WO2005059985A1 - Procede de production d'un susbtrat de silicium a couche poreuse - Google Patents

Procede de production d'un susbtrat de silicium a couche poreuse Download PDF

Info

Publication number
WO2005059985A1
WO2005059985A1 PCT/JP2004/018354 JP2004018354W WO2005059985A1 WO 2005059985 A1 WO2005059985 A1 WO 2005059985A1 JP 2004018354 W JP2004018354 W JP 2004018354W WO 2005059985 A1 WO2005059985 A1 WO 2005059985A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
porous layer
silicon substrate
aqueous solution
silicon
Prior art date
Application number
PCT/JP2004/018354
Other languages
English (en)
Japanese (ja)
Inventor
Michio Matsumura
Kazuya Tsujino
Original Assignee
Kansai Technology Licensing Organization Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co., Ltd. filed Critical Kansai Technology Licensing Organization Co., Ltd.
Publication of WO2005059985A1 publication Critical patent/WO2005059985A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention belongs to a method for producing a silicon substrate with a porous layer, and particularly relates to a method for efficiently forming a silicon substrate for a solar cell that requires a texture structure.
  • the energy conversion efficiency has been improved by selectively etching the surface of the substrate with an alkali so as to form a so-called textured shape in which a large number of pyramids are connected. This is different from the case where the substrate surface is flat, even if the light reflected by the slope of the pyramid is received by the slope of the adjacent pyramid and incident by refraction there. It is.
  • Patent Document 1 As a method of forming the texture shape on a silicon substrate that is not a single crystal such as a polycrystalline silicon substrate or an amorphous silicon substrate, a machining method (Patent Document 1) and a reactive ion etching method ( Patent document 2) is known.
  • Patent Document 2 a machining method
  • Patent Document 2 a reactive ion etching method
  • Patent Document 3 a technique of using porous silicon as a texture structure has been proposed.
  • Known methods for producing porous silicon on a silicon substrate include an electrochemical reaction method (Patent Document 4) and a chemical etching method (Patent Documents 3 and 5).
  • the electrochemical reaction method involves immersing a silicon substrate in a hydrofluoric acid aqueous solution and causing an electrochemical reaction using a silicon substrate as an electrode.
  • the chemical etching method is a method for forming a porous layer by immersing a silicon substrate in a hydrofluoric acid aqueous solution containing an oxidizing agent such as nitric acid, chromic acid, or a metal redox pair. Furthermore, in recent years, methods utilizing the oxidation action by metal ions (Non-Patent Documents 1 and 2) have also been proposed.
  • Patent Document 1 Japanese Patent Laid-Open No. 9148603
  • Patent Document 2 JP-A-9-102625
  • Patent Document 3 Japanese Patent Laid-Open No. 9-167850
  • Patent Document 4 Japanese Patent Laid-Open No. 7-230983
  • Patent Document 5 US Patent No. 5421958
  • Non-Patent Document 1 K. Peng et al., Adv. Funct. Mater. 13 (2003) 127
  • Non-Patent Document 2 P. Gorostiza et al., J. Electroanal. Chem. 469 (1999) 48
  • Non-Patent Literature 3 Proceedings of the 50th Joint Conference on Applied Physics, 28a-ZC-5
  • Non-Patent Literature 4 3rd World Conference on Photovoltaic Energy onvension, Abstracts for the Technical Program, 4LN-D-08
  • the equipment must be made of materials that can withstand this, and the number of processed sheets at a time is small, resulting in high costs.
  • the electrochemical reaction method requires a current generator and is expensive.
  • the chemical etching method and the method using the oxidization effect by metal ions are expensive because they consume a large amount of metal ions such as nitric acid, chromic acid, and metal redox.
  • an object of the present invention is to provide a method for producing a silicon substrate with a porous layer at low cost and without adversely affecting the environment.
