high temperatures S can.
  • dielectrics 12, 212 specifically, an inorganic compound having a relative dielectric constant of 6-45 is preferable.
  • ceramics such as alumina and silicon nitride, and glass lining materials such as silicate glass and borate glass. Among them, those sprayed with ceramics and those provided with glass lining are preferred.
  • dielectrics 12, 212 formed by spraying alumina are preferable.
  • the porosity of the dielectrics 12, 212 is 10% by volume or less, preferably 8% by volume or less, and preferably exceeds 0% by volume. % By volume or less.
  • Another preferable specification that can withstand high power is that the thickness of the dielectrics 12, 212 is 0.5 to 2 mm. This variation in film thickness is desirably 5% or less, preferably 3% or less, and more preferably 1% or less.
  • a reactive gas preferable for obtaining a magnesium fluoride film will be described.
  • a raw material of the magnesium fluoride film there are a method in which a compound containing magnesium and a compound containing fluorine are mixed and used, and a case in which a compound containing both fluorine and magnesium is used.
  • These raw materials may be in a gas, liquid or solid state at normal temperature and normal pressure.
  • gas it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means of calo heat, publishing, decompression, ultrasonic irradiation, vaporizer or the like.
  • solvent which may be used after being diluted with the solvent, organic solvents such as methanol, ethanol, n-hexane and the like and a mixed solvent thereof can be used. These diluting solvents are decomposed into molecules and atoms during the plasma discharge treatment, so that the influence can be almost ignored.
  • a compound having a vapor pressure in a temperature range of 0 to 250 ° C. under atmospheric pressure is preferable, and a compound exhibiting a liquid state in a temperature range of 0 to 250 ° C. is more preferable.
  • This is a plasm This is because it is difficult to feed gas into the plasma deposition chamber unless it can be vaporized at atmospheric pressure because the pressure in the deposition chamber is near atmospheric pressure.
  • the raw material compound is a liquid, the amount of the raw material compound sent into the plasma film forming chamber can be controlled with higher precision.
  • a vaporizer can be used.
  • the liquid power can be directly vaporized, and the vaporization amount can be controlled with an accuracy of ⁇ 1%.
  • the heat resistance of the plastic film for forming the gas barrier layer is 270 ° C or less, it is preferable that the compound has a vapor pressure at a temperature of 20 ° C or less from the heat resistance temperature of the plastic film.
  • organomagnesium compounds include bis (cyclopentagenenyl) magnesium, bis (ethynolecyclopentageninole) magnesium, bis (pentamethinolecyclopentagenenyl) magnesium, bis (n- Provir cyclopentageninole) magnesium, magnesium methoxide, magnesium ethoxide, magnesium _n_propoxide, magnesium isopropoxide, magnesium methoxy ethoxide, magnesium methyl carbonate, magnesium acetate anhydride, Examples include magnesium acetate tetrahydrate, magnesium acrylate, magnesium methacrylate, magnesium lactate, magnesium naphthenate, magnesium bis (acetyl acetonato) magnesium, and bis (dipivaloyl methanate) magnesium.
  • fluorine source examples include fluorine gas (F), hydrogen fluoride (HF), chlorofluorocarbon (CF),
  • the bond between carbon and fluorine is a bond that is easily broken in plasma, it can be generated from a force and a polymer existing in the plasma space.
  • the cleaning film is etched by plasma to generate fluorine-containing low molecules or fluorine radicals, which can be used as a fluorine source.
  • fluoropolymer film examples include Teflon (registered trademark), poly (perfluoroalkoxyethylene), poly (ethylene trifluoride), polyvinylidene fluoride, polyvinyl fluoride, and the like.
  • Examples of molecules containing both magnesium and fluorine include magnesium trifluoroacetate, magnesium trifluoromethanesulfonate, and magnesium trifluoropentanediona. And magnesium hexafluoropentanedionate, magnesium hexafluoropentanedionate dimethyl ether complex.
  • Fluorine radicals and hydrogen fluoride generated in the plasma by force decompose and gasify the organic components of the highly active raw material gas to increase the film formation rate, but also etch the plastic substrate. It is preferable that the fluorine component be used in the minimum necessary amount because of the fact that the metal substrate is corroded. Therefore, it is preferable to use a compound containing both fluorine and magnesium.
  • a hydrogen gas or the like may be mixed into the mixed gas in order to adjust the contents of carbon and hydrogen in the film.
  • Group 18 atoms of the periodic table specifically, helium, neon, argon, krypton, xenon, radon, etc., particularly helium and argon, are preferably used.
  • Inert gas is mixed, and plasma is used as mixed gas.
  • the film is formed by supplying to a discharge generator (plasma generator).
  • the ratio of the inert gas to the reactive gas varies depending on the properties of the film to be obtained, but the reactive gas is supplied at an inert gas ratio of 90 to 99.9% to the entire mixed gas. .
  • the CVD method includes elements such as hydrogen, carbon, and oxygen other than fluorine and magnesium in the source gas. Oxygen contamination may occur. Also in the formation of the magnesium fluoride film by the atmospheric pressure plasma CVD method in the present invention, contamination of hydrogen, carbon, and oxygen into the film is observed.
  • the ratio of carbon, oxygen, fluorine, and magnesium atoms in the magnesium fluoride film can be determined by X-ray photoelectron spectroscopy (also called ESCA or XPS), X-ray microspectroscopy, Auger electron spectroscopy, Rutherford backscattering, etc. Is analyzed and determined by Although these methods cannot measure the ratio of hydrogen atoms, it is presumed that hydrogen fluoride atoms are present in the film to some extent in magnesium fluoride films containing elements other than fluorine and magnesium.
  • the mixing ratio of carbon and oxygen in the magnesium fluoride film is at least It is preferably at most 10 atomic%.
  • a film containing 10% by atom or more of carbon and oxygen has poor gas barrier properties, but is considered to contain an organic substance in the film and is more flexible than a magnesium fluoride film containing less than 10% by atom of carbon and oxygen. It is considered to be rich in properties and is useful as a stress relaxation layer.
  • the stress relieving layer is useful from the viewpoint of crack resistance and the like because it can relieve the bending stress and the like generated in the magnesium fluoride film and prevent the entire magnesium fluoride layer from cracking.
  • it since it has excellent adhesion to plastic films that are organic substances, it is also useful for improving the adhesion of magnesium fluoride films.
  • the refractive index does not change much when the carbon / oxygen content is in the range of 10 to 30 atomic%, an optical interface is not generated even when the film is stacked with a film having a high gas barrier property and a low carbon / oxygen mixing ratio. It is preferable because the reflectance is not increased.
  • lamination with a film with good gas barrier properties can extend the gas transmission path even with films with poor gas barrier properties, and can exhibit higher gas barrier properties than single-layer films with the same film thickness.
  • One of the advantages of the atmospheric pressure plasma CVD method is that the magnesium fluoride films having different compositions can be easily laminated.
  • the magnesium fluoride film may be a single layer or a laminate of two or more layers, but the total thickness of the entire film is 10 ⁇ m in terms of maintaining flexibility and resistance to bending. m or less is preferable.
  • the thickness of each layer is preferably 500 nm or less, since if the thickness is large, the stress cannot be relieved when a bending stress or the like is applied and cracks are generated. More preferably, it is less than 100 nm. On the other hand, if the thickness is less than 5 nm, it is difficult to form a uniform film, which is not preferable.
  • the thickness of the magnesium fluoride film is adjusted by increasing the film forming time by the atmospheric pressure plasma CVD method, increasing the number of treatments, or increasing the partial pressure of the raw material mixture in the mixed gas. can do.
  • a substrate is transported and provided with multiple layers, one for each pass
  • a method in which a substrate is passed through a plurality of plasma discharge treatment apparatuses, the head and the tail of the base material are connected, and a layer is provided in each plasma discharge treatment apparatus a plurality of times by transporting the base material, and the like may be used.
  • the conditions of the plasma discharge treatment apparatus include the temperature of the substrate to be formed, the power supplied to the plasma, the frequency, and the like.By changing these, the composition and properties of the magnesium fluoride film to be formed can be changed. .
  • the plastic (resin) base material for forming the magnesium fluoride thin film of the present invention is not particularly limited as long as it is substantially transparent. Specific examples include polyethylene terephthalate and polyethylene naphthalate, and the like. Cellulose esters such as polypropylene, cellophane, phenolyl diacetate, phenolyl acetate, phenolyl acetate butyrate, phenolyl acetate propionate, cellulose acetate phthalate, cellulose nitrate or derivatives thereof, and polychloride vinylidene , Poly (vinyl alcohol), polyethylene butyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyamide Tersulfone (PES), polysulfones, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, or an organic-inorganic hybrid resin
  • a magnesium fluoride film formed by an atmospheric pressure plasma CVD method has a higher gas barrier property as the film formation temperature is higher, and various heating such as formation of a transparent conductive film as a transparent support for a display. Because the resin that forms the magnesium fluoride film may be subjected to a process, it is preferable that the resin that forms the magnesium fluoride film has high heat resistance.
  • the glass transition temperature is preferably 180 ° C or more.
  • Resin base materials satisfying these conditions include some polycarbonates, some cycloolefin polymers, polyether sulfones, polyether ether ketones, polyimides, fluororesins, diacetyl cellulose, and triacetyl cellulose. , And the organic and inorganic of these resins and silica Hybrid resins and the like can be mentioned.
  • the glass transition temperature of the resin substrate it can be measured by DSC (differential scanning calorimetry), TMA (thermal stress strain measurement), DMA (dynamic viscoelasticity measurement), or the like.
  • it is a plastic film having a refractive index of 1.60 or more, for example, PET or PES. If the refractive index is 1.60 or more, the external light reflectance can be 1.0% or less when the magnesium fluoride film is laminated. Further considering heat resistance, PES is most preferable.
  • the configuration B) is more preferable in consideration of the refractive index of each layer. This is because reflection at the interface between layers having different refractive indices can be prevented, and light having a light source power of the display can be efficiently extracted.
  • the resin substrate since the resin substrate is directly exposed to the plasma atmosphere, it may have an undercoat layer on one side or both sides as a plasma etching layer or a hard coat layer.
  • the undercoat layer include an organic layer formed by applying a polymer or the like.
  • the organic layer includes, for example, a film in which an organic material film having a polymerizable group is subjected to post-treatment by means such as irradiation of ultraviolet rays or heating.
  • control device 50 causes discharge gas to be ejected from each gas supply unit 24 to supply gas to discharge space h.
  • the gas ejected from the gas supply unit 24 passes through a space partitioned by the cleaning film 27 and passes through the pair of electrodes 21A, 2A. It reaches the discharge space h formed by IB.
  • the control device 50 controls the drive source 51 to rotate the first guide roller 14, the second guide roller 16, and the support member 10, and The material 2 is brought into close contact with the peripheral surface of the support member 10 and transported, and the winding section 29 is controlled so that the tallying film 27 is brought into close contact with the surface of the electrodes 21A and 21B and transported.
  • the control device 50 sets the power source 23 to ⁇ N, applies an electric field to the electrodes 21A and 2IB, and generates discharge plasma in the discharge space h.
  • the discharge plasma is ejected from the discharge space h toward the base material 2 by the ejection power from the gas supply unit 24.
  • the space in which the discharge plasma is generated is called the plasma space H, and protrudes upward and laterally from the discharge surfaces 21a, 21b of the electrodes 21A, 21B by the above-described ejection power.
  • the surface temperature of the support member 10 and the electrodes 21A and 21B is controlled by the temperature control devices 4 and 6, and the surface temperature of the heating member 28 is also controlled, the base material 2 Before the cleaning film 27 enters the plasma space H, the cleaning film 27 is continuously heated in advance. For this reason, even if the base material 2 and the tally film 27 enter the plasma space H, it is possible to prevent rapid and excessive thermal influence, and to suppress the contraction of the discharge plasma due to heat. Accordingly, it is possible to further prevent wrinkles and creaking from occurring in the base material 2 and the talling film 27. Note that heating may not be performed continuously but may be performed stepwise.
  • the base material 2 passes through the plasma space H sandwiched between the electrodes 21A and 21B and the support member 10, whereby a thin film is formed on the base material 2. More specifically, in the plasma space H, those contained in the discharge gas, such as a fluorine compound and an organomagnesium compound, are activated. Further, since the cleaning film 27 has entered the plasma space H, as shown in FIG. 7, elements G contained in the surface layer of the cleaning film 27, such as fluorine and carbon, may be released. In other words, since various materials serving as raw materials for the thin film exist in the plasma space H, when the substrate 2 passes through the plasma space H, the various materials are deposited on the substrate 2 to form a thin film.
  • the discharge gas such as a fluorine compound and an organomagnesium compound
  • the temperature control device 4 adjusts the temperature control medium to 20 ° C-250 ° C, preferably 80 ° C to 200 ° C, so that the base material 2 has a temperature capable of exhibiting the predetermined performance. The temperature is adjusted.
  • the temperature of the temperature control medium is controlled to 20 ° C-250 ° C, preferably 80 ° C-200 ° C.
  • the lower limit temperature must be adjusted so that the temperature of the medium does not fall below the vaporization temperature of the starting compound used.
  • the base material 2 on which the thin film is formed is conveyed to the next step via the guide roller 16 as necessary. If there is no next step, it is wound up.
  • a direct plasma method in which a thin film is formed on the base material 2 by forming an electric discharge space by applying an electric field between the support member 10 and the electrodes 21A and 21B to form a thin film on the base material 2 has been described.
  • the plasma jet method in which a gap between the electrodes 21A and 21B is used as a discharge space and an activated gas is ejected to form a thin film on the substrate 2 supported by the support member 10 can be applied. .
  • the support member in the thin film forming apparatus 1 of the above embodiment functions as an electrode. is there. Therefore, in the following description, the same portions as those of the thin film forming apparatus 1 of the above embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 8 is a side view of a plasma jet type thin film forming unit.
  • a pair of electrodes 21A and 21B that are opposed to the peripheral surface of the support member 10 with a space h and are wider than the support member 10 are arranged. Further, the pair of electrodes 21A and 21B are arranged with a gap b therebetween. This gap b is a discharge space, and the surfaces of the discharge space B facing the electrodes 21A and 21B are discharge surfaces 21a ⁇ and 21b ', respectively.
  • the raw material gas passing through the discharge space is activated and is sprayed on the base film 2 on the support member 10 to form a thin film on the base film 2.
  • the method for producing a magnesium fluoride thin film of the present invention also includes a substrate film that can be formed only by a portion where the magnesium fluoride thin film is formed, a cleaning film transport device, and the like.
  • a substrate film that can be formed only by a portion where the magnesium fluoride thin film is formed a cleaning film transport device, and the like.
  • plasma generation is performed under atmospheric pressure, there is no need to reduce the pressure of the entire system, so operation, maintenance, and inspection of the system are easy, and high productivity is achieved. I can give you S.
  • an organic EL device e.g., an EU device
  • the magnesium fluoride film of the present invention can be used as a film for sealing these elements.
  • the organic EL element has a structure in which a light emitting layer is sandwiched between a pair of anode and cathode electrodes. Specifically, it refers to a layer containing an organic compound that emits light when an electric current is applied to an electrode composed of a cathode and an anode. Since the cathode and the light-emitting layer are weak to moisture, after forming the organic EL device, the sealing film on the cathode side is directly sealed on the cathode or sealed with an epoxy resin or the like.
  • the magnesium fluoride film of the present invention is also formed on the air interface of the film on the anode (ITO) side, which is the side from which light is emitted, to prevent the permeation of moisture and oxygen to the organic EL element and to reduce the refractive index.
  • the magnesium fluoride layer, which is the rate, also has the effect of improving the light extraction efficiency.
  • Example 1 Magnnesium fluoride membrane single layer
  • a magnesium fluoride film was formed on a PES film having a thickness of 100 ⁇ m under the conditions shown in Table 1, and the following evaluation was performed.
  • the magnesium fluoride film was formed by CVD using the thin film forming equipment 1 shown in Fig. 1, and the plasma was generated by using a high-frequency power source PHF-2K (100kHz ) And a high frequency power supply JRF-10000 (13.56 MHz) manufactured by JEOL Ltd. as the second power supply.
  • the raw materials for magnesium fluoride membrane are as follows The film was formed by feeding the raw material gases 115 into the discharge space at 135 ° C at 20 slm (gas flow rate at 20 ° C: L / min).
  • the types of discharge gas and other discharge conditions are shown in Table 1, and were set to conditions A to K, respectively.
  • a cleaning film in the case of a reactive gas of 114, a finolem with a 25 ⁇ m thick polyimide film coated with a silicone release agent on the back surface was used so that the silicone release agent-coated surface was in contact with the discharge electrode. Used.
  • a Teflon (registered trademark) film having a thickness of 30 ⁇ m was used as a cleaning film. The transport speed of the cleaning film was 3 cm per minute.
  • Discharge gas helium 99.3 volume 0/0
  • Raw material gas magnesium hexafluoropentanedionate 'dimethyl ether complex
  • Discharge gas argon 99.3 volume 0/0
  • Raw material gas magnesium hexafluoropentanedionate 'dimethyl ether complex
  • Discharge gas nitrogen 99.3 volume 0/0
  • Raw material gas magnesium hexafluoropentanedionate 'dimethyl ether complex
  • Source gas 1 Magnesium methoxy ethoxide / methoxy ethanol
  • Raw gas 2 triflumizole Ruo B Ethanol 0.1 volume 0/0
  • Discharge gas nitrogen 99.4 volume 0/0
  • Source gas 1 Magnesium methoxy ethoxide / methoxy ethanol
  • Source gas 2 Teflon (registered trademark) film (cleaning film)
  • the ratio of carbon, oxygen, fluorine and magnesium was measured using an X-ray photoelectron spectrometer (ESCA) manufactured by VG Scientific.
  • the measurement was performed at 37 ° C. and 90% RH using a water vapor permeability measuring device PERMATRAN-W1A manufactured by Modern Control.
  • the measurement was performed at 23 ° C. and 0% RH using an oxygen permeability measuring device OX-TRAN100 manufactured by Modern Control.
  • a cross cut test based on JIS K5400 was performed. On the surface of the formed thin film, 90 blades of a single-blade razor were cut at 11mm intervals at lmm intervals from side to side to make 100 lmm square grids. A commercially available cellophane tape was stuck thereon, and one end was peeled vertically by hand, and the ratio of the area where the thin film was peeled to the area of the tape stuck from the cut line was evaluated according to the following ranks.
  • the area ratio of the peeled area was 10% or more.
  • the film formation speed such as the water vapor transmission rate and the oxygen transmission rate
  • the film formation speed are higher than the applied voltage at the substrate temperature. Is effective.
  • the higher the temperature of the substrate the easier it is for organic matter to decompose.Therefore, the amount of organomagnesium compounds discharged from the film-forming space without deposit is reduced, and the amount of carbon and oxygen remaining in the magnesium fluoride film is reduced. It is presumed to be.
  • the refractive index of the film to be formed did not change much under any conditions, and a film having a low refractive index of 1.35-1.39 was obtained.
  • a film having high gas barrier properties and a low refractive index can be obtained at a high film formation rate.
  • Example 2 The conditions I for obtaining a film having a low carbon content in Example 1 and the conditions J for obtaining a film having a high carbon content are alternately and continuously formed at a film thickness as shown in Table 2. As a result, a magnesium fluoride laminated film 201 206 having a total film thickness of about SlOOnm was produced.
  • a gas barrier layer was formed on a PES film having a thickness of 100 ⁇ m according to the method described in International Patent Publication WO00-36665.
  • Polymethyl methacrylate oligomer was introduced from the introduction nozzle into the vacuum evaporation apparatus, and after vapor deposition, it was taken out of the vacuum evaporation apparatus and polymerized by irradiating ultraviolet light under a stream of dry nitrogen to polymerize the PMMA film.
  • the thickness of the PMMA film was adjusted to 25 nm.
  • a silicon oxide film was formed to a thickness of 25 nm using an RF sputtering method (frequency: 13.56 MHz) using silicon oxide as a sputtering target.
  • the PMMA film and the silicon oxide film were each formed to a thickness of 25 nm to form a laminated film of all four layers (100 nm thick), thereby obtaining a transparent laminated film 207 of Comparative Example.
  • the obtained laminated film 201-207 was measured for water vapor transmission rate, cross cut test, reflectance, and transmittance.
  • the reflectance at a wavelength of 550 nm (green) with high visibility was measured using FE3000 manufactured by Otsuka Electronics Co., Ltd.
  • the transmittance at a wavelength of 550 nm (green) with high visibility was measured using a spectrophotometer U-3310 manufactured by Hitachi, Ltd.
  • the total film thickness is constant (about 100 nm) and the carbon content is high.
  • the number of layers combining a large number of layers and a small number of layers was increased, the greater the number of layers, the lower the moisture permeability was, and the gas barrier layer was effective.
  • the moisture permeability was significantly deteriorated after the cooling / heating cycle. This is presumed to be due to the low heat resistance of PMMA, which is a stress relaxation layer that can only be supported by the support, and the high linear expansion coefficient.
  • the adhesiveness of the film was such that the transparent laminated film 207 of the comparative example and the single film of the condition A having high hardness (the transparent laminated film 201 of the present invention) were films having poor adhesion.
  • the transparent laminated film 207 of the comparative example is formed by laminating two layers (refractive index of PMMA of 1.49 and refractive index of Si ⁇ of 1.46) having different refractive indices. Reflectivity by reflection
  • the refractive index of the gas barrier layer is small and the refractive index difference with air is small, and a film having a large number of layers and almost no difference in refractive index is laminated. For this reason, it is a preferable gas barrier film that does not cause an increase in reflectance and a decrease in transmittance and also has an antireflection function.
  • Organic EL devices were produced on the transparent laminated films 301 to 306 of the present invention produced in Example 3 and the transparent laminated film 307 of Comparative Example.
  • the configuration of the organic EL display device is such that, using the transparent laminated film 201 207 prepared in Example 2 as the transparent substrate 1, indium oxide as a sputtering target is formed on the side opposite to the surface having the magnesium fluoride film.
  • the pressure in the vacuum apparatus of the sputtering apparatus is reduced to 1 ⁇ 10 3 Pa or less, and a mixed gas of 1000: 2.8 in volume ratio of argon gas and oxygen gas is reduced to 1 ⁇ 10 ⁇ in the vacuum apparatus.
  • a mixed gas of 1000: 2.8 in volume ratio of argon gas and oxygen gas is reduced to 1 ⁇ 10 ⁇ in the vacuum apparatus.
  • an ITO film as a transparent conductive film was formed to a thickness of 250 nm by a DC magnetron method at a target applied voltage of 420 V and a substrate temperature of 60 ° C.
  • the transparent support substrate provided with the transparent conductive film is subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. went.
  • An organic EL layer was formed on the obtained transparent conductive film by a vacuum deposition method through a square perforated mask as an organic EL layer, and the ratio of the deposition rate of the NBP layer (thickness: 25 nm) and CBP to Ir (ppy) was 100: 6 co-deposited layers (35 nm thick), BC layers (10 nm thick), Alq layers (40 nm thick), lithium fluoride layers
  • a force sword made of aluminum having a thickness of 100 nm was formed through a mask on which a further pattern was formed by sequentially laminating the layers.
  • Increase rate of dark spot is 50% or more and less than 100% of OLED307 ⁇
  • Increase rate of dark spot is 30% or more and less than 50% of OLED307 LED
  • Increase rate of dark spot is 15% or more and less than 30% of OLED307 ⁇
  • Increase rate of dark spot is less than 15% of OLED307 ⁇
  • a material that adsorbs moisture or reacts with moisture was not sealed in the device, but this does not prevent the sealing of these materials in the device. .
  • a fluorine film having a high transparency and a high water vapor barrier property, a low reflectivity and a low center line average roughness of a surface, a good adhesion to a plastic substrate or the like, and a high film forming speed can be obtained.
  • a method for manufacturing a magnesium oxide film can be provided.
  • the transparent laminated film using the magnesium fluoride film of the present invention as a gas barrier layer is a base material useful as a base material for an electronic display. As a result, an organic EL device was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 大気圧または大気圧近傍の圧力下、対向する電極間にフッ素化合物と有機マグネシウム化合物を含有する反応性ガスを供給し、高周波電圧をかけて、前記反応性ガスを励起状態とし、励起状態の反応性ガスに基材を晒すフッ化マグネシウム薄膜の製造方法。および、前記フッ化マグネシウム薄膜が第1のフッ化マグネシウム薄膜上に、第2のフッ化マグネシウム薄膜を有し、前記第1のフッ化マグネシウム薄膜は炭素と酸素の混入比の少なくともいずれかが10原子%以上であり、前記第2のフッ化マグネシウム薄膜の炭素と酸素の混入比の少なくともいずれかが10原子%以下であることを特徴とするフッ化マグネシウム積層膜。

Description

明 細 書
フッ化マグネシウム薄膜の製造方法、フッ化マグネシウム薄膜、積層膜、 透明プラスチックフィルム、および有機 EL素子
技術分野
[0001] 本発明は、透明性が高ぐ水蒸気バリア性に優れ、屈折率が低ぐ平面性の高いフ ッ化マグネシウム薄膜の製造方法に関する。また、プラスチック基材との密着性の高 レ、フッ化マグネシウム薄膜またはその積層膜に関する。また、透明プラスチックフィル ム、および光取り出し効率の高い有機 EL素子に関する。
背景技術
[0002] 従来、液晶表示素子、有機 EL表示素子、プラズマディスプレイ、電子ペーパー等 の電子ディスプレイ素子用基材、あるいは CCD、 CMOSセンサー等の電子光学素 子用基材、あるいは太陽電池用基材としては、熱安定性、透明性の高さ、水蒸気透 過性の低さからガラスが用いられてきた。しかし、最近携帯電話あるいは携帯用の情 報端末の普及に伴い、それらの基材用として割れやすく比較的重いガラスに対し屈 曲性に富み割れにくく軽量な基材が求められるようになった。
[0003] し力、しながら、プラスチック基材はガス透過性を有しているため、特に有機エレクト口 ノレミネッセンス表示装置のように、水分や酸素によって劣化して性能が低下してしまう 用途には適用が難しぐ如何に封止するかが問題になっていた。
[0004] こうした水蒸気や酸素の透過を抑制するために、各種ガスがプラスチック基材を透 過することを抑制する層(ガスバリア膜)を設けることが知られており、そのような層とし ては、酸化ケィ素膜、窒化ケィ素膜、酸窒化ケィ素膜、炭化珪素膜、酸化アルミニゥ ム膜、酸窒化アルミニウム膜、酸化チタン膜、酸化ジノレコニゥム膜、酸化マグネシウム 、窒化硼素膜、窒化炭素膜、ダイヤモンドライクカーボン膜、フッ化マグネシウム、フッ 化アルミニウム膜などが知られている。また、これらのガスバリア性の高い無機薄膜と 柔軟な有機薄膜を積層するガスバリア膜なども知られている(国際公開特許 wooo-
36665号)。
[0005] これらのセラミックス膜の中でも、フッ化マグネシウム膜は、紫外域までの高い透明 性をもち、かつ無機物の中ではもつとも低い屈折率(1. 36- 1. 39)を持つ材料の一 つであり、空気との屈折率差が小さいためにフッ化マグネシウム層と空気の界面での 臨界角は広ぐ外光の反射率を低減することができる。
[0006] このようなフッ化マグネシウム薄膜を成膜する方法としては、真空蒸着法、スパッタリ ング法、熱 CVD法、塗布法などが知られている。
[0007] Applied Optics, vol. 24 (1985) , p2674では、フツイ匕マグネシウム膜を製膜す る手法として電子ビーム蒸着法、 RFスパッタ法、熱 CVD法、塗布法の 4種の手法を 比較している。
[0008] RFスパッタによるフッ化マグネシウム膜は、還元された金属マグネシウムのコンタミ ネーシヨンにより茶色の着色が起こること、また膜質が柔らかく耐久性が低い膜であつ たと述べられている。
[0009] 電子ビーム真空蒸着では透明で固い膜が得ることができた力 電子ビームを発生さ せるには通常 1. 33 X 10— 3Pa以下の高真空が必要であり生産性が低い。またフツイ匕 マグネシウムを製膜する基材の温度も 300°Cが必要である。
[0010] 高真空を必要としない大気圧下のプロセスとして熱 CVDも試みており、光学的'強 度的にも十分な膜質のフッ化マグネシウム膜が得られているが、基材温度は 600°C であり、プラスチック基材上への製膜へは応用することができない。また、トリフルォロ 酢酸マグネシウム溶液の塗布 '焼成といった塗布法も大気圧プロセスとして試みられ ているが、塗布したフッ化マグネシウム前駆体の焼成に 450°C程度の加熱が必要で あり、やはりプラスチック基材上への製膜には応用することができない。
[0011] 無機化合物薄膜を製膜する基材温度を下げる手法として、プラズマ CVD法が挙げ られ、特許文献 1においてプラズマ CVD法によって、金属フッ化物薄膜の製膜が開 示されている。
[0012] し力 ながら、前記文献においてはフッ化アルミニウム以外の製膜実施例は示され ていない。また製膜する基材温度も 300°Cの高温であり、プラスチック基材への製膜 例は示されていなレ、。さらに電子ビーム蒸着法ほどの高真空ではないものの、 1. 33 一 133Pa程度の真空条件が必要であるため、装置が複雑かつ大掛かりであり、生産 性が低ぐフッ化マグネシウム薄膜の付与は高価なものとなってレ、た。 特許文献 1:特開平 11 - 223707号公報
発明の開示
[0013] 本発明の第 1の目的は、真空プロセスを用いず、生産性の高い方法によって透明 で高いガスバリア性を有するフッ化マグネシウム薄膜の製造方法とそれにより得られ るフッ化マグネシウム薄膜を提供することである。
[0014] また第 2の目的は、透明プラスチック基材と密着性が高ぐガスバリア性が高ぐ外 光反射率の低い、さらには導電性をも有する透明プラスチックフィルムを提供すること である。
[0015] また第 3の目的は、フッ化マグネシウム薄膜の積層膜と光取り出し効率の高い有機 EL素子を提供することである。
[0016] 上記した如ぐ近年、液晶或いは有機エレクト口ルミネッセンス (EL)表示装置、電 子光学デバイス等においては、割れやすく重いガラスよりも、フレキシブルで可撓性 が高く割れにくく軽いためプラスチック基材の採用が検討されている。
[0017] 本発明者らは、これら課題に対し鋭意検討を行った結果、ある特定条件下では大 気圧下でプラズマ CVD法によるフッ化マグネシウム膜の製膜が可能であることを見 出し、かつ従来の電子ビーム蒸着法で成膜されたフッ化マグネシウム膜よりもガスバ リア性が高ぐさらに表面硬度や平面性も良好であって、その製膜速度が高速である ことを見出し、本発明を完成させるに至った。
図面の簡単な説明
[0018] [図 1]本実施形態に係る薄膜形成装置の概略構成を表す図である。
[図 2]薄膜形成装置に備わる支持部材を表す斜視図である。
[図 3]薄膜形成装置に備わる薄膜形成ユニットを表す側面図である。
[図 4]薄膜形成ユニットを表す他方の側面図である。
[図 5]薄膜形成ユニットに備わる電極を表す斜視図である。
[図 6]薄膜形成装置の主制御部分を表すブロック図である。
[図 7]薄膜形成装置によって薄膜が形成される際に、クリーニングフィルムに含まれる 薄膜形成用原料の放出状態を表す説明図である。
[図 8]薄膜形成装置の変形例を表す概略構成図である。 発明を実施するための最良の形態
本発明の目的は、下記構成によって達成される。
(1) 大気圧または大気圧近傍の圧力下、対向する電極間にフッ素化合物と有機マ グネシゥム化合物を含有する反応性ガスを供給し、高周波電圧をかけることにより、 前記反応性ガスを励起状態とし、励起状態の反応性ガスに基材を晒すことを特徴と するフッ化マグネシウム薄膜の製造方法。
(2) 前記高周波電圧が、 1kHz— 2500MHzの範囲で、かつ、供給電力が 1一 50 W/ cm2の範囲であることを特徴とする前記(1)に記載のフッ化マグネシウム薄膜の 製造方法。
(3) 前記高周波電圧が、 1kHz— 1MHzの範囲の周波数の交流電圧と、 1一 2500 MHzの周波数の交流電圧を重畳させたことを特徴とする前記(1)または(2)に記載 のフッ化マグネシウム薄膜の製造方法。
(4) 前記フッ化マグネシウム薄膜を構成するフッ素が、フッ素含有高分子フィルムか ら供給されることを特徴とする前記(1)一(3)のいずれ力 1項に記載のフッ化マグネシ ゥム薄膜の製造方法。
(5) 前記(1)一(4)のいずれ力 4項に記載のフッ化マグネシウム薄膜の製造方法で 製膜したフッ化マグネシウム薄膜への炭素 ·酸素の混入比率がレ、ずれも 10原子%以 下であることを特徴とするフッ化マグネシウム薄膜。
(6) 前記(1)一(4)のいずれ力 4項に記載のフッ化マグネシウム薄膜の製造方法で 製膜したフッ化マグネシウム薄膜であって、該薄膜の水蒸気透過率が 1. Og/mV d以下であることを特徴とするフッ化マグネシウム薄膜。
(7) 前記(1)一(4)のいずれ力 4項に記載のフッ化マグネシウム薄膜の製造方法で 製膜したフッ化マグネシウム薄膜であって、該薄膜の酸素透過率が 1. Oml/mVd 以下であることを特徴とするフッ化マグネシウム薄膜。
(8) 前記(1)一(4)のいずれ力 1項に記載のフッ化マグネシウム薄膜の製造方法で 製膜したフッ化マグネシウム薄膜であって、該薄膜の屈折率が 1. 35-1. 40である ことを特徴とするフッ化マグネシウム薄膜。
(9) 前記(1)一(4)のいずれ力 1項に記載のフッ化マグネシウム薄膜の製造方法で 製膜したフッ化マグネシウム薄膜であって、該薄膜表面の平均表面粗さが 3. Onm以 下であることを特徴とするフッ化マグネシウム薄膜。
(10) 前記(5)—(9)のいずれか 1項に記載のフッ化マグネシウム薄膜が、透明なプ ラスチックフィルム基材表面に形成されていることを特徴とする透明プラスチックフィ ノレム。
(11) 前記(5)—(9)のいずれ力 4項に記載のフッ化マグネシウム薄膜が形成され、 外光反射率が 1. 0%以下であることを特徴とする透明プラスチックフィルム。
(12) 前記(5)—(9)のいずれか 1項に記載のフッ化マグネシウム薄膜が、透明ブラ スチックフィルム基材上に形成され、かつその反対側の面に透明導電膜が形成され ていることを特徴とする透明プラスチックフィルム。
(13) 大気圧または大気圧近傍の圧力下、フッ素化合物と有機マグネシウム化合物 を含有する反応性ガスを対向する電極間に供給し、高周波電圧をかけることにより、 前記反応性ガスを励起状態とし、前記励起状態の反応性ガスに基材を晒すことによ り形成された積層膜であって、第 1のフッ化マグネシウム薄膜上に、第 2のフッ化マグ ネシゥム薄膜を有し、前記第 1のフッ化マグネシウム薄膜は炭素と酸素の混入比の少 なくともいずれかが 10原子%以上であり、前記第 2のフッ化マグネシウム薄膜の炭素 と酸素の混入比の少なくともいずれかが 10原子%以下であることを特徴とする積層 膜。
(14) 前記(13)に記載の積層膜が、透明プラスチックフィルム基材上に形成されて いることを特徴とする透明プラスチックフィルム。
(15) 透明プラスチックフィルム基材のガラス転移温度が 180°C以上であることを特 徴とする前記(10) (12)のいずれ力、 1項に記載の透明プラスチックフィルム。
(16) 透明プラスチックフィルム基材の屈折率力 1. 6以上であることを特徴とする 前記(10)—(12)または(14)、(15)のいずれか 1項に記載の透明プラスチックフィ ノレム。
(17) 透明プラスチックフィルム基材カ ポリエーテルスルホン(PES)であることを特 徴とする前記(10) (12)または(14)、 (15)のいずれ力 4項に記載の透明プラスチ ックフイノレム。 (18) 前記(13)に記載の積層膜が素子表面に形成されていることを特徴とする有 機 EL素子。
[0020] 以下、本発明を実施するための最良の形態について説明するが、本発明はこれら に限定されるものではない。
[0021] 本発明により、第 1には、真空プロセスを用いず、生産性の高い方法によって透明 で高いガスバリア性を有するフッ化マグネシウム薄膜の製造方法とそれにより得られ るフッ化マグネシウム薄膜を提供することができる。
[0022] また第 2には、透明プラスチック基材と密着性が高ぐガスバリア性が高ぐ外光反 射率の低い、さらには導電性をも有する透明プラスチックフィルムを提供することがで きる。
[0023] また第 3には、フッ化マグネシウム薄膜の積層膜と光取り出し効率の高い有機 EL素 子を提供することができる。
[0024] 通常生産されているプラスチック基材は、ガラス基材と比較して水分や酸素の透過 性が高いため、プラスチック基材を有機エレクト口ルミネッセンス表示装置に用いた場 合、その水分が徐々に表示装置内に拡散し、拡散した水分の影響により表示装置等 の耐久性が低下するというような問題が発生する。
[0025] これを避けるため、プラスチックシート基材上に、水蒸気透過性の低い無機薄膜、 例えばガラス、酸化ケィ素、窒化ケィ素、酸窒化ケィ素、炭化珪素、酸化アルミニウム 、酸窒化アルミニウム、酸化チタン、酸化ジルコニウム、窒化硼素、窒化炭素、フツイ匕 マグネシウム、フッ化アルミニウム、ダイヤモンドライクカーボン等の薄膜を形成させた 複合材料を得る試みがなされており、中でも酸化珪素薄膜が多く用いられている。
[0026] これらの無機膜やプラスチック基材はそれぞれ固有の屈折率を持ち、例えば、酸化 チタンでは屈折率は 2. 35、酸化ジノレコニゥムでは 2. 07、代表的な透明導電膜であ るインジウム ·錫ォキシド IT〇では 2. 05、窒化珪素では 2. 0、酸化アルミニウムでは 1. 67、酸化珪素では 1. 46、フッ化マグネシウムで 1. 38である(ただし、上記無機 物の屈折率は炭素などの不純物が混入すると多少変化する)。プラスチック材料では ΡΜΜΑが 1. 49であり、またプラスチックフィルムでは PES (ポリエーテルスルホン) が 1. 65、 PET (ポリエチレンテレフタレート)が 1. 60、ポリカーボネイトが 1. 59、シク ロォレフインポリマーが 1 · 51、 TAC (トリアセチルセルロース)が 1 · 48、テフロン(登 録商標)が 1. 30である。
[0027] これらの材料を組み合わせることによって透明導電性フィルムが形成されているが 、このように屈折率が異なるものが適切に組み合わされなかった場合、特に屈折率差 が大きいものを積層した場合は、その二層の界面間で光の反射が起きやすぐ透明 導電性フィルムの透過率は低下し、外光の反射率は高くなる。
[0028] 特に有機 EL素子においては、光源が透明導電性フィルムに極めて近い位置にあ り、無限遠にある光源とは異なり、大半の発光は透明導電性フィルムに垂直に入射 せずある程度の角度を持って入射することになる。界面間の屈折率差が大きいと、入 射光に対して全反射する臨界角も大きくなり、結果、有機 EL素子から発光した光の 大半は、透明導電性フィルムの前面から出ずに導波して透明導電性フィルムの端部 力 出射することとなり、有機 EL素子の光取りだし効率は低いもの(20— 25%)に留 まっていた。
[0029] 透明導電性フィルムにおいて屈折率差が大きい界面は、透明導電膜 (η= 2. 05) とプラスチックフィルム(η= 1 · 4- 1. 7)の間、空気(η= 1 · 0)とプラスチックフィルム (η= 1. 4- 1. 7)の間である。
[0030] 特に空気とプラスチックフィルムとの界面は、外光の写りこみとも関係するため、低 屈折率の材料、あるいは高屈折率の材料と低屈折率の材料を組み合わせて反射防 止膜を形成することで低反射率のプラスチックフィルムが得られることが知られている
[0031] これら反射防止膜を形成する低屈折率層、高屈折率層には、ガスバリア層と同様に 各種の無機物薄膜が用いられている。それゆえ、ガスバリア層が反射防止膜も兼ね ることは、好ましいディスプレイ用フィルムの態様である。
[0032] ガスバリア層が反射防止層を兼ねるためには、下記の式(1)に表わされる式を満た すことが好ましい。
[0033] nl/nb=nb/n2 式(1)
(ガスバリア層の屈折率を nb、ガスバリア層と接する一方の材料の屈折率を nl、ガス バリア層と接する他方の材料の屈折率を n2する) これは、ガスバリア層の上面からと下面からの反射 2光束が完全に打ち消し合うため には、まず 2光束の強度が相等しくなる必要があり、そのためには各界面における屈 折率比が等しいことが必要であるためである。上記式(1)を nbについて解くと、 nb = f (nl X n2)が成立する必要がある。
[0034] 次に、反射率を少なくする光の波長 λは、光学膜厚 nd= λ Ζ4で表わされるため、 ガスバリア層の膜厚も重要である。
[0035] 例えば PESと空気の界面にガスノ リア層を製膜する場合には、 PESの屈折率が 1 . 65、空気の屈折率が 1. 00であるため、ガスバリア層の屈折率は 1. 28である必要 力 Sある。さらにこの透明導電性フィルム上に緑色発光素子を形成する場合、緑色発 光素子の発光波長を 550nmと仮定すると、 107nmの膜厚に製膜する必要がある(1 . 28 X 107 = 550,4)。
[0036] しかし、実際には屈折率が 1. 28である無機物は、多孔質のシリカエア口ゲルなど のような充填率が低くガスノくリア性のなレ、材料以外は存在せず、充填率が高くガスバ リア性を有する材料は存在しないため、好ましくは 1. 28に近い屈折率をもち、かつ 高いガスバリア性を有する材料がガスバリア層を構成する材料として好ましい。
[0037] 上記条件を満たす材料としては、フッ化マグネシウムが好ましい。フッ化マグネシゥ ムは無機物の中では最も低い屈折率 (n= l . 38)を有する材料の一つであり、また 高い水蒸気 ·酸素バリア性を有するためである。
[0038] このようなフッ化マグネシウム薄膜をプラスチックフィルム上に設ける手法としては、 真空蒸着法以外には実質的な選択肢は存在しなかった。前述の Applied Optics, vol. 24 (1985) , p2674に示されているように、熱 CVD法 ·塗布法ではフッ化マグネ シゥム前駆体がフッ化マグネシウムに変換されるために 450°C以上の高い温度が必 要であるために使用できず、スパッタ法ではフッ化マグネシウム膜が着色するために 使用することができず、真空蒸着法においてのみ製膜温度の低温ィヒが進められたた めである。
[0039] 真空蒸着法は、原料であるフッ化マグネシウムを電子ビームや抵抗加熱方式によつ て蒸発させ、比較的大きなフッ化マグネシウムのクラスターが比較的低い運動エネル ギ一で基材上に飛来して付着するというプロセスで製膜される。したがって、比較的 空隙の多い膜となりやすいこと、基材との密着性が悪レ、ことが課題であった。また真 空蒸着法には高い減圧度が必要であり、生産性の低い手法であった。
[0040] 本発明の発明者らは、大気圧下かつプラスチックフィルムに製膜できるような温度 で製膜が可能な製膜方法として、大気圧プラズマ CVD法を適用することで、所望の 物性を満たすフッ化マグネシウム膜が得られることを見出し、本発明を完成させた。
[0041] 以下更に、大気圧或いは大気圧近傍でのプラズマ CVD法を用いたフッ化マグネシ ゥムからなる膜を形成する装置について詳述する。本発明において大気圧近傍とは 、 20— l lOkPaの圧力を表し、更に好ましくは 93 104kPaである。
[0042] 以下、添付図面を参照しつつ本発明の実施の形態について説明する。図 1は、薄 膜形成装置 1の概略構成を表す図である。
[0043] この薄膜形成装置 1は、大気圧又は大気圧近傍の圧力下で、放電プラズマを発生 させることによって基材上に薄膜を形成する薄膜形成装置であり、基材がプラズマ空 間に侵入しなレ、プラズマジェット方式、基材がプラズマ空間に侵入するダイレクトブラ ズマ方式のどちらにも適用可能な薄膜形成装置である。
[0044] 以下、ダイレクトプラズマ方式で薄膜を形成する場合について説明する。
[0045] 薄膜形成装置 1には、図 1に示すように、シート状の基材 2をその周面に密着させて 搬送する支持部材 10が回転自在に設けられてレ、る。
[0046] 図 2は、支持部材 10を表す斜視図であり、この支持部材 10は、導電性の金属質母 材 11の表面に誘電体 12が被覆されたロール状誘電部材である。支持部材 10の内 部には、表面温度を調節するため、例えば、水やシリコーンオイル等の温度調節用 の媒体が循環できるようになっており、この循環部分には、図 1に示すように、配管 3 を介して温度調節装置 4が接続されている。また、支持部材 10の周縁には、基材 2を 支持部材 10の周面に密着させて搬送するために基材用搬送機構 13と、基材 2上に 薄膜を形成するための複数の薄膜形成ユニット 20が設けられている。
[0047] 基材用搬送機構 13には、基材 2を支持部材 10の周面に案内する第 1ガイドローラ 14及びニップローラ 15と、前記周面に密着した基材 2を剥がして、次行程まで案内 する第 2ガイドローラ 16と、第 1ガイドローラ 14、第 2ガイドローラ 16及び支持部材 10 を連動するように回転させる駆動源 51 (図 6参照)とが設けられている。 [0048] 図 3はダイレクトプラズマ方式の薄膜形成ユニット 20を表す側面図である。この薄膜 形成ユニット 20に備わる支持部材 10は、フィルタ 8を介して第 1の電源 9が接続され ており、基材 2を搬送するとともに電極として機能し、電極 21A, 21Bの支持部材 10 に対向する面 21a, 21bが放電面として機能するようになっている。つまり、ガス供給 部 24からガスを噴出して、支持部材 10と電極 21A, 21Bとの間隔 hにガスを充満さ せ、支持部材 1 OA及び電極 21 A, 21Bに電界を印加すれば、この間隔 h内で放電 プラズマが発生する。そして、プラズマ空間内には 1基材 2が配置されているので、基 材 2は活性化したガスに晒されてその表面に薄膜が形成されるものである。なお放電 プラズマの発生を単周波で行う際には第 1の電源 9は電圧を印加されずアース電位 に接続される。
[0049] 放電空間を成す電極間の距離としては、プラズマジェット方式またはダイレクトプラ ズマ方式のどちらの場合も、均一な放電を行う観点から 0. 3mm— 20mmが好ましく 、特に好ましくは lmm± 0. 5mmである。この電極間の距離は、電極周囲の誘電体 の厚さ、印加電圧の大きさを考慮して決定される。
[0050] 図 5は、電極 21A, 21Bを表す斜視図であり、電極 21A, 21Bは導電性の金属質 母材 211の表面に誘電体 212が被覆された四角柱状電極である。電極 21A, 21B は内部が中空となっており、この中空部分 213には、図 1に示すように、配管 5を介し て温度調節装置 6が接続されている。中空部分 213に温度調節用の媒体を流すこと により、電極表面の温度調節ができるようになっている。そして、各薄膜形成ユニット 2 0の電極 21A, 21Bには、フィルタ 22を介して第 2の電源 23が接続されている。
[0051] また、薄膜形成ユニット 20には、図 3に示すように、一対の電極 21A, 21Bの隙間 b に向けて放電ガスを噴出するガス供給部 24が、前記隙間 bに対向するように配置さ れている。つまり、隙間 bがガス供給部 24から供給された放電ガスを、支持部材 10上 の基材 2まで案内する流路として機能するようになっている。ガス供給部 24には、内 部にガス流路が形成されたノズノレ本体部 25と、ノズル本体部 25から流路に向けて突 出し、ガス流路に連通して放電ガスを噴出するガス噴出部 26とが設けられてレ、る。
[0052] また薄膜形成ユニット 20には、クリーニングフィルム 27を電極 21A, 21Bに密着さ せながら連続的若しくは間欠的に搬送するフィルム用搬送機構 30が、各電極 21A, 21Bに応じて設けられている。
[0053] プラズマ CVD法においては、プラズマ空間中において生成した原料微粒子は、 目 的とする基材上だけでなく放電電極上にもデポジットする。このような電極上の汚れを 放置すると、放電状態が不安定となり、安定 '均質なグロ一放電から不安定 ·局所的 なアーク放電に移行し、アーク放電下では均質な薄膜が得られなくなる。タリーニン グフィルムによって放電電極を覆レ、、放電電極上へ汚れが付着することを防止し、放 電電極を常にクリーンに保つことは、均質な薄膜を得る上で非常に効果的である。
[0054] このクリーニングフィルム用搬送機構 30には、ガス供給部 24の近傍で、タリーニン グフィルム 27を案内する第 1クリーニングフィルム用ガイドローラ 31が設けられている 。この第 1クリーニングフィルム用ガイドローラ 31の上流側には、図示しないタリーニン グフィルム 27の卷き出しローラ若しくはクリーニングフィルム 27の元卷が設けられてい る。
[0055] また、ガス供給部 24に対して、第 1クリーニングフィルム用ガイドローラ 31よりも遠方 には、第 2クリーニングフィルム用ガイドローラ 32を介してクリーニングフィルム 27を卷 き取る卷取部 29 (図 6参照)が設けられている。第 1クリーニングフィルム用ガイドロー ラ 31、第 2クリーニングフィルム用ガイドローラ 32及びクリーニングフィルム 27の全幅 は、図 4に示すように、支持部材 10の全幅よりも長く設定されている。具体的には、ク リーユングフィルム 27の全幅長は、両端が支持部材 10の両端から 1一 100mmでは み出すように設定されていることが好ましい。これにより、クリーニングフィルム 27が放 電空間 Bよりも大きくなる。つまり電極 21A, 21Bは、クリーニングフィルム 27に覆われ ることにより、放電プラズマに晒されなくなり、電極 21A, 21Bに対する汚れを防止で きる。また、クリーニングフィルム 27のエッジが放電空間 B内に侵入しないために、放 電集中によるアーク放電を防止できる。
[0056] また、薄膜形成ユニット 20には、クリーニングフィルム 27が放電面 21a, 21bに接触 する際に生じるッレゃ皺を防止するために、電極 21A, 21Bの放電面 21a, 21bに対 してクリーニングフィルム 27の搬送方向の上流側に、クリーニングフィルム 27を加熱 する加熱部材 28が設けられてレ、る。
[0057] つまり、クリーニングフィルム 27は、クリーニングフィルム用搬送機構 30によって、卷 出ローラから引き出された後、第 1クリーニングフィルム用ガイドローラ 31に案内され て、ガス供給部 24のノズノレ本体部 25の周縁に接触した後に、加熱部材 28の表面に 接触して加熱されてから、電極 21A, 21Bの角部 215を介して放電面 21a, 21bに接 触し、その後、第 2クリーニングフィルム用ガイドローラ 32に案内されて、卷取部 29で 卷き取られるようになつている。この際、角部 215が円弧状に形成されているので、ク リーニンダフイルム 27が前記放電面 21a以外の表面(角部 215表面)から放電面 21a , 21bまで移動する際に引つ力、かることを防止でき、スムーズに搬送させることができ る。なお、本実施形態では、電極 21A, 21Bの放電面 21a, 21bが平面である力 こ の放電面 21a, 21bを、他方の放電面 21a, 21bに向かって凸となる曲面に形成して もよレ、。こうした場合、電極 21A, 21Bの放電面 21a, 21bとクリーニングフイノレム 27と の密着性をさらに高めることができる。
[0058] そして、上記のように、クリーニングフィルム 27とノズノレ本体部 25とが接触している ので、ガス供給部 24から放電空間 Bまでの空間は、クリーニングフィルム 27によって 仕切られることになつて、放電ガスが流路外に流れることを防止できる。
[0059] このようなクリーニングフィルム 27の材質としては、例えばセルローストリアセテート、 セノレロースジアセテート、セノレロースアセテートプロピ才ネートまたはセノレロースァセ テートブチレートのようなセルロースエステル、ポリエチレンテレフタレートやポリェチ レンナフタレートのようなポリエステル、ポリエチレンやポリプロピレンのようなポリオレ フィン、ポリ塩化ビニリデン、ポリ塩ィ匕ビニル、ポリビニルアルコール、エチレンビニル アルコールコポリマー、シンジォタクティックポリスチレン、ポリカーボネート、ノノレボノレ ネン榭脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルフォ ン、ポリスルフォン、ポリエーテルイミド、ポリアミド、フッ素樹脂、ポリメチルアタリレート 、アタリレートコポリマー等が挙げられる。
[0060] プラズマ空間中では、プラズマを構成する各種ガスの励起 ·再結合が発生しており 、それらの反応によって熱が発生するため、放電ガスの供給温度や放電電極の温度 以上に高温になるため、高い耐熱性を有することが好ましい。このようなフィルムとし て、上記のフィルムの中でもセルローストリアセテート、セルロースジアセテート、セル ロースアセテートプロピオネートようなセルロースエステル、ポリエチレンテレフタレー ト、ポリエチレンナフタレート、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテ ン、ポリエーテルケトン、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリエー テルイミド、ポリアミド、フッ素樹脂、等が好ましい。
[0061] またクリーニングフィルムは、角型の形状の放電電極上を搬送されるため、滑り性の 高いフィルムが好ましい。し力 この滑り性は、クリーニングフィルム基材自身の滑り性 が悪くても、シリコーンオイルなどの滑り剤を放電電極と接する面に塗布することで滑 り性を付与しても良ぐまた滑り性の高いテフロン (登録商標)のような高分子を薄くラ ミネートすることによって滑り性を付与してもよい。
[0062] 薄膜形成装置 1には、図 6に示すように、各駆動部を制御する制御装置 50が設け られている。制御装置 50には、駆動源 51、記憶部 52、第 1の電源 9、第 2の電源 23 、ガス供給部 24、加熱部材 28、温度調節装置 4, 6、卷取部 29が電気的に接続され ている。なお、制御装置 50には、これら以外にも薄膜形成装置 1の各駆動部などが 接続されている。そして、制御装置 50は、記憶部 52中に書き込まれている制御プロ グラムや制御データに従い各種機器を制御するようになっている。
[0063] なお図 1、図 6の電源 23などの本発明の膜の形成に用いるプラズマ製膜装置の電 源としては、製膜速度を大きくしたり、炭素含有率を所定割合内に制御するために、 本発明においては高周波電圧で、ある程度大きな電力を供給できる電源が好ましい 。具体的には、 1kHz以上 2500MHz以下の高周波の電源を用い、さらには 1kHz 一 1MHzの間のいずれかの周波数の電圧と、 1一 2500MHzの間のいずれかの周 波数の電圧を重畳して印加することがより好ましい。これは、放電空間中に存在する 各種のガスの励起に必要な周波数が異なることがあるため、複数の周波数が印加さ れているほうが原料ガスの分解が速ぐ製膜速度も速くなるためである。なお複数の 周波数を用いる場合、支持部材 10に接続する第 1の電源の方が低周波電源である 方が好ましい。支持部材 10のように回転する部材には低周波数の方が効率的に電 力を伝達できるためである。
[0064] また、電極間に供給する電力の下限値は、 0. lW/cm2以上 50W/cm2以下であ ることが好ましぐ下限は 0. 5W/ cm2以上であればより一層好ましレ、。また、 1kHz 一 1MHzの周波数の電圧と 1一 2500MHzの周波数の電圧を重畳する際には、 1一 2500MHzの電圧は 1kHz— 1MHzの周波数の電圧よりも小さいことが好ましぐ lk Hz— 1MHzの電圧の 2割一 8割の電圧であることが好ましい。尚、電極における電 圧の印加面積(cm2)は放電が起こる範囲の面積のことである。
[0065] 又、電極間に印加する高周波電圧は、断続的なパルス波であっても、連続したサイ ン波であってもよいが、製膜速度が大きくなることから、サイン波であることが好ましい
[0066] このような電源としては、特に限定はないが、神鋼電機社製高周波電源(3kHz)、 神鋼電機社製高周波電源(5kHz)、神鋼電機社製高周波電源(15kHz)、神鋼電 機社製高周波電源(50kHz)、ハイデン研究所社製高周波電源 (連続モード使用、 1 00kHz)、パール工業社製高周波電源 (200kHz)、パール工業社製高周波電源 (8 00kHz)、パール工業社製高周波電源(2MHz)、 日本電子社製高周波電源(13. 56MHz)、パール工業社製高周波電源(27MHz)、パール工業社製高周波電源( 150MHz)等を使用できる。また、 433MHz, 800MHz、 1. 3GHz、 1. 5GHz、 1. 9GHz、 2. 45GHz、 5. 2GHz、 10GHz、 28GHzを発振する電源を用いてもよレヽ。 し力し、 2500MHz以上の電源ではプラズマ空間への効率的な導入、均一な導入が 難しレ、ため、 2500MHz以下の電源が好ましレ、。
[0067] また温度調節装置 4, 6は、放電時の高温による悪影響を抑制するため、あるいは 製膜される薄膜の組成'膜質を調整するために、基材の温度を常温一 250°Cに調整 できるよう、必要に応じて放電電極 21A、 21B、支持部材 10などを冷却または加熱 する。
[0068] 次に、支持部材 10及び電極 21A, 21Bを形成する金属質母材 11, 211及び誘電 体 12, 212について説明する。
[0069] 金属質母材 11 , 211と誘電体 12, 212と組み合わせとしては、両者の間に特性が 合うものが好ましぐその一つの特性として、金属質母材 11 , 211と誘電体 12, 212 との線熱膨張係数の差が 10 X 10_6/°C以下となる組み合わせのものである。好まし くは 8 X 10— 6/°C以下、更に好ましくは 5 X 10— 6/°C以下、更に好ましくは 2 X 10— 6 /°C以下である。なお、線熱膨張係数とは、周知の材料特有の物性値である。
[0070] 線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わ せとしては、例えば、(1)金属質母材が純チタンまたはチタン合金で、誘電体がセラミ ックス溶射被膜、(2)金属質母材が純チタンまたはチタン合金で、誘電体がガラスラ イニング、(3)金属質母材力 Sステンレススティールで、誘電体がセラミックス溶射被膜 、(4)金属質母材がステンレススティールで、誘電体がガラスライニング、(5)金属質 母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被膜、(6)金属 質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング、(7)金属質 母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射皮膜、(8) 金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング、等 が挙げられる。線熱膨張係数の差という観点では、上記(1)または(2)および(5) ( 8)が好ましぐ特に(1)が好ましい。
[0071] そして、金属質母材 11, 211は、チタンまたはチタン合金が特に有用である。金属 質母材 11 , 211をチタンまたはチタン合金とし、誘電体 12, 212を上記組み合わせ に応じる素材とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落 等がなぐ過酷な条件での長時間の使用に耐えることが可能となる。
[0072] 本発明に有用な電極の金属質母材 11 , 211は、チタンを 70質量%以上含有する チタン合金またはチタン金属である。本発明において、チタン合金またはチタン金属 中のチタンの含有量は、 70質量%以上であれば、問題なく使用できるが、好ましくは 80質量%以上のチタンを含有してレ、るものが好ましレ、。本発明に有用なチタン合金 またはチタン金属は、工業用純チタン、耐食性チタン、高力チタン等として一般に使 用されているものを用いることができる。工業用純チタンとしては、例えば TIA、 TIB, TIC、 TID等が挙げられ、何れも鉄原子、炭素原子、窒素原子、酸素原子、水素原 子等を極僅か含有しているものであり、チタンの含有量は 99質量%以上を有してい る。耐食性チタン合金としては、 T15PBを好ましく用いることができ、上記含有原子 の他に鉛を含有しており、チタン含有量は 98質量%以上である。また、チタン合金と しては、鉛を除く上記の原子の他に、例えば、アルミニウムを含有し、その他バナジゥ ムゃ錫を含有している T64、 Τ325、 Τ525、 ΤΑ3等を好ましく用いることができ、これ らのチタン含有量としては、 85質量%以上を含有しているものである。これらのチタン 合金またはチタン金属はステンレススティール、例えば AISI316に比べて、熱膨張 係数が 1/2程度小さぐ金属質母材 11, 211としてチタン合金またはチタン金属の 上に施された誘電体 12, 212との組み合わせがよぐ高温、長時間での使用に耐え ること力 Sできる。
[0073] 一方、誘電体 12, 212の求められる特性としては、具体的には、比誘電率が 6— 45 の無機化合物であることが好ましぐまた、このような誘電体としては、例えば、アルミ ナ、窒化珪素等のセラミックス、あるいは、ケィ酸塩系ガラス、ホウ酸塩系ガラス等の ガラスライニング材等が挙げられる。この中では、セラミックスを溶射したものやガラス ライニングにより設けたものが好ましい。特にアルミナを溶射して設けた誘電体 12, 2 12が好ましい。
[0074] または、大電力に耐えうる仕様の一つとして、誘電体 12, 212の空隙率が 10体積 %以下、好ましくは 8体積%以下であることで、好ましくは 0体積%を越えて 5体積% 以下である。また、大電力に耐えうる別の好ましい仕様としては、誘電体 12, 212の 厚みが 0. 5— 2mmであることである。この膜厚変動は、 5%以下であることが望ましく 、好ましくは 3%以下、更に好ましくは 1 %以下である。
[0075] 〔反応性ガス〕
次に、フッ化マグネシウム膜を得るために好ましい反応性ガスについて説明する。 フッ化マグネシウム膜の原料としては、マグネシウムを含む化合物とフッ素を含む化 合物を混合して用いる方法と、フッ素とマグネシウムの双方を含む化合物を用いる場 合がある。
[0076] またこれらの原料は、常温常圧下で気体、液体、固体いずれの状態であっても構わ ない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、カロ 熱、パブリング、減圧、超音波照射、気化器等の手段により気化させて使用する。又 、溶媒によって希釈して使用してもよぐ溶媒は、メタノール、エタノール、 n—へキサン などの有機溶媒及びこれらの混合溶媒が使用出来る。尚、これらの希釈溶媒は、プ ラズマ放電処理中において、分子状、原子状に分解されるため、影響は殆ど無視す ること力 Sできる。
[0077] しかし、好ましくは大気圧下 0— 250°Cの温度域で蒸気圧を有する化合物であり、さ らに好ましくは 0 250°Cの温度域に液体状態を呈する化合物である。これはプラズ マ製膜室内が大気圧近傍の圧力であるために、大気圧下で気化できないとプラズマ 製膜室内にガスを送り込むことが難しいためである。また、原料化合物が液体の方が 、プラズマ製膜室内に送りこむ量を精度良く管理できるためである。特に原料化合物 が液体である場合は気化器を用いることができ、気化器では液体力 直接気化する こと力 sでき、 ± 1%の精度で気化量を管理できる。なおガスバリア層を製膜するプラス チックフィルムの耐熱性が 270°C以下の場合は、プラスチックフィルム耐熱温度からさ らに 20°C以下の温度で蒸気圧を有する化合物であることが好ましい。
[0078] このような有機マグネシウム化合物としては、ビス(シクロペンタジェニル)マグネシゥ ム、ビス(ェチノレシクロペンタジェ二ノレ)マグネシウム、ビス(ペンタメチノレシクロペンタ ジェニル)マグネシウム、ビス(n—プロビルシクロペンタジェ二ノレ)マグネシウム、マグ ネシゥムメトキシド、マグネシウムエトキシド、マグネシウム _n_プロポキシド、マグネシ ゥムイソプロポキシド、マグネシウムメトキシェトキシド、マグネシウムメチルカルボネー ト、酢酸マグネシウム無水物、酢酸マグネシウム 4水和物、アクリル酸マグネシウム、メ タクリル酸マグネシウム、乳酸マグネシウム、ナフテン酸マグネシウム、ビス(ァセチル ァセトナート)マグネシウム、ビス(ジピバロィルメタナート)マグネシウムなどがある。
[0079] また、フッ素源としては、フッ素ガス(F )、フッ化水素(HF)、フロンガス (CF )、テト
2 4 ラフルォロエチレン、へキサフルォロプロパン、トリフルォロエタノール、へキサフルォ 口イソプロパノール、トリフルォロトルエン、トリフルォロ酢酸、トリフルォロ酢酸無水物
、トリフルォロ酢酸メチル、トリフルォロ酢酸ェチルなどがある。
[0080] また、炭素一フッ素の結合はプラズマ中で切断されやすい結合であるため力、ブラ ズマ空間中に存在する高分子からも発生させることができ、前述のクリーニングフィル ムにフッ素系高分子フィルムを用いると、プラズマによりクリーニングフィルムがエッチ ングされてフッ素含有低分子またはフッ素ラジカルが発生し、フッ素源とすることがで きる。そのようなフッ素系高分子フィルムとしては、テフロン(登録商標)、ポリ(パーフ ルォロアルコキシエチレン)、ポリ(三フッ化工チレン)、ポリフッ化ビニリデン、ポリフッ 化ビニルなどが挙げられる。
[0081] また、マグネシウムとフッ素を共に含む分子としては、トリフルォロ酢酸マグネシウム 、トリフルォロメタンスルホン酸マグネシウム、マグネシウムトリフルォロペンタンジォナ ート、マグネシウムへキサフルォロペンタンジオナート、マグネシウムへキサフルォロ ペンタンジォネートジメチルエーテル錯体などがある。
[0082] し力しプラズマ中で発生するフッ素ラジカルやフッ化水素は活性が高ぐ原料ガス の有機成分を分解'ガス化して製膜速度を高める反面、プラスチック基材をもエッチ ングしてしまうこと、また金属基材も腐食することなどから、フッ素成分は必要最小限 の使用量にとどめることが好ましい。したがって、フッ素とマグネシウムの双方を含む 化合物を用いることが好ましい。
[0083] 更に、膜中の炭素、水素の含有率を調整するために前記の如く混合ガス中に水素 ガス等を混合してもよぐこれらの反応性ガスに対して、窒素ガスおよび/または周期 表の第 18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラド ン等、特に、ヘリウム、アルゴンが好ましく用いられるが、不活性ガスを混合し、混合ガ スとしてプラズマ放電発生装置(プラズマ発生装置)に供給することで膜形成を行う。 不活性ガスと反応性ガスの割合は、得ようとする膜の性質によって異なるが、混合ガ ス全体に対し、不活性ガスの割合を 90· 0— 99· 9%として反応性ガスを供給する。
[0084] 大気圧下におけるプラズマ CVD法に限らず、 CVD法においては原料ガスにフッ 素、マグネシウム以外にも水素、炭素、酸素などの元素が存在するため、得られる薄 膜にも水素、炭素、酸素のコンタミネーシヨンが起きる可能性がある。本発明における 大気圧プラズマ CVD法によるフッ化マグネシウム膜の製膜においても、膜中に水素 、炭素、酸素の混入が観測される。
[0085] フッ化マグネシウム膜の炭素、酸素、フッ素、マグネシウム原子の割合は、 X線光電 子分光法(ESCAまたは XPSとも呼ばれる)、 X線マイクロ分光法、ォージェ電子分光 法、ラザホード後方散乱法などにより分析、決定される。これらの手法では水素原子 の割合を測定することはできないが、フッ素、マグネシウム以外の元素が存在するフ ッ化マグネシウム膜ではある程度の割合で水素原子も膜中に存在していると推測さ れる。
[0086] しかし、本発明者らの検討によれば、フッ化マグネシウム中に炭素あるいは酸素が 1 0原子%以下であれば、所望の屈折率、ガスバリア性を示すことが確認された。した がって、好ましくはフッ化マグネシウム膜中の炭素、酸素の混入率はの少なくともいず れかが 10原子%以下が好ましい。
[0087] 炭素 ·酸素を 10原子%以上含む膜ではガスバリア性が悪くなるが、膜中に有機物 を含むと考えられ、炭素 ·酸素を 10原子%未満しか含まないフッ化マグネシウム膜よ りも柔軟性に富むと考えられ、応力緩和層として有用である。応力緩和層はフッ化マ グネシゥム膜にカ卩えられる曲げ応力などを緩和し、フッ化マグネシウム層全体が割れ ることを防ぐこと力 Sできるため、耐クラック性などの観点から有用である。また有機物で あるプラスチックフィルムとの密着性にも優れるため、フッ化マグネシウム膜の密着性 向上のためにも有用である。
[0088] また炭素 ·酸素含有率が 10— 30原子%の間では屈折率はあまり変化しないため、 ガスバリア性の高い炭素 ·酸素混入率の低い膜と積層しても光学的な界面は発生せ ず、反射率を大きくしないために好ましい。さらにガスバリア性の悪い膜でもガスバリ ァ性の良い膜との積層によってガスの透過経路を長くすることができ、同じ膜厚の単 層膜よりも高いガスバリア性を発揮することができることが見出された。
[0089] このような、組成が異なるフッ化マグネシウム膜を簡単に積層することができることも 大気圧プラズマ CVD法のメリットの一つである。
[0090] このように、フッ化マグネシウム膜は単層、または 2層以上積層されてよいが、膜全 体の厚みの合計は、しなや力さを保ち折り曲げに対する耐性を保つ点で 10 μ m以下 が好ましい。
[0091] また 1層の厚みは、膜厚が厚いと曲げ応力などがかかった際に応力を緩和できずク ラックが発生してしまうため、各層の厚みは 500nm以下であることが好ましぐより好 ましくは lOOnm以下である。また、 5nmより薄くなると均一に膜を形成することが困難 となるため好ましくない。
[0092] フッ化マグネシウム膜の膜厚は、大気圧プラズマ CVD法による製膜時間を増やし たり、処理回数を重ねること、或いは、混合ガス中の原料ィ匕合物の分圧を高めること によって調整することができる。
[0093] 大気圧プラズマ CVD法により、炭素 ·酸素含有率の異なるフッ化マグネシウム膜を 積層する方法としては、例えば図 1のプラズマ放電処理室の中を基材を搬送させある 組成のフッ化マグネシウム膜を設け、卷き取った後、さらに上記プラズマ放電処理装 置の条件を替えて製膜することを必要な回数だけ繰り返す方法、図 1のプラズマ放電 処理室を複数台用意し、基材を搬送させそれぞれを通過するごとに 1層ずつ複数層 を設ける方法、基材を複数台のプラズマ放電処理装置に通し、基材の先頭と後尾を つなげ、搬送することにより各プラズマ放電処理装置で層を設けることを複数回行う 方法等が挙げられる。プラズマ放電処理装置の条件としては、成膜する基材温度、 プラズマに供給する電力、周波数などが挙げられ、これらを変更することにより生成 するフッ化マグネシウム膜の組成 ·性質を変化させることができる。
[0094] 〔透明プラスチック基材〕
本発明のフッ化マグネシウム薄膜を形成するプラスチック (樹脂)基材としては、実 質的に透明であれば特に限定はなぐ具体的には、ポリエチレンテレフタレート、ポリ エチレンナフタレート等のポリエステノレ、ポリエチレン、ポリプロピレン、セロファン、セ ノレロースジアセテート、セノレローストリアセテート、セノレロースアセテートブチレート、セ ノレロースアセテートプロピオネート、セルロースアセテートフタレート、セルロースナイ トレート等のセルロースエステル類又はそれらの誘導体、ポリ塩ィ匕ビニリデン、ポリビ ニルァノレコール、ポリエチレンビュルアルコール、シンジォタクティックポリスチレン、 ポリカーボネート、ノルボルネン榭脂、ポリメチルペンテン、ポリエーテルケトン、ポリイ ミド、ポリエーテルスルホン(PES)、ポリスルホン類、ポリエーテルケトンイミド、ポリアミ ド、フッ素樹脂、ナイロン、ポリメチルメタタリレート、アクリル或いはポリアリレート類、あ るいはこれらの樹脂とシリカなどとの有機無機ハイブリッド樹脂等をあげることが出来 る。
[0095] しかし、大気圧プラズマ CVD法により成膜されるフッ化マグネシウム膜は、製膜温 度が高いほどガスバリア性が高くなること、またディスプレイ用透明支持体として透明 導電膜の形成等各種加熱プロセスをうけることがあるため、フッ化マグネシウム膜を形 成する樹脂は、高レ、耐熱性を有してレ、ることが好ましレ、。
[0096] 耐熱性としては、ガラス転移温度が 180°C以上であることが好ましい。このような条 件を満たす樹脂基材としては、一部のポリカーボネイト、一部のシクロォレフインポリ マー、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリイミド、フッ素樹脂、ジ ァセチルセルロース、トリァセチルセルロース、またこれらの樹脂とシリカの有機無機 ハイブリッド樹脂等が挙げられる。
[0097] なお樹脂基材のガラス転移温度を測定する方法としては DSC (示差走査熱量測定 )、TMA (熱応力歪み測定)、 DMA (動的粘弾性測定)などで測ることができる。
[0098] しかし、フッ化マグネシウムをプラスチックフィルム上に製膜する場合、最適なプラス チックフィルムの屈折率は、 (1. 38) 2= 1. 90となる。屈折率が 1. 90ほど高いプラス チックフィルムは存在しなレ、が、プラスチックフィルムの屈折率はなるべく高い方が得 られるフィルムの積層反射率が低くなり好ましい。好ましくは屈折率が 1. 60以上のプ ラスチックフィルムであり、例えば PETや PESが好ましレ、。屈折率が 1. 60以上であ ればフッ化マグネシウム膜積層時に外光反射率を 1. 0%以下にすることが出来るか らである。さらに耐熱性を考え合わせると、最も好ましくは PESである。
[0099] 透明導電膜(n= 2. 05)、プラスチックフィルム(n= l . 4- 1. 7)、ガスバリア層(フ ッ化マグネシウム、 n= l . 3- 1. 4)からなる透明導電性フィルムの層構成としては、
A)プラスチックフィルム、ガスバリア層、透明導電層
B)ガスバリア層、プラスチックフィルム、透明導電層
の 2種類が考えられるが、各層の屈折率を考えた場合、 B)の構成の方が好ましい。こ れは前述の屈折率が異なる層の界面での反射を防ぐことができ、ディスプレイの光源 力 の光を効率良く取り出すことができるためである。
[0100] 本発明において、樹脂基材は直接プラズマ雰囲気にさらされるため、対プラズマェ ツチング層あるいはハードコート層として、片面または両面に下引き層を有していても よい。下引き層の具体例としては、ポリマーの塗布等により形成された有機層等があ げられる。有機層としてはたとえば重合性基を有する有機材料膜に紫外線照射や加 熱等の手段で後処理を施した膜を含む。
[0101] 〔薄膜の作製〕
上記の反応ガス、基材フィルム、本実施形態の薄膜形成装置 1を用いたフッ化マグ ネシゥム薄膜の製膜について説明する。
[0102] 先ず、薄膜形成の開始に伴って、制御装置 50は、各ガス供給部 24から放電ガスを 噴出させて、放電空間 hにガスを供給させる。この際、ガス供給部 24から噴出された ガスは、クリーニングフィルム 27により仕切られた空間を介して、一対の電極 21A, 2 IBにより形成された放電空間 hにまで至る。
[0103] そして、放電空間 hにガスが供給されると、制御装置 50は、駆動源 51を制御して、 第 1ガイドローラ 14、第 2ガイドローラ 16及び支持部材 10を回転させて、基材 2を支 持部材 10の周面に密着させて搬送させるとともに、卷取部 29を制御して、タリーニン グフィルム 27を電極 21A, 21Bに表面に密着させて搬送させる。
[0104] 基材 2の搬送が開始されると、制御装置 50は、電源 23を〇Nにして、電極 21A, 2 IBに電界を印加し、放電空間 hに放電プラズマを発生させる。放電プラズマは、図 4 に示すように、ガス供給部 24からの噴出力によって放電空間 hから基材 2に向けて噴 出される。放電プラズマが発生する空間をプラズマ空間 Hといい、上述の噴出力によ り電極 21A, 21Bの放電面 21a, 21bから上方、側方に向けてはみ出すことになる。
[0105] さらに、支持部材 10及び電極 21A, 21Bは、それぞれ温度調節装置 4、 6によって その表面温度が制御され、かつ加熱部材 28においてもその表面温度が制御されて いるために、基材 2及びクリーニングフィルム 27がプラズマ空間 Hに進入する以前に 予め連続的に加熱されることとなる。このため、プラズマ空間 Hに基材 2及びタリー二 ングフィルム 27が進入したとしても急激かつ過剰に熱影響を受けることを防止でき、 放電プラズマの熱による収縮を抑えることができる。したがって、基材 2及びタリーニン グフィルム 27に皺やッレが発生することを、さらに防止することができる。なお、連続 的に加熱しなくても段階的に加熱してもよい。
[0106] そして、基材 2が、電極 21A, 21Bと支持部材 10で挟まれたプラズマ空間 H内を通 過することで、基材 2上には薄膜が形成される。具体的に説明すると、プラズマ空間 H内では、フッ素化合物、有機マグネシウム化合物など、放電ガスに含有されている ものが活性化している。さらに、プラズマ空間 H内にはクリーニングフィルム 27が進入 しているために、図 7に示すように、フッ素、炭素などのクリーニングフィルム 27の表 層に含まれる元素 Gが放出されることがある。つまり、プラズマ空間 H内には薄膜の 原料となる各種物質が存在しているため、基材 2がプラズマ空間 Hを通過すれば基 材 2上に各種物質が堆積して薄膜が形成される。
[0107] ここで、プラズマ放電処理中の基材 2の温度によっては、得られる薄膜の物性や組 成が変化する場合もあるので、薄膜形成中においても、温度調節装置 4によって温 度制御された媒体を支持部材 10内に循環させて、支持部材 10の表面温度を制御し 、基材 2の温度を適宜調節することが好ましい。ここで、温度調節装置 4は、基材 2が 所定の性能を発揮できる温度となるように、温度調節用の媒体を 20°C— 250°C、好 ましくは 80°C 200°Cに温度調節している。一方、温度調節装置 6においても、温度 調節用の媒体を 20°C— 250°C、好ましくは 80°C— 200°Cに温度調節する。ただし、 下限温度としては、使用する原料化合物の気化条件温度を下回らないように前記媒 体を温度調節しなければならなレ、。
[0108] そして、薄膜が形成された基材 2は、ガイドローラ 16を介し、必要に応じて次行程へ と搬送される。次工程のない場合は卷き取られる。
なお、本発明は上記実施形態に限らず適宜変更可能であるのは勿論である。
[0109] 例えば、本実施形態では、支持部材 10及び電極 21A, 21Bの間に電界を印加す ることによって放電空間とし、基材 2上に薄膜を形成するダイレクトプラズマ方式につ いて例示したが、電極 21A, 21Bの間隙を放電空間とし、活性化されたガスを噴出 することにより支持部材 10に支持された基材 2に対して薄膜を形成するプラズマジェ ット方式についても適用可能である。
[0110] 以下、プラズマジェット方式の薄膜形成装置について図 8を参照にして説明するが 、この薄膜形成装置においては、上記実施形態の薄膜形成装置 1における支持部 材を電極として機能させたものである。このため、以下の説明では上記実施形態の薄 膜形成装置 1と同一部分においては同一符号を付して説明を省略する。
[0111] 図 8は、プラズマジェット方式の薄膜形成ユニットの側面図である。
[0112] 薄膜形成ユニットには、支持部材 10の周面に間隔 hを空けて対向し、支持部材 10 よりも幅の大きい一対の電極 21A, 21Bが配置されている。また、これら一対の電極 2 1A, 21Bは、互いに隙間 bを空けて配置されている。この隙間 bが放電空間であり、 放電空間 Bを成す電極 21A, 21Bが対向する面をそれぞれ放電面 21a^ 、 21b' と する。この放電空間を通った原料ガスは活性化され、支持部材 10上の基材フィルム 2に吹きつけられ、基材フィルム 2上に薄膜が形成される。
なお本発明のフッ化マグネシウム薄膜の製造方法は、フッ化マグネシウム薄膜の製 膜部分だけでなぐ基材フィルム 'クリーニングフィルムの搬送装置なども含まれるた めに比較的複雑な装置となるが、プラズマ発生が大気圧下で行われるために装置全 体を減圧にする必要がないため、装置の運用 ·保守 ·点検が容易であり、高い生産性 をあげること力 Sできる。
[0113] 本発明で得られる高いガスバリア性と低反射率のフィルムを必要とするものとして、 有機エレクト口ルミネッセンス(EU素子が挙げられる。有機 EL素子は、湿気に対し 敏感なために封止が必要である。これらの素子を封止する膜としても本発明における フッ化マグネシウム膜を用いることができる。
なお、有機 EL素子は、陽極と陰極の一対の電極の間に発光層を挾持する構造をと る。具体的には、陰極と陽極からなる電極に電流を流した際に発光する有機化合物 を含有する層のことを指す。陰極、発光層が水分に弱いため、有機 EL素子を形成し た後、陰極側の封止膜として、陰極上に直接、あるいはエポキシ樹脂等で封止を行 つた更にその上に、本発明のフッ化マグネシウム膜を形成することで、水分の浸透が 抑えられ、有機 EL表示装置の耐湿性がより一層向上し、ダークスポットの発生、成長 を抑制することができ、長寿命の有機 EL素子を得ることができる。また発光を取り出 す側である陽極(ITO)側のフィルムの空気界面にも本発明のフッ化マグネシウム膜 を形成することで、有機 EL素子への水分 ·酸素の透過を防ぎ、かつ低屈折率である フッ化マグネシウム層により光取り出し効率を向上させる効果も得られるものである。 実施例
[0114] 以下、実施例により本発明を具体的に説明するが本発明はこれにより限定されるも のではない。
[0115] 実施例 1 (フッ化マグネシウム膜単層)
厚さ 100 μ mの、 PESフィルム上にフッ化マグネシウム膜を表 1に記載の条件で形 成し、下記の評価を行った。
[0116] 〈フッ化マグネシウム膜の製膜〉
大気圧プラズマ CVDによるフッ化マグネシウム膜の形成は、それぞれ図 1に示す薄 膜形成装置 1を用い、プラズマ発生には、第 1の電源としてハイデン研究所社製高周 波電源 PHF— 2K (100kHz)、また第 2の電源として日本電子社製高周波電源 JRF— 10000 (13. 56MHz)を用いて行った。フッ化マグネシウム膜の原料としては、下記 の原料ガス 1一 5を 20slm (20°Cにおけるガス流量: L/min)、 135°Cで放電空間に 送り込むことで製膜を行った。放電ガス種およびそれ以外の放電条件は、表 1に記載 し、それぞれ条件 A— Kとした。またクリーニングフィルムとしては、反応性ガス 1一 4 の場合は厚さ 25 μ mのポリイミドフィルムの裏面にシリコーン離型剤を塗布したフィノレ ムを、シリコーン離型剤塗布面が放電電極と接するようにして用いた。原料ガス 5の場 合は、厚さ 30 μ mのテフロン(登録商標)フィルムをクリーニングフィルムとして用いた 。なおクリーニングフィルムの搬送速度は 3cm毎分で搬送した。
[0117] なお各条件とも最初に製膜時間と膜厚の検量線を作成して製膜速度を算出し、再 度膜厚が lOOnmとなるように製膜を行った。なお膜厚は、大塚電子社製 FE3000を 用いて測定した。
〈フッ化マグネシウム反応性ガス 1〉
放電ガス:ヘリウム 99. 3体積0 /0
分解ガス:水素 0. 5体積%
原料ガス:マグネシウムへキサフルォロペンタンジォネート'ジメチルエーテル錯体
0. 2体積0 /0
*マグネシウムへキサフルォロペンタンジォネート.ジメチルエーテル錯体は ioo°c で溶解し、液体として気化器に送りこみ、ヘリウム '水素混合気体中に気化させた。
[0118] 〈フッ化マグネシウム反応性ガス 2〉
放電ガス:アルゴン 99. 3体積0 /0
分解ガス:水素 0. 5体積%
原料ガス:マグネシウムへキサフルォロペンタンジォネート'ジメチルエーテル錯体
0. 2体積0 /0
〈フッ化マグネシウム反応性ガス 3〉
放電ガス:窒素 99. 3体積0 /0
分解ガス:水素 0. 5体積%
原料ガス:マグネシウムへキサフルォロペンタンジォネート'ジメチルエーテル錯体
0. 2体積0 /0
〈フッ化マグネシウム反応性ガス 4〉 放電ガス:窒素 99. 3体積%
分解ガス:水素 0. 5体積%
原料ガス 1:マグネシウムメトキシェトキシド/メトキシエタノール
0. 1体積%
原料ガス 2 :トリフルォロエタノール 0. 1体積0 /0
*マグネシウムメトキシエトキシドはメトキシエタノールの 25%溶液として、トリフルォロ エタノールと共に 50°Cで気化器に送りこみ、窒素'水素混合気体中に気化させた。
[0119] 〈フッ化マグネシウム反応性ガス 5〉
放電ガス:窒素 99. 4体積0 /0
分解ガス:水素 0. 5体積%
原料ガス 1:マグネシウムメトキシェトキシド/メトキシエタノール
0. 1体積%
原料ガス 2:テフロン(登録商標)フィルム(クリーニングフィルム)
*マグネシウムメトキシェトキシドはメトキシエタノールの 25%溶液として 50°Cで気化 器に送りこみ、窒素'水素混合気体中に気化させた。
[0120] また、比較例としてフッ化マグネシウムの電子ビーム蒸着を PESフィルム上に製膜 した(条件 L)。減圧度は 1. 33 X 10— 3Paで製膜した。
[0121] 〈組成分析〉
VGサイエンティフィック社製 X線光電子分光分析測定機 (ESCA)を用いて、炭素 、酸素、フッ素、マグネシウムの比率を測定した。
[0122] 〈水蒸気透過率試験〉
モダンコントロール社製水蒸気透過率測定装置 PERMATRAN— W1Aを用いて、 37°C、 90%RHの条件で測定した。
[0123] 〈酸素透過率試験〉
モダンコントロール社製酸素透過率測定装置 OX— TRAN100を用いて、 23°C、 0 %RHの条件で測定した。
[0124] 〈中心線平均表面粗さの測定〉
ガスノ リア膜表面を日本電子社衡 SM6100を用いて走查型電子顕微鏡写真を撮 影し、中心線平均表面粗さ Raを算出した。
[0125] 〈碁盤目試験 (密着性)〉
JIS K5400に準拠した碁盤目試験を行った。形成された薄膜の表面に 片刃の力ミソリの刃を面に対して 90度の切り込みを lmm間隔で縦横に 11本 ずつ入れ、 lmm角の碁盤目を 100個作成した。この上に市販のセロファンテ ープを貼り付け、その一端を手でもって垂直にはがし、切り込み線からの貼られ たテープ面積に対する薄膜の剥がされた面積の割合を以下のランクで評価した。
[0126] A:全く剥がされなかった。
[0127] B:剥離された面積割合が 10%未満であった。
[0128] C :剥離された面積割合が 10%以上であった。
[0129] [表 1]
Figure imgf000030_0001
Ll98l0/ 00ZdT/13d 82 .S.T90/S00Z OAV [0130] 表 1から、大気圧プラズマ CVD法によるフッ化マグネシウム膜の製膜速度は電子ビ ーム蒸着の製膜速度よりも速レ、ことがわかる。また電子ビーム蒸着のフッ化マグネシ ゥム膜は密着性に劣る膜であった。
また大気圧プラズマ CVD法の中でも高周波 ·低周波の一方のみの周波数を印加し た場合よりも、高周波 ·低周波の双方を重畳して印加した場合のほうが速くなることが わ力る。
[0131] 2周波を重畳して大気圧プラズマ CVD法によってフッ化マグネシウム膜を製膜する 際には、製膜速度 '水蒸気透過率 ·酸素透過率などは印加電圧よりも基材温度の上 昇が効果あることがわかる。基材が高温なほど有機物が分解しやすいため、デポジッ トせずに製膜空間より排出される有機マグネシウム化合物が減少し、かつ、フッ化マ グネシゥム膜内への炭素、酸素の残存が少なくなるためと推測される。
[0132] しかし、マグネシウム原料とフッ素原料を別の分子で送りこんだ場合 (条件 J)では、 炭素混入率の高レ、膜が得られた。これはフッ素とマグネシウムの比率を合わせること が難しレ、こと、マグネシウム原料の化合物の炭素量が多レ、ことが関係してレ、ると推測 される。一方、フッ素をテフロン (登録商標)フィルムから供給した場合 (条件 K)にお いては、比較的コンタミネーシヨンの低いフッ化マグネシウム膜が得られている。詳細 は不明であるが、テフロン(登録商標)フィルムのプラズマエッチングによってフッ素を 発生させた場合、低分子化合物を気化させてプラズマ空間に送りこむよりも多量のフ ッ素を発生させられるためと推測される。
[0133] 一方、製膜される膜の屈折率はどの条件においてもあまり変化せず、 1. 35-1. 3 9と低屈折率の膜を得ることができた。
[0134] 以上のように、本発明の放電条件によれば、高い製膜速度で高いガスバリア性、低 屈折率の膜を得ることができる。
[0135] 実施例 2 (積層膜)
実施例 1で炭素含有量が少ない膜が得られる条件 Iと、炭素含有量が多い膜が得ら れる条件 Jと、を、表 2に示すような膜厚で交互に連続的に製膜することで、合計膜厚 力 SlOOnm程度であるフッ化マグネシウム積層膜 201 206を作製した。
[0136] また、国際公開特許 WO00—36665号に従って比較例の透明積層フィルム 207を 作製した。
[0137] 〈比較例の透明積層フィルム 207〉
厚さ 100 μ mの PESフィルム上に国際公開特許 WO00—36665号に記載された方 法に従ってガスバリア層の製膜を行った。
[0138] 真空蒸着装置内に導入ノズルからポリメチルメタタリレートオリゴマーを導入して、こ れを蒸着したのち、真空蒸着装置から取り出し、乾燥窒素気流下で紫外線を照射し て重合させ、 PMMA膜を形成した。 PMMA膜の厚みは 25nmに調整した。この膜 上に、酸化珪素をスパッタリングターゲットとする RFスパッタリング法(周波数 13. 56 MHz)を用いて酸化珪素膜を膜厚 25nmまで成膜した。更に、上記 PMMA膜、酸 化珪素膜をそれぞれ 25nmの厚みで形成して全 4層(lOOnm厚)の積層膜を形成し 、比較例の透明積層フィルム 207とした。
[0139] 得られた積層フィルム 201 207の水蒸気透過率、碁盤目試験、反射率、透過率 の測定を行った。
[0140] 〈反射率〉
視感度の高い 550nm (緑色)の波長における反射率を、大塚電子社製 FE3000を 用いて測定した。
[0141] 〈透過率〉
視感度の高い 550nm (緑色)の波長における透過率を、 日立製作所社製分光光 度計 U-3310を用いて測定した。
[0142] [表 2]
Figure imgf000033_0001
2から明ら力、なように、トータル膜厚を一定 (約 lOOnm)として、炭素含有量が多 い膜と少ない膜を組み合わせた層の数を多くしていったところ、層数が多いほど透湿 度が低減され、効果的なガスバリア層であった。
[0144] より効果的であつたのは冷熱サイクル後の結果で、層数が多いものほど冷熱サイク ルの影響が小さかった。これはガスノ リア層と支持体の線膨張率の差を、柔らかいフ ッ化マグネシウム膜が応力緩和層として働いているためと考えられる。
[0145] 一方、比較例の透明積層フィルム 207は、冷熱サイクル後の透湿度の劣化が大き レ、。これは支持体だけでなぐ応力緩和層である PMMAの耐熱性が低いこと、線膨 張率が大きいこと、が原因ではなレ、かと推測される。
[0146] また膜の密着性は、比較例の透明積層フィルム 207と硬度の高い条件 Aの単膜( 本発明の透明積層フィルム 201)は密着性に劣る膜であった力 本発明のフィルム 2
02— 306は良好な密着性を有していた。
[0147] さらに、比較例の透明積層フィルム 207は、屈折率に差のある 2層(PMMAの屈折 率 1. 49、 Si〇の屈折率 1. 46)を積層しているため、層間の界面反射により反射率
2
が高ぐ透過率の低い透明フィルムであった。一方、本発明の透明フィルムは、ガス バリア層の屈折率が小さく空気との屈折率差が小さいこと、また層数は多くてもほとん ど屈折率の差がない膜を積層していること、などから反射率の上昇 ·透過率の低下を 引き起こさず、反射防止機能も兼ね備えた好ましいガスバリアフィルムであった。
[0148] 実施例 3 (有機 EL素子の作製)
実施例 3で作製した本発明の透明積層フィルム 301— 306、比較例の透明積層フ イルム 307上に有機 EL素子を作製した。
[0149] 〈透明導電膜の製膜〉
有機 EL表示装置の構成は、先ず、透明な基材 1として実施例 2で作製した透明積 層フィルム 201 207を用いて、フッ化マグネシウム膜を有する面と反対側にスパッタ リングターゲットとして酸化インジウムと酸化すずとの混合物(Snの原子比 Sn/ (In+ Sn) =0. 08)力 なる焼結体を用レ、、 DCマグネトロンスパッタリング法にて透明導電 膜である IT〇(Indium Tin Oxide)膜を形成した。即ち、スパッタリング装置の真 空装置内を 1 X 10 3 Pa以下にまで減圧し、アルゴンガスと酸素ガスとの体積比で 10 00 : 2. 8の混合ガスを真空装置内が 1 X 10— になるまで真空装置内に導入した 後、ターゲット印加電圧 420V、基材温度 60°Cで DCマグネトロン法にて透明導電膜 である ITO膜を厚さ 250nm形成した。この ITO膜に、パターニングを行いアノード( 陽極) 2とした後、この透明導電膜を設けた透明支持基材をイソプロピルアルコール で超音波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。
[0150] 〈有機 EL素子の製膜〉
得られた透明導電膜上に、方形穴あきマスクを介して真空蒸着法により、有機 EL 層として、 ひ_NPD層(膜厚25nm)、 CBPとIr (ppy)の蒸着速度の比が100 : 6の共 蒸着層(膜厚 35nm)、 BC層(膜厚 10nm)、 Alq層(膜厚 40nm)、フッ化リチウム層
3
(膜厚 0. 5nm)を順次積層した、更に別のパターンが形成されたマスクを介して、膜 厚 lOOnmのアルミニウムからなる力ソード(陰極)を形成した。
[0151] [化 1]
CBP BC
Figure imgf000035_0001
lr(PPy)3
Figure imgf000035_0002
[0152] 〈封止〉 このように得られた積層体に、乾燥窒素気流下、基材として前記と同じ基材 301— 307をフッ化マグネシウム膜側が外側となるように密着させ、周囲を光硬化型接着剤 (東亞合成社製ラックストラック LC0629B)によって封止し、有機 EL素子(表示装置 OLED) 301— 307を得た。
[0153] これらの有機 EL素子の発光部について、以下の評価を行った。
[0154] 〈評価項目 1〉
封入直後に、これらの有機 EL素子に 10V直流電圧を印加した際の輝度を評価し た。
[0155] 〈評価項目 2〉
封入直後に 50倍の拡大写真を撮影した。 80°C、 300時間保存後 50倍の拡大写 真を撮影し観察されたダークスポットの面積増加率を評価した。
[0156] 〈評価項目 3〉
封入直後に 50倍の拡大写真を撮影した。素子を 45° に折り曲げて元に戻す、折り 曲げ試験を 1000回繰り返した後に、評価項目 2と同様の保存試験を行い、ダークス ポット面積の増加率を評価した。
[0157] 面積増加率は評価項目 2及び 3とも以下の基準で評価した。
ダークスポットの増加率が OLED307と同等以上の場合 X
ダークスポットの増加率が OLED307の 50%以上 100%未満 △
ダークスポットの増加率が OLED307の 30%以上 50%未満 〇△
ダークスポットの増加率が OLED307の 15%以上 30%未満 〇
ダークスポットの増加率が OLED307の 15%未満 ◎
[0158] [表 3]
有機 EL素子 評価項目 1 評価項目 2評価項目 3 備考
301 1 6000od/ n 2 0 Δ 本発明
302 1 6000od/ n 2 厶 厶 ο 本発明
303 1 6000od/ n 2 ΔΟ ο 本発明
304 1 6000od/ n 2 ο © 本発明
305 1 6000od/ n 2 ® @ 本発明
306 1 6000od/ n 2 ® @ 本発明
307 1 2000od/ n 2 X X 比較例 [0159] これらの結果から、炭素含有率の多レ、フッ化マグネシウム膜と、炭素含有率の少な レ、フッ化マグネシウム膜を交互に積層する層数を多くした有機 EL表示装置ほど、ダ ークスポットの面積増加率を低く抑えることができることがわかる。
[0160] また、実施例 2の膜の密着性評価の結果と考え合わせると、単層の膜あるいは積層 する膜ともに、各層の間の密着性が良レ、ものほどダークスポットの面積増加率を低く ί¾免ること力 Sできることがゎカゝる。
[0161] また、本発明のガスバリアフィルムを用いることで、光の取り出し効率が高ぐ輝度の 高い有機 EL素子を得ることができる。これは ΙΤ〇膜の屈折率 (η= 2. 05)と PES (η = 1. 65)、フッ化マグネシウム (η= 1. 37)、空気 (η= 1. 00)の層構成が光の反射 を える屈折率条件 ίこ近レヽ( (1. 37 X 2. 05) = 1. 68、 00 X 1. 65) = 1.
28)ためであると考えられる。
[0162] なお本実施例には、素子内に水分を吸着或いは水分と反応する材料 (例えば酸化 バリウム)を封入しなかったが、これらの材料を素子内に封入することを妨げるもので はない。
産業上の利用可能性
[0163] 本発明により、透明性が高ぐ水蒸気バリア性に優れ、反射率が低ぐ表面の中心 線平均粗さが小さぐプラスチック基材などとの密着性に優れ、製膜速度の速いフッ 化マグネシウム膜の製造方法を提供することができた。また、本発明のフッ化マグネ シゥム膜をガスバリァ層として用レ、た透明積層フィルムは、電子ディスプレイ用の基材 として有用な基材であり、それを用いて長寿命かつ光取り出し効率の高レ、有機 EL素 子を得ることができた。

Claims

請求の範囲
[1] 大気圧または大気圧近傍の圧力下、対向する電極間にフッ素化合物と有機マグネ シゥム化合物を含有する反応性ガスを供給し、高周波電圧をかけることにより、前記 反応性ガスを励起状態とし、励起状態の反応性ガスに基材を晒すことを特徴とするフ ッ化マグネシウム薄膜の製造方法。
[2] 前記高周波電圧が、 1kHz— 2500MHzの範囲で、かつ、供給電力が 1一 50W/ cm2の範囲であることを特徴とする請求の範囲第 1項に記載のフッ化マグネシウム薄 膜の製造方法。
[3] 前記高周波電圧が、 1kHz— 1MHzの範囲の周波数の交流電圧と、 1一 2500M
Hzの周波数の交流電圧を重畳させたことを特徴とする請求の範囲第 1項に記載のフ ッ化マグネシウム薄膜の製造方法。
[4] 前記フッ化マグネシウム薄膜を構成するフッ素が、フッ素含有高分子フィルムから 供給されることを特徴とする請求の範囲第 1項に記載のフッ化マグネシウム薄膜の製 造方法。
[5] 請求の範囲第 1項に記載のフッ化マグネシウム薄膜の製造方法で製膜したフツイ匕 マグネシウム薄膜への炭素 ·酸素の混入比率がいずれも 10原子%以下であることを 特徴とするフツイ匕マグネシウム薄膜。
[6] 請求の範囲第 1項に記載のフッ化マグネシウム薄膜の製造方法で製膜したフツイ匕 マグネシウム薄膜であって、該薄膜の水蒸気透過率が 1. 0g/m2/d以下であること を特徴とするフツイ匕マグネシウム薄膜。
[7] 請求の範囲第 1項に記載のフッ化マグネシウム薄膜の製造方法で製膜したフツイ匕 マグネシウム薄膜であって、該薄膜の酸素透過率が 1. 0mlZm2Zd以下であること を特徴とするフツイ匕マグネシウム薄膜。
[8] 請求の範囲第 1項に記載のフッ化マグネシウム薄膜の製造方法で製膜したフツイ匕 マグネシウム薄膜であって、該薄膜の屈折率が 1. 35-1. 40であることを特徴とする フッ化マグネシウム薄膜。
[9] 請求の範囲第 1項に記載のフッ化マグネシウム薄膜の製造方法で製膜したフツイ匕 マグネシウム薄膜であって、該薄膜表面の平均表面粗さが 3. Onm以下であることを 特徴とするフッ化マグネシウム薄膜。
[10] 請求の範囲第 5項に記載のフッ化マグネシウム薄膜が、透明なプラスチックフィルム 基材表面に形成されていることを特徴とする透明プラスチックフィルム。
[11] 請求の範囲第 5項に記載のフッ化マグネシウム薄膜が形成され、外光反射率が 1.
0%以下であることを特徴とする透明プラスチックフィルム。
[12] 請求の範囲第 5項に記載のフッ化マグネシウム薄膜が、透明プラスチックフィルム基 材上に形成され、かつその反対側の面に透明導電膜が形成されていることを特徴と する透明プラスチックフィルム。
[13] 大気圧または大気圧近傍の圧力下、フッ素化合物と有機マグネシウム化合物を含 有する反応性ガスを対向する電極間に供給し、高周波電圧をかけることにより、前記 反応性ガスを励起状態とし、前記励起状態の反応性ガスに基材を晒すことにより形 成された積層膜であって、第 1のフッ化マグネシウム薄膜上に、第 2のフッ化マグネシ ゥム薄膜を有し、前記第 1のフッ化マグネシウム薄膜は炭素と酸素の混入比の少なく ともいずれかが 10原子%以上であり、前記第 2のフッ化マグネシウム薄膜の炭素と酸 素の混入比の少なくともいずれかが 10原子%以下であることを特徴とする積層膜。
[14] 請求の範囲第 13項に記載の積層膜が、透明プラスチックフィルム基材上に形成さ れていることを特徴とする透明プラスチックフィルム。
[15] 透明プラスチックフィルム基材のガラス転移温度が 180°C以上であることを特徴とす る請求の範囲第 10項に記載の透明プラスチックフィルム。
[16] 透明プラスチックフィルム基材の屈折率力 S、 1. 6以上であることを特徴とする請求の 範囲第 10項に記載の透明プラスチックフィルム。
[17] 透明プラスチックフィルム基材の屈折率力 1. 6以上であることを特徴とする請求の 範囲第 14項に記載の透明プラスチックフィルム。
[18] 透明プラスチックフィルム基材カ S、ポリエーテルスルホン(PES)であることを特徴と する請求の範囲第 10項に記載の透明プラスチックフィルム。
[19] 透明プラスチックフィルム基材カ S、ポリエーテルスルホン(PES)であることを特徴と する請求の範囲第 14項に記載の透明プラスチックフィルム。
[20] 請求の範囲第 13項に記載の積層膜が素子表面に形成されていることを特徴とする
'士峯 Ί3§ ^
Ll98lO/ OOZd /13d 8S .S.T90/S00Z OAV
PCT/JP2004/018617 2003-12-24 2004-12-14 フッ化マグネシウム薄膜の製造方法、フッ化マグネシウム薄膜、積層膜、透明プラスチックフィルム、および有機el素子 WO2005061757A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516464A JP4752507B2 (ja) 2003-12-24 2004-12-14 透明プラスチックフィルム、および有機el素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003426568 2003-12-24
JP2003-426568 2003-12-24

Publications (1)

Publication Number Publication Date
WO2005061757A1 true WO2005061757A1 (ja) 2005-07-07

Family

ID=34708861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018617 WO2005061757A1 (ja) 2003-12-24 2004-12-14 フッ化マグネシウム薄膜の製造方法、フッ化マグネシウム薄膜、積層膜、透明プラスチックフィルム、および有機el素子

Country Status (2)

Country Link
JP (1) JP4752507B2 (ja)
WO (1) WO2005061757A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051075A1 (ja) 2007-10-15 2009-04-23 Tokai University Educational System 透明導電膜およびその製造方法
JP2012059609A (ja) * 2010-09-10 2012-03-22 Konica Minolta Holdings Inc 補助電極を有する透明電極、発光素子、太陽電池
US9812657B2 (en) 2014-01-07 2017-11-07 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
KR20180092894A (ko) * 2017-02-09 2018-08-20 주식회사 메카로 화학기상증착법을 이용한 반사방지막 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172447A (ja) * 1997-12-12 1999-06-29 Tadahiro Omi プラズマ処理装置および光学部品の製造法
JP2003161808A (ja) * 2001-11-27 2003-06-06 Konica Corp 反射防止材料およびその製造方法
JP2003205574A (ja) * 2002-01-16 2003-07-22 Konica Corp 基板及び該基板を有する有機エレクトロルミネッセンス素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298252A (ja) * 1989-05-11 1990-12-10 Olympus Optical Co Ltd プラスチック基板へのMgF↓2成膜方法
JP2000171630A (ja) * 1998-12-04 2000-06-23 Asahi Optical Co Ltd 光学多層薄膜の形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172447A (ja) * 1997-12-12 1999-06-29 Tadahiro Omi プラズマ処理装置および光学部品の製造法
JP2003161808A (ja) * 2001-11-27 2003-06-06 Konica Corp 反射防止材料およびその製造方法
JP2003205574A (ja) * 2002-01-16 2003-07-22 Konica Corp 基板及び該基板を有する有機エレクトロルミネッセンス素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051075A1 (ja) 2007-10-15 2009-04-23 Tokai University Educational System 透明導電膜およびその製造方法
EP2228805A1 (en) * 2007-10-15 2010-09-15 Tokai University Educational System Transparent conducive film and method for producing the same
EP2228805A4 (en) * 2007-10-15 2012-08-22 Toshiro Kuji TRANSPARENT CONDUCTIVE FILM AND METHOD FOR THE PRODUCTION THEREOF
JP2012059609A (ja) * 2010-09-10 2012-03-22 Konica Minolta Holdings Inc 補助電極を有する透明電極、発光素子、太陽電池
US9812657B2 (en) 2014-01-07 2017-11-07 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
KR20180092894A (ko) * 2017-02-09 2018-08-20 주식회사 메카로 화학기상증착법을 이용한 반사방지막 제조방법
KR102117945B1 (ko) * 2017-02-09 2020-06-02 주식회사 메카로에너지 화학기상증착법을 이용한 반사방지막 제조방법

Also Published As

Publication number Publication date
JPWO2005061757A1 (ja) 2007-12-13
JP4752507B2 (ja) 2011-08-17

Similar Documents

Publication Publication Date Title
JP5895687B2 (ja) ガスバリア性フィルム
JP4858167B2 (ja) 透明導電性フィルム、透明導電性フィルムの製造方法及び有機エレクトロルミネッセンス素子
JP4876918B2 (ja) 透明導電膜
TWI567219B (zh) 氣體阻隔膜及氣體阻隔膜的製造方法
JP2004068143A (ja) 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
JP2009196155A (ja) ガスバリアフィルム、ガスバリア膜の作製方法及び作製装置
WO2014163062A1 (ja) ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス
JP2012131194A (ja) ガスバリア性フィルム
WO2014178332A1 (ja) ガスバリア性フィルムおよびその製造方法
JP2018027660A (ja) 機能性積層体及びその製造方法
JP5861644B2 (ja) ガスバリア性フィルムの製造方法、及びガスバリア性フィルム
JP2007038445A (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材及び有機エレクトロルミネッセンスデバイス
JPWO2012011377A1 (ja) ガスバリアフィルムの製造方法
JP2007113043A (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材とそれを用いた有機エレクトロルミネッセンスデバイス
WO2005108055A1 (ja) ディスプレイ基板用フィルム、有機el素子及び酸化アルミニウム薄膜の製造方法
JP2005320583A (ja) ガスバリア性透明プラスチックフィルムとその製造方法および該ガスバリア性透明プラスチックフィルムを用いた有機el素子
WO2005061757A1 (ja) フッ化マグネシウム薄膜の製造方法、フッ化マグネシウム薄膜、積層膜、透明プラスチックフィルム、および有機el素子
JP4946049B2 (ja) アモルファス窒化硼素薄膜の製造方法
JP4686956B2 (ja) 機能体の形成方法
JP2016022595A (ja) ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイス
JP5273074B2 (ja) バリアフィルムの製造方法
JP2009013473A (ja) 薄膜形成装置および薄膜形成方法
WO2015029795A1 (ja) ガスバリア性フィルムの製造方法
WO2015025782A1 (ja) ガスバリアーフィルムの製造装置及びガスバリアーフィルムの製造方法
WO2014061617A1 (ja) 改質方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516464

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase