JP2016022595A - ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイス - Google Patents

ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイス Download PDF

Info

Publication number
JP2016022595A
JP2016022595A JP2014146267A JP2014146267A JP2016022595A JP 2016022595 A JP2016022595 A JP 2016022595A JP 2014146267 A JP2014146267 A JP 2014146267A JP 2014146267 A JP2014146267 A JP 2014146267A JP 2016022595 A JP2016022595 A JP 2016022595A
Authority
JP
Japan
Prior art keywords
gas barrier
film
group
layer
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014146267A
Other languages
English (en)
Inventor
千代子 竹村
Chiyoko Takemura
千代子 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2014146267A priority Critical patent/JP2016022595A/ja
Publication of JP2016022595A publication Critical patent/JP2016022595A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】湿熱耐性に優れるガスバリア性フィルムを提供する。【解決手段】基材と、前記基材上に位置する無機バリア層と、前記無機バリア層上に位置し、ケイ素原子および金属原子を含み、ケイ素原子に対する金属原子の元素組成比(原子%)(金属原子含有量/ケイ素原子含有量?100)が0.1〜100(原子%)である金属原子含有層とを有し、前記金属原子含有層中に含まれる有機溶媒が0ppmを超えて1000ppm以下である、ガスバリア性フィルム。【選択図】図1

Description

本発明は、ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイスに関する。より詳細には、本発明は、高温高湿下での密着性およびクラック耐性に優れるガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイスに関する。
食品、包装材料、医薬品などの分野で、従来から樹脂フィルムの表面に金属酸化物などの蒸着膜や樹脂などの塗布膜を設けた、比較的簡易な水蒸気や酸素などの透過を防ぐガスバリア性フィルムが知られている。また、近年、液晶表示素子(LCD)、太陽電池(PV)、有機エレクトロルミネッセンス(EL)、量子ドット(QD)などの電子デバイス分野においても、軽くて割れにくく、フレキシブル性を持たせることを目的として樹脂基材を用いたガスバリア性フィルムへの要望が高まっている。これらの電子デバイスにおいては、その使用形態から高温高湿下でも耐えうる、さらに高いレベルの水蒸気ガスバリア性が求められている。
このようなガスバリア性フィルムを製造する方法としては、主に、ドライ法として、プラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)によってフィルムなどの基材上にガスバリア層を形成する方法や、ウエット法として、ポリシラザンを主成分とする塗布液を基材上に塗布した後、塗膜に表面処理(改質処理)を施してガスバリア層を形成する方法が知られている。
プラズマCVD法では、緻密な無機膜が形成可能である一方で、ピンホールやマイクロクラックなどの欠陥発生を回避することが困難であり、CVD単膜からなるガスバリア層を用いて、前述したような電子デバイスに適用可能な、高いガスバリア性とクラック耐性を兼ね備えたガスバリアフィルムを製造することは、実質困難であった。
ドライ法とは異なり、ウェット法は大型の設備を必要とせず、さらに基材の表面粗さに影響されず、ピンホールもできないので、再現性良く均一なガスバリア膜を得る手法して注目されている。
しかしながら、ポリシラザン膜から緻密な無機膜を形成するためには、多くの改質エネルギーを要するため、生産性を向上することが困難な上に、ガスバリア性が高く、かつ、十分な湿熱耐性を有する膜を形成することが原理上困難であった。
特許文献1には、プラズマCVD法により形成したケイ素酸化物層の上にポリシラザンが転化されてなるケイ素酸化物層を積層したガスバリア性フィルムが開示されている。このように、プラズマCVD膜の上に塗布形成が可能なポリシラザンを用いて無機膜を形成することで、プラズマCVD膜の欠陥を補正する効果が見込めるため、バリア性が向上できるのみならず、湿熱耐性も大幅に向上できることが分かっている。
しかしながら、特許文献1では、ガスバリア性を示す数値であるWVTRは−2乗の桁と低い。これは、ポリシラザンの転化を加熱により行っており、バリア性の高い改質無機膜が得られていないためと考えられる。
よりバリア性の高い改質無機膜にポリシラザンを転化する目的で、特許文献2ではポリシラザン層に紫外線を照射する方法が開示されている。
この方法では、ポリシラザンはよりバリア性の高い無機膜に改質されることが予想されるものの、ポリシラザン改質膜単独では湿熱耐性が不十分であり、安定性に優れたガスバリア性フィルムを得るためには十分とは言えなかった。
特開平8−281861号公報 国際公開第2011/007543号
上記フレキシブルな電子デバイスの基材として用いる場合に求められる特性としては、高いガスバリア性に加えて、洗浄時、搬送時、ハンドリング時などの取り扱い時におけるバリアフィルム層間の密着性およびクラック耐性である。中でも特に、湿熱下に曝された後のバリア性および密着性が重要な特性であり、また、デバイス作製プロセスで必要となってくる高温下でのクラック耐性も要求される。しかしながら、上記特許文献1〜2に記載のガスバリア性フィルムでは、上記全ての課題を解決することはできない。
本発明は、上記事情を鑑みてなされたものであり、湿熱耐性、特に高温高湿条件下でのガスバリア性(保存安定性)、および密着性、および高温条件下でのクラック耐性に優れるガスバリア性フィルムを提供することを目的とする。
本発明のさらなる目的は、本発明に係るガスバリア性フィルムを用いてなる電子デバイスを提供することである。
本発明者は、上記の問題を解決すべく、鋭意研究を行った結果、無機バリア層上に、層中にケイ素原子および金属原子を特定の比率で含む金属原子含有層を設け、当該金属原子含有層中に含まれる有機溶媒の量を特定の範囲に制御することによって、上記目的を達成できることを知得し、本発明を完成した。
すなわち、上記目的は、基材と、前記基材上に位置する無機バリア層と、前記無機バリア層上に位置し、ケイ素原子および金属原子を含み、ケイ素原子に対する金属原子の元素組成比(原子%)(金属原子含有量/ケイ素原子含有量×100)が0.1〜100(原子%)である金属原子含有層とを有し、前記金属原子含有層中に含まれる有機溶媒が0ppmを超えて1000ppm以下である、ガスバリア性フィルムによって達成できる。
本発明によれば、ガスバリア性に加えて、湿熱耐性、特に高温高湿条件下でのガスバリア性(保存安定性)、および密着性、および高温条件下でのクラック耐性に優れるガスバリア性フィルムが提供できる。
本発明のガスバリア性フィルムの層構成の一実施形態を示す概略断面図である。 本発明に係る無機バリア層の形成に用いられる製造装置の一例を示す模式図である。 本発明に係る無機バリア層の形成に用いられる他の製造装置(真空プラズマCVD装置)の一例を示す模式図である。
本発明は、基材と、前記基材上に位置する無機バリア層と、前記無機バリア層上に位置し、ケイ素原子および金属原子を含み、ケイ素原子に対する金属原子の元素組成比(原子%)(金属原子含有量/ケイ素原子含有量×100)が0.1〜100(原子%)である金属原子含有層とを有し、前記金属原子含有層中に含まれる有機溶媒が0ppmを超えて1000ppm以下である、ガスバリア性フィルムを提供する。
従来、様々な方法によって、ガスバリア性フィルムのガスバリア性をはじめとする諸特性を向上させることが試みられていた。例えば、上記特許文献1では、プラズマCVD法により形成したケイ素酸化物層とポリシラザン転化によるケイ素酸化物層とを組み合わせている。プラズマCVD法により形成したケイ素酸化物層は緻密性が高いため、高いガスバリア性を有するものの、ピンホールやクラックの等の欠陥が生じやすく、屈曲耐性に劣るため、有機EL等の電子デバイス分野では十分な性能を発揮できるとは言い難い。このため、特許文献1では、上記課題を解消するために、プラズマCVD膜にポリシラザン転化膜を設けているが、ガスバリア性を示す数値であるWVTRは−2乗の桁であり、電子デバイスへの使用に十分なガスバリア性を示すとは言えない。上記特許文献2では、ガスバリア性の向上を目的として、真空紫外線照射によりポリシラザン膜を改質する方法もまた報告されている。しかし、当該方法によって得られたポリシラザン膜は、緻密性が向上した一方で湿熱耐性および高温下でのクラック耐性が十分ではないという課題がある。
これに対して、本発明は、ケイ素原子および金属原子を特定の比率で含む金属原子含有層中に含まれる有機溶媒が0ppmを超えて1000ppm以下であることを特徴とする。当該構成によって、ガスバリア性フィルムは、優れた湿熱耐性(高温高湿条件下でのガスバリア性および密着性)および優れた耐熱性(高温下でのクラック耐性)を発揮できる。ここで、本発明の構成による上記作用効果の発揮のメカニズムは以下のように推測される。なお、本発明は下記に限定されるものではない。
すなわち、ケイ素原子および金属原子を特定の比率で含む金属原子含有層中に有機溶媒が多量に存在すると、膜の緻密性が低下しガスバリア性が有意に低下する。さらに、高温多湿条件(湿熱環境)下では、金属原子含有層の表面(上面)からも下面からも抜けられない有機溶媒や水分が無機バリア層と金属原子含有層との界面付近に溜まり、その結果界面(層間)の密着性の低下を引き起こしうる。一方、耐熱性(高温下でのクラック耐性)の観点からは金属原子含有層は少量の有機溶媒を含むことが好ましい。具体的には、金属原子含有層に存在する少量の残留溶媒が高温下において徐々に揮発することで熱エネルギーを吸収するため、バリア層中のクラック発生を抑制する効果があると推定している。したがって、本発明のガスバリア性フィルムは、金属原子含有層に有機溶媒を少量(0ppmを超えて1000ppm以下)含むことにより優れた耐熱性(高温下でのクラック耐性)を発揮できる。
また、本発明の金属原子含有層がケイ素原子および金属原子を特定の比率で含むことで、優れた湿熱耐性(高温高湿条件下でのガスバリア性および密着性)を発揮できる。これは、以下のメカニズムによると推定している。
ポリシラザン改質膜単独では、たとえ改質エネルギーを十分にかけたとしても、改質は主に表層で行われ、膜厚深さ方向での改質には限界がある。このため、どうしても改質が不十分な領域、すなわち湿熱下で組成変化が起こりうる領域が層内に残ってしまい、結果、湿熱耐性を劣化させる。
一方、ポリシラザン層内に特定の比率で金属原子を含有することで、ポリシラザンの改質が低エネルギーでも十分に進行するため、高温高湿条件下でも組成変化が起こらず、ガスバリア性および密着性の劣化がない、安定なガスバリア性フィルムを得ることができる。
本発明のガスバリア性フィルムは、湿熱耐性、特に高温高湿条件下でのガスバリア性および密着性、および高温条件下でのクラック耐性に優れる。また、本発明の方法によって製造されるガスバリア性フィルムは、5×10−4g/m/day以下の水蒸気透過度(WVTR)という優れたガスバリア性を示すため、特に、太陽電池(PV)や量子ドット(QD)などに好適に使用できる。加えて、本発明の方法によって製造されるガスバリア性フィルムは、透明性、屈曲性にも優れる。
以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
また、本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で測定する。
<ガスバリア性フィルム>
本発明のガスバリア性フィルムの層構成について、図1を用いて説明する。
図1において、本発明のガスバリア性フィルム11は、基材12、上記基材12上に位置する無機バリア層13、及び上記無機バリア層13上に位置する金属原子含有層14から構成される。本形態において、金属原子含有層14がガスバリア性フィルム11の最表層に配置されている。
本発明のガスバリア性フィルムは、基材、無機バリア層及び金属原子含有層を必須に有するが、他の部材をさらに含むものであってもよい。本発明のガスバリア性フィルムは、例えば、基材と無機バリア層との間に;(複数の無機バリア層が存在する場合には)無機バリア層間に;(複数の金属原子含有層が存在する場合には)金属原子含有層間に;または基材のバリア層(無機バリア層及び金属原子含有層)が形成されていない他方の面に、他の部材を有していてもよい。
ここで、他の部材としては、特に制限されず、従来のガスバリア性フィルムに使用される部材が同様にしてあるいは適宜修飾して使用できる。具体的には、ハードコート層、下地層、アンカーコート層、ブリードアウト防止層、ならびに保護層、吸湿層や帯電防止層の機能化層、ならびに(カールバランス調整やデバイス作製プロセス耐性、ハンドリング適性等を改良するための)バックコート層などが挙げられる。上記他の部材は、単独で使用されてもあるいは2種以上を組み合わせて使用してもよい。また、他の部材は、単層として存在してもあるいは2層以上の積層構造を有していてもよい。
上記に代えてまたは上記に加えて、無機バリア層は、単層(1工程で作製可能な層)として存在してもあるいは2層以上の積層構造を有していてもよい。複数の層を設けることで、更にガスバリア性を向上させることができる。後者の場合には、1層または複数層の無機バリア層が1つのユニットとして存在しても、あるいは上記ユニットが2以上積層した状態で存在していてもよい。
同様にして、上記に代えてまたは上記に加えて、金属原子含有層は、単層(1工程で作製可能な層)として存在してもあるいは2層以上の積層構造を有していてもよい。複数の層を設けることで、更にガスバリア性を向上させることができる。後者の場合には、1層または複数層の金属原子含有層が1つのユニットとして存在しても、あるいは上記ユニットが2以上積層した状態で存在していてもよい。また、基材の片面のみに無機ガスバリア層及び金属原子含有層を設けてもよいが、基材を挟んで両面に同様の無機ガスバリア層及び金属原子含有層を設けてもよい。
[基材]
本発明のガスバリア性フィルムの基材としては、ガスバリア層を保持することができるものであれば特に限定されるものではない。当該基材としては、通常、樹脂基材(プラスチックフィルムまたはシート)が用いられ、無色透明な樹脂からなるフィルムまたはシート(樹脂基材)が基材として好ましく用いられる。用いられる樹脂基材は、バリア層(無機バリア層、金属原子含有層)、ハードコート層等を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。
例えば、ポリ(メタ)アクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、シクロオレフィンポリマー、シクロオレフィンコポリマー等の各樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila−DEC、チッソ株式会社製)、さらには前記樹脂を2層以上積層して成る樹脂フィルム等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等が好ましく用いられ、低リタデーションの観点からは、シクロオレフィンポリマー、シクロオレフィンコポリマーおよびポリカーボネート(PC)が好ましい。また、光学的透明性、耐熱性、ガスバリア層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムを好ましく用いることができる。その他にも、耐熱基材としてポリイミド等を用いることも好ましい。これは、耐熱基材(ex.Tg>200℃)を用いることにより、デバイス作製工程で200℃以上の温度での加熱が可能となり、デバイスの大面積化やデバイスの動作効率向上のために必要な透明導電層もしくは金属ナノ粒子によるパターン層の低抵抗化が達成可能となる。すなわちデバイスの初期特性が大幅に改善することが可能となる。
基材の厚さは、特に制限されないが、5〜300μmであることが好ましく、10〜100μmであることがより好ましい。このように、本発明に係る基材は、従来と比べてより薄いものを用いることができ、電子デバイスの軽量化、薄膜化に寄与し得る。該基材は、透明導電層、プライマー層、クリアハードコート層等の機能層を有していてもよい。機能層については、上述したもののほか、特開2006−289627号公報の段落番号「0036」〜「0038」に記載されているものを好ましく採用できる。
また、本発明に係る基材は、透明であることが好ましい。基材が透明であり、基材上に形成する層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。
基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくともガスバリア層を設ける側を研摩し、平滑性を向上させておいてもよい。
また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。
本発明に用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2〜10倍が好ましい。
基材の少なくとも本発明に係るガスバリア層を設ける側には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理や、後述する平滑層の積層等を行ってもよく、必要に応じて上記処理を組み合わせて行うことが好ましい。
[無機バリア層]
本発明のガスバリア性フィルムは、基材上に少なくとも1層の無機バリア層が形成される。このように無機バリア層を設けることによって、基材側からの金属原子含有層への水分の侵入を抑制・防止して、金属原子含有層の形成、特にケイ素化合物(ポリシラザン)の改質(酸化)反応を低湿度条件下で緩やかに(より遅い速度で)進行させる。このため、ガスバリア性フィルムの柔軟性、ゆえに屈曲耐性を向上できる。
ここで、無機バリア層は、基材表面に形成される必要はなく、基材との間に下地層(平滑層、プライマー層)、アンカーコート層(アンカー層)、保護層、吸湿層や帯電防止層の機能化層などが設けられてもよい。
無機バリア層は、無機化合物を含む。ここで、無機化合物としては、特に限定されないが、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物または金属酸炭化物が挙げられる。中でも、ガスバリア性能の点で、Si、Al、In、Sn、Zn、Ti、Cu、CeおよびTaから選ばれる1種以上の金属を含む、酸化物、窒化物、炭化物、酸窒化物または酸炭化物などを好ましく用いることができ、Si、Al、In、Sn、ZnおよびTiから選ばれる金属の酸化物、窒化物または酸窒化物がより好ましく、特にSiおよびAlの少なくとも1種の、酸化物、窒化物または酸窒化物が好ましい。好適な無機化合物として、具体的には、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、酸化アルミニウム、酸化チタン、またはアルミニウムシリケートなどの複合体が挙げられる。副次的な成分として他の元素を含有してもよい。
無機バリア層に含まれる無機化合物の含有量は特に限定されないが、無機バリア層中、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%である(すなわち、無機バリア層は無機化合物からなる)ことが最も好ましい。
無機バリア層は無機化合物を含むことで、高い緻密性を有し、さらにガスバリア性を有する。ここで、無機バリア層のガスバリア性は、基材上に無機バリア層を形成させた積層体で算出した際、水蒸気透過度(WVTR)が0.1g/(m・day)以下であることが好ましく、0.01g/(m・day)以下であることがより好ましい。
無機バリア層の形成方法は、特に制限されないが、物理気相成長法(PVD法)、化学気相成長法(CVD法)などの真空成膜法、または無機化合物を含む液、好ましくはケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して形成する方法(以下、単に塗布法とも称する)などが挙げられる。これらのうち、物理気相成長法または化学気相成長法がより好ましく、化学気相成長法が特に好ましい。すなわち、無機バリア層は、化学気相成長(CVD)法によって形成されることが好ましい。
以下、真空成膜法および塗布法について説明する。
<真空成膜法>
物理気相成長法(Physical Vapor Deposition、PVD法)は、気相中で物質の表面に物理的手法により、目的とする物質、例えば、炭素膜等の薄膜を堆積する方法であり、例えば、スパッタ法(DCスパッタ法、RFスパッタ法、イオンビームスパッタ法、およびマグネトロンスパッタ法等)、真空蒸着法、イオンプレーティング法などが挙げられる。
スパッタ法は、真空チャンバ内にターゲットを設置し、高電圧をかけてイオン化した希ガス元素(通常はアルゴン)をターゲットに衝突させて、ターゲット表面の原子をはじき出し、基材に付着させる方法である。このとき、チャンバ内に窒素ガスや酸素ガスを流すことにより、アルゴンガスによってターゲットからはじき出された元素と、窒素や酸素とを反応させて無機層を形成する、反応性スパッタ法を用いてもよい。
化学気相成長法(Chemical Vapor Deposition、CVD法)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基材表面または気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられる。特に限定されるものではないが、製膜速度や処理面積の観点から、プラズマCVD法を適用することが好ましい。
真空プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により得られる無機バリア層は、原材料(原料ともいう)である金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、目的の化合物を製造できるため好ましい。プラズマCVD法によるバリア層の形成条件の詳細については、例えば、国際公開第2012/067186の段落「0033」〜「0051」に記載される条件が適宜採用されうる。このような方法により形成される無機バリア層は、酸化物、窒化物、酸窒化物または酸炭化物を含む層であることが好ましい。
以下、CVD法のうち、好適な形態である真空プラズマCVD法について具体的に説明する。
図3は、本発明に係る無機バリア層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。
図3において、真空プラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。また、真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。熱媒体循環系106内には熱媒体が配置されている。熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。図3に記載の真空プラズマCVD装置の詳細については、国際公開番号WO12/014653を参照することができる。
また、本発明に係るCVD法により形成される無機バリア層の好適な一実施形態として、無機バリア層は構成元素に炭素、ケイ素、および酸素を含むことが好ましい。より好適な形態は、以下の(i)〜(ii)の要件を満たす層である。
(i)無機バリア層の膜厚方向における無機バリア層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、炭素分布曲線が少なくとも2つの極値を有する、
(ii)炭素分布曲線における炭素の原子比の最大値と最小値との差の絶対値が3at%以上である。
かような組成をもつことで、ガスバリア性と屈曲性を高度に両立する観点から好ましい。
更に、無機バリア層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有することが、屈曲耐性のさらに向上の点から好ましい。
以下、上記好適な実施形態について説明する。
(i)前記無機バリア層の膜厚方向における前記無機バリア層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、炭素分布曲線が少なくとも2つの極値を有することが好ましい。該無機バリア層は、前記炭素分布曲線が少なくとも3つの極値を有することが好ましく、少なくとも4つの極値を有することがより好ましいが、5つ以上有してもよい。炭素分布曲線が少なくとも2つの極値を有することで、炭素原子比率が濃度勾配を有して連続的に変化し、屈曲時のガスバリア性能が高まる。なお、炭素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは30以下、より好ましくは25以下である。極値の数は、ガスバリア層の膜厚にも起因するため、一概に規定することはできない。
ここで、少なくとも3つの極値を有する場合においては、前記炭素分布曲線の有する1つの極値および該極値に隣接する極値における前記無機バリア層の膜厚方向における前記無機バリア層の表面からの距離(L)の差の絶対値(以下、単に「極値間の距離」とも称する)が、いずれも200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。このような極値間の距離であれば、無機バリア層中に炭素原子比が多い部位(極大値)が適度な周期で存在するため、無機バリア層に適度な屈曲性を付与し、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。なお、本明細書において極値とは、前記無機バリア層の膜厚方向における前記無機バリア層の表面からの距離(L)に対する元素の原子比の極大値または極小値のことをいう。また、本明細書において極大値とは、無機バリア層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が増加から減少に変わる点であって、かつその点の元素の原子比の値よりも、該点から無機バリア層の膜厚方向における無機バリア層の表面からの距離をさらに4〜20nmの範囲で変化させた位置の元素の原子比の値が3at%以上減少する点のことをいう。すなわち、4〜20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上減少していればよい。これは、無機バリア層の膜厚により変動する。例えば、無機バリア層が300nmである場合は、無機バリア層の膜厚方向における無機バリア層の表面からの距離を20nm変化させた位置の元素の原子比の値が3at%以上減少する点が好ましい。さらに、本明細書において極小値とは、無機バリア層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が減少から増加に変わる点であり、かつその点の元素の原子比の値よりも、該点から無機バリア層の膜厚方向における無機バリア層の表面からの距離をさらに4〜20nmの範囲で変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。すなわち、4〜20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上増加していればよい。ここで、少なくとも3つの極値を有する場合の、極値間の距離の下限は、極値間の距離が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されない。
さらに、該無機バリア層は、(ii)前記炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が3at%以上であることが好ましく、5at%以上であることがより好ましく、7at%以上であることがさらに好ましい。炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が3at%以上であることで、屈曲時のガスバリア性能が高まる。なお、本明細書において、「最大値」とは、各元素の分布曲線において最大となる各元素の原子比であり、極大値の中で最も高い値である。同様にして、本明細書において、「最小値」とは、各元素の分布曲線において最小となる各元素の原子比であり、極小値の中で最も低い値である。
また、無機バリア層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C)ことが好ましい。かような条件となることで、得られるガスバリア性フィルムのガスバリア性や屈曲性が十分となる。ここで、上記炭素分布曲線において、上記(酸素の原子比)、(ケイ素の原子比)および(炭素の原子比)の関係は、無機バリア層の膜厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがより好ましい。ここで、無機バリア層の膜厚の少なくとも90%以上とは、無機バリア層中で連続していなくてもよく、単に90%以上の部分で上記した関係を満たしていればよい。
前記ケイ素分布曲線、前記酸素分布曲線、前記炭素分布曲線、および前記酸素炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記無機バリア層の膜厚方向における前記無機バリア層の表面からの距離(L)に概ね相関することから、「無機バリア層の膜厚方向における無機バリア層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される無機バリア層の表面からの距離を採用することができる。なお、ケイ素分布曲線、酸素分布曲線、炭素分布曲線および酸素炭素分布曲線は、下記測定条件にて作成することができる。
(測定条件)
エッチングイオン種:アルゴン(Ar
エッチング速度(SiO熱酸化膜換算値):0.05nm/sec
エッチング間隔(SiO換算値):10nm
X線光電子分光装置:Thermo Fisher Scientific社製、機種名"VG Theta Probe"
照射X線:単結晶分光AlKα
X線のスポットおよびそのサイズ:800×400μmの楕円形。
上記のプラズマCVD法により形成される無機バリア層の膜厚(乾燥膜厚)は、特に制限されない。例えば、該無機バリア層の1層当たりの膜厚は、20〜3000nmであることが好ましく、50〜2500nmであることがより好ましく、100〜1000nmであることが特に好ましい。このような膜厚であれば、ガスバリア性フィルムは、優れたガスバリア性および屈曲時のクラック発生抑制/防止効果を発揮できる。なお、上記のプラズマCVD法により形成される無機バリア層が2層以上から構成される場合には、各無機バリア層が上記したような膜厚を有することが好ましい。
本発明において、膜面全体において均一でかつ優れたガスバリア性を有する無機バリア層を形成するという観点から、前記無機バリア層が膜面方向(無機バリア層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、無機バリア層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により無機バリア層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線および前記酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。
さらに、本発明においては、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される前記無機バリア層のうちの少なくとも1層の膜厚方向における該無機バリア層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式1で表される条件を満たすことをいう。
本発明に係るガスバリア性フィルムにおいて、上記条件(i)〜(ii)を全て満たす無機バリア層は、1層のみを備えていてもよいし2層以上を備えていてもよい。さらに、このような無機バリア層を2層以上備える場合には、複数の無機バリア層の材質は、同一であってもよいし異なっていてもよい。
本発明では、無機バリア層の形成方法は特に制限されず、従来と方法を同様にしてあるいは適宜修飾して適用できる。無機バリア層は、好ましくは化学気相成長(CVD)法、特に、プラズマ化学気相成長法(プラズマCVD、PECVD(plasma-enhanced chemical vapor deposition)、以下、単に「プラズマCVD法」とも称する)により形成され、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により形成されることがより好ましい。
以下では、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により、基材上に無機バリア層を形成する方法を説明する。
≪プラズマCVD法による無機バリア層の形成方法≫
本発明に係る無機バリア層を基材の表面上に形成させる方法としては、ガスバリア性の観点から、プラズマCVD法を採用することが好ましい。なお、前記プラズマCVD法はペニング放電プラズマ方式のプラズマCVD法であってもよい。
また、プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに基材を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、通常のローラーを使用しないプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、略同一である構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)〜(ii)を全て満たす層を形成することが可能となる。
また、このようにして一対の成膜ローラー間に放電する際には、前記一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、本発明のガスバリア性フィルムにおいては、前記無機バリア層が連続的な成膜プロセスにより形成された層であることが好ましい。
また、本発明に係るガスバリア性フィルムは、生産性の観点から、ロールツーロール方式で前記基材の表面上に前記無機バリア層を形成させることが好ましい。また、このようなプラズマCVD法により無機バリア層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールツーロール方式で製造することも可能となる。
以下、図2を参照しながら、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法による無機バリア層の形成方法について、より詳細に説明する。なお、図2は、本製造方法より無機バリア層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。
図2に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39および40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。さらに、このような製造装置31において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。装置に関する詳細は従来公知の文献、例えば、特開2011−73430号公報を参照することができる。
上記したように、本実施形態のより好ましい態様としては、本発明に係る無機バリア層を、図2に示す対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いたプラズマCVD法によって成膜することを特徴とするものである。これは、対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロールツーロールでの搬送時の耐久性と、ガスバリア性能とが両立する無機バリア層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。
<塗布法>
本発明に係る無機バリア層は、例えば無機化合物を含有する液、好ましくはケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して形成する方法(塗布法)で形成されてもよい。以下、無機化合物としてケイ素化合物を例に挙げて説明するが、前記無機化合物はケイ素化合物に限定されるものではない。
(ケイ素化合物)
前記ケイ素化合物としては、ケイ素化合物を含有する塗布液の調製が可能であれば特に限定はされない。例えば、ポリシラザン化合物、シラザン化合物、アミノシラン化合物、シリルアセトアミド化合物、シリルイミダゾール化合物、およびその他の窒素を含有するケイ素化合物などが用いられる。
(ポリシラザン化合物)
本発明において、ポリシラザン化合物とは、ケイ素−窒素結合を有するポリマーである。具体的に、その構造内にSi−N、Si−H、N−Hなどの結合を有し、SiO、Si、および両方の中間固溶体SiOなどのセラミック前駆体無機ポリマーである。なお、本明細書において「ポリシラザン化合物」を「ポリシラザン」とも略称する。
本発明に用いられるポリシラザンの例としては、特に限定されず、公知のものが挙げられる。例えば、特開2013−022799号公報の段落「0043」〜「0058」や特開2013−226758号公報の段落「0038」〜「0056」などに開示されているものが適宜採用される。
また、ポリシラザン化合物は、有機溶媒に溶解した溶液状態で市販されており、ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120−10、NN120−20、NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL120−20、NL150A、NP110、NP140、SP140などが挙げられる。
本発明で使用できるポリシラザン化合物の別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)などの、低温でセラミック化するポリシラザン化合物が挙げられる。
(シラザン化合物)
本発明に好ましく用いられるシラザン化合物の例として、ジメチルジシラザン、トリメチルジシラザン、テトラメチルジシラザン、ペンタメチルジシラザン、ヘキサメチルジシラザン、および1,3−ジビニル−1,1,3,3−テトラメチルジシラザンなどが挙げられるが、これらに限定されない。
(アミノシラン化合物)
本発明に好ましく用いられるアミノシラン化合物の例として、3−アミノプロピルトリメトキシシラン、3−アミノプロピルジメチルエトキシシラン、3−アリールアミノプロピルトリメトキシシラン、プロピルエチレンジアミンシラン、N−[3−(トリメトキシシリル)プロピル]エチレンジアミン、3−ブチルアミノプロピルトリメチルシラン、3−ジメチルアミノプロピルジエトキシメチルシラン、2−(2−アミノエチルチオエチル)トリエトキシシラン、およびビス(ブチルアミノ)ジメチルシランなどが挙げられるが、これらに限定されない。
(シリルアセトアミド化合物)
本発明に好ましく用いられるシリルアセトアミド化合物の例として、N−メチル−N−トリメチルシリルアセトアミド、N,O−ビス(tert−ブチルジメチルシリル)アセトアミド、N,O−ビス(ジエチルヒドロゲンシリル)トリフルオロアセトアミド、N,O−ビス(トリメチルシリル)アセトアミド、およびN−トリメチルシリルアセトアミドなどが挙げられるが、これらに限定されない。
(シリルイミダゾール化合物)
本発明に好ましく用いられるシリルイミダゾール化合物の例として、1−(tert−ブチルジメチルシリル)イミダゾール、1−(ジメチルエチルシリル)イミダゾール、1−(ジメチルイソプロピルシリル)イミダゾール、およびN−トリメチルシリルイミダゾールなどが挙げられるが、これらに限定されない。
(その他の窒素を含有するケイ素化合物)
本発明において、上述の窒素を含有するケイ素化合物の他に、例えば、ビス(トリメチルシリル)カルボジイミド、トリメチルシリルアジド、N,O−ビス(トリメチルシリル)ヒドロキシルアミン、N,N’−ビス(トリメチルシリル)尿素、3−ブロモ−1−(トリイソプロピルシリル)インドール、3−ブロモ−1−(トリイソプロピルシリル)ピロール、N−メチル−N,O−ビス(トリメチルシリル)ヒドロキシルアミン、3−イソシアネートプロピルトリエトキシシラン、およびシリコンテトライソチオシアナートなどが用いられるがこれらに限定されない。
中でも、成膜性、クラック等の欠陥が少ないこと、残留有機物の少なさの点で、パーヒドロポリシラザン、オルガノポリシラザン等のポリシラザン;シルセスキオキサン等のポリシロキサン等が好ましく、ガスバリア性能が高く、屈曲時および高温高湿条件下であってもガスバリア性能が維持されることから、ポリシラザンがより好ましく、パーヒドロポリシラザンが特に好ましい。
ポリシラザンを用いる場合、改質処理前の無機バリア層中におけるポリシラザンの含有率としては、無機バリア層の全質量を100質量%としたとき、100質量%でありうる。また、無機バリア層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10質量%以上99質量%以下であることが好ましく、40質量%以上95質量%以下であることがより好ましく、特に好ましくは70質量%以上95質量%以下である。
上記のような無機バリア層の塗布法による形成方法は、特に制限されず、公知の方法が適用できるが、有機溶媒中にケイ素化合物および必要に応じて触媒を含む無機バリア層形成用塗布液を公知の湿式塗布方法により塗布し、この溶媒を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。
(無機バリア層形成用塗布液)
無機バリア層形成用塗布液を調製するための溶媒としては、ケイ素化合物を溶解できるものであれば特に制限されないが、ケイ素化合物と容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ケイ素化合物に対して不活性の有機溶媒が好ましく、非プロトン性の有機溶媒がより好ましい。具体的には、溶媒としては、非プロトン性溶媒;例えば、ペンタン、2,2,4−トリメチルペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン、モノ−およびポリアルキレングリコールジアルキルエーテル(ジグライム類)等の脂肪族エーテル、脂環式エーテル等のエーテル類などを挙げることができる。上記溶媒は、ケイ素化合物の溶解度や溶媒の蒸発速度等の目的にあわせて選択され、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
無機バリア層形成用塗布液におけるケイ素化合物の濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1〜80質量%、より好ましくは5〜50質量%、特に好ましくは10〜40質量%である。
無機バリア層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、N,N,N’,N’−テトラメチル−1,6−ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N−複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1〜10質量%、より好ましくは0.5〜7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。
無機バリア層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。
また、特開2005−231039号に記載のように無機バリア層の形成にゾルゲル法を用いることができる。ゾルゲル法により改質層を形成する際に用いられる塗布液は、ケイ素化合物、ならびにポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体の少なくとも1種を含むことが好ましい。さらに、塗布液は、ゾルゲル法触媒、酸、水、および、有機溶媒を含むことが好ましい。ゾルゲル法では、かような塗布液を用いて重縮合することにより改質層が得られる。ケイ素化合物としては、一般式R Si(ORで表されるアルコキシドを用いることが好ましい。ここで、RおよびRはそれぞれ独立して、炭素数1〜20のアルキル基を表し、Oは、0以上の整数を表し、pは、1以上の整数を表す。上記のアルコキシシランの具体例としては、例えば、テトラメトキシシラン(Si(OCH)、テトラエトキシシラン(Si(OC)、テトラプロポキシシラン(Si(OC)、テトラブトキシシラン(Si(OC)等を使用することができる。塗布液において、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体を組み合わせて使用する場合、それぞれの配合割合としては、質量比で、ポリビニルアルコール系樹脂:エチレン・ビニルアルコール共重合体=10:0.05〜10:6であることが好ましい。また、ポリビニルアルコール系樹脂および/またはエチレン・ビニルアルコール共重合体の塗布液中の含有量は、上記のケイ素化合物の合計量100質量部に対して5〜500質量部の範囲であり、好ましくは、約20〜200質量部位の配合割合で調製することが好ましい。ポリビニルアルコール系樹脂としては、一般に、ポリ酢酸ビニルをケン化して得られるものを使用することができる。上記のポリビニルアルコール系樹脂としては、酢酸基が数十%残存している部分ケン化ポリビニルアルコール系樹脂、酢酸基が残存しない完全ケン化ポリビニルアルコールでも、または、OH基が変性された変性ポリビニルアルコール系樹脂のいずれでもよい。ポリビニルアルコール系樹脂の具体例としては、株式会社クラレ製のクラレポバール(登録商標)、日本合成化学工業株式会社製のゴーセノール(登録商標)等を使用することができる。また、本発明において、エチレン・ビニルアルコール共重合体としては、エチレンと酢酸ビニルとの共重合体のケン化物、すなわち、エチレン−酢酸ビニルランダム共重合体をケン化して得られるものを使用することができる。具体的には、酢酸基が数十モル%残存している部分ケン化物から、酢酸基が数モル%しか残存していないかまたは酢酸基が残存しない完全ケン化物まで含み、特に限定されるものではないが、ガスバリア性の観点から好ましいケン化度は、80モル%以上、より好ましくは、90モル%以上、さらに好ましくは、95モル%以上であるものを使用することが好ましい。また、上記のエチレン・ビニルアルコール共重合体中のエチレンに由来する繰り返し単位の含量(以下「エチレン含量」ともいう)は、通常、0〜50モル%、好ましくは、20〜45モル%であるものを使用することが好ましいものである。上記のエチレン・ビニルアルコール共重合体の具体例としては、株式会社クラレ製、エバール(登録商標)EP−F101(エチレン含量;32モル%)、日本合成化学工業株式会社製、ソアノール(登録商標)D2908(エチレン含量;29モル%)等を使用することができる。ゾルゲル法触媒、主として、重縮合触媒としては、水に実質的に不溶であり、かつ有機溶媒に可溶な第三アミンが用いられる。具体的には、例えば、N,N−ジメチルベンジルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、その他等を使用することができる。また、酸としては、上記ゾルゲル法の触媒、主として、アルコキシドやシランカップリング剤などの加水分解のための触媒として用いられる。上記の酸としては、例えば、硫酸、塩酸、硝酸などの鉱酸、および酢酸、酒石酸などの有機酸等を使用することができる。さらに、塗布液には、上記のアルコキシドの合計モル量1モルに対して0.1〜100モル、好ましくは、0.8〜2モルの割合の水を含有させることが好ましい。
ゾルゲル法による塗布液に用いられる、有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、その他等を用いることができる。また、溶媒中に可溶化されたエチレン・ビニルアルコール共重合体は、例えば、ソアノール(登録商標)として市販されているものを使用することができる。さらに、ゾルゲル法による塗布液には、例えば、シランカップリング剤等も添加することができるものである。
(無機バリア層形成用塗布液を塗布する方法)
無機バリア層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
塗布厚さは、目的に応じて適切に設定され得る。例えば、無機バリア層1層当たりの塗布厚さは、乾燥後の厚さが10nm〜10μm程度であることが好ましく、15nm〜1μmであることがより好ましく、20〜500nmであることがさらに好ましい。膜厚が10nm以上であれば十分なガスバリア性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒などの溶媒を除去することができる。この際、塗膜に含有される溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の溶媒を残存させる場合であっても、好適な無機バリア層が得られうる。なお、残存する溶媒は後に除去されうる。
塗膜の乾燥温度は、適用する基材によっても異なるが、50〜200℃であることが好ましい。例えば、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して適宜設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、80℃で1〜数分程度に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。
無機バリア層形成用塗布液を塗布して得られた塗膜は、改質処理前または改質処理中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は−5℃(温度25℃/湿度10%)以下であり、維持される時間は無機バリア層の膜厚によって適宜設定することが好ましい。無機バリア層の膜厚が1.0μm以下の条件においては、露点温度は−5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、−50℃以上であり、−40℃以上であることが好ましい。改質処理前、あるいは改質処理中に水分を除去することによって、シラノールに転化した無機バリア層の脱水反応を促進する観点から好ましい形態である。
<塗布法により形成された無機バリア層の改質処理>
本発明における塗布法により形成された無機バリア層の改質処理とは、ケイ素化合物の酸化ケイ素または酸窒化ケイ素等への転化反応を指し、具体的にはガスバリア性フィルムが全体としてガスバリア性(水蒸気透過率が、1×10−3g/m・day以下)を発現するに貢献できるレベルの無機薄膜を形成する処理をいう。
ケイ素化合物の酸化ケイ素または酸窒化ケイ素等への転化反応は、公知の方法を適宜選択して適用することができる。改質処理としては、具体的には、プラズマ処理、紫外線照射処理、加熱処理が挙げられる。ただし、加熱処理による改質の場合、ケイ素化合物の置換反応による酸化ケイ素膜または酸窒化ケイ素層の形成には450℃以上の高温が必要であるため、プラスチック等のフレキシブル基板においては、適応が難しい。このため、熱処理は他の改質処理と組み合わせて行うことが好ましい。
したがって、改質処理としては、プラスチック基板への適応という観点から、より低温で、転化反応が可能なプラズマ処理や紫外線照射処理による転化反応が好ましい。
(プラズマ処理)
本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等をあげることが出来る。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、さらには通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは長周期型周期表の第18族原子を含むガス、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
(加熱処理)
ケイ素化合物を含有する塗膜を他の改質処理、好適には後述のエキシマ照射処理等と組み合わせて、加熱処理することで、改質処理を効率よく行うことが出来る。
また、ゾルゲル法を用いて層形成する場合には、加熱処理を用いることが好ましい。加熱条件としては、好ましくは50〜300℃、より好ましくは70〜200℃の温度で、好ましくは0.005〜60分間、より好ましくは0.01〜10分間、加熱・乾操することにより、縮合が行われ、無機バリア層を形成することができる。
加熱処理としては、例えば、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターの様な赤外領域の光を用いた方法等が上げられるが特に限定はされない。また、ケイ素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。
加熱処理時の塗膜の温度としては、50〜250℃の範囲に適宜調整することが好ましく、50〜120℃の範囲であることがより好ましい。
また、加熱時間としては、1秒〜10時間の範囲が好ましく、10秒〜1時間の範囲がより好ましい。
(紫外線照射処理)
改質処理の方法の1つとして、紫外線照射による処理が好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸窒化ケイ素膜を形成することが可能である。
この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られる無機バリア層が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。
紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。
なお、本発明でいう紫外線とは、一般には、10〜400nmの波長を有する電磁波をいうが、後述する真空紫外線(10〜200nm)処理以外の紫外線照射処理の場合は、好ましくは210〜375nmの紫外線を用いる。
紫外線の照射は、照射される無機バリア層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。
基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20〜300mW/cm、好ましくは50〜200mW/cmになるように基材−紫外線照射ランプ間の距離を設定し、0.1秒〜10分間の照射を行うことができる。
一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムの場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。
このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、MDエキシマ社製など)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線を無機バリア層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから無機バリア層に当てることが好ましい。
紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、無機バリア層を表面に有する積層体を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、無機バリア層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材や無機バリア層の組成、濃度にもよるが、一般に0.1秒〜10分であり、好ましくは0.5秒〜3分である。
(真空紫外線照射処理:エキシマ照射処理)
本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100〜200nmの光エネルギーを用い、好ましくは100〜180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、上述したように熱処理を併用することが好ましく、その際の熱処理条件の詳細は上述したとおりである。
本発明においての放射線源は、100〜180nmの波長の光を発生させるものであれば良いが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。
このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン塗膜の改質を実現できる。
エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10〜20,000体積ppmとすることが好ましく、より好ましくは50〜10,000体積ppmである。また、転化プロセスの間の水蒸気濃度は、好ましくは1000〜4000体積ppmの範囲である。
真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
真空紫外線照射工程において、ポリシラザン塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm〜10W/cmであると好ましく、30mW/cm〜200mW/cmであることがより好ましく、50mW/cm〜160mW/cmであるとさらに好ましい。1mW/cm以上であれば、十分な改質効率が得られ、10W/cm以下であれば、塗膜にアブレーションを生じにくく、基材にダメージを与えにくい。
塗膜面における真空紫外線の照射エネルギー量(積算光量)は、10〜10000mJ/cmであることが好ましく、100〜8000mJ/cmであることがより好ましく、200〜6000mJ/cmであることがさらに好ましい。10mJ/cm以上であれば、改質が十分に進行しうる。10000mJ/cm以下であれば、過剰改質によるクラック発生や、基材の熱変形が生じにくい。
また、改質に用いられる真空紫外光は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。
無機バリア層の膜組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、無機バリア層を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。
また、無機バリア層の膜密度は、目的に応じて適切に設定され得る。例えば、無機バリア層の膜密度は、1.5〜2.6g/cmの範囲にあることが好ましい。この範囲であれば、膜の緻密さがより高くなり、ガスバリア性の劣化や、湿度による膜の酸化劣化が起こりくい。
該無機バリア層は、単層でもよいし2層以上の積層構造であってもよい。
該無機バリア層が2層以上の積層構造である場合、各無機バリア層は同じ組成であっても異なる組成であってもよい。また、無機バリア層が2層以上の積層構造である場合、無機バリア層は真空成膜法により形成される層のみからなってもよいし、塗布法により形成される層のみからなってもよいし、真空成膜法により形成される層と塗布法により形成される層との組み合わせであってもよい。
また、前記無機バリア層は、応力緩和性や、後述の金属原子含有層の形成で使用される紫外線を吸収させるなどの観点から、窒素元素または炭素元素を含むことも好ましい。これらの元素を含むことで、応力緩和や紫外線吸収などの性質を有するようになり、無機バリア層と金属原子含有層との密着性を向上させることでガスバリア性が向上するなどの効果が得られ好ましい。
無機バリア層における化学組成は、無機バリア層を形成する際にケイ素化合物等の種類および量、ならびにケイ素化合物を含む層を改質する際の条件等により、制御することができる。
[金属原子含有層]
本発明のガスバリア性フィルムは、上記無機バリア層上に少なくとも1層の金属原子含有層を有する。当該金属原子含有層は、ケイ素原子および金属原子を含み、ケイ素原子に対する金属原子の元素組成比(原子%)(金属原子含有量/ケイ素原子含有量×100)が0.1〜100(原子%)である。本発明のガスバリア性フィルムは金属原子およびケイ素原子を有する層を表層(好ましくは最表層)に設けることで、高温多湿条件下のガスバリア性、密着性、および高温下でのクラック耐性が向上しうる。金属原子含有層を有することによる効果発現の詳細なメカニズムは不明であるが、以下のような理由によるものと考えられる。
従来からガスバリア層として使用されるポリシラザンを含有する塗布液を塗布乾燥して形成された層であって金属原子を含有していない層は、改質処理としてエネルギー線を照射していくと、上述したようにダングリングボンドが増大するためか250nm以下の吸光度が増大していき、層内部までエネルギー線が徐々に侵入しにくくなり層表面しか改質されない。これに対し、理由は明らかではないが、金属原子を含有させると、エネルギー線を照射するにつれ低波長側の吸光度が減少する。このため、金属原子を含有する塗布層に真空紫外線を照射することにより膜厚方向に改質が均一に行われ、高温高湿条件下で保存した後でも、層間密着力や屈曲耐性に優れるガスバリア性フィルムとなる。
そして、本発明のガスバリア性フィルムにおいては、前記金属原子含有層中に含まれる有機溶媒が0ppmを超えて1000ppm以下である点を特徴とする。このように、金属原子含有層中の有機溶媒量を特定範囲とすることによって、ガスバリア性フィルムのガスバリア性を維持しつつ、密着性およびクラック耐性(特に、高温多湿条件下の密着性および高温下でのクラック耐性)を有意に向上しうる。ケイ素原子および金属原子を含む金属原子含有層は、通常、塗布法により形成されることが多い。すなわち、製造過程において有機溶媒を使用され、塗膜を形成した後に乾燥を行った場合であっても、有機溶媒が塗膜(金属原子含有層)に残留しうる。金属原子含有層中に残留する有機溶媒量が多い場合、すなわち、金属原子含有層中の有機溶媒量が1000ppmを超える場合には、層間の密着性およびガスバリア性に悪影響を及ぼす。一方、耐熱性(高温下でのクラック耐性)の観点からは、金属原子含有層に微量の有機溶媒が存在すると高温下徐々に揮発することで熱エネルギーを吸収するため、バリア層中のクラック発生を抑制する効果が見込める。より好ましくはガスバリア性を一層向上させる点で前記金属原子含有層中に含まれる有機溶媒量は800ppm以下が好ましく、500ppm以下がより好ましい。特に好ましくは1〜100ppmである。
金属原子含有層に含有される有機溶媒としては、特に制限されないが、非プロトン性の有機溶媒が好ましい。例えば、ペンタン、2,2,4−トリメチルペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン、モノ−およびポリアルキレングリコールジアルキルエーテル(ジグライム類)等の脂肪族エーテル、脂環式エーテル等のエーテル類などを挙げることができる。上記溶媒は、ケイ素化合物の溶解度や溶媒の蒸発速度等の目的にあわせて選択され、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。上記溶媒のうち、市販ポリシラザン液の溶媒と同一にする意味で、ジブチルエーテル等の脂肪族エーテルが好ましく、特にジブチルエーテルが好ましい。
金属原子含有層中の有機溶媒量の制御方法は特に制限されない。例えば、金属原子含有層を塗布法により形成する場合には、塗布膜あるいは改質膜を加熱することで有機溶媒量を制御することが可能である。具体的には、加熱温度および加熱時間で調整すればよい。すなわち、加熱温度を上げる、あるいは、加熱時間を長くすると金属原子含有層中の有機溶媒量は減少する。一方、加熱温度を下げる、あるいは、加熱時間を短くすると金属原子含有層中の有機溶媒量は増加する。加熱するタイミングは、塗布膜形成後、改質プロセス時、改質膜形成後、いずれでもよい。中でも好ましくは、後述する塗膜の改質処理の際に加熱処理(好適には後述のエキシマ照射処理等と組み合わせて行われる加熱処理)を行い、この加熱処理の条件を調整することで所望の有機溶媒量とする。特に好ましくは、改質処理を加熱された乾燥不活性ガス雰囲気で行い、この際、加熱された乾燥不活性ガスを介して金属原子含有層中の有機溶媒を揮発(低減)させ、本発明の所望の範囲とする。
一般にポリシラザン等のケイ素化合物を用いて塗布法によりバリア層を形成する場合には、塗布膜を形成した後乾燥処理や改質処理が行われる。従来から行われてきたこのような塗膜形成後の乾燥工程や改質工程においても塗膜から有機溶媒が揮発しうる。しかしながら、塗膜形成後の乾燥工程や改質工程において行われる加熱処理は通常塗膜を配置しているステージを加熱することにより行われることが一般的である。このようなステージ加熱処理は塗布膜(金属原子含有層)上面から溶媒が揮発するには不十分であり、また、すぐに改質膜が表面に形成されるため、塗膜の上面からも下面からも溶媒が抜けられなくなり、上面および下面のバリアに挟まれる形で溶媒が塗布膜(金属原子含有層)内に保持されてしまう。また、改質膜が表面に形成された後は揮発する有機溶媒量はごく微量である。したがって、従来一般的な方法で形成されたケイ素化合物の塗布膜内には本発明の所望の範囲を超える有機溶媒が残留する。
これに対して、本発明の好ましい形態においては、加熱された不活性ガス雰囲気において活性エネルギー線を照射することにより、塗膜(金属原子含有層)上面から効率的に溶媒を除去でき、これにより有機溶媒量を従来のものより低減することができる。また、不活性ガスの条件(温度・暴露時間・流量など)によって塗膜中の有機溶媒の含有量を容易に微調整することができる。
好ましい条件の一例を挙げると、例えば、系内に不活性ガス(例えば乾燥窒素)を導入して低酸素雰囲気下にて金属原子含有ポリシラザン塗布膜に真空紫外線(エキシマ)照射を施して改質膜を形成する場合であれば、導入する不活性ガス(窒素)の温度、加熱した不活性ガス(窒素)に膜が曝される時間、不活性ガス(窒素)流量などを調整することで金属原子含有層中の有機溶媒量を制御する方法が挙げられる。
また、金属原子含有層を塗布法以外の乾式法によって形成する場合には、金属原子含有層の成膜後に特定量の有機溶媒を塗布する方法(スプレーコート、ディップコート等)、有機溶媒雰囲気下に任意の時間放置する方法により金属原子含有層に本発明の所望の量の有機溶媒を含有させることができる。したがって、これらを調整することで有機溶媒量を本発明の所望の範囲に制御しうる。
本発明における金属原子含有層中に含有される有機溶媒量は後述の実施例に記載の方法で測定することができる。なお、本発明の実施例では、金属原子含有層中の有機溶媒量は成膜(改質)直後に測定した値を採用している。すなわち、パージ&トラップサンプラーを取り付けたガスクロマトグラフィー質量分析法(PT−GC/MS)で測定することができる。具体的には、例えば、直径10cmのシリコンウェハー上に金属原子含有ポリシラザン塗布乾燥膜を形成後、例えば上述した方法にて金属原子含有層中の有機溶媒量を調整し、高温環境下にて乾燥しながら、ガス回収用のチャンバと有機ガス吸着管(TENAX GR)に金属原子含有層中に含有する有機溶媒を吸着させ、PT−GC/MS測定を行う方法が挙げられる。溶媒濃度は、濃度既知の基準試料を用いて作成した検量線より求めた。有機溶媒濃度は、下記式に従って算出することができる。
金属原子含有層の重量は、金属原子含有層を設けたシリコンウェハーの重量から層形成前のシリコンウェハーの重量を差し引くことで簡単に求めることが出来る。なお、金属原子含有層中に複数種の有機溶媒が含まれる場合、各有機溶媒の量の総和を金属原子含有層中の有機溶媒量とすることとする。
また、ガスバリアフィルムにおける金属含有層中に含まれる有機溶媒量は、金属含有層のみを設けたシリコンウェハーに施した処理(有機溶媒量調整方法)と同じ処理を施すことで、シリコンウェハーから検出された溶媒量と同一になると仮定し、上記方法で求めることが出来る。
ガスバリア性フィルム形成後(製品化後)においても、後述の実施例に記載の方法に準じてガスクロマトグラフィー法で測定することができる。具体的には、金属原子含有層を膜厚方向に垂直に切り出したフィルム片を秤量し、高温(200℃)で加熱することで発生したガスを、ガス回収用のチャンバと有機ガス吸着管(TENAX GR)とに吸着させ、PT−GC/MS測定を行うことで、金属原子含有層中に含有する有機溶媒量を測定することができる。
(ガスクロマトグラフィー測定条件)
GC:カラム G&W Scientific DB−624(0.25mmI.D.×30M)
OVEN 40℃(2min)−10℃/min−230℃(14min)
INJ 230℃
AUX 230℃
MASS scan MassRange 20−300。
金属原子としては本発明の効果を奏するものであれば特に制限されない。具体的には、アルミニウム原子(Al)、チタン原子(Ti)、ジルコニウム原子(Zr)、亜鉛原子(Zn)、ガリウム原子(Ga)、インジウム原子(In)、クロム原子(Cr)、鉄原子(Fe)、マグネシウム原子(Mg)、スズ原子(Sn)、ニッケル原子(Ni)、パラジウム原子(Pd)、鉛原子(Pb)、マンガン原子(Mn)、リチウム原子(Li)、ゲルマニウム原子(Ge)、銅原子(Cu)、ナトリウム原子(Na)、カリウム原子(K)、カルシウム原子(Ca)、及びコバルト原子(Co)から選択される少なくとも1種が挙げられる。これらのうち、アルミニウム原子(Al)、チタン原子(Ti)、鉄原子(Fe)、および銅原子(Cu)からなる群より選択される少なくとも1種を含むことが好ましく、アルミニウム原子(Al)を含むことがより好ましい。これらの金属原子を含むことによって、ガスバリア性、湿熱耐性をより向上できる。なお、上記金属原子は、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
すなわち、上記目的は、基基材と、前記基材上に位置する無機バリア層と、前記無機バリア層上に位置し、ケイ素原子および金属原子を含み、ケイ素原子に対する金属原子の元素組成比(原子%)(金属原子含有量/ケイ素原子含有量×100)が0.1〜100(原子%)である金属原子含有層とを有し、前記金属原子含有層中に含まれる有機溶媒が0ppmを超えて1000ppm以下である、ガスバリア性フィルムによって達成できる。
上述のように、金属原子含有層は、ケイ素原子および金属原子を含み、ケイ素原子に対する金属原子の元素組成比(原子%)(金属原子含有量/ケイ素原子含有量×100)が0.1〜100(原子%)である。ケイ素原子に対する金属原子の元素組成比(金属原子/ケイ素原子×100)が0.1原子%未満である場合には金属原子を含有することにより得られる湿熱耐性の効果が十分に得られなくなり、また、ケイ素化合物を所望のレベルまで改質するために膨大なエネルギーを必要とするためコスト面で不利であるため好ましくない。ケイ素原子に対する金属原子の元素組成比(金属原子/ケイ素原子×100)が100原子%を超える場合にはSi−O結合が少なくなり、ガスバリア性、および、密着性が劣化してしまうため好ましくない。これらの点からケイ素原子に対する金属原子の元素組成比(原子%)(金属原子/ケイ素原子×100)は0.5〜50原子%であることが好ましく、0.5〜20原子%であることがより好ましく、1〜10原子%付近であることがさらに好ましい。
また、本発明の好ましい一実施形態は、上記金属原子含有層において、金属原子がアルミニウム原子を含み、前記ケイ素原子に対するアルミニウム原子の元素組成比(原子%)(アルミニウム原子含有量/ケイ素原子含有量×100)が0.1〜100(原子%)である。かかる構成により、ガスバリア性フィルムのガスバリア性、湿熱耐性をより向上できる。前記ケイ素原子に対するアルミニウム原子の元素組成比(原子%)(アルミニウム原子含有量/ケイ素原子含有量×100)は0.5〜50(原子%)であることがより好ましく、0.5〜20(原子%)であることがさらに好ましく、1〜10(原子%)付近であることが特に好ましい。
金属原子含有層に存在するケイ素原子および金属原子の量(原子%)は、金属原子含有層の最表面(無機バリア層とは反対側)から厚み方向に、XPS表面分析装置を用いて原子組成比を測定することにより求めることができる。測定された金属原子の量をケイ素原子の量で割って100を乗じることによって、ケイ素原子に対する金属原子の元素組成比(原子%)(金属原子含有量/ケイ素原子含有量×100;単位:原子%)が得られる。なお、金属原子含有層が複数種類の金属原子を含む場合には、金属原子の量は全種類の金属原子の量の総和(原子%)から算出するものとする。
金属原子含有層におけるケイ素原子に対する金属原子の元素組成比(原子%)(金属原子含有量/ケイ素原子含有量×100)を上記範囲とする方法は特に制限されないが、例えば、塗布法により金属原子含有層を形成する場合にはケイ素化合物(例えばポリシラザン)溶液に適切な量の金属化合物を添加した塗布液から膜を形成する等の方法を用いればよい。
本発明において、金属原子含有層の形成方法は特に制限されない。一例を挙げると、前記金属原子含有層は前記金属原子を含む化合物および下記一般式(1):
上記一般式(1)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表わす、
で示される構造を有するケイ素化合物を用いて形成することができる。
より好ましくは、前記金属原子を含む化合物および前記一般式(1)で示される構造を有するケイ素化合物を含む塗布液を塗布した後、活性エネルギー線を照射することによって改質して得ることができる。すなわち、本発明のガスバリア性フィルムは、基材上に、無機バリア層を形成する工程と、前記無機バリア層上に、前記金属原子を含む化合物、前記一般式(1)で示される構造を有するケイ素化合物、および有機溶媒を含む塗布液を塗布して塗膜を形成した後、加熱された不活性ガス雰囲気において活性エネルギー線を照射することによって改質する工程と、を有する、ガスバリア性フィルムの製造方法により製造されうる。以下、上記好ましい形態について詳細に説明するが、本発明は下記形態に限定されない。
まず、前記金属原子を含む化合物(以下、「金属化合物」とも称する)および前記一般式(1)で示される構造を有するケイ素化合物(以下、「ケイ素化合物」とも称する)を含む塗布液を塗布し、塗膜を形成する。なお、塗膜は、無機バリア層上に、1層が単独で配置されても、または2層以上が積層されて配置されてもよい。
(金属化合物)
金属原子を含む化合物としては、上述した金属原子を含むものであれば特に制限されないが、金属原子、酸素原子及び炭素原子を有する化合物を用いることが好ましい。ここで、金属化合物は1種単独で用いても、または2種以上を混合して用いてもよい。
金属化合物が酸素(O)原子を含有すると、下記に詳述されるように、塗膜への活性エネルギー線照射による改質時にダングリングボンドが少なく、酸素組成比率の高いガスバリア層を形成することが可能である。ここで、金属化合物は、金属原子、酸素原子及び炭素原子を有するものであれば特に制限されない。具体的には、アルカリ金属のアルコキシド、下記一般式(2):
で示される構成単位を有する金属化合物などが挙げられる。上記金属化合物は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
アルカリ金属のアルコキシドとしては、特に制限されないが、炭素原子数1〜10のアルコキシ基がアルカリ金属に結合したものが好ましい。具体的には、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムイソプロポキシド、ナトリウムブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムプロポキシド、カリウムイソプロポキシド、カリウムブトキシドなどが挙げられる。
また、上記一般式(2)で示される構造単位を有する金属化合物が金属化合物として使用できる。上記一般式(2)において、Mは、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、クロム(Cr)、鉄(Fe)、マグネシウム(Mg)、スズ(Sn)、ニッケル(Ni)、パラジウム(Pd)、鉛(Pb)、マンガン(Mn)、リチウム(Li)、ゲルマニウム(Ge)、銅(Cu)、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、またはコバルト(Co)を表わす。ここで、nが2以上である(即ち、−[M(R]−が複数個存在する)場合では、各−[M(R]−単位中のMは、それぞれ、同じであってもまたは異なるものであってもよい。これらのうち、VUV光の透過性、ポリシラザンとの反応性などの観点から、Mは、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)が好ましく、アルミニウム(Al)、チタン(Ti)およびジルコニウム(Zr)がより好ましい。
また、Yは、単結合または酸素原子(−O−)を表わす。
、R及びRは、水素原子、ハロゲン原子、シアノ基(−CN)、ニトロ基(−NO)、メルカプト基(−SH)、エポキシ基(3員環のエーテルであるオキサシクロプロピル基)、水酸基(−OH)、炭素原子数1〜10の置換若しくは非置換のアルキル基、炭素原子数3〜10の置換若しくは非置換のシクロアルキル基、炭素原子数2〜10の置換若しくは非置換のアルケニル基、炭素原子数2〜10の置換若しくは非置換のアルキニル基、炭素原子数1〜10の置換若しくは非置換のアルコキシ基、アセトアセテート基(−O−C(CH)=CH−C(=O)−CH)、炭素原子数4〜25の置換若しくは非置換の(アルキル)アセトアセテート基、炭素原子数6〜30の置換若しくは非置換のアリール基、置換若しくは非置換の複素環基またはアミノ基(−NH)を表わす。ここで、R、R及びRは、それぞれ、同じであってもまたは異なるものであってもよい。また、nが2以上である(即ち、−[M(R]−が複数個存在する)場合では、各−[M(R]−単位中のRは、それぞれ、同じであってもまたは異なるものであってもよい。
ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子またはヨウ素原子のいずれでもよい。
炭素原子数1〜10のアルキル基としては、特に制限されないが、炭素原子数1〜10の直鎖または分岐鎖のアルキル基である。例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基及び2−エチルヘキシル基などが挙げられる。これらのうち、VUV光の透過性、膜の緻密性などの観点から、炭素原子数1〜6の直鎖または分岐鎖のアルキル基が好ましく、炭素原子数1〜5の直鎖または分岐鎖のアルキル基がより好ましい。
炭素原子数3〜10のシクロアルキル基としては、特に制限されないが、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基などが挙げられる。
炭素原子数2〜10のアルケニル基としては、特に制限されないが、炭素原子数2〜10の直鎖または分岐鎖のアルケニル基である。例えば、ビニル基、アリル基、1−プロペニル基、イソプロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、1−ヘプテニル基、2−ヘプテニル基、5−ヘプテニル基、1−オクテニル基、3−オクテニル基、5−オクテニル基などが挙げられる。
炭素原子数2〜10のアルキニル基としては、特に制限されないが、炭素原子数2〜10の直鎖もしくは分岐状のアルキニル基である。例えば、アセチレニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、2−ブチニル基、3−ブチニル基、1−ペンテチル基、2−ペンテチル基、3−ペンテチル基、1−ヘキシニル基、2−ヘキシニル基、3−ヘキシニル基、1−ヘプチニル基、2−ヘプチニル基、5−ヘプチニル基、1−オクチニル基、3−オクチニル基、5−オクチニル基などが挙げられる。
炭素原子数1〜10のアルコキシ基としては、特に制限されないが、炭素原子数1〜10の直鎖もしくは分岐状のアルコキシ基である。例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2−エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基などが挙げられる。これらのうち、VUV光の透過性、ポリシラザンとの反応性、膜の緻密性などの観点から、炭素原子数1〜8の直鎖または分岐鎖のアルコキシ基が好ましく、炭素原子数1〜5の直鎖または分岐鎖のアルコキシ基が好ましい。
炭素原子数4〜25の(アルキル)アセトアセテート基としては、特に制限されないが、水素原子または炭素原子数1〜6の直鎖または分岐鎖のアルキル基がアセトアセテート基に結合した基を表わす。例えば、アセトアセテート基(−O−C(CH)=CH−C(=O)−OH)、メチルアセトアセテート基(−O−C(CH)=CH−C(=O)−C−O−CH)、エチルアセトアセテート基(−O−C(CH)=CHC(=O)−C−O−C)、プロピルアセトアセテート基、イソプロピルアセトアセテート基、オクタデシルアセトアセテート基などが挙げられる。これらのうち、VUV光の透過性、膜の緻密性などの観点から、エチルアセトアセテート基、メチルアセトアセテート基、アセトアセテート基が好ましい。
炭素原子数6〜30のアリール基としては、特に制限されないが、例えば、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、アンスリル基、ピレニル基、アズレニル基、アセナフチレニル基、ターフェニル基、フェナンスリル基などが挙げられる。
複素環基としては、特に制限されないが、チオフェン環、ジチエノチオフェン環、シクロペンタジチオフェン環、フェニルチオフェン環、ジフェニルチオフェン環、イミダゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、ピロール環、フラン環、ベンゾフラン環、イソベンゾフラン環、クマリン環(例えば、3,4−ジヒドロクマリン)、ベンズイミダゾール環、ベンズオキサゾール環、ローダニン環、ピラゾロン環、イミダゾロン環、ピラン環、ピリジン環、ピラジン環、ピラゾール環、ピリミジン環、ピリダジン環、トリアジン環、フルオレン環、ベンゾチオフェン環、ベンゾ(c)チオフェン環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾイソキサゾール環、ベンゾチアゾール環、インドール環、フタラジン環、シナノリン環、キナゾリン環、カルバゾール環、カルボリン環、ジアザカルボリン環(カルボリンの任意の炭素原子の一つが窒素原子で置き換わったもの)、1,10−フェナントロリン環、キノン環、ローダニン環、ジローダニン環、チオヒダントイン環、ピラゾロン環、ピラゾリン環から導かれる基などが挙げられる。
また、上記R、R及びRに場合によって存在する置換基は、特に限定されない。具体的には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素原子数1〜24の直鎖もしくは分岐状のアルキル基、炭素原子数3〜24のシクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基)、炭素原子数1〜24のヒドロキシアルキル基(例えば、ヒドロキシメチル基、ヒドロキシエチル基)、炭素原子数2〜24のアルコキシアルキル基(例えば、メトキシエチル基等)、炭素原子数1〜24のアルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2−エチルヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、炭素原子数3〜24のシクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基)アルケニル基、アルキニル基、アミノ基、アリール基、炭素原子数6〜24のアリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基)、炭素原子数1〜24のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基)、炭素原子数3〜24のシクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基)、炭素原子数6〜24のアリールチオ基(例えば、フェニルチオ基、ナフチルチオ基)、炭素原子数1〜24のアルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基)、炭素原子数7〜24のアリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基)、水酸基(−OH)、カルボキシル基(−COOH)、チオール基(−SH)、シアノ基(−CN)等が挙げられる。なお、アルキル基、アルケニル基、アルキニル基、アミノ基、アリール基は上記と同様の定義であるため、ここでは説明を省略する。また、置換基の数は特に制限はなく、所望の効果(VUV光の透過性、溶解性、ポリシラザンとの反応性など)を考慮して適宜選択されうる。上記において、同一の置換基で置換されることはない。すなわち、置換のアルキル基は、アルキル基で置換されることはない。
これらのうち、R、R及びRの少なくとも1つは、水酸基、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基を表わすことが好ましい。アルコキシ基またはヒドロキシル基を含有する化合物は、VUV光によりアルコキシ基部分またはヒドロキシル基部分の結合が開裂しやすく、開裂したアルコキシ基部分またはヒドロキシル基部分は速やかにポリシラザンと反応するため、転化反応への反応促進効果が大きい。また、アルキル基を含有する化合物は、可撓性を付与した膜の形成が可能である。また、R、R及びRの少なくとも1つは、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基または炭素原子数4〜25の(アルキル)アセトアセテート基を表わすことがより好ましく、炭素原子数1〜10のアルキル基または炭素原子数1〜10のアルコキシ基を表わすことがさらにより好ましく、炭素原子数1〜10のアルコキシ基を表わすことが特に好ましい。
上記一般式(2)において、m1およびm2は、1以上の整数であり、m1+m2は、Mによって規定される整数であり、Mの結合手の数によって一義的に規定される。ここで、m1およびm2は、同じ整数であってもあるいは異なる整数であってもよい。nは、1以上の整数であり、VUV光の透過性、膜の緻密性などの観点から、1〜10の整数であることが好ましく、1〜4であることがより好ましい。
上記一般式(2)で示される金属化合物としては、アルミニウムイソポロポキシド、アルミニウム−sec−ブチレート、チタンイソプロポキシド、アルミニウムトリエチレート、アルミニウムトリイソプロピレート、アルミニウムトリtert−ブチレート、アルミニウムトリn−ブチレート、アルミニウムトリsec−ブチレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アセトアルコキシアルミニウムジイソプロピレート、カルシウムイソプロピレート、チタンテトライソプロポキシド(チタン(IV)イソプロピレート)、ジルコニウムテトラアセチルアセトネート、アルミニウムジイソプロピレートモノアルミニウムtブチレート、アルミニウムトリスエチルアセトアセテート、アルミニウムオキシドイソプロポキサイドトリマー、ジルコニウム(IV)イソプロピレート、トリス(2,4−ペンタンジオナト)チタニウム(V)、テトラキス(2,4−ペンタンジオナト)ジルコニウム(IV)、トリス(2,4−ペンタンジオナト)コバルト(III)、トリス(2,4−ペンタンジオナト)鉄(III)、ビス(2,4−ペンタジオナト)パラジウム(II)、トリス(2,4−ペンタンジオナト)イリジウム(III)、トリス(2,4−ペンタンジオナト)アルミニウム(III)、ビス(2,4−ペンタンジオナト)ニッケル(II)、ビス(2,4−ペンタンジオナト)銅(II)、ビス(2,4−ペンタンジオナト)亜鉛(II)、トリス(2,4−ペンタンジオナト)マンガン(III)、トリス(2,4−ペンタンジオナト)クロム(III)、トリス(2,4−ペンタンジオナト)インジウム(III)、トリス(2,4−ペンタンジオナト)カルシウム(III)、マグネシウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、トリメチルガリウム、ジ−n−ブチルジメトキシ錫、テトラエチル鉛、マンガン(III)アセチルアセトナート、ジエチルジエトキシゲルマンなどが挙げられる。
これらのうち、VUV光の透過性などの観点から、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムsec−ブチレート、チタンイソプロポキシド、チタンテトライソプロポキシド(チタン(IV)イソプロピレート)が好ましく、アルミニウムエチルアセトアセテート・ジイソプロピレート、チタンテトライソプロポキシド(チタン(IV)イソプロピレート)がより好ましい。
上記金属化合物は、合成してもまたは市販品を使用してもよい。
(ケイ素化合物)
上記一般式(1)のケイ素化合物は、構造内に珪素−窒素(Si−N)結合を有するポリマーであり、Si−N、Si−H、N−H等の結合を有するSiO、Si及びこれらの中間固溶体SiO等のセラミック前駆体無機ポリマーである。なお、本明細書では、一般式(1)のケイ素化合物を「ポリシラザン」とも称する。ここで、当該塗膜は、下記一般式(1)で示される構造を有するケイ素化合物を1種単独で含んでも、または2種以上の式(1)のケイ素化合物を含んでもよい。
上記一般式(1)において、R、R及びRは、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表す。この際、R、R及びRは、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1〜8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6〜30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1〜8のアルコキシ基で置換されたシリル基を有する炭素原子数1〜8のアルキル基が挙げられる。より具体的には、3−(トリエトキシシリル)プロピル基、3−(トリメトキシシリル)プロピル基などが挙げられる。上記R〜Rに場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(−OH)、メルカプト基(−SH)、シアノ基(−CN)、スルホ基(−SOH)、カルボキシル基(−COOH)、ニトロ基(−NO)などがある。なお、場合によって存在する置換基は、置換するR〜Rと同じとなることはない。例えば、R〜Rがアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R、R及びRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、フェニル基、ビニル基、3−(トリエトキシシリル)プロピル基または3−(トリメトキシシリルプロピル)基である。R、R及びRすべてが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。このようなポリシラザンから形成されるガスバリア層(ガスバリア膜)は高い緻密性を示す。
また、上記一般式(1)において、nは、式:−[Si(R)(R)−N(R)]−の構成単位の数を表わす整数であり、一般式(1)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。
ガスバリア層の膜としての緻密性の観点からは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。パーヒドロポリシラザンは、直鎖構造と6員環および8員環を中心とする環構造が存在した構造と推定されており、その分子量は、数平均分子量(Mn)で約600〜2000程度(ゲルパーミエーションクロマトグラフィによるポリスチレン換算)であり、液体または固体の物質である。ポリシラザンは、有機溶媒に溶解した溶液の状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のアクアミカ(登録商標) NN120−10、NN120−20、NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL120−20、NL150A、NP110、NP140、SP140等が挙げられる。
本発明に係るケイ素化合物は、式:−[Si(R)(R)−N(R)]−の構成単位に加えて、他の構成単位を含んでもよい。このようなケイ素化合物は、特に制限されないが、例えば、下記一般式(4)または(5)で示される構造を有するケイ素化合物が好ましく使用される。
上記一般式(4)において、R、R、R、R、R及びRは、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、R、R、R、R及びRは、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(1)の定義と同様であるため、説明を省略する。
また、上記一般式(4)において、nおよびpは、整数であり、一般式(4)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、nおよびpは、同じであってもあるいは異なるものであってもよい。
上記一般式(4)のポリシラザンのうち、R、R及びRが各々水素原子を表し、R、R及びRが各々メチル基を表す化合物;R、R及びRが各々水素原子を表し、R、Rが各々メチル基を表し、Rがビニル基を表す化合物;R、R、R及びRが各々水素原子を表し、R及びRが各々メチル基を表す化合物が好ましい。
上記一般式(5)において、R1、R、R、R、R、R、R、R及びRは、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、R、R、R、R、R、R、R及びRは、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(1)の定義と同様であるため、説明を省略する。
また、上記一般式(5)において、n、pおよびqは、整数であり、一般式(5)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n、pおよびqは、同じであってもあるいは異なるものであってもよい。
上記一般式(5)のポリシラザンのうち、R、R及びRが各々水素原子を表し、R、R、R及びRが各々メチル基を表し、Rが(トリエトキシシリル)プロピル基を表し、Rがアルキル基または水素原子を表す化合物が好ましい。
ここで、Siと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。
本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。
(塗膜の形成方法)
塗膜の形成方法は特に制限されず、いずれの方法によって形成されてもよいが、金属化合物およびケイ素化合物を含有する塗布液を湿式塗布することにより作製されることが好ましい。ここで、塗布方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ワイヤレスバーコート法、グラビア印刷法等が挙げられる。
また、上記したように、塗膜は、2層以上の積層体であってもよい。ここで、塗膜が2層以上の積層体である場合の塗膜の形成方法としては、特に制限されず、逐次重層塗布方式であってもまたは同時重層塗布方式であってもよい。各層の塗布、乾燥を繰り返す逐次重層塗布方式としては、リバースロールコーティング、グラビアロールコーティング等のロール塗布方式、ブレードコーティング、ワイヤーバーコーティング、ダイコーティング等が挙げられる。また、同時重層塗布方式としては、複数のコーターを用いて既塗布層の乾燥前に次の層を塗布して複数層を同時に乾燥させたり、スライドコーティングやカーテンコーティングを用いて、スライド面で複数の塗布液を積層させて塗布したりする方式がある。
また、塗布液は、金属化合物、ケイ素化合物及び必要であれば触媒を、溶媒に溶解して調製できる。ここで、塗布液を調製するための溶媒としては、金属化合物およびケイ素化合物(ポリシラザン)を溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水及び反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、金属化合物およびポリシラザンに対して不活性の有機溶媒が好ましく、非プロトン性の有機溶媒がより好ましい。具体的には、金属原子含有層に含有される有機溶媒として上記で例示した非プロトン性の有機溶媒が同様に好ましく用いられる。当該溶媒は、ポリシラザンおよび金属化合物の溶解度や溶媒の蒸発速度等の目的にあわせて選択され、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。また、上記溶媒は、使用する前にあらかじめ酸素濃度や水分含量を低減させておくことが好ましい。溶媒中の酸素濃度や水分含量を低減する手段は特に限定されず、従来公知の手法が適用されうる。
塗布液における一般式(1)のケイ素化合物(ポリシラザン)の濃度は、特に制限されず、ガスバリア層の膜厚や塗布液のポットライフによっても異なるが、好ましくは0.2〜80質量%、より好ましくは1〜50質量%、特に好ましくは1.5〜35質量%である。
塗布液における金属化合物の使用量は、特に制限されず、所望のケイ素原子に対する金属原子の元素組成比(原子%)(金属原子含有量/ケイ素原子含有量×100)となるように選択すればよいが、ケイ素化合物の固形分質量に対して、0.01〜10倍の質量であることが好ましく、0.06〜6倍の質量であることがより好ましい。
上記塗布液は、酸窒化珪素への変性を促進するために、ケイ素化合物(ポリシラザン)とともに触媒を含有させてもよい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、N,N,N’,N’−テトラメチル−1,6−ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N−複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンを基準としたとき、好ましくは0.1〜10質量%、より好ましくは0.5〜5質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、および膜密度の低下、膜欠陥の増大のなどを避けることができる。
また、上記塗布液に、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。
このような塗布液を用いることにより、亀裂及び孔が無い、ガスに対する高いバリア作用に優れる塗膜を製造することができる。
塗膜の厚さ(塗布厚さ)は、特に制限されず、所望のガスバリア層の厚さ(乾燥膜厚)に応じて適切に設定され得る。例えば、塗膜の厚さ(塗布厚さ)は、乾燥後の厚さ(乾燥膜厚)として、1nm〜100μm程度であることが好ましく、5nm〜10μm程度であることがより好ましく、10nm〜1μmであることがさらにより好ましく、30〜500nmであることが特に好ましい。なお、金属原子含有層の塗膜が積層される場合には、塗膜全体(金属原子含有層全体)の厚さが上記したような厚さになることが好ましい。塗膜(金属原子含有層)の厚さ(乾燥膜厚)は、例えば、透過型電子顕微鏡により測定することができる。
上記塗布後は、塗布膜を乾燥することによって、塗膜が形成される。具体的には、乾燥温度は、好ましくは50〜150℃であり、より好ましくは80〜100℃である。乾燥時間は、好ましくは0.5〜60分であり、より好ましくは1〜10分である。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。
(塗膜の改質処理)
次に、塗膜に活性エネルギー線を照射することが好ましい。塗膜に活性エネルギー線(例えば、真空紫外光)を照射することにより、塗膜が改質される。本発明における塗膜層の改質処理とは、上記で得られた塗膜に含まれるケイ素化合物(ポリシラザン)の一部または全部が、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等へ転化する反応を指し、具体的には本発明のガスバリア性フィルムが全体としてガスバリア性を発現するに貢献できるレベルの無機薄膜を形成する反応を指す。
活性エネルギー線、特に真空紫外光(真空紫外線と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸化窒化珪素膜を形成することが可能である。これにより、ガスバリア層(ゆえにガスバリア性フィルム)の屈曲耐性及び湿熱耐性をさらに向上できる。ここで、活性エネルギー線照射は、1回のみ行ってもあるいは2回以上繰り返して行ってもよい。
ここで、活性エネルギー線としては、特に制限されないが、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線などが挙げられる。これらのうち、紫外線が好ましく、紫外線、特に真空紫外線(VUV)がより好ましい。このVUV照射により、セラミック化(シリカ転化)に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミック化が促進され、また得られるセラミックス膜が一層緻密になる。
また、改質処理前の塗膜層には、金属原子が含まれているため、膜厚方向に改質が均一に行われる。したがって、高温高湿条件下で保存した後でも、クラックの発生がほとんどなく、層間密着力や屈曲耐性に優れ、ガスバリア性がほとんど劣化しないガスバリア性フィルムとなる。
本発明では、真空紫外光(VUV)の照射を行うことが好ましいが、上記真空紫外光(VUV)に加えて、別の波長の紫外線、例えば、210〜350nmの紫外線をさらに照射してもよい。
本明細書において、「真空紫外光(VUV)」とは、10〜200nmの波長を有する電磁波をいい、好ましくは100〜200nmの波長を有する電磁波をいう。
真空紫外線の照射は、照射される塗膜層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。
基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20〜300mW/cm、好ましくは50〜200mW/cmになるように基材−紫外線照射ランプ間の距離を設定し、0.1秒〜10分間の照射を行うことができる。
一般に、真空紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムの場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はない。
真空紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、塗膜層を表面に有する積層体を上記のような真空紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、塗膜層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材やガスバリア層の組成、濃度にもよるが、一般に0.1秒〜10分であり、好ましくは0.5秒〜3分である。
真空紫外線照射による改質処理では、ポリシラザン化合物内の原子間結合力より大きい、好ましくは100〜200nm、より好ましくは100〜180nmの波長の光エネルギーを用い、光量子プロセスと呼ばれる光子のみの作用により、原子の結合を直接切断しながら活性酸素やオゾンによる酸化反応を進行させる。これにより、比較的低温(約200℃以下)で、無機薄膜の形成を行うことができる。
このような真空紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等が挙げられるが、特に限定されない。また、発生させた真空紫外線を改質前のポリシラザン塗膜層に照射する際には、効率向上と均一な照射とを達成する観点から、発生源からの真空紫外線を反射板で反射させてから改質前のポリシラザン塗膜層に当てることが望ましい。本発明においての真空紫外線源は、希ガスエキシマランプが好ましく用いられる。
なお、Xe、Kr、Ar、Ne等の希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
e+Xe→e+Xe
Xe+Xe+Xe→Xe +Xe
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光(真空紫外光)を発光する。
エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。
エキシマ発光を得るには、誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる雷に似た非常に細いmicro dischargeと呼ばれる放電である。
また、効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外には無電極電界放電も知られている。無電極電界放電とは、容量性結合による放電であり、別名RF放電とも呼ばれる。ランプと電極およびその配置は、基本的には誘電体バリア放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られる。
そして、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン膜の改質を実現できる。したがって、波長185nm、254nmの光を発する低圧水銀ランプやプラズマ洗浄と比べて高スループットで改質処理を行うことができ、プロセス時間の短縮や設備面積の縮小を可能としている。
また、エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を有する。このため、熱の影響を受けやすいとされるポリエチレンテレフタレート等の、熱によるダメージを受けやすい有機材料やプラスチック基板、樹脂フィルム等を基材とするガスバリア性フィルムへの照射に適している。
真空紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素により吸収されるため、酸素を含む雰囲気下では紫外線照射工程での効率が低下しやすい。そのため、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、300〜10,000体積ppm(1体積%)とすることが好ましく、500〜5,000体積ppmとすることがより好ましい。また、転化プロセスの間の水蒸気濃度は、好ましくは1000〜4000体積ppmの範囲である。
真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては(乾燥)不活性ガスが好ましく、具体的には、窒素ガス、アルゴンガス、ヘリウムガス等が挙げられ、特にコストの観点から(乾燥)窒素ガスが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
真空紫外線照射において、塗膜層の最外層が受ける塗膜面での該真空紫外線の照度は1mW/cm〜10W/cmであると好ましく、30mW/cm〜200mW/cmであることがより好ましく、50mW/cm〜160mW/cmであるとさらに好ましい。1mW/cm未満では、改質効率が大きく低下する懸念があり、10W/cmを超えると、塗膜にアブレーションが生じたり、基材にダメージを与えたりする懸念が出てくる。
塗膜層の最外層面における真空紫外線の照射エネルギー量(照射量、積算光量)は、10〜20000mJ/cmであることが好ましく、20〜10000mJ/cmであることがより好ましく、100〜8000mJ/cmであることがさらに好ましい。照射エネルギー量が10mJ/cm未満では、改質が不十分となる懸念があり、20000mJ/cmを超えると過剰改質によるクラック発生や、基材の熱変形の懸念が出てくる。
また、真空紫外線照射と同時に塗膜層を加熱することも、改質処理を促進するために好ましく用いられる。当該改質処理とともに加熱を行い、かつその際の加熱条件を調整することで、金属原子含有層中に残留する有機溶媒量を所望の範囲に制御することができる。
加熱の方法は、照射雰囲気を満たすガスとして加熱された不活性ガスを用いる(すなわち照射雰囲気に加熱された不活性ガスを導入する方法)、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜層を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターのような赤外領域の光を用いた方法等が挙げられるが、特に制限されず、塗膜層の平滑性を維持できる範囲で、適宜選択されうる。真空紫外線の照射条件は、適用する基材によっても異なり、当業者により適宜決定されうる。
特に、本発明においては、改質処理の際、活性エネルギー線の照射雰囲気に加熱されたガスが導入されることにより活性エネルギー線の照射と同時に塗膜が加熱される、すなわち、活性エネルギー線(例えば真空紫外線)の照射雰囲気は加熱された不活性ガス雰囲気であることが好ましい。すなわち、本発明の一形態に係るガスバリア性フィルムの製造方法は、基材上に無機バリア層を形成する工程と、前記無機バリア層上に、上記金属原子を含む化合物(金属化合物)、上記一般式(1)で示される構造を有するケイ素化合物、および有機溶媒を含む塗布液を塗布して塗膜を形成した後、加熱された不活性ガス雰囲気において活性エネルギー線を照射することによって改質する工程と、を有する。上述したように、ステージ加熱処理は塗布膜(金属原子含有層)上面から溶媒が揮発するには不十分であり、また、改質膜が表面に形成された後は溶媒の揮発が抑制されるため、本発明所望の有機溶媒量が残存した金属原子含有層を得ることは難しい。また、従来は室温の不活性ガス雰囲気下でケイ素化合物(例えばポリシラザン)の塗膜の改質処理が行われることが一般的であり、このような室温の不活性ガスを用いた場合には、塗膜内に多量の有機溶媒が残留してしまう。本発明では、高温の不活性ガスを用いることにより金属原子含有層内の有機溶媒量を容易に本発明所望の範囲とすることができることを見出したのである。これにより、ガスバリア性に加えて、湿熱耐性、特に高温高湿条件下でのガスバリア性(保存安定性)、および密着性、および高温条件下でのクラック耐性に優れるガスバリア性フィルムが得られる。
不活性ガスの温度(加熱温度)は塗膜内の溶媒量、改質処理の時間(暴露時間)、不活性ガスの流量や吹き付け方、有機溶媒の種類(沸点)等によっても異なるが、例えば、金属原子含有層内の有機溶媒量を十分に低減させる観点から、50℃以上であることが好ましく、70℃以上であることがより好ましく、80℃以上であることがさらに好ましい。一方、不活性ガスの温度が高すぎると金属原子含有層内に有機溶媒が残存することなく全て揮発してしまう。本発明では、金属原子含有層内に微量の有機溶媒が存在することによりガスバリア層のクラック発生を抑制する効果を奏することができる。したがって、金属原子含有層内に微量の有機溶媒を残存させるべく、不活性ガスの温度は200℃以下が好ましく、150℃以下がより好ましく、120℃以下がさらに好ましい。
不活性ガスへの暴露時間(加熱時間;改質処理時間)は、加熱温度によって適宜設定されるが、例えば、80〜150℃の加熱温度の場合には、30秒〜50分が好ましく、1分〜30分の範囲がより好ましい。かかる条件の場合には、金属原子含有層中に微量の有機溶媒を残存させることができる。
また、改質に用いられる真空紫外光は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。
次に、好適な形態であるポリシラザンがパーヒドロポリシラザンである場合に、真空紫外線照射でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構について、以下に説明する。
(I)脱水素、それに伴うSi−N結合の形成
パーヒドロポリシラザン中のSi−H結合やN−H結合は真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi−Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなくSiN組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si−H結合やN−H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはHとして膜外に放出される。
(II)加水分解・脱水縮合によるSi−O−Si結合の形成
パーヒドロポリシラザン中のSi−N結合は水により加水分解され、ポリマー主鎖が切断されてSi−OHを形成する。二つのSi−OHが脱水縮合してSi−O−Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって基材からアウトガスとして生じる水蒸気が主な水分源となると考えられる。水分が過剰となると脱水縮合しきれないSi−OHが残存し、SiO2.1〜SiO2.3の組成で示されるガスバリア性の低い硬化膜となる。
(III)一重項酸素による直接酸化、Si−O−Si結合の形成
真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNはOと置き換わってSi−O−Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
(IV)真空紫外線照射・励起によるSi−N結合切断を伴う酸化
真空紫外線のエネルギーはパーヒドロポリシラザン中のSi−Nの結合エネルギーよりも高いため、Si−N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると酸化されてSi−O−Si結合やSi−O−N結合が生じると考えられる。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
ポリシラザンを含有する塗膜層に真空紫外線照射を施した金属原子含有層の酸窒化ケイ素の組成の調整は、上述の(I)〜(IV)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。
ここで、ポリシラザンにおける場合、シリカ転化(改質処理)では、Si−H、N−H結合の切断と、Si−O結合の生成が起こり、シリカ等のセラミックスに転化するが、この転化の度合いはIR測定によって、以下に定義する式により、SiO/SiN比で半定量的に評価することができる。
ここで、SiO吸光度は約1160cm−1、SiN吸光度は約840cm−1での吸収(吸光度)により算出する。SiO/SiN比が大きいほど、シリカ組成に近いセラミックスへの転化が進んでいることを示す。
ここで、セラミックスへの転化度合いの指標となるSiO/SiN比は0.3以上が好ましく、0.5以上がより好ましい。0.3未満では、期待するガスバリア性が得られないことがある。また、シリカ転化率(SiOにおけるx)の測定方法としては、例えば、XPS法を用いて測定することができる。
ガスバリア層における化学組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、ガスバリア層を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。
ガスバリア層における化学組成は、ガスバリア層を形成する際に用いるポリシラザン、添加化合物等の種類および量、ならびに塗膜層を改質する際の条件等により、制御することができる。
(その他の形成方法)
金属原子含有層の形成方法として上記では金属化合物およびケイ素化合物を含む液を塗布して形成する方法(塗布法)について説明したが、本発明に係る金属原子含有層の形成方法は塗布法に限定されるわけではない。例えば、物理気相成長法(PVD法)、化学気相成長法(CVD法)などの真空成膜法を用いてもよい。具体的な方法は、無機バリア層の形成方法の欄で説明した方法と同様の方法を用いればよい。なお、物理気相成長法(PVD法)、化学気相成長法(CVD法)などの真空成膜法を用いる場合、例えば、金属原子含有層を成膜した後に特定量の有機溶媒を塗布する方法(スプレーコート、デ ィップコート等)、または、有機溶媒雰囲気下に任意の時間放置する方法によって金属原子含有層中に有機溶媒を含有させることができ、有機溶媒の塗布量や有機溶媒雰囲気下に放置する時間や有機溶媒雰囲気中の有機溶媒の濃度等を調整することによって、金属原子含有層中に有機溶媒量を制御することができる。
本発明に係るガスバリア性フィルム(ガスバリア層)は、湿熱耐性(高温高湿条件下でのガスバリア性(保存安定性)および密着性)ならびに高温条件下でのクラック耐性に優れる。具体的には、ガスバリア層(ガスバリア性フィルム)は、5×10−4g/m/day以下の水蒸気透過度(WVTR)という優れたガスバリア性を示す。このため、本発明のガスバリア性フィルムは、太陽電池(PV)や量子ドット(QD)などに好適に使用できる。加えて、本発明の方法によって製造されるガスバリア性フィルムは、透明性、屈曲性、密着性にも優れる。
また、本発明のガスバリア性フィルムは、基材、無機バリア層および金属原子含有層を必須に有するが、他の部材をさらに含むものであってもよい。本発明のガスバリア性フィルムは、例えば、基材と、無機バリア層との間に;無機バリア層と金属原子含有層との間に;または無機バリア層および金属原子含有層が形成されていない基材の他方の面に、他の部材を有していてもよい。ここで、他の部材としては、特に制限されず、従来のガスバリア性フィルムに使用される部材が同様にしてあるいは適宜修飾して使用できる。具体的には、下地層(平滑層、プライマー層)、アンカーコート層(アンカー層)、ブリードアウト防止層、ならびに保護層、吸湿層や帯電防止層の機能化層などが挙げられる。
[下地層(平滑層、プライマー層)]
本発明のガスバリア性フィルムは、基材のガスバリア層を有する面、好ましくは基材とガスバリア層との間に下地層(平滑層、プライマー層)を有していてもよい。下地層は突起等が存在する基材の粗面を平坦化するために、あるいは、基材に存在する突起により、ガスバリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような下地層は、いずれの材料で形成されてもよいが、炭素含有ポリマーを含むことが好ましく、炭素含有ポリマーから構成されることがより好ましい。すなわち、本発明のガスバリア性フィルムは、基材とガスバリア層との間に、炭素含有ポリマーを含む下地層をさらに有することが好ましい。
また、下地層は、炭素含有ポリマー、好ましくは硬化性樹脂を含む。前記硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でもまたは2種以上組み合わせて用いてもよい。
下地層の形成に用いられる活性エネルギー線硬化性材料としては、例えば、アクリレート化合物を含有する組成物、アクリレート化合物とチオール基を含有するメルカプト化合物とを含有する組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを含有する組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)を用いることができる。また、上記のような組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している活性エネルギー線硬化性材料であれば特に制限はない。
光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレート、n−デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2−エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサジオールジアクリレート、1,3−プロパンジオールアクリレート、1,4−シクロヘキサンジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピレンオキサイド変性ペンタエリスリトールトリアクリレート、プロピレンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4−ブタンジオールトリアクリレート、2,2,4−トリメチル−1,3−ペンタジオールジアクリレート、ジアリルフマレート、1,10−デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、および、上記のアクリレートをメタクリレートに換えたもの、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいはその他の化合物との混合物として使用することができる。
活性エネルギー線硬化性材料を含む組成物は、光重合開始剤を含有することが好ましい。
光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノ・アセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−tert−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。
熱硬化性材料としては、具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V−8000シリーズ、EPICLON(登録商標) EXA−4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製のシリコン樹脂 X−12−2400(商品名)、日東紡績株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ポリアミドアミン−エピクロルヒドリン樹脂等が挙げられる。
下地層の形成方法は、特に制限はないが、硬化性材料を含む塗布液をスピンコーティング法、スプレー法、ブレードコーティング法、ワイヤーバーコーティング法、ディップ法、グラビア印刷法等のウエットコーティング法、または蒸着法等のドライコーティング法により塗布し塗膜を形成した後、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線等の活性エネルギー線の照射および/または加熱により、前記塗膜を硬化させて形成する方法が好ましい。活性エネルギー線を照射する方法としては、例えば超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等を用い好ましくは100〜400nm、より好ましくは200〜400nmの波長領域の紫外線を照射する、または、走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射する方法が挙げられる。
硬化性材料を溶媒に溶解または分散させた塗布液を用いて下地層を形成する際に使用する溶媒としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、α−もしくはβ−テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3−エトキシプロピオン酸エチル、安息香酸メチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等を挙げることができる。
下地層は、上述の材料に加えて、必要に応じて、熱可塑性樹脂や酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を含有することができる。また、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂、アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
下地層の平滑性は、JIS B 0601:2001年で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。
表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
下地層の厚さとしては、特に制限されないが、0.1〜10μmの範囲が好ましい。
[アンカーコート層(アンカー層)]
本発明に係る基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層(アンカー層)を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1種または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化型ポリマー溶液(信越化学工業株式会社製、「X−12−2400」の3%イソプロピルアルコール溶液)を用いることができる。
これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶媒、希釈剤等を乾燥除去することによりコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1〜5g/m(乾燥状態)程度が好ましい。なお、市販の易接着層付き基材を用いてもよい。
または、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008−142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。
また、アンカーコート層の厚さは、特に制限されないが、0.5〜10.0μm程度が好ましい。
[ブリードアウト防止層]
本発明のガスバリア性フィルムは、ブリードアウト防止層をさらに有することができる。ブリードアウト防止層は、下地層を有するフィルムを加熱した際に、フィルム基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、下地(平滑)層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に下地(平滑)層と同じ構成をとっても構わない。
ブリードアウト防止層に含ませることが可能な化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等のハードコート剤を挙げることができる。
ここで、多価不飽和有機化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
また、単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2−メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
その他の添加剤として、マット剤を含有してもよい。マット剤としては、平均粒子径が0.1〜5μm程度の無機粒子が好ましい。
このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種または2種以上を併せて使用することができる。
ここで、無機粒子からなるマット剤は、ハードコート剤の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが望ましい。
また、ブリードアウト防止層には、ハードコート剤およびマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。
このような熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
また、熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。
また、電離放射線硬化性樹脂としては、光重合性プレポリマーもしくは光重合性モノマー等の1種または2種以上を混合した電離放射線硬化塗料に、電離放射線(紫外線または電子線)を照射することで硬化するものを使用することができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記に記載した多価不飽和有機化合物等が使用できる。
また、光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−(4−モルフォリニル)−1−プロパン、α−アシロキシムエステル、チオキサンソン類等が挙げられる。
以上のようなブリードアウト防止層は、ハードコート剤、および必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶媒によって塗布液として調製し、塗布液を基材フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100〜400nm、好ましくは200〜400nmの波長領域の紫外線を照射する、または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
ブリードアウト防止層の厚さとしては、1〜10μm、好ましくは2〜7μmであることが望ましい。1μm以上にすることにより、フィルムとしての耐熱性を十分なものにし易くなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、下地層を透明高分子フィルムの一方の面に設けた場合におけるバリアフィルムのカールを抑え易くすることができるようになる。
本発明のガスバリア性フィルムは上述したもののほか、特開2006−289627号公報の段落番号「0036」〜「0038」に記載されているものを好ましく採用できる。
<電子デバイス>
本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく用いることができる。したがって、本発明は、電子デバイス本体と本発明に係るガスバリア性フィルムまたは本発明に係る製造方法により製造されたガスバリア性フィルムとを含む、電子デバイスを提供する。
前記デバイスの例としては、例えば、有機EL素子、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等の電子デバイスを挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子または太陽電池に好ましく用いられ、有機EL素子に特に好ましく用いられる。
本発明のガスバリア性フィルムは、また、デバイスの膜封止に用いることができる。具体的には、デバイス自体を支持体として、その表面に本発明のガスバリア性フィルムを設ける。なお、ガスバリア性フィルムを設ける前にデバイスを保護層で覆ってもよい。
本発明のガスバリア性フィルムは、デバイスの基板や固体封止法による封止のためのフィルムとしても用いることができる。固体封止法とはデバイスの上に保護層を形成した後、接着剤層、ガスバリア性フィルムを重ねて硬化する方法である。接着剤は特に制限はないが、熱硬化性エポキシ樹脂、光硬化性アクリレート樹脂等が例示される。
(有機EL素子)
ガスバリア性フィルムを用いた有機EL素子の例は、特開2007−30387号公報に詳しく記載されている。
(液晶表示素子)
反射型液晶表示装置は、下から順に、下基板、反射電極、下配向膜、液晶層、上配向膜、透明電極、上基板、λ/4板、そして偏光膜からなる構成を有する。本発明におけるガスバリア性フィルムは、前記透明電極基板および上基板として使用することができる。カラー表示の場合には、さらにカラーフィルター層を反射電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。透過型液晶表示装置は、下から順に、バックライト、偏光板、λ/4板、下透明電極、下配向膜、液晶層、上配向膜、上透明電極、上基板、λ/4板および偏光膜からなる構成を有する。カラー表示の場合には、さらにカラーフィルター層を下透明電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。液晶セルの種類は特に限定されないが、より好ましくはTN型(Twisted Nematic)、STN型(Super Twisted Nematic)またはHAN型(Hybrid Aligned Nematic)、VA型(Vertically Alignment)、ECB型(Electrically
Controlled Birefringence)、OCB型(Optically Compensated Bend)、IPS型(In−Plane Switching)、CPA型(Continuous Pinwheel Alignment)であることが好ましい。
(太陽電池)
本発明のガスバリア性フィルムは、太陽電池素子の封止フィルムとしても用いることができる。ここで、本発明のガスバリア性フィルムは、バリア層が太陽電池素子に近い側となるように封止することが好ましい。本発明のガスバリア性フィルムが好ましく用いられる太陽電池素子としては、特に制限はないが、例えば、単結晶シリコン系太陽電池素子、多結晶シリコン系太陽電池素子、シングル接合型、またはタンデム構造型等で構成されるアモルファスシリコン系太陽電池素子、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII−V族化合物半導体太陽電池素子、カドミウムテルル(CdTe)等のII−VI族化合物半導体太陽電池素子、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI−III−VI族化合物半導体太陽電池素子、色素増感型太陽電池素子、有機太陽電池素子等が挙げられる。中でも、本発明においては、上記太陽電池素子が、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI−III−VI族化合物半導体太陽電池素子であることが好ましい。
(その他)
その他の適用例としては、特表平10−512104号公報に記載の薄膜トランジスタ、特開平5−127822号公報、特開2002−48913号公報等に記載のタッチパネル、特開2000−98326号公報に記載の電子ペーパー等が挙げられる。
<光学部材>
本発明のガスバリア性フィルムは、光学部材としても用いることができる。光学部材の例としては円偏光板等が挙げられる。
(円偏光板)
本発明におけるガスバリア性フィルムを基板としλ/4板と偏光板とを積層し、円偏光板を作製することができる。この場合、λ/4板の遅相軸と偏光板の吸収軸とのなす角が45°になるように積層する。このような偏光板は、長手方向(MD)に対し45°の方向に延伸されているものを用いることが好ましく、例えば、特開2002−865554号公報に記載のものを好適に用いることができる。
以下、実施例および比較例を用いて本発明を具体的に説明するが、本発明は以下の実施例には限定されない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。
《ガスバリア性フィルムの作製》
〔ガスバリア性フィルム1の作製:実施例1〕
(樹脂基材の準備)
厚さ50μmのポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム(株)製、商品名「テイジンテトロンフィルム」)を、樹脂基材として用いた。
(下地層の形成)
上記樹脂基材の易接着面側に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTARZ7501を用い、乾燥後の層厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件として、80℃で3分間の乾燥を行った。次いで、空気雰囲気下で、高圧水銀ランプを使用し、硬化条件;1.0J/cmで硬化を行い、下地層を形成した。
(無機バリア層の形成:ローラーCVD法)
図2に記載の磁場を印加したローラー間放電プラズマCVD装置(以下、この方法をローラーCVD法と称す。)を用い、樹脂基材側(裏面)が成膜ローラーと接触するようにして、樹脂基材を装置に装着し、下記の成膜条件(プラズマCVD条件)により、アンカー層上に無機バリア層を、厚さが100nmとなる条件で成膜した。
〈プラズマCVD条件〉
原料ガス(ヘキサメチルジシロキサン、略称:HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
酸素ガス(O)の供給量:500sccm
真空チャンバ内の真空度:3Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
樹脂基材の搬送速度:2m/min
(金属原子含有層の形成:PHPS−ALCH層)
続いて、無機バリア層の上に下記で調製したPHPS−ALCH層形成用塗布液をスピンコート法により塗布することにより形成した後、真空紫外線照射処理を行うことで、無機バリア層の上に、厚さ90nmの金属原子含有層としてのPHPS−ALCH層を形成した。
〈PHPS−ALCH層形成用塗布液の調製〉
パーヒドロポリシラザン(PHPS)溶液は、無触媒のパーヒドロポリシラザン20重量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製、アクアミカ(登録商標) NN120−20)、アミン触媒(N,N,N’,N’−テトラメチル−1,6−ジアミノヘキサン)をパーヒドロポリシラザンに対して5重量%含有するパーヒドロポリシラザン20重量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製、アクアミカ NAX120−20)を4:1の重量比で混合することにより、アミン触媒をパーヒドロポリシラザンに対して1重量%含むパーヒドロポリシラザン20重量%ジブチルエーテル溶液を調製した。
このように調整したPHPS液に、さらにALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)をPHPSに対して0.67重量%(元素組成比AL/Si(%):10%)になるように添加し、ジブチルエーテルで希釈することで、全固形分濃度が3重量%のPHPS−ALCH溶液を調製した。
(真空紫外線(VUV光)照射処理条件)
本発明における真空紫外線(VUV光)の照射は、下記条件にて、下記の装置を用いランプと試料との間隔(Gapともいう)を6mmとなるように試料を設置し、照射した。照射時間は、可動ステージの可動速度を調製して変化させた。
また、真空紫外線照射時の酸素濃度の調整は、照射庫内に導入する窒素ガス、及び酸素ガスの流量をフローメーターにより測定し、庫内に導入するガスの窒素ガス/酸素ガス流量比により調整した。
真空紫外線照射装置:ステージ可動型キセノンエキシマ照射装置
(MDエキシマ社製、MECL−M−1−200)
照度:140mW/cm(172nm)
ステージ温度:80℃
処理環境:ドライ窒素ガス雰囲気下
導入ガス加熱温度:100℃
加熱ガス導入時間:1分
処理環境の酸素濃度:0.1体積%
ステージ可動速度と搬送回数:10mm/秒で4回搬送
エキシマ光露光積算量:1500mJ/cm
以上のように、無機バリア層の上に、金属原子含有層を形成することで、本発明のガスバリア性フィルム1を作製した。
金属原子含有層中の残留有機溶媒量は、ガスバリア性フィルム1と同時場にて真空紫外線照射処理を施したシリコンウェハー(ガスバリア性フィルム1と同様にして金属原子含有層をシリコンウェハー上に設けたもの)から下記方法にて検出された値と同一であるとして求めた。
(残留有機溶媒量の検出方法)
まず、シリコンウェハー上に上記ガスバリア性フィルム1と同様にして金属原子含有層を形成した。このシリコンウェハー上に設けた金属原子含有層中に含有される有機溶媒量を、パージ&トラップサンプラーを取り付けたガスクロマトグラフィー質量分析法(PT−GC/MS)で測定した。具体的には、シリコンウェハーを高温(200℃)で加熱することで発生したガスを、ガス回収用のチャンバと有機ガス吸着管(TENAX GR)とに吸着させ、PT−GC/MS測定を行うことで、金属原子含有層中に含有する有機溶媒量を求めた。溶媒濃度は、濃度既知の基準試料を用いて作成した検量線より求めた。
(ガスクロマトグラフィー測定条件)
GC: カラム G&W Scientific DB−624(0.25mmI.D.×30M)
OVEN 40℃(2min)−10℃/min−230℃(14min)
INJ 230℃
AUX 230℃
MASS scan MassRange 20−300。
有機溶媒濃度は、下記式に従って算出することができる。
金属原子含有層の重量(g)は、金属原子含有層を設けたシリコンウェハーの重量から層形成前のシリコンウェハーの重量を差し引くことで簡単に求めることが出来る。
このようにして、ガスバリア性フィルム1の金属原子含有層中に含有する有機溶媒量を求めたところ、1000ppmであった。なお、以下の実施例で作製したガスバリア性フィルムの金属原子含有層中に含有する有機溶媒量についても、当該方法と同様の方法で算出した。
〔ガスバリア性フィルム2の作製:実施例2〕
ガスバリア性フィルム1の作製において、真空紫外線照射処理時の加熱ガス導入時間を2分にした以外は、ガスバリア性フィルム1の作製と同様にして、本発明のガスバリア性フィルム2を作製した。
また、ガスバリア性フィルム2の金属原子含有層中に含有する有機溶媒量を求めたところ、800ppmであった。
〔ガスバリア性フィルム3の作製:実施例3〕
ガスバリア性フィルム1の作製において、真空紫外線照射処理時の加熱ガス導入時間を5分にした以外は、ガスバリア性フィルム1の作製と同様にして、本発明のガスバリア性フィルム3を作製した。
ガスバリア性フィルム3の金属原子含有層中に含有する有機溶媒量を求めたところ、100ppmであった。
〔ガスバリア性フィルム4の作製:実施例4〕
ガスバリア性フィルム1の作製において、真空紫外線照射処理時の加熱ガス導入時間を10分にした以外は、ガスバリア性フィルム1の作製と同様にして、本発明のガスバリア性フィルム4を作製した。
ガスバリア性フィルム4の金属原子含有層中に含有する有機溶媒量を求めたところ、10ppmであった。
〔ガスバリア性フィルム5の作製:実施例5〕
ガスバリア性フィルム1の作製において、真空紫外線照射処理時の加熱ガス導入時間を30分にした以外は、ガスバリア性フィルム1の作製と同様にして、本発明のガスバリア性フィルム5を作製した。
ガスバリア性フィルム5の金属原子含有層中に含有する有機溶媒量を求めたところ、1ppmであった。
〔ガスバリア性フィルム6の作製:実施例6〕
ガスバリア性フィルム3の作製において、PHPS−ALCH溶液を下記のようにして調製した以外は、ガスバリア性フィルム3の作製と同様にして、本発明のガスバリア性フィルム6を作製した。
ガスバリア性フィルム6の金属原子含有層中に含有する有機溶媒量を求めたところ、100ppmであった。
(PHPS−ALCH溶液の調製)
アミン触媒をパーヒドロポリシラザンに対して1重量%含むように調製したPHPS液に、ALCHをPHPSに対して0.0067重量%(元素組成比AL/Si(%):0.1%)になるように添加することで、全固形分濃度が3重量%のPHPS−ALCH溶液を調製した。
〔ガスバリア性フィルム7の作製:実施例7〕
ガスバリア性フィルム3の作製において、ALCHをPHPSに対して0.033重量%(元素組成比AL/Si(%):0.5%)になるように添加したPHPS−ALCH溶液を用いた以外は、ガスバリア性フィルム3の作製と同様にして、本発明のガスバリア性フィルム7を作製した。
ガスバリア性フィルム7の金属原子含有層中に含有する有機溶媒量を求めたところ、100ppmであった。
〔ガスバリア性フィルム8の作製:実施例8〕
ガスバリア性フィルム3の作製において、ALCHをPHPSに対して0.067重量%(元素組成比AL/Si(%):1%)になるように添加したPHPS−ALCH溶液を用いた以外は、ガスバリア性フィルム3の作製と同様にして、本発明のガスバリア性フィルム8を作製した。
ガスバリア性フィルム8の金属原子含有層中に含有する有機溶媒量を求めたところ、100ppmであった。
〔ガスバリア性フィルム9の作製:実施例9〕
ガスバリア性フィルム3の作製において、ALCHをPHPSに対して1.3重量%(元素組成比AL/Si(%):20%)になるように添加したPHPS−ALCH溶液を用いた以外は、ガスバリア性フィルム3の作製と同様にして、本発明のガスバリア性フィルム9を作製した。
ガスバリア性フィルム9の金属原子含有層中に含有する有機溶媒量を求めたところ、100ppmであった。
〔ガスバリア性フィルム10の作製:実施例10〕
ガスバリア性フィルム3の作製において、ALCHをPHPSに対して6.7重量%(元素組成比AL/Si(%):100%)になるように添加したPHPS−ALCH溶液を用いた以外は、ガスバリア性フィルム3の作製と同様にして、本発明のガスバリア性フィルム10を作製した。
ガスバリア性フィルム10の金属原子含有層中に含有する有機溶媒量を求めたところ、100ppmであった。
〔ガスバリア性フィルム11の作製:実施例11〕
ガスバリア性フィルム3の作製において、無機バリア層を下記のようにPHPSから形成した以外は、ガスバリア性フィルム3の作製と同様にして、本発明のガスバリア性フィルム11を作製した。
(無機バリア層の形成:塗布法)
(PHPS溶液の調製)
アミン触媒をパーヒドロポリシラザンに対して1重量%含むように調製したPHPS液をジブチルエーテルにて希釈することで、パーヒドロポリシラザンの濃度が8重量%であるジブチルエーテル溶液を調製した。
(無機バリア層の形成:PHPS層)
続いて、アンカー層を設けた基材上に上記PHPS溶液を用いたスピンコート法によりPHPS層を形成した後、真空紫外線照射処理を行うことで、アンカー層上に厚さ250nmの無機バリア層を形成した。このとき、下記の条件以外は、ガスバリア性フィルム3における金属原子含有層に施す照射処理と同様にして、真空紫外線照射処理を行った。
(真空紫外線(VUV光)照射処理条件)
ステージ可動速度と搬送回数:10mm/秒で16回搬送
エキシマ光露光積算量:6500mJ/cm
また、ガスバリア性フィルム11の金属原子含有層中に含有する有機溶媒量を求めたところ、100ppmであった。
〔ガスバリア性フィルム12の作製:実施例12〕
ガスバリア性フィルム3の作製において、無機バリア層上にガスバリア性フィルム11におけるPHPSから形成した塗布型の無機バリア層をさらに設けた以外は、ガスバリア性フィルム3の作製と同様にして、本発明のガスバリア性フィルム12を作製した。
ガスバリア性フィルム12の金属原子含有層中に含有する有機溶媒量を求めたところ、100ppmであった。
〔ガスバリア性フィルム13の作製:比較例1〕
ガスバリア性フィルム3の作製において、ALCHをPHPSに対して0.0033重量%(元素組成比AL/Si(%):0.05%)になるように添加したPHPS−ALCH溶液を用いた以外は、ガスバリア性フィルム3の作製と同様にして、比較のガスバリア性フィルム13を作製した。
ガスバリア性フィルム13の金属原子含有層中に含有する有機溶媒量を求めたところ、100ppmであった。
〔ガスバリア性フィルム14の作製:比較例2〕
ガスバリア性フィルム3の作製において、ALCHをPHPSに対して8重量%(元素組成比AL/Si(%):120%)になるように添加したPHPS−ALCH溶液を用いた以外は、ガスバリア性フィルム3の作製と同様にして、比較のガスバリア性フィルム14を作製した。
ガスバリア性フィルム14の金属原子含有層中に含有する有機溶媒量を求めたところ、100ppmであった。
〔ガスバリア性フィルム15の作製:比較例3〕
ガスバリア性フィルム3の作製において、真空紫外線照射処理時の加熱ガス導入温度を室温にした以外は、ガスバリア性フィルム3の作製と同様にして、比較のガスバリア性フィルム15を作製した。
また、ガスバリア性フィルム15の金属原子含有層中に含有する有機溶媒量を求めたところ、1200ppmであった。
〔ガスバリア性フィルム16の作製:比較例4〕
ガスバリア性フィルム1の作製において、真空紫外線照射処理時の加熱ガス導入時間を60分にした以外は、ガスバリア性フィルム1の作製と同様にして、比較のガスバリア性フィルム16を作製した。
ガスバリア性フィルム16の金属原子含有層中に含有する有機溶媒量を求めたところ、0ppmであった。
[評価]
上記実施例および比較例のガスバリア性フィルムについて、下記方法に従って水蒸気ガスバリア性(WVTR)、密着性およびクラック発生の有無を評価した。結果を下記表1に示す。
(水蒸気バリア性(WVTR)の評価)
(未処理の水蒸気バリア性の評価)
以下の測定方法に従って、各ガスバリア性フィルムの水蒸気バリア性を評価した。
・装置
蒸着装置:日本電子(株)製真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)
・水蒸気バリア性評価用セルの作製
真空蒸着装置(日本電子製真空蒸着装置 JEE−400)を用い、それぞれのガスバリア性フィルム1〜16の表面に金属カルシウムを蒸着させた。その後、乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介して金属カルシウム蒸着面を対面させて接着し、紫外線を照射することで、評価用セルを作製した。
得られた試料(評価用セル)を85℃、85%RHの高温高湿下で加速劣化した際に発生したカルシウム腐食面積から、水蒸気バリア性(WVTR)を求めた。結果は表1に「未処理」の「WVTR」として示した。
なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルムの代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な85℃、85%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。
(85℃85%RH100時間処理後の水蒸気バリア性の評価)
ガスバリア性フィルム1〜16それぞれを、85℃85%RH下に100時間保存した後、上記の方法と同様にして、水蒸気バリア性を評価した。結果は表1に「85℃85%RH100h処理後」の「WVTR」として示した。
(密着性の評価)
(未処理の密着性の評価)
それぞれのガスバリア性フィルム1〜16について、JIS(日本工業規格)K5600−5−6(ISO2409)に準拠したクロスカット剥離法を行うことにより、基材−ガスバリア層間の密着性試験を行った。
具体的には、1マス1mm×1mmの正方形が10マス×10マスの計100マスになるようにクロスカットし、
膜剥離(破壊)の起きなかったマス数/100(マス)
として密着性を評価した。
膜剥離が起きているかどうかは、光学顕微鏡で確認した。結果は表1に「未処理」の「密着性」として示した。
(85℃85%RH100時間処理後の密着性の評価)
それぞれのガスバリア性フィルム1〜16を、85℃、85%RHの高温高湿下で100時間保存した後、上記の方法と同様にして、密着性を評価した。結果は表1に「85℃85%RH100h処理後」の「密着性」として示した。
(クラック評価)
(未処理のクラック評価)
それぞれのガスバリア性フィルム1〜16について、3cm×3cmのエリア内において、発生したクラックの数を光学顕微鏡で確認し、数えた。結果は表1に「未処理」の「クラック」として示した。
(85℃ドライ500時間処理後のクラック評価)
それぞれのガスバリア性フィルム1〜16を、85℃の高温下で500時間保存した後、上記の方法と同様にして、クラック評価した。結果は表1に「85℃ドライ500h処理後」の「クラック」として示した。
上記表1の結果から、本発明のガスバリア性フィルムは、金属原子含有層中の有機溶媒の量が特定の範囲から外れる、および/または、金属原子含有層におけるケイ素原子に対する金属原子の元素組成比(M/Si)(原子%)が特定の範囲から外れる比較例のガスバリア性フィルムに比して、湿熱耐性(特に、高温多湿条件下のガスバリア性、密着性)、耐熱性(クラック耐性)に優れることが分かる。
1、11 ガスバリア性フィルム、
14 金属原子含有層、
2、12、110 基材、
3、13 無機バリア層、
31 製造装置、
32 送り出しローラー、
33、34、35、36 搬送ローラー、
39、40 成膜ローラー、
41 ガス供給管、
42 プラズマ発生用電源、
43、44 磁場発生装置、
45 巻取りローラー、
101 プラズマCVD装置、
102 真空槽、
103 カソード電極、
105 サセプタ、
106 熱媒体循環系、
107 真空排気系、
108 ガス導入系、
109 高周波電源、
160 加熱冷却装置。

Claims (8)

  1. 基材と、前記基材上に位置する無機バリア層と、前記無機バリア層上に位置し、ケイ素原子および金属原子を含み、ケイ素原子に対する金属原子の元素組成比(原子%)(金属原子含有量/ケイ素原子含有量×100)が0.1〜100(原子%)である金属原子含有層とを有し、
    前記金属原子含有層中に含まれる有機溶媒が0ppmを超えて1000ppm以下である、ガスバリア性フィルム。
  2. 前記金属原子が、アルミニウム原子、チタン原子、鉄原子、および銅原子からなる群より選択される少なくとも1種を含む、請求項1に記載のガスバリア性フィルム。
  3. 前記金属原子がアルミニウム原子を含み、前記ケイ素原子に対するアルミニウム原子の元素組成比(原子%)(アルミニウム原子含有量/ケイ素原子含有量×100)が0.1〜100(原子%)である、請求項2に記載のガスバリア性フィルム。
  4. 前記金属原子含有層は前記金属原子を含む化合物および下記一般式(1):
    上記一般式(1)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表わす、
    で示される構造を有するケイ素化合物を用いて形成された膜である、請求項1〜3のいずれか1項に記載のガスバリア性フィルム。
  5. 前記金属原子含有層は、前記金属原子を含む化合物および前記一般式(1)で示される構造を有するケイ素化合物を含む塗布液を塗布した後、活性エネルギー線を照射することによって改質して得られた膜である、請求項4に記載のガスバリア性フィルム。
  6. 前記無機バリア層は、化学気相成長(CVD)法によって形成された膜である、請求項1〜5のいずれか1項に記載のガスバリア性フィルム。
  7. 基材上に無機バリア層を形成する工程と、
    前記無機バリア層上に、金属原子を含む化合物、下記一般式(1):
    上記一般式(1)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表わす、
    で示される構造を有するケイ素化合物、および有機溶媒を含む塗布液を塗布して塗膜を形成した後、加熱された不活性ガス雰囲気において活性エネルギー線を照射することによって改質する工程と、
    を有する、ガスバリア性フィルムの製造方法。
  8. 電子デバイス本体と、
    請求項1〜6のいずれか1項に記載のガスバリア性フィルムまたは請求項7に記載の製造方法により製造されたガスバリア性フィルムと、
    を有する、電子デバイス。
JP2014146267A 2014-07-16 2014-07-16 ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイス Pending JP2016022595A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014146267A JP2016022595A (ja) 2014-07-16 2014-07-16 ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146267A JP2016022595A (ja) 2014-07-16 2014-07-16 ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイス

Publications (1)

Publication Number Publication Date
JP2016022595A true JP2016022595A (ja) 2016-02-08

Family

ID=55269837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146267A Pending JP2016022595A (ja) 2014-07-16 2014-07-16 ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイス

Country Status (1)

Country Link
JP (1) JP2016022595A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164387A1 (ja) * 2016-03-25 2017-09-28 リンテック株式会社 ガスバリアフィルム及びガスバリアフィルムの製造方法
WO2018088011A1 (ja) * 2016-11-09 2018-05-17 コニカミノルタ株式会社 有機電界発光素子パネル、および有機電界発光素子パネルの製造方法
JP2019171340A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 光学フィルムの製造方法
JP2019171326A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 光学フィルムの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164387A1 (ja) * 2016-03-25 2017-09-28 リンテック株式会社 ガスバリアフィルム及びガスバリアフィルムの製造方法
JPWO2017164387A1 (ja) * 2016-03-25 2019-01-31 リンテック株式会社 ガスバリアフィルム及びガスバリアフィルムの製造方法
WO2018088011A1 (ja) * 2016-11-09 2018-05-17 コニカミノルタ株式会社 有機電界発光素子パネル、および有機電界発光素子パネルの製造方法
JPWO2018088011A1 (ja) * 2016-11-09 2019-09-26 コニカミノルタ株式会社 有機電界発光素子パネル、および有機電界発光素子パネルの製造方法
JP7029406B2 (ja) 2016-11-09 2022-03-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機電界発光素子パネルの製造方法
JP2019171340A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 光学フィルムの製造方法
JP2019171326A (ja) * 2018-03-29 2019-10-10 富士フイルム株式会社 光学フィルムの製造方法

Similar Documents

Publication Publication Date Title
JP6504284B2 (ja) ガスバリア性フィルム、その製造方法、およびこれを用いた電子デバイス
JP6041039B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP6107819B2 (ja) ガスバリア性フィルム、およびこれを用いる電子デバイス
JP5803937B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP5895687B2 (ja) ガスバリア性フィルム
JP6056854B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP5880442B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP2015003464A (ja) ガスバリア性フィルム、その製造方法、およびこれを用いた電子デバイス
WO2015053405A1 (ja) ガスバリア性フィルムの製造方法
JP5861644B2 (ja) ガスバリア性フィルムの製造方法、及びガスバリア性フィルム
JP2012131194A (ja) ガスバリア性フィルム
JP2013208867A (ja) ガスバリア性フィルムおよび電子デバイス
JP2016022595A (ja) ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイス
JP6060848B2 (ja) ガスバリア性フィルム
WO2014119754A1 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
JP2014223578A (ja) ガスバリア性フィルムの製造方法
WO2016010117A1 (ja) ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを用いてなる電子デバイス
WO2014109353A1 (ja) ガスバリア性フィルムの製造方法
JP2016022596A (ja) ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを有する電子デバイス
WO2015029795A1 (ja) ガスバリア性フィルムの製造方法
JP2013226758A (ja) ガスバリア性フィルムの製造方法
JP2016022589A (ja) ガスバリア性フィルム
WO2016010118A1 (ja) ガスバリア性フィルムおよびガスバリア性フィルムの製造方法
JP2015024384A (ja) ガスバリア性フィルムの製造方法
JP6578689B2 (ja) ガスバリア性フィルムおよび該ガスバリア性フィルムを用いた電子デバイス