  • the method for manufacturing a silicon substrate with a porous layer includes immersing the silicon substrate in a mixed aqueous solution of an oxidizing agent and hydrofluoric acid containing metal ions. A porous silicon layer is formed on the surface of the substrate.
  • the metal ion examples include one or more ions selected from silver, copper, nickel, platinum, palladium, and gold.
  • a metal is deposited on the surface of a silicon substrate in a liquid containing metal ions, and the metal is a catalyst for reducing an oxidizing agent such as hydrogen peroxide or hydrogen.
  • the oxidant quickly receives electrons from the silicon substrate. This leaves holes in the substrate. These holes promote the dissolution of the substrate material in the acid and liquid.
  • the surface of the substrate is a double layer composed of a porous layer consisting of a large number of small pores with a diameter of about several nanometers and a porous layer containing a large number of large pores with a diameter of about several hundreds of nm below it. It becomes.
  • metal ions are only precipitated and function as a catalyst, so a small amount is sufficient.
  • the porous layer can be formed at low cost.
  • the reaction proceeds slowly, it is easy to control the thickness of the porous layer.
  • hydrogen peroxide, oxygen or ozone is used as the oxidizing agent, water is the only by-product of these reduction reactions (H 0 + 2H + + 2e ⁇ 2H 0, 0 + 4H + +
  • FIG. 1 is a scanning electron micrograph of the surface of a silicon substrate with a porous layer in Example 1.
  • FIG. 2 is a graph showing the results of measuring the reflectance of the substrate of Example 1 and a control substrate.
  • FIG. 3 is a scanning electron micrograph of the surface of a silicon substrate with a porous layer in Example 2.
  • FIG. 4 is a graph showing the results of measuring the reflectance of a substrate of Example 2, a control substrate, and a comparative substrate.
  • the substrate having the double layer can be used as a gas sensor, a biosensor, a low dielectric constant film, a light emitting element, or an electron emitting element.
  • the upper porous layer can also be used for solar cells as an antireflection film, and when the upper porous layer is dissolved in an alkaline aqueous solution, it becomes a textured surface consisting of many irregularities with a diameter of about several hundred nm, Either way, it is suitable as a substrate for solar cells.
  • a p-type polycrystalline silicon substrate doped with boron, sliced to an average thickness of 350 ⁇ m Prepared what was made.
  • the layer damaged by the blade during slicing was removed by immersing in 6% NaOH aqueous solution at 80 ° C for 10 minutes.
  • the specific resistance was 0.5-2 ⁇ cm.
  • This substrate was ultrasonically washed in acetone for 5 minutes and then washed with pure water.
  • Figure 1 shows the results of observing the surface of the obtained substrate with a scanning electron microscope.
  • a porous layer consisting of many small pores having a diameter of about several nm was formed on the surface of the substrate.
  • the resulting substrate was measured for reflectance at wavelengths from 300 nm to 800 nm using an ultraviolet-visible spectrophotometer (UV-2450) and an integrating sphere for reflection spectrum measurement.
  • UV-2450 ultraviolet-visible spectrophotometer
  • Figure 2 shows the measurement results. In the figure, the solid line is this example, and the broken line is the control.
  • the formation of the porous layer significantly reduced the reflectivity compared to before the formation.
  • Example 1 The substrate obtained in Example 1 was further washed with pure water, and immersed in a 1% NaOH aqueous solution for 10 minutes to remove the upper porous layer. Next, after washing with pure water again, the silver remaining on the surface was removed by immersing in 30% nitric acid for 30 minutes.
  • Figure 3 shows the results of observation of the surface of the substrate thus obtained with a scanning electron microscope.
  • the porous layer can be formed on the surface of the silicon substrate by a method suitable for mass production: useful for the spread of various sensors and solar cells.

Abstract

Le but de l'invention est de produire un procédé de production d'une pile solaire avec une grande productivité, dans lequel une couche poreuse peut être formée à faible coût sans génération de sous produit sous forme de gaz dangereux. L'invention concerne un procédé qui se caractérise en ce qu'un substrat de silicium polycristallin est immergé dans une solution aqueuse contenant des ions argent, consistant en un mélange d'oxydant, tel qu'un peroxyde d'hydrogène, et d'acide fluorhydrique pour former une couche de silicium poreuse à la surface du substrat. Autrement, le procédé peut se caractériser en ce que le substrat peut occasionnellement être également soumis à un traitement aux alcalis pour qu'une couche poreuse supérieure soit enlevée et qu'une structure à texture soit ainsi formée.
PCT/JP2004/018354 2003-12-17 2004-12-09 Procede de production d'un susbtrat de silicium a couche poreuse WO2005059985A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-419064 2003-12-17
JP2003419064A JP3925867B2 (ja) 2003-12-17 2003-12-17 多孔質層付きシリコン基板を製造する方法

Publications (1)

Publication Number Publication Date
WO2005059985A1 true WO2005059985A1 (fr) 2005-06-30

Family

ID=34697162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018354 WO2005059985A1 (fr) 2003-12-17 2004-12-09 Procede de production d'un susbtrat de silicium a couche poreuse

Country Status (2)

Country Link
JP (1) JP3925867B2 (fr)
WO (1) WO2005059985A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2182556A1 (fr) * 2007-10-24 2010-05-05 Mitsubishi Electric Corporation Procédé de fabrication de cellule solaire
EP2255380A2 (fr) * 2008-03-21 2010-12-01 Alliance for Sustainable Energy, LLC Gravure antireflet de surfaces de silicium catalysée avec des solutions de métaux ioniques
US8729798B2 (en) 2008-03-21 2014-05-20 Alliance For Sustainable Energy, Llc Anti-reflective nanoporous silicon for efficient hydrogen production
US8815104B2 (en) 2008-03-21 2014-08-26 Alliance For Sustainable Energy, Llc Copper-assisted, anti-reflection etching of silicon surfaces
US8828765B2 (en) 2010-06-09 2014-09-09 Alliance For Sustainable Energy, Llc Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
US9034216B2 (en) 2009-11-11 2015-05-19 Alliance For Sustainable Energy, Llc Wet-chemical systems and methods for producing black silicon substrates
US9076916B2 (en) 2010-02-15 2015-07-07 Hikaru Kobayashi Method and device for manufacturing semiconductor devices, semiconductor device and transfer member
RU2703909C2 (ru) * 2017-09-01 2019-10-23 Акционерное общество "Ордена Трудового Красного Знамени Научно-исследовательский физико-химический институт им. Л.Я. Карпова" (АО "НИФХИ им. Л.Я. Карпова") Способ формирования слоя пористого кремния на кристаллической подложке
US11251318B2 (en) 2011-03-08 2022-02-15 Alliance For Sustainable Energy, Llc Efficient black silicon photovoltaic devices with enhanced blue response

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1753032A1 (fr) * 2004-05-28 2007-02-14 Sharp Kabushiki Kaisha Substrat semi-conducteur pour cellule solaire, procédé de fabrication dudit substrat, et cellule solaire
TW200620451A (en) * 2004-11-09 2006-06-16 Univ Osaka Method for forming hole in crystal substrate, and crystal substrate having hole formed by the method
TWI267897B (en) * 2005-11-10 2006-12-01 Tatung Co Substrate with anti-reflection layer and its manufacturing method
GB0601318D0 (en) * 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
CN100467670C (zh) * 2006-03-21 2009-03-11 无锡尚德太阳能电力有限公司 一种用于制备多晶硅绒面的酸腐蚀溶液及其使用方法
WO2012150627A1 (fr) 2011-05-02 2012-11-08 三菱電機株式会社 Procédé de nettoyage de substrat de silicium, et procédé de production de cellule solaire
JP5724614B2 (ja) * 2011-05-17 2015-05-27 株式会社Sumco 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5724718B2 (ja) * 2011-07-25 2015-05-27 株式会社Sumco 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
US8883543B2 (en) 2011-05-17 2014-11-11 Sumco Corporation Method of producing wafer for solar cell, method of producing solar cell, and method of producing solar cell module
JP5880055B2 (ja) * 2012-01-12 2016-03-08 株式会社Sumco 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP6120172B2 (ja) * 2011-08-12 2017-04-26 小林 光 半導体装置の製造方法、半導体装置の製造装置、半導体装置、半導体装置の製造プログラム、半導体用処理剤、並びに転写用部材
JP5917082B2 (ja) 2011-10-20 2016-05-11 株式会社半導体エネルギー研究所 光電変換装置の作製方法
JP2013131723A (ja) * 2011-12-22 2013-07-04 Mitsubishi Electric Corp 半導体基板の改質方法
CN103390688A (zh) * 2012-05-11 2013-11-13 华中科技大学 一种太阳能电池表面覆膜结构的制备方法
JP2014165354A (ja) * 2013-02-26 2014-09-08 Panasonic Corp 多孔質シリコンの作製方法
TW201501193A (zh) * 2013-03-15 2015-01-01 Hikaru Kobayashi 矽基板表面處理方法、半導體裝置的製造方法、半導體的製造裝置、轉印用元件及其製造方法、太陽能電池及其製造方法
CN103219428B (zh) * 2013-04-12 2015-08-19 苏州大学 一种晶体硅太阳能电池的绒面结构及其制备方法
CN104993019A (zh) * 2015-07-09 2015-10-21 苏州阿特斯阳光电力科技有限公司 一种局部背接触太阳能电池的制备方法
CN108054237B (zh) * 2017-12-06 2019-11-12 中节能太阳能科技(镇江)有限公司 一种湿法黑硅链式制绒设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991585A (fr) * 1972-12-29 1974-09-02
JPS61163286A (ja) * 1985-01-14 1986-07-23 Mitsubishi Heavy Ind Ltd 保油性のある摺動面の形成方法
JPH05109888A (ja) * 1991-10-14 1993-04-30 Yokogawa Electric Corp Soi基板の製造方法
JPH05267270A (ja) * 1992-03-18 1993-10-15 Takashi Katoda 多孔質半導体の作成方法及び多孔質半導体基板
JPH06216027A (ja) * 1993-01-18 1994-08-05 Canon Inc 半導体基板の製造方法
JPH1154478A (ja) * 1997-06-05 1999-02-26 Tokai Rika Co Ltd シリコン基板における陽極化成方法及び表面型の加速度センサの製造方法
JP2002252202A (ja) * 2001-02-27 2002-09-06 Takashi Matsuura 半導体基材表面への微細構造形成方法およびその方法により微細構造を形成した半導体基材ならびにそれを用いたデバイス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991585A (fr) * 1972-12-29 1974-09-02
JPS61163286A (ja) * 1985-01-14 1986-07-23 Mitsubishi Heavy Ind Ltd 保油性のある摺動面の形成方法
JPH05109888A (ja) * 1991-10-14 1993-04-30 Yokogawa Electric Corp Soi基板の製造方法
JPH05267270A (ja) * 1992-03-18 1993-10-15 Takashi Katoda 多孔質半導体の作成方法及び多孔質半導体基板
JPH06216027A (ja) * 1993-01-18 1994-08-05 Canon Inc 半導体基板の製造方法
JPH1154478A (ja) * 1997-06-05 1999-02-26 Tokai Rika Co Ltd シリコン基板における陽極化成方法及び表面型の加速度センサの製造方法
JP2002252202A (ja) * 2001-02-27 2002-09-06 Takashi Matsuura 半導体基材表面への微細構造形成方法およびその方法により微細構造を形成した半導体基材ならびにそれを用いたデバイス

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119438B2 (en) 2007-10-24 2012-02-21 Mitsubishi Electric Corporation Method of manufacturing solar cell
EP2182556A1 (fr) * 2007-10-24 2010-05-05 Mitsubishi Electric Corporation Procédé de fabrication de cellule solaire
EP2182556A4 (fr) * 2007-10-24 2011-05-18 Mitsubishi Electric Corp Procédé de fabrication de cellule solaire
US8815104B2 (en) 2008-03-21 2014-08-26 Alliance For Sustainable Energy, Llc Copper-assisted, anti-reflection etching of silicon surfaces
EP2255380A4 (fr) * 2008-03-21 2013-10-30 Alliance Sustainable Energy Gravure antireflet de surfaces de silicium catalysée avec des solutions de métaux ioniques
US8729798B2 (en) 2008-03-21 2014-05-20 Alliance For Sustainable Energy, Llc Anti-reflective nanoporous silicon for efficient hydrogen production
EP2255380A2 (fr) * 2008-03-21 2010-12-01 Alliance for Sustainable Energy, LLC Gravure antireflet de surfaces de silicium catalysée avec des solutions de métaux ioniques
US9034216B2 (en) 2009-11-11 2015-05-19 Alliance For Sustainable Energy, Llc Wet-chemical systems and methods for producing black silicon substrates
US9076916B2 (en) 2010-02-15 2015-07-07 Hikaru Kobayashi Method and device for manufacturing semiconductor devices, semiconductor device and transfer member
US8828765B2 (en) 2010-06-09 2014-09-09 Alliance For Sustainable Energy, Llc Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
US9076903B2 (en) 2010-06-09 2015-07-07 Alliance For Sustainable Energy, Llc Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces
US11251318B2 (en) 2011-03-08 2022-02-15 Alliance For Sustainable Energy, Llc Efficient black silicon photovoltaic devices with enhanced blue response
RU2703909C2 (ru) * 2017-09-01 2019-10-23 Акционерное общество "Ордена Трудового Красного Знамени Научно-исследовательский физико-химический институт им. Л.Я. Карпова" (АО "НИФХИ им. Л.Я. Карпова") Способ формирования слоя пористого кремния на кристаллической подложке

Also Published As

Publication number Publication date
JP3925867B2 (ja) 2007-06-06
JP2005183505A (ja) 2005-07-07

Similar Documents

Publication Publication Date Title
WO2005059985A1 (fr) Procede de production d'un susbtrat de silicium a couche poreuse
JP4049329B2 (ja) 太陽電池用多結晶シリコン基板の製造方法
JP6392866B2 (ja) 結晶シリコン太陽電池の表面テクスチャ構造及びその製造方法
CN104992990B (zh) 一种降低硅片表面光反射率的方法
EP2828895B1 (fr) Gravure antireflet de surfaces de silicium assistée par du cuivre
CN106024988B (zh) 一步法湿法黑硅制备以及表面处理方法
CN106229386B (zh) 一种银铜双金属mace法制备黑硅结构的方法
JP2011515858A (ja) イオン性金属溶液を用いて触媒処理されたシリコン表面の反射防止エッチング
CN106098840A (zh) 一种湿法黑硅制备方法
Tang et al. Cu-assisted chemical etching of bulk c-Si: A rapid and novel method to obtain 45 μm ultrathin flexible c-Si solar cells with asymmetric front and back light trapping structures
TW201330294A (zh) 奈米結構區域的電性接點
CN104966762A (zh) 晶体硅太阳能电池绒面结构的制备方法
CN103979485A (zh) 一种微纳多孔硅材料的制备方法
CN105826410B (zh) 一种消除金刚线切割痕迹的多晶硅制绒方法
KR20140105437A (ko) 태양 전지의 제조 방법
CN105347345A (zh) 一种硅微纳米结构的制备方法
Huo et al. Inverted pyramid structures fabricated on monocrystalline silicon surface with a NaOH solution
CN111040766B (zh) 多晶硅片制绒液、黑硅材料的制备方法及其在加速PERC电池LeTID恢复中的应用
Kubendhiran et al. Copper assisted inverted pyramids texturization of monocrystalline silicon in a nitrogen bubbling bath for highly efficient light trapping
TWI792400B (zh) 針對單晶矽晶圓的表面之倒金字塔結構製絨化方法
CN104979430A (zh) 一种晶体硅太阳能电池的绒面结构的制备方法
Mondal et al. Evaluation of New Acid Composition for Low Optical Reflectance Texturization of Multicrystalline Silicon Wafer for Solar Cells
CN112028077B (zh) 一种在硅纳米线及其阵列中形成裂纹的方法
TW201222653A (en) Method of forming micro-pore structure or recess structure on silicon chip substrate surface
CN105845785A (zh) 一种制备晶硅纳米结构减反射层的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase